(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-10-04
(45)【発行日】2024-10-15
(54)【発明の名称】静止物データ生成装置、制御方法、プログラム及び記憶媒体
(51)【国際特許分類】
G09B 29/00 20060101AFI20241007BHJP
G01C 21/28 20060101ALI20241007BHJP
【FI】
G09B29/00 Z
G01C21/28
(21)【出願番号】P 2018162012
(22)【出願日】2018-08-30
【審査請求日】2021-07-16
【審判番号】
【審判請求日】2023-09-05
(73)【特許権者】
【識別番号】000005016
【氏名又は名称】パイオニア株式会社
(74)【代理人】
【識別番号】100107331
【氏名又は名称】中村 聡延
(72)【発明者】
【氏名】乘松 直人
(72)【発明者】
【氏名】松本 令司
(72)【発明者】
【氏名】天野 克巳
(72)【発明者】
【氏名】小山 和紀
【合議体】
【審判長】川俣 洋史
【審判官】門 良成
【審判官】殿川 雅也
(56)【参考文献】
【文献】国際公開第2013/076829(WO,A1)
【文献】特開2018-132985(JP,A)
【文献】道川隆士、外5名,“計測点群データからの街路樹情報の抽出と維持管理への応用”,「第43回環境システム研究論文発表会講演集土木学会環境システム委員会 編」,土木学会,2015年10月31日,第43巻,pp.89-95
【文献】Fabrice Monnier et al.,“Trees detection fromlaser point clouds acquired in dense urban areas by a mobile mapping system”,「ISPRS Annals of the Photogrammetry, RemoteSensing and Spatial Information Sciences, 2012 XXII ISPRS Congress, Volume I-3,pp.245-250」,[online],2012.08.25,ResearchGate GmbH.,ResearchGate,[2023年1月17日検索],インターネット<URL: https://www.researchgate.net/publication/266342530_Trees_detection_from_laser_point_clouds_acquired_in_dense_urban_areas_by_a_mobile_mapping_system>
(58)【調査した分野】(Int.Cl.,DB名)
G09B 29/00
G09B 29/10
G01C 21/26-21/36
(57)【特許請求の範囲】
【請求項1】
空間を区切った領域であって、計測装置が計測した物体
の計測点を含む領域から、植生の計測点を含む領域を検出する検出手段と、
前記物体の計測点を含む領域から、前記植生の計測点
を含む領域を除外した領域に対し、静止物が存在する領域であることを示す静止物データを生成する生成手段と、
を有し、
前記検出手段は、
前記計測点が平面を形成する前記領域である第1領域を判定する第1判定手段と、
前記計測点が柱状体を形成する前記領域である第2領域を判定する第2判定手段と、
前記物体の計測点を含む領域であって、前記第1領域又は前記第2領域のいずれにも該当しない領域を、前記植生の計測点を含む領域として判定する第3判定手段と、を有する静止物データ生成装置。
【請求項2】
前記領域ごとに、前記計測点の点群の
第1主成分
、第2主成分、及び第3主成分に対応する3組の固有値及び固有ベクトルを
、前記空間を区切った領域ごとの共分散行列から算出する算出手段をさらに有し、
前記第1判定手段は、前記算出手段の算出結果に基づき、前記第1領域を判定し、
前記第2判定手段は、前記算出手段の算出結果に基づき、前記第2領域を判定する、
請求項1に記載の静止物データ生成装置。
【請求項3】
前記生成手段は、前記物体の計測点を含む領域から、動的物体の計測点を含む領域
をさらに除外した領域に対し、静止物が存在する領域であることを示す静止物データを生成する請求項1または2に記載の静止物データ生成装置。
【請求項4】
前記静止物データを、計測部により動的物体の検知を行う情報処理装置へ送信する送信手段をさらに備える請求項1~
3のいずれか一項に記載の静止物データ生成装置。
【請求項5】
静止物データ生成装置が実行する制御方法であって、
空間を区切った領域であって、計測装置が計測した物体
の計測点を含む領域から、植生の計測点を含む領域を検出する検出工程と、
前記物体の計測点を含む領域から、前記植生の計測点
を含む領域を除外した領域に対し、静止物が存在する領域であることを示す静止物データを生成する生成工程と、を有し、
前記検出工程は、
前記計測点が平面を形成する前記領域である第1領域を判定する第1判定工程と、
前記計測点が柱状体を形成する前記領域である第2領域を判定する第2判定工程と、
前記物体の計測点を含む領域であって、前記第1領域又は前記第2領域のいずれにも該当しない領域を、前記植生の計測点を含む領域として判定する第3判定工程と、を有する
制御方法。
【請求項6】
コンピュータが実行するプログラムであって、
空間を区切った領域であって、計測装置が計測した物体
の計測点を含む領域から、植生の計測点を含む領域を検出する検出手段と、
前記物体の計測点を含む領域から、前記植生の計測点
を含む領域を除外した領域に対し、静止物が存在する領域であることを示す静止物データを生成する生成手段
として前記コンピュータを機能させ、
前記検出手段は、
前記計測点が平面を形成する前記領域である第1領域を判定する第1判定手段と、
前記計測点が柱状体を形成する前記領域である第2領域を判定する第2判定手段と、
前記物体の計測点を含む領域であって、前記第1領域又は前記第2領域のいずれにも該当しない領域を、前記植生の計測点を含む領域として判定する第3判定手段と、を有する
プログラム。
【請求項7】
請求項
6に記載のプログラムを記憶する記憶媒体。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、動的物体の検知に用いられるデータに関する。
【背景技術】
【0002】
従来から、レーザスキャナなどの計測装置を用いて計測した周辺物体の形状データを、予め周辺物体の形状が記憶された地図データとマッチングすることで、車両の自己位置を推定する技術が知られている。例えば、特許文献1には、空間を所定の規則で分割したボクセル中における検出物が静止物か移動物かを判定し、静止物が存在するボクセルを対象として地図データと計測データとのマッチングを行う自律移動システムが開示されている。また、特許文献1には、各ボクセルのうち静止物が存在すると設定されたボクセルを示す地図データを記憶する点についても開示されている。また、非特許文献1には、ライダなどから得られた計測点群を解析することで、木などの植生を構成する計測点群を認識する技術が開示されている。
【先行技術文献】
【特許文献】
【0003】
【非特許文献】
【0004】
【文献】Fabrice Monnier, Bruno Vallet, Bahman Soheilian, TREES DETECTION FROM LASER POINT CLOUDS ACQUIRED IN DENSE URBAN AREAS BY A MOBILE MAPPING SYSTEM, [online], 2012, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, [平成30年7月14日検索], インターネット〈URL:https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/I-3/245/2012/isprsannals-I-3-245-2012.pdf〉
【発明の概要】
【発明が解決しようとする課題】
【0005】
動的物体の検知を行う場合には、地図データ上において静止物が存在すると設定された領域については動的物体の検知対象から除外することで、処理負荷の低減や動的物体の検知精度の向上を図ることが可能である。一方、植生は移動物ではないため、特許文献1の地図データでは静止物として扱われる。しかしながら、植生を含むボクセルは、本来動的物体が存在し得る領域であるため、検知すべき動的物体を見落とす可能性がある。
【0006】
本発明は、上記のような課題を解決するためになされたものであり、動的物体の検知において好適に利用可能な静止物に関する静止物データを生成する静止物データ生成装置を提供することを主な目的とする。
【課題を解決するための手段】
【0007】
請求項に記載の発明は、空間を区切った領域であって、計測装置が計測した物体の計測点を含む領域から、植生の計測点を含む領域を検出する検出手段と、前記物体の計測点を含む領域から、前記植生の計測点を含む領域を除外した領域に対し、静止物が存在する領域であることを示す静止物データを生成する生成手段と、を有し、前記検出手段は、前記計測点が平面を形成する前記領域である第1領域を判定する第1判定手段と、前記計測点が柱状体を形成する前記領域である第2領域を判定する第2判定手段と、前記物体の計測点を含む領域であって、前記第1領域又は前記第2領域のいずれにも該当しない領域を、前記植生の計測点を含む領域として判定する第3判定手段と、を有する。
【0008】
また、請求項に記載の発明は、静止物データ生成装置が実行する制御方法であって、空間を区切った領域であって、計測装置が計測した物体の計測点を含む領域から、植生の計測点を含む領域を検出する検出工程と、前記物体の計測点を含む領域から、前記植生の計測点を含む領域を除外した領域に対し、静止物が存在する領域であることを示す静止物データを生成する生成工程と、を有し、前記検出工程は、前記計測点が平面を形成する前記領域である第1領域を判定する第1判定工程と、前記計測点が柱状体を形成する前記領域である第2領域を判定する第2判定工程と、前記物体の計測点を含む領域であって、前記第1領域又は前記第2領域のいずれにも該当しない領域を、前記植生の計測点を含む領域として判定する第3判定工程と、を有する。
【0009】
また、請求項に記載の発明は、コンピュータが実行するプログラムであって、空間を区切った領域であって、計測装置が計測した物体の計測点を含む領域から、植生の計測点を含む領域を検出する検出手段と、前記物体の計測点を含む領域から、前記植生の計測点を含む領域を除外した領域に対し、静止物が存在する領域であることを示す静止物データを生成する生成手段として前記コンピュータを機能させ、前記検出手段は、前記計測点が平面を形成する前記領域である第1領域を判定する第1判定手段と、前記計測点が柱状体を形成する前記領域である第2領域を判定する第2判定手段と、前記物体の計測点を含む領域であって、前記第1領域又は前記第2領域のいずれにも該当しない領域を、前記植生の計測点を含む領域として判定する第3判定手段と、を有する。
【図面の簡単な説明】
【0010】
【
図2】車載機及びサーバ装置のブロック構成を示す。
【
図3】ボクセルデータの概略的なデータ構造の一例を示す。
【
図4】ボクセルデータ生成処理の手順を示すフローチャートである。
【
図5】植生判定処理の手順を示すフローチャートである。
【
図6】位置推定処理の手順を示すフローチャートである。
【
図7】第1実施例に基づく位置推定と、比較例に基づく位置推定との処理の概要を示す図である。
【
図8】第2実施例に係るボクセルデータの概略的なデータ構造の一例を示す。
【
図9】第2実施例に係るボクセルデータ生成処理の手順を示すフローチャートである。
【
図10】第2実施例に係る動的物体検知処理の手順を示すフローチャートである。
【発明を実施するための形態】
【0011】
本発明の好適な実施形態によれば、静止物データ生成装置は、空間を区切った領域であって、計測装置が計測した物体に関する計測点を含む領域から、植生の計測点を含む領域を検出する検出手段と、前記物体の計測点を含む領域から、前記植生の計測点のみを含む領域を少なくとも除外した領域に対し、静止物が存在する領域であることを示す静止物データを生成する生成手段と、を有する。「空間を区切った領域」とは、空間を所定の規則により分割した領域であり、例えば大きさが一定の直方体又は立方体である。この態様では、静止物データ生成装置は、経時的な位置の変化が生じる植生の領域を、静止物が存在する領域であることを示す静止物データを生成する対象から除外する。これにより、静止物データ生成装置は、動的物体の検知に用いた場合に動的物体の見落としが発生しない静止物データを好適に生成することができる。
【0012】
上記静止物データ生成装置の一態様では、前記検出手段は、前記算出手段の算出結果に基づき、前記計測点が平面を形成する前記領域である第1領域を判定する第1判定手段と、前記算出手段の算出結果に基づき、前記計測点が柱状体を形成する前記領域である第2領域を判定する第2判定手段と、前記物体の計測点を含む領域であって、前記第1領域又は前記第2領域のいずれにも該当しない領域を、前記植生の計測点を含む領域として判定する第3判定手段と、を有する。この態様により、静止物データ生成装置は、植生の計測点を含む領域を的確に検出することができる。
【0013】
上記静止物データ生成装置の他の一態様では、前記生成手段は、前記物体の計測点を含む領域から、動的物体の計測点を含む領域と、前記植生の計測点のみを含む領域と、を少なくとも除外した領域に対し、静止物が存在する領域であることを示す静止物データを生成する。この態様により、静止物データ生成装置は、静止物データを好適に生成することができる。
【0014】
上記静止物データ生成装置の他の一態様では、前記生成手段は、前記物体の計測点を含む領域から、動的物体の計測点を含む領域を少なくとも除外した領域に対し、静止物が存在する領域であることを示す静止物データを生成する。この態様により、静止物データ生成装置は、静止物が存在する領域であることを示す静止物データを生成する対象から、動的物体が現れる可能性がある領域をより確実に除外することができる。
【0015】
上記静止物データ生成装置の他の一態様では、静止物データ生成装置は、前記静止物データを、計測部により動的物体の検知を行う情報処理装置へ送信する送信手段をさらに備える。この態様により、静止物データ生成装置は、動的物体の検知に好適な静止物データを情報処理装置(例えば自動運転を行う車両等)に供給することができる。
【0016】
本発明の他の実施形態によれば、静止物データ生成装置が実行する制御方法であって、空間を区切った領域であって、計測装置が計測した物体に関する計測点を含む領域から、植生の計測点を含む領域を検出する検出工程と、前記物体の計測点を含む領域から、前記植生の計測点のみを含む領域を少なくとも除外した領域に対し、静止物が存在する領域であることを示す静止物データを生成する生成工程と、を有する。静止物データ生成装置は、この制御方法を実行することで、動的物体の検知に用いた場合に動的物体の見落としが発生しない静止物データを好適に生成することができる。
【0017】
本発明の他の実施形態によれば、コンピュータが実行するプログラムであって、空間を区切った領域であって、計測装置が計測した物体に関する計測点を含む領域から、植生の計測点を含む領域を検出する検出手段と、前記物体の計測点を含む領域から、前記植生の計測点のみを含む領域を少なくとも除外した領域に対し、静止物が存在する領域であることを示す静止物データを生成する生成手段として前記コンピュータを機能させる。静止物データ生成装置は、このプログラムを実行することで、動的物体の検知に用いた場合に動的物体の見落としが発生しない静止物データを好適に生成することができる。好適には、上記プログラムは、記憶媒体に記憶されるとよい。
【実施例】
【0018】
以下、図面を参照して本発明の好適な実施例について説明する。
【0019】
<第1実施例>
第1実施例は、ボクセルデータに基づく位置推定に関する。
【0020】
(1)
地図更新システムの概要
図1は、第1実施例に係る地図更新システムの概略構成である。地図更新システムは、車両と共に移動する車載機1と、地図情報の配信を行うサーバ装置2と、を備える。なお、
図1では、サーバ装置2と通信を行う車載機1及び車両が1組のみ表示されているが、実際には、異なる位置に複数の車載機1及び車両の組が存在する。
【0021】
車載機1は、ライダ(Lidar:Light Detection and Ranging、または、Laser Illuminated Detection And Ranging)などの外界センサ、ジャイロセンサや車速センサなどの内界センサと電気的に接続し、これらの出力に基づき、車載機1が搭載される車両の位置(「自車位置」とも呼ぶ。)の推定を行う。そして、車載機1は、自車位置の推定結果に基づき、設定された目的地への経路に沿って走行するように、車両の自動運転制御などを行う。車載機1は、ボクセルデータを含む地図データベース(DB:DataBase)10を記憶する。ボクセルデータは、3次元空間を複数の領域に分割した場合の各領域(「ボクセル」とも呼ぶ。)ごとに静止構造物の位置情報等を記録したデータである。ボクセルデータは、各ボクセル内の静止構造物の計測された計測点の点群データを正規分布により表したデータを含み、後述するように、NDT(Normal Distributions Transform)を用いたスキャンマッチングに用いられる。
【0022】
車載機1は、ライダが出力する物体の表面の計測点を絶対座標系に変換した点群データと、当該点群データが属するボクセルに対応するボクセルデータとに基づき、NDTに基づくスキャンマッチングを行うことで、自車位置の推定を行う。また、車載機1は、上述の点群データを含む計測データ「D1」を、サーバ装置2へ送信する。また、車載機1は、サーバ装置2から地
図DB10に関する更新データ「D2」を受信することで、地
図DB10の更新を行う。車載機1は、「情報処理装置」及び「位置推定装置」の一例である。
【0023】
サーバ装置2は、複数の車両に対応する車載機1とデータ通信を行う。サーバ装置2は、複数の車両に対応する車載機1に配信するための配信地
図DB23を記憶し、配信地
図DB23には各ボクセルに対応するボクセルデータが含まれている。また、サーバ装置2は、車載機1から受信する計測データD1を蓄積した計測点群DB24を記憶する。そして、サーバ装置2は、計測点群DB24に蓄積した計測データD1に基づきボクセルデータを生成し、生成したボクセルデータに基づき配信地
図DB23を更新する。また、サーバ装置2は、生成したボクセルデータを含む更新データD2を車載機1へ送信する。サーバ装置2は、「記憶装置」及び「地図生成装置」の一例である。
【0024】
(2)
車載機の構成
図2(A)は、車載機1の機能的構成を表すブロック図を示す。
図2(A)に示すように、車載機1は、主に、通信部11と、記憶部12と、センサ部13と、入力部14と、制御部15と、出力部16とを有する。通信部11、記憶部12、センサ部13、入力部14、制御部15及び出力部16は、バスラインを介して相互に接続されている。
【0025】
通信部11は、制御部15の制御に基づき、制御部15が生成した計測データD1をサーバ装置2へ送信したり、サーバ装置2から配信される更新データD2を受信したりする。また、通信部11は、車両を制御するための信号を車両に送信したり、車両の状態に関する信号を車両から受信したりする。
【0026】
記憶部12は、制御部15が実行するプログラムや、制御部15が所定の処理を実行する為に必要な情報を記憶する。本実施例では、記憶部12は、ボクセルデータを含む地
図DB10を記憶する。
【0027】
センサ部13は、ライダ30と、カメラ31と、GPS受信機32と、ジャイロセンサ33と、速度センサ34とを含む。ライダ30は、水平方向および垂直方向の所定の角度範囲に対してパルスレーザを出射することで、外界に存在する物体までの距離を離散的に測定し、当該物体の位置を示す3次元の点群データを生成する。この場合、ライダ30は、照射方向を変えながらレーザ光を照射する照射部と、照射したレーザ光の反射光(散乱光)を受光する受光部と、受光部が出力する受光信号に基づくスキャンデータを出力する出力部とを有する。スキャンデータは、受光部が受光したレーザ光に対応する照射方向と、上述の受光信号に基づき特定される当該レーザ光の応答遅延時間とに基づき生成される。ライダ30は、「計測装置」の一例である。
【0028】
入力部14は、ユーザが操作するためのボタン、タッチパネル、リモートコントローラ、音声入力装置等であり、経路探索のための目的地を指定する入力、自動運転のオン及びオフを指定する入力などを受け付け、生成した入力信号を制御部15へ供給する。出力部16は、例えば、制御部15の制御に基づき出力を行うディスプレイやスピーカ等である。
【0029】
制御部15は、プログラムを実行するCPUなどを含み、車載機1の全体を制御する。例えば、制御部15は、ライダ30が出力する計測点を絶対座標系に変換した点群データと、当該点群データが属するボクセルに対応するボクセルデータとに基づき、NDTに基づくスキャンマッチングを行うことで、自車位置の推定を行う。また、制御部15は、通信部11がサーバ装置2から受信した更新データD2に基づき、地
図DB10の更新を行う。
【0030】
また、制御部15は、ライダ30から出力される点群データに基づき生成した計測データD1を、通信部11によりサーバ装置2へ送信する。この場合、制御部15は、例えば、ライダ30から出力される計測点の点群データを、推定した自車位置及び車両に対するライダ30の位置並びに姿勢の情報に基づき絶対座標系に変換し、変換後の点群データを計測データD1に含めて通信部11によりサーバ装置2へ送信する。他の例では、制御部15は、ライダ30から出力される点群データ(所謂生データ)と、当該点群データを絶対座標系に変換するのに必要なデータ(上述の自車位置等)とを計測データD1に含めて通信部11によりサーバ装置2へ送信する。後者の例では、サーバ装置2は、計測データD1に基づき、絶対座標系により表された計測点の点群データを生成する。
【0031】
(3)
サーバ装置の構成
図2(B)は、サーバ装置2の概略構成を示す。
図2(B)に示すように、サーバ装置2は、通信部21と、記憶部22と、制御部25とを有する。通信部21、記憶部22、及び制御部25は、バスラインを介して相互に接続されている。
【0032】
通信部21は、制御部25の制御に基づき、車載機1と各種データの通信を行う。記憶部22は、サーバ装置2の動作を制御するためのプログラムを保存したり、サーバ装置2の動作に必要な情報を保持したりする。また、記憶部22は、配信地
図DB23と、複数の車載機1から送信される計測データD1に基づく物体の計測点の点群データを記録する計測点群DB24とを記憶する。
【0033】
制御部25は、図示しないCPU、ROM及びRAMなどを備え、サーバ装置2内の各構成要素に対して種々の制御を行う。本実施例では、制御部25は、車載機1から通信部21が受信する計測データD1を計測点群DB24に蓄積し、蓄積した計測データD1に基づきボクセルデータを生成する。この場合、制御部25は、ボクセルごとに、植生を含むボクセルであるか否かを判定し、その判定結果に基づき、後述する重み付け値及び植生フラグを生成してボクセルデータに含める。また、制御部25は、生成したボクセルデータに基づく更新データD2を通信部21により車載機1へ送信する。制御部25は、プログラムを実行する「コンピュータ」の一例である。
【0034】
(4)NDTに基づくスキャンマッチング
次に、本実施例におけるNDTに基づくスキャンマッチングについて説明する。
【0035】
まず、NDTに基づくスキャンマッチングに用いるボクセルデータについて説明する。
図3は、ボクセルデータの概略的なデータ構造の一例を示す。
【0036】
ボクセルデータは、ボクセル内の点群を正規分布で表現する場合のパラメータの情報を含み、本実施例では、
図3に示すように、ボクセルIDと、ボクセル座標と、平均ベクトルと、共分散行列と、重み付け値と、植生フラグとを含む。ここで、「ボクセル座標」は、各ボクセルの中心位置などの基準となる位置の絶対的な3次元座標を示す。なお、各ボクセルは、空間を格子状に分割した立方体であり、予め形状及び大きさが定められているため、ボクセル座標により各ボクセルの空間を特定することが可能である。ボクセル座標は、ボクセルIDとして用いられてもよい。
【0037】
「平均ベクトル」及び「共分散行列」は、対象のボクセル内での点群を正規分布で表現する場合のパラメータに相当する平均ベクトル及び共分散行列を示し、任意のボクセル「n」内の任意の点「i」の座標をXn(i)=[xn(i)、yn(i)、zn(i)]Tと定義し、ボクセルn内での点群数を「Nn」とすると、ボクセルnでの平均ベクトル「μn」及び共分散行列「Vn」は、それぞれ以下の式(1)及び式(2)により表される。
【0038】
【0039】
【0040】
「重み付け値」は、対象のボクセルのボクセルデータ(特に平均ベクトル及び共分散行列)の信頼度に応じた値に設定され、スキャンマッチングにおいて設定される対象のボクセルに対する重みを表す。また、本実施例では、植生を含むボクセルであると判定されたボクセル(「植生ボクセルBv」とも呼ぶ。)に対する重み付け値は、他のボクセルに対する重み付け値よりも低く設定される。「植生フラグ」は、対象のボクセルが植生を含むボクセルであるか否かを示すフラグ情報である。
【0041】
次に、ボクセルデータを用いたNDTによるスキャンマッチングについて説明する。本実施例では、後述するように、車載機1は、NDTスキャンマッチングにより得られる評価関数の値(評価値)を、ボクセルデータに含まれる重み付け値を用いて重み付けして算出する。これにより、車載機1は、NDTスキャンマッチングに基づく位置推定精度を好適に向上させる。
【0042】
車両を想定したNDTによるスキャンマッチングは、道路平面(ここではxy座標とする)内の移動量及び車両の向きを要素とした推定パラメータP=[tx、ty、tz、tψ]Tを推定することとなる。ここで、「tx」は、x方向の移動量を示し、「ty」は、y方向の移動量を示し、「tz」は、z方向の移動量を示し、「tψ」は、ヨー角(ヨー方向の角度変化量)を示す。なお、ピッチ角、ロール角は、道路勾配や振動によって生じるものの、無視できる程度に小さい。
【0043】
ライダ2により得られた計測点を絶対座標系に変換した点群データに対して、マッチングさせるべきボクセルとの対応付けを行った場合に、対応するボクセルnでの任意の点の座標をXL(i)=[xn(i)、yn(i)、zn(i)]Tとする。そして、上述の推定パラメータPを用い、XL(i)=[xn(i)、yn(i)、zn(i)]Tを座標変換すると、変換後の座標「X′n」は、以下の式(3)により表される。
【0044】
【数3】
そして、本実施例では、車載機1は、座標変換した点群と、ボクセルデータに含まれる平均ベクトルμ
nと共分散行列V
nとを用い、以下の式(4)により示されるボクセルnの評価関数値「E
n」を算出する。
【0045】
【数4】
ここで、「w
n」は、ボクセルnに対する重み付け値を示す。式(4)により、重み付け値w
nが大きいほど、評価関数E
nは大きい値となる。
【0046】
また、車載機1は、式(4)により示されるボクセルごとの評価関数値(「個別評価関数値」とも呼ぶ。)の算出後、式(5)により示されるマッチングの対象となる全てのボクセルを対象とした総合的な評価関数値「E」(「総合評価関数値」とも呼ぶ。)を算出する。
【0047】
【数5】
「M」は、マッチングの対象となるボクセルの数を示す。総合評価関数値Eは「評価値」の一例である。
【0048】
その後、車載機1は、ニュートン法などの任意の求根アルゴリズムにより総合評価関数値Eが最大となるとなる推定パラメータPを算出する。そして、車載機1は、自律測位装置の出力等に基づき予測した自車位置(「予測自車位置」とも呼ぶ。)「X-」に対し、推定パラメータPを適用することで、予測自車位置よりも高精度な自車位置(「推定自車位置」とも呼ぶ。)「X^」を推定する。
【0049】
このように、車載機1は、各ボクセルに対し、それぞれのボクセルデータ(平均ベクトル、共分散行列)に対して植生ボクセルBvか否かに応じた重み付け値を乗じている。これにより、植生ボクセルBvの評価関数Enが相対的に小さくなり、NDTマッチングによる位置推定精度が好適に向上する。
【0050】
なお、植生ボクセルBvに対する重み付け値は0であってもよい。この場合、植生ボクセルBv以外のボクセルの評価関数Enに基づき推定パラメータPを推定するため、植生の影響を完全に排除した位置推定を行うことができる。
【0051】
(5)ボクセルデータの生成
次に、サーバ装置2がボクセルデータの生成時に実行する植生ボクセルBvの判定処理について説明する。
【0052】
図4は、サーバ装置2が実行するボクセルデータの生成処理に関するフローチャートである。サーバ装置2は、
図4に示すフローチャートの処理を、所定のタイミングにおいて実行する。
【0053】
まず、サーバ装置2は、計測点群DB24に記録された各計測点が属するボクセルを認識し、上述した式(1)及び式(2)に基づき、ボクセルごとに計測点の平均ベクトル及び共分散行列を算出する(ステップS101)。
【0054】
次に、サーバ装置2は、計測点を含む各ボクセルに対し、植生ボクセルBvであるか否かを判定する植生判定処理を実行する(ステップS102)。この植生判定処理の具体例については
図5のフローチャートを参照して後述する。
【0055】
そして、サーバ装置2は、ステップS102での判定結果に基づき、ボクセルごとに重み付け値及び植生フラグを設定する(ステップS103)。例えば、サーバ装置2は、植生ボクセルBvとそれ以外のボクセルとに対してそれぞれ付与すべき重み付け値及び植生フラグの値を示す設定情報を予め記憶しておく。そして、サーバ装置2は、上述の設定情報を参照し、ステップS103で植生ボクセルBvと判定されたボクセルと、植生ボクセルBv以外のボクセルとに対し、それぞれ異なる重み付け値及び植生フラグを付与する。この場合、植生ボクセルBvに対する重み付け値は、他のボクセルに対する重み付け値よりも低く設定される。
【0056】
なお、サーバ装置2は、
図4のフローチャートの処理の前処理として、計測点群DB24に記録された計測点群から、動的物体を示す計測点群を除外する処理を実行してもよい。例えば、サーバ装置2は、歩行者や車両などの特定の動的物体を形成する計測点群を、形状や大きさ等に基づくパターンマッチングなどの処理に基づき特定し、特定した計測点群を計測点群DB24から削除する。
【0057】
図5は、
図4のステップS102で実行する植生判定処理の一例を示すフローチャートである。
図5に示す例では、サーバ装置2は、計測点群DB24に記録された計測点群に対してボクセルごとに主成分分析を行うことで平面又は柱状体の構造物を表すボクセルを判定し、平面又は柱状体のいずれの構造物にも該当しないボクセルを植生ボクセルBvとして判定する。
【0058】
まず、サーバ装置2は、計測点群D24に記録された計測点群に対してボクセルごとに主成分分析を実行する(ステップS201)。具体的には、サーバ装置2は、
図4のステップS101で算出したボクセルごとの共分散行列から第1~第3主成分に対応する3組の固有値及び固有ベクトルを算出する。ここで、固有値は、各主成分の分散(即ち大きさ)を示し、固有ベクトルは、各主成分の方向を表す。従って、サーバ装置2は、最も大きい固有値及びこれに対応する固有ベクトルが第1主成分に対応し、2番目に大きい固有値及びこれに対応する固有ベクトルが第2主成分に対応し、残りの固有値及び固有ベクトルが第3主成分にそれぞれ対応するとみなす。なお、第1~第3主成分は互いに直交している。
【0059】
そして、サーバ装置2は、ステップS201での主成分分析の結果に基づき、平面を形成するボクセル(「平面ボクセルBf」とも呼ぶ。)を抽出する(ステップS202)。例えば、サーバ装置2は、第3主成分の大きさ(即ち第3主成分の固有値が示す分散)が所定値以下のボクセルを、平面ボクセルBfとみなす。これに加え、サーバ装置2は、第3主成分に対応する固有ベクトルが示す向きが鉛直方向又は水平方向と略一致するボクセルを、平面ボクセルBfとみなしてもよい。
【0060】
さらに、サーバ装置2は、ステップS201での主成分分析の結果に基づき、柱状体を形成するボクセル(「柱状体ボクセルBp」とも呼ぶ。)を抽出する(ステップS203)。例えば、サーバ装置2は、第1主成分の寄与率が所定値以上であって、かつ、第1主成分の分散が一様分布に近い分散であるボクセルを、柱状体ボクセルBpとして抽出する。これに加え、サーバ装置2は、第1主成分に対応する固有ベクトルが示す向きが鉛直方向又は水平方向と略一致するボクセルを、柱状体ボクセルBpとみなしてもよい。
【0061】
そして、サーバ装置2は、計測点を含むボクセルのうち、平面ボクセルBfと柱状体ボクセルBpのいずれにも該当しない残余のボクセルを、植生ボクセルBvとして判定する(ステップS204)。ここで、植生ではない静的構造物は、その殆どが平面形状又は柱状体の形状から構成されており、出願人は、実験等においても、平面形状又は柱状体の形状を形成する計測点群のボクセルを除外したボクセルを植生ボクセルBvとみなすことで、植生ボクセルBvに対する良好な認識結果を得ている。
【0062】
(6)
ボクセルデータを用いた位置推定
次に、ボクセルデータを用いた位置推定処理について説明する。
図6は、ボクセルデータを用いた位置推定処理の手順を示すフローチャートの一例である。
【0063】
まず、車載機1は、GPS受信機32等の出力に基づき、自車位置の初期値を設定する(ステップS301)。次に、車載機1は、速度センサ34から車体速度を取得すると共に、ジャイロセンサ33からヨー方向の角速度を取得する(ステップS302)。そして、車載機1は、ステップS302の取得結果に基づき、車両の移動距離と車両の方位変化を計算する(ステップS303)。
【0064】
その後、車載機1は、1時刻前の推定自車位置に、ステップS303で計算した移動距離と方位変化を加算し、予測自車位置を算出する(ステップS304)。そして、車載機1は、ステップS304で算出した予測自車位置に基づき、地
図DB10を参照して、自車位置周辺に存在するボクセルのボクセルデータを取得する(ステップS305)。さらに、車載機1は、ステップS304で算出した予測自車位置に基づき、ライダ30から得られた計測点を絶対座標系に変換した点群データをボクセルごとに分割する(ステップS306)。
【0065】
そして、車載機1は、ステップS305で取得したボクセルデータに含まれる平均、共分散行列、及び重み付け値を用いて、NDTスキャンマッチングの計算を行う(ステップS307)。具体的には、車載機1は、ステップS306において計測点が割り当てられた各ボクセルに対し、対応するボクセルデータに含まれる平均、共分散行列、及び重み付け値を用いて、式(4)に示される個別評価関数値Enを算出する。そして、車載機1は、各ボクセルに対する個別評価関数値Enに基づき、式(5)に示される総合評価関数値Eを算出する。この場合、総合評価関数値Eは、推定パラメータPの各要素の変数を含む非線形方程式となる。
【0066】
そして、車載機1は、ニュートン法などの非線形方程式の数値解法などを用いて、総合評価関数値が最大となる推定パラメータPを決定する(ステップS308)。その後、車載機1は、ステップS304で算出した予測自車位置に、ステップS308で算出した推定パラメータPを適用することで、推定自車位置を算出する(ステップS309)。
【0067】
ここで、ステップS307での個別評価関数値Enの算出に用いる重み付け値は、植生ボクセルBvの方が他のボクセルよりも低く設定されている。これにより、車載機1は、植生を表わす植生ボクセルBvに対する位置推定への影響度合いを相対的に低下させ、位置推定精度を好適に向上させる。
【0068】
図7は、重み付け値を用いた
図6のフローチャートに基づく位置推定(「本位置推定」とも呼ぶ。)と、重み付け値を用いる代わりに、植生の計測点群を除去した計測点群に基づき生成したボクセルデータを参照した位置推定(「比較例に基づく位置推定」とも呼ぶ。)との処理の概要を示す図である。ここでは、植生及び構造物の一部をそれぞれ含むボクセルB1と、ボクセルB1に隣接し、構造物の一部を含み植生を含まないボクセルB2とを対象としたNDTスキャンマッチングについて考察する。
【0069】
「重み付け」と表記された矢印A1により指し示されたボクセルB1、B2には、本位置推定において用いるボクセルデータが概略的に示されている。ここで、ハッチング領域50は、ボクセルデータの生成に用いられた植生の計測点群の分布を示し、ハッチング領域51、52は、ボクセルデータの生成に用いられた構造物の計測点群の分布を示す。また、破線枠60は、ボクセルデータとして記録される共分散行列が示すボクセルB1内の点群の分散を示し、破線枠61は、ボクセルデータとして記録される共分散行列が示すボクセルB2内の点群の分散を示す。また、「点群の除去」と表記された矢印A2により指し示されたボクセルB1、B2には、比較例に基づく位置推定において用いるボクセルデータが概略的に示されている。ここで、ハッチング領域54、55は、ボクセルデータの生成に用いられた構造物の計測点群の分布を示す。また、破線枠63は、ボクセルデータとして記録される共分散行列が示すボクセルB1内の点群の分散を示し、破線枠64は、ボクセルデータとして記録される共分散行列が示すボクセルB2内の点群の分散を示す。
【0070】
ここで、比較例に基づく位置推定では、植生を表わす計測点群を除去してからボクセルデータを生成するため、ボクセルB1内の点群の分散を表わす破線枠63は、ハッチング領域54により示される構造物を中心とする位置に存在する。一方、本位置推定では、ボクセルB1内の点群の分散を表わす破線枠60は、ハッチング領域50により示される植生と、ハッチング領域51により示される構造物とに跨って存在する。また、比較例に基づく位置推定では、ボクセルB1及びボクセルB2は同一の重みにより扱われる。一方、本位置推定では、ボクセルB1を植生ボクセルBvとみなし、ボクセルB1の重み付け値は、植生ボクセルBvでないボクセルB2の重み付け値よりも小さい値に設定される。
【0071】
ここで、車載機1がライダ30によりボクセルB1、B2内の×印により表された計測点群40を取得した場合、本位置推定では、ボクセルB1の重み付け値はボクセルB2の重み付け値よりも低いため、ボクセルB2におけるボクセルデータと計測点群40とを優先的にマッチングする。一方、比較例に基づく位置推定では、ボクセルごとに重み付け値を設定していないため、ボクセルデータと計測点群40とのマッチングを全体(ここではボクセルB1、B2)にわたり均等な重み付けにより行う。
【0072】
本位置推定を実行した場合のマッチング結果は、矢印A3により指し示され、比較例に基づく位置推定を実行した場合のマッチング結果は、矢印A4により指し示されている。ここで、比較例に基づく位置推定では、ボクセルデータの生成時において、ボクセルB1内の植生の計測点群を除外しているため、植生を計測対象として含んだボクセルB1内の計測点群40とボクセルデータとのマッチングが不正確となる。また、比較例に基づく位置推定では、重み付けがなされていないため、ボクセルB1でのボクセルデータと計測点群40との不整合の影響により、全体としてのマッチング精度も低下してしまう。
【0073】
一方、本位置推定では、ボクセルデータの生成時において、ボクセルB1内の植生の計測点群を除外していないため、植生を計測対象として含んだボクセルB1内の計測点群40とボクセルデータとのマッチングが好適に実行される。なお、ボクセルB1内の植生は、風の影響等に起因して揺れ動くため、ボクセルB1におけるマッチング精度は、ボクセルB2におけるマッチング精度よりも低くなる。従って、ボクセルごとの重み付けを行わずにNDTマッチングを行った場合、ボクセルB1のマッチング精度の影響を受けて全体としてのマッチング精度も低下してしまう。これに対し、本位置推定では、ボクセルB1の重み付け値が相対的に低く設定されているため、植生の揺れ動きによる影響を好適に低減しつつマッチングを行うことができる。
【0074】
以上説明したように、本実施例に係る地図データのデータ構造は、ボクセルごとに、物体表面の位置に関する平均ベクトル及び共分散行列等と、これらを位置推定に用いる際の重みに関する重み付け値とを含み、植生ボクセルBvに対する重み付け値は、植生を含まないボクセルに対する重み付け値よりも低い値に設定される。そして、このデータ構造を有する地図データは、車両に搭載されたライダ30等の計測装置が計測した物体の計測情報と、ボクセルデータとの照合結果を、ボクセルごとに重み付けを行うことで、車両の位置を推定する車載機1により好適に参照される。
【0075】
また、本実施例に係るサーバ装置2は、ライダ30等の計測装置が計測した物体の計測点を含むボクセルから、植生の計測点を含む植生ボクセルBvを認識する処理と、ボクセルごとの平均ベクトル及び共分散行列等と、これらを位置推定に用いる際の重み付け値とを関連付けた地図データを生成する処理とを実行する。ここで、サーバ装置2は、植生ボクセルBvに対する重み付け値を、植生を含まないボクセルに対する重み付け値よりも小さくする。
【0076】
また、本実施例に係る車載機1は、空間を区切ったボクセルごとの平均ベクトル及び共分散行列等と、これらを位置推定に用いる際の重みを決定するための重み付け値とを含むボクセルデータを記憶し、ライダ30等の計測装置が計測した物体に関する計測情報を取得する処理と、ボクセルごとに計測情報とボクセルデータとの照合を行い、当該照合の結果を、重み付け値に基づき重み付けすることで、自車位置を推定する処理とを行う。この場合、植生ボクセルBvの重み付け値は、植生を含まないボクセルの重み付け値よりも小さい。
【0077】
<第2実施例>
第2実施例では、車載機1は、ボクセルデータに基づく位置推定に代えて、又はこれに加えて、ボクセルデータに基づく動的物体の検知を行う点において、第1実施例と異なる。第2実施例における地図更新システム、車載機1及びサーバ装置2の各構成は、
図1及び
図2に示す構成と同様のため、その説明を省略する。
【0078】
図8は、第2実施例におけるボクセルデータの概略的なデータ構造の一例を示す。
【0079】
図8に示すボクセルデータは、ボクセルIDと、ボクセル座標と、静止障害物フラグと、植生フラグと、平均ベクトルと、共分散行列と、重み付け値と、を含む。ここで、静止障害物フラグは、対象のボクセルが、主に静止障害物が存在するボクセルであって、動的物体の検知を行う必要がないボクセル(「静止障害物ボクセル」とも呼ぶ。)であるか否かを示すフラグである。静止障害物ボクセルは、対象のボクセルの全体又は大部分が静止障害物により構成されることにより、運転上検知すべき動的物体の検知を行う必要がない(動的物体が含まれる余地がない)領域を示す。従って、車載機1は、ライダ30の出力等に基づき動的物体の検知を行う場合に、静止障害物フラグを参照することで静止障害物ボクセルを特定し、静止障害物ボクセル以外のボクセルを対象として動的物体の検知を行う。このように動的物体の検知対象領域を限定することで、動的物体の検知処理の負荷を好適に低減しつつ、動的物体の検知精度を向上させる。静止障害物フラグは、「静止物データ」の一例である。
【0080】
また、本実施例では、サーバ装置2は、静止障害物フラグの生成時では、植生ボクセルBvと判定したボクセルについては、少なくとも静止障害物ボクセルと見なさない。これにより、植生付近に現れる動的物体を確実に検知対象とする。サーバ装置2は、「静止物データ生成装置」の一例である。
【0081】
図9は、第2実施例に係るボクセルデータの生成処理の手順を示すフローチャートである。サーバ装置2は、
図9に示すフローチャートの処理を、所定のタイミングにおいて実行する。
【0082】
まず、サーバ装置2は、各車載機1から送信される計測データD1を記録した計測点群DB24を参照し、ボクセルごとに計測点の平均ベクトル及び共分散行列を算出する(ステップS401)。次に、サーバ装置2は、計測点を含む各ボクセルに対し、植生ボクセルBvであるか否かを判定する植生判定処理を実行する(ステップS402)。この植生判定処理は、例えば、前述の
図5のフローチャートに基づき実行される。
【0083】
次に、サーバ装置2は、ステップS402での植生判定結果に基づき、静止障害物フラグを生成する(ステップS403)。このとき、サーバ装置2は、植生ボクセルBvと判定したボクセルについては、静止障害物ボクセルではない旨の静止障害物フラグを生成する。これにより、サーバ装置2は、本来動的物体が存在し得る領域を静止障害物ボクセルとみなすことに起因した動的物体の見落としを好適に抑制する。
【0084】
なお、サーバ装置2は、
図9のフローチャートの処理の前処理として、計測点群DB24に記録された計測点群から、動的物体を示す計測点群を除外する処理を実行してもよい。例えば、サーバ装置2は、歩行者や車両などの特定の動的物体を形成する計測点群を、形状や大きさ等に基づくパターンマッチングなどの処理に基づき特定し、特定した計測点群を計測点群DB24から削除する。なお、サーバ装置2は、除外対象となる動的物体を示す計測点を含むボクセルについても、動的物体の検知対象領域に含まれるように、静止障害物ボクセルではない旨の静止障害物フラグを設定するとよい。
【0085】
図10は、第2実施例に係る動的物体の検知処理の手順を示すフローチャートである。サーバ装置2は、
図10に示すフローチャートの処理を、例えば、車両の走行中において繰り返し実行する。
【0086】
まず、車載機1は、ライダ30の出力に基づき、車両周辺の物体表面を計測した計測点群を取得する(ステップS501)。次に、車載機1は、自車位置に基づき、地
図DB10を参照して、自車位置周辺に存在するボクセルのボクセルデータを取得する(ステップS502)。上述の自車位置は、例えば、
図6に示す第1実施例の位置推定処理と同様、1時刻前の推定自車位置に、センサ部13の出力に基づき算出した移動距離と方位変化を加算することで得られる予測自車位置である。そして、車載機1は、各ボクセルのボクセルデータに含まれる静止障害物フラグを参照することで、ステップS501で取得した計測点を含むボクセルから、静止障害物ボクセルを特定する(ステップS503)。そして、車載機1は、静止障害物ボクセルを検知対象領域から除外した動的物体の検知処理を行う(ステップS504)。言い換えると、車載機1は、静止障害物ボクセルについては、動的物体が現れない領域とみなし、動的物体の検知処理をスキップし、残余のボクセルについては、動的物体の検知処理を行う。
【0087】
以上説明したように、第2実施例に係るサーバ装置2は、ライダ30等の計測装置が計測した物体に関する計測点を含むボクセルから、植生の計測点を含む植生ボクセルBvを検出する処理と、計測点を含むボクセルから、植生ボクセルBvを少なくとも除外したボクセルに対し、静止障害物が存在する領域であることを示す静止障害物フラグを生成する処理と、を実行する。
【0088】
<変形例>
以下、第1及び第2実施例に好適な変形例について説明する。以下の変形例は、組み合わせて上述の各実施例に適用してもよい。
【0089】
(変形例1)
ボクセルデータは、
図3及び
図8に示すように、平均ベクトルと共分散行列とを含むデータ構造に限定されない。例えば、ボクセルデータは、平均ベクトルと共分散行列を算出する際に用いられる計測整備車両の計測データを絶対座標系に変換した点群データをそのまま含んでいてもよい。この場合、車載機1は、NDTによるスキャンマッチングに限定されず、ICP(Iterative Closest Point)などの他のスキャンマッチングを適用して自車位置推定を行ってもよい。
【0090】
(変形例2)
第1実施例において、
図3に示されるボクセルデータは、重み付け値と植生フラグの両方を有していたが、いずれか一方のみを有してもよい。
【0091】
例えば、ボクセルデータが重み付け値を含まないデータ構造である場合、車載機1は、
図6に示す位置推定処理のステップS307で使用する重み付け値を、植生フラグの値に応じた所定値に設定する。この場合、車載機1は、植生フラグが植生ボクセルBvであることを示す値である場合に設定する重み付け値を、植生フラグが植生ボクセルBvではないことを示す値である場合に設定する重み付け値よりも小さい値に設定する。これにより、車載機1は、ボクセルデータが重み付け値を有するデータ構造の場合と同様に、植生ボクセルBvに対する位置推定への影響度合いを相対的に低下させ、位置推定精度を好適に向上させる。なお、この場合、植生フラグは、「重みを決定するための情報」の一例である。
【0092】
(変形例3)
車載機1に相当する機能が車両に内蔵されていてもよい。この場合、車両の電子制御装置(ECU:Electronic Control Unit)は、車両のメモリに記憶されたプログラムを実行することで、車載機1の制御部15に相当する処理を実行する。
【0093】
(変形例4)
第2実施例において、車載機1は、植生ボクセルBv(即ち、植生を含むボクセル)を静止障害物ボクセルから除外する代わりに、植生のみを含むボクセル(即ち、植生を含み、他の静止構造物を含まないボクセル)を静止障害物ボクセルから除外してもよい。この場合、車載機1は、植生の他に静止構造物も含むボクセルについては、動的物体が現れない領域とみなし、動的物体の検知処理をスキップする。
【0094】
(変形例5)
車載機1は、サーバ装置2に代えて、植生判定処理を実行してもよい。この場合、車載機1は、例えば、第1実施例において、ライダ30が出力する計測点を絶対座標系に変換した点群データに対して、
図4のステップS101の処理及びステップS102の植生判定処理を実行することで、植生ボクセルBvを判定する。そして、車載機1は、判定した植生ボクセルBvの情報を計測データD1に含めてサーバ装置2へ送信する。この場合、サーバ装置2は、車載機1から受信した計測データD1に基づきボクセルデータの重み付け値や植生フラグの生成及び更新を行う。第2実施例においても同様に、車載機1は、ライダ30が出力する計測点を絶対座標系に変換した点群データに対して、
図9のステップS401の処理及びステップS402の植生判定処理を実行することで、植生ボクセルBvを判定する。そして、車載機1は、判定した植生ボクセルBvの情報を計測データD1に含めてサーバ装置2へ送信する。この場合、サーバ装置2は、車載機1から受信した計測データD1に基づき静止障害物フラグを生成する。
【符号の説明】
【0095】
1 車載機
2 サーバ装置
10 地
図DB
23 配信地
図DB
24 計測点群DB
11、21 通信部
12、22 記憶部
15、25 制御部
13 センサ部
14 入力部
16 出力部