IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ サイテック バイオサイエンスィズ インコーポレイテッドの特許一覧

特許7564712スピルオーバー再調整のためのフローサイトメーターデータの高速再補正
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-10-01
(45)【発行日】2024-10-09
(54)【発明の名称】スピルオーバー再調整のためのフローサイトメーターデータの高速再補正
(51)【国際特許分類】
   G01N 15/1429 20240101AFI20241002BHJP
   G01N 15/14 20240101ALI20241002BHJP
   G01N 21/64 20060101ALI20241002BHJP
   G01N 33/48 20060101ALI20241002BHJP
【FI】
G01N15/1429
G01N15/14 C
G01N21/64 F
G01N33/48 M
【請求項の数】 18
(21)【出願番号】P 2020565277
(86)(22)【出願日】2019-05-21
(65)【公表番号】
(43)【公表日】2021-09-13
(86)【国際出願番号】 US2019033419
(87)【国際公開番号】W WO2019226717
(87)【国際公開日】2019-11-28
【審査請求日】2022-05-19
(31)【優先権主張番号】62/674,273
(32)【優先日】2018-05-21
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】517203796
【氏名又は名称】サイテック バイオサイエンスィズ インコーポレイテッド
(74)【代理人】
【識別番号】110002354
【氏名又は名称】弁理士法人平和国際特許事務所
(72)【発明者】
【氏名】チャン,ジェンユー
【審査官】鴨志田 健太
(56)【参考文献】
【文献】特開2004-205508(JP,A)
【文献】特開2013-246140(JP,A)
【文献】特開2012-052985(JP,A)
【文献】米国特許出願公開第2013/0346023(US,A1)
【文献】特開2011-085587(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 15/1429
G01N 15/14
G01N 21/64
G01N 33/48
(57)【特許請求の範囲】
【請求項1】
従来のフローサイトメーターを用いてフローサイトメトリーを実行する方法であって、
複数の単一染色補正対照を使用することによって初期スピルオーバー行列を生成することと、
前記フローサイトメーターにサンプルを通すことと、
前記フローサイトメーターを通過する複数の細胞の蛍光を測定することによって、測定されたサンプルイベントベクトルを生成することと、
前記初期スピルオーバー行列及び前記測定されたサンプルイベントベクトルを使用することによって、補正されたサンプルイベントベクトルを生成することと、
前記初期スピルオーバー行列にデルタ行列を加算し、前記初期スピルオーバー行列を微調整することによって、調整されたスピルオーバー行列を生成することと、
含む方法。
【請求項2】
前記調整されたスピルオーバー行列及び前記測定されたサンプルイベントベクトルを使用することによって、再補正されたイベントベクトルを計算すること、
を更に含む、請求項1に記載の方法。
【請求項3】
前記補正されたサンプルイベントベクトルは、前記測定されたサンプルイベントベクトルに前記初期スピルオーバー行列の逆行列を線形乗算したものに等しい、請求項1に記載の方法。
【請求項4】
前記デルタ行列は、前記初期スピルオーバー行列を微調整する1つ以上のデルタ値を含み、前記デルタ行列は、前記初期スピルオーバー行列と同じ次元を有する、請求項に記載の方法。
【請求項5】
前記初期スピルオーバー行列はN×Nの次元を有し、Nは前記単一染色補正対照の数である、請求項1に記載の方法。
【請求項6】
前記単一染色補正対照のそれぞれは、フルオレセインイソチオシアネート(FITC)、R-フィコエリスリン(PE)、ペリジニンクロロフィルタンパク質複合体(PerCP)、PE-Cy7、アロフィコシアニン(APC)、又はAPC-Cy7のうちの1つを含む、請求項1に記載の方法。
【請求項7】
前記測定されたサンプルイベントベクトルはN個の値を含み、前記補正されたサンプルイベントベクトルはN個の値を有する、請求項に記載の方法。
【請求項8】
前記再補正されたイベントベクトルは、前記測定されたサンプルイベントベクトルに、前記初期スピルオーバー行列とデルタ行列との和の逆行列を乗算したものに等しい、請求項2に記載の方法。
【請求項9】
スペクトルフローサイトメーターを用いてフローサイトメトリーを実行する方法であって、
複数の単一染色補正対照を使用することによって基準行列を生成することと、
前記フローサイトメーターにサンプルを通すことと、
前記フローサイトメーターを通過する複数の細胞の蛍光を測定することによって、測定されたサンプルイベントベクトルを生成することと、
前記基準行列及び前記測定されたサンプルイベントベクトルを使用することによって、非混合サンプルイベントベクトルを生成することと、前記非混合サンプルイベントベクトルのスペクトルスピルオーバー行列は恒等行列であり、
前記スペクトルスピルオーバー行列を微調整することによって、調整されたスペクトルスピルオーバー行列を生成することと、
を含む、方法。
【請求項10】
前記調整されたスペクトルスピルオーバー行列及び前記測定されたサンプルイベントベクトルを使用することによって、再補正されたイベントベクトルを計算すること、
を更に含む、請求項に記載の方法。
【請求項11】
前記基準行列に前記非混合サンプルイベントベクトルを線形乗算したものは、前記測定されたサンプルイベントベクトルに等しい、請求項に記載の方法。
【請求項12】
前記非混合サンプルイベントベクトルにおける変数の数は、前記測定されたサンプルイベントベクトルにおける変数の数よりも少ない、請求項11に記載の方法。
【請求項13】
前記測定されたサンプルイベントベクトル及び前記基準行列に対して最小二乗アルゴリズムを使用して前記非混合サンプルイベントベクトルの解を求めること、
を更に含む、請求項12に記載の方法。
【請求項14】
調整されたスピルオーバー行列を生成することは、前記スペクトルスピルオーバー行列にデルタ行列を加算することを含む、請求項に記載の方法。
【請求項15】
前記デルタ行列は、前記スペクトルスピルオーバー行列を微調整する1つ以上のデルタ値を含み、前記デルタ行列は、前記スペクトルスピルオーバー行列と同じ次元を有する、請求項14に記載の方法。
【請求項16】
前記スペクトルスピルオーバー行列はN×Nの次元を有し、Nは前記単一染色補正対照の数である、請求項に記載の方法。
【請求項17】
前記測定されたサンプルイベントベクトルはN個の値を含み、前記非混合サンプルイベントベクトルはN個の値を有する、請求項に記載の方法。
【請求項18】
前記再補正されたイベントベクトルは、前記測定されたサンプルイベントベクトルに、前記スペクトルスピルオーバー行列とデルタ行列との和の逆行列を乗算したものに等しい、請求項10に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
[関連出願の相互参照]
この非仮特許出願は、発明者Zhenyu Zhangによって2018年5月21日に出願された「FAST RECOMPENSATION OF FLOW CYTOMETERY DATA FOR SPILLOVER READJUSTMENTS」という発明の名称の米国特許出願第62/674,273号の利益を主張し、全ての意図及び目的において、引用することによって本明細書の一部をなすものとする。
【0002】
本特許出願は、発明者Ming Yan他によって2017年7月25日に出願された「COMPACT DETECTION MODULE FOR FLOW CYTOMETERS」という発明の名称の米国特許出願第15/659,610号に関係し、全ての意図及び目的において、引用することによって本明細書の一部をなすものとする。本特許出願は、David Vrane他によって2017年4月26日に出願された「COMPACT MULTI-COLOR FLOW CYTOMETER」という発明の名称の米国特許出願第15/498,397号に更に関係している。この米国特許出願は、本実施の形態をともに用いることができるフローサイトメーターを記載しており、全ての意図及び目的において、引用することによって本明細書の一部をなすものとする。本特許出願は、David Vraneによって2017年11月19日に出願された「FLOW CYTOMETERY SYSTEM WITH STEPPER FLOW CONTROL VALVE」という発明の名称の米国特許出願第15/817,277号に更に関係している。この米国特許出願は、フローサイトメーターのフルイディクスシステム(fluidics system)を記載しており、全ての意図及び目的において、引用することによって本明細書の一部をなすものとする。
【0003】
本発明の実施の形態は、包括的には、フローサイトメーターデータを分析して、サンプル内の粒子のカウントを求めることに関する。
【背景技術】
【0004】
フローサイトメーターは、一般に、1つ以上のレーザーによって照射される視界オリフィス(viewing orifice)を有する。1つ以上のレーザーからのレーザー光は、オリフィスを通過する様々な蛍光色素標識された粒子に衝突する。蛍光色素標識された粒子は、通常は、異なる蛍光色素(蛍光染料)を用いて標識されたサンプル内の様々な生体細胞であり、これらの生体細胞を分析することで、全体的な情報に一般化することができるサンプルについての情報を取得することができる。1つ以上のレーザーからのレーザー光が衝突する、オリフィスを通過する蛍光色素標識された粒子から発光される蛍光(蛍光性光)の検知には、フローサイトメーターにおける1つ以上の光学検出器が使用される。
【0005】
蛍光色素標識された粒子から発光される蛍光が各検出器に到達する前に、1つ以上の異なる光学フィルターを配置することができる。これらの光学フィルターは、蛍光色素の予想される蛍光に関連した光の特定の帯域幅のみが各検出器に見えるように発光蛍光路に配置される。すなわち、任意の所与のフィルターの帯域幅は、特定の蛍光染料の発光スペクトルにおけるピークを利用する。このように、任意の所与の粒子について、検出器からの集合的な信号は、粒子に付着された単数又は複数の蛍光色素のタイプを示す。発光される蛍光から検出器によって検出された信号によって、サンプル内の様々な粒子の迅速かつ広範な細胞分類が可能になる。
【0006】
しかしながら、発光スペクトルは、染料間で重なり合う可能性がある。これによって、単一のレーザー及び検出器によって所与の粒子上で同時に検出することができる異なる蛍光色素の数が制限される。発光帯域幅は、通常、30ナノメートル(nm)~60nmの波長範囲にあるので、従来のフローサイトメーターは、通例、レーザー線ごとにわずか4つ又は5つの蛍光色素しか検出することができない。レーザーの数を増加させることは、同時に検出することができる蛍光色素の数を増加させる好都合ではあるが高価な方法を提供する。
【0007】
発光される蛍光性光の検出を更に複雑にすることは、粒子を染色するのに使用される多くの染料が、通常の30nm~60nmの帯域幅範囲と異なり、この範囲よりも大きなレーザー波長範囲にわたって励起されるということである。これは、異なるレーザーの検出器の間の信号クロストークをもたらす可能性がある。
【0008】
従来のフローサイトメトリー蛍光検出システムは、コリメーティングレンズ焦点距離を増加させることによって発散を制限していた。しかしながら、これによって、光ビームの直径はより大きくなり、検出器の数は、必要とされる最終画像のサイズに応じて6つの検出器等に制限されることになった。これらの従来のフローサイトメトリーシステムでは、最終画像サイズは、800マイクロメートル(μm)、すなわち、800ミクロン等の大きなサイズの光学結像及び広帯域光(例えば、波長が400nm~800nm)を、直径が3ミリメートル(mm)未満のサイズを有する検出器のセット内にコリメートする際の光学収差によって制約されていた。
【0009】
別のフローサイトメトリーシステムでは、入射光は、並びにおける検出器のセットの検出器チェーンにおける検出器ごとに、球面マイクロミラーを使用して再結像される。再結像によって、上述したフローサイトメトリーシステムの発散するコリメート光問題が回避される。しかしながら、検出器の数は、球面マイクロミラーからの反射によってもたらされる収差によって制限される。画像サイズは、検出器チェーンに沿って増加するので、検出器チェーンにおける並びに沿って検出器チャネルの数を増加させるには、大きな面積の検出器が必要とされ、その結果、フローサイトメーターは大きくなり、バルキーで高価なものとなる。
【0010】
スペクトル的に重なり合う発光スペクトルの分解も、検出可能な蛍光色素の数を増加させることの中核をなす。検出器アレイを使用すると、複数の波長にわたる集合的な発光シグネチャに基づいて蛍光色素を識別して、検出可能な蛍光色素の数を増加させることができる。本質的に、蛍光信号全体が、回折格子又はプリズムのいずれかによって色に関して検出器のアレイ内に分散される。このように、発光スペクトル全体が検出器にわたって離散化される。スペクトルデコンボリューション(非混合(unmixing))を使用して、収集された全信号に対する既知の個別の蛍光色素スペクトルの寄与度を計算することができる。しかしながら、検出可能な蛍光色素の数を増加させるこの手法は、2つの主な限界を有する。
【0011】
分散素子/検出器アレイの連続的な線形の特徴によって、帯域幅を調整して蛍光色素スペクトルの真の性質を利用することができなくなっている。したがって、より広い帯域幅の識別は、長い波長の蛍光色素に有利であるが、圧縮されたスペクトルを有する短い波長の蛍光色素の細部を見落とす。加えて、他のレーザーからの散乱光が存在する場合には、この散乱光は、検出器のアレイによって不可避的に集光される。この散乱光は、検出器によって検出される蛍光信号を損なう。
【発明の概要】
【0012】
したがって、検出可能な蛍光色素の数を増加させて、サンプル内の蛍光色素標識された粒子をより良く分析するフローサイトメーターの更なる改良が必要とされている。
【0013】
本発明の実施の形態は、添付の特許請求の範囲によって要約される。
【図面の簡単な説明】
【0014】
図1】フローサイトメーターシステムの検出モジュールのブロック図である。
図2A】連続するチャネル再結像を有する画像アレイの概略図である。
図2B】1つ置きのチャネル再結像を有する1f画像アレイの概略図である。
図3】モジュール式フローサイトメーターシステムの16チャネル1f画像アレイを含むコンパクト検出モジュールの概略図である。
図4A】光ファイバーの直径にわたって異なる箇所から出射する蛍光性光の拡大図である。
図4B】光信号を電気信号に変換する検出器の拡大図である。
図5】1f画像アレイの一部分の拡大図である。
図6】16チャネル1f画像アレイ及び16個の検出器チャネルを有するモジュール式フローサイトメーターシステムにおける検出モジュールの図である。
図7A】一対の8チャネル1f画像アレイ及び一対の8個の検出器チャネルを有するモジュール式フローサイトメーターシステムにおける検出モジュールの異なる図式図である。
図7B】一対の8チャネル1f画像アレイ及び一対の8個の検出器チャネルを有するモジュール式フローサイトメーターシステムにおける検出モジュールの異なる図式図である。
図7C】一対の8チャネル1f画像アレイ及び一対の8個の検出器チャネルを有するモジュール式フローサイトメーターシステムにおける検出モジュールの異なる図式図である。
図8】球面マイクロミラーを有する1f画像アレイの斜視図である。
図9A図8の1f画像アレイの断面図である。
図9B図8の1f画像アレイの断面図である。
図10】凹面方形マイクロミラーを有する1f画像アレイの斜視図である。
図11図10の1f画像アレイの一部分の上部側面図である。
図12】結像ブロックに隣接する取り付けブロック並びに図6及び図7A図7Cの検出器モジュールにおいて使用される低コストの薄い外郭の検出器の斜視図である。
図13】モジュール式フローサイトメトリーシステムにおける光学プレートアセンブリの上面図である。
図14】フローサイトメーターシステムの基本概念図である。
図15】フローサイトメーター上で実験を行う全体的な方法を示す図である。
図16A】補正(compensation:コンペンセーション)のレベルを有する初期スピルオーバー行列又は基準行列を生成する単一染色(single stained:単染色)補正対照(control:コントロール)を用いたフローサイトメーターの較正プロセスの図である。
図16B】サンプルをフローサイトメーターに通し、その結果、マルチ染色細胞又は粒子に起因して重なり合うスペクトルプロファイルを有する混合サンプルイベントベクトルを得る図である。
図16C】イベントデータに関する逆行列(微調整を有する初期スピルオーバー行列及び/又は初期基準行列から求められる)を使用して、補正されたサンプルイベントベクトル又は非混合サンプルイベントベクトルを生成する処理の図である。
【発明を実施するための形態】
【0015】
実施形態の以下の詳細な説明では、完全な理解を提供するために、非常に多くの具体的な詳細が説明される。しかしながら、これらの具体的な詳細がなくても実施形態を実施することができることが当業者には明らかであろう。その他の場合には、よく知られた方法、手順、構成要素、及び回路は、本発明の実施形態の態様を不必要に不明瞭にしないように詳細に説明されていない。
【0016】
本発明の実施形態は、コンパクト高度多重化検出モジュールを有するフローサイトメーターのための方法、装置及びシステムを含む。
【0017】
全体的概観
従来のフローサイトメーターと比較して増加した数の検出器及び検出器における最小画像サイズを有する、蛍光のコンパクト検出モジュールを有するフローサイトメーターが開示される。各検出器モジュールには、少なくとも1つのレーザーが提供される。複数のレーザーを複数の検出器アレイによってコンパクト形式でサポートすることができる。検出器の数の増加は、光が検出チェーンを通って送信されるときに、検出器アレイ内の漸増的な収差の慎重な制御によって可能になる。コンパクト検出モジュールのコンパクトなサイズは、マイクロミラーとフィルターとの間の距離の削減及び慎重な下方スケーリングによって達成され、それによって、結像アレイにおけるマイクロミラー及びフィルターの並び又はチェーンに沿った画像劣化が最小になる。
【0018】
従来の限界は、複数の個々の検出器とフィルター帯域幅の調整可能な推移とを有する光学システムの使用によって克服することができる。光学システムは、スペクトル選点(spectral collocation point)の集中が、フローサイトメーターによって分析される粒子をマーキングするのに使用される長波長染料及び短波長染料の双方のスペクトルを最良に分解することを可能にする。励起粒子からの蛍光は、高い開口数(NA)を有する対物レンズによってマルチモードファイバー内に結像される。マルチモードファイバーから出射する広帯域蛍光はコリメートされ、その後、複数の検出器内に結合される(複数の検出器上に結像される)。マルチモードファイバーから出射する広帯域蛍光性光のコリメーションは難題である。
【0019】
フローサイトメーターの検出モジュール
図1は、フローサイトメーターの検出モジュール100の一部分の機能ブロック図を示している。改良型フローサイトメーターは複数の検出モジュールを含むことができる。検出モジュール100は波長分波システムである。検出モジュール100は、画像アレイ106において光ファイバー102からの蛍光性光出力101Aを連続的に反射して再結像する。画像アレイ106は、機械式マウントによって空中に懸架された複数の反射ミラー112A~112E及び対応する複数のロングパスダイクロイックフィルター110A~110Eを含む機械式画像アレイである。一般に、ダイクロイックフィルターは、或る範囲の波長の色光の光を選択的に通過させるとともに他の波長の色光を反射するのに使用される精密なカラーフィルターである。或いは、複数のロングパスダイクロイックフィルター110A~110Eは、帯域通過フィルターとすることができる。
【0020】
画像アレイ106は、この画像アレイの端部におけるファイバースポットの光学的品質を維持しながら、光のファイバースポットをN回反射して再結像することが可能である(ここで、Nは2よりも大きい)。再結像は、ダイクロイックフィルター110A~110Eのそれぞれの表面等の表面において、或る収差を有する元の画像、すなわち、再画像(reimage:復元画像)を再現するという機能である。検出モジュール100は、光がそれぞれと通信する複数の対物レンズ116A~116E及び複数の検出器118A~118Eをそれぞれ備える複数の検出器チャネル113A~113Eを更に含む。任意選択で、複数の検出器チャネル113A~113Eは、様々な所望の波長範囲が複数の検出器によって検出されることをそれぞれ確認する複数の帯域通過フィルター114A~114Eを更に含むことができる。
【0021】
画像アレイ106において、第1(first:最初)のミラー110A上に入射する光101Aは、ミラーによって反射され、反射光103Aになる。第1のミラー110Aからの反射光103Aは、空気中を通って第1のロングパスダイクロイックフィルター112A上に入射する。第1のミラー110Aからの光103Aは、ロングパスダイクロイックフィルター112Aによって連続光部分101Bと通過光部分又は透過光部分105Aとに分割される。連続光部分101Bは、空気中を通って、一連のミラーにおける次のミラーであるミラー110B上に入射する。透過光部分105Aは、第1の検出器チャネル113Aの第1の帯域通過フィルター114A内に結合される。透過光部分105Aは、帯域通過フィルター114Aによってクリーンアップされ、その後、対物レンズ116Aによって光学検出器118A内に結合される。このプロセスは、画像アレイ106内の各ステージ(各検出器チャネル)について繰り返される。
【0022】
画像アレイ106は、各ロングパスダイクロイックフィルター上で再結像を5回行う5つのステージを含む。それでも、より多くの数の検出器を含むことが望ましい。しかしながら、6回以降の再結像では、反射ミラーを通したビーム歪が、最後のダイクロイックフィルターにおける画質を非常に悪化させる程蓄積する可能性がある。画像アレイ106におけるミラーとダイクロイックフィルターとの間にジグザグ構成を、より多くの数の検出器を用いて適切に動作させるためには、光路に沿った画像劣化を最小にすることが望ましい。
【0023】
検出モジュールにおける画像劣化を最小にすることは、2つのメカニズムを使用して達成することができる。画像アレイにおける各反射ミラーの曲げ力(bending power)が(例えば、2分の1、すなわち、半分の曲げ力に)低減される場合には、画像劣化を低減することができる。光ビームが画像アレイにおいて再結像される回数が(例えば、2分の1、すなわち、半分の回数に)低減される場合には、画像劣化を更に低減することができる。
【0024】
ミラーにおける曲げ角度を削減することによって、全てのタイプの収差が低減される。収差は曲げ角度とともに非線形に増加するので、「高速焦点ミラー」から「低速焦点ミラー」に切り替えることによって得られる改善は、2×よりも大幅に良好であり、これによって、更に多くの反射を通して画質の保持が可能になる。検出器チェーンにおける最後の検出器上に入射する画質は、光ビームが画像アレイにおいて再結像される回数を削減することによって更に改善することができる。各検出器チャネルの各ダイクロイックフィルターにおいて再結像する代わりに、1つおきのダイクロイックフィルター及び検出器チャネル(例えば、奇数の検出器チャネル)上で入射光を再結像することができる。
【0025】
次に、図2A及び図2Bを参照して、異なる曲率半径を有するマイクロミラーを備える透明ブロックを使用することによって画質の改善をもたらす画像アレイ106A及び106Bを説明する。一般に、画像アレイは、検出チャネルごとに、マイクロミラーのアレイと、帯域通過フィルター及び/又はダイクロイックフィルターの対向するアレイとからなる。各場合において、一方の側におけるマイクロミラーM(n)、M(n)’の直列のチェーン又は並びと、対向する側におけるダイクロイックフィルターD(n)の直列のチェーン又は並びとの間の透明ブロックの厚さLは同じである。一方、マイクロミラーM(n)及びM(n)’の焦点距離は、図2Aの画像アレイ106A及び図2Bの画像アレイ106Bにおいて異なる。
【0026】
図2BにおけるマイクロミラーM(n)’の焦点距離fはLである一方、図2AにおけるマイクロミラーM(n)の焦点距離fはLの半分である。画像アレイ106BにおけるマイクロミラーM(n)’の焦点距離が大きいほど、ミラーの直列チェーンに沿った結像における曲げ角度及び収差は削減される。さらに、画像アレイ106Bは、再結像がダイクロイックフィルターD(3)、D(5)、D(7)~D(n)等の奇数のダイクロイックフィルター上で行われるように、透明ブロックの厚さL及びマイクロミラーM(n)’の焦点距離を有する1f画像アレイである。
【0027】
図2A及び図2Bにおいて、スポットA(1)~スポットA(n)は、それぞれダイクロイックフィルターD(1)~D(N)上のスポットサイズ(面積)である。スポットA(0)は、蛍光性光が各アレイ106A及び106B内に入力されるマルチモードファイバーのファイバー開口である。図2A及び図2Bにおいて、ファイバー開口は、2つの設計の画像共役(image conjugation)特性を示すために無限小に小さいとみなすことができる。
【0028】
図2Aは、複数のマイクロミラーM(1)~M(N)と複数のロングパスダイクロイックフィルターD(1)~D(N)とを有する画像アレイ106Aを示している。ここで、Nは、検出器チャネルの数を表す1よりも大きな整数値である。マイクロミラーM(1)による反射を通して、ダイクロイックフィルターD(1)におけるスポットA(1)に合焦される光は、ダイクロイックフィルターD(2)におけるスポットA(2)に光を合焦させるようにマイクロミラーM(1)の反射を通して再結像される。これは、直列のチェーン又は並びに沿ったマイクロミラーM(2)~M(N)のそれぞれによって繰り返される。画像アレイ106Aは2f画像アレイである。
【0029】
図2Bは、複数のマイクロミラーM(1)’~M(N)’と複数のロングパスダイクロイックフィルターD(1)~D(N)とを有する画像アレイ106Bの1f設計を示している。マイクロミラーM(1)’~M(N)’は、マイクロミラーM(1)~M(N)の曲率半径と異なる曲率半径を有する。1f画像アレイ106Bは、検出器(例えば、図1における検出器118A~118E)において、2f画像アレイ106Aの画質の改善を上回る画質の改善をもたらす。
【0030】
1f画像アレイ106BにおけるマイクロミラーM(1)’~M(N)’のチェーンは、望遠鏡光学機器の特性によってチェーンに沿って画像を中継するように設計される。例えば、ダイクロイックフィルターD(1)におけるスポットA(1)に合焦される光は、マイクロミラーM(1)’及びM(2)’の望遠鏡効果によってダイクロイックフィルターD(3)におけるスポットA(3)に結像される。偶数のスポットであるスポットA(2)は、コリメート空間における中間スポットである。
【0031】
複数のロングパスダイクロイックフィルターD(1)~D(N)は、制限された波長範囲の光が通過することを保証するために、代替的に、通過帯域光学フィルター又は帯域通過光学フィルターとすることもできるし、ダイクロイック光学フィルター及び帯域通過光学フィルターの双方を互いに組み合わせて含むこともできる。ダイクロイック光学フィルターは、薄膜干渉の原理を使用し、干渉フィルターと呼ぶこともできる。各チャネルについて、帯域通過光学フィルター又は通過帯域光学フィルターは、異なる選択範囲の光の波長(通過帯域)を各検出器に渡し、残りの光波長を反射して、マイクロミラーアレイにおけるマイクロミラーに戻すように調節される。
【0032】
コンパクトな検出器モジュールを提供するために、画像アレイ106Bは、図8及び図10を参照して更に説明されるような固体透明材料から形成される。1f画像アレイに使用される透明結像ブロックの固体透明材料は、例えば、ミラー及びダイクロイックフィルターがこの透明材料の内部又は上に形成された透明なガラス又は透明なプラスチックとすることができる。
【0033】
1f画像アレイ106Bの設計及び2f画像アレイ106Aの設計は、固体透明材料の同じ厚さ、同じピッチ及び同じ入射角の条件の下で比較することができる。2f画像アレイ106A及び1f画像アレイ106Bにおける隣接するマイクロミラー間の経路距離はほぼ同じである。この場合に、経路距離は、材料の屈折率が考慮される従来の経路長ではなく、物理的な距離である。しかしながら、2f画像アレイ106Aにおけるマイクロミラーの焦点距離は、1f画像アレイ106Bにおけるマイクロミラーの焦点距離よりも短い(半分である)。言い換えると、1f画像アレイ106Bにおけるマイクロミラーの実際の焦点距離は、マイクロミラーの異なる曲率半径に起因して、2f画像アレイ106Aにおけるマイクロミラーの焦点距離の2倍である。焦点距離が長いほど、各反射における曲げ力は低減され、これによって、マイクロミラー反射においてもたらされる収差は最小にされる。したがって、1f画像アレイ106Bにおける収差は、2f画像アレイ106Aの収差よりも改善される。
【0034】
2f画像アレイシステム106Aでは、ファイバー開口A(0)は、ダイクロイックフィルターD(1)におけるスポットA(1)に結像される。スポットA(2)における画像は、マイクロミラーM(1)の反射を通したスポットA(1)の再結像である。アレイ106Aにおけるジグザグ光路の通過を続けると、各ダイクロイックフィルターD(n)における各スポットA(n)は、次のマイクロミラーM(n)によって、次のダイクロイックフィルターD(n+1)における次のスポットA(n+1)に結像される。この構成では、スポットA(n)とマイクロミラーM(n)との間の経路距離は、マイクロミラーM(n)の焦点距離の2倍である透明ブロックの厚さLである。
【0035】
1f画像アレイシステム106Bでは、ファイバー開口A(0)からの光は、入力チャネルによってダイクロイックフィルターD(1)におけるスポットA(1)に結像される。画像アレイシステム106Bでは、マイクロミラーM(1)’からマイクロミラーM(2)’への光路が1に等しい倍率を有する望遠鏡と等価なものを形成すると考えることができる。そのような場合には、スポットA(1)は、マイクロミラーM(1)’及びM(2)’の望遠鏡を通ってスポットA(3)に結像され、スポットA(2)はコリメート空間における中間スポットである。隣接するマイクロミラーM(3)’及びM(4)’は、スポットA(3)をスポットA(5)に再結像する別の望遠鏡を形成する。結像アレイ106Bにおけるジグザグ経路を進み続けると、奇数のスポットA(1)、A(3)、A(5)...A(2n+1)は全て互いに共役され、偶数のスポットA(2)、A(4)、A(6)、...A(2n)はコリメート空間における中間スポットである。この構成では、スポットA(n)とマイクロミラーM(n)’との間の経路距離は、マイクロミラーM(n)’の1つの焦点距離である透明ブロックの厚さLである。
【0036】
フィルター上の各スポットは光線束によって形成される。光線束の角度分布は、結像システムの結像アレイへの入力マルチモードファイバー102及び入力チャネルの開口数(NA)によって決まる。スポットA(1)における光の円錐角は、マルチモードファイバー102の開口数に比例する。mを1よりも大きい数とした場合に、ファイバー開口A(0)からスポットA(1)への画像倍率mが1対mの比である場合には、スポットA(1)における円錐角は、ファイバー開口A(0)における円錐角のm分の1小さい。
【0037】
図2Aの2f画像アレイシステム106Aでは、任意のスポットA(n)から隣接するスポットA(n+1)への画像倍率は、nのどの値についても1に等しい。収差を無視すると、画像アレイシステム106AのダイクロイックフィルターD(1)~D(N+1)における光線の円錐角は、全ての検出器チャネルについて同じである。
【0038】
次に図2Bを参照すると、ダイクロイックフィルターD(1)とマイクロミラーM(1)’との間の距離はLである。チャネルの総数Nが、1f画像アレイ106Bにおいて偶数である場合には、スポットA(1)は、(1×望遠鏡を考慮すると)マイクロミラーM(1)’及びM(2)’を通ってスポットA(3)に結像され、ダイクロイックフィルターD(2)におけるスポットA(2)はコリメート空間にある。スポットA(2)におけるコリメートされた光の一部分は、ダイクロイックフィルターD(2)によってマイクロミラーM(2)’に向けて反射される。
【0039】
したがって、1f画像アレイ106Bは、スポットA(1)、A(3)、...A(2k-1)...A(N-1)における奇数の検出器チャネルと、スポットA(2)、A(4)、...A(2k)、...A(N)における偶数の検出器チャネルとを有する。ここで、1≦k≦(N/2)である。スポットA(1)は、マイクロミラーM(1)’の前側焦点にあり、隣接するマイクロミラー間の経路距離は、焦点距離の2倍であるので、全ての奇数のスポットA(1)、A(3)、A(5)...A(2n+1)は、(奇数のスポットへの光線収束によって図2Bに示すように)ファイバー開口の画像であり、全ての偶数のスポットA(2)、A(4)、A(6)、...A(2n)は、(偶数のスポットにおける平行光線によって図2Bに示すように)コリメート空間にある。したがって、図5に示すように、奇数の検出器チャネルの奇数のスポットの円錐角(奇数の円錐角CAO)は、偶数の検出器チャネルの偶数のスポットの円錐角(偶数の円錐角CAE)と異なる。
【0040】
1f画像アレイ106Bでは、各光学ダイクロイックフィルターD(1)~D(N)の中心波長及び通過帯域幅は互いに異なる。各光学ダイクロイックフィルターの中心波長及び通過帯域幅は、染料の蛍光スペクトルの最適化されたサンプリングが大量の異なる染料の非混合をより良く正確に行うように設計される。例えば、400nm~800nmの光波長の蛍光スペクトル及び16個のチャネル検出モジュールを仮定すると、25nmの光波長帯域幅をそれぞれ分析することができる。例えば、第1の検出器チャネル及び第1のダイクロイックフィルターD(1)は、412.5nmの中心波長を有する400nm~425nmの光波長を帯域通過させ、分析することができる。400nm~425nmの外側にある波長は、実質的にフィルタリング除去され、第1の検出器チャネルにおける第1の検出器には渡らない。第2の検出器チャネル及び第2のダイクロイックフィルターD(2)は、437.5nmの中心波長を有する425nm~450nmの光波長を帯域通過させ、分析することができ、これ以降の25nmずつ増加する帯域幅についても、これ以降のそれぞれの検出器チャネル及びダイクロイックフィルターが帯域通過させ、分析することができる。最後の、すなわち、第16の検出器チャネル及び第16のダイクロイックフィルターD(16)は、787.5nmの中心波長を有する775nm~800nmの光波長を帯域通過させ、分析することができる。
【0041】
1f画像アレイ106Bの特徴は、2f画像アレイ106Aよりも多くの数の検出器内に初期光信号を伝播させることを可能にする。1f画像アレイ106Bは、各ミラー反射における曲げ力を低減することによって軸外収差を低減する。一方、奇数チャネル及び偶数チャネルにおけるダイクロイックフィルターにおいて、奇数の円錐角CAOが偶数の円錐角CAEと異なる場合には、ファイバー開口A(0)からダイクロイックフィルターD(1)におけるスポットA(1)への入力ステージにおける最適な倍率mを求める必要がある。所与のファイバー開口数(NA)及び開口直径について、ファイバー開口A(0)からダイクロイックフィルターD(1)におけるスポットA(1)への倍率mは、1f画像アレイ106Bにおける奇数の検出器チャネル及び偶数の検出器チャネルの双方について最適化される。
【0042】
スペクトル分解の観点から、入射スポットの円錐角が増加するにつれて、ダイクロイックフィルターの性能は低下する。1f画像アレイ106Bでは、奇数チャネルにおけるスポットの円錐角は、偶数チャネルにおけるスポットの円錐角と異なる。基本的に、奇数チャネルにおける円錐角は、マルチモードファイバーの開口数(NA)と、ファイバー開口A(0)からダイクロイックフィルターD(1)におけるスポットA(1)への倍率因子mとによって決まる。対照的に、偶数チャネルの円錐角は、奇数チャネルにおけるスポットのスポット直径によって決まる。
【0043】
入力チャネルにおいて、ファイバーにおける開口A(0)からダイクロイックフィルターD(1)におけるスポットA(1)への画像倍率がmであると仮定する。偶数の検出器チャネル(ダイクロイックフィルターD(2k))において、円錐角は倍率mに比例する。一方、奇数の検出器チャネル(ダイクロイックフィルターD(2k-1))では、円錐角は倍率mに反比例する。ファイバー開口A(0)からスポットA(1)への倍率が大きいほど、奇数の検出器チャネル(ダイクロイックフィルターD(2k-1))における円錐角は小さくなるが、偶数の検出器チャネル(ダイクロイックフィルターD(2k))における円錐角は大きくなる。NA=0.12、開口直径600μm、及びマイクロミラー(フィルター)ピッチ5.5mmであるマルチモードファイバーを有する1つの実施形態例では、推奨倍率mが約2であるようにモデル化を行った。明らかに、異なる入力を用いて他の倍率mを求めることができ、したがって、本明細書に開示されている実施形態は、2×倍率に制限されるものではない。1f画像アレイ106Bについて提示した例では、開口数(NA)及び再結像の数の双方が2分の1に削減され、これによって、同じ長さの並びに沿って2f画像アレイ106Aよりも少なくとも4倍(4×)多くの検出器が可能になる。
【0044】
図3図4A及び図4B、並びに図5は、1f画像アレイ106Bと、NA=0.12、開口直径600μm、マイクロミラー(フィルター)ピッチ5.5mmであるファイバーを有する一実施形態の入力値例と、2×の推奨倍率とを有するコンパクト検出モジュールのシミュレーション結果のグラフを示している。図3図4A及び図4B、並びに図5に示す光線の異なる色は、異なる位置にある光が検出器モジュールをどのように通過するのかを示すための明瞭化を目的にしたものにすぎない。
【0045】
図3は、検出システム内に蛍光性光を発射する光ファイバー102の一方の端部を示している。光ファイバー102の反対側端部(図示せず)の近くでは、高いNAを有する集光対物レンズを使用して、開口から蛍光性光を集光し、この光を光ファイバーの反対側端部内に結合することができる。光ファイバー102は、その場合に、対物レンズから光を集光し、この光を図3に示す端部に誘導する。図3に示す端部の近くでは、システムは、蛍光性光を検出器アレイに発射するために、自由空間内への開口数を下げるファイバー開口数変換器を含むことができる。
【0046】
次に図3を参照すると、コンパクト検出モジュール300における倍率mは、入力ステージ301によって達成される。入力ステージ301は、コリメーティングレンズ302、遮断フィルター303、及び合焦レンズ304を含む。倍率mは、コリメーティングレンズ302及び合焦レンズ304の焦点距離の比を調整することによって達成される。例えば、倍率を2に設定するには(m=2)、合焦レンズ304の焦点距離は、コリメーティングレンズ302の焦点距離の2倍である。入力チャネル301は、第1のダイクロイックフィルターD(1)に到達する前に、画像アレイ106Bに透明ブロックの入力部分(例えば、ブロックの厚い部分であるウェッジ、図8参照)を更に含むものと考えることができる。
【0047】
コリメーティングレンズ302は、ファイバー102から発射された光を受光し、この光をコリメートする。コリメートされた光は、遮断フィルター303を通過し、合焦レンズ304内に入力する。遮断フィルター303は、光ファイバー102の反対側端部の近くの集光光学機器内に散乱されるレーザー光をクリーンアウトするのに使用される。蛍光色素に関連した光の蛍光性スペクトルは、遮断フィルター303を通過し、合焦レンズ304内に入る。合焦レンズ304は、光の蛍光性スペクトルを画像アレイ106Bにおける第1のダイクロイックフィルターD(1)上に合焦させて、スポットA(1)に画像を形成する。スポットA(1)における画像は、サイズ(例えば、直径及び面積)がファイバーの開口A(0)におけるサイズからm倍に拡大される。ファイバー102の端部と画像アレイ106Bとの間のレンズ302、304の位置を調整することができる。
【0048】
コンパクト検出モジュール300は、16チャネル1f画像アレイ106Bと、この画像アレイ106Bと通信する16個の検出器チャネル313A~313Pとを更に含む(例えば、図6参照)。代替の実施形態では、一対の8チャネル1f画像アレイ(例えば、図7A図7C参照)を平行に使用して、各コンパクト画像アレイの結像要件を緩和することができる。フローサイトメーターでは、図13に関して記載された検出器モジュールを用いて説明するように、これらのコンパクト画像アレイの2つ以上(例えば、3つ)を使用して検出器チャネルの数を増大させ、16個よりも多くすることができる(例えば、40個の検出チャネルの場合には16の3倍)。
【0049】
画像アレイ106Bは、固体透明ブロック材料から形成される。16チャネル1f画像アレイ106Bは、透明ブロックの一方の側に16個のダイクロイックフィルターD(1)~D(16)と、反対側に15個のミラーM(1)~M(15)とを含む。画像アレイは、最後の検出器チャネル313Pの後に続くミラーを必要としない。その上、最後のフィルターD(16)314は、ダイクロイックフィルターでないものとすることができ、代わりに、帯域通過フィルターを使用することができる。帯域通過フィルターの場合には、入射光を別のミラー又はフィルターに更に反射する必要がない。
【0050】
検出器のアレイにおける各検出器チャネル313A~313P(検出器チャネル313と総称する)は、合焦レンズ316、及び検出器318(一例を図3に示す)を含む。検出器318は、薄い外郭(TO:thin outline)のカンパッケージ320内にパッケージされ、合焦レンズ316がこのTOカンパッケージに結合されるか又はTOカンパッケージ内に統合される。合焦レンズ316は、フィルターを通過する蛍光の光を検出器318の小さい面積サイズ上に合焦させる。
【0051】
次に図4Aを参照すると、画像チャンバー(image chamber)から捕捉された蛍光性光信号を検出器アレイに搬送するのに使用される光ファイバー102は、マルチモード光ファイバーである。光は、例えば、マルチモードファイバーの端面の、ロケーションX1~X5等のファイバーの直径にわたる様々な(全てではない)ロケーションから出射する。図3に示す入力チャネルにおけるレンズ303、304は、開口A(0)内の光を第1のダイクロイックフィルターD(1)上のスポットA(1)に合焦させる。スポットA(0)からスポットA(1)へ2倍(2×)の倍率があるので、開口A(0)におけるスポットサイズは、スポットA(1)におけるスポットサイズよりも小さい。図4Aに示す開口内の異なるロケーションX1~X5から発する光線の異なる色は、異なる位置にある光が検出器モジュールをどのように通過するのかを示すための明瞭化を目的にしたものにすぎない。図4Aに示すように、光軸402は、光ファイバー102の端部の円形中心から外部に延びる。光は、光軸402に対して発射円錐角(CA:cone angle)404で光ファイバー102の端部の外部に発射される。
【0052】
図3は、画像アレイ106Bと、光ビームにおける異なるロケーションからの光がミラー及びダイクロイックフィルターの複数の反射を通してどのようにして交互に結像及びコリメートされるのかとのシミュレーション結果を示している。これらの結果は、反射する光の全てを示しているが、任意の特定の位置におけるダイクロイックフィルターD(n)は異なり、それらのそれぞれの通過帯域に従って光信号の伝送を可能にする(図3では、最後の検出器チャネル313Pにおけるもののみを示す)。
【0053】
次に図3及び図4Bを参照すると、各検出器チャネル313において、ダイクロイックフィルターD(n)を通過する光信号の所望の波長範囲は、レンズ316を通して集光することができ、小開口感光性検出器318によって検出することができる。更なる帯域通過フィルター314を各検出器チャネルにおいて代わりに又は更に使用することができる。ダイクロイックフィルターD(n)において光の他の波長が存在する場合には、それらの波長は、マイクロミラーのチェーン又は並びに沿って次のマイクロミラーM(n)に反射される。ダイクロイックフィルターD(n)の並び又はチェーンは、異なる範囲の光波長を検出器チャネル313A~313Pのチェーンに分波する。
【0054】
図5の拡大図は、光学光ビームがマイクロミラー及びダイクロイックフィルターの反射表面を通ってどのようにして交互に結像及びコリメートされるのかのシミュレーション結果を示している。奇数番号のダイクロイックフィルター(例えば、図5に示すダイクロイックフィルターD(7)、D(9)、及びD(11))上では、スポットはファイバー開口の画像である。すなわち、ファイバー開口から発射された光は、奇数番号のダイクロイックフィルターの各フィルター表面に結像される。偶数番号のダイクロイックフィルター(例えば、図5に示すダイクロイックフィルターD(8)、D(10)、及びD(12))上では、偶数番号のスポット(例えば、図5に示すスポットA(8)、A(10)、及びA(12))はコリメート空間にあり、この空間では、ファイバー開口における或る箇所から発光する光線は、コリメートされたビームになる。各偶数番号のダイクロイックフィルターにおけるコリメート空間内のビーム方向は、ファイバー開口からの箇所が異なれば僅かに異なる。
【0055】
フローサイトメーターでは、1つ以上の線形16チャネルコンパクト波長検出モジュールを使用して、粒子に関連した光の蛍光性信号を検出することができる。これに代えて又はこれと併せて、1つ以上のデュアル8チャネルコンパクト波長検出モジュールをフローサイトメーターに使用して、粒子に関連した光の蛍光性信号を検出することができる。
【0056】
図6及び図7A図7Cは、図2Bに示す1f画像アレイ106Bの機能を有するコンパクト波長検出モジュールの実施形態を示している。図6は、線形16チャネルコンパクト波長検出モジュール600を示している。図7A図7Cは、デュアル8チャネルコンパクト波長検出モジュール700を示している。
【0057】
次に図6を参照すると、線形16チャネルコンパクト波長検出モジュール600は、基部610に取り付けられた入力ステージ(ヘッド)601及び検出モジュール614を含む。光は、光ファイバー102によって入力ステージ(ヘッド)601内に結合される。入力ステージ(ヘッド)601は、光学台に取り付けられたコリメーティングレンズ602、ロングパスフィルター603、クリーンアップ光学ブロッカー604、及び合焦レンズ605を含む。入力ステージ(ヘッド)601は、第1のダイクロイックフィルター上の初期スポットサイズ画像A(1)の倍率mをセットアップする。
【0058】
入力ステージ601から、光は検出モジュール614内に結合される。入力ステージ(ヘッド)601の端部は、合焦レンズ605からの光を受光する透明ウェッジ607に結合される。入力ステージ(ヘッド)601及び検出モジュール614は、それらの整列配置を互いに維持するフローサイトメーターのシャーシ又は基部610に結合される。
【0059】
検出モジュール614は、1f画像アレイ608及び検出器/レンズアレイ611を含む。画像アレイ608は、図2B及び図5の画像アレイ106Bの一実施形態である。画像アレイ608は、一方の側にウェッジ607及び15個のマイクロミラー612を含む透明ブロック680(例えば、図8のブロック806及び図10のブロック1006を参照)を含む。透明ブロック680の反対側には、16個のダイクロイックフィルター609がある。複数の検出器313A~313Pの一実施形態である検出器/レンズアレイ611は、分波された光をフォト検出器内に合焦させるレンズ(例えば、図3のレンズ316)をそれぞれ有する複数のフォト検出器D1~D16(例えば、図3の検出器318)を含む。
【0060】
入力ステージ601によって画像アレイ608内に結合される光は、検出器/レンズアレイ611の検出器D1~D16内に分波される波長である。16チャネル検出モジュールは、或る範囲の波長(例えば、400nm~800nmの波長)を分析する。
【0061】
試験台により良く適合する異なる設置面積を提供するとともに並列処理を提供するために、線形16チャネルコンパクト波長検出モジュール600の代わりにデュアル8チャネルコンパクト波長検出モジュールを実施することができる。
【0062】
次に図7Aを参照すると、一対の8チャネルコンパクト波長検出モジュール714、715を有するデュアル検出モジュール700の上面図が示されている。コンパクト波長検出モジュール700は、第1の8チャネル検出モジュール714及び第2の8チャネル検出モジュール715と通信する入力ステージ(ヘッド)701を含む。これらの全ては、基部710に位置合わせされて取り付けられている。第1の8チャネル検出モジュール714は、第1の範囲の波長(例えば、650nm~800nm-赤色波長)を分波して並列に分析する。第2の8チャネル検出モジュール715は、第2の範囲の波長(例えば、400nm~650nm-青色波長)を分波して並列に分析する。
【0063】
光ファイバー102から発射された光は、入力ステージ(ヘッド)701内に結合される。ファイバー102からの光は、コリメーティングレンズ702を通過してロングパスダイクロイックフィルター703に入る。ロングパスダイクロイックフィルター703は、レーザー励起波長(例えば、400nm未満)における光を45度の角度で散乱検出器(図示せず)に反射する。側方散乱(SSC:side scatter)光は、蛍光性光について説明したものと同様のボールレンズを有する小開口検出器上に合焦させることができる。蛍光性光スペクトル(例えば、400nm~800nm)における蛍光性光は、ロングパスフィルター703を通過して第2のクリーンアップフィルター704に入る。クリーンアップフィルター704は、励起レーザー光が分波検出モジュール714及び715に到達しないことを確保する。
【0064】
クリーンアップフィルター704の後、蛍光性光は、ロングパスフィルター705によって長波長帯域と短波長帯域とに分離される。長波長光(例えば、赤色-650nm~800nm)は、ロングパスフィルター705を通過し、コリメーティング/合焦レンズ706によって第1の検出モジュール714内に合焦される。通過して合焦レンズ706によって合焦された光の長波長部分は、第1の検出モジュール714によって分波される。短波長光帯域(例えば、青色-400nm~650nm)は、ロングパスフィルター705によって、コリメーティング/合焦レンズ713に入る角度で反射される。コリメーティング/合焦レンズ713は、短波長帯域の光を第2の検出モジュール715内に合焦させる。ロングパスフィルター705によって反射された短波長部分は、第2の検出モジュール715によって分波される。代替的に、フィルター705は、ショートパスフィルターとすることができ、短波長光が、このフィルターを通過し、第1の検出モジュール714によって分波される一方、長波長光は、このフィルターによって反射され、第2の検出モジュール715によって分波される。
【0065】
第1の検出モジュール714を参照すると、合焦レンズ706からの光は、12度ウェッジ面707に垂直に入射し、第1のダイクロイックフィルター又は帯域通過フィルター709上に結像される前に、画像アレイ708の透明ブロック(例えば、図8のブロック806)を通過する。光は、帯域通過フィルター709を通過し、検出器/レンズアレイ711内の第1の小面積検出器D1上に合焦される。帯域通過フィルター709によって拒否された光は反射され、画像アレイにおける複数のマイクロミラーM(1)~M(7)のうちの第1のマイクロミラーM(1)712上に戻る。第1のマイクロミラーM(1)712は、この光をコリメートし、第2の検出モジュールD2上に反射する。これ以降についても、この動作が、画像アレイ708の透明ブロックのマイクロミラー及び検出モジュールの直列チェーンに沿って同様に行われる。第2の検出モジュール715は、第1の検出モジュール714と同様に機能する。
【0066】
反射波は、本明細書において説明したように、第1の検出モジュール714及び第2の検出モジュール715のそれぞれにおいて画像アレイ106B、708、708’を通って進み、光は、ダイクロイックフィルターを通って光の帯域通過が連続的に短くなって行きながら交互に合焦及びコリメートされ、奇数及び偶数の検出器チャネルにおけるそれぞれ奇数及び偶数の検出器118に入る。したがって、異なる波長は、第1の検出モジュール714及び第2の検出モジュール715のそれぞれにおける複数の検出器によって分波される。
【0067】
所与の蛍光性イベントについて、各検出器(例えば、図4Bに示す検出器318、図6及び図7におけるレンズ/検出器D1~D16)からの信号は、電子機器システムによって増幅、デジタル化及び同期され、入力された蛍光性光信号のスペクトル表現が提供される。検出電子機器を光学モジュールアセンブリ内に統合すると、検出器の結合長及び増幅回路を最小にすることによってコンパクトな設計及びより低い雑音が可能になる。図4Bに示す検出器318は、入力された蛍光性光信号等の光学信号を電気信号に変換する。
【0068】
図7B及び図7Cは、一対の8チャネルコンパクト波長検出モジュール714、715を有するデュアル検出モジュール700の右斜視図及び左斜視図をそれぞれ示している。検出モジュール714、715のそれぞれは、取り付け基部720と、検出器アレイ又は検出器チェーンにおけるレンズ/検出器711が取り付けられる取り付けブロック1200(図12参照)を取り囲むカバー722とを含む。取り付け基部720及びカバー722は、画像アレイ708、708’の素子を各検出器モジュール714、715における検出器アレイと互いに位置合わせされた透明ブロック806、1006内に維持する。各検出モジュール714、715の取り付け基部720は、複数の留め具によって基部710に結合される。
【0069】
入力ステージ701は、フィルター703~705を収容する複数のフィルタースロットと、レンズ702、706、713を収容する複数のレンズスロットと、光がフィルター及びレンズを通って反射され伝播する1つ以上の光チャネルとを有する光学台751を含む。光学台751は、検出モジュール714及び715との整列を維持するために検出モジュール700の基部710に結合される。
【0070】
図13は、モジュール式フローサイトメトリーシステム100における光学プレートアセンブリ1300の上面図を示している。光学プレートアセンブリ1300は、サンプル流体がサンプル粒子とともに流れるフローセルアセンブリ1308内に励起を誘導する3つの半導体レーザー1370A、1370B、1370Cを有するレーザーシステム1370を含む。レーザーシステム1370は、フローセルアセンブリ1308に向けて同一直線上に複数(例えば、3つ)のレーザービームの誘導を試みる。しかしながら、これらの複数のレーザービームは、互いに僅かにオフセットされる可能性がある。レーザーシステム1370は、通常は約405ナノメートル(nm)、488nm、及び640nmの波長を有する半導体レーザー1370A、1370B、1370Cを含む。405nm半導体レーザーの出力電力は、通常、30ミリワット(mW)よりも大きく、488nm半導体レーザーの出力電力は、通常、20mWよりも大きく、640nm半導体レーザーの出力電力は、通常、20mWよりも大きい。コントローラー電子機器は、定温及び定出力電力で動作するように半導体レーザーを制御する。
【0071】
光学システムが、半導体レーザー1370A、1370B、1370Cによってそれぞれ生成される光学レーザービーム1371A、1371B、1371Cを空間的に操作する。光学システムは、生体細胞(バイオ細胞)を運ぶ流体ストリーム上に光学レーザービームを合焦させるレンズ、プリズム、及びステアリングミラーを含む。合焦された光学レーザービームサイズは、50ミクロン~80ミクロン(μm)の場合には、通常、フローストリームの両端にわたって合焦され、5μm~20μmの場合には、通常、フローセルアセンブリ1308におけるストリームフローに沿って合焦される。図13では、光学システムは、レーザー光1371A、1371B、1371Cをそれぞれ半導体レーザー1370A~1370Cから受光するビームシェイパー1330A~1330Cを含む。ビームシェイパー1330A~1330Cから出力されたレーザー光は、それぞれミラー1332A~1332C内に結合される。これらのミラーは、レーザー光1399A、1399B、1399Cをフローセルアセンブリ1308に向けて当該アセンブリ内へ、蛍光色素の染料を用いて染色された標的粒子(例えば、生体細胞)まで誘導する。レーザー光1399A、1399B、1399Cは、互いに僅かに分離されるが、ミラー1332A~1332Cによってフローセルアセンブリ1308内へ実質的に平行に誘導される。
【0072】
レーザー光ビーム1399A、1399B、1399Cは、フローセルアセンブリ1308においてフローストリーム内の生体細胞(粒子)に到達する。レーザー光ビーム1399A、1399B、1399Cは、その後、フローストリーム内の細胞によって散乱され、蛍光色素を蛍光発光させ、蛍光性光を発生させる。前方散乱ダイオード1314が、軸上の散乱光を集光する。集光レンズ1313が、軸外の散乱光及び蛍光性光を集光し、それらをともにダイクロマティックミラー1310に誘導する。ダイクロマティックミラー1310は、軸外散乱光を側方散乱ダイオード1315上に合焦させる。ダイクロマティックミラー1310は、蛍光性光を少なくとも1つのファイバーヘッド1316上に合焦させる。少なくとも1つのファイバーアセンブリ102は、蛍光性光を少なくとも1つの検出器モジュール600、700に向けて送る。
【0073】
異なる蛍光染料及びレーザー波長を使用して生体サンプルをより詳細に分析するために、複数のファイバーヘッド1316、複数のファイバーアセンブリ102、及び複数の検出器モジュール600、700を使用することができる。3つのファイバーヘッド1316A、1316B、1316Cを平行に配置して蛍光性光を受光することができ、3つのファイバーアセンブリ102A、102B、102Cを使用して、蛍光性光を3つの検出器モジュール600A、600B、600C又は700A、700B、700Cに誘導することができる。
【0074】
3つのレーザー光ビーム599A、599B、599Cは僅かにオフセットされている(例えば、正確には同一直線上にない)ので、3つのファイバーヘッド1316A、1316B、1316C(及び3つのファイバーアセンブリ102A、102B、102C)が有効になる。したがって、3つのファイバーヘッド1316A、1316B、1316Cは、3つの異なる波長を有する3つのレーザー光ビーム599A、599B、599Cから別々に光ビームデータを収集することができる。3つのファイバーアセンブリ102A、102B、102Cは、その後、3つの異なる検出器モジュール(例えば、3つの異なる検出器モジュール600A、600B、600C又は700A、700B、700C)内に光を誘導する。
【0075】
或いは、モジュール式フローサイトメトリーシステムは、1つの検出器モジュール600、700を使用して光ビームデータを収集することができる。例えば、3つのファイバーアセンブリ102A、102B、102Cは、3つの異なる検出器モジュールと対照的に1つの検出器モジュール600、700内に光を誘導することができる。光ビームデータの分離は、その後、3つの異なる検出器モジュールを使用することによって光ビームデータを分離する代わりにデータ処理演算として扱われる。1つの検出器モジュールを使用することによって、物理デバイスの観点から複雑さを低下させることができる。一方、データ処理演算はより複雑になる可能性がある。なぜならば、光ビームデータの分離には、より多くのデータ操作(例えば、異なる波長の識別及びそれに応じた光ビームデータの分離)が必要となるからである。
【0076】
細胞幾何学的特徴は、前方散乱データ及び側方散乱データの分析によって分類することができる。流体フロー内の細胞は、400nm~900nmの範囲にある可視波長の染料によって標識される。染料は、レーザーによって励起されると、蛍光性光を生み出す。これらの光は、ファイバーアセンブリ102によって集光され、検出器モジュール600、700に向けて送られる。モジュール式フローサイトメトリーシステムは、コンパクト半導体レーザー、11.5×倍率集光レンズ1313、及び検出器モジュール600、700におけるコンパクト画像アレイによって、光学プレートアセンブリ用に相対的に小さいサイズを維持する。
【0077】
集光レンズ1313は、検出器モジュール600、700の設計に寄与する。集光レンズ1313は、11.5×倍率用に短い焦点距離を有する。集光レンズ1313は、蛍光発光の方向に向いた対物レンズの側では、蛍光発光における光子を広範囲の入射角にわたってより多く捕捉するために約1.3の高い開口数(NA)を有する。集光レンズ1313は、集光ファイバー102の方向に向いた側では、蛍光性光を狭い円錐角にわたってファイバー内に発射するために約0.12の低いNAを有する。したがって、集光レンズ1313は、NAを一方の側の高いNAから反対側の低いNAに変換して、検出器モジュール600、700の入力チャネルにおける倍率mをサポートする。
【0078】
集光ファイバーアセンブリ517のコアの直径は、約400μmと約800μmとの間にあり、ファイバーNAは、約600μmのコア直径の場合に約0.12である。ファイバー出力端部は、受光するフォトダイオード上への結像サイズを制御するために、約100μmと約300μmとの間のコア直径に漸減することができる。
【0079】
集光ファイバー102の入力端部は、集光NAを増加させて約400μm未満のファイバーコア直径の使用を可能にするために、レンズ化されたファイバー端部も含むことができる。ファイバー102は、フローサイトメーターシステム内の任意の箇所に光を配光するために屈曲性を有するので、蛍光の光の集光にファイバーを使用することによって、コンパクトフローサイトメーターシステムの受光機アセンブリ及び電子機器のロケーションの最適化が可能になる。
【0080】
低コストフローサイトメーターを製造するために、より低コストの構成要素を導入することができる。各検出モジュール614、714、715における画像アレイ106Bは、信頼性があり、低コストであり、かつコンパクトである検出モジュールを提供するために固体透明材料から形成される。さらに、フローサイトメーターは、低コストの既製品としての薄い外郭(TO)のカン検出器を使用する。
【0081】
次に図12を参照すると、透明ブロック806、1006(図8図11参照)に隣接する取り付けブロック1200が示されている。これらは互いに結合され、取り付け基部720及びカバー722によって図7A図7Cに示すコンパクト検出器モジュール700の基部710に取り付けられる1f画像アレイ708、708’を形成する。取り付けブロック1200は、複数のTOカンレンズ/検出器711を収容する複数の角度を有する湾曲開口部1201を含む。取り付けブロック1200と結像アレイ708の透明ブロック806、1006との位置合わせ及び角度を有する湾曲開口部1201の角度は、マイクロミラー712Eから反射される光をダイクロイックフィルター709Eによって帯域通過フィルタリングすることができるとともにレンズ/検出器711E内に結合することができるようなものになっている。
【0082】
複数のTOカンレンズ/検出器711のそれぞれは、互いに結合された合焦レンズ1211及び低コストTOカン検出器1212を含む。TOカン検出器1212は、TOカンパッケージの内部に上部窓(window top)及び半導体フォト検出器1213を含む。半導体フォト検出器1213は、TOカンパッケージの外部に延びる複数の電気ピン1214に電気的に結合されている。これらのピンには、フローサイトメーターの他の電子機器が電気的に結合する。図4Bに示す検出器318と同様に、半導体フォト検出器1213は、入力蛍光性光信号等の光信号を少なくとも1つの電気ピン1214上の電気信号に変換する。
【0083】
次に図8を参照すると、1f画像アレイの一実施形態106B、608、708、708’用の、固体透明材料800から形成された透明ブロック806の斜視図が示されている。透明ブロック806に使用される固体透明材料800は、例えば、透明ガラス又は透明プラスチックとすることができる。並び及び直列チェーンとなっている複数のマイクロミラー810が、透明材料800の透明ブロック806の一方の側の内部又はその上に形成される。並び及び直列チェーンになっている複数のダイクロイックフィルター又は帯域通過フィルター812が、透明材料800の透明ブロック806の反対側の内部又はその上に形成される。各ダイクロイックフィルター又は帯域通過フィルター812は、蛍光色素によって発光される幅広い範囲の蛍光性光の検出を可能にするように異なる範囲の光波長に調節される。1つの実施形態では、複数のマイクロミラー810は凹面球面ミラーである。
【0084】
固体透明材料800から形成される透明ブロック806は、1f結像アレイ708とともに説明したような、合焦レンズからの光を受光する12度ウェッジ面820を更に含む。光は、ウェッジ面820の表面に垂直に入射し、第1のダイクロイックフィルター又は帯域通過フィルターD(1)に向けて誘導される(曲げられる)。光は、透明ブロック806を通過して、第1のダイクロイックフィルター又は帯域通過フィルターD(1)に到達する。
【0085】
次に図10を参照すると、1f画像アレイの別の実施形態106B、608、708、708’用の、固体透明材料800から形成された透明ブロック1006の斜視図が示されている。透明ブロック1006に使用される固体透明材料800は、例えば、透明ガラス又は透明プラスチックとすることができる。複数のマイクロミラー1010は、透明材料の1つの側の内部に形成された凹面方形ミラーである。複数のダイクロイックフィルター又は帯域通過フィルター1012が、透明材料800の反対側の内部又はその上に形成される。各ダイクロイックフィルター又は帯域通過フィルター812は、蛍光色素によって発光される幅広い範囲の蛍光性光の検出を可能にするように異なる範囲の光波長に調節される。
【0086】
固体透明材料800は、画像アレイ708とともに説明したような、合焦レンズからの光を受光する12度ウェッジ面820を更に含む。光は、ウェッジ面820の表面に垂直に入射し、第1のダイクロイックフィルター又は帯域通過フィルターD(1)に向けて誘導される(曲げられる)。光は、ブロックを通過して、第1のダイクロイックフィルター又は帯域通過フィルターD(1)に到達する。
【0087】
次に図9Aを参照すると、断面図が透明ブロック806の一方の側の球面マイクロミラー810と反対側との間の距離(例えば、厚さL)を示している。球面マイクロミラー810の中心における透明ブロックに垂直な軸814が、透明ブロック806の反対側に延びている。図9Bは、ダイクロイックフィルター又は帯域通過フィルター812の中心における透明ブロックに垂直な軸815を示している。軸815は、透明材料800の透明ブロック806の反対側に延びている。軸814及び815は互いに平行である。
【0088】
反射性材料811が、固体透明材料800の球面透明マイクロレンズの形状に形成され(例えば、配置される)、透明ブロック806の一方の側に各球面マイクロミラー810が形成される。ダイクロイックフィルター又は帯域通過フィルター812は、透明ブロック806の反対側において材料800に結合される。
【0089】
図11は、透明ブロック1006を形成する透明材料800の一方の側の凹面方形マイクロミラー1010と反対側との間の距離及び軸1014を同様に示している。図11は、ダイクロイックフィルター又は帯域通過フィルター1012の中心点において垂直な軸1015を更に示している。光軸1015は、透明材料800によって形成された透明ブロック1006の反対側に延びている。光軸1014及び1015は互いに平行である。
【0090】
図11は、反射性材料1011が、透明材料800から形成された固体透明ブロック1006の湾曲透明方形形状に形成され(例えば、配置される)、方形マイクロミラー1010を形成することを更に示している。ダイクロイックフィルター又は帯域通過フィルター1012は、固体透明ブロック1006の反対側に結合される。
【0091】
フローサイトメトリーの用途において使用される蛍光染料は、可視及び近赤外の波長範囲全体をカバーする。発光波長帯域幅は、通常、長波長蛍光色素用に大きい。ダイクロイックフィルター又は帯域通過フィルター812のそれぞれは、同じ量のスペクトルサンプリングを用いて異なる染料を測定するように最適化されたそれらの検出器フィルターの通過帯域及び中心波長を有することができる。さらに、個別のフィルター最適化によって、他のレーザーからの励起波長の除外が可能になる。このように、各チャネルにおける検出器を十分に利用して対象の信号を検出することができる。コンピューターのプロセッサによって実行される蛍光スペクトル非混合アルゴリズムと併せて、個別の最適化された通過帯域検出は、対象となる多数の蛍光染料の究極の検出を提供する。
【0092】
様々な検出システムを使用する方法
次に、フローサイトメーターにおいて本明細書に開示されている様々な検出システムを使用する方法を説明する。図に示す光ファイバー102の端部からのレーザー光によって励起された蛍光色素によって生成される蛍光性光を発射する前に、異なる波長の蛍光性光が、レーザー光によって励起されるフローチャネルにおけるサンプル内の異なる粒子をマーキングする様々な蛍光色素によって生成される。生成される蛍光性光は、図13に見ることができるように、レーザーの対向端部の近くの集光レンズによって受光される。光ファイバーの開口数とより良好に整合するために、捕捉側における第1の開口数から、この第1の開口数よりも小さな第2の開口数への変換を行う変換器が使用される。光ファイバーは、その後、蛍光性光を光ファイバーの端部に向けて誘導し、コンパクト検出モジュール600、700に向けてこの光を柔軟に誘導する。
【0093】
光ファイバー102は、蛍光性光を光ファイバーの端部内に結合し、それによって、蛍光性光を光ファイバーから外部に発射する。発射された蛍光性光は、レーザー光によって励起されたサンプル流体内の異なる粒子に付着した異なる蛍光色素によって生成される異なる波長を有する。
【0094】
入力チャネルにおいて、光ファイバーの端部から発射された光は、第1の分波結像アレイにおける第1の複数のダイクロイックフィルターの第1のダイクロイックフィルターに向けてレンズによってコリメート及び合焦される。
【0095】
入力チャネルに更に沿って、光ファイバーから発射される異なる蛍光色素を励起するのに使用されるレーザー光は、ブロックデバイスによって蛍光性光の波長の検出と干渉することが阻止される。
【0096】
入力チャネルに更に沿って、光ファイバーの端部からの画像サイズは、第1の分波結像アレイにおける第1の複数のダイクロイックフィルターの直列チェーン又は並びにおける第1のダイクロイックフィルターのスポットサイズに拡大される。
【0097】
第1の分波結像アレイでは、蛍光性光の第1の波長範囲が、第1の複数のダイクロイックフィルターと第1の複数のマイクロミラーの直列チェーン又は並びとの間で1つ置きに反射され、奇数番号のダイクロイックフィルター上では蛍光性光がコリメートされ、偶数番号のダイクロイックフィルター上では蛍光性光が再結像される。第1の複数のマイクロミラーの焦点距離、及び、第1の複数のダイクロイックフィルターと第1の複数のマイクロミラーとの間の分離の距離は、奇数番号のダイクロイックフィルター上で蛍光性光をコリメートするとともに偶数番号のダイクロイックフィルター上で蛍光性光を再結像するマイクロミラーのチェーンに沿った望遠鏡効果を提供する。
【0098】
第1の複数のダイクロイックフィルターの直列チェーン又は並びにおいて、蛍光性光の第1の波長範囲の異なる波長範囲は、蛍光性光の第1の波長範囲の波長スペクトルを分波するためにそれぞれにおいて帯域通過される。
【0099】
第1の複数のダイクロイックフィルターの直列チェーン又は並びに隣接して、第1の複数の光検出器又はフォト検出器を有する図3図6、及び図7A図7Cに示すような複数の検出器チャネルの直列チェーン又は並びがある。各検出器チャネルは、蛍光性光の異なる波長範囲を第1の複数の光検出器又はフォト検出器内に合焦させるレンズを有する。
【0100】
複数のフォト検出器の直列チェーン又は並びは、粒子にタグ付けされた各蛍光色素に関連した第1の波長範囲の異なる波長範囲のそれぞれにおいて蛍光性光を検出する。複数の光検出器は、それぞれによって受光された蛍光性光をアナログ電気信号に変換する。各アナログ電気信号は、その後、アナログ/デジタル(A/D)変換器によってアナログ電気信号からデジタル電気信号にデジタル化/変換することができ、その後、分析及びカウントすることができる。
【0101】
蛍光性光が検出器によってアナログ電気信号に変換され、デジタル電気信号にデジタル化されることによって、David Vrane他によって2017年4月26日に出願された「COMPACT MULTI-COLOR FLOW CYTOMETER」という発明の名称の米国特許出願第15/498,397号に開示されているように、その後、サンプル流体内の異なる粒子のそれぞれの数をカウントするのに、プロセッサを有するコンピューターを使用することができる。この米国特許出願は、引用することによって本明細書の一部をなすものとする。
【0102】
第2の分波結像アレイ及び/又は第3の分波結像アレイを第1の分波結像アレイと並列に使用することができる。この場合には、方法は、蛍光性光を、第1の分波結像アレイ用の第1の波長範囲の蛍光性光、第2の分波結像アレイ用の第2の波長範囲の蛍光性光、及び/又は第3の分波結像アレイ用の第3の波長範囲の蛍光性光に分割することを更に含む。図13に示すように、蛍光性光を第1の分波結像アレイに向けて誘導するのに第1の光ファイバー102Aを使用することができる。蛍光性光を第2の分波結像アレイに向けて誘導するのに第2の光ファイバー102Bを使用することができる。蛍光性光を第3の分波結像アレイに向けて誘導するのに第3の光ファイバー102Bを使用することができる。
【0103】
第1の分波結像アレイについて本明細書において説明されるステップは、異なる追加の波長範囲を分析することができるように第2の分波結像アレイ及び/又は第3の分波結像アレイによって同時に実行することができる。簡潔にするために、繰り返されるステップは、繰り返し説明されないが、引用することによってここに組み込まれる。
【0104】
コンピューターシステム概観
次に図14を参照すると、フローサイトメーターシステム1400の基本概念図が示されている。フローサイトメーター1400の様々な実施形態が、商業化可能であり得る。フローサイトメーターシステム1400の5つの主要なサブシステムは、励起光学機器システム1402、フルイディクスシステム1404、発光光学機器システム1406、取得システム1408、及び分析システム1410を含む。一般に、「システム」は、ハードウェアデバイス、ソフトウェア、及び/又はそれらの組み合わせを含む。
【0105】
励起光学機器システム1402は、例えば、レーザーデバイス1412、光学素子1414、光学素子1416、及び光学素子1418を含む。光学素子の例としては、光学プリズム及び光学レンズがある。励起光学機器システム1402は、光学インターロゲーション領域1420を照射する。フルイディクスシステム1404は、光学インターロゲーション領域1420を通って流体サンプル1422を運ぶ。発光光学機器システム1406は、例えば、光学素子1430と、光学検出器SSC、FL1、FL2、FL3、FL4、及びFL5とを含む。発光光学機器システム1406は、通過する粒子から放出又は散乱された光子を収集する。発光光学機器システム1406は、これらの光子を光学検出器SSC、FL1、FL2、FL3、FL4、及びFL5上に合焦させる。光学検出器SSCは側方散乱チャネルである。光学検出器FL1、FL2、FL3、FL4、及びFL5は、特定の蛍光波長を検出する帯域通過フィルター又はロングパスフィルターを含むことができる蛍光検出器である。各光学検出器は、光子を電気パルスに変換し、これらの電気パルスを取得システム1408に送信する。取得システム1408は、これらの信号を処理し、分析システム1410における分析に備えて準備する。
【0106】
本明細書において説明した図1図13は、フローサイトメーター1400の励起光学機器システム1402、発光光学機器システム1406、及び取得システム1408の例示的な素子を含む。David Vraneによって2017年11月19日に出願された「FLOW CYTOMETERY SYSTEM WITH STEPPER FLOW CONTROL VALVE」という発明の名称の米国特許出願第15/817,277号は、フルイディクスシステム1404の例示的な素子を記載している。この米国特許出願は、引用することによって本明細書の一部をなすものとする。
【0107】
分析システム1410は、取得システム1408が信号のデジタル表現の取得を完了した後に、分析のためにそれらの信号のデジタル表現を記憶することができる。分析システム1410は、ディスプレイデバイスと、少なくとも1つのプロセッサと、スクラッチパッドメモリと、より半永久的にデータ(信号データを含む)及びソフトウェアをより多く記憶することができる不揮発性の1つ以上の記憶デバイスとを含むコンピューターである。
【0108】
分析システムの1つ以上の記憶デバイスは、分析される生体サンプル(又は他のタイプのサンプル、例えば、化学サンプル)の検査結果を得るためにプロセッサによって実行することができる命令を有する分析ソフトウェアを記憶することができる。分析システム1410及び分析ソフトウェアは、フローサイトメーターに生体サンプルを通す前に、フローサイトメーターに通される対照粒子を用いて初期化されるときに補正対照を用いてフローサイトメーターを較正するために更に使用することができる。分析ソフトウェアは、フローサイトメーターに通される対照を用いた較正中に取得システム1408によって取得された記憶されている信号データを分析する、プロセッサによって実行される命令を有する。分析ソフトウェアは、フローサイトメーターの較正後にフローサイトメーターに通される生体サンプルの分析中に取得システム1408によって取得された記憶されている信号データを分析する、プロセッサによって実行される命令も有する。
【0109】
方法の概観
次に図15及び図16A図16Cを参照して、高速補正を有するフローサイトメトリーを実行する方法1500のフローチャートを説明する。例えば、図14のフローサイトメトリーシステム1400が方法1500を実行することができる。フローサイトメトリーは、サンプル流体内の単一の細胞又は粒子に関する高速マルチパラメーター収集及びデータの分析を可能にする。
【0110】
図15に示すステップ1501において、フローサイトメトリーシステムは、フローサイトメーター1604、1614を始動し、フローサイトメーターの動作を確認する。フローサイトメーターは、従来のフローサイトメーター1604又はスペクトルフローサイトメーター1614とすることができる。従来のフローサイトメーター1604は、ミラー、光学フィルター、及び光電子増倍管(PMT:photomultiplier tubes)を従来どおり使用して、信号データを捕捉又は検知する。スペクトルフローサイトメーター1614は、同様の原理に基づいているが、それよりも、一般的には、複数のチャネルにわたる光スペクトルを検出器内に分散させる手段を有するマルチチャネル検出器(例えば、電荷結合デバイス(CCD:charge-coupled device))を使用する。
【0111】
ステップ1505において、システムは、図16Aによって示すようにフローサイトメーター1604、1614の較正を開始する。システムは、フローサイトメーター1604、1614に1つずつ通される単一染色基準対照又は補正対照1602と総称される1つ以上の単一染色基準対照又は補正対照1602A~1602Eを使用する。1つ以上の単一染色基準対照1602A~1602Eは、それぞれの様々な自己ルミネッセンス、又は対照粒子にタグ付けされた蛍光色素のルミネッセンスからスペクトルプロファイル又はシグネチャ1606A~1606Eを個別に生成する。
【0112】
ステップ1510において、較正中に、システムは、単一染色補正対照1602を使用して、従来のフローサイトメーター1604の初期スピルオーバー行列又はスペクトルフローサイトメーター1614の初期基準行列を生成する。マルチカラーフローサイトメトリーを実行するときに、システムは、フローサイトメーター1604、1614に通される単一染色サンプル1602を使用して、図16Aに示すような補正のレベルを求める。粒子1602の単一染色は、蛍光色素のスペクトルプロファイル又はシグネチャ1606A~1606Eをフローサイトメーターの蛍光性フォト検出器に示すことができる。これによって、システム及び/又はユーザーは、図16Bに示すように、サンプルに含まれるマルチ染色細胞又は粒子1612A~1612Eに起因したサンプル1610からの蛍光のスペクトルプロファイルにおける重なり(例えば、図16Bにおける重なり1616を参照)を補正することが可能になる。
【0113】
補正対照1602の染色は、サンプル1610内の粒子1612A~1612Eと同程度に明るいもの又はそれらの粒子よりも明るいものでなければならない。対照について測定された蛍光がより明るい場合には、抗体キャプチャービーズ(antibody capture beads)を細胞の代わりに用いることができ、或るフルオロフォア結合抗体を別のフルオロフォア結合抗体の代わりに用いることができる。これの例外は、代用が可能でないタンデム染料(tandem dyes)である。種々のベンダー又は種々のバッチからのタンデム染料は、個別の染料と同様に取り扱わなければならず、個別の単一染色対照をそれぞれに使用すべきである。なぜならば、スピルオーバーの量は、これらの染料のそれぞれについて異なり得るからである。また、補正アルゴリズムは、陽性母集団及び陰性母集団を用いて実行されるべきである。各個別の補正対照がビーズを含むのか、実験に使用される細胞を含むのか、又は異なる細胞を含むのかを問わず、対照自体が、同じレベルの自己蛍光を有する粒子を含まなければならない。補正対照の集合全体が、ビーズ又は細胞のいずれかの個別のサンプルを含むことができるが、個別のサンプルは、フルオロフォアの同じ担体粒子を有しなければならない。また、補正対照は、サンプルと同じフルオロフォアを使用する。例えば、緑色蛍光性タンパク質(GFP:green fluorescent protein)及びフルオレセインイソチオシアネート(FITC:Fluorescein isothiocyanate)の双方は、ほとんど緑色の光子を放出するが、非常に異なる発光スペクトルを有する。したがって、システムは、それらのうちの一方をサンプルに、他方を補正対照にそれぞれ使用することができない。また、システムは、スピルオーバーの統計的に有意な決定を行うのに十分なイベント(例えば、陽性母集団及び陰性母集団の双方について約5000個のイベント)を収集しなければならない。
【0114】
従来のフローサイトメーター1604における較正中に、システムは、従来のフローサイトメーターに1つずつ通される単一染色基準対照1602から初期スピルオーバー行列を取得する。従来のフローサイトメーター1604では、蛍光信号(例えば、色)が、一連のエッジフィルター及びダイクロイックミラーを使用して離散蛍光帯域1606A~1606Eに分離される。システムは、光電子増倍管(PMT)を用いて各個別のチャネルを検出する(例えば、測定する)。理想的には、蛍光帯域は完全に離散的であるが、それは現実ではない。対照1602(及びサンプル1610)における蛍光性信号の検出中に、結合プロファイル1616に示すように、蛍光帯域間に「スピルオーバー」が発生する可能性がある。システムは、スピルオーバー行列[S]を用いて、蛍光帯域間のスピルオーバー(例えば、図16Bに示す結合プロファイル1616の離散帯域間のスピルオーバー1618)を定義する。
【0115】
或いは、スペクトルフローサイトメーター1614における較正中に、システムは、このスペクトルフローサイトメーターに通される単一染色基準対照1602から初期基準行列を取得する。スペクトルフローサイトメトリーは、従来のフローサイトメトリーに基づく技法であるが、スペクトルフローサイトメトリーでは、スペクトルグラフ及びマルチチャネル検出器(例えば、電荷結合デバイス(CCD))が、従来のフローサイトメーターシステムの従来のミラー、光学フィルター及び光電子増倍管(PMT)の代わりに用いられる。スペクトルフローサイトメーターでは、側方散乱光及び蛍光が集光され、スペクトルグラフ内に直接又は光ファイバーを通して結合され、スペクトルグラフには、全体の光信号が、CCD又はマルチチャネル検出器上の高分解スペクトルとして分散及び表示される。
【0116】
ステップ1515において、図15及び図16Bを参照すると、システムは、サンプル1610をフローサイトメーター1604、1614に通す。システムは、サンプル流体1610に基づいてスペクトルプロファイル1616を表すデータ(例えば、イベントデータ)を生成、取得、及び/又は記録する。例えば、フローサイトメーターを流れるサンプル流体内の蛍光発光した細胞が検出される。蛍光発光した細胞の各検出はイベントである。イベントデータは、測定されたサンプルイベントベクトルに従って定義することができる。
【0117】
ステップ1520において、システムは、サンプル1610内の様々なタイプの細胞又は粒子の数をカウントして濃度の尺度を取得するために、補正されたサンプルイベントベクトル(従来のフローサイトメーター1604の場合)又は非混合サンプルイベントベクトル(スペクトルフローサイトメーター1614の場合)を生成する。一般に、図16Cに示すように、逆行列1624(微調整を用いて初期スピルオーバー行列及び/又は初期基準行列から求められる)が、スペクトルプロファイル1616を表すイベントデータに対して使用され、サンプル1610内の様々な細胞1612A~1612Eの様々な自己ルミネッセンス又は細胞1612A~1612Eにタグ付けされた蛍光色素のルミネッセンスの個々のスペクトルプロファイル又はシグネチャ1606A~1606Eを表す補正されたサンプルイベントベクトル又は非混合サンプルイベントベクトルが生成される。
【0118】
従来のフローサイトメーター1604の場合には、システムは、初期スピルオーバー行列及び測定されたサンプルイベントベクトルに基づいて、補正されたイベントベクトルを計算する。スペクトルフローサイトメーター1614の場合には、システムは、初期基準行列及び測定されたサンプルイベントベクトルに基づいて、非混合サンプルイベントベクトルを計算する。
【0119】
残念なことに、初期スピルオーバー行列及び基準行列は、信頼性のある結果を得るには正確さが十分でない傾向がある。したがって、ステップ1525において、システムは高速補正を実行する。従来のフローサイトメーター1604の場合には、このステップは、初期スピルオーバー行列の不正確な点を補正することを含む。スペクトルフローサイトメーター1614の場合には、このステップは、初期基準行列の不正確な点を補正することを含む。
【0120】
ステップ1527において、高速補正に基づいて、システムは、再補正されたサンプルイベントベクトルを以前に実行されていたものよりも迅速な方法で生成する。方法1500は、その後、ステップ1530において終了するが、1つ以上のステップは、フローサイトメーターを用いた較正/サンプリングの同様の日付/時刻の他のサンプルについて繰り返すことができる。
【0121】
従来のフローサイトメーターの単一染色対照からのスピルオーバー行列の取得
したがって、システムは、単一染色対照からスピルオーバー行列を生成又は取得する従来のフローサイトメーターを含むことができる。従来のフローサイトメーターを使用することによってスピルオーバー行列を生成又は取得するステップを更に論述する。
【0122】
行列[S]は、単一染色補正対照から取得されたN×N次元スピルオーバー行列であると仮定する。ここで、Nは蛍光検出器の数である。補正対照の例として、フルオレセインイソチオシアネート(FITC)、R-フィコエリスリン(PE)、ペリジニンクロロフィルタンパク質複合体(PerCP)、フィコエリトリン及びシアニン染料(PE-Cy7)、アロフィコシアニン(APC)、並びにAPC及びシアニン染料を組み合わせたタンデム蛍光色素(APC-Cy7)等の蛍光色素を用いて染色又は染料されたビーズ1602がある。
【0123】
ベクトル{U}は、N個の値を有する測定されたサンプルイベントベクトルであると仮定する。N個の値のそれぞれは、補正対照(例えば、FITC、PE、PerCP、PE-Cy7、APC、APC-Cy7)を検出するN個の検出器のうちの1つからのものである。
【0124】
ベクトル{V}は、N個の値を有する補正されたサンプルイベントベクトルであると仮定する。測定されたサンプルイベントベクトル{U}は、スピルオーバー行列[S]に補正されたサンプルイベントベクトル{V}を乗算したものに等しい。これは、測定されたサンプルイベントベクトル{U}との以下の行列関係を用いて表すことができる。
【数1】
【0125】
したがって、逆スピルオーバー行列[S]-1を用いると、補正されたサンプルイベントベクトル{V}は、以下の行列方程式から取得することができる。
【数2】
【0126】
初期スピルオーバー行列[S]は、各検出器において各単一染色対照(例えば、FITC、PE、PerCP、PE-Cy7、APC、APC-Cy7)を測定して以下の行列を取得することによって取得することができる。
【数3】
式3における下付き文字x、yにおいて、x値は検出器番号を表す。式3における下付き文字x、yのy値は、単一染色対照に関連した列を表す。
【0127】
変数分離(SOV:separation of variables)行列である初期スピルオーバー行列[S]における各列は、1つの単一染色対照(例えば、FITC、PE、PerCP、PE-Cy7、APC、APC-Cy7)に対応する。例えば、列1はFITC単一染色対照に対応する。別の例として、列2はPE単一染色対照に対応する。以下、フローサイトメーターを較正するために通される各単一染色対照についても同様である。初期スピルオーバー行列[S]内の各行は、所与の検出器番号に対応する。例えば、行1は検出器1に対応する。行2は検出器2に対応し、これ以降の行についても同様である。
【0128】
一般に、生成される初期スピルオーバー行列は、スペクトルを正確に分離して細胞又は粒子を正確に識別するほど十分正確ではない。したがって、初期スピルオーバー行列[S]の非対角要素値の微調整(例えば、調整されたスピルオーバー行列[S]’と、その関連した逆行列である調整された補正行列[C]’とを生成する初期スピルオーバー行列[S]に対する微調整)が必要とされる。これらの微調整は、検査技師/オペレーターの経験及び判断に基づいて行うことができる。微調整は、同じ細胞若しくは粒子上で染色された蛍光色素の相互作用によって引き起こされる歪、又は、単一染色対照及び未染色対照を測定するシステムによって引き起こされる歪、又は、相互作用及びシステムによって引き起こされる双方の歪を修正するために行われることが多い。
【0129】
調整行列[D]は、初期スピルオーバー行列[S]の非対角要素値に対して行われる(例えば、加えられる)微調整であると仮定する。行列方程式{V}=[[S]+[D]]-1{U}から従来のフローサイトメーターの再補正されたイベントベクトル{V}を求めることができる。
【0130】
スペクトルフローサイトメーターの非混合イベントリストデータの取得
或いは、システムは、非混合イベントリストデータを生成又は取得するスペクトルフローサイトメーター1614を含むことができる。スペクトルフローサイトメーターを使用することによって非混合イベントリストデータを生成又は取得するステップを更に論述する。
【0131】
[R]は、単一染色基準対照から取得されるスペクトルフローサイトメーターのN×M初期基準行列であると仮定する。ここで、Nは検出器の数であり、Mは、測定される蛍光色素(例えば、FITC、PE、PerCP、PE-Cy7、APC、APC-Cy7)の数であり、MはNよりも常に小さい。
【0132】
{U}は、N個の値を有する測定されたサンプルイベントベクトルであると仮定し、N個の値のそれぞれは、N個の検出器のうちの1つからのものである。
【0133】
{V}は、M個の値(例えば、蛍光強度)を有する非混合サンプルイベントベクトルであると仮定し、M個の値のそれぞれは、蛍光色素(例えば、FITC、PE、PerCP、PE-Cy7、APC、APC-Cy7のうちの1つ)の非混合値である。
【0134】
非混合サンプルイベントベクトル{V}は、測定されたサンプルイベントベクトル{U}と以下の行列関係を有する。
【数4】
【0135】
非混合サンプルイベントベクトル{V}における変数Mの数は、測定されたサンプルイベントベクトル{U}における変数Nの数よりも少ない(例えば、非混合サンプルイベントベクトルの次元は、測定されたサンプルイベントベクトルの次元よりも小さい)ので、その場合、システムは、最小二乗アルゴリズムを使用して上記式の解を取得する。
【0136】
従来のフローサイトメーターと比較すると、非混合イベントベクトルは、補正されたイベントベクトルと等価である。したがって、非混合イベントリストデータ(例えば、非混合サンプルイベントベクトル)のスペクトルスピルオーバー行列は、以下のように恒等行列[I]である。
【数5】
【0137】
一般に、非混合イベントリストデータは十分に正確なものではなく、そのため、恒等行列のスペクトルスピルオーバー行列(identity spectral spillover)の微調整(例えば、調整されたスペクトルスピルオーバー行列を生成する微調整)が必要とされる。したがって、スペクトルフローサイトメーターの再補正されたイベントベクトルの方程式は、{V}=[[I]+[D]]-1{V}となる。ここで、[D]は、第i行及び第j列に微調整δi,jをそれぞれ有するとともに、微調整が必要とされない箇所には0を有するn×nデルタ行列である。例えば、デルタ行列は、
【数6】
とすることができる。
【0138】
フローサイトメトリーデータの高速補正
したがって、フローサイトメトリー(例えば、従来のフローサイトメトリー及びスペクトルフローサイトメトリー)において、サイトメーターから収集されるフローサイトメトリー標準(FCS:Flow Cytometry Standard)データは、線形の未処理のリストデータである。リストデータは、プロットでの消費及びサンプル内の細胞の統計分析への使用前に補正する必要はない。システムは、従来のフローサイトメーターのスピルオーバー行列及び/又はスペクトルフローサイトメーターの非混合イベントリストデータにおける不十分な正確さに対処するために高速補正を実行する。
【0139】
リストデータの補正は、システムが測定された単一染色補正対照及び/又は微調整入力から取得する初期スピルオーバー行列に基づいている。取得された初期スピルオーバー行列は、一般に、十分正確なものではない。初期スピルオーバー行列内の値を微調整することによって調整されたスピルオーバー行列を生成する微調整が行われる。
【0140】
スピルオーバー値が微調整されるごとに、スピルオーバー行列を反転して補正行列を取得する必要がある。その後、この補正行列には、各リストデータイベントベクトルが乗算され、補正されたリストデータ(例えば、再補正されたイベントベクトル)が生成される。
【0141】
例えば、N個の蛍光パラメーターの実験を取り上げる。各イベントベクトルの補正について、補正されたイベントベクトルを生成するには、N個の乗算に加えてN×(N-1)個の加算が必要とされる。計算複雑度はNのオーダー(例えば、O(N))である。
【0142】
制限された数の蛍光色素パラメーター及び制限された数のイベントを有する実験の場合に、補正計算は、フローサイトメトリーデータ分析におけるボトルネックでない場合がある。しかしながら、実験が、多数のイベント(例えば、200万個のイベント)とともに多数の蛍光パラメーター(例えば、20個よりも多くの蛍光性パラメーター)を含む場合には、補正計算は極めて多くの時間を要する可能性がある。その結果、システムがスピルオーバー値を変更するごとに、処理される計算が大量であることに起因して、プロット及び統計量をコンピューターインターフェース上に表示する応答が極めて低速になる可能性がある。
【0143】
有利には、本システムは、フローサイトメトリーデータ分析のスピルオーバー行列の微調整を受信又は実行すると、補正されたリストデータの正確さを何ら犠牲にすることなく計算量を大幅に削減する高速補正アルゴリズムを実行する。この高速補正アルゴリズムは、例えば、(3N+1)個の乗算/除算に加えて(N+1)個の加算しか必要としない。この高速補正アルゴリズムの複雑度は、Nのオーダー(例えば、O(N))である。したがって、本システムは、プロット及び統計量の表示の応答性を大幅に改善することができる。
【0144】
例えば、100万個のイベントを用いた20色の実験を考える。システムが、スピルオーバー値の微調整をいつ受信又は実行しても、通常の補正アルゴリズムは、全部で4億個の乗算に加えて3億9900万個の加算を必要とする。対照的に、本システムの高速補正アルゴリズムは、全部で6000万個の乗算に加えて2000万個の加算しか必要としない。トータルの乗算及び加算の節約は、通常の補正アルゴリズムと比較してそれぞれ566%及び1895%である。
【0145】
次に、本高速補正アルゴリズムの誘導を論述する。
【0146】
行列[C]は補正行列であると仮定する。補正行列[C]は、行列方程式[C]=[S]-1によってスピルオーバー行列[S]の逆行列である。補正行列[C]とスピルオーバー行列[S]の逆行列とが互いに乗算される場合には、行列方程式[C][S]=[I]のように恒等行列が得られる。補正されたイベントベクトル{V}は、行列方程式{V}=[C]{U}によって表される補正行列[C]と未補正の測定されたイベントベクトル{U}とを互いに乗算することによって計算することができる。
【0147】
微調整に起因して、システムは、調整されたスピルオーバー行列[S]’を生成又は計算する。初期スピルオーバー行列[S]内の1つの要素の値が変更され、例えば、Si,j’=>Si,j+δi、jにされると仮定すると、この微調整されたスピルオーバー行列[S]’は、行列方程式[S]'=[S]+[D]によって、初期スピルオーバー行列[S]とデルタ行列[D]における微調整とを加算した和によって表すことができる。ここで、
【数7】
は、下付き文字i及びjがそれぞれ第i行及び第j列を表すデルタ行列である。再補正されたイベントベクトル{V}は、行列方程式{V}=[[S]+[D]]-1{U}によって表されるように、微調整されたスピルオーバー行列[S]’の逆行列、微調整された補正行列[C]’、及び未補正の測定されたイベントベクトル{U}を互いに乗算することによって計算することができる。デルタ行列[D]は、初期スピルオーバー行列[S]と同じ次元を有する。デルタ行列[D]は、初期スピルオーバー行列[S]を微調整するデルタ値δi,jを含む。
【0148】
[S]+[D]=[S]([I]+[C][D])、[[S]+[D]]-1=([I]+[C][D])-1[C]であるので、再補正されたイベントベクトル{V}の方程式は、以下のように書き換えることができる。
【数8】
ここで、([I]+[C][D])-1は再補正行列である。
【0149】
再補正行列は、以下のように簡単化することができるので、
【数9】
その場合、再補正されたイベントベクトルの行列方程式は、以下のように記述することができる。
【数10】
再補正されたベクトルの各成分は、未補正の測定されたイベントベクトル{U}の成分との加算/減算及び乗算/除算によって求められ、それによって、計算の数は大幅に削減される。したがって、再補正されたイベントベクトル{V}は、高速補正アルゴリズムを使用してコンピューターのプロセッサによってはるかに高速に計算することができる。
【0150】
したがって、高速補正アルゴリズムを使用すると、フローサイトメーターを用いて細胞サンプルをより迅速に分析することができ、結果(例えば、細胞カウント、濃度、滴定)をより効率的に取得することができる。研究者又は検査技師が生体サンプル(例えば、血液又は尿)の検査結果を取得するために計算の完了を待って1日以上費やすのではなく、生体サンプルの検査結果は、高速補正アルゴリズムを使用することによって数時間以内に取得することができる。
【0151】
結論
実施形態は上記のとおりである。実施形態を詳細に説明してきたが、実施形態は、そのような実施形態によって制限されるものと解釈されるべきではなく、添付の特許請求の範囲に従って解釈されるべきである。
【0152】
幾つかの特定の例示的な実施形態が説明され、添付図面に示されているが、そのような実施形態は、広い本発明の例示にすぎず、広い本発明を限定するものでないこと、並びに、実施形態が、図示及び説明された特定の構造及び構成に限定されるものでないことが理解されよう。なぜならば、当業者は、他の様々な変更を想起することができるからである。
【0153】
検出器によって検出された電気信号を分析してサンプル流体内の異なる粒子をカウントする等のフローサイトメーターの幾つかの特定の機能は、ソフトウェアで実施することができ、コンピューター又はプロセッサによって実行することができる。ソフトウェアのプログラム又はコードセグメントは、それらの機能を実行する必要なタスクを実行するのに使用される。これらのプログラム又はコードセグメントは、プロセッサ可読媒体に記憶することもできるし、搬送波に具現化されるコンピューターデータ信号によって伝送媒体又は通信リンクを介して伝送することもできる。プロセッサ可読媒体は、情報を記憶することができる任意の記憶媒体を含むことができる。プロセッサ可読媒体の例として、電子回路、半導体メモリデバイス、リードオンリーメモリ(ROM:read only memory)、フラッシュメモリ、消去可能プログラマブルリードオンリーメモリ(EPROM:erasable programmable read only memory)、フロッピーディスケット、CD-ROM、光ディスク、及びハードディスクがある。コードセグメントは、インターネット、イントラネット等のコンピューターネットワークを介して記憶媒体にダウンロードすることができる。
【0154】
本明細書は、多くの具体的内容を含むが、これらは、本開示の範囲に対する限定としても、請求項に記載され得るものの範囲に対する限定としても解釈されるべきではなく、逆に、本開示の特定の実施態様に特有の特徴の説明として解釈されるべきである。個別の実施態様の状況で本明細書に説明された幾つかの特定の特徴は、単一の実施態様において組み合わせて実施することもできる。逆に、単一の実施態様の状況で説明された様々な特徴は、複数の実施態様において別々に又は一部を組み合わせて実施することもできる。さらに、特徴は、上記において、幾つかの特定の組み合わせで動作するものとして説明することができ、さらには、そのようなものとして最初に特許請求することもできるが、特許請求される組み合わせからの1つ以上の特徴は、幾つかの場合には、その組み合わせから削除される場合があり、特許請求される組み合わせは、部分的な組み合わせ又は部分的な組み合わせの変形形態を対象とする場合がある。したがって、特許請求される発明は、添付の特許請求の範囲のみによって限定される。

図1
図2A
図2B
図3
図4A
図4B
図5
図6
図7A
図7B
図7C
図8
図9A
図9B
図10
図11
図12
図13
図14
図15
図16A
図16B
図16C