IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ズークス インコーポレイテッドの特許一覧

<>
  • 特許-衝突ゾーンに基づく軌道修正 図1
  • 特許-衝突ゾーンに基づく軌道修正 図2
  • 特許-衝突ゾーンに基づく軌道修正 図3A
  • 特許-衝突ゾーンに基づく軌道修正 図3B
  • 特許-衝突ゾーンに基づく軌道修正 図4
  • 特許-衝突ゾーンに基づく軌道修正 図5
  • 特許-衝突ゾーンに基づく軌道修正 図6
  • 特許-衝突ゾーンに基づく軌道修正 図7A
  • 特許-衝突ゾーンに基づく軌道修正 図7B
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-10-03
(45)【発行日】2024-10-11
(54)【発明の名称】衝突ゾーンに基づく軌道修正
(51)【国際特許分類】
   B60W 30/095 20120101AFI20241004BHJP
   B60W 30/10 20060101ALI20241004BHJP
【FI】
B60W30/095
B60W30/10
【請求項の数】 14
(21)【出願番号】P 2022523419
(86)(22)【出願日】2020-10-21
(65)【公表番号】
(43)【公表日】2022-12-22
(86)【国際出願番号】 US2020056614
(87)【国際公開番号】W WO2021081064
(87)【国際公開日】2021-04-29
【審査請求日】2023-08-03
(31)【優先権主張番号】16/663,161
(32)【優先日】2019-10-24
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】518156417
【氏名又は名称】ズークス インコーポレイテッド
(74)【代理人】
【識別番号】110001243
【氏名又は名称】弁理士法人谷・阿部特許事務所
(72)【発明者】
【氏名】ヴィクトリア マグダレーナ ダックス
【審査官】吉村 俊厚
(56)【参考文献】
【文献】米国特許出願公開第2017/0113665(US,A1)
【文献】特開平10-105239(JP,A)
【文献】特開平11-053685(JP,A)
【文献】特開2017-091502(JP,A)
【文献】米国特許出願公開第2019/0259282(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B60W 10/00 - 60/00
G08G 1/00 - 99/00
(57)【特許請求の範囲】
【請求項1】
1つ又は複数のプロセッサと、
命令を記憶する1つ又は複数のコンピュータ可読媒体とを備え、前記命令は、前記1つ又は複数のプロセッサによって実行されたときに、
環境内の合流点であって、第1の車線及び第2の車線を含む合流点を決定することと、
前記第2の車線内に位置するオブジェクトを検出することと、
前記オブジェクトを検出したことに応答して、前記第1の車線の第1の経路と前記第2の車線の第2の経路とが合流する合流位置を決定することと、
前記合流位置に少なくとも部分的には基づいて、車両及び前記オブジェクトに関連する重複領域の脱出点を決定することと、
前記脱出点に少なくとも部分的には基づいて、前記車両が前記第2の車線に進入する軌道を決定することと、
前記軌道を辿るように前記車両を制御することと
を含む動作を実行し、
前記脱出点は、マップデータにさらに基づく第1の脱出点であり、前記動作は、
前記合流位置に少なくとも部分的には基づいて前記重複領域に関連する第2の脱出点を決定することであって、前記重複領域の前記第2の脱出点が、前記重複領域の前記第1の脱出点よりも前記重複領域のサイズを縮小すること
をさらに含む、システム。
【請求項2】
記重複領域の前記第2の脱出点が、前記合流位置に追加される安全距離にさらに基づ
請求項1に記載のシステム。
【請求項3】
前記安全距離は、前記第2の車線に関連するスピード制限又は前記オブジェクトの軌道のうちの1つ又は複数に少なくとも部分的には基づく
請求項に記載のシステム。
【請求項4】
前記動作は、
前記オブジェクトが、前記重複領域内で前記車両の閾値距離に進入することを検出することと、
前記オブジェクトが前記閾値距離に進入したことに応答し、前記オブジェクトが前記第2の車線内で前記車両に後続することになるという予測に少なくとも部分的には基づく、前記オブジェクトのオブジェクト軌道を決定することと
をさらに含み、
前記軌道を辿るように前記車両を制御することは、前記オブジェクトの前記オブジェクト軌道に少なくとも部分的には基づいて、前記車両が前記オブジェクトに譲ることを防止することを含む
請求項1~のいずれか1項に記載のシステム。
【請求項5】
前記動作は、
前記合流点の範囲をマップデータから決定することと、
前記合流点の前記範囲に少なくとも部分的には基づいて、前記第1の経路及び/又は前記第2の経路に沿った前記重複領域の第1の寸法を決定することと
をさらに含み、
前記重複領域に関連する前記第2の脱出点を決定することは、前記第1の経路及び/又は前記第2の経路に沿った前記重複領域の第2の寸法を決定することを含み、前記第2の寸法は、前記第1の寸法より小さい
請求項1~のいずれか1項に記載のシステム。
【請求項6】
環境内の合流点であって、第1の車線及び第2の車線を含む合流点を決定するステップと、
前記第2の車線内に位置するオブジェクトを検出するステップと、
前記オブジェクトを検出したことに応答して、前記第1の車線の第1の経路と前記第2の車線の第2の経路とが合流する合流位置を決定するステップと、
前記合流位置に少なくとも部分的には基づいて、車両及び前記オブジェクトに関連する重複領域の脱出点を決定するステップと、
前記脱出点に少なくとも部分的には基づいて、前記車両が前記第2の車線に進入する軌道を決定するステップと、
前記軌道を辿るように前記車両を制御するステップと
を含む、方法であって、
前記脱出点は、マップデータにさらに基づく第1の脱出点であり、前記方法は、
前記合流位置に少なくとも部分的には基づいて前記重複領域に関連する第2の脱出点を決定するステップであって、前記重複領域の前記第2の脱出点が、前記重複領域の前記第1の脱出点よりも前記重複領域のサイズを縮小するステップをさらに含む、方法。
【請求項7】
前記軌道は、第1の軌道であり、前記車両は、前記オブジェクトが前記重複領域に進入する前に前記第2の車線に進入し、前記方法は、
前記オブジェクトが、前記重複領域内で前記車両の閾値距離に進入することを検出するステップと、
前記オブジェクトの第2の軌道を決定するステップであり、前記第2の軌道が、前記オブジェクトが前記閾値距離に進入したことに応答し、前記オブジェクトが前記第2の車線内で前記車両に後続することになるという予測に少なくとも部分的には基づくステップと
をさらに含み、
前記軌道を辿るように前記車両を制御するステップは、前記オブジェクトの前記第2の軌道に少なくとも部分的には基づいて、前記車両が前記オブジェクトに譲ることを防止するステップを含む
請求項に記載の方法。
【請求項8】
前記車両が前記第2の車線に進入する前記軌道は、転回アクション又は合流アクションを含む
請求項に記載の方法。
【請求項9】
前記第1の経路は、前記第1の車線の第1の中心線を実質的にたどり、前記第2の経路は、前記第2の車線の第2の中心線を実質的に辿る
請求項6~8のいずれか1項に記載の方法。
【請求項10】
前記合流点の範囲をマップデータから決定するステップと、
前記合流点の前記範囲に少なくとも部分的には基づいて、前記第1の経路及び/又は前記第2の経路に沿った前記重複領域の第1の寸法を決定するステップと
をさらに含み、
前記重複領域に関連する前記第2の脱出点を決定するステップは、前記第1の経路及び/又は前記第2の経路に沿った前記重複領域の第2の寸法を決定するステップを含み、前記第2の寸法は、前記第1の寸法より小さい
請求項6~8のいずれか1項に記載の方法。
【請求項11】
前記重複領域に関連する前記第2の脱出点を決定するステップは、前記合流位置に追加される安全距離にさらに基づく
請求項6~8のいずれか1項に記載の方法。
【請求項12】
前記安全距離は、前記第2の車線に関連するスピード制限又は前記オブジェクトの軌道に少なくとも部分的には基づく
請求項11に記載の方法。
【請求項13】
前記安全距離は、前記車両が現在のスピードから前記スピード制限に到達する時間にさらに基づく
請求項12に記載の方法。
【請求項14】
コンピュータ上で実行されたときに、請求項6~13のいずれか1項に記載の方法を実施する命令を含む、コンピュータプログラ
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本願は、参照によりその全体が本明細書に組み込まれている、「TRAJECTORY MODIFICATIONS BASED ON A COLLISION ZONE」と題する2019年10月24日出願の米国出願第16/663161号の優先権を主張するものである。
【背景技術】
【0002】
様々な方法、装置、及びシステムが、様々な静的及び動的オブジェクトを含む環境内で自律車両を誘導するために、自律車両によって利用されている。例えば、自律車両は、他の動いている車両(自律又はその他)、動いている人々、静止している建物などで混雑した領域内で自律車両を誘導するためのルート計画方法、装置、及びシステムを利用する。いくつかの例では、自律車両は、環境を横切りながら判断を行って、周囲の環境中のオブジェクトとの衝突を回避するなど、搭乗者並びに周囲の人及びオブジェクトの安全を確保することがある。どのように環境を横切るかについての判断を行うために自律車両によって使用されうる周囲の環境中のオブジェクトについての情報を収集するために、様々なセンサが利用されうる。自律車両が交通の流れを妨害することなく衝突を防止するために辿るべき軌道を決定することは、ときには、難問を提示することがある。
【先行技術文献】
【特許文献】
【0003】
【文献】米国特許出願第16/136038号明細書
【文献】米国特許出願第16/586620号明細書
【文献】米国特許出願第16/151607号明細書
【文献】米国特許出願第16/160493号明細書
【文献】米国特許出願第16/420050号明細書
【発明の概要】
【0004】
詳細な説明は、添付の図面を参照して記載されている。図面では、参照番号の左端の1つ又は複数の数字が、その参照番号が最初に現れる図面を識別する。異なる図面において同じ参照番号が使用されるのは、本開示の例により、同様又は同一の構成要素又は特徴であることを示している。
【図面の簡単な説明】
【0005】
図1】本開示の例による、自律車両の軌道、及びオブジェクトの1つ又は複数の予測された軌道に基づいて衝突ゾーンを決定し、予測されたオブジェクトの軌道に基づいて軌道を更新し、更新された軌道に基づいて自律車両を制御することを示す絵画的流れ図である。
図2】本開示の例による、イールド(yield)軌道及び非イールド軌道を生成し、それぞれの軌道についてコストを決定し、コストに基づいて軌道を選択することを示す図である。
図3A】本開示の例による、衝突ゾーンの様々な構成要素を示す図である。
図3B】本開示の例による、環境中の車両とオブジェクトとの間の時間/空間重複を示すグラフ図である。
図4】本開示の例による、車両が車線内でオブジェクトと合流することに基づいて更新された衝突ゾーンを決定する例示的なシステムを示す図である。
図5】本明細書に記載される技術を実施する例示的なシステムを示すブロック図である。
図6】本開示の例による、オブジェクトに譲る(yield)とオブジェクトの軌道を塞ぐことになるという決定に基づいて車両が軌道を辿るコストを決定する例示的なプロセスを示す図である。
図7A】本開示の例による、車線に合流する車両とオブジェクトとの間に衝突が起こりうると決定し、その車線内の経路の合流位置に基づいて衝突ゾーンを更新する例示的なプロセスを示す図である。
図7B】本開示の例による、車線に合流する車両とオブジェクトとの間に衝突が起こりうると決定し、その車線内の経路の合流位置に基づいて衝突ゾーンを更新する例示的なプロセスを示す図である。
【発明を実施するための形態】
【0006】
本開示は、環境中のオブジェクトに関連する衝突ゾーンに基づいて自律車両などの車両の軌道を修正することに関する。例では、部分的に、自律車両が環境内で辿るべき初期軌道を生成するためにマップデータが使用されることがある。自律車両は、自律車両が環境内を進むときにセンサデータ(例えば、lidar、レーダ、及び飛行時間(time of flight)など)を取り込み、そのセンサデータを使用して、オブジェクトの挙動の予測を生成することがある。いくつかの例では、自律車両は、様々なセンサモダリティ及びアルゴリズムを利用して、自律車両を取り囲む環境内のオブジェクトの挙動を予測することもある。オブジェクトの予測された挙動は、その後、自律車両が環境内を進むときに自律車両の軌道を生成及び洗練する(及び/又は代替の軌道を選択する)ために使用されることが可能である。自律車両の軌道を生成及び/又は洗練することのいくつかの例は、環境内を進むスピードを決定すること、いつ、及び/又はどれくらいの速さで停止するかを決定すること、自律車両が環境内を進むために使用する車線を決定すること、並びに接近する車両に譲るか、スピードを上げるか、及び譲るときに残すスペースの量などを決定することを含むことがある。
【0007】
いくつかの例では、自律車両のセンサによって取り込まれたセンサデータは、自律車両及び環境中で検出される1つ又は複数のオブジェクトに関連する衝突ゾーンを決定するために使用されうる。衝突ゾーンは、自律車両及びオブジェクトの現在の軌道(及び/又は現在の軌道に関連する変動、加速、減速など)に基づけば自律車両とオブジェクトとの間の衝突が起こりうる環境の領域に対応する。例えば、自律車両の衝突安全構成要素は、自律車両、オブジェクト、及び環境の領域に関連する時間/空間重複を決定することがある。時間/空間重複は、自律車両及びオブジェクトの軌道の重複領域に対する自律車両及びオブジェクトの進入点及び脱出点の位置に基づくことがある。さらに、いくつかの場合には、時間/空間重複は、現在の追跡されるスピード、停止するまでの最小距離、及び最大加速度などの要因を考慮に入れることもある、自律車両及びオブジェクトが進入点及び脱出点に到達する予測された時間に基づくこともある。衝突ゾーンに関するさらなる詳細は、参照によりその全体が本明細書に組み込まれている特許文献1に見られる。このような進入時間及び脱出時間は、例えば、オブジェクトの分類(車両、歩行者、自転車に乗っている人など)が与えられていればオブジェクトの控え目な推定及び積極的な推定に基づき、及び/又はオブジェクトの予測された軌道(例えばトップダウン推定によって決定されることがある)に何らかの緩衝要因(いくつかの例では、軌道の予測に関連する確率分布に基づくこともある)を足したり引いたりしたものに基づくことがある。画像の特徴に基づくトップダウン予測に関するさらなる詳細は、参照によりその全体が本明細書に組み込まれている特許文献2に見られる。
【0008】
車両(例えば自律車両又は自律ロボット)が環境内を安全に運転するために、それは、世界の中の他のオブジェクトの挙動についての予測を行うことがある。例えば、自律車両は、接近するオブジェクトに譲るか否かを正確に決定することができる場合には、環境を安全に通過することができる。自律車両は、衝突ゾーンを使用して、そのオブジェクトに譲るかどうかを決定することがある。但し、いくつかの場合には、そのオブジェクトに譲ることによって、自律車両がそのオブジェクトの軌道を塞ぐことになり、交通の停止若しくは減速、及び/又はより安全性の低い結果をもたらすことがある。従って、記載される技術は、オブジェクトを含む衝突ゾーンに対して自律車両が辿るべき軌道を決定するときに、自律車両によるイールド挙動を考慮する。
【0009】
例えば、自律車両は、合流点を通って進むなど、環境内で辿るべき第1の軌道を受け取り、及び/又は生成することがある。自律車両は、オブジェクトが辿ることになる経路の予測を含む、環境内のオブジェクトについての第2の軌道を決定することがある。例えば、第2の軌道は、オブジェクトが自律車両の第1の軌道の経路と交差する車線でその合流点を渡ることになると予測することがある。いくつかの例では、自律車両は、減速又は停止してそのオブジェクトに通過させることなどによって、そのオブジェクトに譲るためのイールド軌道を決定することがある。自律車両は、次いで、第1の軌道をたどり続けるか、イールド軌道を実行するかを決定することがある。例えば、自律車両は、第1の軌道を辿る自律車両に関連する第1の領域(例えば、この軌道を辿る車両のサイズの領域)及び第2の軌道を辿るオブジェクトに関連する第2の領域(例えば、この軌道を辿るオブジェクトのサイズの領域)に基づいて、環境内の重複領域を決定することがある。いくつかの場合には、重複領域は、上述し、以下でさらに詳細に述べるように、少なくとも部分的には、自律車両とオブジェクトの間の衝突ゾーンに対応することがある。自律車両は、イールドを実行することに関連し、及び/又は第1の軌道に沿って進むことに関連するコストを決定することがある。このコストは、重複領域と、両シナリオ(イールド軌道及び第1の軌道)についての潜在的な衝突を考慮する時間/空間重複とに基づくことがある。いくつかの例では、時間/空間重複は、自律車両及び/又はオブジェクトの予測された軌道に基づくことがあり、予測された軌道からの任意の予測された差分又は誤差を考慮している。このコストに基づいて、自律車両は、第1の軌道に沿って進む、イールド軌道を実行する、又は辿るべき代替の軌道を選択することができる。
【0010】
いくつかの場合には。自律車両は、高速道路に合流したり、又は合流点で転回したりするなど、別のオブジェクトによって占有されている車線に合流することがある。以前の技術は、マップデータに依拠して、合流点を通って延びる衝突ゾーンの範囲を設定していた。マップデータ中の合流点の範囲が、停止線、横断歩道、歩道、又はその他のランドマークを超えてかなりの距離(例えば10メートル以上)にわたって延びていることもしばしばであった。これらの以前の技術における衝突ゾーンは、その共有されることになる車線に自律車両が進入する前に、車線内のオブジェクトが、合流点の範囲に関連する衝突ゾーンから脱出することを必要とする。従って、以前の技術では、自律車両の前方及びオブジェクトの後方に余分なスペースが存在しているのに自律車両が交差点内で交通を塞いでしまう、及び/又はその他のかたちで車両がはるかに控え目な操縦を実行してしまうことがしばしばあった(いくつかの例では、この控え目な操縦では、(例えば空間的制約、及び交差点を塞ぐことなどによって)車両がいかなる操縦も実行しないこともある。
【0011】
従って、記載される技術は、自律車両がオブジェクトと衝突することを防止しながら、自律車両が合流点において交通を妨げることも防止するために、衝突ゾーンを修正し、及び/又は異なる方法で衝突ゾーンを利用することがある。いくつかの例では、自律車両は、環境中で合流点を決定することがある。ここで、合流点は、自律車両が現在位置している第1の車線と、自律車両が合流しようとしている第2の車線とを含む。自律車両は、自律車両が第2の車線に合流したときに後続することになるオブジェクトなどのオブジェクトを、第2の車線内に検出することがある。
【0012】
自律車両は、そのオブジェクトがいる第2の車線に合流するときに、自律車両及びオブジェクトに関連する衝突ゾーンを決定することがある。例えば、自律車両は、第1の車線内で始まり第2の車線に移行する第1の経路が第2の車線に従う経路と合流する合流位置を決定することがある。換言すれば、第1の経路は、第1の車線から第2の車線中への自律車両の軌道に対応し、第2の経路は、第2の車線内に留まるオブジェクトの軌道に対応することがある。自律車両の衝突安全構成要素は、2つの車線の経路の合流位置に基づいて、衝突ゾーンについての脱出点を決定することがある。いくつかの場合には、脱出点は、安全距離が追加された合流位置に基づくことがあり、ここで、安全距離は、特定のオブジェクトの検出されたサイズ及び/又は所定のサイズ(例えば、平均車両サイズ、最大車両サイズなど)に基づくことがある。多くの場合には、脱出点は、衝突ゾーンのサイズをマップデータに含まれる合流点の範囲に基づいて決定されたサイズから縮小し、それにより自律車両が車線に合流するときの自律車両とオブジェクトとの間の余分なスペースを減少させることになる。さらに、合流位置に追加された安全距離は、自律車両が合流中にオブジェクトに衝突することを防止する。
【0013】
本明細書に記載される技術は、コンピューティングデバイスの働きをいくつかの点で改善することができる。上述のように、衝突安全構成要素は、コスト関数を利用して、車両に譲るか、又は譲らずに軌道に沿って進む(及び/又はその他のかたちで車両の速度/加速度を調節して安全操縦を実行する)かを決定することがある。コスト関数は、どのようにすれば環境内をより早く、より高い信頼性で進むことができるかについての判断を自律車両が下すことができるようにすることができる。さらに、衝突安全構成要素は、合流中に、自律車両が合流点を塞ぐことを防止するより信頼性の高い軌道を提供することができる。その結果、環境内を自信なく進む、又は合流点の真ん中で立ち往生する間も自律車両及び/又はオブジェクトの複数の軌道を評価し続ける従来技術と比較して、使用される処理資源が大幅に少なくなる。いくつかの場合には、記載される技術は、他の衝突防止機構より正確であり、従って自律車両、並びに周囲の人及び/又は車両の安全性を向上させる。例えば、従来のシステムにおいて合流中に合流点の範囲に依拠して衝突ゾーンを決定することは、自律車両とその自律車両がその後方に合流しようとしているオブジェクトとの間に過度に控え目なスペースを生じる一方で、自律車両が合流点の内部で交通を妨げるということを引き起こしていた。センサデータ及びマップデータに基づいて衝突ゾーンを生成する従来技術は、しばしば、交通を妨げることよりもオブジェクトに譲ることを優先しており、このことも、安全性の懸念を引き起こす恐れがある。しかし、記載される技術は、自律車両が譲ることを選んだ場合に交通を妨げることを考慮するので、オブジェクトを環境中で望ましくないポジションに残す(例えば信号が青から赤に変わっても合流点の真ん中に立ち往生しているなど)可能性が高い自律車両によって塞がれている合流点から安全に脱出することに普通なら向けられるはずの資源を節約することになる。従って、衝突ゾーンに基づく軌道修正に部分的に基づいて車両を制御することにより、自律車両が環境内をより効率的に進むことができるようにすることによって、処理資源を削減することができる。衝突ゾーンに基づく軌道修正に部分的に基づいて車両を制御することによって、軌道の判断をより速くかつより早く下すことにより、自律車両の安全性が改善されることができる。さらに、衝突ゾーンに基づく軌道修正に部分的に基づいて車両を制御する技術は、より早くかつより正確に挙動を決定することによって、接近する交通及び/又は歩行者との衝突を車両が回避できる信頼性を高めることができ、このことが、安全性の結果、性能、及び/又は精度を改善する可能性がある。コンピュータの働きについての上記その他の改善は、本明細書に記載されている。
【0014】
本明細書に記載される技術は、いくつかの方法で実施されることが可能である。例示的な実装態様は、以下の図面を参照して以下に提供される。自律車両の状況において述べられてはいるが、本明細書に記載される方法、装置、及びシステムは、様々なシステム(例えば、センサシステム又はロボットプラットフォーム)に適用されることが可能であり、自律車両に限定されるわけではない。1つの例では、同様の技術が、このようなシステムが車両のドライバに対して様々な操縦を実行することが安全であるかどうかについての表示を提供することがあるドライバによって制御される車両で利用されることもある。別の例では、この技術は、航空若しくは航海の状況で利用されることも可能であるし、又はそのシステムには未知の挙動と関連することがあるオブジェクト若しくはエンティティを伴う任意のシステムで利用されることも可能である。このような技術は、例えば、製造及び組立ての状況において、構成要素が組立てラインを移動していくときにそれらを検査するために使用されることもある。さらに、本明細書に記載される技術は、実際のデータ(例えば、センサを用いて取り込まれる)、シミュレートされたデータ(例えば、シミュレータによって生成される)、又はその2つの組合せとともに使用されることが可能である。
【0015】
図1は、本開示の例による、自律車両の軌道、及びオブジェクトの1つ又は複数の予測された軌道に基づいて衝突ゾーンを決定し、予測されたオブジェクトの軌道に基づいて自律車両の軌道を更新し、更新された軌道に基づいて自律車両を制御することを示す絵画的流れ図100である。
【0016】
動作102は、車両が環境を横切るために辿る軌道を受け取ることを含む。いくつかの例では、この軌道は、自律車両が環境を横切るときに、自律車両によって生成されることもある。或いは、又はこれに加えて、この軌道は、遠隔のコンピューティングデバイスによって生成され、環境内で辿るために車両に送達されることもある。この軌道は、マップデータ、車両のセンサ(例えば、lidarセンサ、レーダセンサ、カメラ、及び飛行時間センサなど)から受け取られるデータ、又はマップデータとセンサデータの組合せに基づいて生成されうる。
【0017】
例えば、例104は、自律車両106がその環境を横切っている環境を示している。いくつかの例では、自律車両106は、環境内で辿るべき軌道108を受け取ることを含むことができる絵画的流れ図100の動作を実行することができ、ここで、この軌道は、少なくとも部分的にはセンサデータに基づくことがある。説明のために、センサデータを取り込む(又は利用する)車両は、移動の全体にわたって、ドライバ(又は同乗者)がいかなる時も車両を制御することを期待されない状態で、全ての安全に関する重要な機能を実行することができる車両を記載する米国運輸省道路交通安全局によって発行される分類レベル5に従って動作するように構成された自律車両とすることができる。このような例では、車両が、全ての駐車機能を含めて始動から停止まで全ての機能を制御するように構成されることができるので、それは無人にすることができる。これは単なる例であり、本明細書に記載されるシステム及び方法は、ドライバによって常に手動制御される必要がある車両から部分的又は完全に自律制御される車両まで含めて、任意の地上、空中、又は水上車両に組み込まれることが可能である。車両に関連するさらなる詳細は、本開示の全体を通じて記載されている。例104では、軌道108は、自律車両106に、この環境内で現在の車線で合流点を通過するように指示している。いくつかの例では、軌道108は、自律車両106が環境内を進むスピードについての指示、自律車両106が占有すべき車線のポジションについての指示、及び加速/減速指示を含むこともある。
【0018】
動作110は、センサデータから環境中のオブジェクトを検出することを含む。例えば、センサデータは、lidarセンサ、レーダセンサ、画像センサ、飛行時間センサ、及びソナーセンサなどのうちの1つ又は複数によって取り込まれたデータを含むことができる。少なくともいくつかの例では、追加の環境データ(例えば車線、基準線、歩道、並びに交通機器及び/又は標識などの部分を符号化する環境のマップデータ)が受け取られることもある。一般に、環境内の車両であるオブジェクトについて述べるが、環境内の任意のオブジェクト(例えば、歩行者、オートバイ、自転車、動物、及び列車など)が本開示の範囲を逸脱することなく考慮される。例えば、例104に戻ると、自律車両106は、環境内でオブジェクト112を検出することがある。例104では、オブジェクト112は自律車両106によって占有されている車線と交差する車線で合流点に接近している。
【0019】
動作114は、車両の軌道及びオブジェクトの1つ又は複数の予測された軌道に少なくとも部分的には基づいて衝突ゾーンを決定することを含む。上述し、以下でさらに詳細に述べるように、衝突ゾーンは、自律車両106及びオブジェクト112の現在の軌道(及び/又は現在の軌道に関連する変動、加速、減速など)に基づけば自律車両106とオブジェクト112との間の衝突が起こりうる環境の領域に対応する。例えば、自律車両106は、自律車両106、オブジェクト112、及び環境の領域(この場合は車線が交差する合流点)に関連する時間/空間重複を決定することがある。時間/空間重複は、自律車両106及びオブジェクト112の軌道の重複領域に対する自律車両106及びオブジェクト112の進入点及び脱出点の位置に基づくことがある。さらに、いくつかの場合には、時間/空間重複は、現在の追跡されるスピード、停止するまでの最小距離、及び最大加速度などの要因を考慮に入れることもある、自律車両106及びオブジェクト112が進入点及び退出点に到達する予測された時間に基づくこともある。衝突ゾーンに関するさらなる詳細は、参照によりその全体が本明細書に組み込まれている特許文献1に見られる。いくつかの事例では、自律車両106は、自律車両106及び/又はオブジェクト112の衝突ゾーンの進入点及び脱出点の確率の1つ又は複数のガウス(若しくはその他のタイプの)分布を含む環境のトップダウン表現を生成することがある。トップダウンシーンの軌道予測に関するさらなる詳細は、参照によりその全体が本明細書に組み込まれている特許文献3に見られる。
【0020】
例えば、例116は、例104に大まかに示されている環境中の自律車両106及びオブジェクト112を示している。但し、例116は、予測された軌道118(A)、予測された軌道118(B)、及び予測された軌道118(C)(集合的に「予測された軌道118」とする)も示している。いくつかの例では、自律車両106は、オブジェクト112が環境内でたどり得る可能な経路に基づいて、例えばマップデータ、環境中の他のオブジェクト、自律車両106の軌道、オブジェクト112に関連する検出された状態(例えば転回を示す方向指示器の光、転回を示す、若しくは転回を示さないホイールの向き、ブレーキ灯など)、又はこれらのうちの2つ以上の組合せに基づいて、予測された軌道118を生成することがある。この場合には、予測された軌道118(A)は、オブジェクト112が左転回を行って自律車両106と同じ車線に進入することに対応し、予測された軌道118(B)は、オブジェクト112が同じ車線で合流点を真っ直ぐに通過することに対応し、予測された軌道118(C)は、オブジェクト112が右転回を行って、自律車両106の隣の車線で自律車両106と反対方向に進むことに対応する。
【0021】
さらに、例116は、オブジェクト112の予測された軌道118を決定したのに応答して自律車両106によって生成されることがある衝突ゾーン120を示している。いくつかの例では、衝突ゾーン120は、部分的には、自律車両106が軌道108を辿るときの自律車両106に関連する経路多角形に基づくことがある。自律車両106は、軌道108を辿る自律車両106の中心(例えば、推定された質量中心、又はエージェントの推定された体積中心点など)、並びに自律車両106のサイズに基づいて軌道108に沿った自律車両106の中心に追加された寸法、及びいくつかの場合には自律車両106のサイズを取り囲む安全エンベロープに基づいて、経路多角形を決定することがある。安全エンベロープは、自律車両106とオブジェクト112との間の衝突を防止するサイズであることがある。衝突ゾーン120は、自律車両106の経路多角形とオブジェクト112の軌道118のうちの1つ又は複数とが交差する環境の領域を含むことがある。
【0022】
いくつかの例では、自律車両106は、予測された軌道118のそれぞれがオブジェクト112によって実施される見込みを決定することがある。例えば、オブジェクト112が合流点に接近するときに左方向指示器をオンにしている場合には、自律車両106は、予測された軌道118(A)が、予測された軌道118(B)及び/又は予測された軌道118(C)より高い見込みを有すると決定することがある。自律車両106は、それぞれの予測された軌道の見込みを、50%超の見込み、90%超の見込み、及び99%超の見込みなどの軌道見込み閾値と比較することがある。予測された軌道118のうちの1つ又は複数が軌道閾値見込みを超える場合には、それらの予測された軌道が、1つ又は複数の衝突ゾーンを決定するために選択されることがある。いくつかの例では、予測された軌道118のうちの複数が軌道閾値見込みより大きい場合には、自律車両106は、軌道閾値見込みより大きい予測された軌道118のうち最も控え目なもの(及びいくつかの場合には予測された軌道のうちの最も控え目なものに関連する変動)を選択して、衝突ゾーン120を決定することもある。予測された軌道の生成及び選択に関するさらなる詳細は、参照によりその全体が本明細書に組み込まれている特許文献4、特許文献5、及び特許文献3に見られる。
【0023】
動作122は、少なくとも部分的には衝突ゾーンに基づいて軌道を更新することを含む。例えば、自律車両106は、オブジェクト112が予測された軌道118(B)を辿る場合に、イールドアクションがオブジェクト112との衝突の見込みを低下させる可能性があると決定することがある。いくつかの例では、自律車両106は、(例えば、コスト関数を評価することによって)コストを決定して、軌道108に沿い続けるか、イールドを実行するかを決定することがある。例えば、いくつかの場合には、イールドを実行することによって、自律車両106を衝突ゾーン120内で(又は合流点の何らかの他の部分で)停止させ、環境中のオブジェクト112及び/又はその他のオブジェクトの交通の流れを妨害する可能性がある。従って、コスト関数は、軌道118(B)に関するイールドを実行するための自律車両106の停止ポジションを考慮に入れることがある。さらに、いくつかの場合には、自律車両106は、イールドを実行するコストの一部として、自律車両106が既にどれくらい合流点に進んでいるかを決定することもある。例116では、自律車両106は、オブジェクト112に対してイールドを実行することに対する軌道108を辿ることのコストに基づいて、イールドを実行する方が軌道108を辿るよりコストが低いと決定している。従って、自律車両106は、オブジェクトが予測された軌道118(B)を辿るときに減速してオブジェクト112に譲るように自律車両106に指示する、更新された軌道124を生成している。
【0024】
いくつかの例では、更新された軌道は、オブジェクト112がいる車線に自律車両106が合流することに基づくこともある。オブジェクト112が予測された軌道118(A)を辿り、オブジェクト112が入った車線において自律車両106がオブジェクト112に後続する例を考慮されたい。従来のシナリオでは、自律車両106は、マップデータに含めて受け取られる合流点の範囲126に依拠して、衝突ゾーンの脱出点を決定することになる。しかし、記載される技術では、自律車両106は、合流する車線に関連する合流位置(及びいくつかの例では合流位置に追加される安全距離)に基づいて衝突ゾーン120のサイズを決定し、それにより衝突ゾーン120のサイズを縮小することがある。衝突ゾーン120のサイズを縮小することによって、自律車両106は、オブジェクト112の背後に合流するときに合流点を通ってさらに進み、合流した車線においてオブジェクト112の後方の不要なスペースを縮小し、合流後にオブジェクト112に後続しながら自律車両106が合流点において交通を妨げる可能性を低減することによって、軌道を更新することがある。
【0025】
従って、動作128は、少なくとも部分的には更新された軌道に基づいて車両を制御することを含む。例えば、車両を制御することは、それぞれのアクションに関連するコストに基づいて、更新された軌道124に従って譲るように、又は軌道108をたどり続けるように、自律車両106を制御することを含むことがある。いくつかの例では、車両を制御することは、自律車両106が合流点の範囲に依拠して衝突ゾーン120を決定した場合に必要となるよりも小さいスペースでオブジェクト112と合流するように自律車両106を制御することを含むことがある。他の例も考えられ、以下で後続の図面に関連してさらに詳細に考察する。
【0026】
図2は、本開示の例による、イールド軌道及び非イールド軌道を生成し、それぞれの軌道についてコストを決定し、コストに基づいて軌道を選択することを示す図200である。
【0027】
例202は、この場合には交差する車線の合流点の近傍の環境中の自律車両204及びオブジェクト206を示している。この例では、自律車両204は、軌道208を辿って、合流点を通って進んでいる。自律車両204は、図1に関連して上述したようにオブジェクト206を検出することがあり、オブジェクト206が合流点を通って進むために辿ることになる軌道210を予測することもある。自律車両204は、環境のセンサデータを取り込み、環境のマップデータを利用して、軌道208を生成し、オブジェクト206の軌道210を予測することがある。いくつかの例では、自律車両204は、軌道208及び210、並びにいくつかの場合には軌道208及び210の潜在的な変動に基づいて、自律車両204とオブジェクト206との間で衝突が起こりうると決定することがある。衝突の潜在的な可能性により、自律車両204は、自律車両204に減速又は停止させ、自律車両204の前でオブジェクト206に合流点を通過させるイールドアクションが評価されるべきであると決定することがある。
【0028】
例えば、軌道208及び軌道210(並びにセンサデータ及び/又はマップデータからの任意のその他の関連のある情報)は、イールド予測構成要素212に入力されることがある。イールド予測構成要素212は、自律車両を停止及び/又は減速させ、自律車両204の前でオブジェクト206に合流点を通過させる、自律車両204のイールド軌道を生成することがある。これを行うために、イールド予測構成要素212は、オブジェクト206の軌道210と自律車両204のイールド軌道の重複領域に基づいて衝突ゾーンを決定することがある。
【0029】
例214は、イールド予測構成要素212によって決定された重複領域216を示している。イールド予測構成要素212は、重複領域216を使用して、イールド軌道及びオブジェクト206の軌道210に関連する衝突ゾーンを決定することがある。例えば、重複領域216は、オブジェクトが軌道210を辿るときのオブジェクト206のサイズによる領域218に部分的に基づくことがある。重複領域216は、また、領域218を通る軌道(例えば軌道208)を辿る自律車両204のサイズに基づくこともある。
【0030】
いくつかの例では、イールド予測構成要素212は、重複領域216の寸法及び/又は範囲を使用して、自律車両204及びオブジェクト206の軌道に関連する時間/空間重複の空間重複成分を決定することがある。例えば、空間重複は、重複領域216に進入する自律車両204の進入点、重複領域216に進入するオブジェクト206の進入点、重複領域216から脱出する自律車両204の脱出点、及び重複領域216から脱出するオブジェクト206の脱出点に基づくことがある。さらに、イールド予測構成要素212は、自律車両204及びオブジェクト206の軌道に関連する時間/空間重複の時間重複成分を決定することもある。例えば、時間重複成分は、自律車両204が対応する進入点及び脱出点に到達する予測された時間、並びにオブジェクト206が対応する進入点及び脱出点に到達する予測された時間に基づくことがある。イールド予測構成要素212は、自律車両204がオブジェクト206のオブジェクトタイプ(例えば、車、自転車、歩行者、トレーラートラックなど)、オブジェクト206の現在スピード、重複領域216が位置する合流点の合流点タイプ(例えば、交通信号、十字路、三叉路、無信号交差点、高速道路合流部など)、合流点の近傍のスピード制限、並びにオブジェクト206の予測された加速度及び/又は減速度などを決定することに基づいて、オブジェクト206の進入時間及び脱出時間を決定することもある。さらに、イールド予測構成要素212は、予測された軌道の確率分布に基づいてオブジェクト206の進入時間及び脱出時間を決定して、自律車両204及び/又はオブジェクト206の最小及び/又は最大の進入時間及び脱出時間を決定することもある。イールド予測構成要素212は、また、進入時間及び脱出時間を決定するときに、自律車両204及び/又はオブジェクト206の予測された加速度及び/又は減速度を考慮に入れることもある。
【0031】
例では、軌道208及び軌道210(並びにセンサデータ及び/又はマップデータからの任意のその他の関連のある情報)は、軌道予測構成要素220にも入力されることがある。軌道予測構成要素220は、イールド予測構成要素212と実質的に同時に、自律車両204がオブジェクト206に譲るのに対する代替の軌道として、自律車両204が環境内を進むために辿るべき軌道を生成することがある。例えば、軌道予測構成要素220は、自律車両204が軌道208をたどり続けることに基づいて予測を評価し、及び/又は加速する、減速する、転回する、車線内でポジションを変更する、又は異なる車線にポジションを変更することなどによって軌道208を改変することがある。軌道予測構成要素220は、衝突ゾーン、並びにオブジェクト206の軌道210と(この例では)自律車両204の軌道208の重複領域とに基づいて、自律車両204が辿るべき代替の軌道を決定することがある。
【0032】
例222は、イールド予測構成要素212によって決定され、及び/又は上述のように軌道予測構成要素220によって同様に決定されることがある重複領域216を示している。軌道予測構成要素220は、重複領域216を使用して、この場合では軌道208を辿る自律車両204に関連する衝突ゾーンを決定することもある。上記と同様に、重複領域216は、部分的には、オブジェクトが軌道210を辿るときのオブジェクト206のサイズによる領域218に基づくことがある。また、重複領域216は、領域218を通過して軌道208を辿る自律車両204のサイズに基づくことがある。さらに、例では、軌道予測構成要素220は、上述のように空間重複成分及び時間重複成分を有する時間/空間重複を決定することがある。
【0033】
コスト生成構成要素224は、重複領域216及び/又は上述の時間/空間重複に関連する情報を受け取り、自律車両204がオブジェクト206に譲るか、又は軌道208に沿って進むかに対応する軌道コスト226を生成することがある。いくつかの例では、コスト生成構成要素224は、以下に従うようなコスト関数を使用して、軌道コスト226を生成することもある。
【0034】
【数1】
【0035】
ここで、VExitTは、自律車両204が衝突ゾーンを脱出する時間に対応し、EEnterTは、オブジェクト206が衝突ゾーンに進入する時間に対応し、VEnterTは、自律車両204が衝突ゾーンに進入する時間に対応し、Wは、時間重複成分に適用される重みであり、VEnterDistanceは、自律車両204がイールドを実行するために合流点内で実現することができる最小停止距離(自律車両204がどれくらい合流点内に進んでいるかによって決まることがある)に対応し、VCollisionZoneLengthは、衝突ゾーンの長さに対応し、Wは、距離重複成分に適用される重みである。第1項は、時間/空間重複の時間重複成分に関連し、時間/空間重複の幅を評価するものである。時間/空間重複の時間重複成分に関連するさらなる詳細は、図3Aの説明に関連して見られる。
【0036】
第2項は、距離重複成分に関連し、衝突ゾーンの全長に比例する、自律車両204が合流点に入っている距離を評価するものである。この項は、自律車両204がオブジェクト206の経路を既に塞ぐほど合流点内に進んでいるかどうかを決定するものであり、そうである場合には、自律車両204に軌道208を進ませ続ける(及び/又は例えばより速く合流点から脱出するために加速させる)ために計画構成要素228によって使用されることがある。
【0037】
いくつかの場合には、オブジェクト206は、自律車両204のすぐ後に衝突ゾーンに進入すると予測されることがあり、この場合には、衝突が差し迫っていることがある。この場合には、軌道予測構成要素220は、イールド予測構成要素がイールド軌道を評価するのを防止し、それにより、コスト生成構成要素224がイールド軌道に関連するコストを評価するのを防止することがある。同様に、オブジェクト206が自律車両204より前に衝突ゾーンに進入する場合には、自律車両204は、オブジェクト206に譲るべきであり、従って、イールド軌道のコストの計算が防止されることがある。このような場合には、イールド軌道の解析が必要でないとき(例えば自律車両204が委細構わず譲るであろうとき)には、イールド軌道の解析を省略することによって、処理資源が節約されることがある。一般に、上記の数式は、重み付けされることがあり、コスト閾値は、自律車両204が衝突ゾーンから脱出する前にオブジェクト206が衝突ゾーンにぎりぎり進入すると予測される状況では、自律車両204が生成されるイールド軌道より先行し、元の軌道(又は例えば加速などによる異なる軌道)をたどり、安全距離が自律車両204及びオブジェクト206のサイズに含められるように設定されることがある。コスト関数によって決定される軌道コスト226は、図3Bに関連してさらに詳細に述べるように、自律車両204及びオブジェクト206が衝突ゾーンに進入する予測された時間を比較し、自律車両204及びオブジェクト206が衝突ゾーンから脱出する予測された時間を比較することによって、自律車両204とオブジェクト206の間の衝突の可能性に対応する安全性のレベルを決定する。
【0038】
例では、計画構成要素228は、軌道コスト226に基づいて、自律車両204が辿るべき車両軌道230を決定することがある。例えば、例214に示すようにイールド軌道を実行する軌道コスト226がコスト閾値より大きい場合には、計画構成要素228は、自律車両204に軌道208を進ませ続ける車両軌道230を出力することがある。例214に示すようにイールド軌道を実行する軌道コスト226がコスト閾値以下である場合には、計画構成要素228は、自律車両204にオブジェクト206に譲らせる車両軌道230を出力することがある。
【0039】
図3Aは、本開示の例による、衝突ゾーンの様々な構成要素を示す図300である。
【0040】
例302は、自律車両304が右転回を行っており、オブジェクト306が軌道308を辿って合流点を真っ直ぐに通過すると予測される環境中の合流点における自律車両304及びオブジェクト306を示している。軌道領域境界310は、自律車両304が転回を実施するときの自律車両304の領域に対応する。衝突ゾーン長さ312は、安全のために自律車両304とオブジェクト306との間にスペースを追加することもある、時間/空間重複の距離重複成分に対応する。衝突ゾーン314内の距離は、自律車両304が既に衝突ゾーン内に進んでいる距離に対応するが、いくつかの場合には、イールドアクションを実行するための最小距離を組み込むこともある。
【0041】
いくつかの例では、軌道308、軌道領域境界310、衝突ゾーン長さ、及び/又は衝突ゾーン314内の距離のうちの1つ又は複数は、自律車両304が時間/空間重複の決定に組み込むことがある関連する変動を有することがある。例えば、自律車両304は、軌道308を決定するときに、車線内のオブジェクト306の位置の潜在的な変動を決定することがある。図2を参照して上述したように、自律車両304は、オブジェクト306の軌道を使用して重複領域216(衝突ゾーンを決定するために使用されることがある)を決定することがある。従って、自律車両304は、衝突ゾーンの時間/空間重複を決定するときに、車線内のオブジェクト306の位置の潜在的な変動を決定し、その潜在的な変動を、軌道308を辿るオブジェクト306のサイズに関連する領域に追加することがある。
【0042】
或いは、又はこれに加えて、自律車両304は、オブジェクト306のスピードの、オブジェクト306の追跡されるスピードからの潜在的な変動を決定することがある。例えば、オブジェクト306のスピードの潜在的な変動は、加速(例えば、信号が黄色に変わるときに合流点を通過するため、オブジェクト306が坂を下ることを考慮するためなど)、減速(例えば、自律車両304がその軌道を進み続けることができるようにするため、オブジェクト306が坂を上ることを考慮するため、オブジェクト306が転回することを考慮するためなど)を考慮することがある。自律車両304は、衝突ゾーン長さ312を決定するときには、オブジェクト306の追跡されるスピードの潜在的な変動を考慮することがあり、例えば、潜在的な加速は、衝突ゾーンの長さを増大させ、潜在的な減速は、衝突ゾーンの長さを減少させる。
【0043】
上述のように、自律車両304は、衝突ゾーンを決定するときに、自律車両304及び/又はオブジェクト306のサイズに追加のスペースを追加して両者の間の衝突を防止することなどによって、安全エンベロープを適用することがある。いくつかの例では、自律車両304は、オブジェクト306が辿る可能性がある複数の可能な軌道の各軌道の変動を決定することによって、安全エンベロープのサイズを決定することがある。例えば、変動は、複数の軌道の各軌道の確実性、オブジェクト306のスピードに関連する誤差、及び加速(又は減速)に関連する誤差などに基づくことがある。
【0044】
図3Bは、本開示の例による、環境中の車両とオブジェクトとの間の時間/空間重複を示すグラフ図316である。グラフ図316では、時間(T)に関して、斜線のバーは、衝突ゾーン内の車両(例えば自律車両)の時間に対応し、点線のバーは、衝突ゾーン内のオブジェクトの時間に対応する。
【0045】
時間/空間重複318は、車両がオブジェクトより前に衝突ゾーンに到着する例を示している。時間/空間重複318では、オブジェクトが衝突ゾーンに進入する前に、車両は衝突ゾーンからほとんど脱出している。この場合には、車両が譲るために停止又は減速すると車両がオブジェクトを妨害する可能性が高いが、衝突が起こる前に衝突ゾーンから脱出することになるので、車両は、オブジェクトに譲るコストがコスト閾値を超えることになると決定しうる。従って、車両は、時間/空間重複318に基づけば、譲ることなく軌道を進み続けて衝突ゾーンを抜けることになる。
【0046】
時間/空間重複320は、車両がオブジェクトより前に衝突ゾーンに到着する例を示している。時間/空間重複318とは異なり、時間/空間重複320では、車両は、オブジェクトが衝突ゾーンに進入する前に既に衝突ゾーンにいるだけでなく、オブジェクトが衝突ゾーンから出ると予期される後も依然として衝突ゾーンにいることになる。この場合には、車両が、オブジェクトが合流点を通って進むのを妨害する可能性も高いにもかかわらず、衝突の可能性なしでは衝突ゾーンから脱出しないことになるので、車両は、オブジェクトに譲るコストがコスト閾値未満であると決定しうる。従って、車両は、時間/空間重複320に基づけば、オブジェクトに譲ることになる。
【0047】
時間/空間重複322は、車両がオブジェクトより後に衝突ゾーンに到着する例を示している。時間/空間重複322では、オブジェクトは、車両が衝突ゾーンに進入する前に衝突ゾーンからほとんど脱出している。この場合には、車両が譲るために停止又は減速した場合に車両がオブジェクトを妨害することになる可能性が低いので、車両は、オブジェクトに譲るコストがコスト閾値未満であると決定しうる。従って、車両は、時間/空間重複322に基づけば、オブジェクトに譲ることになる。
【0048】
時間/空間重複324は、車両がオブジェクトより後に衝突ゾーンに到着する別の例を示している。時間/空間重複324では、オブジェクトは、車両より前に衝突ゾーンに進入しており、また、車両が衝突ゾーンを横切るのにかかる時間より長く衝突ゾーン内に留まるとも予想される。オブジェクトが車両より前に衝突ゾーンに到着しているので、車両が譲るために停止又は減速した場合に車両がオブジェクトを妨害することになる可能性が低いので、車両は、オブジェクトに譲るコストがコスト閾値未満であると決定しうる。従って、車両は、時間/空間重複324に基づけば、オブジェクトに譲ることになる。
【0049】
図4は、本開示の例による、車両が車線内でオブジェクトと合流することに基づいて更新された衝突ゾーンを決定する例示的なシステム400を示す図である。
【0050】
例402は、合流点の近傍の環境中の車両404及びオブジェクト406を示している。この例402では、合流点は、従来の4方向停止(例えば、車両が左折又は右折して別の車線に入ることができる)、T字路、高速道路進入路、及び別の高速道路又は一般道の交通と合流する高速道路出口路など、第1の車線の車両が第2の車線の車両に合流することができるタイプであることがある。例402では、車両404は、第1の車線408におり、オブジェクト406によって現在占有されている第2の車線410に合流して、第2の車線410でオブジェクト406に後続しようと(例えば、オブジェクト406に譲ろうと)している。
【0051】
いくつかの例では、車両404は、環境内をどのように進むかを決定するために使用されうる環境のマップデータを受け取り、環境内で辿るべき軌道を生成することなどがある。マップデータの一部として、車両404は、第1の車線408に対応する経路412を受け取ることがあり、ここで、経路412は、ほぼ第1の車線408の中心を辿るものであることがある。同様に、車両404は、第2の車線410に対応する、ほぼ第2の車線410の中心を辿る経路414を受け取ることもある。さらに、いくつかの例では、車両404は、車両404が計画された軌道を辿るときの車両404のサイズを取り囲む安全距離を有する、車両404の計画された軌道に対応するエンベロープ416を生成することがある。
【0052】
車両404は、第2の車線410への合流アクションの一部として、衝突ゾーンを決定することがある。いくつかの場合には、車両404は、少なくとも部分的にはマップデータに基づいて衝突ゾーンの脱出点を決定することがある。例えば、車両404は、マップデータに含めて受け取られる合流点の範囲に基づいて、第1の脱出点418を決定することがある。多くの場合には、第1の脱出点418は、オブジェクト406との衝突が起きる可能性が非常に低い、衝突ゾーンを終了する控え目な位置を車両404に提供するものである。しかし、いくつかの例では、第1の脱出点418の控え目な位置によって、車両404が衝突ゾーン内に進む前にオブジェクト406が衝突ゾーンを脱出するのを待機する間、車両404が交通を妨げる恐れがある。従って、衝突ゾーンのサイズを縮小しても、車両404とオブジェクト406の間の合流アクションの安全性を低下させず、それでいて衝突ゾーンの第1の脱出点418が使用された場合よりも早く車両404が合流点(又は合流点の一部分)を抜けることができるようにすることによって安全性及び効率を高める、いくつかのシナリオが存在する。
【0053】
いくつかの例では、車両404は、車両404及びオブジェクト406の軌道が合流し始める位置420を決定することによって、衝突ゾーンを決定することがある。例えば、車両404は、経路412に沿った車両404の投影422、及び経路414に沿ったオブジェクト406の投影424を用いて、位置420を決定することがある。投影422は、車両404のサイズに対応することがあり(かつ車両404のサイズを取り囲む安全エンベロープを含むことがあり)、投影424は、平均車両サイズに基づくオブジェクト406のサイズ、及びセンサデータに基づくオブジェクト406の検出されたサイズなどに対応することがある。車両404は、投影422と投影424がどこで交差すると予測されるかに基づいて、位置420を指定することがある。いくつかの例では、位置420は、衝突ゾーンへの進入点を決定するために使用されることもある。例えば、車両404は、オブジェクト406が衝突ゾーンに進入する進入点426を決定することもあり、車両404が衝突ゾーンに進入する進入点428を決定することもある。示すように、進入点426及び進入点428は、衝突が起きると予測される位置420より前に発生して、車両404に衝突が発生する前に予防アクションを行わせる。
【0054】
さらに、いくつかの例では、車両404は、経路412と経路414とが第2の車線410内で完全に合流して1つの経路になっている合流位置430を決定することがある。いくつかの場合には、合流位置430は、車両404が環境を横切るときに車両404によって生成されることもあり、及び/又は環境のマップデータとともに受け取られる(例えば、以前に生成されている)こともある。車両404は、合流位置430を使用して、衝突ゾーンの更新された脱出点434を決定することがある。いくつかの例では、車両404は、衝突ゾーンの更新された脱出点434を決定するときに、安全距離432を合流位置430に追加することもある。安全距離432は、車両404とオブジェクト406との間の衝突を防止する距離であることがある。例えば、オブジェクト406が停止した場合に、衝突が起きる前に車両404が停止する時間があるように、車両404及び/又はオブジェクト406がより速いスピードで移動しているときには、より大きな安全距離432が必要であることがある。従って、安全距離432は、車両404の現在スピード、オブジェクト406の現在スピード、第2の車線410に関連するスピード制限、車両404が現在のスピードから第2の車線410のスピード制限に到達する推定された時間、車両404が現在のスピードから停止する推定された時間、及び/又は上記若しくはその他の要因の任意の組合せに基づく可能性がある。ほとんどの場合には、安全距離432が合流位置430に追加されても、衝突ゾーンを決定するために合流点の範囲が使用される場合よりも衝突ゾーンは小さくなる。従って、車両404とオブジェクト406の間のスペースの量は、合流が起こっている間、及び合流が起こった後に(安全な距離を維持しながら)低減され、車両404が合流点を塞ぐ可能性は低減される。
【0055】
オブジェクト406が衝突ゾーンに進入する前に車両404が第2の車線410に進入する(従って、衝突ゾーンにも侵入する)例も考えられる。換言すれば車両404は、図2図3Bに関連して述べたように、それが譲らずに衝突ゾーンに進入する十分な時間を有していると決定することもある。いくつかの場合には、車両が車線を変更し、別の車両が接近状態で後続するような交通渋滞の場合によくあるように、車両404は、オブジェクトが衝突ゾーンに進入する前に衝突ゾーンを完全には脱出しないこともある。従来の技術では、しばしば、オブジェクト406による知覚された積極的な操縦に対応するために、そのような例では車両404はイールドを実行しようと試みることになる。しかし、このような例で譲ってしまうと、オブジェクト406が車両404の周りで進む余裕がなくなるので、欲求不満及び交通の流れの減速を生じることになる。
【0056】
従って、記載される技術では、車両404が第2の車線410及び衝突ゾーンに進入したときに、車両404は、オブジェクト406が第2の車線410内で車両404の閾値距離内(例えば、2メートル以内、5メートル以内、10メートル以内など)にいることを検出することがある。イールドを実行するのではなく、車両404は、オブジェクトに非常に近接してはいるが、オブジェクト406が第2の車線410内で車両404に後続することになるという予測に基づいて軌道を生成することがある。この軌道は、車両404がオブジェクトに譲る(従って、交通を妨げる)ことを防止するだけでなく、車両404を目的地までのルートに沿って第2の車線410で進ませるものである。
【0057】
図5は、本明細書に記載される技術を実施する例示的なシステムを示すブロック図である。少なくとも1つの例では、システム500は、自律車両、半自律車両、又は手動制御車両などの車両502を含むことができる。
【0058】
車両502は、車両コンピューティングデバイス504と、1つ又は複数のセンサシステム506と、1つ又は複数のエミッタ508と、1つ又は複数の通信接続510と、少なくとも1つの直接接続512と、1つ又は複数の運転システム514とを含むことができる。
【0059】
車両コンピューティングデバイス504は、1つ又は複数のプロセッサ516と、1つ又は複数のプロセッサ516に通信可能に結合されたメモリ518とを含むことができる。図示の例では、車両502は、自律車両であるが、車両502は、他の任意のタイプの車両又はロボットプラットフォームであってもよい。図示の例では、車両コンピューティングデバイス504のメモリ518は、位置特定構成要素520と、知覚構成要素522と、1つ又は複数のマップ524と、1つ又は複数のシステムコントローラ526と、衝突安全構成要素528と、合流点妨害構成要素530と、車線合流構成要素532と、予測構成要素534と、計画構成要素536とを記憶する。図5では例示のためにメモリ518内に存在するものとして示されているが、これに加えて、又は別法として、位置特定構成要素520、知覚構成要素522、1つ又は複数のマップ524、1つ又は複数のシステムコントローラ526、衝突安全構成要素528、合流点妨害構成要素530、車線合流構成要素532、予測構成要素534、及び計画構成要素536は、車両502からアクセス可能にする(例えば、車両502から遠隔のメモリに記憶されるなどしてアクセス可能にされる)ことも考えられる。
【0060】
少なくとも1つの例では、位置特定構成要素520は、センサシステム506からデータを受け取って車両502のポジション及び/又は配向(例えば、xポジション、yポジション、zポジション、ロール、ピッチ、又はヨーのうちの1つ又は複数)を決定する機能を含むことができる。例えば、位置特定構成要素520は、環境のマップを含み、及び/又は要求し/受け取り、マップ内の自律車両の位置及び/又は配向を連続的に決定することができる。いくつかの事例では、位置特定構成要素520は、SLAM(同時の位置特定及びマッピング(simultaneous localization and mapping))、CLAMS(同時の較正、位置特定及びマッピング(calibration, localization and mapping, simultaneously))、相対SLAM、バンドル調整、又は非線形最小二乗最適化などを利用して、画像データ、lidarデータ、レーダデータ、飛行時間データ、IMUデータ、GPSデータ、及びホイールエンコーダデータなどを受け取って、自律車両の位置を正確に決定することができる。いくつかの事例では、位置特定構成要素520は、車両502の様々な構成要素にデータを提供して、本明細書に記載するように軌道を生成したりマップデータを取り出すことを決定したりするための自律車両の初期ポジションを決定することができる。
【0061】
いくつかの事例では、知覚構成要素522は、オブジェクトの検出、セグメンテーション、及び/又は分類を実行する機能を含むことができる。いくつかの例では、知覚構成要素522は、車両502に近接するエンティティの存在、及び/又はそのエンティティのエンティティタイプ(例えば、車、トラック、歩行者、自転車に乗っている人、動物、建築物、木、路面、縁石、歩道、制動灯、停止標識、車線マーク、未知など)としての分類を示す、処理されたセンサデータを提供することができる。追加又は代替の例では、知覚構成要素522は、検出されたエンティティ(例えば、追跡されるオブジェクト)及び/又はそのエンティティが位置している環境に関連する1つ又は複数の特性を示す、処理されたセンサデータを提供することができる。いくつかの例では、エンティティに関連する特性は、限定されるわけではないが、xポジション(全体的及び/又は局所的ポジション(global and/or local position))、yポジション(全体的及び/又は局所的なポジション)、zポジション(全体的及び/又は局所的なポジション)、配向(例えばロール、ピッチ、ヨー)、エンティティタイプ(例えば、分類)、エンティティの速度、エンティティの加速度、エンティティの範囲(サイズ)などを含む可能性がある。環境に関連する特性は、限定されるわけではないが、環境内の別のエンティティの存在、環境内の別のエンティティの状態、時刻、曜日、季節、天候条件、暗さ/光の表示などを含む可能性がある。
【0062】
知覚構成要素522が検出を実行する例では、知覚構成要素522は、オブジェクトの検出を画像に含めて出力することがある。このような検出は、検出されたオブジェクトの2次元バウンディングボックス及び/又はマスクを備えることがある。いくつかの例では、このような検出では、機械学習手法(例えば、スケール不変特徴変換(scale-invariant feature transform)(SIFT)、配向勾配ヒストグラム(histogram of oriented gradients)(HOG)など)を利用し、その後にサポートベクターマシン(SVM)を利用して、センサシステム506のカメラから受け取られた画像中に示されるオブジェクトを分類することがある。或いは、又はこれに加えて、検出では、畳み込みニューラルネットワーク(CNN)に基づくディープラーニング手法を利用して、センサシステム506のカメラから受け取られた画像中に示されるオブジェクトを分類することもある。
【0063】
メモリ518は、環境内をナビゲートするために車両502によって使用されることができる1つ又は複数のマップ524をさらに含むことができる。この説明のために、マップは、限定されるわけではないが、トポロジ(交差点など)、街路、山脈、道路、地形、及びその環境全体など、環境についての情報を提供することができる、2次元、3次元、又はN次元でモデル化された任意数のデータ構造とすることができる。いくつかの事例では、マップは、限定されるわけではないが、テクスチャ情報(例えば色情報(例えば、RGB色情報、Lab色情報、HSV/HSL色情報)など)、強度情報(例えば、lidar情報、及びレーダ情報など)、空間的情報(例えば、メッシュに投影された画像データ、個別の「サーフェル(surfel)」(例えば、個別の色及び/又は強度に関連する多角形))、反射率情報(例えば鏡面性情報、再帰反射性情報、BRDF情報、及びBSSRDF情報など)を含むことができる。1つの例では、マップは、環境の3次元メッシュを含むことができる。いくつかの事例では、マップは、タイルフォーマットで記憶されて、マップの個々のタイルが環境の離散部分を表すようにすることができ、必要に応じてワーキングメモリにロードされることができる。少なくとも1つの例では、1つ又は複数のマップ524は、少なくとも1つのマップ(例えば、画像及び/又はメッシュ)を含むことができる。いくつかの例では、車両502は、少なくとも部分的にはマップ524に基づいて制御されることができる。即ち、マップ524は、位置特定構成要素520、知覚構成要素522、衝突安全構成要素528、予測構成要素534、又は計画構成要素536と関連付けて使用されて、車両502の位置を決定し、環境中のオブジェクトを識別し、及び/又は環境内をナビゲートするためのルート及び/又は軌道を生成することができる。
【0064】
いくつかの例では、1つ又は複数のマップ524は、ネットワーク538を介してアクセス可能な遠隔のコンピューティングデバイス(コンピューティングデバイス540など)に記憶されることができる。いくつかの例では、複数のマップ524が、例えば、特性(例えば、エンティティのタイプ、時刻、曜日、季節など)に基づいて記憶されることができる。複数のマップ524を記憶することは、同様のメモリ要件を有することがあるが、マップのデータがアクセスされうるスピードを高めることができる。いくつかの例では、1つ又は複数のマップ524は、環境中の個々の位置に関連するオブジェクトのサイズ又は寸法を記憶することができる。例えば、車両502が環境を横切り、車両502の近傍の領域を表すマップがメモリにロードされるときには、ある位置に関連するオブジェクトの1つ又は複数のサイズ又は寸法も、メモリにロードされることができる。いくつかの例では、1つ又は複数のマップ524は、本明細書に記載されるように、合流点範囲情報及び車線合流位置などを含むことがある。
【0065】
予測構成要素534は、センサシステム506から受け取られたセンサデータに少なくとも部分的には基づいて、オブジェクトの挙動の予測を生成することができる。例えば、予測構成要素534は、環境中で検出されたオブジェクトについて1つ又は複数の予測された軌道を生成することがある。さらに、いくつかの場合には、予測構成要素534は、特定のオブジェクトについて生成された各予測された軌道について、ポジション、位置、スピード、及び加速度などの変動を決定することができる。予測構成要素534は、本明細書に記載されるように衝突ゾーンを生成する際に使用するために、予測された軌道を衝突安全構成要素528に出力することがある。
【0066】
一般に、衝突安全構成要素528は、センサシステム506によって提供されるデータ(例えば、センサデータ)、1つ又は複数のマップ524によって提供されるデータ、及び/又は予測構成要素534から受け取られる予測された軌道に基づいて、車両502の1つ又は複数の軌道を生成して、環境内でのオブジェクトとの衝突を防止することができる。いくつかの事例では、衝突安全構成要素528は、合流点妨害構成要素530、車線合流構成要素532、及び/又は予測構成要素534によって生成される情報を、計画構成要素536に提供して、いつ、及び/又はどのように、環境を横切るように車両502を制御するかを決定することができる。本明細書に記載されるように、衝突安全構成要素528は、画像データ、マップデータ、及びlidarデータなどを受け取って、環境内のオブジェクトについての情報を決定することができる。
【0067】
合流点妨害構成要素530は、予測構成要素534から予測された軌道を受け取って、オブジェクトの予測された軌道及び車両502の軌道に基づいて、オブジェクトとの衝突が起き得ると決定することがある。合流点妨害構成要素530は、車両502の現在の軌道、及びオブジェクトの任意数の予測された軌道に基づいて、衝突ゾーンを生成することがある。いくつかの例では、合流点妨害構成要素530は、コスト関数を評価することによって(現在の軌道に加えて)イールド軌道を査定する。ここで、コスト関数は、衝突ゾーンにおける車両502とオブジェクトの時間/空間重複に基づく。コスト関数の出力が、車両502が交通を妨げることになること、及び衝突が起きない(又は起きない確率が非常に高い)ことを示す場合には、合流点妨害構成要素530は、譲る指示が計画構成要素536に送信されるのを防止することがある。そうでない場合には、合流点妨害構成要素530は、譲る指示が計画構成要素536に送信されるのを許すことがある。
【0068】
車線合流構成要素532も、オブジェクトがいる車線に車両502が合流するシナリオでは、予測構成要素534から予測された軌道を受け取って、(例えば、1つ又は複数のマップ524から)環境内の車線を決定することがある。いくつかの例では、車線合流構成要素532は、(車両502が現在位置している)第1の車線の経路と(車両502が合流しようとしている)第2の車線の経路とが合流する合流位置を決定することがある。車線合流構成要素532は、合流位置に基づいて、またいくつかの場合には、合流位置に安全距離を追加して、合流後の車両502とオブジェクトの間にスペースを追加することによって、車両502及びオブジェクトに関連する衝突ゾーンの脱出点を決定することがある。
【0069】
一般に、計画構成要素536は、車両502が環境を横切るために辿るべき経路を決定することができる。例えば、計画構成要素536は、様々なルート及び軌道と、様々な詳細レベルとを決定することができる。例えば、計画構成要素536は、第1の位置(例えば、現在の位置)から第2の位置(例えば、目標位置)まで移動するルートを決定することができる。この説明のために、ルートは、2つの位置の間を移動するための中間地点のシーケンスとすることができる。非限定的な例として、中間地点は、街路、交差点、全地球測位システム(GPS)座標などを含む。さらに、計画構成要素536は、第1の位置から第2の位置までそのルートの少なくとも一部分に沿って自律車両を誘導するための指示を生成することができる。少なくとも1つの例では、計画構成要素536は、中間地点のシーケンス中の第1の中間地点から中間地点のシーケンス中の第2の中間地点まで自律車両をどのように誘導するかを決定することができる。いくつかの例では、この指示は、軌道、又は軌道の一部分とすることもできる。いくつかの例では、複数の軌道が、車両502がナビゲートするために複数の軌道のうちの1つが選択されるリシーディングホライズン(receding horizon)技術によって、実質的に同時に(例えば、技術的許容範囲内で)生成されることもできる。
【0070】
いくつかの事例では、計画構成要素536は、本明細書に記載されるように、イールド軌道コスト及び/又は更新された合流位置に少なくとも部分的には基づいて、車両502の1つ又は複数の軌道を生成することができる。いくつかの例では、計画構成要素536は、線形時相論理及び/又は信号時相論理などの時相論理を使用して、車両502の1つ又は複数の軌道を評価することができる。
【0071】
少なくとも1つの例では、車両コンピューティングデバイス504は、車両502のステアリング、推進、制動、安全、エミッタ、通信、及びその他のシステムを制御するように構成されることができる、1つ又は複数のシステムコントローラ526を含むことができる。これらのシステムコントローラ526は、車両502の運転システム514及び/又はその他の構成要素の対応するシステムと通信し、及び/又はそれらの対応するシステムを制御することができる。
【0072】
理解されるように、本明細書に記載される構成要素(例えば、位置特定構成要素520、知覚構成要素522、1つ又は複数のマップ524、1つ又は複数のシステムコントローラ526、衝突安全構成要素528、合流点妨害構成要素530、車線合流構成要素532、予測構成要素534、及び計画構成要素536)は、例示を目的として分割された状態で記載されている。しかし、これらの様々な構成要素によって実行される動作は、任意の他の構成要素において結合又は実行されることが可能である。例えば、衝突安全構成要素528、合流点妨害構成要素530、車線合流構成要素532、及び/又は予測構成要素534に関連して記載される機能が、システムによって転送されるデータの量を削減するために、知覚構成要素522によって実行されることもある。
【0073】
少なくとも1つの例では、センサシステム506は、lidarセンサ、レーダセンサ、超音波変換器、ソナーセンサ、位置センサ(例えば、GPS、コンパスなど)、慣性センサ(例えば、慣性測定装置(IMU)、加速度計、磁力計、ジャイロスコープなど)、カメラ(例えば、RGB、IR、強度、深度、飛行時間など)、マイクロフォン、ホイールエンコーダ、環境センサ(例えば、温度センサ、湿度センサ、光センサ、圧力センサなど)などを含むことができる。センサシステム506は、上記その他のタイプのセンサのそれぞれを複数含むことができる。例えば、lidarセンサは、車両502の角部、前部、後部、側部、及び/又は上部に位置する個別のlidarセンサを含むこともできる。別の例として、カメラセンサは、車両502の外部及び/又は内部の周囲の様々な位置に配置された複数のカメラを含むことができる。センサシステム506は、車両コンピューティングデバイス504への入力を提供することができる。これに加えて、又は別法としてセンサシステム506は、1つ又は複数のネットワーク538を介して、例えば特定の周波数で、所定の期間の経過後に、ほぼ実時間で、1つ又は複数のコンピューティングデバイスにセンサデータを送信することができる。
【0074】
車両502は、上述のように、光及び/又は音を発出する1つ又は複数のエミッタ508を含むこともできる。この例におけるエミッタ508は、車両502の搭乗者に連絡する内部オーディオ/ビジュアルエミッタを含む。限定ではなく例示を目的として、内部エミッタは、スピーカ、ライト、標識、ディスプレイスクリーン、タッチスクリーン、触覚エミッタ(例えば、振動及び/又は力のフィードバック)、及び機械的アクチュエータ(例えば、シートベルトテンショナ、シートポジショナ、ヘッドレストポジショナなど)などを含むことができる。この例におけるエミッタ508は、外部エミッタも含む。限定ではなく例示を目的として、この例における外部エミッタは、移動方向を合図するライト、又は車両のアクションのその他のインジケータ(例えば、インジケータライト、標識、ライトアレイなど)、及び歩行者又はその他の付近の車両に聴覚的に連絡する1つ又は複数のオーディオエミッタ(例えば、スピーカ、スピーカアレイ、ホーンなど)を含み、これらのうちの1つ又は複数は、音響ビームステアリング技術を備える。
【0075】
車両502は、車両502と1つ又は複数の他の局所又は遠隔のコンピューティングデバイスとの間の通信を可能にする1つ又は複数の通信接続510も含むことができる。例えば、通信接続510は、車両502上の他の局所コンピューティングデバイス及び/又は運転システム514との通信を容易にすることができる。また、通信接続510は、車両が他の付近のコンピューティングデバイス(例えば、他の付近の車両、信号機など)と通信することを可能にすることもできる。通信接続510は、また、車両502が遠隔の遠隔操作コンピューティングデバイス又は他の遠隔サービスと通信することも可能にする。
【0076】
通信接続510は、車両コンピューティングデバイス504を別のコンピューティングデバイス又はネットワーク538等のネットワークに接続するための物理及び/又は論理インタフェースを含むことができる。例えば、通信接続510は、IEEE802.11標準によって規定される周波数などを介するWi-Fiに基づく通信、Bluetooth(登録商標)などの短距離ワイヤレス周波数、セルラ通信(例えば、2G、3G、5G、5GLTE、5Gなど)、又は各コンピューティングデバイスが他のコンピューティングデバイスとのインタフェースをとることを可能にする任意の適当な有線若しくはワイヤレスの通信プロトコルを可能にすることができる。
【0077】
少なくとも1つの例では、車両502は、1つ又は複数の運転システム514を含むことができる。いくつかの例では、車両502は、単一の運転システム514を有することができる。少なくとも1つの例では、車両502が複数の運転システム514を有する場合には、個々の運転システム514は、車両502の対向する端部(例えば、前部及び後部など)に位置決めされることができる。少なくとも1つの例では、運転システム514は、運転システム514及び/又は車両502の周囲の状態を検出する1つ又は複数のセンサシステムを含むことができる。限定ではなく例示を目的として、センサシステムは、運転モジュールのホイールの回転を感知する1つ又は複数のホイールエンコーダ(例えば、ロータリエンコーダ)、運転モジュールの配向及び加速度を測定する慣性センサ(例えば、慣性測定装置、加速度計、ジャイロスコープ、磁力計など)、カメラ又はその他の画像センサ、運転システムの周囲のオブジェクトを音響的に検出する超音波センサ、lidarセンサ、レーダセンサなどを含むことができる。ホイールエンコーダなど、いくつかのセンサは、運転システム514に特有のものとすることができる。いくつかの場合には、運転システム514上のセンサシステムは、車両502の対応するシステム(例えば、センサシステム506)と重複する、又はそれら対応するシステムを補足することができる。
【0078】
運転システム514は、高電圧バッテリ、車両を推進させるモータ、バッテリの直流を他の車両システムによって使用される交流に変換するインバータ、ステアリングモータ及びステアリングラック(電気的なものにすることができる)を含むステアリングシステム、油圧又は電気アクチュエータを含む制動システム、油圧及び/又は空気圧構成要素を含むサスペンションシステム、制動力を分散させてトラクションの喪失を緩和し、制御を維持する安定性制御システム、HVACシステム、照明(例えば、車両の周囲の外部を照明するヘッド/テールライトなどの照明)、並びに1つ又は複数の他のシステム(例えば、冷却システム、安全システム、車載充電システム、DC/DC変換器、高電圧ジャンクション、高電圧ケーブル、充電システム、充電ポートなどのその他の電気的構成要素)など、車両システムの多くを含むことができる。さらに、運転システム514は、センサシステムからデータを受信して前処理し、様々な車両システムの動作を制御することができる、運転システムコントローラを含むことができる。いくつかの例では、運転システムコントローラは、1つ又は複数のプロセッサと、その1つ又は複数のプロセッサに通信可能に結合されたメモリとを含むことができる。メモリは、運転システム514の様々な機能を実行するための1つ又は複数の構成要素を記憶することができる。さらに、運転システム514は、各運転システムによる1つ又は複数の他の局所又は遠隔コンピューティングデバイスとの通信を可能にする1つ又は複数の通信接続も含む。
【0079】
少なくとも1つの例では、直接接続512は、1つ又は複数の運転システム514を車両502の本体と結合する物理インタフェースを提供することができる。例えば、直接接続512は、運転システム514と車両との間のエネルギー、流体、空気、データなどの転送を可能にすることができる。いくつかの事例では、直接接続512は、さらに、運転システム514を車両502の本体に解除可能に固定することもできる。
【0080】
少なくとも1つの例では、位置特定構成要素520、知覚構成要素522、1つ又は複数のマップ524、1つ又は複数のシステムコントローラ526、衝突安全構成要素528、合流点妨害構成要素530、車線合流構成要素532、予測構成要素534、及び計画構成要素536は、上述のようにセンサデータを処理することができ、それぞれの出力を1つ又は複数のネットワーク538を介して1つ又は複数のコンピューティングデバイス540に送信することができる。少なくとも1つの例では、位置特定構成要素520、知覚構成要素522、1つ又は複数のマップ524、1つ又は複数のシステムコントローラ526、衝突安全構成要素528、合流点妨害構成要素530、車線合流構成要素532、予測構成要素534、及び計画構成要素536は、それぞれの出力を、例えば特定の周波数で、所定の期間の経過後に、ほぼ実時間で、1つ又は複数のコンピューティングデバイス540に送信することができる。
【0081】
いくつかの例では、車両502は、センサデータを、ネットワーク538を介して1つ又は複数のコンピューティングデバイス540に送信することができる。いくつかの例では、車両502は、生センサデータをコンピューティングデバイス540に送信することができる。他の例では、車両502は、処理されたセンサデータ、及び/又はセンサデータの表現を、コンピューティングデバイス540に送信することができる。いくつかの例では、車両502は、センサデータを、例えば特定の周波数で、所定の期間の経過後に、ほぼ実時間で、コンピューティングデバイス540に送信することができる。いくつかの場合には、車両502は、センサデータ(未処理又は処理済み)を、1つ又は複数のログファイルとしてコンピューティングデバイス540に送信することができる。
【0082】
コンピューティングデバイス540は、プロセッサ542と、訓練構成要素546を記憶するメモリ544とを含むことができる。
【0083】
いくつかの事例では、訓練構成要素546は、1つ又は複数のモデルを、例えば、環境内のオブジェクトを検出したり、オブジェクトの挙動を予測したりするように訓練する機能を含むことができる。例えば、本明細書に記載される構成要素の一部又は全ての態様は、任意のモデル、アルゴリズム、及び/又は機械学習アルゴリズムを含むことができる。例えば、いくつかの事例では、メモリ544(及び上述のメモリ518)中の構成要素は、ニューラルネットワークとして実施されることができる。いくつかの例では、訓練構成要素546は、ニューラルネットワークを利用して、1つ又は複数のモデルを生成及び/又は実行して、車両502は、の軌道計画において使用されるオブジェクトの挙動の予測の様々な態様を改善することができる。
【0084】
本明細書に記載されるように、例示的なニューラルネットワークは、入力データを一連の接続された層に通して出力を生成する、生物学的に触発された(biologically inspired)アルゴリズムである。また、ニューラルネットワーク内の各層は、別のニューラルネットワークを備える、又は(畳み込みか否かを問わず)任意数の層を備えることができる。本開示の文脈で理解されるように、ニューラルネットワークは、機械学習を利用することができ、この機械学習とは、学習されたパラメータに基づいて出力が生成される広範な種類のこのようなアルゴリズムを指すことができる。
【0085】
ニューラルネットワークの文脈で記載されているが、本開示と矛盾しない任意のタイプの機械学習が使用されることができる。例えば、限定されるわけではないが、機械学習アルゴリズムは、回帰アルゴリズム(例えば、通常の最小二乗回帰(OLSR)、線形回帰、ロジスティック回帰、ワイズ回帰、多変量適応的回帰スプライン(MARS)、局所推定散布図平滑化(locally estimated scatterplot smoothing)(LOESS))、インスタンスベースのアルゴリズム(例えば、リッジ回帰、最小絶対値収縮選択演算子(least absolute shrinkage and selection operator)(LASSO)、弾性ネット(elastic net)、最小角度回帰(least-angle regression)(LARS))、決定木アルゴリズム(例えば、分類及び回帰ツリー(classification and regression tree)(CART)、iterative dichotomiser 3(ID3)、カイ二乗自動相互検出(Chi-squared automatic interaction detection)(CHAID)、決定株、条件付き決定木)、ベイズアルゴリズム(例えば、ナイーブベイズ、ガウシアンナイーブベイズ、多項ナイーブベイズ、平均一依存推定器(average one-dependence estimators)(AODE)、ベイジアン信念ネットワーク(BNN)、ベイジアンネットワーク)、クラスタリングアルゴリズム(例えば、k平均、k中央値、期待値最大化(EM)、階層的クラスタリング)、連関規則学習アルゴリズム(association rule learning algorithm)(例えば、パーセプトロン、バックプロパゲーション、ホップフィールドネットワーク、放射基底関数ネットワーク(RBFN))、ディープラーニングアルゴリズム(例えば、ディープボルツマンマシン(DBM)、深層信念ネットワーク(DBN)、畳み込みニューラルネットワーク(CNN)、スタックドオートエンコーダ(Stacked Auto-Encoder))、次元削減アルゴリズム(例えば、主成分分析(PCA)、主成分回帰(PCR)、部分的最小二乗回帰(PLSR)、サモンマッピング、多次元尺度構成法(MDS)、射影追跡、線形判別分析(LDA)、混合判別分析(MDA)、二次判別分析(QDA)、フレキシブル判別分析(FDA))、アンサンブルアルゴリズム(例えば、ブースティング、ブートストラップアグリゲーティング(バギング)、アダブースト、スタッキング(Stacked Generalization)(ブレンディング)、勾配ブースティングマシン(GBM)、勾配ブースティング回帰ツリー(GBRT)、ランダムフォレスト)、SVM(サポートベクターマシン)、教師あり学習、教師なし学習、半教師あり学習などを含むことができる。
【0086】
アーキテクチャの追加の例は、ResNET50、ResNet101,VGG、DenseNet、及びPointNetなどのニューラルネットワークを含む。
【0087】
車両502のプロセッサ516、及びコンピューティングデバイス540のプロセッサ542は、本明細書に記載されるようにデータを処理し、動作を実行する命令を実行することができる、任意の適当なプロセッサとすることができる。限定ではなく例示を目的として、プロセッサ516及び542は、1つ又は複数の中央処理装置(CPU)、グラフィック処理装置(GPU)、又は電子データを処理してその電子データをレジスタ及び/又はメモリに記憶されることができる他の電子データに変換するその他の任意のデバイス若しくはデバイスの一部分を備えることができる。いくつかの例では、集積回路(例えば、ASICなど)、ゲートアレイ(例えば、FPGAなど)、及びその他のハードウェアデバイスも、それらが符号化された命令を実施するように構成されている限り、プロセッサとみなすことができる。
【0088】
メモリ518及び544は、非一時的コンピュータ可読媒体の例である。メモリ518及び544は、オペレーティングシステム、並びに本明細書に記載される方法、及びその様々なシステムに帰す機能を実施するための1つ又は複数のソフトウェアアプリケーション、命令、プログラム、及び/又はデータを記憶することができる。様々な実装では、メモリは、スタティックランダムアクセスメモリ(SRAM)、シンクロナスダイナミックRAM(SDRAM)、不揮発性/フラッシュタイプメモリ、又は情報を記憶することができるその他の任意のタイプのメモリなど、任意の適当なメモリ技術を用いて実装されることができる。本明細書に記載されるアーキテクチャ、システム、及び個々の要素は、多くの他の論理構成要素、プログラム構成要素、及び物理構成要素を含むことができ、それらのうち、添付の図面に示されているものは、本明細書の説明に関係する単なる例である。
【0089】
図5は分散したシステムとして図示されているが、代替の例では、車両502の構成要素は、コンピューティングデバイス540に関連付けられることができ、及び/又はコンピューティングデバイス540の構成要素は、車両502に関連付けられることができることに留意されたい。即ち、車両502は、コンピューティングデバイス540に関連する機能のうちの1つ又は複数を実行することができ、またその逆も言えるということである。さらに、衝突安全構成要素528及び/又は計画構成要素536の態様は、本明細書に記載されるデバイスのいずれにおいて実行されてもよい。例えば、図1図4を参照して記載される機能及び構成要素のいずれか、又は全てが、車両502の衝突安全構成要素528又はその他の構成要素によって実施されることもできる。
【0090】
図6は、本開示の例による、オブジェクトに譲るとオブジェクトの軌道を塞ぐことになるという決定に基づいて車両が軌道を辿るコストを決定する例示的なプロセス600を示す図である。例えば、プロセス600の一部又は全ては、本明細書に記載されるように、図5の1つ又は複数の構成要素によって実行されることができる。例えば、プロセス600の一部又は全ては、車両コンピューティングデバイス504、コンピューティングデバイス540、又はその他の任意のコンピューティングデバイス若しくはコンピューティングデバイスの組合せによって実行されることができる。さらに、例示的なプロセス600に記載される動作はいずれも、並列に実行されたり、プロセス600に示される以外の順序で実行されたり、省略されたり、プロセス700と結合されたり、他のプロセスと結合されたりする可能性がある。
【0091】
動作602は、車両が環境内で辿る第1の軌道を受け取ることを含む。いくつかの例では、この軌道は、車両が環境を横切るときに、マップデータ及びセンサデータなどに基づいて車両によって生成されることがある。軌道が、コンピューティングデバイス540などの遠隔のコンピューティングデバイスから受け取られる例も考えられる。
【0092】
動作604は、少なくとも部分的にはセンサデータに基づいて、環境内のオブジェクトの第2の軌道を決定することを含む。例では、車両が環境を横切るときにそれぞれ対応するタイプのセンサデータを取り込むlidarセンサ、レーダセンサ、及び飛行時間センサなどが、車両に含まれることがある。センサデータは、環境内のオブジェクトを検出するために、さらにはオブジェクトのオブジェクトタイプ、オブジェクトのスピード又は速度、オブジェクトの特性、及び車両又は環境内のランドマークに対するオブジェクトの位置などを決定するために、使用されることもある。いくつかの例では、オブジェクトの軌道は、センサデータに基づいて決定されたオブジェクトについての情報に基づく、オブジェクトが環境内で辿ることになる予測された軌道であることもある。
【0093】
動作606は、第1の軌道を辿る車両に関連する第1の領域及び第2の軌道を辿るオブジェクトに関連する第2の領域に少なくとも部分的には基づいて、重複領域を決定することを含む。図2に関連して上述したように、重複領域は、オブジェクトが予測された軌道を辿るときのオブジェクトのサイズの領域に部分的に基づくことがある。重複領域は、また、予測された軌道を辿るオブジェクトに関連する領域を通る軌道を辿る車両のサイズに基づくこともある。
【0094】
動作608は、オブジェクトに譲るとオブジェクトの第2の軌道を妨害することになるかどうかを決定することを含む。例えば、車両が停止又は減速する場合に、車両は、オブジェクトの予測された軌道が停止又は減速した車両によって塞がれると決定することがある。
【0095】
オブジェクトに譲っても第2の軌道を塞がないと決定された(動作608で「いいえ」)場合には、プロセスは、オブジェクトに譲るように車両を制御することを含む、動作610に進むことがある。しかし、オブジェクトに譲っても第2の軌道を塞がないと決定された(動作608で「はい」)場合には、プロセスは、少なくとも部分的には重複領域に基づいてコスト関数を評価することによって車両が第1の軌道をたどり続けることのコストを決定することを含む、動作612に進むことがある。いくつかの例では、車両は、オブジェクトに対するイールドを実行するコスト関数を評価することもある。上述のように、コスト関数は、車両とオブジェクトの時間/空間重複の時間重複成分に関連する第1項を含むことがある。いくつかの例では、時間重複成分は、車両が重複領域の対応する進入点及び脱出点に到達する予測された時間と、オブジェクトが重複領域の対応する進入点及び脱出点に到達する予測された時間とに基づくことがある。
【0096】
コスト関数は、衝突ゾーンの全長に比例する、車両が合流点内に進んでいる距離を評価する、距離重複成分に関連する第2項を含むこともある。距離重複成分は、車両が既にオブジェクトの経路を塞ぐのに十分なほど合流点内に進んでいるかどうかを決定するものであり、そうである場合には、車両を第1の軌道に沿って進ませるために(及び/又は例えばより速く合流点から脱出するために加速させるために)計画構成要素によって使用されることがある。
【0097】
動作614は、少なくとも部分的にはコストに基づいて、第1の軌道に沿って進むように車両を制御することを含む。例えば、車両は、元の軌道をたどっても衝突は生じないが、オブジェクトに譲ると、オブジェクトがオブジェクトの予測された軌道に沿って進むことを妨害し、及び/又は合流点の交通を妨害することになると決定することもある。従って、車両は、イールド軌道を実行することのコストが軌道閾値より大きい場合には、軌道に沿って進み、イールド軌道が実行されることを防止することもある。
【0098】
図7A及び図7Bは、本開示の例による、車線に合流する車両とオブジェクトとの間に衝突が起こりうると決定し、その車線内の経路の合流位置に基づいて衝突ゾーンを更新する例示的なプロセス700を示す図である。例えば、プロセス700の一部又は全ては、本明細書に記載されるように、図5の1つ又は複数の構成要素によって実行されることができる。例えば、プロセス700の一部又は全ては、車両コンピューティングデバイス504、コンピューティングデバイス540、又はその他の任意のコンピューティングデバイス若しくはコンピューティングデバイスの組合せによって実行されることができる。さらに、例示的なプロセス700に記載される動作はいずれも、並列に実行されたり、プロセス700に示される以外の順序で実行されたり、省略されたり、プロセス600と結合されたり、他のプロセスと結合されたりする可能性がある。
【0099】
動作702は、車両が環境内で合流点の第1の車線に位置すると決定することを含み、ここで、合流点は、第1の車線及び第2の車線を含む。例えば、車両は、マップデータ及び/又は位置特定システムから、車両が合流点に位置していると決定することもある。車両は、合流点が合流タイプの合流点(高速道路の入口/出口など)、信号機付きの合流点、4方向停止、及び無信号交差点などであると検出することもある。
【0100】
動作704は、少なくとも部分的にはマップデータに基づいて、第2の車線に関連する合流点の第1の脱出点を決定することを含む。例えば、第1の脱出点は、マップデータ内に示される第2の車線内の合流点の範囲に基づくことがある。
【0101】
動作706は、車両が第1の車線から第2の車線へ合流点を通って辿る第1の軌道を受け取ることを含む。いくつかの例では、第1の軌道は、車両が環境を横切るときに、マップデータ及びセンサデータなどに基づいて車両によって生成されることがある。第1の軌道が、コンピューティングデバイス540などの遠隔のコンピューティングデバイスから受け取られる例も考えられる。
【0102】
動作708は、少なくとも部分的にはセンサデータに基づいて、第2の車線に位置するオブジェクトを検出することを含む。例では、車両が環境を横切るときにそれぞれ対応するタイプのセンサデータを取り込むlidarセンサ、レーダセンサ、及び飛行時間センサなどが、車両に含まれることがある。センサデータは、環境内のオブジェクトを検出するために、オブジェクトのオブジェクトタイプ、オブジェクトのスピード又は速度、オブジェクトの特性、及び第2の車線内のオブジェクトの位置などを決定するために、使用されることもある。いくつかの例では、車両は、センサデータに基づいて決定されたオブジェクトについての情報に基づいて、環境内のオブジェクトの予測された軌道を決定することもある。
【0103】
動作710は、車両とオブジェクトとの間で衝突が起こりうるかどうかを決定することを含む。例えば、車両は、第1の軌道を辿る車両及び予測された軌道を辿るオブジェクトに関連する領域を決定し、それらの領域が重複していると決定することがある。いくつかの場合には、車両は、車両とオブジェクトとの間で衝突が起こりうるかどうかを決定するときに、位置(例えば、車線内のオブジェクト又は車両のポジション)、スピード、及び加速度などの潜在的な変動を考慮することもある。
【0104】
衝突が起こり得ない(又は起きない可能性が非常に高い、即ち動作710で「いいえ」)と車両が決定した場合には、プロセスは、車両が合流点を通って進むように制御される、動作712に進むことがある。例えば、車両は、第1の軌道をたどり続けて合流点を抜けることがある。しかし、衝突が起こりうる(又は起きる可能性が高い、即ち動作710で「はい」)と車両が決定した場合には、プロセスは、「A」を経由して図7Bの動作714に進むことがある。
【0105】
動作714は、少なくとも部分的には第1の脱出点に基づく、車両とオブジェクトとの間で衝突の可能性がある領域を含む、衝突ゾーンを決定することを含む。換言すれば、衝突ゾーンの脱出点は、マップデータから受け取られる合流点の範囲に対応することがある。いくつかの場合には、車両は、合流点を通って第1の軌道を辿る車両に関連する領域(安全エンベロープを含むこともある)及び予測された軌道を辿るオブジェクトに関連する領域に基づいて、車両及びオブジェクトの進入点を決定することがある。
【0106】
動作716は、第1の車線の経路と第2の車線の経路とが合流する合流位置を決定することを含む。例では、合流位置は、マップデータから決定されることがある。さらに、いくつかの場合には、それぞれの車線の経路は、一般に車線の中心に対応することがあり、及び/又は車両の第1の軌道及びオブジェクトの予測された軌道に対応することもある。
【0107】
動作718は、少なくとも部分的には合流位置に基づいて、衝突ゾーンに関連する第2の脱出点を決定することを含む。いくつかの事例では、第2の脱出点は、合流点の範囲に基づいて決定される衝突ゾーンのサイズより、衝突ゾーンのサイズを縮小することがある。いくつかの場合には、車両は、合流位置に安全距離を追加することがあり、ここで、第2の脱出点は、安全距離の外側にある。安全距離は、上述のように、第2の車線のスピード制限、オブジェクトのスピード、並びにオブジェクトの予測された加速度及び/又は減速度などに基づくことがある。
【0108】
動作720は、少なくとも部分的には第2の脱出点に基づいて車両の第2の軌道を決定することを含む。例えば、第1の軌道は、合流中及び/又は合流後に車両に車両とオブジェクトの間に不要なスペースを設けさせることがあり、及び/又は車両が合流点を脱出することが妨げられるために合流点の交通を妨害することがある。一方、第2の軌道は、合流中及び/又は合流後に車両とオブジェクトの間のスペースを縮小することがあり、及び/又は合流中及び/又は合流後に車両が合流点の交通を妨害するのを防止することがある。最後に、動作722は、第2の軌道を辿るように車両を制御することを含む。
【0109】
例示的な条項
A:1つ又は複数のプロセッサと、命令を記憶する1つ又は複数のコンピュータ可読媒体とを備え、命令は、1つ又は複数のプロセッサによって実行されたときに、環境内の合流点であって、第1の車線及び第2の車線を含む合流点を、マップデータに少なくとも部分的には基づいて決定することと、自律車両が第1の車線に位置すると決定することと、合流点の第2の車線に関連する第1の脱出点を、マップデータに少なくとも部分的には基づいて決定することと、第1の車線から第2の車線内まで合流点を通って自律車両が辿る、第1の脱出点を通過する第1の軌道を決定することと、第2の車線内に位置するオブジェクトを、センサデータに少なくとも部分的には基づいて検出することと、第1の軌道に関連する第2の領域に少なくとも部分的には基づく、自律車両とオブジェクトとの間に重複の可能性がある第1の領域を含む重複領域を決定することと、第1の車線の経路と第2の車線の経路とが合流する合流位置を、オブジェクトを検出したことに少なくとも部分的には基づいて決定することと、重複領域に関連する第2の脱出点を、合流位置に少なくとも部分的には基づいて決定することと、自律車両の第2の軌道を、第2の脱出点に少なくとも部分的には基づいて決定することと、第2の軌道を辿るように自律車両を制御することとを含む動作を実行するシステム。
【0110】
B:重複領域の第2の脱出点は、重複領域の第1の脱出点よりも重複領域のサイズを縮小する、段落Aのシステム。
【0111】
C:重複領域の第2の脱出点は、合流位置に追加される安全距離にさらに基づく、段落A又はBのシステム。
【0112】
D:安全距離は、第2の車線に関連するスピード制限又はオブジェクトの軌道のうちの1つ又は複数に少なくとも部分的には基づく、段落Cのシステム。
【0113】
E:環境内の合流点であって、第1の車線及び第2の車線を含む合流点を決定するステップと、第2の車線内に位置するオブジェクトを検出するステップと、オブジェクトを検出したことに応答して、第1の車線の第1の経路と第2の車線の第2の経路とが合流する合流位置を決定するステップと、合流位置に少なくとも部分的には基づいて、車両及びオブジェクトに関連する重複領域の脱出点を決定するステップと、脱出点に少なくとも部分的には基づいて、車両が第2の車線に進入する軌道を決定するステップと、その軌道を辿るように車両を制御するステップとを含む方法。
【0114】
F:上記軌道は、第1の軌道であり、車両は、オブジェクトが重複領域に進入する前に第2の車線に進入し、この方法は、オブジェクトが、重複領域内で車両の閾値距離に進入することを検出するステップと、オブジェクトの第2の軌道を決定するステップであり、第2の軌道が、オブジェクトが閾値距離に進入したことに応答し、オブジェクトが第2の車線内で車両に後続することになるという予測に少なくとも部分的には基づくステップとをさらに含み、上記軌道を辿るように車両を制御するステップは、オブジェクトの第2の軌道に少なくとも部分的には基づいて、車両がオブジェクトに譲ることを防止するステップを含む、段落Eの方法。
【0115】
G:車両が第2の車線に進入する軌道は、転回アクション又は合流アクションを含む、段落E又はFの方法。
【0116】
H:第1の経路は、第1の車線の第1の中心線を実質的にたどり、第2の経路は、第2の車線の第2の中心線を実質的に辿る、請求項E~Gのいずれかの方法。
【0117】
I:合流点のサイズをマップデータから決定するステップと、合流点のサイズに少なくとも部分的には基づいて、重複領域の第1の寸法を決定するステップとをさらに含み、重複領域の脱出点を決定するステップは、重複領域の第2の寸法を決定するステップを含み、第2の寸法は、第1の寸法より小さい、請求項E~Hのいずれかの方法。
【0118】
J:重複領域の脱出点を決定するステップは、合流位置に追加される安全距離にさらに基づく、請求項E~Iのいずれかの方法。
【0119】
K:安全距離は、第2の車線に関連するスピード制限又はオブジェクトの軌道に少なくとも部分的には基づく、段落Jの方法。
【0120】
L:安全距離は、車両が現在のスピードからスピード制限に到達する時間にさらに基づく、段落Kの方法。
【0121】
M:1つ又は複数のプロセッサによって実行されたときに、環境内の合流点であって、第1の車線及び第2の車線を含む合流点を決定することと、車両が第1の車線から第2の車線に進入する車両軌道を決定することと、第2の車線内に位置するオブジェクトを検出することと、オブジェクトに関連するオブジェクト軌道を決定することと、第1の車線の第1の経路と第2の車線の第2の経路とが合流する合流位置を決定することと、車両軌道及びオブジェクト軌道に関連する領域の間の重複領域を決定することと、合流位置に少なくとも部分的には基づいて、重複領域の脱出点を決定することと、調整された車両軌道として、脱出点に少なくとも部分的には基づいて、車両軌道を改変することと、調整された車両軌道を辿るように車両を制御することとを含む動作を実行する命令を記憶する1つ又は複数のコンピュータ可読媒体。
【0122】
N:上記の動作は、オブジェクトが重複領域内で車両の閾値距離に進入することを検出することと、オブジェクトが閾値距離に進入したことに応答し、オブジェクトが第2の車線内で車両に後続することになるという予測に少なくとも部分的には基づく、オブジェクトの第2のオブジェクト軌道を決定することとをさらに含み、調整された車両の軌道を辿るように車両を制御することは、オブジェクトの第2のオブジェクト軌道に少なくとも部分的には基づいて、車両がオブジェクトに譲ることを防止することを含む、段落Mの1つ又は複数のコンピュータ可読媒体。
【0123】
O:車両が第2の車線に進入する車両軌道は、転回アクション又は合流アクションを含む、段落M又はNの1つ又は複数のコンピュータ可読媒体。
【0124】
P:第1の経路は、第1の車線の第1の中心線を実質的にたどり、第2の経路は、第2の車線の第2の中心線を実質的に辿る、請求項M~Oのいずれかの1つ又は複数のコンピュータ可読媒体。
【0125】
Q:上記の動作は、合流点のサイズをマップデータから決定することと、合流点のサイズに少なくとも部分的には基づいて、重複領域の第1の寸法を決定することとをさらに含み、重複領域の脱出点を決定することは、重複領域の第2の寸法を決定することを含み、第2の寸法は、第1の寸法より小さい、請求項M~Pのいずれかの1つ又は複数のコンピュータ可読媒体。
【0126】
R:重複領域の脱出点を決定することは、合流位置に追加される安全距離にさらに基づく、請求項M~Qのいずれかの1つ又は複数のコンピュータ可読媒体。
【0127】
S:安全距離は、第2の車線に関連するスピード制限に少なくとも部分的には基づく、段落Rの1つ又は複数のコンピュータ可読媒体。
【0128】
T:安全距離は、車両が現在のスピードからスピード制限に到達する時間にさらに基づく、段落Sの1つ又は複数のコンピュータ可読媒体。
【0129】
上述の例示的な条項は、1つの特定の実装に関連して述べられているが、本明細書の文脈では、これらの例示的な条項の内容が、方法、デバイス、システム、コンピュータ可読媒体。及び/又は別の実装態様によって実装されることも可能であることを理解されたい。さらに、例A~Tはいずれも、単独で実装されることもあれば、例A~Tのうちの任意の他の1つ又は複数と組み合わせて実装されることもある。
【0130】
結論
本明細書に記載される技術の1つ又は複数の例について述べたが、その様々な改変、追加、入れ替え、及び均等物は、本明細書に記載される技術の範囲に含まれる。
【0131】
例の説明では、例示を目的として請求される対象の具体例を示す、本明細書の一部を構成する添付の図面が参照される。他の例が使用されることも可能であること、及び構造上の変更などの変更又は改変が加えられることが可能であることを理解されたい。このような例、変更、又は改変は、所期の請求される対象の範囲を必ずしも逸脱するものではない。個々の例は、本明細書では、特定の特徴又は構成要素を有するものとして記載されているが、個々の例の特徴及び構成要素が組み合わされ、合わせて使用されることも可能である。本明細書における動作は、特定の順序で提示されることもあるが、いくつかの場合には、順序が変更され、記載されるシステム及び方法の機能を変化させることなく、特定の入力が異なる時点で、又は異なる順序で提供されるようにすることも可能である。開示される手順も、異なる順序で実行されることもあり得る。さらに、本明細書にある様々な計算は、開示される順序で実行されなくてもよく、代替の計算の順序を用いた他の例も、容易に実装されうる。順序が入れ替えられるだけでなく、これらの計算は、結果を変えずに部分的な計算に分解されることもあり得る。
図1
図2
図3A
図3B
図4
図5
図6
図7A
図7B