(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-10-01
(45)【発行日】2024-10-09
(54)【発明の名称】情報処理装置、制御方法、及び、プログラム
(51)【国際特許分類】
G01N 21/88 20060101AFI20241002BHJP
G06T 7/00 20170101ALI20241002BHJP
E01D 22/00 20060101ALN20241002BHJP
【FI】
G01N21/88 J
G06T7/00 610C
E01D22/00 A
(21)【出願番号】P 2020163886
(22)【出願日】2020-09-29
【審査請求日】2023-09-27
(73)【特許権者】
【識別番号】000001007
【氏名又は名称】キヤノン株式会社
(74)【代理人】
【識別番号】110003281
【氏名又は名称】弁理士法人大塚国際特許事務所
(72)【発明者】
【氏名】星野 彰市
(72)【発明者】
【氏名】野上 敦史
(72)【発明者】
【氏名】小林 一彦
【審査官】比嘉 翔一
(56)【参考文献】
【文献】特開2019-211277(JP,A)
【文献】特開2019-020220(JP,A)
【文献】特開2020-096325(JP,A)
【文献】特許第6749528(JP,B1)
【文献】国際公開第2017/216943(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01N21/84-G01N21/958
G01N21/00-G01N21/01
G01N21/17-G01N21/61
JSTPlus/JMEDPlus/JST7580(JDream3)
(57)【特許請求の範囲】
【請求項1】
構造物の変状の経年変化の状態を判定する情報処理装置であって、
変状に係る情報、前記構造物に係る情報、
および、2つ以上の変状
に係る情報のうち少なくとも一つに基づいて、第1の時期における構造物の画像である第1の画像に含まれる複数の変状のうち
の一部の変状を経年変化の状態の判定対象として選択する選択手段と、
前記第1の時期とは異なる第2の時期における前記構造物の画像である第2の画像に含まれる複数の変状のうち前記選択手段により選択された変状に対応する変状を決定する決定手段と、
前記選択手段により選択された変状の情報と前記決定手段により決定された変状の情報とに基づいて、前記選択手段により選択された変状と前記決定手段により決定された変状との間の経年変化の状態を判定する判定手段と、
を備えることを特徴とする情報処理装置。
【請求項2】
前記決定手段は、前記第2の画像に含まれる複数の変状のうちの少なくとも一部と前記選択手段により選択された変状とで整合する度合いを示す整合度に基づいて、前記第2の画像に含まれる複数の変状のうち前記選択手段により選択された変状に対応する変状を決定し、
前記判定手段は、経年変化の状態として、前記選択手段により選択された変状の進行の度合いを示す進行度を判定することを特徴とする請求項1に記載の情報処理装置。
【請求項3】
前記決定手段は、前記選択手段により選択された変状と前記第2の画像に含まれる複数の変状のうちの少なくとも一部の変状のうちの少なくとも一方を膨張させて互いに位置を重ね合わせた時の重複度合いに基づいて、前記第2の画像に含まれる複数の変状のうち前記選択手段により選択された変状に対応する変状を決定することを特徴とする請求項1または2に記載の情報処理装置。
【請求項4】
前記決定手段は、前記選択手段により選択された変状と前記第2の画像に含まれる複数の変状のうちの少なくとも一部との各々で特徴量を算出し、算出した前記特徴量に基づいて、前記第2の画像に含まれる複数の変状のうち前記選択手段により選択された変状に対応する変状を決定することを特徴とする請求項1乃至3のいずれか1項に記載の情報処理装置。
【請求項5】
前記判定手段は、前記選択手段により選択された変状の情報と前記決定手段により決定された変状の情報の差を経年変化の状態として判定することを特徴とする請求項1乃至4のいずれか1項に記載の情報処理装置。
【請求項6】
前記第1の画像に含まれる複数の変状を分割して第1の変状グループを設定する第1グループ設定手段と、
前記第2の画像に含まれる複数の変状を分割して前記第1の変状グループに対応する第2の変状グループを設定する第2グループ設定手段と
を更に有し、
前記判定手段は、前記第1の変状グループに含まれる変状に係る情報を集計した集計データと、前記第2の変状グループに含まれる変状に係る情報を集計した集計データとの差を経年変化の状態として判定することを特徴とする、請求項1乃至5のいずれか1項に記載の情報処理装置。
【請求項7】
前記構造物に係る情報と前記変状に係る情報の少なくとも一方に基づいて前記第1の画像に含まれる複数の変状を分割する分割サイズを取得する分割サイズ取得手段をさらに備えることを特徴とする請求項1乃至6のいずれか1項に記載の情報処理装置。
【請求項8】
前記変状は、前記構造物に生じたひび割れを含むことを特徴とする請求項1乃至7のいずれか1項
に記載の情報処理装置。
【請求項9】
前記選択手段は、前記第1の画像に含まれる複数の変状のうち、ひび割れ幅が所定の閾値を超えるひび割れを示す変状を経年変化の状態の判定対象として選択することを特徴とする請求項8に記載の情報処理装置。
【請求項10】
前記選択手段は、前記第1の画像に含まれる複数の変状のうち、格子状ひび割れWを示す変状を経年変化の状態の判定対象として選択することを特徴とする請求項8に記載の情報処理装置。
【請求項11】
前記変状に係る情報とは、変状に係る属性情報であって、変状の延長、面積、位置、幅のうち少なくとも1つを含むことを特徴とする請求項1乃至10のいずれか1項
に記載の情報処理装置。
【請求項12】
前記構造物に係る情報は、前記構造物に係る属性情報であって、前記構造物の種類、構造、構造部材、部材材料のうち少なくとも1つを含むことを特徴とする請求項1乃至11のいずれか1項
に記載の情報処理装置。
【請求項13】
構造物の変状の経年変化の状態を判定する情報処理装置の制御方法であって、
変状に係る情報、前記構造物に係る情報、
および、2つ以上の変状
に係る情報のうち少なくとも一つに基づいて、第1の時期における構造物の画像である第1の画像に含まれる複数の変状のうち
の一部の変状を経年変化の状態の判定対象として選択する選択工程と、
前記第1の時期とは異なる第2の時期における前記構造物の画像である第2の画像に含まれる複数の変状のうち前記選択工程において選択された変状に対応する変状を決定する決定工程と、
前記選択工程において選択された変状の情報と前記決定工程において決定された変状の情報とに基づいて、前記選択工程において選択された変状と前記決定工程において決定された変状との間の経年変化の状態を判定する判定工程と、
を有することを特徴とする制御方法。
【請求項14】
コンピュータが読み込み実行することで、前記コンピュータに、請求項1乃至12の何れか1項に記載の情報処理装置が有する各手段として機能させるためのプログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、構造物の変状変化の判定技術に関するものである。
【背景技術】
【0002】
橋梁やトンネル等の構造物点検において、構造物の部材の健全性を示す健全度を判断するために、構造物壁面に生じるひび割れや鉄筋露出等の変状がどれだけ進行(経年変化)したかを把握することが求められている。特に、健全度の判断において、太いひび割れや広範囲に広がる鉄筋露出など、構造物の機能への影響が大きな変状の進行状況は重視される。
【0003】
画像を用いたインフラ構造物の点検では、異なる時期に構造物の壁面を撮影した画像から変状を検出し、検出した変状同士の差分を求めることにより、個々の変状の進行の度合い(進行度)を算出する。特許文献1には、異なる時刻に撮影された画像間で特徴量が近似するひび割れを同一のひび割れとし、その進行度を求めることが記載されている。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
撮影のたびに撮影位置や天候など撮影条件が変化するため、同一構造物の同一壁面を撮影した画像であっても、画像間の各画素には位置ずれを含む。そのため、変状の経年変化の状態を求めるためには、このずれを考慮しながら変状同士の対応関係を求める必要がある。しかしながら、年数が経過した構造物の壁面には、非常に多くの変状が生じる。そのため、異なる時期の画像から検出したすべての変状同士の対応関係を、画像間のずれを考慮しながら求めるためには多くの時間を必要とする。
【0006】
本発明はかかる問題に鑑み成されたものであり、変状の経年変化の状態を効率的に求める技術を提供しようとするものである。
【課題を解決するための手段】
【0007】
この課題を解決するため、例えば本発明の情報処理装置は以下の構成を備える。すなわち、
構造物の変状の経年変化の状態を判定する情報処理装置であって、
変状に係る情報、前記構造物に係る情報、および、2つ以上の変状に係る情報のうち少なくとも一つに基づいて、第1の時期における構造物の画像である第1の画像に含まれる複数の変状のうちの一部の変状を経年変化の状態の判定対象として選択する選択手段と、
前記第1の時期とは異なる第2の時期における前記構造物の画像である第2の画像に含まれる複数の変状のうち前記選択手段により選択された変状に対応する変状を決定する決定手段と、
前記選択手段により選択された変状の情報と前記決定手段により決定された変状の情報とに基づいて、前記選択手段により選択された変状と前記決定手段により決定された変状との間の経年変化の状態を判定する判定手段と、
を備える。
【発明の効果】
【0008】
本発明によれば、構造物に多数の変状が存在する場合であっても、変状の経年変化の状態を効率的に求めることができる。
【図面の簡単な説明】
【0009】
【
図3】変状データと画像の関係を説明するための図。
【
図4】第1の実施形態の処理内容を示すフローチャート。
【
図10】第2の実施形態の処理内容を示すフローチャート。
【
図11】変状グループの対応関係を説明するための図。
【
図12】変状グループの進行度を説明するための図。
【
図14】第3の実施形態の処理内容を示すフローチャート。
【
図15】異なるサイズの変状グループを説明するための図。
【発明を実施するための形態】
【0010】
以下、添付図面を参照して実施形態を詳しく説明する。尚、以下の実施形態は特許請求の範囲に係る発明を限定するものでない。実施形態には複数の特徴が記載されているが、これらの複数の特徴の全てが発明に必須のものとは限らず、また、複数の特徴は任意に組み合わせられてもよい。さらに、添付図面においては、同一若しくは同様の構成に同一の参照番号を付し、重複した説明は省略する。
【0011】
[第1の実施形態]
第1の実施形態として、異なる時期に撮影された2つの画像を用いて、検査対象の変状の進行度を算出する方法の例を説明する。特に本実施形態においては、橋梁等の構造物の健全度を判定するようないわゆるインフラ点検を行うための情報処理装置を例に説明する。本実施形態の説明において利用される用語を、以下のように定義する。
【0012】
「検査対象」とは、インフラ点検を行う情報処理システムを説明する場合には、コンクリート構造物等を指す。本実施形態で説明する情報処理システムのユーザは、検査対象を撮像した画像を基に、表面にひび割れなどの変状がないかを検査することを目的としている。「変状」とは、例えば、コンクリート構造物の場合、コンクリートのひび割れや浮き、剥落を指す。他にも、エフロレッセンスや、鉄筋露出、錆、漏水、水垂れ、腐食、損傷(欠損)、コールドジョイント、析出物、ジャンカなどを指す。
【0013】
「第1の画像」および「第2の画像」とは、同一構造物の同一壁面を異なる時期に撮影した画像である。本実施形態において、第1の画像の撮影時期は、第2の画像を撮影した時期から年数が経過した後の時期を指すものとする。
【0014】
本実施形態の概要について、ひび割れの経年変化の状態を示す進行度を算出する例を用いて説明する。
図1(a)、(b)に、インフラ構造物の例として、橋梁の壁面を異なる時期に撮影した画像101,102を示す。画像101は、画像102よりも年数が経過した後に撮影した画像である。インフラ構造物の壁面には、経年変化により多数のひび割れが発生する。そのため、撮影画像101、102には多数のひび割れが存在している。
図1(c)は画像101に対応するひび割れデータ111を、
図1(d)は画像102に対応するひび割れデータ112を示す。ひび割れデータ111,112の破線と実線は、ひび割れ幅の異なる微細なひび割れと太いひび割れを示している。ひび割れデータは、例えば、調査技術者が、画像をもとにひび割れや鉄筋露出などの変状の位置や形状等を入力し、画像と対応付けて記録したデータである。ひび割れデータを取得する他の方法として、例えば、機械学習によりあらかじめ学習させたモデルを用いて、画像からひび割れを検出することにより取得することもできる。なお、画像101,102、及び、ひび割れデータ111,112には、紙面に表現していない多数のひび割れを含むものとする。
【0015】
部材の健全度を判断するにあたり、部材表面に存在しているひび割れの進行度を確認する。ひび割れの進行度を算出するためには、異なる時期のひび割れ同士を1本ずつ比較して、ひび割れ長やひび割れ幅等の差分を求める必要がある。この時、異なる時期のひび割れの間には、撮影条件の違い等に起因する位置ずれや形状ずれを含む。さらに、経年変化によるひび割れ自体の進行による差分も含む。ひび割れの進行度を算出するためには、これらのずれや差分を考慮しながらひび割れの対応関係を求める必要がある。
【0016】
この対応関係を求める処理を、ひび割れデータ111が示す全てのひび割れに対して行うと非常に時間がかかってしまう。そこで、健全度の判断で重視すべきひび割れに限定して対応関係を求める。例えば、ひび割れデータ111の中から、部材の機能に対して影響を及ぼす可能性が高い太いひび割れ121、122を選択する。そして、選択したひび割れ121,122に対応するひび割れを、ひび割れデータ112から求める処理を行う。ひび割れ同士の対応関係を求める方法として、例えば、ひび割れの形状を重ね合わせた時の重複度合いに基づいて決定する方法がある。
図1(e)は、ひび割れ121をひび割れデータ112に重ね合わせて領域131部分を拡大した様子を示している。
図1(e)より、ひび割れ121との重複度合いが最も高いひび割れはひび割れ132と求まる。その後、ひび割れ121、132を用いて、ひび割れの進行度を算出する。ひび割れの進行度として、例えば、ひび割れの総延長や最大ひび割れ幅の差分を算出する。
【0017】
以上のように、部材表面に多数のひび割れが発生している場合であっても、健全度の判断で重視するひび割れのみ選択することで、効率的に進行度を算出することができる。
【0018】
<情報処理装置>
図2(a)は、本実施形態に係る情報処理装置200のハードウェア構成図である。
図2(a)に示すように、情報処理装置200は、CPU201、ROM202、RAM203、HDD204、表示部205、操作部206、及び、通信部207を有する。CPU201は、中央演算装置(Central Processing Unit)であり、各種処理のための演算や論理判断等を行い、システムバス208に接続された各構成要素を制御する。ROM(Read-Only Memory)202は、プログラムメモリであって、後述する各種処理手順を含むCPU201による制御のためのプログラムを格納する、RAM(Random Access Memory)203は、CPU201の主メモリ、ワークエリア等の一時記憶領域として用いられる。尚、情報処理装置200に接続された外部記憶装置等からRAM203にプログラムをロードすることで、プログラムメモリを実現しても構わない。
【0019】
HDD204は、本実施形態に係る電子データやプログラムを記憶しておくためのハードディスクである。同様の役割を果たすものとして外部記憶装置を用いてもよい。ここで、外部記憶装置は、例えば、メディア(記録媒体)と、当該メディアへのアクセスを実現するための外部記憶ドライブとで実現することができる。このようなメディアとしては、例えば、フレキシブルディスク(FD)、CD-ROM、DVD、USBメモリ、MO、フラッシュメモリ等が知られている。また、外部記憶装置は、ネットワークで接続されたサーバ装置等であってもよい。
【0020】
表示部205は、例えばCRTディスプレイや、液晶ディスプレイ等であって、表示画面に画像を出力するデバイスである。なお表示部205は、情報処理装置200と有線あるいは無線で接続された外部デバイスでも構わない。操作部206は、キーボードやマウスを有し、ユーザによる各種操作を受け付ける。通信部207は、公知の通信技術により、他の情報処理装置や通信機器、外部記憶装置等との間で、有線又は無線による双方向の通信を行う。
【0021】
<機能ブロック図>
図2(b)は、情報処理装置200の機能構成を示すブロック図の一例である。これらの各機能部は、CPU201が、ROM202に格納されたプログラムをRAM203に展開し、後述する各フローチャートに従った処理を実行することで実現されている。そして、各処理の実行結果をRAM203に保持する。また例えば、CPU201を用いたソフトウェア処理の代替としてハードウェアを構成する場合には、ここで説明する各機能部の処理に対応させた演算部や回路を構成すればよい。
【0022】
管理部222は、記憶部221(例えばHDD204)に記憶された、異なる時期に撮影された画像や各画像に対応する変状データ、構造物に係る構造情報を管理する。重要変状選択部223は、第1の変状データから、進行度算出対象の変状データを重要変状として選択する。探索範囲設定部224は、重要変状選択部223で選択した重要変状に対応する変状を、第2の変状データの中から探索する範囲を設定する。整合度算出部225は、探索範囲中の変状と重要変状を用いて、整合度を算出する処理を行う。参照変状決定部226は、整合度の算出結果に基づいて、重要変状に対応する変状を参照変状として決定する。進行度算出部227は、重要変状と参照変状の差分を進行度として算出する処理を行う。
【0023】
<画像と変状データの関係と構造情報の説明>
本実施形態を説明するにあたり、画像と変状データの関係、および構造情報について説明する。画像点検において、構造物壁面を撮影した画像は、その設計図面と対応付けて管理することが好ましい。
図3(a)は、インフラ構造物の1つの例として、橋梁の壁面を撮影した画像311を、図面300へ張り付けた状態を示している。図面300は、点302を原点とした図面座標301を持つ。画像の図面上の位置は、画像左上の頂点座標で定義される。例えば、画像311の図面上の位置を示す座標は、頂点312の位置(x312、y312)である。画像は、座標情報とともに、記憶部221に記憶されている。本実施形態において、インフラ構造物の画像点検で使用する画像は、微細なひび割れなどを確認できるよう高解像度(例:1画素あたり1mm)で撮影する。このため、点検に用いる構造物の画像のサイズは大きい。例えば、
図3(a)の画像311は、20m×10mの橋梁の床版を撮影した画像である。画像解像度が1画素あたり1.0mm(1.0mm/pixel)の場合、画像311の画像サイズは20,000pixel×10,000pixelとなる。高解像度で撮影した画像311には、多数(例:1000以上)のひび割れや鉄筋露出等の変状が存在するが、すべての変状を紙面上で表現することは困難であるため、紙面に表示している変状は一部に限定している。以降の説明で広範囲の画像や変状データを表示している図においても、表示している変状は一部に限定している。
【0024】
変状データは、コンクリート壁面に生じるひび割れ等の変状の自動検出結果、または人間による入力結果を記録した情報である。本実施形態を説明するにあたり、変状データは図面に対応付けて管理しているものとする。
図3(b)に、画像311に対応する変状データ321を、図面300に、画像311と同じ位置に張り付けた状態を示す。変状データ321には、紙面に表示されない変状も含め多数(例:1000以上)の変状が存在している。変状データ321中の各変状データの図面上の位置は、変状データの構成する画素座標で定義される。
図3(c)に、変状データのデータ構造を表す変状データテーブル331の一例を示す。この変状データテーブル331における第1、第2フィールドは変状を特定するためのID、変状の種別を示している。また、変状データテーブル331のうち、第3、第4フィールドの座標列と数値列は、変状データを構成する複数の座標と、その座標における変状の幅を表す属性値である。例えば、ひび割れC001は、(Xc001_1、Yc001_1)から(Xc001_n、Yc001_n)のn点からなる連続画素で表されていることを示す。また、変状データテーブル331における第5乃至第7フィールドには、最大幅、総延長/輪郭長、面積が格納される。
【0025】
このように、本実施形態では、変状データは画素で表現されているものとする。変状データの表現は、複数点から構成されるポリラインや曲線等のベクターデータで表現するようにしてもよい。変状データをベクターデータで表現する場合、データ容量が減少し、より簡略的な表現となる。ひび割れ以外の変状データの例として、IDがT001の鉄筋露出がある。鉄筋露出をポリラインで表現する場合、ポリラインで囲まれた領域を持つ変状となる。なお、変状データの持つ属性情報は、変状データテーブル331に示す属性情報に限定されるものではなく、その他の属性情報を保持してもよい。
【0026】
構造情報とは、検査対象の構造物の構造に係る情報であり、構造物の種別や基本構造、構造物の各種寸法、部材情報、竣工年度をはじめとする諸元を含む情報である。さらに、補修実績として、補修年度や補修箇所、補修方式といった保守メンテナンスに係る情報を含んでもよい。本実施形態では、部材情報や補修情報といった構造物の特定位置に関する構造情報は、図面上における位置情報とともに記憶されているものとする。すなわち、各部材の図面上の位置や補修箇所の図面上の位置が構造情報の一部として記憶される。したがって、図面を介して、構造情報と画像および変状データとの対応関係を求めることができる。構造情報は、画像や変状データとともに記憶部221に格納され、管理部222により取得することができる。なお、構造情報に含まれる情報は、上記の情報に限定されるものではなく、その他の情報を保持してもよい。また、構造物の種別に応じて、種別ごとに限定された情報を保持してもよい。
【0027】
<フローチャート>
図4は、本実施形態における情報処理装置のメイン処理の流れを表すフローチャートである。以下、各工程(ステップ)は、それら符号の先頭にはSを付与して説明することとする。本実施形態では、構造物の壁面に生じる変状の進行度を算出するために、2つの異なる時期に撮影した第1、2の画像を用いる。第1の画像を撮影した時期は、第2の画像を撮影した時期から、数年(例えば5年)経過した時期であるとする。第1の画像と第2の画像はともに、構造物の壁面に生じる多数(例:1,000以上)の変状を撮影した画像であるとする。第1の画像から変状を検出したデータを第1の変状データとし、第2の画像から変状を検出したデータを第2の変状データとする。本実施形態では、操作部206から、処理開始の入力を受け付けて、
図4のフローチャートの処理を開始する。そして、進行度の算出処理が完了したら、進行度算出結果を示す表示データを表示部205に表示して、処理が終了する。以下、
図4のフローチャートに従って本実施形態の処理を説明する。
【0028】
<重要変状の選択>
S401にて、重要変状選択部223は、第1の画像に対応する第1の変状データの中から、進行度算出対象の変状を重要変状として選択する。重要変状を選択する方法として、例えば、変状データの属性情報に基づいて選択する方法がある。本実施形態では、ひび割れの進行度の算出方法を説明する例として、変状データの最大幅に基づいて第1の変状データから重要変状を選択する方法を説明する。
【0029】
図5(a)は、図面500上の座標503に張り付けた第1の画像501を示し、
図5(b)は第1の画像501における第1の変状データ502を示している。第1の画像501のサイズは、20,000pixel×10,000pixelである。第1の変状データ502の破線と実線は、それぞれ最大幅が1.0mm未満のひび割れと1.0mm以上のひび割れを示している。第1の画像501および第1の変状データ502には、紙面で表現していない多数の変状が存在している。
【0030】
第1の変状データ502の中から重要変状を選択する方法として、例えば、基準値以上の最大幅を持つ変状データを経年変化の状態の判定対象とする重要変状として選択する方法がある。その判定式を次式(1)に示す。
W≦W
c …(1)
ここで、パラメータWcは、各変状データの最大幅の値であり、パラメータWは、重要変状とするか否かを判定する基準値(もしくは閾値)である。本実施形態におけるパラメータWを決定する1つの方法として、変状種別毎に構造物全体であらかじめ決められた一律の基準値を閾値として使用する方法がある。例えば、変状種別がひび割れの場合における基準値Wを1.0mmとした場合、変状データ502において、1.0mm以上の太いひび割れを示す実線の変状511、512が重要変状として選択される。パラメータWを決定する他の方法として、構造情報毎にあらかじめ決められた基準値を使用する方法がある。
図5(c)に、橋梁における構造毎の異なる基準値一覧521の例を示す。画像・変状データと、構造物の構造との対応関係は、図面を介して求めることができる。したがって、検査対象の構造に合わせて、重要変状を選択する基準値を切り替えることができる。これらの基準値は、実験的に求めた値を使用してもよいし、点検結果を蓄積した過去DBに基づいて決定してもよい。また、パラメータWを決定する他の方法として、ユーザが直接指定できるようにしてもよい。ユーザが基準値を指定する場合、基準値を指定する範囲を、任意の範囲で指定できることが望ましい。例えば、画像単位や部分画像単位で基準値を指定してもよいし、構造情報毎(例:部材毎、構造物毎)で基準値を指定してもよい。
【0031】
最大幅に基づいて重要変状を選択する他の方法として、例えば、最大幅が大きい上位10の変状データを重要変状として選択してもよい。重要変状の選択数を固定にすることにより、進行度を算出する処理時間の増加を抑制することができる。また、その他の方法として、最大幅の大きい順から上位1%の変状データを重要変状として選択してもよい。
【0032】
ここまで、属性情報の1つである最大幅を用いて重要変状を選択する例を説明したが、使用する属性情報は最大幅に限定されない。例えば、ひび割れ長さを示す総延長に基づいて、基準値以上の長さを持つひび割れを重要変状として選択することもできる。重要変状か否かを判定する式(1)や、ひび割れ長基準値(パラメータW)の決定方法等は最大幅を用いた場合と同様の方法を用いることができる。
【0033】
重要変状を選択する他の方法として、複数の変状データを組合せた複合変状を選択してもよい。複合変状の一例として、
図5(d)に、同一種別のひび割れを組み合わせた格子状ひび割れ531を示す。複数のひび割れが交差して格子状を形成すると、斜線で囲われた領域532のコンクリート壁面がはがれやすくなる。その結果、コンクリート落下や鉄筋露出による構造物内部の劣化などの可能性が高くなる。そのため、格子状ひび割れ531のような、複数の同一変状からなる複合変状を重要変状として選択することが望ましい。格子状ひび割れを識別する方法には、任意の方法を利用可能である。例えば、形状の一部が重なりあうひび割れを数珠繋ぎのように複数選択して閉領域を構成する場合に、選択した複数のひび割れを格子状ひび割れと識別することができる。複数の変状データを組み合わせた他の複合変状として、異なる変状種別の変状を組み合わせた複合変状でもよい。例えば、
図5(e)に示すようなひび割れの近傍にエフロレッセンスが発生している複合変状533がある。析出物を伴うひび割れは、ひび割れが構造物内部に進行している可能性があり、構造物の機能への影響が高い。したがって複合変状533のような変状は重要変状として選択することが望ましい。なお、析出物を伴うひび割れのような複合変状は、変状の種別、変状の形状および相対的な位置関係に基づいて識別可能である。 重要変状を選択する他の方法として、構造情報を用いて重要変状を選択してもよい。例えば、構造物の表面付近に鉄筋が敷設されている壁面では、壁面のコンクリートがはく離すると鉄筋が露出し、構造物の劣化が進行しやすくなる。そのため、鉄筋等の部材材料が内部に敷設されている壁面付近の変状を重要変状として選択することが望ましい。鉄筋等の構造部材、部材材料に関する情報は、構造情報として記憶部221に記憶されているため、画像や変状データと構造物内部の鉄筋の相対的な位置関係は、図面を介して求めることができる。
【0034】
<探索範囲の設定>
S402にて、探索範囲設定部224は、重要変状に対応する変状を第2の変状データから探索する探索範囲を設定する。
図6を参照して、この探索範囲を設定する方法を説明する。
【0035】
図6(a)は第1の変状データ611を示す図、
図6(b)は第2の変状データ621を示す図である。それぞれの変状データは、ともに図面600上の同一位置に張り付けられている。第1の変状データ611のうち、実線で示す変状612,613を、重要変状選択部223により選択された重要変状とする。
【0036】
探索範囲を設定する1つの方法として、重要変状の座標情報を用いて設定する方法がある。具体的には、第1の変状データ611上の重要変状612、613を囲む矩形範囲614、615を、各重要変状における探索範囲とする。探索範囲のサイズは、重要変状の座標情報を囲む矩形範囲であれば、任意のサイズに変更してもよい。例えば、重要変状を囲む矩形範囲を初期範囲とし、図面上のX軸およびY軸方向に任意のサイズ分拡張させた矩形範囲を探索範囲とする。
【0037】
重要変状の座標情報のみを用いて探索範囲を決定した場合、探索範囲の境界付近で第2の変状データの一部が分断されてしまうことがある。
図6(c)に、第2の変状データの一部の変状が分断される例として、第2の変状データ621の一部の領域631と、重要変状612の座標情報を用いて決定した探索範囲632を示す。
図6(c)上の探索範囲632は、変状633、634を境界付近で分断してしまっている。第2の変状データを分断する探索範囲を設定した場合、後述するS403の整合度算出処理が複雑化してしまう。そこで、変状633、634の座標を全て含むように矩形範囲を拡張する。
図6(d)に、拡張後の探索範囲635を示す。このように第2の変状データを分断しないように探索範囲を拡張することが好適な方法である。
【0038】
<整合度の算出>
S403にて、整合度算出部225は、重要変状と探索範囲内の変状を用いて、整合度を算出する処理を行う。整合度を算出する1つの方法として、探索範囲内の1つの変状と重要変状の両方の形状をそれぞれまたは一方を膨張させ、変状同士の重なり度合いを整合度として算出する方法がある。
図7を参照して、整合度算出処理の例を説明する。
【0039】
図7(a)は、第1の変状データの中から、重要変状選択部223により選択された重要変状701を示す図である。
図7(b)は、第2の変状データのうち、重要変状701に対応する探索範囲に含まれる変状データ711を示す図である。整合度を算出するにあたり、まず、変状データ711の中から、変状712を参照変状候補として1つ選択する。次に、変状712と、重要変状701の形状を重ね合わせる処理を行う。このとき、第1の変状データと第2の変状データの間に含む位置ずれを考慮するため、変状の形状を膨張させてから重ね合わせる。
図7(c)に、膨張させた重要変状702と膨張させた参照変状候補713を重ね合わせた状態を示す。そして、重要変状702、参照変状候補713の重複度合いを整合度として算出する。この整合度Cは、例えば次式(2)に従って算出する。
C={S
1 Λ S
2}/{S
1 V S
2} …(2)
式中、「Λ」は論理積、「V」は論理和を示す。また、パラメータS
1は、膨張後の重要変状702の面積を示し、パラメータS
2は、膨張後の参照変状候補713の面積を示す。式(2)より、変状同士が一致する場合は、整合度Cは1となり、変状同士が一切重なっていない場合には、整合度Cは0となる。すなわち、変状同士の重複度合いを整合度として算出する場合、整合度の取りうる範囲は0~1となる。
【0040】
式(2)を用いて整合度を1つ算出したのち、重要変状は固定のままで、探索範囲内の変状データの中から別の変状を次の参照変状候補に選択し、整合度を算出する。この整合度算出処理を繰り返すことで、探索範囲内のすべての変状データに対する整合度を算出する。
【0041】
整合度を算出する他の方法として、変状データから算出した特徴量を用いてもよい。一例として、変状の面積重心座標を用いて整合度Cを算出する算出式を式(3)、(4)に示す。
C=1/{(S1x - S2x)2 + (S1y - S2y)2}1/2 …(3)
C=Cc …(4)
ここで、パラメータS1x,S1yは、重要変状の面積重心座標(S1x,S1y)を示し、パラメータS2x,S2yは、参照変状候補の面積重心座標(S2x,S2y)を示す。パラメータCcは、変状同士の面積重心座標が一致する場合の固定値であり、1より大きな任意の定数を指定する。式(3)より、変状同士の面積重心間距離が離れるほど、整合度Cは小さな値となる。反対に、変状同士の面積重心が一致する場合は、整合度が最も高い定数Ccとなる。
【0042】
<参照変状の決定>
S404には、参照変状決定部226は、整合度の算出結果に基づいて、重要変状に対応する参照変状を決定する処理を行う。整合度を用いて参照変状を決定する例について、
図8を参照して説明する。ここで、本実施形態で使用する整合度は、変状同士の重複度合いに基づいて算出した整合度とする。したがって、整合度の取りうる値の範囲は0~1であり、1に近い値ほど変状同士の整合関係が高いことを表している。
【0043】
図8(a)と(b)は、整合度算出対象の重要変状801および重要変状801に対応する探索範囲内の変状データ802を示す図である。変状データ802上の各変状の近傍には、“CR”から始まる数字で構成されるIDが併記されている。
図8(c)は、重要変状801と、変状データ802上の各変状(参照変状候補)のそれぞれに対して算出した整合度一覧803を示している。整合度に基づいて参照変状を決定する1つの方法として、整合度が最大の変状を参照変状として決定する。たとえば、
図8(c)の整合度一覧803のうち、整合度が最大の変状(ID:CR001)を、参照変状に決定する。整合度一覧803のように、整合度の最大値が1つのみの場合には、整合度を用いて、参照変状を一意に決定することができる。
【0044】
一方、
図8(d)のように、整合度が最大値の変状が複数あると、参照変状を一意に決定することができない。このような場合は、整合度が最大となった複数の変状と、重要変状とを示す画像データを生成して表示部205に表示させ、ユーザに参照変状を決定させるのが望ましい。
【0045】
整合度算出結果において、整合度の最大値が0に近い値(例:0.1)となる場合がある。このとき、整合度に基づいて参照変状を一意に決定することはできるが、そもそも参照変状として適切でない可能性が高い。このような場合は、算出した整合度の最大値が所定の基準値(例:0.2)よりも低い場合に、整合度の最大値とともに参照変状と重要変状とを示す画像データを生成し、表示部205に表示してユーザに参照変状を確認・修正・選択させることが望ましい。
【0046】
算出した整合度がいずれも0の場合や、ユーザ確認の結果参照変状が指定されなかった場合は、「重要変状に対応する参照変状なし」と決定する。この場合、後述するS405の進行度算出処理において、重要変状自体が進行したと判定される。なお、S404において、整合度に基づいて参照変状を決定する例を説明したが、これに限られない。例えば、第2の画像に含まれる変状のうち重要変状の座標上の位置と最も距離が短い変状を参照変造として決定する構成としてもよい。また、ユーザの選択に基づいて参照変造として決定する構成としてもよい。
【0047】
<進行度の算出>
S405にて、進行度算出部227が、重要変状と参照変状を用いて、重要変状に対する進行度を算出する。本実施形態では、変状データの属性値の差を進行度として求める処理を行う。例えば、変状種別がひび割れの場合、最大幅や総延長の差分を算出する。ひび割れの最大幅や総延長は、記憶部221に格納されている。したがって、重要変状と参照変状のそれぞれで最大幅と総延長を取得し、変状間で差を求めることにより、重要変状に対する進行度を算出することができる。変状種別がひび割れ以外の場合も、同様の方法で進行度を算出することができる。例えば、変状種別が鉄筋露出の場合、面積の差分を進行度として算出する。変状データの面積は、属性値として記憶部221に格納されている。したがって、重要変状と参照変状の面積を取得し、変状間で面積差を求めることにより進行度を算出することができる。なお、S405にて、変状の経年変化の状態を示す情報として進行度を判定する構成を例示したが、これに限られない。例えば、S405にて、情報処理装置200は、経年変化の状態を示す情報として、「進行している」、「進行していない」などの2値の情報を求める構成としてもよい。
【0048】
そして、S406にて、進行度算出部227は、算出した進行度を表示部205に出力し、算出した進行度を表示し、ユーザに進行度を示すことになる。進行度の表示形式は特に問わないが、進行度を表す数値を表示しても良いし、進行度に応じた色で変状データを色分けして表示しても良い。
【0049】
<第1の実施形態の変形>
ここまで第1の実施形態では、第1の変状データから重要変状を選択し、第2の変状データから重要変状に対応する参照変状を求めて進行度を算出する方法を説明したが、第2の変状データから重要変状を選択する実施形態も考えられる。すなわち、過去の点検結果に対応する第2の変状データの中から重要変状を選択し、第1の変状データから重要変状に対応する参照変状を求め、進行度を算出する。これにより、例えば、過去の点検結果における健全度の判断で重視した変状がどのように進行したかを確認することができる。
【0050】
以上説明した第1の実施形態によれば、異なる時期に撮影した画像から検出したひび割れ等の変状が多数存在している場合であっても、健全度の判断で重視する変状に限定することにより、効率的に進行度を算出することができる。
【0051】
[第2の実施形態]
第1の実施形態では、多数の変状の中から一部の重要な変状の進行度を求める例を説明した。構造物の健全度を判断するにあたり、一部の変状の進行度に加え、全体的な変状の進行傾向を確認したい場合がある。しかし、一部の変状のみの進行度から全体的な変状の進行傾向を把握することは難しい。そこで、第2の実施形態では、一部の変状の進行度に加えて、小領域毎の変状データの進行度を算出する例を説明する。具体的には、画像を分割して、分割領域毎に変状データをグループ化してグループ単位で進行度を算出する。これにより、一部の変状の進行度と、全体的な変状の進行度の両方を確認しながら構造物や部材の健全度を判断することができる。以下、第1の実施形態との差分を中心に、第2の実施形態を説明する。
【0052】
第2の実施形態に係る情報処理装置200のハードウェア構成は、
図2(a)に示した第1の実施形態の構成に準じるため、説明を省略する。
図9は、第2の実施形態の構成に係る情報処理装置200の機能ブロック図の一例を示す図である。第2の実施形態の構成は、第1の実施形態の
図2(b)の構成に、第1グループ設定部901、第2グループ設定部902が追加したものである。第1グループ設定部901は、CPU201の機能部であって、第1の変状データの一部をグループ化して第1の変状グループを作成する。第2グループ設定部902は、CPU201の機能部であって、第1の変状グループに対応する第2の変状グループを作成する。なお、進行度算出部227は、一部の変状の進行度を算出する処理に加えて、第1の変状グループと第2の変状グループを用いて、変状グループ単位の進行度を算出する処理を行う。
【0053】
図10は、第2の実施形態に係る情報処理装置200が実行するメイン処理の一部を示すフローチャートである。
図10のフローチャートにおいて、第1の実施形態で説明した
図4のフローチャートと同じ番号を付したステップでは、第1の実施形態と同様の処理が実行されるものと理解されたい。第2の実施形態の場合、S405で重要変状の進行度を算出した後、処理はS1001へ進む。
【0054】
S1001にて、第1グループ設定部901は、第1の変状データから第1の変状グループを設定する処理を行う。続くS1002にて、第2グループ設定部902が、第1の変状グループに対応する第2の変状グループを設定する。その後、S1003へ進み、第1の変状グループと第2の変状グループを用いて、変状グループの進行度を算出する。変状グループの進行度として、例えば、変状グループ内の変状の個数や変状の総延長を集計し、変状グループ間の集計データの差分を進行度とする。その後、S406にて、進行度算出部227は、算出された進行度を表示部205に表示する処理を行い、本終了する。
【0055】
<第1グループの設定および第2グループの設定>
続いて、
図11を参照して、S1001の第1の変状グループの設定、S1002の第2の変状グループの設定を、順に説明する。本第2の実施形態における変状データは、第1の実施形態と同様に、構造物表面のひび割れとする。また、第1の画像と第2の画像、およびそれぞれの画像に対応する変状データは、すべて同一図面の同一位置に張り付けられている。
図11(a)は、第1の画像1101、同図(b)は第1の画像1101に含まれる変状を示す第1の変状データ1102を示している。また、
図11(c)は第2の画像1121、
図11(d)は、第2の画像1121に含まれる変状を示す第2の形状データ1122を示している。
【0056】
S1001の処理では、第1グループ設定部901は、第1の変状データから第1の変状グループを設定する。第1の変状グループを設定する方法として、第1の画像を分割し、分割領域毎に第1の変状データをグループ化する例を説明する。まず、第1グループ設定部901は、第1の画像1101を任意の固定サイズで分割する。格子状の線分1111は、第1の画像1101をX軸、Y軸方向に等間隔で分割する線分であり、例えば1,024pixel間隔で分割する。次に、第1グループ設定部901は、分割領域のうち、斜線で囲われた領域1112を1つ選択し、領域1112の左上頂点座標1113と領域サイズを取得する。そして、第1グループ設定部901は、第1の変状データ1102上で、領域1112と同一位置および同一サイズの斜線領域1114を設定する。その後、斜線領域1114に含まれる変状データをグループ化して、第1の変状グループ1115とする。以上の処理を分割領域毎に繰り返すことにより、全体にわたって第1の変状グループを設定することができる。ここで、第1の画像1101を分割する方法として等間隔に分割する例を説明したが、任意の間隔で分割してもよい。例えば、X軸方向に1,024pixel、Y軸方向に512pixel間隔で分割して、長方形の領域単位で第1の変状グループを作成してもよい。
【0057】
続くS1002の処理で、第2グループ設定部902は、第1の変状グループに対応する第2の変状グループを設定する。第2の変状グループを設定する方法として、例えば、第1の変状グループと同一位置および同一範囲の領域に含まれる第2の変状データをグループ化する方法がある。ここで、第1の変状グループ1115に対応する第2の変状グループを設定する例を説明する。まず、第2グループ設定部902は、斜線領域1114の左上頂点座標1116と領域サイズを取得する。次に、第2グループ設定部902は、
図11(d)の第2の変状データ1122上で、斜線領域1114と同一位置および同一範囲の斜線領域1131を設定する。そして、斜線領域1131に含まれる第2の変状データをグループ化して、第2の変状グループ1132とする。このように、同一位置、同一範囲内の変状データのグループ同士を対応付けることで、第2の変状グループを設定することができる。
【0058】
通常、異なる時期の撮影では撮影条件が異なるため、同一構造物の同一壁面を撮影した場合であっても、第1の画像と第2の画像の各画素の間には位置ずれを含む。したがって、第1の変状データと第2の変状データの間にも位置ずれが含まれる。上記の例は、この位置ずれを無視して、簡易的に第1の変状グループと第2の変状グループを作成する例である。変状グループ間の変状の進行度は、大まかな進行の傾向をとらえることを目的とするため、厳密に変状グループ間の対応を取らなくても良い。このように簡易的に第1の変状グループと第2の変状グループを作成する方法では、グループ作成の処理が簡易となる。
【0059】
一方、変状グループ間の対応関係を求めるときに、位置ずれを考慮するようにしても良い。画像間の位置ずれを取得する方法の一例として、画像特徴量を用いて領域毎の位置ずれを取得する処理の概要を説明する。まず、第1の画像上の分割領域を1つ選択し、領域内の部分画像を取得する。次に、取得した部分画像を、第2の画像に重ね合わせ、各画素の輝度値差分の二乗和を算出する。この算出処理を、重ね合わせ位置をずらしながら繰り返し、算出結果が最小となる位置、すなわち、領域単位の位置ずれを求める。この処理を、第1の画像の分割領域毎に繰り返すことにより、画像間の位置ずれを、領域単位で全体にわたって取得することができる。ここで一例として、第1の変状グループから、位置ずれを反映させて第2の変状グループを設定した結果を
図11(e)に示す。
図11(e)は、第1の変状グループ1115から、位置ずれを補正して求めた第2の変状グループ1141を示す図である。このように、画像間の位置ずれを考慮した第2の変状グループを設定することができる。
【0060】
変状グループ間の位置ずれを取得する他の方法として、重要変状の座標情報に基づいて決定してもよい。例えば、第1変状グループ内に含まれる重要変状の少なくとも1つを選択し、重要変状の面積重心座標の平均を、位置ずれの始点とする。そして、選択した重要変状に対応する参照変状の面積重心座標の平均を位置ずれの終点とする。この始点と終点を結ぶベクトルを、第1の変状グループの位置ずれとする。このように、重要変状の位置ずれを変状グループ間の位置ずれに代用することで、位置ずれを考慮した第2の変状グループを効率的に求めることができる。
【0061】
<変状グループの進行度の算出処理>
S1003にて、進行度算出部227は、第1の変状グループと第2の変状グループから、変状グループ間の進行度を算出する。本実施形態では、変状グループ内の変状データを集計した集計データを用いて進行度を算出する。例えば、変状種別がひび割れの場合、第1の変状グループと第2の変状グループのそれぞれでひび割れ本数やひび割れ密度等を集計データとして求める。その後、進行度算出部227は、集計データの差を変状グループ間の進行度として算出する。
【0062】
図12(a)、(b)は、変状種別がひび割れの場合の集計データ1201と変状グループ間の進行度1202の例を示している。集計データ1201は、第1の変状グループと第2の変状グループのそれぞれで、ひび割れの本数、本数密度、総延長、最大幅平均を集計した結果である。集計データ1201のうち、本数は、変状グループ毎の変状データ個数をカウントすることで取得できる。本数密度は、変状データの個数に加え、変状グループの領域サイズと画像解像度を用いて算出することができる。総延長や最大幅平均は、変状グループ内の各変状データの持つ属性値を集計して算出することができる。進行度1202は、変状グループ間の集計データの差を求めることにより算出できる。
【0063】
図12(c)に、一例として、第2の実施形態における進行度算出結果の可視化画面を示す。
図12(c)は、ウインドウ1211上に、重要変状の進行度および領域毎の変状の進行度を可視化した可視化結果1212を表示する例である。可視化結果1212は、ひび割れの本数密度に係る進行度を可視化した結果であり、進行度の違いに応じて、領域毎に異なるパターンで表現している。可視化結果1212では、パターン密度の高い領域ほど進行度の高い領域であることを表現しているが、進行度に応じて領域毎に異なる輝度や異なる色で表現するのが好適な表示方法である。
図12(c)上のひび割れ1221、1222は、重要変状を示しており、重要変状の近傍には、進行情報1123のように、ひび割れ近傍に進行度に係る情報を併記している。このように、領域毎の進行度と重要変状の進行度を同時に表示することにより、重要変状の進行度と変状の全体的な進行傾向をユーザは確認しやすい。
【0064】
可視化画面において、ユーザが進行度の可視化内容を切り替えられることが望ましい。例えば、種別選択項目1213のユーザによる選択に合わせて、CPU201は、可視化結果1212における進行度表示対象の変状データを切り替える。ユーザによる表示データ選択項目1214の切り替えに応じて、CPU201は、可視化結果1212における変状データの表示対象(例:重要変状のみ表示、すべての変状を表示)を切り替える。ユーザによる進行表示対象項目1215の切り替えに応じて、CPU201は、可視化結果1212における進行度の表示対象(例:本数密度、総延長、最大幅平均)を切り替える。このように、ユーザが確認したい内容を切り替えられるようにするのが好適な方法である。また、重要変状の進行度や領域単位の進行度を詳細に確認できることが望ましい。例えば、進行度表示領域選択1216による選択や、マウス1224を用いたクリック操作により、領域を選択する。その領域選択に応じて、詳細な進行情報を表示する。例えば、
図12(c)では、選択中の領域「A4-2」に対応する進行情報を、進行結果1217に表示している。
【0065】
以上、第2の実施形態によれば、一部の変状の進行度に加えて、領域単位の変状の進行度を算出することができる。これにより、全ての変状データについて、過去の変状データと個々の整合性を判定することなく、全体的な変状の進行度を判定することができるようになる。且つ、重要な変状データについては、ひび割れ幅の変化量など、過去の変状データからの進行度を詳細に把握できるようになる。
【0066】
[第3の実施形態]
第2の実施形態では、一部の変状の進行度に加え、領域単位で変状の進行度を算出する例を説明した。構造物の劣化状況は、様々な要因により、部位ごとに大きく異なる。そのため、一部の部位で変状の進行度を詳細に確認したい場合がある。しかし、固定領域サイズで変状の進行度を算出する場合、進行度を詳細に把握するためには、領域サイズを小さくする必要があり、処理時間が大幅に増加してしまう。そこで、第3の実施形態では、部位ごとに異なる領域サイズで変状の進行度を算出する例を説明する。部位に応じて変状をグループ化する領域サイズを変更することにより、処理時間の増加を抑制しつつ、特定の部位の変状の進行度を詳細に把握することができる。以下、第2の実施形態との差分を中心に、本第3の実施形態を説明する。
【0067】
第3の実施形態に係る情報処理装置200のハードウェア構成は、
図2(a)に示した第1の実施形態の構成に準じるため、説明を省略する。
図13は、第3の実施形態の構成に係る情報処理装置200の機能ブロック図の一例を示す図である。本第3の実施形態は、第2の実施形態で示した構成(
図9)に、分割サイズ取得部1301を追加した構成となる。分割サイズ取得部1301は、CPU201の機能部であって、第1の変状データの一部をグループ化する範囲のサイズを取得する。
【0068】
図14は、第3の実施形態に係る情報処理装置200が実行するメイン処理の一部を示すフローチャートである。
図14のフローチャートにおいて、第2の実施形態で説明した
図10のフローチャートと同じ番号を付したステップでは、第2の実施形態と同様の処理が実行されるものと理解されたい。本第3の実施形態の場合、S405にて、重要変状の進行度を算出した後、処理はS1401へ進む。
【0069】
S1401にて、分割サイズ取得部1301で取得した分割サイズに基づいて、第1グループ設定部901が、第1の変状データを分割して第1の変状グループを設定する処理を行う。続くS1002にて、第2グループ設定部902が、第1の変状グループに対応する第2の変状グループを設定する。その後、S1003へ進み、進行度算出部227が、第1の変状グループと第2の変状グループを用いて、変状グループの進行度を算出する。その後、S406には、進行度算出部227が、進行度算出結果を表示部205に表示させ、本処理を終了する。
【0070】
<異なるサイズの第1グループ設定>
図15を参照して、S1401における異なるサイズで第1の変状グループを設定する処理を説明する。本実施形態における変状データは、第2の実施形態と同様に、構造物表面のひび割れとする。
【0071】
S1401にて、第1グループ設定部901は、分割サイズ取得部1301により取得した分割サイズに基づいて第1の変状データを分割し、分割領域毎に第1の変状グループを設定する。第1の変状データの分割サイズを決定する方法として、構造情報に基づいて分割サイズを決定する方法がある。
図15(a)に、橋梁の部位毎の異なる分割サイズ一覧1501の例を示す。分割サイズ一覧1501を用いて第1の変状データを分割する例を
図15(b)、(c)に示す。
図15(b)は、橋梁の床版画像に対応する第1の変状データ1502と、格子状の分割線1511を示す図である。
図15(b)上の斜線領域1512のサイズは、512pixel×512pixelである。また、
図15(c)は、橋梁の橋脚画像に対応する第1の変状データ1503と、格子状の分割線1521を示す図である。
図15(c)上の斜線領域1522のサイズは、1,024pixel×1,024pixelである。各変状データと構造情報との対応関係は、図面を介して求めることができる。したがって、構造情報を用いることにより、特定の部位のみ変状の進行度を詳細に求めることができる。分割サイズ一覧1501に示すような分割サイズを決定する方法として、実験的に求めた値を使用してもよいし、ユーザが指定した分割サイズを使用してもよい。
【0072】
第1の変状データの分割サイズを決定する他の方法として、変状の分布状況に基づいて決定してもよい。具体的には、第1の変状データにおいて、あらかじめ変状の分布状況(密度)を求めておく。そして、変状の分布状況に応じて、異なるサイズで第1の変状データを分割する。
図15(d)に、第1の変状データ1531を変状の分布状況に合わせて異なるサイズで分割した例を示す。第1の変状データ1531において、変状が密集している中央付近の分割サイズは小さく、変状が疎な端付近の分割サイズは大きい。このように、変状の分布状況に基づいて分割サイズを変更することにより、例えば、変状が密集している箇所のみ変状の進行度を詳細に求めることができる。
【0073】
第1の変状データの分割サイズを決定する他の方法として、重要変状に基づいて決定してもよい。例えば、第1の変状データの分割サイズを、重要変状近傍では小さく、重要近傍から離れた位置では大きくする。重要変状周辺の変状の進行度を詳細に把握することにより、重要変状の構造物機能に対する影響度合いや、重要変状の今後の進行可能性を判断しやすくすることができる。
【0074】
第1の変状データの分割サイズを決定する他の方法として、複数の異なるサイズで繰り返し分割(多重分割レベルで分割)して、分割サイズの異なる複数の第1の変状グループを作成してもよい。例えば、第1の変状データ全体を、3パターンの分割レベル(1,024pixel×1,024pixel、512pixel×512pixel、256×256pixel)でそれぞれ分割し、各分割レベルで第1の変状グループを設定する。そして、詳細な処理は省略するが、分割領域毎に変状の進行度を算出する。このように多重分割レベルで第1の変状データを分割することにより、変状の進行度を確認するユーザ作業において、狭い範囲の詳細な進行度と、広範囲な大まかな進行度を容易に切り替えることができるようになる。なお、多重分割レベルで分割する第1の変状データの範囲は、分割レベル毎に任意の範囲に限定してもよい。例えば、1つ目の分割レベル(1,024pixel×1,024pixel)では、第1の変状データ全体を分割し、2つ目の分割レベル(256×256pixel)では、第1の変状データ上の重要変状近傍のみ分割する。分割レベル毎に第1の変状データの範囲を限定することにより、進行度算出にかかる時間の増加を抑制しつつ、特定の範囲のみ詳細な進行度を確認できるようになる。
【0075】
以上、第3の実施形態によれば、処理時間の大幅な増加を抑制しつつ、特定部位の変状の進行度を詳細に算出することができる。
【0076】
なお、上記実施形態では、理解を容易にするため構造物として橋梁を例にして説明したが、構造物の種類はこれに限らず、他の構造物(例えばビル、ダム等)であっても構わない。
【0077】
(その他の実施例)
本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
【0078】
発明は上記実施形態に制限されるものではなく、発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、発明の範囲を公にするために請求項を添付する。
【符号の説明】
【0079】
221…記憶部、222…管理部、223…重要度選択部、224…探索範囲設定部、225…整合後算出部、226…参照変状決定部、227…進行度算出部