IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社半導体エネルギー研究所の特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-10-04
(45)【発行日】2024-10-15
(54)【発明の名称】半導体装置
(51)【国際特許分類】
   H01L 29/786 20060101AFI20241007BHJP
   H10B 12/00 20230101ALI20241007BHJP
【FI】
H01L29/78 617U
H01L29/78 618B
H01L29/78 618E
H01L29/78 617T
H10B12/00 671Z
【請求項の数】 4
(21)【出願番号】P 2020009047
(22)【出願日】2020-01-23
(65)【公開番号】P2020120116
(43)【公開日】2020-08-06
【審査請求日】2023-01-19
(31)【優先権主張番号】P 2019011582
(32)【優先日】2019-01-25
(33)【優先権主張国・地域又は機関】JP
【新規性喪失の例外の表示】特許法第30条第2項適用 平成30年12月1日 2018 IEEE International Electron Devices Meetingで発表
(73)【特許権者】
【識別番号】000153878
【氏名又は名称】株式会社半導体エネルギー研究所
(72)【発明者】
【氏名】山崎 舜平
(72)【発明者】
【氏名】大貫 達也
(72)【発明者】
【氏名】栃林 克明
【審査官】田付 徳雄
(56)【参考文献】
【文献】特開2015-084417(JP,A)
【文献】特開2007-140463(JP,A)
【文献】特開2017-028282(JP,A)
【文献】特開2015-084418(JP,A)
【文献】特開2018-133550(JP,A)
【文献】特開2017-139459(JP,A)
【文献】特開2012-256821(JP,A)
【文献】特開2011-076079(JP,A)
【文献】米国特許出願公開第2015/0084047(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 29/786
H10B 12/00
(57)【特許請求の範囲】
【請求項1】
トランジスタと、前記トランジスタと電気的に接続された容量素子と、を有する半導体装置であって、
第1の絶縁体と、
前記第1の絶縁体の上面と接する領域を有する第1の導電体と、
前記第1の導電体と接する領域を有する第2の導電体と、
前記第1の導電体の上面と接する領域と前記第2の導電体の上面と接する領域とを有する第2の絶縁体と、
前記第1の絶縁体の上面と接する領域を有する第3の絶縁体と、
前記第2の絶縁体の上方に位置し、且つ前記トランジスタのチャネル形成領域を有する酸化物半導体層と、
前記酸化物半導体層の上方に位置する領域と、前記酸化物半導体層の側面と接する領域とを有する第の導電体と、
前記第1の絶縁体の上面と接する領域と、前記第2の絶縁体を介して前記第の導電体と重なる領域とを有し、且つ前記第1の導電体と同じ材料を有する第の導電体と、
前記第4の導電体の上面と接する領域を有する第5の導電体と、を有し、
前記第1の導電体及び前記第2の導電体は、前記トランジスタのゲート電極として機能する領域を有し、
前記第の導電体は、前記トランジスタのソース電極及びドレイン電極の一方として機能する領域と、前記容量素子の一方の電極として機能する領域と、を有し、
前記第の導電体及び前記第5の導電体は、前記容量素子の他方の電極として機能する領域を有し、
前記第2の絶縁体は、前記第4の導電体と接する領域と前記第5の導電体と接する領域と、を有し、
前記第3の絶縁体は、前記第1の導電体と接する領域と前記第4の導電体と接する領域と前記第2の絶縁体と接する領域とを有し、
前記第3の絶縁体は、前記第2の導電体及び前記第5の導電体とは接せず、
断面視において、前記第の導電体の上面は、凹凸形状を有する、半導体装置。
【請求項2】
トランジスタと、前記トランジスタと電気的に接続された容量素子と、を有する半導体装置であって、
第1の絶縁体と、
前記第1の絶縁体の上面と接する領域を有する第1の導電体と、
前記第1の導電体と接する領域を有する第2の導電体と、
前記第1の導電体の上面と接する領域と前記第2の導電体の上面と接する領域とを有する第2の絶縁体と、
前記第1の絶縁体の上面と接する領域を有する第3の絶縁体と、
前記第2の絶縁体の上方に位置し、且つ前記トランジスタのチャネル形成領域を有する酸化物半導体層と、
前記酸化物半導体層の上方に位置する領域と、前記酸化物半導体層の側面と接する領域とを有する第の導電体と、
前記第1の絶縁体の上面と接する領域と、前記第2の絶縁体を介して前記第の導電体と重なる領域とを有し、且つ前記第1の導電体と同じ材料を有する第4の導電体と、
前記第4の導電体の上面と接する領域を有する第5の導電体と、
前記第の導電体の上方の領域を有し且つ開口部を有する第の絶縁体と、
前記第の絶縁体の開口部の内壁に接する領域と、前記酸化物半導体層の上面と接する領域と、を有する第の絶縁体と、
前記第の絶縁体の開口部の内側に位置する第の導電体と、を有し、
前記第1の導電体及び前記第2の導電体は、前記トランジスタの第1のゲート電極として機能する領域を有し、
前記第の導電体は、前記トランジスタのソース電極及びドレイン電極の一方として機能する領域と、前記容量素子の一方の電極として機能する領域と、を有し、
前記第の導電体及び前記第5の導電体は、前記容量素子の他方の電極として機能する領域を有し、
前記第2の絶縁体は、前記第4の導電体と接する領域と前記第5の導電体と接する領域と、を有し、
前記第3の絶縁体は、前記第1の導電体と接する領域と前記第4の導電体と接する領域と前記第2の絶縁体と接する領域とを有し、
前記第3の絶縁体は、前記第2の導電体及び前記第5の導電体とは接せず、
断面視において、前記第の導電体の上面は、凹凸形状を有し、
前記第の導電体は、前記トランジスタの第2のゲート電極として機能する領域を有する、半導体装置。
【請求項3】
請求項1又は請求項2において、
前記酸化物半導体層はInと、元素M(MはAl、Ga、Y、またはSn)と、Znと、を含む、半導体装置。
【請求項4】
請求項1乃至請求項3のいずれか一項において、
前記第1の絶縁体は、シリコンおよび窒素を含む、半導体装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の一態様は、半導体装置、ならびに半導体装置の作製方法に関する。または、本発明の一態様は、半導体ウエハ、モジュール、および電子機器に関する。
【0002】
なお、本明細書等において半導体装置とは、半導体特性を利用することで機能し得る装置全般を指す。トランジスタなどの半導体素子をはじめ、半導体回路、演算装置、記憶装置は、半導体装置の一態様である。表示装置(液晶表示装置、発光表示装置など)、投影装置、照明装置、電気光学装置、蓄電装置、記憶装置、半導体回路、撮像装置、および電子機器などは、半導体装置を有すると言える場合がある。
【0003】
なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の一態様は、物、方法、または、製造方法に関するものである。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関するものである。
【背景技術】
【0004】
近年、半導体装置の開発が進められ、LSIやCPUやメモリが主に用いられている。CPUは、半導体ウエハから切り離された半導体集積回路(少なくともトランジスタ及びメモリ)を有し、接続端子である電極が形成された半導体素子の集合体である。
【0005】
LSIやCPUやメモリなどの半導体回路(ICチップ)は、回路基板、例えばプリント配線板に実装され、様々な電子機器の部品の一つとして用いられる。
【0006】
また、絶縁表面を有する基板上に形成された半導体薄膜を用いてトランジスタを構成する技術が注目されている。該トランジスタは集積回路(IC)や画像表示装置(単に表示装置とも表記する)のような電子デバイスに広く応用されている。トランジスタに適用可能な半導体薄膜としてシリコン系半導体材料が広く知られているが、その他の材料として酸化物半導体が注目されている。
【0007】
また、酸化物半導体を用いたトランジスタは、非導通状態において極めてリーク電流が小さいことが知られている。例えば、酸化物半導体を用いたトランジスタのリーク電流が低いという特性を応用した低消費電力のCPUなどが開示されている(特許文献1参照。)。また、例えば、酸化物半導体を用いたトランジスタのリーク電流が低いという特性を応用して、長期にわたり記憶内容を保持することができる記憶装置などが、開示されている(特許文献2参照。)。
【0008】
また、近年では電子機器の小型化、軽量化に伴い、集積回路のさらなる高密度化への要求が高まっている。また、集積回路を含む半導体装置の生産性の向上が求められている。
【先行技術文献】
【特許文献】
【0009】
【文献】特開2012-257187号公報
【文献】特開2011-151383号公報
【発明の概要】
【発明が解決しようとする課題】
【0010】
本発明の一態様は、良好な電気特性を有する半導体装置を提供することを課題の一つとする。または、本発明の一態様は、ノーマリーオフの電気特性を有する半導体装置を提供することを課題の一つとする。または、本発明の一態様は、信頼性が良好な半導体装置を提供することを課題の一つとする。または、本発明の一態様は、オン電流が大きい半導体装置を提供することを課題の一つとする。または、本発明の一態様は、高い周波数特性を有する半導体装置を提供することを課題の一つとする。または、本発明の一態様は、微細化または高集積化が可能な半導体装置を提供することを課題の一つとする。または、本発明の一態様は、生産性の高い半導体装置を提供することを課題の一つとする。
【0011】
本発明の一態様は、長期間においてデータの保持が可能な半導体装置を提供することを課題の一つとする。本発明の一態様は、情報の書き込み速度が速い半導体装置を提供することを課題の一つとする。本発明の一態様は、設計自由度が高い半導体装置を提供することを課題の一つとする。本発明の一態様は、消費電力を抑えることができる半導体装置を提供することを課題の一つとする。本発明の一態様は、新規な半導体装置を提供することを課題の一つとする。
【0012】
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。
【課題を解決するための手段】
【0013】
本発明の一態様は、チャネル形成領域に酸化物を有する半導体装置であって、半導体装置は、トランジスタ、および容量素子を有し、トランジスタは、第1の絶縁体上の第1の導電体および第2の絶縁体と、第1の導電体上および第2の絶縁体上の第3の絶縁体と、第3の絶縁体上の第4の絶縁体と、第4の絶縁体上の第1の酸化物と、第1の酸化物上の第2の酸化物および第3の酸化物と、第3の絶縁体の上面、第4の絶縁体の側面、第1の酸化物の側面、第2の酸化物の側面、および第2の酸化物の上面と接する第2の導電体と、第3の絶縁体の上面、第4の絶縁体の側面、第1の酸化物の側面、第3の酸化物の側面、および第3の酸化物の上面と接する第3の導電体と、第1の酸化物上の第4の酸化物と、第4の酸化物上の第5の絶縁体と、第5の絶縁体上の第4の導電体と、を有し、容量素子は、第1の絶縁体上の第5の導電体と、第5の導電体上の第3の絶縁体と、第3の絶縁体上の第2の導電体と、を有する半導体装置である。
【0014】
また、第1乃至第3の酸化物は、Inと、元素M(MはAl、Ga、Y、またはSn)と、Znと、を含むことが好ましい。
【0015】
また、第3の絶縁体は、アルミニウム、ハフニウム、ジルコニウム、タンタルのいずれか一を含むことが好ましい。
【0016】
また、第1の絶縁体は、シリコンおよび窒素を含むことが好ましい。
【発明の効果】
【0017】
本発明の一態様により、良好な電気特性を有する半導体装置を提供することができる。または、本発明の一態様により、ノーマリーオフの電気特性を有する半導体装置を提供することができる。または、本発明の一態様により、信頼性が良好な半導体装置を提供することができる。または、本発明の一態様により、オン電流が大きい半導体装置を提供することができる。または、本発明の一態様により、高い周波数特性を有する半導体装置を提供することができる。または、本発明の一態様により、微細化または高集積化が可能な半導体装置を提供することができる。または、本発明の一態様により、生産性の高い半導体装置を提供することができる。
【0018】
または、長期間においてデータの保持が可能な半導体装置を提供することができる。または、データの書き込み速度が速い半導体装置を提供することができる。または、設計自由度が高い半導体装置を提供することができる。または、消費電力を抑えることができる半導体装置を提供することができる。または、新規な半導体装置を提供することができる。
【0019】
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。
【図面の簡単な説明】
【0020】
図1図1(A)は半導体装置の構成例を示す上面図である。図1(B)、(C)、(D)は半導体装置の構成例を示す断面図である。
図2図2(A)は半導体装置の構成例を示す上面図である。図2(B)、(C)、(D)は半導体装置の構成例を示す断面図である。
図3図3(A)は半導体装置の構成例を示す上面図である。図3(B)、(C)、(D)は半導体装置の構成例を示す断面図である。
図4図4(A)は半導体装置の作製方法を示す上面図である。図4(B)、(C)、(D)は半導体装置の作製方法を示す断面図である。
図5図5(A)は半導体装置の作製方法を示す上面図である。図5(B)、(C)、(D)は半導体装置の作製方法を示す断面図である。
図6図6(A)は半導体装置の作製方法を示す上面図である。図6(B)、(C)、(D)は半導体装置の作製方法を示す断面図である。
図7図7(A)は半導体装置の作製方法を示す上面図である。図7(B)、(C)、(D)は半導体装置の作製方法を示す断面図である。
図8図8(A)は半導体装置の作製方法を示す上面図である。図8(B)、(C)、(D)は半導体装置の作製方法を示す断面図である。
図9図9(A)は半導体装置の作製方法を示す上面図である。図9(B)、(C)、(D)は半導体装置の作製方法を示す断面図である。
図10図10(A)は半導体装置の作製方法を示す上面図である。図10(B)、(C)、(D)は半導体装置の作製方法を示す断面図である。
図11図11(A)は半導体装置の作製方法を示す上面図である。図11(B)、(C)、(D)は半導体装置の作製方法を示す断面図である。
図12図12(A)は半導体装置の作製方法を示す上面図である。図12(B)、(C)、(D)は半導体装置の作製方法を示す断面図である。
図13図13(A)は半導体装置の作製方法を示す上面図である。図13(B)、(C)、(D)は半導体装置の作製方法を示す断面図である。
図14図14(A)は半導体装置の作製方法を示す上面図である。図14(B)、(C)、(D)は半導体装置の作製方法を示す断面図である。
図15図15(A)はIGZOの結晶構造の分類を説明する図である。図15(B)は石英ガラスのXRDスペクトルを説明する図である。図15(C)は結晶性IGZOのXRDスペクトルを説明する図である。
図16図16は半導体装置の構成例を示す断面図である。
図17図17は半導体装置の構成例を示す断面図である。
図18図18は半導体装置の構成例を示す断面図である。
図19図19は記憶装置の構成例を示す断面図である。
図20図20は記憶装置の構成例を示す断面図である。
図21図21は各種の記憶装置を階層ごとに示す図である。
図22図22(A)は記憶装置の構成例を示すブロック図である。図22(B)は記憶装置の構成例を示す斜視図である。
図23図23(A)、(B)、(C)は記憶装置の構成例を示す回路図である。
図24図24(A)、(B)は電子部品の一例を説明する図である。
図25図25(A)、(B)、(C)、(D)、(E)は記憶装置の構成例を示す模式図である。
図26図26(A)、(B)、(C)、(D)、(E1)、(E2)、(F)は電子機器を示す図である。
【発明を実施するための形態】
【0021】
以下、実施の形態について図面を参照しながら説明する。ただし、実施の形態は多くの異なる態様で実施することが可能であり、趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変更し得ることは、当業者であれば容易に理解される。したがって、本発明は、以下の実施の形態の記載内容に限定して解釈されるものではない。
【0022】
また、図面において、大きさ、層の厚さ、または領域は、明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない。なお、図面は、理想的な例を模式的に示したものであり、図面に示す形状または値などに限定されない。例えば、実際の製造工程において、エッチングなどの処理により層やレジストマスクなどが意図せずに目減りすることがあるが、理解を容易とするために図に反映しないことがある。また、図面において、同一部分または同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する場合がある。また、同様の機能を指す場合には、ハッチパターンを同じくし、特に符号を付さない場合がある。
【0023】
また、特に上面図(「平面図」ともいう)や斜視図などにおいて、発明の理解を容易とするため、一部の構成要素の記載を省略する場合がある。また、一部の隠れ線などの記載を省略する場合がある。
【0024】
また、本明細書等において、第1、第2等として付される序数詞は便宜上用いるものであり、工程順または積層順を示すものではない。そのため、例えば、「第1の」を「第2の」または「第3の」などと適宜置き換えて説明することができる。また、本明細書等に記載されている序数詞と、本発明の一態様を特定するために用いられる序数詞は一致しない場合がある。
【0025】
また、本明細書等において、「上に」、「下に」などの配置を示す語句は、構成同士の位置関係を、図面を参照して説明するために、便宜上用いている。また、構成同士の位置関係は、各構成を描写する方向に応じて適宜変化するものである。したがって、明細書で説明した語句に限定されず、状況に応じて適切に言い換えることができる。
【0026】
例えば、本明細書等において、XとYとが接続されている、と明示的に記載されている場合は、XとYとが電気的に接続されている場合と、XとYとが機能的に接続されている場合と、XとYとが直接的に接続されている場合とが、本明細書等に開示されているものとする。したがって、所定の接続関係、例えば、図または文章に示された接続関係に限定されず、図または文章に示された接続関係以外のものも、図または文章に開示されているものとする。
【0027】
ここで、X、Yは、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層、など)であるとする。
【0028】
また、ソースやドレインの機能は、異なる極性のトランジスタを採用する場合や、回路動作において電流の方向が変化する場合などには入れ替わることがある。このため、本明細書等においては、ソースやドレインの用語は、入れ替えて用いることができる場合がある。
【0029】
なお、本明細書等において、トランジスタの構造によっては、実際にチャネルの形成される領域(チャネル形成領域)におけるチャネル幅(以下、「実効的なチャネル幅」ともいう)と、トランジスタの上面図において示されるチャネル幅(以下、「見かけ上のチャネル幅」ともいう)と、が異なる場合がある。例えば、ゲートが半導体の側面を覆う場合、実効的なチャネル幅が、見かけ上のチャネル幅よりも大きくなり、その影響が無視できなくなる場合がある。例えば、微細かつゲートが半導体の側面を覆うトランジスタでは、半導体の側面に形成されるチャネル形成領域の割合が大きくなる場合がある。その場合は、見かけ上のチャネル幅よりも、実効的なチャネル幅の方が大きくなる。
【0030】
このような場合、実効的なチャネル幅の、実測による見積もりが困難となる場合がある。例えば、設計値から実効的なチャネル幅を見積もるためには、半導体の形状が既知という仮定が必要である。したがって、半導体の形状が正確にわからない場合には、実効的なチャネル幅を正確に測定することは困難である。
【0031】
本明細書では、単にチャネル幅と記載した場合には、見かけ上のチャネル幅を指す場合がある。または、本明細書では、単にチャネル幅と記載した場合には、実効的なチャネル幅を指す場合がある。なお、チャネル長、チャネル幅、実効的なチャネル幅、見かけ上のチャネル幅などは、断面TEM像などを解析することなどによって、値を決定することができる。
【0032】
なお、半導体の不純物とは、例えば、半導体を構成する主成分以外をいう。例えば、濃度が0.1原子%未満の元素は不純物と言える。不純物が含まれることにより、例えば、半導体のDOS(Density of States)が高くなることや、結晶性が低下することなどが起こる場合がある。半導体が酸化物半導体である場合、半導体の特性を変化させる不純物としては、例えば、第1族元素、第2族元素、第13族元素、第14族元素、第15族元素、および酸化物半導体の主成分以外の遷移金属などがあり、例えば、水素、リチウム、ナトリウム、シリコン、ホウ素、リン、炭素、窒素などがある。酸化物半導体の場合、水も不純物として機能する場合がある。また、酸化物半導体の場合、例えば不純物の混入によって酸素欠損を形成する場合がある。また、半導体がシリコンである場合、半導体の特性を変化させる不純物としては、例えば、酸素、水素を除く第1族元素、第2族元素、第13族元素、第15族元素などがある。
【0033】
なお、本明細書等において、酸化窒化シリコンとは、その組成として、窒素よりも酸素の含有量が多いものである。また、窒化酸化シリコンとは、その組成として、酸素よりも窒素の含有量が多いものである。
【0034】
また、本明細書等において、「絶縁体」という用語を、絶縁膜または絶縁層と言い換えることができる。また、「導電体」という用語を、導電膜または導電層と言い換えることができる。また、「半導体」という用語を、半導体膜または半導体層と言い換えることができる。
【0035】
また、本明細書等において、「平行」とは、二つの直線が-10度以上10度以下の角度で配置されている状態をいう。したがって、-5度以上5度以下の場合も含まれる。また、「略平行」とは、二つの直線が-30度以上30度以下の角度で配置されている状態をいう。また、「垂直」とは、二つの直線が80度以上100度以下の角度で配置されている状態をいう。したがって、85度以上95度以下の場合も含まれる。また、「略垂直」とは、二つの直線が60度以上120度以下の角度で配置されている状態をいう。
【0036】
なお、本明細書において、バリア膜とは、水、水素などの不純物および酸素の透過を抑制する機能を有する膜のことであり、当該バリア膜に導電性を有する場合は、導電性バリア膜と呼ぶことがある。
【0037】
本明細書等において、金属酸化物(metal oxide)とは、広い意味での金属の酸化物である。金属酸化物は、酸化物絶縁体、酸化物導電体(透明酸化物導電体を含む)、酸化物半導体(Oxide Semiconductorまたは単にOSともいう)などに分類される。例えば、トランジスタの半導体層に金属酸化物を用いた場合、当該金属酸化物を酸化物半導体と呼称する場合がある。つまり、OS FETあるいはOSトランジスタと記載する場合においては、酸化物または酸化物半導体を有するトランジスタと換言することができる。
【0038】
また、本明細書等において、ノーマリーオフとは、ゲートに電位を印加しない、またはゲートに接地電位を与えたときに、トランジスタに流れるチャネル幅1μmあたりの電流が、室温において1×10-20A以下、85℃において1×10-18A以下、または125℃において1×10-16A以下であることをいう。
【0039】
(実施の形態1)
以下では、本発明の一態様に係るトランジスタ200および容量素子100を有する半導体装置の一例、およびその作製方法について説明する。
【0040】
<半導体装置の構成例>
図1(A)、図1(B)、図1(C)、および図1(D)は、本発明の一態様に係るトランジスタ200、および容量素子100を有する半導体装置の上面図および断面図である。
【0041】
図1(A)は、トランジスタ200、および容量素子100を有する半導体装置の上面図である。また、図1(B)、図1(C)、および図1(D)は、当該半導体装置の断面図である。ここで、図1(B)は、図1(A)にA1-A2の一点鎖線で示す部位の断面図であり、トランジスタ200、および容量素子100のチャネル長方向の断面図でもある。また、図1(C)は、図1(A)にA3-A4の一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル幅方向の断面図でもある。また、図1(D)は、図1(A)にA5-A6の一点鎖線で示す部位の断面図であり、容量素子100のチャネル幅方向の断面図でもある。なお、図1(A)の上面図では、図の明瞭化のために一部の要素を省いている。
【0042】
本発明の一態様の半導体装置は、基板(図示せず)上の絶縁体214と、絶縁体214上のトランジスタ200、および容量素子100と、トランジスタ200、および容量素子100上の絶縁体280と、絶縁体280上の絶縁体282と、絶縁体282上の絶縁体283と、絶縁体283上の絶縁体284と、絶縁体284上の絶縁体274と、を有する。絶縁体214、絶縁体216、絶縁体280、絶縁体282、絶縁体283、および絶縁体274は層間膜として機能する。また、トランジスタ200と電気的に接続し、プラグとして機能する導電体240を有する。なお、プラグとして機能する導電体240の側面に接して絶縁体241が設けられる。また、絶縁体283上、および導電体240上には、導電体240と電気的に接続し、配線として機能する導電体246が設けられる。また、導電体246上、および絶縁体283上には、絶縁体284が設けられている。
【0043】
また、絶縁体272、絶縁体273、絶縁体280、絶縁体282、および絶縁体283の開口の内壁に接して、絶縁体241が設けられ、その側面に接して導電体240の第1の導電体が設けられ、さらに内側に導電体240の第2の導電体が設けられている。ここで、導電体240の上面の高さと、絶縁体283の上面の高さは同程度にできる。なお、トランジスタ200では、導電体240の第1の導電体および導電体240の第2の導電体を積層する構成について示しているが、本発明はこれに限られるものではない。例えば、導電体240を単層、または3層以上の積層構造として設ける構成にしてもよい。構造体が積層構造を有する場合、形成順に序数を付与し、区別する場合がある。
【0044】
[トランジスタ200]
図1(B)に示すように、トランジスタ200は、絶縁体214上の絶縁体216と、絶縁体216に埋め込まれるように配置された導電体205(導電体205a、および導電体205b)と、絶縁体216上、および導電体205上の絶縁体222と、絶縁体222上の絶縁体224と、絶縁体224上の酸化物230aと、酸化物230a上の酸化物230bと、酸化物230b上の酸化物243aおよび酸化物243bと、絶縁体222の上面、絶縁体224の側面、酸化物230aの側面、酸化物230bの側面、酸化物243aの側面、および酸化物243aの上面と接する導電体242aと、絶縁体222の上面、絶縁体224の側面、酸化物230aの側面、酸化物230bの側面、酸化物243bの側面、および酸化物243bの上面と接する導電体242bと、絶縁体222の上面、導電体242aの側面、導電体242aの上面、導電体242bの側面、および導電体242bの上面とそれぞれ接する絶縁体272と、絶縁体272上の絶縁体273と、酸化物230b上の酸化物230cと、酸化物230c上の絶縁体250と、絶縁体250上に位置し、酸化物230cと重なる導電体260(導電体260a、および導電体260b)と、を有する。また、酸化物230cは、酸化物243aの側面、酸化物243bの側面、導電体242aの側面、導電体242bの側面、絶縁体272の側面、および絶縁体273の側面とそれぞれ接する。導電体260は、導電体260aおよび導電体260bを有し、導電体260bの底面および側面を包むように導電体260aが配置される。ここで、図1(B)に示すように、導電体260の上面は、絶縁体250の上面および酸化物230cの上面と略一致して配置される。また、絶縁体282は、導電体260、絶縁体250、酸化物230c、および絶縁体280のそれぞれの上面と接する。
【0045】
なお、以下において、酸化物243aと酸化物243bをまとめて酸化物243と呼ぶ場合がある。また、導電体242aと導電体242bをまとめて導電体242と呼ぶ場合がある。
【0046】
トランジスタ200において、導電体260は、トランジスタのゲートとして機能し、導電体242aおよび導電体242bは、それぞれソース電極またはドレイン電極として機能する。トランジスタ200は、ゲートとして機能する導電体260が、絶縁体280、絶縁体273、絶縁体272、導電体242、および酸化物243によって形成される開口を埋めるように自己整合的に形成される。導電体260をこのように形成することにより、導電体242aと導電体242bの間の領域に、導電体260を位置合わせすることなく確実に配置することができる。
【0047】
また、絶縁体214、絶縁体222、絶縁体272、絶縁体273、絶縁体282、および絶縁体283の少なくとも一は、水素(例えば、水素原子、水素分子などの少なくとも一)または水分子の拡散を抑制する機能を有することが好ましい。特に、絶縁体214、絶縁体273、および絶縁体283は、水素(例えば、水素原子、水素分子などの少なくとも一)または水分子の拡散を抑制する機能が高いことが好ましい。また、絶縁体214、絶縁体222、絶縁体272、絶縁体273、絶縁体282、および絶縁体283の少なくとも一は、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有することが好ましい。例えば、絶縁体214、絶縁体222、絶縁体272、絶縁体273、絶縁体282、および絶縁体283の少なくとも一は、絶縁体224よりも酸素および水素の一方または双方の透過性が低いことが好ましい。絶縁体214、絶縁体222、絶縁体272、絶縁体273、絶縁体282、および絶縁体283の少なくとも一は、絶縁体250よりも酸素および水素の一方または双方の透過性が低いことが好ましい。絶縁体214、絶縁体222、絶縁体272、絶縁体273、絶縁体282、および絶縁体283の少なくとも一は、絶縁体280よりも酸素および水素の一方または双方の透過性が低いことが好ましい。
【0048】
絶縁体214、絶縁体222、絶縁体272、絶縁体273、絶縁体282、および絶縁体283としては、例えば、酸化アルミニウム、酸化ハフニウム、酸化ガリウム、インジウムガリウム亜鉛酸化物、窒化シリコン、または窒化酸化シリコンなどを用いることができる。特に、絶縁体214、および絶縁体283としては、より水素バリア性が高い、窒化シリコンまたは窒化酸化シリコンを用いることが好ましい。
【0049】
また、図1(B)に示すように、本実施の形態に示す半導体装置の一態様では、絶縁体224の側面の一部が導電体242と接し、導電体242は、絶縁体272に覆われ、絶縁体272上に絶縁体273を配置する構成となっている。従って、絶縁体272および絶縁体273によって、導電体242が封止されるので、導電体242の酸化を抑制することができる。また、絶縁体224中の水素が導電体242を通って絶縁体272に吸収される場合があり、好ましい。
【0050】
また、酸化物230は、絶縁体224上の酸化物230aと、酸化物230a上の酸化物230bと、酸化物230b上に配置され、少なくとも一部が酸化物230bの上面に接する酸化物230cと、を有することが好ましい。ここで、酸化物230cの側面は、酸化物243a、酸化物243b、導電体242a、導電体242b、絶縁体272、絶縁体273、および絶縁体280に接して設けられていることが好ましい。
【0051】
なお、トランジスタ200では、チャネル形成領域と、その近傍において、酸化物230a、酸化物230b、および酸化物230cの3層を積層する構成について示しているが、本発明はこれに限られるものではない。例えば、酸化物230bの単層、酸化物230bと酸化物230aの2層構造、酸化物230bと酸化物230cの2層構造、または4層以上の積層構造を設ける構成にしてもよい。例えば、酸化物230cを2層構造にして、4層の積層構造を設ける構成にしてもよい。
【0052】
トランジスタ200は、チャネル形成領域を含む酸化物230(酸化物230a、酸化物230b、および酸化物230c)に、酸化物半導体として機能する金属酸化物(以下、酸化物半導体ともいう)を用いることが好ましい。例えば、酸化物半導体として機能する金属酸化物は、エネルギーギャップが2eV以上、好ましくは2.5eV以上のものを用いることが好ましい。このように、エネルギーギャップの大きい金属酸化物を用いることで、トランジスタ200の非導通状態におけるリーク電流(オフ電流)を極めて小さくすることができる。このようなトランジスタを用いることで、低消費電力の半導体装置を提供できる。
【0053】
例えば、酸化物230として、In-M-Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、錫、銅、バナジウム、ベリリウム、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種)等の金属酸化物を用いるとよい。特に、元素Mは、アルミニウム、ガリウム、イットリウム、または錫を用いるとよい。また、酸化物230として、In酸化物、In-M酸化物、In-Zn酸化物、またはM-Zn酸化物を用いてもよい。
【0054】
酸化物230は、酸化物230aと、酸化物230a上の酸化物230bと、酸化物230b上の酸化物230cと、を有する。酸化物230b下に酸化物230aを有することで、酸化物230aよりも下方に形成された構造物から、酸化物230bへの不純物の拡散を抑制することができる。また、酸化物230b上に酸化物230cを有することで、酸化物230cよりも上方に形成された構造物から、酸化物230bへの不純物の拡散を抑制することができる。
【0055】
なお、酸化物230は、各金属原子の原子数比が異なる複数の層の積層構造を有することが好ましい。具体的には、酸化物230aに用いる金属酸化物において、構成元素中の元素Mの原子数比が、酸化物230bに用いる金属酸化物における、構成元素中の元素Mの原子数比より、大きいことが好ましい。また、酸化物230aに用いる金属酸化物において、Inに対する元素Mの原子数比が、酸化物230bに用いる金属酸化物における、Inに対する元素Mの原子数比より大きいことが好ましい。また、酸化物230bに用いる金属酸化物において、元素Mに対するInの原子数比が、酸化物230aに用いる金属酸化物における、元素Mに対するInの原子数比より大きいことが好ましい。また、酸化物230cは、酸化物230aまたは酸化物230bに用いることができる金属酸化物を、用いることができる。
【0056】
具体的には、酸化物230aとして、In:Ga:Zn=1:3:4[原子数比]、またはその近傍の組成、あるいは1:1:0.5[原子数比]、またはその近傍の組成の金属酸化物を用いればよい。また、酸化物230bとして、In:Ga:Zn=4:2:3[原子数比]、またはその近傍の組成、あるいは1:1:1[原子数比]、またはその近傍の組成の金属酸化物を用いればよい。また、酸化物230cとして、In:Ga:Zn=1:3:4[原子数比]、またはその近傍の組成、In:Ga:Zn=4:2:3[原子数比]、またはその近傍の組成、In:Ga:Zn=5:1:3[原子数比]、またはその近傍の組成、In:Ga:Zn=10:1:3[原子数比]、またはその近傍の組成、Ga:Zn=2:1[原子数比]、またはその近傍の組成、あるいはGa:Zn=2:5[原子数比]、またはその近傍の組成の金属酸化物を用いればよい。また、酸化物230cを積層構造とする場合の具体例としては、In:Ga:Zn=4:2:3[原子数比]、またはその近傍の組成と、In:Ga:Zn=1:3:4[原子数比]、またはその近傍の組成との積層構造、In:Ga:Zn=4:2:3[原子数比]、またはその近傍の組成、とIn:Ga:Zn=5:1:3[原子数比]、またはその近傍の組成との積層構造、Ga:Zn=2:1[原子数比]、またはその近傍の組成と、In:Ga:Zn=4:2:3[原子数比]、またはその近傍の組成との積層構造、Ga:Zn=2:5[原子数比]、またはその近傍の組成と、In:Ga:Zn=4:2:3[原子数比]、またはその近傍の組成との積層構造、酸化ガリウムと、In:Ga:Zn=4:2:3[原子数比]、またはその近傍の組成との積層構造などが挙げられる。なお、近傍の組成とは、所望の原子数比の±30%の範囲を含む。
【0057】
また、酸化物230bは、結晶性を有することが好ましい。例えば、後述するCAAC-OS(c-axis aligned crystalline oxide semiconductor)を用いることが好ましい。CAAC-OSなどの結晶性を有する酸化物は、不純物や欠陥(酸素欠損など)が少なく、結晶性の高い、緻密な構造を有している。よって、ソース電極またはドレイン電極による、酸化物230bからの酸素の引き抜きを抑制することができる。これにより、加熱処理を行っても、酸化物230bから酸素が引き抜かれることを低減できるので、トランジスタ200は、製造工程における高い温度(所謂サーマルバジェット)に対して安定である。
【0058】
また、酸化物230aおよび酸化物230cの伝導帯下端のエネルギーが、酸化物230bの伝導帯下端のエネルギーより高くなることが好ましい。また、言い換えると、酸化物230aおよび酸化物230cの電子親和力が、酸化物230bの電子親和力より小さいことが好ましい。
【0059】
ここで、電子親和力または伝導帯下端のエネルギー準位Ecは、真空準位と価電子帯上端のエネルギーEvとの差であるイオン化ポテンシャルIpと、エネルギーギャップEgから求めることができる。イオン化ポテンシャルIpは、例えば、紫外線光電子分光分析(UPS:Ultraviolet Photoelectron Spectroscopy)装置を用いて測定することができる。エネルギーギャップEgは、例えば、分光エリプソメータを用いて測定することができる。
【0060】
また、酸化物230a、酸化物230b、および酸化物230cの接合部において、伝導帯下端のエネルギー準位はなだらかに変化する。換言すると、酸化物230a、酸化物230b、および酸化物230cの接合部における伝導帯下端のエネルギー準位は、連続的に変化または連続接合するともいうことができる。このようにするためには、酸化物230aと酸化物230bとの界面、および酸化物230bと酸化物230cとの界面において形成される混合層の欠陥準位密度を低くするとよい。
【0061】
また、キャリアの主たる経路は酸化物230bとなる。酸化物230a乃至酸化物230cを上述の構成とすることで、酸化物230aと酸化物230bとの界面、および酸化物230bと酸化物230cとの界面における欠陥準位密度を低くすることができる。そのため、界面散乱によるキャリア伝導への影響が小さくなり、トランジスタ200は高いオン電流、および高い周波数特性を得ることができる。
【0062】
酸化物230(例えば、酸化物230b)には、キャリア濃度の低い酸化物半導体を用いることが好ましい。酸化物半導体のキャリア濃度を低くする場合においては、酸化物半導体中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性または実質的に高純度真性という。なお、酸化物半導体中の不純物としては、例えば、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。
【0063】
特に、酸化物半導体に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸化物半導体中に酸素欠損(V:oxygen vacancyともいう)を形成する場合がある。さらに、酸素欠損に水素が入った欠陥(以下、VHと呼ぶ場合がある。)はドナーとして機能し、キャリアである電子が生成されることがある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成する場合がある。従って、水素が多く含まれている酸化物半導体を用いたトランジスタは、ノーマリーオン特性となりやすい。また、酸化物半導体中の水素は、熱、電界などのストレスによって動きやすいため、酸化物半導体に多くの水素が含まれると、トランジスタの信頼性が悪化する恐れもある。
【0064】
Hは、酸化物半導体のドナーとして機能しうる。しかしながら、当該欠陥を定量的に評価することは困難である。そこで、酸化物半導体においては、ドナー濃度ではなく、キャリア濃度で評価される場合がある。よって、本明細書等では、酸化物半導体のパラメータとして、ドナー濃度ではなく、電界が印加されない状態を想定したキャリア濃度を用いる場合がある。つまり、本明細書等に記載の「キャリア濃度」は、「ドナー濃度」と言い換えることができる場合がある。
【0065】
以上より、酸化物半導体を酸化物230に用いる場合、酸化物230中のVHをできる限り低減し、高純度真性または実質的に高純度真性にすることが好ましい。このように、VHが十分低減された酸化物半導体を得るには、酸化物半導体中の水分、水素などの不純物を除去すること(脱水、脱水素化処理と記載する場合がある。)と、酸化物半導体に酸素を供給して酸素欠損を補填すること(加酸素化処理と記載する場合がある。)が重要である。VHなどの不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
【0066】
また、酸化物230に酸化物半導体を用いる場合、チャネル形成領域として機能する領域の酸化物半導体のキャリア濃度は、1×1018cm-3以下であることが好ましく、1×1017cm-3未満であることがより好ましく、1×1016cm-3未満であることがさらに好ましく、1×1013cm-3未満であることがさらに好ましく、1×1012cm-3未満であることがさらに好ましい。なお、チャネル形成領域として機能する領域の酸化物半導体のキャリア濃度の下限値については、特に限定は無いが、例えば、1×10-9cm-3とすることができる。
【0067】
また、水素原子を含まない、または水素原子の含有量が少ない、原料ガスを用いて、層間絶縁膜(絶縁体216、絶縁体274、絶縁体280など)、およびゲート絶縁膜(絶縁体224、絶縁体250など)を成膜することで、これらの絶縁膜に含まれる水素濃度を低減し、酸化物半導体のチャネル形成領域に混入する水素の低減を図ってもよい。
【0068】
上記絶縁膜の成膜では、成膜ガスとして、シリコン原子を含む分子を有するガスが主に用いられる。上記絶縁膜に含まれる水素を低減するには、当該シリコン原子を含む分子に含まれる水素原子が少ないことが好ましく、当該シリコン原子を含む分子が水素原子を含まないことがより好ましい。もちろん、シリコン原子を含む分子を有するガス以外の成膜ガスも、含有される水素原子が少ないことが好ましく、水素原子を含まないことがより好ましい。
【0069】
上記のようなシリコン原子を含む分子をSi-Rで表すと、例えば、官能基Rとして、イソシアネート基(-N=C=O)、シアネート基(-O-C≡N)、シアノ基(-C≡N)、ジアゾ基(=N)、アジド基(-N)、ニトロソ基(-NO)、およびニトロ基(-NO)の少なくとも一つを用いることができる。例えば、1≦x≦3、1≦y≦8、とすればよい。このようなシリコン原子を含む分子としては、例えば、テトライソシアネートシラン、テトラシアネートシラン、テトラシアノシラン、ヘキサイソシアネートシラン、オクタイソシアネートシラン等を用いることができる。ここでは、シリコン原子に同じ種類の官能基が結合する分子を例示したが、本実施の形態はこれに限られるものではない。シリコン原子に異なる種類の官能基が結合する構成にしてもよい。
【0070】
また、例えば、官能基Rとしてハロゲン(Cl、Br、I、またはF)を用いる構成にしてもよい。例えば、1≦x≦2、1≦y≦6、とすればよい。このようなシリコン原子を含む分子としては、例えば、テトラクロロシラン(SiCl)、ヘキサクロロジシラン(SiCl)等を用いることができる。塩素を官能基とする例を示したが、塩素以外の、臭素、ヨウ素、フッ素等のハロゲンを官能基として用いてもよい。また、シリコン原子に異なる種類のハロゲンが結合する構成にしてもよい。
【0071】
絶縁体216、絶縁体274、絶縁体280、絶縁体224、および絶縁体250の成膜は、上記のようなシリコン原子を含む分子を有するガスを用いた、化学気相成長(CVD:Chemical Vapor Deposition)法によって行えばよい。CVD法は、成膜速度が比較的早いので、膜厚が厚い絶縁体280、絶縁体274、および絶縁体216の成膜を行うにあたって好適である。
【0072】
CVD法として、プラズマを利用するプラズマCVD(PECVD:Plasma Enhanced CVD)法、または熱を利用する熱CVD(TCVD:Thermal CVD)法、を用いることが好ましい。熱CVD法を用いる場合、大気圧下で成膜を行なう常圧CVD(APCVD:Atmospheric Pressure CVD)法を用いてもよいし、大気圧より低い減圧状態で成膜を行う減圧CVD(LPCVD:Low Pressure CVD)法を用いてもよい。
【0073】
CVD法を用いて絶縁体216、絶縁体274、絶縁体280、絶縁体224、および絶縁体250を成膜する場合、酸化剤を用いることが好ましい。酸化剤としては、O、O、NO、NO、NO、N、N、N、CO、CO、などの水素原子を含まないガスを用いることが好ましい。
【0074】
また、絶縁体216、絶縁体274、絶縁体280、絶縁体224、および絶縁体250の成膜は、ALD(Atomic Layer Deposition)法によって行ってもよい。ALD法では、反応のための第1の原料ガス(以下、プリカーサと呼ぶ。前駆体、金属プリカーサとも呼ぶことができる。)と第2の原料ガス(以下、リアクタントと呼ぶ。反応剤、非金属プリカーサとも呼ぶことができる。)を交互にチャンバーに導入し、これらの原料ガスの導入を繰り返すことで成膜を行う。
【0075】
ALD法は、原料ガスを切り替えながら成膜することで、原子の性質である自己制御性を利用し、一層ずつ原子を堆積することができる。よって、ALD法は、極薄膜厚の成膜、アスペクト比の高い構造への成膜、ピンホールなどの欠陥の少ない成膜、および被覆性に優れた成膜などを行うことができる。このため、ALD法は、絶縁体250、および絶縁体224の成膜を行うにあたって好適である。
【0076】
ALD法としては、プリカーサ及びリアクタントの反応を熱エネルギーのみで行う熱ALD(Thermal ALD)法を用いてもよいし、プラズマ励起されたリアクタントを用いるPEALD(Plasma Enhanced ALD)法を用いてもよい。
【0077】
ALD法を用いる場合、プリカーサとして、上記シリコン原子を含む分子を有するガスを、リアクタントとして、上記酸化剤を用いればよい。これにより、絶縁体216、絶縁体274、絶縁体280、絶縁体224、および絶縁体250中に取り込まれる水素の量を大きく低減することができる。
【0078】
なお、上記では、シリコン原子を含む分子が水素原子を含まない例について示したが、本実施の形態はこれに限られるものではない。上記のシリコン原子を含む分子において、シリコン原子に結合する官能基の一部が水素原子に置換される構成にしてもよい。ただし、上記のシリコン原子を含む分子に含まれる水素原子は、シラン(SiH)より少ないことが好ましい。つまり、上記のシリコン原子を含む分子は、シリコン1原子あたり3原子以下の水素原子を有することが好ましい。また、上記のシリコン原子を含む分子を有するガスが、シリコン1原子あたり3原子以下の水素原子を有すると、より好ましい。
【0079】
以上のように、水素原子が低減または除去されたガスを用いた成膜方法で、絶縁体216、絶縁体274、絶縁体280、絶縁体224、および絶縁体250の少なくとも一つを成膜することで、これらの絶縁膜に含まれる水素の量を低減することができる。
【0080】
また、トランジスタ200は、図1(B)(C)(D)に示すように、絶縁体282と、絶縁体250とが、直接接する構造となっている。このような構造とすることで、絶縁体280に含まれる酸素が、導電体260に吸収され難くなる。従って、絶縁体280に含まれる酸素は、酸化物230cを介して、酸化物230aおよび酸化物230bへ効率よく供給することができるので、酸化物230a中および酸化物230b中の酸素欠損を低減し、トランジスタ200の電気特性および信頼性を向上させることができる。また、絶縁体280に含まれる水素などの不純物が絶縁体250へ混入することを抑えることができるので、さらに、絶縁体250および酸化物230の水素濃度を低減することができる。よって、トランジスタ200の電気特性および信頼性への悪影響を抑制することができる。絶縁体282としては、窒化シリコン、窒化酸化シリコン、酸化アルミニウム、または酸化ハフニウムを用いることができる。
【0081】
[容量素子100]
図1(B)に示すように、容量素子100は、絶縁体214上の絶縁体216と、絶縁体216に埋め込まれるように配置された導電体204(導電体204a、および導電体204b)と、絶縁体216上、および導電体205上の絶縁体222と、絶縁体222上の導電体242aを有する。
【0082】
容量素子100において、導電体204は、容量素子100の一方の電極として機能し、導電体242aは、容量素子100の他方の電極として機能する。また、絶縁体222は、容量素子100の誘電体として機能する。導電体204は、導電体205と同じ材料を用いる。
【0083】
導電体204は、トランジスタ200が有する導電体205と同じ層に形成される。導電体242aは、トランジスタ200のソース電極またはドレイン電極を兼ねる。また、絶縁体222は、トランジスタ200のゲート絶縁体を兼ねる。このように、トランジスタ200、および容量素子100の構成要素の一部を共通とする構成とすることで、トランジスタ200、および容量素子100を有する半導体装置の作製工程が簡略化されるので、製造コストの低減および歩留まりの向上が期待できるので好ましい。
【0084】
以上より、電気特性の変動を抑制し、安定した電気特性を有するとともに、信頼性を向上させた半導体装置を提供することができる。または、ノーマリーオフの電気特性を有する半導体装置を提供することができる。または、オン電流が大きいトランジスタを有する半導体装置を提供することができる。または、高い周波数特性を有するトランジスタを有する半導体装置を提供することができる。または、オフ電流が小さいトランジスタを有する半導体装置を提供することができる。
【0085】
以下では、本発明の一態様に係るトランジスタ200および容量素子100を有する半導体装置の詳細な構成について説明する。
【0086】
導電体205は、酸化物230、および導電体260と、重なるように配置する。また、導電体205は、絶縁体216に埋め込まれて設けることが好ましい。
【0087】
ここで、導電体260は、第1のゲート(トップゲートともいう)として機能する場合がある。また、導電体205は、第2のゲート(ボトムゲートともいう)として機能する場合がある。その場合、導電体205に印加する電位を、導電体260に印加する電位と、連動させず、独立して変化させることで、トランジスタ200のVthを制御することができる。特に、導電体205に負の電位を印加することにより、トランジスタ200のVthを0Vより大きくし、オフ電流を低減することが可能となる。したがって、導電体205に負の電位を印加したほうが、印加しない場合よりも、導電体260に印加する電位が0Vのときのドレイン電流を小さくすることができる。
【0088】
なお、図1(A)に示すように、導電体205は、酸化物230の導電体242aおよび導電体242bと重ならない領域の大きさよりも、大きく設けるとよい。特に、図1(C)に示すように、導電体205は、酸化物230aおよび酸化物230bのチャネル幅方向の端部よりも外側の領域においても、延伸していることが好ましい。つまり、酸化物230aおよび酸化物230bのチャネル幅方向の端部の外側において、導電体205と、導電体260とは、絶縁体を介して重畳していることが好ましい。または、導電体205を大きく設けることによって、導電体205形成以降の作製工程のプラズマを用いた処理において、局所的なチャージング(チャージアップと言う)の緩和ができる場合がある。ただし、本発明の一態様はこれに限定されない。導電体205は、少なくとも導電体242aと、導電体242bとの間に位置する酸化物230と重畳すればよい。
【0089】
図1(A)、および(B)に示すように、導電体204は、少なくとも導電体242aの酸化物230aおよび酸化物230bと重ならない領域と重なる領域を有することが好ましい。
【0090】
また、図1(C)に示すように、絶縁体224の底面を基準として、酸化物230aおよび酸化物230bと、導電体260とが、重ならない領域における導電体260の底面の高さは、酸化物230bの底面の高さより低い位置に配置されている領域を有することが好ましい。また、当該領域における導電体260の底面の高さと、酸化物230bの底面の高さと、の差は、0nm以上100nm以下、好ましくは、3nm以上50nm以下、より好ましくは、5nm以上20nm以下とする。
【0091】
このように、ゲートとして機能する導電体260が、チャネル形成領域の酸化物230bの側面および上面を酸化物230cおよび絶縁体250を介して覆う構成となっており、導電体260の電界をチャネル形成領域の酸化物230b全体に作用させやすくなる。よって、トランジスタ200のオン電流を増大させ、周波数特性を向上させることができる。本明細書において、第1のゲート、および第2のゲートの電界によって、チャネル形成領域を電気的に取り囲むトランジスタの構造を、surrounded channel(S-channel)構造とよぶ。
【0092】
また、導電体205aは、水または水素などの不純物および酸素の透過を抑制する導電体が好ましい。例えば、チタン、窒化チタン、タンタル、または窒化タンタルを用いることができる。また、導電体205bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。なお、導電体205を2層で図示したが、3層以上の多層構造としてもよい。
【0093】
ここで、酸化物半導体と、酸化物半導体の下層に位置する絶縁体、または導電体と、酸化物半導体の上層に位置する絶縁体、または導電体とを、大気開放を行わずに、異なる膜種を連続成膜することで、不純物(特に、水素、水)の濃度が低減された、実質的に高純度真性である酸化物半導体膜を成膜することができるので好ましい。
【0094】
絶縁体214、絶縁体222、絶縁体272、絶縁体273、絶縁体282、絶縁体283、および絶縁体284の少なくとも一つは、水または水素などの不純物が、基板側から、または、上方からトランジスタ200に混入するのを抑制するバリア絶縁膜として機能することが好ましい。したがって、絶縁体214、絶縁体222、絶縁体272、絶縁体273、絶縁体282、絶縁体283、および絶縁体284の少なくとも一つは、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する(上記不純物が透過しにくい)絶縁性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する(上記酸素が透過しにくい)絶縁性材料を用いることが好ましい。
【0095】
例えば、絶縁体283、および絶縁体284として、窒化シリコンまたは窒化酸化シリコンなどを用い、絶縁体214、絶縁体222、絶縁体272、絶縁体273、および絶縁体282として、酸化アルミニウムまたは酸化ハフニウムなどを用いることが好ましい。これにより、水または水素などの不純物が絶縁体214を介して、基板側からトランジスタ200側に拡散するのを抑制することができる。または、絶縁体224などに含まれる酸素が、絶縁体214を介して基板側に、拡散するのを抑制することができる。また、水または水素などの不純物が絶縁体272、絶縁体273、絶縁体282、および絶縁体283よりも上方に配置されている絶縁体280、および絶縁体274などからトランジスタ200側に拡散するのを抑制することができる。
【0096】
また、絶縁体284の抵抗率を低くすることが好ましい場合がある。例えば、絶縁体284の抵抗率を概略1×1013Ωcmとすることで、半導体装置作製工程の絶縁体284形成以降のプラズマ等を用いる処理において、絶縁体284が、導電体204、導電体205、導電体242、導電体260または導電体246のチャージアップを緩和することができる場合がある。絶縁体284の抵抗率は、好ましくは、1×1010Ωcm以上1×1015Ωcm以下とする。
【0097】
また、絶縁体216、絶縁体280、および絶縁体274は、絶縁体214よりも誘電率が低いことが好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。例えば、絶縁体216、絶縁体280、および絶縁体274として、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、または空孔を有する酸化シリコンなどを適宜用いればよい。
【0098】
絶縁体222、および絶縁体224は、ゲート絶縁体としての機能を有する。
【0099】
ここで、酸化物230と接する絶縁体224は、加熱により酸素を脱離することが好ましい。本明細書では、加熱により離脱する酸素を過剰酸素と呼ぶことがある。例えば、絶縁体224は、酸化シリコンまたは酸化窒化シリコンなどを適宜用いればよい。酸素を含む絶縁体を酸化物230に接して設けることにより、酸化物230中の酸素欠損を低減し、トランジスタ200の信頼性を向上させることができる。
【0100】
絶縁体224として、具体的には、加熱により一部の酸素が脱離する酸化物材料を用いることが好ましい。加熱により酸素を脱離する酸化物とは、昇温脱離ガス分析(TDS(Thermal Desorption Spectroscopy)分析)にて、酸素分子の脱離量が1.0×1018molecules/cm以上、好ましくは1.0×1019molecules/cm以上、さらに好ましくは2.0×1019molecules/cm以上、または3.0×1020molecules/cm以上である酸化物膜である。なお、上記TDS分析時における膜の表面温度としては100℃以上700℃以下、または100℃以上400℃以下の範囲が好ましい。
【0101】
絶縁体222は、水または水素などの不純物が、基板側からトランジスタ200に混入するのを抑制するバリア絶縁膜として機能することが好ましい。例えば、絶縁体222は、絶縁体224より水素透過性が低いことが好ましい。絶縁体222、および絶縁体283によって、絶縁体224および酸化物230などを囲むことにより、外方から水または水素などの不純物がトランジスタ200に侵入することを抑制することができる。
【0102】
さらに、絶縁体222は、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する(上記酸素が透過しにくい)ことが好ましい。例えば、絶縁体222は、絶縁体224より酸素透過性が低いことが好ましい。絶縁体222が、酸素や不純物の拡散を抑制する機能を有することで、酸化物230が有する酸素が、絶縁体222より下側へ拡散することを低減できるので、好ましい。また、導電体205が、絶縁体224や、酸化物230が有する酸素と反応することを抑制することができる。
【0103】
絶縁体222は、絶縁性材料であるアルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体を用いるとよい。アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。このような材料を用いて絶縁体222を形成した場合、絶縁体222は、酸化物230からの酸素の放出や、トランジスタ200の周辺部から酸化物230への水素等の不純物の混入を抑制する層として機能する。
【0104】
または、これらの絶縁体に、例えば、酸化アルミニウム、酸化ビスマス、酸化ゲルマニウム、酸化ニオブ、酸化シリコン、酸化チタン、酸化タングステン、酸化イットリウム、酸化ジルコニウムを添加してもよい。またはこれらの絶縁体を窒化処理してもよい。上記の絶縁体に酸化シリコン、酸化窒化シリコンまたは窒化シリコンを積層して用いてもよい。
【0105】
また、絶縁体222は、例えば、酸化アルミニウム、酸化ハフニウム、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)または(Ba,Sr)TiO(BST)などのいわゆるhigh-k材料を含む絶縁体を単層または積層で用いてもよい。例えば、絶縁体222を積層とする場合、酸化ジルコニウムと、酸化アルミニウムと、酸化ジルコニウムと、が順に形成された3層積層や、酸化ジルコニウムと、酸化アルミニウムと、酸化ジルコニウムと、酸化アルミニウムと、が順に形成されて4層積層などを用いれば良い。また、絶縁体222としては、ハフニウムと、ジルコニウムとが含まれる化合物などを用いても良い。半導体装置の微細化、および高集積化が進むと、ゲート絶縁体、および容量素子に用いる誘電体の薄膜化により、トランジスタや容量素子のリーク電流などの問題が生じる場合がある。ゲート絶縁体、および容量素子に用いる誘電体として機能する絶縁体にhigh-k材料を用いることで、物理膜厚を保ちながら、トランジスタ動作時のゲート電位の低減、および容量素子の容量の確保が可能となる。
【0106】
なお、絶縁体222、および絶縁体224が、2層以上の積層構造を有していてもよい。その場合、同じ材料からなる積層構造に限定されず、異なる材料からなる積層構造でもよい。
【0107】
また、酸化物230bと、ソース電極またはドレイン電極として機能する導電体242(導電体242aおよび導電体242b)と、の間に酸化物243(酸化物243aおよび酸化物243b)を配置してもよい。導電体242と、酸化物230とが接しない構成となるので、導電体242が、酸化物230の酸素を吸収することを抑制できる。つまり、導電体242の酸化を防止することで、導電体242の導電率の低下を抑制することができる。従って、酸化物243は、導電体242の酸化を抑制する機能を有することが好ましい。
【0108】
従って、酸化物243は、酸素の透過を抑制する機能を有することが好ましい。ソース電極やドレイン電極として機能する導電体242と酸化物230bとの間に酸素の透過を抑制する機能を有する酸化物243を配置することで、導電体242と、酸化物230bとの間の電気抵抗が低減されるので好ましい。このような構成とすることで、トランジスタ200の電気特性およびトランジスタ200の信頼性を向上させることができる。
【0109】
酸化物243として、元素Mを有する金属酸化物を用いてもよい。特に、元素Mは、アルミニウム、ガリウム、イットリウム、または錫を用いるとよい。酸化物243は、酸化物230bよりも元素Mの濃度が高いことが好ましい。また、酸化物243として、酸化ガリウムを用いてもよい。また、酸化物243として、In-M-Zn酸化物等の金属酸化物を用いてもよい。具体的には、酸化物243に用いる金属酸化物において、Inに対する元素Mの原子数比が、酸化物230bに用いる金属酸化物における、Inに対する元素Mの原子数比より大きいことが好ましい。また、酸化物243の膜厚は、0.5nm以上5nm以下が好ましく、より好ましくは、1nm以上3nm以下である。また、酸化物243は、結晶性を有すると好ましい。酸化物243が結晶性を有する場合、酸化物230中の酸素の放出を好適に抑制することが出来る。例えば、酸化物243としては、六方晶などの結晶構造であれば、酸化物230中の酸素の放出を抑制できる場合がある。
【0110】
なお、酸化物243は必ずしも設けなくてもよい。その場合、導電体242(導電体242a、および導電体242b)と酸化物230とが接することで、酸化物230中の酸素が導電体242へ拡散し、導電体242が酸化する場合がある。導電体242が酸化することで、導電体242の導電率が低下する蓋然性が高い。なお、酸化物230中の酸素が導電体242へ拡散することを、導電体242が酸化物230中の酸素を吸収する、と言い換えることができる。
【0111】
また、酸化物230中の酸素が導電体242(導電体242a、および導電体242b)へ拡散することで、導電体242aと酸化物230bとの間、および、導電体242bと酸化物230bとの間に異層が形成される場合がある。当該異層は、導電体242よりも酸素を多く含むため、当該異層は絶縁性を有すると推定される。このとき、導電体242と、当該異層と、酸化物230bとの3層構造は、金属-絶縁体-半導体からなる3層構造とみなすことができ、MIS(Metal-Insulator-Semiconductor)構造と呼ぶ、またはMIS構造を主としたダイオード接合構造と呼ぶ場合がある。
【0112】
なお、上記異層は、導電体242と酸化物230bとの間に形成されることに限られず、例えば、異層が、導電体242と酸化物230cとの間に形成される場合や、導電体242と酸化物230bとの間、および導電体242と酸化物230cとの間に形成される場合がある。
【0113】
酸化物243上には、ソース電極、およびドレイン電極として機能する導電体242(導電体242a、および導電体242b)が設けられる。導電体242の膜厚は、例えば、1nm以上50nm以下、好ましくは2nm以上25nm以下、とすればよい。
【0114】
導電体242としては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンから選ばれた金属元素、または上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いることが好ましい。例えば、窒化タンタル、窒化チタン、タングステン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物などを用いることが好ましい。また、窒化タンタル、窒化チタン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物は、酸化しにくい導電性材料、または、酸素を吸収しても導電性を維持する材料であるため、好ましい。
【0115】
絶縁体272は、導電体242上面に接して設けられており、バリア層として機能することが好ましい。当該構成にすることで、導電体242による、絶縁体280が有する過剰酸素の吸収を抑制することができる。また、導電体242の酸化を抑制することで、トランジスタ200と配線とのコンタクト抵抗の増加を抑制することができる。よって、トランジスタ200に良好な電気特性および信頼性を与えることができる。
【0116】
従って、絶縁体272は、酸素の拡散を抑制する機能を有することが好ましい。例えば、絶縁体272は、絶縁体280よりも酸素の拡散を抑制する機能を有することが好ましい。絶縁体272としては、例えば、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体を成膜するとよい。また、絶縁体272としては、例えば、窒化アルミニウムを含む絶縁体を用いればよい。
【0117】
図1(D)に示すように、絶縁体272は、導電体242aの上面、および導電体242aの側面と接する。また、図示しないが、絶縁体272は、導電体242bの上面、および導電体242bの側面と接する。また、絶縁体272上に絶縁体273が配置されている。このようにすることで、例えば絶縁体280に添加された酸素が、導電体242に吸収されることを抑制することができる。
【0118】
絶縁体250は、ゲート絶縁体として機能する。絶縁体250は、酸化物230c上に接して配置することが好ましい。絶縁体250は、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコンを用いることができる。特に、酸化シリコン、および酸化窒化シリコンは熱に対し安定であるため好ましい。
【0119】
絶縁体224と同様に、絶縁体250は、加熱により酸素が放出される絶縁体を用いて形成することが好ましい。加熱により酸素が放出される絶縁体を、絶縁体250として、酸化物230c上に接して設けることにより、酸化物230bのチャネル形成領域に効果的に酸素を供給することができる。また、絶縁体224と同様に、絶縁体250中の水または水素などの不純物濃度が低減されていることが好ましい。絶縁体250の膜厚は、1nm以上20nm以下とするのが好ましい。
【0120】
また、絶縁体250と導電体260との間に金属酸化物を設けてもよい。当該金属酸化物は、絶縁体250から導電体260への酸素拡散を抑制することが好ましい。酸素の拡散を抑制する金属酸化物を設けることで、絶縁体250から導電体260への酸素の拡散が抑制される。つまり、酸化物230へ供給する酸素量の減少を抑制することができる。また、絶縁体250の酸素による導電体260の酸化を抑制することができる。
【0121】
また、当該金属酸化物は、ゲート絶縁体の一部としての機能を有する場合がある。したがって、絶縁体250に酸化シリコンや酸化窒化シリコンなどを用いる場合、当該金属酸化物は、比誘電率が高いhigh-k材料である金属酸化物を用いることが好ましい。ゲート絶縁体を、絶縁体250と当該金属酸化物との積層構造とすることで、熱に対して安定、かつ比誘電率の高い積層構造とすることができる。したがって、ゲート絶縁体の物理膜厚を保持したまま、トランジスタ動作時に印加するゲート電位の低減化が可能となる。また、ゲート絶縁体として機能する絶縁体の等価酸化膜厚(EOT)の薄膜化が可能となる。
【0122】
具体的には、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、または、マグネシウムなどから選ばれた一種、または二種以上が含まれた金属酸化物を用いることができる。特に、アルミニウム、またはハフニウムの一方または双方の酸化物を含む絶縁体である、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。
【0123】
または、当該金属酸化物は、ゲートの一部としての機能を有する場合がある。この場合は、酸素を含む導電性材料をチャネル形成領域側に設けるとよい。酸素を含む導電性材料をチャネル形成領域側に設けることで、当該導電性材料から離脱した酸素がチャネル形成領域に供給されやすくなる。
【0124】
特に、ゲートとして機能する導電体として、チャネルが形成される金属酸化物に含まれる金属元素および酸素を含む導電性材料を用いることが好ましい。また、前述した金属元素および窒素を含む導電性材料を用いてもよい。また、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、シリコンを添加したインジウム錫酸化物を用いてもよい。また、窒素を含むインジウムガリウム亜鉛酸化物を用いてもよい。このような材料を用いることで、チャネルが形成される金属酸化物に含まれる水素を捕獲することができる場合がある。または、外方の絶縁体などから混入する水素を捕獲することができる場合がある。
【0125】
導電体260は、図1では2層構造として示しているが、単層構造でもよいし、3層以上の積層構造であってもよい。
【0126】
導電体260aは、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する導電性材料を用いることが好ましい。
【0127】
また、導電体260aが酸素の拡散を抑制する機能を持つことにより、絶縁体250に含まれる酸素により、導電体260bが酸化して導電率が低下することを抑制することができる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、タンタル、窒化タンタル、ルテニウム、または酸化ルテニウムなどを用いることが好ましい。
【0128】
また、導電体260bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、導電体260は、配線としても機能するため、導電性が高い導電体を用いることが好ましい。例えば、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることができる。また、導電体260bは積層構造としてもよく、例えば、チタン又は窒化チタンと上記導電性材料との積層構造としてもよい。
【0129】
絶縁体280は、例えば、絶縁体280として、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、または空孔を有する酸化シリコンなどを有することが好ましい。特に、酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため好ましい。特に、酸化シリコン、酸化窒化シリコン、空孔を有する酸化シリコンなどの材料は、加熱により脱離する酸素を含む領域を容易に形成することができるため好ましい。また、絶縁体280は、上記の材料が積層された構造でもよく、例えば、スパッタリング法で成膜した酸化シリコンと、その上に積層されたCVD法で成膜された酸化窒化シリコンの積層構造とすればよい。また、さらに上に窒化シリコンを積層してもよい。
【0130】
絶縁体280中の水または水素などの不純物濃度が低減されていることが好ましい。また、絶縁体280の上面は、平坦化されていてもよい。
【0131】
絶縁体282および絶縁体283は、水または水素などの不純物が、上方から絶縁体280に混入するのを抑制するバリア絶縁膜として機能することが好ましい。また、絶縁体282および絶縁体283は、酸素の透過を抑制するバリア絶縁膜として機能することが好ましい。絶縁体282および絶縁体283としては、例えば、酸化アルミニウム、窒化シリコン、または窒化酸化シリコンなどの絶縁体を用いればよい。例えば、絶縁体282として、酸素に対してバリア性が高い酸化アルミニウムを用い、絶縁体283として、水素に対してバリア性が高い窒化シリコンまたは窒化酸化シリコンを用いればよい。
【0132】
また、絶縁体283の上に、層間膜として機能する絶縁体274を設けることが好ましい。絶縁体274は、絶縁体224などと同様に、膜中の水または水素などの不純物濃度が低減されていることが好ましい。
【0133】
導電体240は、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、導電体240は積層構造としてもよい。なお、図1(A)で導電体240は、上面視において円形状にしているが、これに限られるものではない。例えば、導電体240が、上面視において、楕円などの略円形状、四角形などの多角形状、四角形等の多角形の角部を丸めた形状になっていてもよい。
【0134】
また、導電体240を積層構造とする場合、水または水素などの不純物、および酸素の透過を抑制する機能を有する導電性材料を用いることが好ましい。例えば、タンタル、窒化タンタル、チタン、窒化チタン、ルテニウム、または酸化ルテニウムなどを用いることが好ましい。また、水または水素などの不純物、および酸素の透過を抑制する機能を有する導電性材料は、単層または積層で用いてもよい。当該導電性材料を用いることで、絶縁体280などから拡散する水または水素などの不純物が、導電体240を通じて酸化物230に混入するのをさらに低減することができる。また、絶縁体280に添加された酸素が導電体240に吸収されるのを防ぐことができる。
【0135】
絶縁体241としては、例えば、窒化シリコン、酸化アルミニウム、または窒化酸化シリコンなどの絶縁体を用いればよい。絶縁体241は、絶縁体283、絶縁体282、絶縁体280、絶縁体273、および絶縁体272に接して設けられるので、絶縁体280などから水または水素などの不純物が、導電体240を通じて酸化物230に混入するのを抑制することができる。特に、窒化シリコンは水素に対するブロッキング性が高いので好適である。また、絶縁体280に含まれる酸素が導電体240に吸収されるのを防ぐことができる。
【0136】
また、導電体240の上面に接して配線として機能する導電体246を配置してもよい。導電体246は、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、当該導電体は、積層構造としてもよく、例えば、チタン又は窒化チタンと上記導電性材料との積層としてもよい。なお、当該導電体は、絶縁体に設けられた開口に埋め込むように形成してもよい。
【0137】
また、導電体246上、および絶縁体283上に絶縁体284を形成しても良い。この様な構成とすることで、導電体246を絶縁体283、および絶縁体284で包むことができ、導電体246の酸化を抑制するとともに、水素などの不純物が導電体246を通じてトランジスタ200へ拡散することを抑制することができる。絶縁体284としては、例えば、窒化シリコン、酸化アルミニウム、または窒化酸化シリコンなどの絶縁体を用いればよい。また、絶縁体284上に絶縁体274を形成しても良い。絶縁体274としては、絶縁体280と同様の絶縁体を用いることができる。
【0138】
<半導体装置の構成材料>
以下では、半導体装置に用いることができる構成材料について説明する。
【0139】
<基板>
トランジスタ200を形成する基板としては、例えば、絶縁体基板、半導体基板、または導電体基板を用いればよい。絶縁体基板としては、例えば、ガラス基板、石英基板、サファイア基板、安定化ジルコニア基板(イットリア安定化ジルコニア基板など)、樹脂基板などがある。また、半導体基板としては、例えば、シリコン、ゲルマニウムを材料とした半導体基板、または炭化シリコン、シリコンゲルマニウム、ヒ化ガリウム、リン化インジウム、酸化亜鉛、酸化ガリウムからなる化合物半導体基板などがある。さらには、前述の半導体基板内部に絶縁体領域を有する半導体基板、例えば、SOI(Silicon On Insulator)基板などがある。導電体基板としては、黒鉛基板、金属基板、合金基板、導電性樹脂基板などがある。または、金属の窒化物を有する基板、金属の酸化物を有する基板などがある。さらには、絶縁体基板に導電体または半導体が設けられた基板、半導体基板に導電体または絶縁体が設けられた基板、導電体基板に半導体または絶縁体が設けられた基板などがある。または、これらの基板に素子が設けられたものを用いてもよい。基板に設けられる素子としては、容量素子、抵抗素子、スイッチ素子、発光素子、記憶素子などがある。
【0140】
<絶縁体>
絶縁体としては、絶縁性を有する酸化物、窒化物、酸化窒化物、窒化酸化物、金属酸化物、金属酸化窒化物、金属窒化酸化物などがある。
【0141】
例えば、トランジスタの微細化、および高集積化が進むと、ゲート絶縁体の薄膜化により、リーク電流などの問題が生じる場合がある。ゲート絶縁体として機能する絶縁体に、high-k材料を用いることで物理膜厚を保ちながら、トランジスタ動作時の低電圧化が可能となる。一方、層間膜として機能する絶縁体には、比誘電率が低い材料を用いることで、配線間に生じる寄生容量を低減することができる。したがって、絶縁体の機能に応じて、材料を選択するとよい。
【0142】
また、比誘電率の高い絶縁体としては、酸化ガリウム、酸化ハフニウム、酸化ジルコニウム、アルミニウムおよびハフニウムを有する酸化物、アルミニウムおよびハフニウムを有する酸化窒化物、シリコンおよびハフニウムを有する酸化物、シリコンおよびハフニウムを有する酸化窒化物、またはシリコンおよびハフニウムを有する窒化物などがある。
【0143】
また、比誘電率が低い絶縁体としては、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコン、または樹脂などがある。
【0144】
また、酸化物半導体を用いたトランジスタは、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体で囲うことによって、トランジスタの電気特性を安定にすることができる。水素などの不純物および酸素の透過を抑制する機能を有する絶縁体としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウム、またはタンタルを含む絶縁体を、単層で、または積層で用いればよい。具体的には、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体として、酸化アルミニウム、酸化マグネシウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウム、または酸化タンタルなどの金属酸化物、窒化アルミニウム、窒化アルミニウムチタン、窒化チタン、窒化酸化シリコンまたは窒化シリコンなどの金属窒化物を用いることができる。
【0145】
また、ゲート絶縁体として機能する絶縁体は、加熱により脱離する酸素を含む領域を有する絶縁体であることが好ましい。例えば、加熱により脱離する酸素を含む領域を有する酸化シリコンまたは酸化窒化シリコンを酸化物230と接する構造とすることで、酸化物230が有する酸素欠損を補償することができる。
【0146】
<導電体>
導電体としては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンなどから選ばれた金属元素、または上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いることが好ましい。例えば、窒化タンタル、窒化チタン、タングステン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物などを用いることが好ましい。また、窒化タンタル、窒化チタン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物は、酸化しにくい導電性材料、または、酸素を吸収しても導電性を維持する材料であるため、好ましい。また、リン等の不純物元素を含有させた多結晶シリコンに代表される、電気伝導度が高い半導体、ニッケルシリサイドなどのシリサイドを用いてもよい。
【0147】
また、上記の材料で形成される導電層を複数積層して用いてもよい。例えば、前述した金属元素を含む材料と、酸素を含む導電性材料と、を組み合わせた積層構造としてもよい。また、前述した金属元素を含む材料と、窒素を含む導電性材料と、を組み合わせた積層構造としてもよい。また、前述した金属元素を含む材料と、酸素を含む導電性材料と、窒素を含む導電性材料と、を組み合わせた積層構造としてもよい。
【0148】
なお、トランジスタのチャネル形成領域に酸化物を用いる場合において、ゲートとして機能する導電体には、前述した金属元素を含む材料と、酸素を含む導電性材料と、を組み合わせた積層構造を用いることが好ましい。この場合は、酸素を含む導電性材料をチャネル形成領域側に設けるとよい。酸素を含む導電性材料をチャネル形成領域側に設けることで、当該導電性材料から離脱した酸素がチャネル形成領域に供給されやすくなる。
【0149】
特に、ゲートとして機能する導電体として、チャネルが形成される金属酸化物に含まれる金属元素および酸素を含む導電性材料を用いることが好ましい。また、前述した金属元素および窒素を含む導電性材料を用いてもよい。例えば、窒化チタン、窒化タンタルなどの窒素を含む導電性材料を用いてもよい。また、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、シリコンを添加したインジウム錫酸化物を用いてもよい。また、窒素を含むインジウムガリウム亜鉛酸化物を用いてもよい。このような材料を用いることで、チャネルが形成される金属酸化物に含まれる水素を捕獲することができる場合がある。または、外方の絶縁体などから混入する水素を捕獲することができる場合がある。
【0150】
<金属酸化物>
酸化物230として、酸化物半導体として機能する金属酸化物を用いることが好ましい。以下では、本発明に係る酸化物230に適用可能な金属酸化物について説明する。
【0151】
金属酸化物は、少なくともインジウムまたは亜鉛を含むことが好ましい。特に、インジウムおよび亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウムまたは錫などが含まれていることが好ましい。また、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種が含まれていてもよい。
【0152】
ここでは、金属酸化物が、インジウム、元素Mおよび亜鉛を有するIn-M-Zn酸化物である場合を考える。なお、元素Mは、アルミニウム、ガリウム、イットリウム、または錫などとする。そのほかの元素Mに適用可能な元素としては、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウムなどがある。ただし、元素Mとして、前述の元素を複数組み合わせても構わない場合がある。
【0153】
なお、本明細書等において、窒素を有する金属酸化物も金属酸化物(metal oxide)と総称する場合がある。また、窒素を有する金属酸化物を、金属酸窒化物(metal oxynitride)と呼称してもよい。
【0154】
<金属酸化物の構成>
OSトランジスタに用いることができる金属酸化物であるCAC-OS(Cloud-Aligned Composite Oxide Semiconductor)、及びCAAC-OS(c-axis Aligned Crystal Oxide Semiconductor)の構成について説明する。
【0155】
CAC-OS又はCAC-metal oxideとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。なお、CAC-OS又はCAC-metal oxideを、トランジスタの活性層に用いる場合、導電性の機能は、キャリアとなる電子(又はホール)を流す機能であり、絶縁性の機能は、キャリアとなる電子を流さない機能である。導電性の機能と、絶縁性の機能とを、それぞれ相補的に作用させることで、スイッチングさせる機能(On/Offさせる機能)をCAC-OS又はCAC-metal oxideに付与することができる。CAC-OS又はCAC-metal oxideにおいて、それぞれの機能を分離させることで、双方の機能を最大限に高めることができる。
【0156】
また、CAC-OS又はCAC-metal oxideは、導電性領域、及び絶縁性領域を有する。導電性領域は、上述の導電性の機能を有し、絶縁性領域は、上述の絶縁性の機能を有する。また、材料中において、導電性領域と、絶縁性領域とは、ナノ粒子レベルで分離している場合がある。また、導電性領域と、絶縁性領域とは、それぞれ材料中に偏在する場合がある。また、導電性領域は、周辺がぼけてクラウド状に連結して観察される場合がある。
【0157】
また、CAC-OS又はCAC-metal oxideにおいて、導電性領域と、絶縁性領域とは、それぞれ0.5nm以上10nm以下、好ましくは0.5nm以上3nm以下のサイズで材料中に分散している場合がある。
【0158】
また、CAC-OS又はCAC-metal oxideは、異なるバンドギャップを有する成分により構成される。例えば、CAC-OS又はCAC-metal oxideは、絶縁性領域に起因するワイドギャップを有する成分と、導電性領域に起因するナローギャップを有する成分と、により構成される。当該構成の場合、キャリアを流す際に、ナローギャップを有する成分において、主にキャリアが流れる。また、ナローギャップを有する成分が、ワイドギャップを有する成分に相補的に作用し、ナローギャップを有する成分に連動してワイドギャップを有する成分にもキャリアが流れる。このため、上記CAC-OS又はCAC-metal oxideをトランジスタのチャネル形成領域に用いる場合、トランジスタのオン状態において高い電流駆動力、つまり大きなオン電流、及び高い電界効果移動度を得ることができる。
【0159】
すなわち、CAC-OS又はCAC-metal oxideは、マトリックス複合材(matrix composite)、又は金属マトリックス複合材(metal matrix composite)と呼称することもできる。
【0160】
[金属酸化物の構造]
酸化物半導体(金属酸化物)は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、CAAC-OS、多結晶酸化物半導体、nc-OS、擬似非晶質酸化物半導体(a-like OS:amorphous-like oxide semiconductor)、および非晶質酸化物半導体などがある。
【0161】
また、酸化物半導体は、結晶構造に着目した場合、上記とは異なる分類となる場合がある。ここで、酸化物半導体における、結晶構造の分類について、図15(A)を用いて説明を行う。図15(A)は、酸化物半導体、代表的にはIGZO(Inと、Gaと、Znと、を含む金属酸化物)の結晶構造の分類を説明する図である。
【0162】
図15(A)に示すように、IGZOは、大きく分けてAmorphousと、Crystallineと、Crstalと、に分類される。また、Amorphousの中には、completely amorphousが含まれる。また、Crystallineの中には、CAAC(c-axis aligned crystalline)、nc(nanocrystalline)、及びCAC(Cloud-Aligned Composite)が含まれる。また、Crystalの中には、single crystal、及びpoly crystalが含まれる。
【0163】
なお、図15(A)に示す太枠内の構造は、New crystalline phaseに属する構造である。当該構造は、Amorphousと、Crystalとの間の境界領域にある。すなわち、エネルギー的に不安定なAmorphousと、Crystallineとは全く異なる構造と言い換えることができる。
【0164】
なお、膜または基板の結晶構造は、X線回折(XRD:X-Ray Diffraction)像を用いて評価することができる。ここで、石英ガラス、及びCrystallineに分類される結晶構造を有するIGZO(結晶性IGZOともいう。)のXRDスペクトルを図15(B)、(C)に示す。また、図15(B)が石英ガラス、図15(C)が結晶性IGZOのXRDスペクトルである。なお、図15(C)に示す結晶性IGZOとしては、In:Ga:Zn=4:2:3[原子数比]の組成である。また、図15(C)に示す結晶性IGZOとしては、厚さ500nmである。
【0165】
図15(B)の矢印に示すように、石英ガラスは、XRDスペクトルのピークがほぼ対称である。一方で、図15(C)の矢印に示すように、結晶性IGZOは、XRDスペクトルのピークが非対称である。XRDスペクトルのピークが非対称であることは、結晶の存在を明示している。別言すると、XRDスペクトルのピークで左右対称でないと、Amorphousであるとは言えない。
【0166】
CAAC-OSは、c軸配向性を有し、かつa-b面方向において複数のナノ結晶が連結し、歪みを有した結晶構造となっている。なお、歪みとは、複数のナノ結晶が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。
【0167】
ナノ結晶は、六角形を基本とするが、正六角形状とは限らず、非正六角形状である場合がある。また、歪みにおいて、五角形、および七角形などの格子配列を有する場合がある。なお、CAAC-OSにおいて、歪み近傍においても、明確な結晶粒界(グレインバウンダリーともいう)を確認することは難しい。すなわち、格子配列の歪みによって、結晶粒界の形成が抑制されていることがわかる。これは、CAAC-OSが、a-b面方向において酸素原子の配列が稠密でないことや、金属元素が置換することで原子間の結合距離が変化することなどによって、歪みを許容することができるためである。
【0168】
また、CAAC-OSは、インジウム、および酸素を有する層(以下、In層)と、元素M、亜鉛、および酸素を有する層(以下、(M,Zn)層)とが積層した、層状の結晶構造(層状構造ともいう)を有する傾向がある。なお、インジウムと元素Mは、互いに置換可能であり、(M,Zn)層の元素Mがインジウムと置換した場合、(In,M,Zn)層と表すこともできる。また、In層のインジウムが元素Mと置換した場合、(In,M)層と表すこともできる。
【0169】
CAAC-OSは結晶性の高い金属酸化物である。一方、CAAC-OSは、明確な結晶粒界を確認することが難しいため、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、金属酸化物の結晶性は不純物の混入や欠陥の生成などによって低下する場合があるため、CAAC-OSは不純物や欠陥(酸素欠損(V:oxygen vacancyともいう)など)の少ない金属酸化物ともいえる。したがって、CAAC-OSを有する金属酸化物は、物理的性質が安定する。そのため、CAAC-OSを有する金属酸化物は熱に強く、信頼性が高い。
【0170】
nc-OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。また、nc-OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。したがって、nc-OSは、分析方法によっては、a-like OSや非晶質酸化物半導体と区別が付かない場合がある。
【0171】
なお、インジウムと、ガリウムと、亜鉛と、を有する金属酸化物の一種である、インジウム-ガリウム-亜鉛酸化物(以下、IGZO)は、上述のナノ結晶とすることで安定な構造をとる場合がある。特に、IGZOは、大気中では結晶成長がし難い傾向があるため、大きな結晶(ここでは、数mmの結晶、または数cmの結晶)よりも小さな結晶(例えば、上述のナノ結晶)とする方が、構造的に安定となる場合がある。
【0172】
a-like OSは、nc-OSと非晶質酸化物半導体との間の構造を有する金属酸化物である。a-like OSは、鬆または低密度領域を有する。すなわち、a-like OSは、nc-OSおよびCAAC-OSと比べて、結晶性が低い。
【0173】
酸化物半導体(金属酸化物)は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a-like OS、nc-OS、CAAC-OSのうち、二種以上を有していてもよい。
【0174】
なお、本発明の一態様の半導体装置においては、酸化物半導体(金属酸化物)の構造に特に限定はないが、好ましくは結晶性を有すると好ましい。例えば、酸化物230をCAAC-OS構造とし、酸化物243を六方晶の結晶構造とすることが出来る。酸化物230、及び酸化物243を上記の結晶構造とすることで、高い信頼性を有する半導体装置とすることができる。また、酸化物230a、酸化物230c、および酸化物243を概略同じ組成とすることができる。
【0175】
<酸化物半導体を有するトランジスタ>
続いて、上記酸化物半導体をトランジスタに用いる場合について説明する。
【0176】
上記酸化物半導体をトランジスタに用いることで、高い電界効果移動度のトランジスタを実現することができる。また、信頼性の高いトランジスタを実現することができる。
【0177】
また、トランジスタには、キャリア濃度の低い酸化物半導体を用いることが好ましい。酸化物半導体膜のキャリア濃度を低くする場合においては、酸化物半導体膜中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性又は実質的に高純度真性と言う。
【0178】
また、高純度真性又は実質的に高純度真性である酸化物半導体膜は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。
【0179】
また、酸化物半導体のトラップ準位に捕獲された電荷は、消失するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、トラップ準位密度の高い酸化物半導体にチャネル形成領域が形成されるトランジスタは、電気特性が不安定となる場合がある。
【0180】
従って、トランジスタの電気特性を安定にするためには、酸化物半導体中の不純物濃度を低減することが有効である。また、酸化物半導体中の不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物としては、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。
【0181】
<不純物>
ここで、酸化物半導体中における各不純物の影響について説明する。
【0182】
酸化物半導体において、第14族元素の一つであるシリコンや炭素が含まれると、酸化物半導体において欠陥準位が形成される。このため、酸化物半導体におけるシリコンや炭素の濃度と、例えば、絶縁体と、酸化物半導体との界面、および界面近傍のシリコンや炭素の濃度(二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる濃度)を、2×1018atoms/cm以下、好ましくは2×1017atoms/cm以下とする。
【0183】
また、酸化物半導体にアルカリ金属又はアルカリ土類金属が含まれると、欠陥準位を形成し、キャリアを生成する場合がある。従って、アルカリ金属又はアルカリ土類金属が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体中のアルカリ金属又はアルカリ土類金属の濃度を低減することが好ましい。具体的には、SIMSにより得られる酸化物半導体中のアルカリ金属又はアルカリ土類金属の濃度を、1×1018atoms/cm以下、好ましくは2×1016atoms/cm以下にする。
【0184】
また、酸化物半導体において、窒素が含まれると、キャリアである電子が生じ、キャリア濃度が増加し、n型化しやすい。この結果、窒素が含まれている酸化物半導体を半導体に用いたトランジスタはノーマリーオン特性となりやすい。従って、該酸化物半導体において、窒素はできる限り低減されていることが好ましい。例えば、酸化物半導体中の窒素濃度は、SIMSにおいて、5×1019atoms/cm未満、好ましくは5×1018atoms/cm以下、より好ましくは1×1018atoms/cm以下、さらに好ましくは5×1017atoms/cm以下とする。
【0185】
また、酸化物半導体に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸素欠損を形成する場合がある。該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成することがある。従って、水素が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体中の水素はできる限り低減されていることが好ましい。具体的には、酸化物半導体において、SIMSにより得られる水素濃度を、1×1020atoms/cm未満、好ましくは1×1019atoms/cm未満、より好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満とする。
【0186】
不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
【0187】
<その他の半導体材料>
酸化物230に用いることができる半導体材料は、上述の金属酸化物に限られない。酸化物230として、バンドギャップを有する半導体材料(ゼロギャップ半導体ではない半導体材料)を用いてもよい。例えば、シリコンなどの単体元素の半導体、ヒ化ガリウムなどの化合物半導体、半導体として機能する層状物質(原子層物質、2次元材料などともいう。)などを半導体材料に用いることが好ましい。特に、半導体として機能する層状物質を半導体材料に用いると好適である。
【0188】
ここで、本明細書等において、層状物質とは、層状の結晶構造を有する材料群の総称である。層状の結晶構造は、共有結合やイオン結合によって形成される層が、ファンデルワールス力のような、共有結合やイオン結合よりも弱い結合を介して積層している構造である。層状物質は、単位層内における電気伝導性が高く、つまり、2次元電気伝導性が高い。半導体として機能し、かつ、2次元電気伝導性の高い材料をチャネル形成領域に用いることで、オン電流の大きいトランジスタを提供することができる。
【0189】
層状物質として、グラフェン、シリセン、カルコゲン化物などがある。カルコゲン化物は、カルコゲンを含む化合物である。また、カルコゲンは、第16族に属する元素の総称であり、酸素、硫黄、セレン、テルル、ポロニウム、リバモリウムが含まれる。また、カルコゲン化物として、遷移金属カルコゲナイド、13族カルコゲナイドなどが挙げられる。
【0190】
酸化物230として、例えば、半導体として機能する遷移金属カルコゲナイドを用いることが好ましい。酸化物230として適用可能な遷移金属カルコゲナイドとして、具体的には、硫化モリブデン(代表的にはMoS)、セレン化モリブデン(代表的にはMoSe)、モリブデンテルル(代表的にはMoTe)、硫化タングステン(代表的にはWS)、セレン化タングステン(代表的にはWSe)、タングステンテルル(代表的にはWTe)、硫化ハフニウム(代表的にはHfS)、セレン化ハフニウム(代表的にはHfSe)、硫化ジルコニウム(代表的にはZrS)、セレン化ジルコニウム(代表的にはZrSe)などが挙げられる。
【0191】
<半導体装置の作製方法>
次に、図1に示す、本発明に係るトランジスタ200、および容量素子100を有する半導体装置について、作製方法を図4乃至図14を用いて説明する。また、図4乃至図14において、各図の(A)は上面図を示す。また、各図の(B)は、(A)に示すA1-A2の一点鎖線で示す部位に対応する断面図であり、トランジスタ200、および容量素子100のチャネル長方向の断面図でもある。また、各図の(C)は、(A)にA3-A4の一点鎖線で示す部位に対応する断面図であり、トランジスタ200のチャネル幅方向の断面図でもある。また、各図の(D)は、(A)にA5-A6の一点鎖線で示す部位に対応する断面図であり、容量素子100のチャネル幅方向の断面図でもある。なお、各図の(A)の上面図では、図の明瞭化のために一部の要素を省いている。
【0192】
まず、基板(図示しない)を準備し、当該基板上に絶縁体214を成膜する。絶縁体214の成膜は、スパッタリング法、化学気相成長(CVD:Chemical Vapor Deposition)法、分子線エピタキシー(MBE:Molecular Beam Epitaxy)法、パルスレーザ堆積(PLD:Pulsed Laser Deposition)法、またはALD(Atomic Layer Deposition)法などを用いて行うことができる。
【0193】
なお、CVD法は、プラズマを利用するプラズマCVD(PECVD:Plasma Enhanced CVD)法、熱を利用する熱CVD(TCVD:Thermal CVD)法、光を利用する光CVD(Photo CVD)法などに分類できる。さらに用いる原料ガスによって金属CVD(MCVD:Metal CVD)法、有機金属CVD(MOCVD:Metal Organic CVD)法に分けることができる。また、成膜時の圧力によって、大気圧下で成膜を行なう常圧CVD(APCVD:Atmospheric Pressure CVD)法、大気圧より低い減圧状態で成膜を行う減圧CVD(LPCVD:Low Pressure CVD)法、に分けることができる。
【0194】
プラズマCVD法は、比較的低温で高品質の膜が得られる。また、熱CVD法は、プラズマを用いないため、被処理物へのプラズマダメージを小さくすることが可能な成膜方法である。例えば、半導体装置に含まれる配線、電極、素子(トランジスタ、容量素子など)などは、プラズマから電荷を受け取ることでチャージアップする場合がある。このとき、蓄積した電荷によって、半導体装置に含まれる配線、電極、素子などが破壊される場合がある。一方、プラズマを用いない熱CVD法の場合、こういったプラズマダメージが生じないため、半導体装置の歩留まりを高くすることができる。また、熱CVD法では、成膜中のプラズマダメージが生じないため、欠陥の少ない膜が得られる。
【0195】
また、ALD法としては、プリカーサ及びリアクタントの反応を熱エネルギーのみで行う熱ALD(Thermal ALD)法、プラズマ励起されたリアクタントを用いるPEALD(Plasma Enhanced ALD)法などを用いることができる。
【0196】
ALD法は、原子の性質である自己制御性を利用し、一層ずつ原子を堆積することができるので、極薄の成膜が可能、アスペクト比の高い構造への成膜が可能、ピンホールなどの欠陥の少ない成膜が可能、被覆性に優れた成膜が可能、および低温での成膜が可能、などの効果がある。PEALD法では、プラズマを利用することで、より低温での成膜が可能となり好ましい場合がある。なお、ALD法で用いるプリカーサには炭素などの不純物を含むものがある。このため、ALD法により設けられた膜は、他の成膜法により設けられた膜と比較して、炭素などの不純物を多く含む場合がある。なお、不純物の定量は、X線光電子分光法(XPS:X-ray Photoelectron Spectroscopy)を用いて行うことができる。
【0197】
CVD法およびALD法は、ターゲットなどから放出される粒子が堆積する成膜方法とは異なり、被処理物の表面における反応により膜が形成される成膜方法である。したがって、被処理物の形状の影響を受けにくく、良好な段差被覆性を有する成膜方法である。特に、ALD法は、優れた段差被覆性と、優れた厚さの均一性を有するため、アスペクト比の高い開口部の表面を被覆する場合などに好適である。ただし、ALD法は、比較的成膜速度が遅いため、成膜速度の速いCVD法などの他の成膜方法と組み合わせて用いることが好ましい場合もある。
【0198】
CVD法およびALD法は、原料ガスの流量比によって、得られる膜の組成を制御することができる。例えば、CVD法およびALD法では、原料ガスの流量比によって、任意の組成の膜を成膜することができる。また、例えば、CVD法およびALD法では、成膜しながら原料ガスの流量比を変化させることによって、組成が連続的に変化した膜を成膜することができる。原料ガスの流量比を変化させながら成膜する場合、複数の成膜室を用いて成膜する場合と比べて、搬送や圧力調整に掛かる時間を要さない分、成膜に掛かる時間を短くすることができる。したがって、半導体装置の生産性を高めることができる場合がある。
【0199】
本実施の形態では、絶縁体214として、CVD法によって窒化シリコンを成膜する。次に、絶縁体214上に絶縁体216を成膜する。絶縁体216の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。本実施の形態では、絶縁体216として、酸化シリコンまたは酸化窒化シリコンを用いる。また、絶縁体216は、上述の水素原子が低減または除去されたガスを用いた成膜方法で成膜することが好ましい。これにより、絶縁体216の水素濃度を低減することができる。
【0200】
次に、絶縁体216に絶縁体214に達する開口を形成する。開口とは、例えば、溝やスリットなども含まれる。また、開口が形成された領域を指して開口部とする場合がある。開口の形成はウェットエッチングを用いてもよいが、ドライエッチングを用いるほうが微細加工には好ましい。また、絶縁体214は、絶縁体216をエッチングして溝を形成する際のエッチングストッパ膜として機能する絶縁体を選択することが好ましい。例えば、溝を形成する絶縁体216に酸化シリコン膜または酸化窒化シリコン膜を用いた場合は、絶縁体214は窒化シリコン膜、酸化アルミニウム膜、または酸化ハフニウム膜を用いるとよい。
【0201】
開口の形成後に、導電体204aとなる導電膜、および導電体205aとなる導電膜を成膜する。該導電膜は、酸素の透過を抑制する機能を有する導電体を含むことが望ましい。たとえば、窒化タンタル、窒化タングステン、窒化チタンなどを用いることができる。またはタンタル、タングステン、チタン、モリブデン、アルミニウム、銅、モリブデンタングステン合金との積層膜とすることができる。導電体204aとなる導電膜、および導電体205aとなる導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。
【0202】
本実施の形態では、導電体204aとなる導電膜、および導電体205aとなる導電膜を多層構造とする。まず、スパッタリング法によって窒化タンタルを成膜し、当該窒化タンタルの上に窒化チタンを積層する。このような金属窒化物を導電体204、および導電体205の下層に用いることにより、後述する導電体204bとなる導電膜、および導電体205bとなる導電膜として銅などの拡散しやすい金属を用いても、当該金属が導電体204a、および導電体205aから外に拡散するのを防ぐことができる。
【0203】
次に、導電体204bとなる導電体、および導電体205bとなる導電膜を成膜する。該導電膜の成膜は、メッキ法、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。本実施の形態では、導電体204bとなる導電体、および導電体205bとなる導電膜として、銅などの低抵抗導電性材料を成膜する。
【0204】
次に、CMP処理(Chemical Mechanical Polishing)を行うことで、導電体204aとなる導電膜、および導電体205aとなる導電膜、ならびに導電体204bとなる導電膜、および導電体205bとなる導電膜の一部を除去し、絶縁体216を露出する。その結果、開口部のみに、導電体204a、導電体204b、導電体205a、および導電体205bが残存する。これにより、上面が平坦な、導電体204、および導電体205を形成することができる。なお、当該CMP処理により、絶縁体216の一部が除去される場合がある(図4参照)。
【0205】
なお、上記においては、導電体204、および導電体205を絶縁体216の開口に埋め込むように形成したが、本実施の形態はこれに限られるものではない。例えば、絶縁体214上に導電体204、および導電体205を形成し、導電体204、および導電体205上に絶縁体216を成膜し、絶縁体216にCMP処理を行うことで、絶縁体216の一部を除去し、導電体204、および導電体205の表面を露出させてもよい。
【0206】
次に、絶縁体216上、導電体204上、および導電体205上に絶縁体222を成膜する。絶縁体222として、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体を成膜するとよい。なお、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体は、酸素、水素、および水に対するバリア性を有する。絶縁体222が、水素および水に対するバリア性を有することで、トランジスタ200の周辺に設けられた構造体に含まれる水素、および水が、絶縁体222を通じてトランジスタ200の内側へ拡散することが抑制され、酸化物230中の酸素欠損の生成を抑制することができる。
【0207】
絶縁体222の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。
【0208】
次に、絶縁体222上に絶縁体224を成膜する。絶縁体224の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。本実施の形態では、絶縁体224として、酸化シリコンまたは酸化窒化シリコンを用いる。また、絶縁体224は、上述の水素原子が低減または除去されたガスを用いた成膜方法で成膜することが好ましい。これにより、絶縁体224の水素濃度を低減することができる。絶縁体224は、後の工程で酸化物230aと接するので、このように水素濃度が低減されていることが好適である。
【0209】
続いて、加熱処理を行うことが好ましい。加熱処理は、250℃以上650℃以下、好ましくは300℃以上500℃以下、さらに好ましくは320℃以上450℃以下で行えばよい。なお、加熱処理は、窒素または不活性ガス雰囲気、または酸化性ガスを10ppm以上、1%以上、もしくは10%以上含む雰囲気で行う。また、加熱処理は減圧状態で行ってもよい。または、加熱処理は、窒素または不活性ガス雰囲気で加熱処理した後に、脱離した酸素を補うために酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で加熱処理を行ってもよい。
【0210】
本実施の形態では、窒素雰囲気にて400℃の温度で1時間の処理を行った後に、連続して酸素雰囲気にて400℃の温度で1時間の処理を行う。当該加熱処理によって、絶縁体224に含まれる水、水素などの不純物を除去することができる。
【0211】
また、加熱処理は、絶縁体222の成膜後に行ってもよい。当該加熱処理は、上述した加熱処理条件を用いることができる。
【0212】
ここで、絶縁体224に過剰酸素領域を形成するために、減圧状態で酸素を含むプラズマ処理を行ってもよい。酸素を含むプラズマ処理は、例えばマイクロ波を用いた高密度プラズマを発生させる電源を有する装置を用いることが好ましい。または、基板側にRFなどの高周波を印加する電源を有してもよい。高密度プラズマを用いることより、高密度の酸素ラジカルを生成することができ、基板側にRFを印加することで、高密度プラズマによって生成された酸素ラジカルを効率よく絶縁体224内に導くことができる。または、この装置を用いて不活性ガスを含むプラズマ処理を行った後に、脱離した酸素を補うために酸素を含むプラズマ処理を行ってもよい。なお、当該プラズマ処理の条件を適宜選択することにより、絶縁体224に含まれる水、水素などの不純物を除去することができる。その場合、加熱処理は行わなくてもよい。
【0213】
ここで、絶縁体224上に、例えば、スパッタリング法によって、酸化アルミニウムを成膜し、該酸化アルミニウムを絶縁体224に達するまで、CMPを行ってもよい。当該CMPを行うことで絶縁体224表面の平坦化および絶縁体224表面の平滑化を行うことができる。当該酸化アルミニウムを絶縁体224上に配置してCMPを行うことで、CMPの終点検出が容易となる。また、CMPによって、絶縁体224の一部が研磨されて、絶縁体224の膜厚が薄くなることがあるが、絶縁体224の成膜時に膜厚を調整すればよい。絶縁体224表面の平坦化および平滑化を行うことで、後に成膜する酸化物の被覆率の悪化を防止し、半導体装置の歩留りの低下を防ぐことができる場合がある。また、絶縁体224上に、スパッタリング法によって、酸化アルミニウムを成膜することにより、絶縁体224に酸素を添加することができるので好ましい。
【0214】
次に、絶縁体224上に、酸化膜230A、酸化膜230Bを順に成膜する(図4参照)。なお、上記酸化膜は、大気環境にさらさずに連続して成膜することが好ましい。大気開放せずに成膜することで、酸化膜230A、および酸化膜230B上に大気環境からの不純物または水分が付着することを防ぐことができ、酸化膜230Aと酸化膜230Bとの界面近傍を清浄に保つことができる。
【0215】
酸化膜230Aおよび、酸化膜230Bの成膜はスパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。
【0216】
例えば、酸化膜230A、および酸化膜230Bをスパッタリング法によって成膜する場合は、スパッタリングガスとして酸素、または、酸素と希ガスの混合ガスを用いる。スパッタリングガスに含まれる酸素の割合を高めることで、成膜される酸化膜中の過剰酸素を増やすことができる。また、上記の酸化膜をスパッタリング法によって成膜する場合は、上記のIn-M-Zn酸化物ターゲットを用いることができる。
【0217】
特に、酸化膜230Aの成膜時に、スパッタリングガスに含まれる酸素の一部が絶縁体224に供給される場合がある。したがって、酸化膜230Aのスパッタリングガスに含まれる酸素の割合は70%以上、好ましくは80%以上、より好ましくは100%とすればよい。
【0218】
また、酸化膜230Bをスパッタリング法で形成する場合、スパッタリングガスに含まれる酸素の割合を1%以上30%以下、好ましくは5%以上20%以下として成膜すると、酸素欠乏型の酸化物半導体が形成される。酸素欠乏型の酸化物半導体をチャネル形成領域に用いたトランジスタは、比較的高い電界効果移動度が得られる。また、基板を加熱しながら成膜を行うことによって、当該酸化膜の結晶性を向上させることができる。ただし、本発明の一態様はこれに限定されない。酸化膜230Bをスパッタリング法で形成する場合、スパッタリングガスに含まれる酸素の割合を、30%を超えて100%以下、好ましくは70%以上100%以下として成膜すると、酸素過剰型の酸化物半導体が形成される。酸素過剰型の酸化物半導体をチャネル形成領域に用いたトランジスタは、比較的高い信頼性が得られる。
【0219】
本実施の形態では、酸化膜230Aとして、スパッタリング法によって、In:Ga:Zn=1:1:0.5[原子数比](2:2:1[原子数比])、あるいは1:3:4[原子数比]のターゲットを用いて成膜する。また、酸化膜230Bとして、スパッタリング法によって、In:Ga:Zn=4:2:4.1[原子数比]、あるいは1:1:1[原子数比]のターゲットを用いて成膜する。なお、各酸化膜は、成膜条件、および原子数比を適宜選択することで、酸化物230に求める特性に合わせて形成するとよい。
【0220】
次に、加熱処理を行ってもよい。加熱処理は、上述した加熱処理条件を用いることができる。加熱処理によって、酸化膜230A、および酸化膜230B中の水、水素などの不純物を除去することなどができる。本実施の形態では、窒素雰囲気にて400℃の温度で1時間の処理を行った後に、連続して酸素雰囲気にて400℃の温度で1時間の処理を行う。
【0221】
次に、酸化膜230B上に酸化膜243Aを成膜する(図4参照)。酸化膜243Aの成膜はスパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。酸化膜243Aは、Inに対するGaの原子数比が、酸化膜230BのInに対するGaの原子数比より大きいことが好ましい。本実施の形態では、酸化膜243Aとして、スパッタリング法によって、In:Ga:Zn=1:3:4[原子数比]のターゲットを用いて成膜する。
【0222】
次に、リソグラフィー法を用いて、絶縁体224、酸化膜230A、酸化膜230B、および酸化膜243Aを島状に加工して、絶縁体224、酸化物230a、酸化物230b、および酸化物層243Bを形成する(図5参照)。ここで、絶縁体224、酸化物230a、酸化物230b、および酸化物層243Bは、少なくとも一部が導電体205と重なるように形成する。また、絶縁体224、酸化物230a、酸化物230b、および酸化物層243Bは、少なくとも導電体204と重ならない領域を有するように形成する。また、当該加工はドライエッチング法やウェットエッチング法を用いることができる。ドライエッチング法による加工は微細加工に適している。
【0223】
また、酸化物230a、酸化物230b、および酸化物層243Bの側面は、絶縁体222の上面に対し、概略垂直であることが好ましい。酸化物230a、酸化物230b、および酸化物層243Bの側面が、絶縁体222の上面に対し、概略垂直であることで、複数のトランジスタ200、および容量素子100を設ける際に、小面積化、高密度化が可能となる。ただし、これに限られず、酸化物230a、酸化物230b、および酸化物層243Bの側面と絶縁体222の上面のなす角が低い角度になる構成にしてもよい。
【0224】
なお、リソグラフィー法では、まず、マスクを介してレジストを露光する。次に、露光された領域を、現像液を用いて除去または残存させてレジストマスクを形成する。次に、当該レジストマスクを介してエッチング処理することで導電体、半導体または絶縁体などを所望の形状に加工することができる。例えば、KrFエキシマレーザ光、ArFエキシマレーザ光、EUV(Extreme Ultraviolet)光などを用いて、レジストを露光することでレジストマスクを形成すればよい。また、基板と投影レンズとの間に液体(例えば水)を満たして露光する、液浸技術を用いてもよい。また、前述した光に代えて、電子ビームやイオンビームを用いてもよい。なお、電子ビームやイオンビームを用いる場合には、マスクは不要となる。なお、レジストマスクの除去には、アッシングなどのドライエッチング処理を行う、ウェットエッチング処理を行う、ドライエッチング処理後にウェットエッチング処理を行う、またはウェットエッチング処理後にドライエッチング処理を行うことができる。
【0225】
また、レジストマスクの代わりに絶縁体や導電体からなるハードマスクを用いてもよい。ハードマスクを用いる場合、例えば、酸化物層243B上にハードマスク材料となる絶縁膜や導電膜を形成し、その上にレジストマスクを形成し、ハードマスク材料をエッチングすることで所望の形状のハードマスクを形成することができる。酸化物層243Bなどのエッチングは、レジストマスクを除去してから行っても良いし、レジストマスクを残したまま行っても良い。後者の場合、エッチング中にレジストマスクが消失することがある。酸化物層243Bなどのエッチング後にハードマスクをエッチングにより除去しても良い。一方、ハードマスクの材料が後工程に影響が無い、あるいは後工程で利用できる場合、必ずしもハードマスクを除去する必要は無い。
【0226】
ドライエッチング装置としては、平行平板型電極を有する容量結合型プラズマ(CCP:Capacitively Coupled Plasma)エッチング装置を用いることができる。平行平板型電極を有する容量結合型プラズマエッチング装置は、平行平板型電極の一方の電極に高周波電源を印加する構成でもよい。または平行平板型電極の一方の電極に複数の異なった高周波電源を印加する構成でもよい。または平行平板型電極それぞれに同じ周波数の高周波電源を印加する構成でもよい。または平行平板型電極それぞれに周波数の異なる高周波電源を印加する構成でもよい。または高密度プラズマ源を有するドライエッチング装置を用いることができる。高密度プラズマ源を有するドライエッチング装置は、例えば、誘導結合型プラズマ(ICP:Inductively Coupled Plasma)エッチング装置などを用いることができる。
【0227】
次に、酸化物層243B上に導電体層242Aとなる導電膜を成膜する(図6参照)。導電体層242Aとなる導電膜の成膜はスパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。
【0228】
次に、リソグラフィー法を用いて、導電体層242Aとなる導電膜を加工し、導電体層242Aを形成する(図7参照)。
【0229】
次に、導電体層242A上に、絶縁体272を成膜する(図7参照)。絶縁体272の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。本実施の形態では、絶縁体272として、スパッタリング法によって、酸化アルミニウムを成膜する。スパッタリング法によって、酸化アルミニウムを成膜することで、絶縁体224へ酸素を注入することができる。
【0230】
次に、絶縁体272上に絶縁体273を成膜する。絶縁体273の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。実施の形態では、絶縁体273として、ALD法によって、酸化アルミニウムを成膜する(図7参照)。
【0231】
次に、絶縁体280となる絶縁膜を成膜する。絶縁体280となる絶縁膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。例えば、絶縁体280として、スパッタリング法を用いて酸化シリコン膜を成膜し、その上にPEALD法またはサーマルALD法を用いて酸化シリコン膜を成膜すればよい。また、絶縁体280となる絶縁膜は、上述の水素原子が低減または除去されたガスを用いた成膜方法で成膜することが好ましい。これにより、絶縁体280の水素濃度を低減することができる。
【0232】
次に、絶縁体280にCMP処理を行い、上面が平坦な絶縁体280を形成する(図7参照)。なお、絶縁体224と同様に、絶縁体280上に、例えば、スパッタリング法によって、酸化アルミニウムを成膜し、該酸化アルミニウムを絶縁体280に達するまで、CMPを行ってもよい。
【0233】
次に、絶縁体280の一部、絶縁体273の一部、絶縁体272の一部、導電体層242Aの一部、および酸化物層243Bの一部を加工して、酸化物230bに達する開口を形成する(図8参照)。該開口は、導電体205と重なるように形成することが好ましい。該開口の形成によって、導電体242a、導電体242b、酸化物243a、および酸化物243bを形成する。
【0234】
絶縁体280の一部、絶縁体273の一部、絶縁体272の一部、酸化物層243Bの一部、および導電体層242Aの一部の加工は、ドライエッチング法、またはウェットエッチング法を用いることができる。ドライエッチング法による加工は微細加工に適している。また、当該加工は、それぞれ異なる条件で加工してもよい。例えば、絶縁体280の一部をドライエッチング法で加工し、絶縁体273の一部をウェットエッチング法で加工し、絶縁体272をドライエッチング法で加工し、酸化物層243B、および導電体層242Aの一部をドライエッチング法で加工してもよい。
【0235】
これまでのドライエッチングなどの処理を行うことによって、エッチングガスなどに起因した不純物が酸化物230a、および酸化物230bなどの表面または内部に付着または拡散することがある。不純物としては、例えば、フッ素または塩素などがある。
【0236】
上記の不純物などを除去するために、洗浄を行う。洗浄方法としては、洗浄液など用いたウェット洗浄、プラズマを用いたプラズマ処理、または加熱処理による洗浄などがあり、上記洗浄を適宜組み合わせて行ってもよい。
【0237】
ウェット洗浄としては、シュウ酸、リン酸、アンモニア水、またはフッ化水素酸などを炭酸水または純水で希釈した水溶液を用いて洗浄処理を行ってもよい。または、純水または炭酸水を用いた超音波洗浄を行ってもよい。
【0238】
これまでドライエッチングなどの加工、または上述の洗浄処理によって、酸化物230bの酸化物243a、および酸化物243bと重ならない領域の膜厚が、酸化物230bの酸化物243a、および酸化物243bと重なる領域の膜厚より薄くなることがある(図8参照)。
【0239】
上記エッチング後、または上記洗浄後に加熱処理を行ってもよい。加熱処理は、例えば、100℃以上450℃以下、より好ましくは350℃以上400℃以下で行えばよい。なお、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気、または酸化性ガスを10ppm以上、1%以上、もしくは10%以上含む雰囲気で行う。例えば、加熱処理は酸素雰囲気で行うことが好ましい。これにより、酸化物230aおよび酸化物230bに酸素を供給して、酸素欠損Vの低減を図ることができる。また、加熱処理は減圧状態で行ってもよい。または、酸素雰囲気で加熱処理した後に、大気に露出せずに連続して窒素雰囲気で加熱処理を行ってもよい。
【0240】
次に、酸化膜230Cを成膜する(図9参照)。酸化膜230Cの成膜前に加熱処理を行っても良く、当該加熱処理は、減圧下で行い、大気に暴露することなく、連続して酸化膜230Cを成膜することが好ましい。また、当該加熱処理は、酸素を含む雰囲気で行うことが好ましい。このような処理を行うことによって、酸化物230bの表面などに吸着している水分および水素を除去し、さらに酸化物230aおよび酸化物230b中の水分濃度および水素濃度を低減させることができる。加熱処理の温度は、100℃以上400℃以下が好ましく、さらに好ましくは150℃以上350℃以下である。本実施の形態では、加熱処理の温度を200℃とし、減圧下で行う。
【0241】
ここで、酸化膜230Cは、少なくとも酸化物230bの上面の一部、酸化物243の側面の一部、導電体242の側面の一部、絶縁体272の側面の一部、絶縁体273の側面の一部、および絶縁体280の側面の一部と接するように設けられることが好ましい。導電体242は、酸化物243、絶縁体272、絶縁体273、および酸化膜230Cに囲まれることで、以降の工程において導電体242の酸化による導電率の低下を抑制することができる。
【0242】
酸化膜230Cの成膜はスパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。酸化膜230Cとして、スパッタリング法によって、In:Ga:Zn=4:2:4.1[原子数比]のターゲット、In:Ga:Zn=5:1:3[原子数比]のターゲット、In:Ga:Zn=10:1:3[原子数比]のターゲット、またはIn:Ga:Zn=1:3:4[原子数比]のターゲット、酸化インジウムのターゲットを用いて成膜する。酸化膜230Cとして、インジウムの比率の高いターゲットを用いることで、トランジスタ200のオン電流、または電界効果移動度などを高めることができる。
【0243】
尚、酸化膜230Cは、積層としてもよい。例えば、スパッタリング法によって、In:Ga:Zn=4:2:4.1[原子数比]のターゲットを用いて成膜して、連続してIn:Ga:Zn=1:3:4[原子数比]のターゲットを用いて成膜してもよい。
【0244】
酸化膜230Cの成膜時に、スパッタリングガスに含まれる酸素の一部が酸化物230aおよび酸化物230bに供給される場合がある。または、酸化膜230Cの成膜時に、スパッタリングガスに含まれる酸素の一部が絶縁体280に供給される場合がある。したがって、酸化膜230Cのスパッタリングガスに含まれる酸素の割合は70%以上、好ましくは80%以上、より好ましくは100%とすればよい。
【0245】
次に、加熱処理を行っても良い。また、当該加熱処理を減圧下で行い、大気に暴露することなく、連続して、絶縁膜250Aの成膜を行ってもよい。当該加熱処理を行うことによって、酸化膜230Cの表面などに吸着している水分および水素を除去し、さらに酸化物230a、酸化物230bおよび酸化膜230C中の水分濃度および水素濃度を低減させることができる。加熱処理の温度は、100℃以上400℃以下が好ましい。本実施の形態では、加熱処理の温度を200℃とする。
【0246】
次に、酸化膜230C上に絶縁膜250Aを成膜する(図9参照)。絶縁膜250Aは、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて成膜することができる。また、絶縁膜250Aは、上述の水素原子が低減または除去されたガスを用いた成膜方法で成膜することが好ましい。これにより、絶縁膜250Aの水素濃度を低減することができる。絶縁膜250Aは、後の工程で酸化物230cと接する絶縁体250となるので、このように水素濃度が低減されていることが好適である。
【0247】
次に、マイクロ波、またはRF等の高周波を照射してもよい。照射されたマイクロ波、またはRF等の高周波は絶縁体280、酸化物230b、および酸化物230a中に浸透して、これらの中の水素を除去する。特に、酸化物230aおよび酸化物230bにおいては、VoHの結合が切断される反応が起きて、別言すると「VH→Vo+H」という反応が起きて、脱水素化されることになる。このとき発生した水素の一部は、酸素と結合してHOとして、酸化物230、および絶縁体280から除去される場合がある。また、水素の一部は、導電体242にゲッタリングされる場合がある。このように、マイクロ波、またはRF等の高周波を照射することで、絶縁体280、酸化物230b、および酸化物230a中の水素濃度を低減することができる。
【0248】
また、マイクロ波、またはRF等の高周波によって酸素ガスをプラズマ化し、酸素ラジカルを形成してもよい。つまり、絶縁体280、酸化物230b、および酸化物230aに酸素を有する雰囲気でプラズマ処理を行ってもよい。このような処理を以下において、酸素プラズマ処理という場合がある。また、形成した酸素ラジカルによって、絶縁体280、酸化物230b、および酸化物230a中に酸素を供給することができる。また、絶縁体280、酸化物230b、および酸化物230aに酸素を有する雰囲気でプラズマ処理を行う場合、酸化物230にマイクロ波、またはRF等の高周波が照射されにくい構成にしてもよい。
【0249】
なお、酸素プラズマ処理は、例えばマイクロ波を用いた高密度プラズマを発生させる電源を有する、マイクロ波処理装置を用いることが好ましい。また、マイクロ波処理装置は基板側にRFを印加する電源を有してもよい。高密度プラズマを用いることより、高密度の酸素ラジカルを生成することができる。また、基板側にRFを印加することで、高密度プラズマによって生成された酸素イオンを、効率よく絶縁体280および酸化物230中に導くことができる。また、上記酸素プラズマ処理は、減圧下で行うことが好ましく、圧力を60Pa以上、好ましくは133Pa以上、より好ましくは200Pa以上、さらに好ましくは400Pa以上とすればよい。また、酸素流量比(O/O+Ar)が50%以下、好ましくは10%以上30%以下で行うとよい。また、処理温度は、例えば400℃程度で行えばよい。また、酸素プラズマ処理を行った後に、外気に曝すことなく、連続して熱処理を行ってもよい。
【0250】
次に、導電膜260Aaおよび導電膜260Abを成膜する(図10参照)。導電膜260Aaおよび導電膜260Abの成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。例えば、CVD法を用いることが好ましい。本実施の形態では、ALD法を用いて、導電膜260Aaを成膜し、CVD法を用いて導電膜260Abを成膜する。
【0251】
次に、CMP処理によって、酸化膜230C、絶縁膜250A、導電膜260Aaおよび導電膜260Abを絶縁体280が露出するまで研磨することによって、酸化物230c、絶縁体250および導電体260(導電体260aおよび導電体260b)を形成する(図11参照)。
【0252】
次に、加熱処理を行ってもよい。本実施の形態では、窒素雰囲気にて400℃の温度で1時間の処理を行う。該加熱処理によって、絶縁体250および絶縁体280中の水分濃度および水素濃度を低減させることができる。なお、上記加熱処理後、大気に曝すことなく連続して、絶縁体282の成膜を行ってもよい。
【0253】
次に、導電体260上、酸化物230c上、絶縁体250上、および絶縁体280上に、絶縁体282を形成する。絶縁体282の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる(図12参照)。絶縁体282となる絶縁膜としては、特に、スパッタリング法によって、酸化アルミニウムを成膜することが好ましい。スパッタリング法を用いて、酸素を含む雰囲気で絶縁体282の成膜を行うことで、成膜しながら、絶縁体280に酸素を添加することができる。このとき、基板加熱を行いながら、絶縁体282を成膜することが好ましい。また、導電体260の上面に接して、絶縁体282を形成することで、この後の加熱処理において、絶縁体280が有する酸素が導電体260へ吸収されることを抑制することができるので好ましい。
【0254】
次に、絶縁体282上に絶縁体283を形成する(図13参照)。絶縁体283の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。また、絶縁体283は、多層としてもよい。例えば、スパッタリング法を用いて、窒化シリコンを成膜し、当該窒化シリコン上に、CVD法を用いて窒化シリコンを成膜してもよい。
【0255】
次に、加熱処理を行ってもよい。本実施の形態では、窒素雰囲気にて400℃の温度で1時間の処理を行う。当該加熱処理によって、絶縁体282の成膜によって添加された酸素を絶縁体280へ拡散させ、さらに酸化物230cを介して、酸化物230a、および酸化物230bへ供給することができる。このように、酸化物230に加酸素化処理を行うことで、酸化物230(酸化物230b)中の酸素欠損を酸素により修復させる、別言すると「Vo+O→null」という反応を促進させることができる。さらに、酸化物230中に残存した水素に供給された酸素が反応することで、当該水素をHOとして除去する(脱水化する)ことができる。これにより、酸化物230中に残存していた水素が酸素欠損に再結合してVHが形成されるのを抑制することができる。なお、当該加熱処理は、絶縁体283の成膜後に限らず、絶縁体282の成膜後に行ってもよい。
【0256】
次に、絶縁体272、絶縁体273、絶縁体280、絶縁体282、および絶縁体283に、導電体242bに達する開口を形成する(図13参照)。当該開口の形成は、リソグラフィー法を用いて行えばよい。なお、図13(A)で開口は、上面視において円形状にしているが、これに限られるものではない。例えば、開口が、上面視において、楕円などの略円形状、四角形などの多角形状、四角形等の多角形の角部を丸めた形状になっていてもよい。
【0257】
次に、絶縁体241となる絶縁膜を成膜し、当該絶縁膜を異方性エッチングして絶縁体241を形成する。絶縁体241となる絶縁膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。絶縁体241となる絶縁膜としては、酸素の透過を抑制する機能を有する絶縁膜を用いることが好ましい。例えば、PEALD法を用いて、酸化アルミニウムを成膜することが好ましい。または、PEALD法を用いて、窒化シリコンを成膜することが好ましい。窒化シリコンは水素に対するブロッキング性が高いので好ましい。
【0258】
また、絶縁体241となる絶縁膜の異方性エッチングとしては、例えばドライエッチング法などを用いればよい。開口の側壁部に絶縁体241を設けることで、外方からの酸素の透過を抑制し、次に形成する導電体240の酸化を防止することができる。また、導電体240から、水、水素などの不純物が外部に拡散することを防ぐことができる。
【0259】
次に、導電体240となる導電膜を成膜する。導電体240となる導電膜は、水、水素など不純物の透過を抑制する機能を有する導電体を含む積層構造とすることが望ましい。たとえば、窒化タンタル、窒化チタンなどと、タングステン、モリブデン、銅など、と、の積層とすることができる。導電体240となる導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。
【0260】
次に、CMP処理を行うことで、導電体240となる導電膜の一部を除去し、絶縁体283の上面を露出する。その結果、開口のみに、当該導電膜が残存することで上面が平坦な導電体240を形成することができる(図13参照)。なお、当該CMP処理により、絶縁体283の上面の一部が除去される場合がある。
【0261】
次に、導電体246となる導電膜を成膜する。導電体246となる導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。
【0262】
次に、導電体246となる導電膜をリソグラフィー法によって加工し、導電体240の上面と接する導電体246を形成する(図14参照)。また図示しないが、導電体246と、絶縁体283とが重ならない領域の絶縁体283の膜厚が薄くなることがある。
【0263】
次に、導電体246上、および絶縁体283上に、絶縁体284を成膜する(図1参照)。絶縁体284の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。また、絶縁体284は、多層としてもよい。例えば、スパッタリング法を用いて、窒化シリコンを成膜し、当該窒化シリコン上に、CVD法を用いて窒化シリコンを成膜してもよい。導電体246上、および絶縁体283上に、絶縁体284を成膜することで、導電体246の上面、および導電体246の側面は、絶縁体284が接し、導電体246の下面の一部は、絶縁体283と接する。つまり、導電体246は、絶縁体284、および絶縁体283で包まれる構成とすることができる。この様な構成とすることで、外方からの酸素の透過を抑制し、導電体246の酸化を防止することができる。また、導電体246から、水、水素などの不純物が外部に拡散することを防ぐことができるので好ましい。
【0264】
次に絶縁体284上に、絶縁体274を成膜してもよい(図1参照)。絶縁体274は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。また、絶縁体274は、上述の水素原子が低減または除去されたガスを用いた成膜方法で成膜することが好ましい。これにより、絶縁体274の水素濃度を低減することができる。
【0265】
以上により、図1に示すトランジスタ200を有する半導体装置を作製することができる。図4乃至図14に示すように、本実施の形態に示す半導体装置の作製方法を用いることで、トランジスタ200および容量素子100を有する半導体装置を作製することができる。
【0266】
<半導体装置の変形例>
以下では、図2図3図15図16図17図18、および図19を用いて、先の<半導体装置の構成例>で示したものとは異なる、本発明の一態様に係るトランジスタ200(トランジスタ200a、およびトランジスタ200b)、および容量素子100(容量素子100a、および容量素子100b)を有する半導体装置の一例について説明する。なお図2図3図15図16図17図18、および図19に示す半導体装置において、<半導体装置の構成例>に示した半導体装置(図1参照。)を構成する構造と同機能を有する構造には、同符号を付記する。なお、本項目において、トランジスタ200、および容量素子100の構成材料については<半導体装置の構成例>で詳細に説明した材料を用いることができる。
【0267】
<半導体装置の変形例1>
図2(A)は、トランジスタ200、および容量素子100を有する半導体装置の上面図である。また、図2(B)、図2(C)、および図2(D)は、当該半導体装置の断面図である。ここで、図2(B)は、図2(A)にA1-A2の一点鎖線で示す部位の断面図であり、トランジスタ200、および容量素子100のチャネル長方向の断面図でもある。また、図2(C)は、図2(A)にA3-A4の一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル幅方向の断面図でもある。また、図2(D)は、図2(A)にA5-A6の一点鎖線で示す部位の断面図であり、容量素子100のチャネル幅方向の断面図でもある。なお、図2(A)の上面図では、図の明瞭化のために一部の要素を省いている。
【0268】
図2(B)、および(D)に示すように、本変形例は、容量素子100の断面形状が、図1(B)、および(D)に示す容量素子100と異なる。詳しくは、図2(B)、および図2(D)に示すように、導電体204bのチャネル長方向、およびチャネル幅方向に凹凸を形成し、導電体204b上の絶縁体222が、当該凹凸に沿う様に形成されている。このような形状にすることで、容量素子100の一方の電極として機能する導電体204と、容量素子100の他方の電極として機能する導電体242aが、容量素子100の誘電体として機能する絶縁体222を介して重なる面積が、上面視の面積よりも大きくすることができる。即ち、上面視における一方の電極と、他方の電極との重なる面積を増やさずに容量素子100の容量を増やすことができるので容量素子の微細化ができる。
【0269】
導電体204bを図2(B)、および(D)に示すように、凹凸を形成するには、例えば、図1(B)、および(D)に示すように導電体204bの上面が平坦な導電体204を形成した後に、リソグラフィー法によって、導電体204bに凹凸を形成すればよい。また、本変形例では、チャネル長方向、およびチャネル幅方向ともに凹凸を形成しているが、その限りではない。例えば、チャネル長方向にのみに凹凸を形成しても良いし、チャネル幅方向のみに凹凸を形成してもよい。または、凹凸の数についても、同様である。つまり、半導体装置が求める容量素子の容量に合わせて凹凸の方向または凹凸の数を決めて形成すればよい。その他の構成および効果については、図1(A)、(B)、(C)、および(D)に示す半導体装置の構成例を参酌することができる。
【0270】
<半導体装置の変形例2>
図3(A)は、トランジスタ200、および容量素子100を有する半導体装置の上面図である。また、図3(B)、図3(C)、および図3(D)は、当該半導体装置の断面図である。ここで、図3(B)は、図3(A)にA1-A2の一点鎖線で示す部位の断面図であり、トランジスタ200、および容量素子100のチャネル長方向の断面図でもある。また、図3(C)は、図3(A)にA3-A4の一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル幅方向の断面図でもある。また、図3(D)は、図3(A)にA5-A6の一点鎖線で示す部位の断面図であり、トランジスタ200のソースまたはドレインのチャネル幅方向の断面図でもある。なお、図2(A)の上面図では、図の明瞭化のために一部の要素を省いている。
【0271】
図3(A)に示すように、導電体205を、トランジスタ200の第2のゲートと、容量素子100の一方の電極としても用いている構成であり、また、トランジスタ200のソース電極またはドレイン電極として機能する導電体242bと、導電体204とが、開口238を介して接続されている構成であり、また、トランジスタ200のソース電極またはドレイン電極と接続するプラグとして機能する導電体240と、導電体240と接続される導電体246と、導電体240の側面に接する絶縁体241と、を有しない構成であるところが、図1(A)、(B)、(C)、および(D)に示す半導体装置の構成例と異なる。以下に、異なる構成についての詳細を説明する。
【0272】
図3(B)に示すように、容量素子100は、絶縁体214上の導電体205と、導電体205上の絶縁体222と、絶縁体222上の導電体242aと、を有する。
【0273】
容量素子100において、導電体205は、容量素子100の一方の電極として機能し、導電体242aは、容量素子100の他方の電極として機能する。また、絶縁体222は、容量素子100の誘電体として機能する。
【0274】
また、図3(D)に示すように、絶縁体214上の導電体204と、導電体242bとが、開口238を介して、接続されている。導電体204は、導電体205と同じ層に形成される。また、図3(A)に示すように、導電体204は、導電体205とA1-A2方向に平行して配置される。
【0275】
以上のような構成とすることで、プラグとして機能する導電体240、導電体246、および絶縁体241の形成工程が不要となり、トランジスタ200、および容量素子100を有する半導体装置の作製工程が簡略化されるので、製造コストの低減および歩留まりの向上が期待できるので好ましい。
【0276】
その他の構成および効果については、図1(A)、(B)、(C)、および(D)に示す半導体装置の構成例を参酌することができる。
【0277】
<半導体装置の変形例3>
以下では、本発明の一態様に係るトランジスタ200a、トランジスタ200b、容量素子100a、および容量素子100bを有する半導体装置の一例について説明する。
【0278】
図16は、トランジスタ200a、トランジスタ200b、容量素子100a、および容量素子100bを有する半導体装置のチャネル長方向の断面図である。半導体装置は、図16に示すように、A3-A4の一点鎖線を対称軸とした線対称の構成となっている。トランジスタ200aのソース電極またはドレイン電極の一方と、トランジスタ200bのソース電極またはドレイン電極の一方は、導電体242cが兼ねる構成となっている。また、配線として機能する導電体246と、トランジスタ200a、およびトランジスタ200bとの接続もプラグとして機能する導電体240が、兼ねる構成となっている。このように、2つのトランジスタと、2つの容量素子と、配線とプラグとの接続を上述の構成とすることで、微細化または高集積化が可能な半導体装置を提供することができる。
【0279】
トランジスタ200a、トランジスタ200b、容量素子100a、および容量素子100bのそれぞれの構成および効果については、図1(A),(B)、(C)、(D)に示す半導体装置の構成例を参酌することができる。
【0280】
<半導体装置の変形例4>
上記においては、半導体装置の構成例としてトランジスタ200a、トランジスタ200b、容量素子100aおよび容量素子100bを挙げたが、本実施の形態に示す半導体装置はこれに限られるものではない。例えば、図17に示すように同様の構成を有する2つの半導体装置が容量部を介して接続されている構成としてもよい。本明細書では、トランジスタ200a、トランジスタ200b、容量素子100a、および容量素子100bを有する半導体装置をセルと称する。トランジスタ200a、トランジスタ200b、容量素子100aおよび容量素子100bの構成については、上述のトランジスタ200a、トランジスタ200b、容量素子100aおよび容量素子100bに係る記載を参酌することができる。
【0281】
図17は、トランジスタ200a、トランジスタ200b、容量素子100a、および容量素子100bを有するセル60と、セル60と同様の構成を有するセル61が容量部を介して接続されている断面図である。
【0282】
図17に示すように、セル60が有する容量素子100bの一方の電極として機能する導電体204_2および他方の電極として機能する導電体242bは、セル60と同様の構成を有するセル61が有する容量素子の一方の電極および他方の電極を兼ねる構成となっている。また、図示しないが、セル60が有する容量素子100aの一方の電極として機能する導電体204_1および他方の電極として機能する導電体242aが、セル60の左側、つまり図17において、A1方向に隣接する半導体装置の容量素子の一方の電極および他方の電極を兼ねている。また、セル61の右側、つまり、図17において、A2方向のセルについても同様の構成となっている。つまりセルアレイ600を構成することができる。この様なセルアレイ600の構成とすることで、隣り合うセルの間隔を小さくすることができるので、セルアレイ600の投影面積を小さくすることができ、高集積化が可能となる。また、図17に示すセルアレイ600の構成を、マトリクス状に配置することで、マトリクス状のセルアレイを構成することができる。
【0283】
上述のように、本実施の形態に示す構成で、トランジスタ200a、トランジスタ200b、容量素子100aおよび容量素子100bを形成することにより、セルの面積を低減し、セルアレイを有する半導体装置の微細化または高集積化を図ることができる。
【0284】
また、当該セルアレイ600を平面のみでなく積層する構成としてもよい。図18にセルアレイ600をn+1層積層する構成の断面図を示す。図18に示すように、複数のセルアレイを積層することにより、セルアレイの占有面積を増やすことなく、セルを集積して配置することができる。つまり、3Dセルアレイを構成することができる。
【0285】
<半導体装置の変形例5>
以下では、図18に示す3Dセルアレイを有する半導体装置の一例について説明する。図19に、本半導体装置の断面図を示す。本半導体装置は、基板311と、基板311上の絶縁体211と、絶縁体211上の絶縁体212と、絶縁体212上の絶縁体214と、を有し、さらに絶縁体214上には、セルアレイ600がn+1層積層されている3Dセルアレイが配置されている。また、積層されたセルアレイ600は、プラグとして機能する導電体240で電気的に接続されている。また、3Dセルアレイは、絶縁体211、絶縁体212、絶縁体214、絶縁体287、絶縁体282、絶縁体283、および絶縁体284により封止される(便宜的に、以下では封止構造と呼ぶ)。絶縁体284の周囲には絶縁体274が設けられる。また、絶縁体274、絶縁体284、絶縁体283、および絶縁体211には導電体430が設けられ、基板311と電気的に接続する。
【0286】
また、封止構造の内部には、絶縁体280が設けられる。絶縁体280は、加熱により酸素を放出する機能を有する。または、絶縁体280は、過剰酸素領域を有する。
【0287】
なお、絶縁体211、絶縁体283、及び絶縁体284は、水素に対するブロッキング性が高い機能を有する材料であると好適である。また、絶縁体214、絶縁体282、及び絶縁体287は、水素を捕獲、または水素を固着する機能を有する材料であると好適である。
【0288】
例えば、上記水素に対するブロッキング性が高い機能を有する材料は、窒化シリコン、または窒化酸化シリコンなどが挙げられる。また、上記水素を捕獲、または水素を固着する機能を有する材料は、酸化アルミニウム、酸化ハフニウム、並びにアルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などが挙げられる。
【0289】
なお、本明細書において、バリア性とは、対応する物質の拡散を抑制する機能(透過性が低いともいう)とする。または、対応する物質を、捕獲、および固着する(ゲッタリングともいう)機能とする。
【0290】
なお、絶縁体211、絶縁体212、絶縁体214、絶縁体287、絶縁体282、絶縁体283、および絶縁体284に用いる材料の結晶構造については、特に限定は無いが、非晶質または結晶性を有する構造とすればよい。例えば、水素を捕獲、または水素を固着する機能を有する材料として、非晶質の酸化アルミニウム膜を用いると好適である。非晶質の酸化アルミニウムは、結晶性の高い酸化アルミニウムよりも、水素の捕獲、および固着する量が大きい場合がある。
【0291】
ここで、絶縁体280中の過剰酸素は、絶縁体280と接する酸化物半導体中の水素の拡散に対し、下記のようなモデルが考えられる。
【0292】
酸化物半導体中に存在する水素は、酸化物半導体に接する絶縁体280を介して、他の構造体へと拡散する。当該水素の拡散は、絶縁体280中の過剰酸素が酸化物半導体中の水素と反応しOH結合となり、絶縁体280中を拡散する。OH結合を有した水素原子は、水素を捕獲、または水素を固着する機能を有する材料(代表的には、絶縁体282)に到達した際に、水素原子は絶縁体282中の原子(例えば、金属原子など)と結合した酸素原子と反応し、絶縁体282中に捕獲、または固着する。一方、OH結合を有していた過剰酸素の酸素原子は、過剰酸素として絶縁体280中に残ると推測される。つまり、当該水素の拡散において、絶縁体280中の過剰酸素が、橋渡し的な役割を担う蓋然性が高い。
【0293】
上記のモデルを満たすためには、半導体装置の作製プロセスが重要な要素の一つとなる。
【0294】
一例として、酸化物半導体上に、過剰酸素を有する絶縁体280を形成し、その後、絶縁体282を形成する。そのあとに、加熱処理を行うことが好ましい。当該加熱処理は、具体的には、酸素を含む雰囲気、窒素を含む雰囲気、または酸素と窒素の混合雰囲気にて、350℃以上、好ましくは400℃以上の温度で行う。加熱処理の時間は、1時間以上、好ましくは4時間以上、さらに好ましくは8時間以上とする。
【0295】
上記の加熱処理によって、酸化物半導体中の水素が、絶縁体280、絶縁体282、および絶縁体287を介して、外方に拡散することができる。つまり、酸化物半導体、及び当該酸化物半導体近傍に存在する水素の絶対量を低減することができる。
【0296】
上記加熱処理のあと、絶縁体283、及び絶縁体284を形成する。絶縁体283、及び絶縁体284は、水素に対するブロッキング性が高い機能を有する材料であるため、外方に拡散させた水素、または外部に存在する水素を、内部、具体的には、酸化物半導体、または絶縁体280側に入り込むのを抑制することができる。
【0297】
なお、上記の加熱処理については、絶縁体282を形成したあとに行う構成について、例示したが、これに限定されない。例えば、セルアレイ600_1乃至セルアレイ600_n+1形成後の形成後にそれぞれ上記加熱処理を行っても良い。水素は上方または横方向に拡散される。
【0298】
なお、上記の作製プロセスとすることで、絶縁体211と、絶縁体283と、が接着することで、上述した封止構造が形成される。
【0299】
以上のように、上記の構造、及び上記の作製プロセスとすることで、水素濃度が低減された酸化物半導体を用いた半導体装置を提供することができる。従って、信頼性が良好な半導体装置を提供することができる。また、本発明の一態様により、良好な電気特性を有する半導体装置を提供することができる。
【0300】
本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、構造、方法などと適宜組み合わせて用いることができる。
【0301】
(実施の形態2)
本実施の形態では、半導体装置の一形態を、図20を用いて説明する。
【0302】
[記憶装置1]
図20に示す記憶装置は、トランジスタ200、容量素子100、およびトランジスタ300と、を有している。図20は、トランジスタ200、およびトランジスタ300のチャネル長方向の断面図である。
【0303】
トランジスタ200は、酸化物半導体を有する半導体層にチャネルが形成されるトランジスタである。トランジスタ200は、オフ電流が小さいため、これを記憶装置に用いることにより長期にわたり記憶内容を保持することが可能である。つまり、リフレッシュ動作を必要としない、あるいは、リフレッシュ動作の頻度が極めて少ないため、記憶装置の消費電力を十分に低減することができる。
【0304】
図20に示す記憶装置において、配線1001はトランジスタ300のソースおよびドレインの一方と電気的に接続され、配線1002はトランジスタ300のソースおよびドレインの他方と電気的に接続され、配線1007はトランジスタ300のゲートと電気的に接続されている。また、配線1003はトランジスタ200のソースおよびドレインの一方と電気的に接続され、配線1004はトランジスタ200の第1のゲートと電気的に接続され、配線1006はトランジスタ200の第2のゲートと電気的に接続されている。また、配線1005は容量素子100の電極の他方と電気的に接続されている。
【0305】
図20に示す半導体装置は、酸化物半導体を有する半導体層にチャネルが形成されるトランジスタを設けた記憶装置に適用することができる。トランジスタ200のオフ電流が小さく、容量素子100の一方の電極の電位が保持可能という特性を有することで、情報の書き込み、保持、読み出しが可能である。
【0306】
<記憶装置1の構造>
本発明の一態様の半導体装置は、図20に示すようにトランジスタ300、トランジスタ200、および容量素子100を有する。トランジスタ200はトランジスタ300の上方に設けられ、トランジスタ200、および容量素子100は同じ層に配置される。なお、トランジスタ200、および容量素子100の構成については、先の実施の形態を参酌することができる。
【0307】
トランジスタ300は、基板311上に設けられ、導電体316、絶縁体315、基板311の一部からなる半導体領域313、およびソース領域またはドレイン領域として機能する低抵抗領域314a、および低抵抗領域314bを有する。
【0308】
トランジスタ300は、pチャネル型、あるいはnチャネル型のいずれでもよい。
【0309】
半導体領域313のチャネルが形成される領域、その近傍の領域、ソース領域、またはドレイン領域となる低抵抗領域314a、および低抵抗領域314bなどにおいて、シリコン系半導体などの半導体を含むことが好ましく、単結晶シリコンを含むことが好ましい。または、Ge(ゲルマニウム)、SiGe(シリコンゲルマニウム)、GaAs(ガリウムヒ素)、GaAlAs(ガリウムアルミニウムヒ素)などを有する材料で形成してもよい。結晶格子に応力を与え、格子間隔を変化させることで有効質量を制御したシリコンを用いた構成としてもよい。またはGaAsとGaAlAs等を用いることで、トランジスタ300をHEMT(High Electron Mobility Transistor)としてもよい。
【0310】
低抵抗領域314a、および低抵抗領域314bは、半導体領域313に適用される半導体材料に加え、ヒ素、リンなどのn型の導電性を付与する元素、またはホウ素などのp型の導電性を付与する元素を含む。
【0311】
ゲート電極として機能する導電体316は、ヒ素、リンなどのn型の導電性を付与する元素、もしくはホウ素などのp型の導電性を付与する元素を含むシリコンなどの半導体材料、金属材料、合金材料、または金属酸化物材料などの導電性材料を用いることができる。
【0312】
なお、導電体の材料により、仕事関数が定まるため、導電体の材料を変更することで、しきい値電圧を調整することができる。具体的には、導電体に窒化チタンや窒化タンタルなどの材料を用いることが好ましい。さらに導電性と埋め込み性を両立するために導電体にタングステンやアルミニウムなどの金属材料を積層として用いることが好ましく、特にタングステンを用いることが耐熱性の点で好ましい。
【0313】
なお、図20に示すトランジスタ300は一例であり、その構造に限定されず、回路構成や駆動方法に応じて適切なトランジスタを用いればよい。
【0314】
トランジスタ300を覆って、絶縁体320、絶縁体322、絶縁体324、および絶縁体326が順に積層して設けられている。
【0315】
絶縁体320、絶縁体322、絶縁体324、および絶縁体326として、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、窒化アルミニウムなどを用いればよい。
【0316】
絶縁体322は、その下方に設けられるトランジスタ300などによって生じる段差を平坦化する平坦化膜としての機能を有していてもよい。例えば、絶縁体322の上面は、平坦性を高めるために化学機械研磨(CMP)法等を用いた平坦化処理により平坦化されていてもよい。
【0317】
また、絶縁体324には、基板311、またはトランジスタ300などから、トランジスタ200が設けられる領域に、水素や不純物が拡散しないようなバリア性を有する膜を用いることが好ましい。
【0318】
水素に対するバリア性を有する膜の一例として、例えば、CVD法で形成した窒化シリコンを用いることができる。ここで、トランジスタ200等の酸化物半導体を有する半導体素子に、水素が拡散することで、該半導体素子の特性が低下する場合がある。従って、トランジスタ200と、トランジスタ300との間に、水素の拡散を抑制する膜を用いることが好ましい。水素の拡散を抑制する膜とは、具体的には、水素の脱離量が少ない膜とする。
【0319】
水素の脱離量は、例えば、昇温脱離ガス分析法(TDS)などを用いて分析することができる。例えば、絶縁体324の水素の脱離量は、TDS分析において、膜の表面温度が50℃から500℃の範囲において、水素原子に換算した脱離量が、絶縁体324の面積当たりに換算して、10×1015atoms/cm以下、好ましくは5×1015atoms/cm以下であればよい。
【0320】
なお、絶縁体326は、絶縁体324よりも誘電率が低いことが好ましい。例えば、絶縁体326の比誘電率は4未満が好ましく、3未満がより好ましい。また例えば、絶縁体326の比誘電率は、絶縁体324の比誘電率の0.7倍以下が好ましく、0.6倍以下がより好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。
【0321】
また、絶縁体320、絶縁体322、絶縁体324、および絶縁体326にはトランジスタ300と電気的に接続する導電体328、および導電体330等が埋め込まれている。なお、導電体328、および導電体330はプラグ、または配線として機能する。また、プラグまたは配線として機能する導電体は、複数の構造をまとめて同一の符号を付与する場合がある。また、本明細書等において、配線と、配線と電気的に接続するプラグとが一体物であってもよい。すなわち、導電体の一部が配線として機能する場合、および導電体の一部がプラグとして機能する場合もある。
【0322】
各プラグ、および配線(導電体328、および導電体330等)の材料としては、金属材料、合金材料、金属窒化物材料、または金属酸化物材料などの導電性材料を、単層または積層して用いることができる。耐熱性と導電性を両立するタングステンやモリブデンなどの高融点材料を用いることが好ましく、タングステンを用いることが好ましい。または、アルミニウムや銅などの低抵抗導電性材料で形成することが好ましい。低抵抗導電性材料を用いることで配線抵抗を低くすることができる。
【0323】
絶縁体326、および導電体330上に、配線層を設けてもよい。例えば、図20において、絶縁体350、絶縁体352、および絶縁体354が順に積層して設けられている。また、絶縁体350、絶縁体352、および絶縁体354には、導電体356が形成されている。導電体356は、プラグ、または配線として機能する。なお導電体356は、導電体328、および導電体330と同様の材料を用いて設けることができる。
【0324】
なお、例えば、絶縁体350は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体356は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体350が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ300とトランジスタ200とは、バリア層により分離することができ、トランジスタ300からトランジスタ200への水素の拡散を抑制することができる。
【0325】
なお、水素に対するバリア性を有する導電体としては、例えば、窒化タンタル等を用いるとよい。また、窒化タンタルと導電性が高いタングステンを積層することで、配線としての導電性を保持したまま、トランジスタ300からの水素の拡散を抑制することができる。この場合、水素に対するバリア性を有する窒化タンタル層が、水素に対するバリア性を有する絶縁体350と接する構造であることが好ましい。
【0326】
上記において、導電体356を含む配線層、について説明したが、本実施の形態に係る記憶装置はこれに限られるものではない。導電体356を含む配線層と同様の配線層を3層以下にしてもよいし、導電体356を含む配線層と同様の配線層を5層以上にしてもよい。
【0327】
絶縁体354上には絶縁体210、絶縁体212、および絶縁体214が、順に積層して設けられている。絶縁体210、絶縁体212、および絶縁体214のいずれかは、酸素や水素に対してバリア性のある物質を用いることが好ましい。
【0328】
絶縁体210には、例えば絶縁体320と同様の材料を用いることができる。また、比較的誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。例えば、絶縁体212として、酸化シリコン膜や酸化窒化シリコン膜などを用いることができる。
【0329】
絶縁体211、および絶縁体212には、例えば、基板311、またはトランジスタ300を設ける領域などから、トランジスタ200を設ける領域に、水素や不純物が拡散しないようなバリア性を有する膜を用いることが好ましい。従って、絶縁体324と同様の材料を用いることができる。
【0330】
水素に対するバリア性を有する膜の一例として、CVD法で形成した窒化シリコンを用いることができる。ここで、トランジスタ200等の酸化物半導体を有する半導体素子に、水素が拡散することで、該半導体素子の特性が低下する場合がある。従って、トランジスタ200と、トランジスタ300との間に、水素の拡散を抑制する膜を用いることが好ましい。水素の拡散を抑制する膜とは、具体的には、水素の脱離量が少ない膜とする。
【0331】
また、水素に対するバリア性を有する膜として、例えば、絶縁体214には、酸化アルミニウム、酸化ハフニウム、酸化タンタルなどの金属酸化物を用いることが好ましい。
【0332】
特に、酸化アルミニウムは、酸素、およびトランジスタの電気特性の変動要因となる水素、水分などの不純物、の両方に対して膜を透過させない遮断効果が高い。したがって、酸化アルミニウムは、トランジスタの作製工程中および作製後において、水素、水分などの不純物のトランジスタ200への混入を防止することができる。また、トランジスタ200を構成する酸化物からの酸素の放出を抑制することができる。そのため、トランジスタ200に対する保護膜として用いることに適している。
【0333】
また、絶縁体210、絶縁体211、絶縁体212、絶縁体214、および絶縁体216には、導電体218、およびトランジスタ200を構成する導電体、および容量素子100を構成する導電体等が埋め込まれている。なお、導電体218は、トランジスタ200またはトランジスタ300と電気的に接続するプラグ、または配線としての機能を有する。導電体218は、導電体328、および導電体330と同様の材料を用いて設けることができる。
【0334】
特に、絶縁体210、および絶縁体214と接する領域の導電体218は、酸素、水素、および水に対するバリア性を有する導電体であることが好ましい。当該構成により、トランジスタ300とトランジスタ200とは、酸素、水素、および水に対するバリア性を有する層で、分離することができ、トランジスタ300からトランジスタ200への水素の拡散を抑制することができる。
【0335】
絶縁体214の上方には、トランジスタ200、および容量素子100が設けられている。なお、トランジスタ200、および容量素子100の構造は、先の実施の形態で説明したトランジスタ200、および容量素子100を用いればよい。また、図20に示すトランジスタ200、および容量素子100は一例であり、その構造に限定されず、回路構成や駆動方法に応じて適切なトランジスタ、および容量素子を用いればよい。
【0336】
また、導電体240を導電体218と接するように設けることで、トランジスタ300と接続される導電体をトランジスタ200の上方に取り出すことができる。図20においては、配線1002をトランジスタ200の上方に取り出したが、これに限られることなく、配線1001または配線1007などをトランジスタ200の上方に取り出す構成にしてもよい。
【0337】
以上が構成例についての説明である。本構成を用いることで、酸化物半導体を有するトランジスタを用いた半導体装置において、電気特性の変動を抑制すると共に、信頼性を向上させることができる。
【0338】
本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、構造、方法などと適宜組み合わせて用いることができる。
【0339】
(実施の形態3)
本実施の形態では、図22および図23を用いて、本発明の一態様に係る、酸化物を半導体に用いたトランジスタ(以下、OSトランジスタと呼ぶ場合がある)、および容量素子が適用されている記憶装置(以下、OSメモリ装置と呼ぶ場合がある)について説明する。OSメモリ装置は、少なくとも容量素子と、容量素子の充放電を制御するOSトランジスタを有する記憶装置である。OSトランジスタのオフ電流は極めて小さいので、OSメモリ装置は優れた保持特性をもち、不揮発性メモリとして機能させることができる。
【0340】
一般に、コンピュータなどの半導体装置では、用途に応じて様々な記憶装置(メモリ)が用いられる。図21に、各種の記憶装置を階層ごとに示す。上層に位置する記憶装置ほど速いアクセス速度が求められ、下層に位置する記憶装置ほど大きな記憶容量と高い記録密度が求められる。図21では、最上層から順に、CPUなどの演算処理装置にレジスタとして混載されるメモリ、SRAM(Static Random Access Memory)、DRAM(Dynamic Random Access Memory)、3D NANDメモリを示している。
【0341】
CPUなどの演算処理装置にレジスタとして混載されるメモリは、演算結果の一時保存などに用いられるため、演算処理装置からのアクセス頻度が高い。よって、記憶容量よりも速い動作速度が求められる。また、レジスタは演算処理装置の設定情報などを保持する機能も有する。
【0342】
SRAMは、例えばキャッシュに用いられる。キャッシュは、メインメモリに保持されている情報の一部を複製して保持する機能を有する。使用頻繁が高いデータをキャッシュに複製しておくことで、データへのアクセス速度を高めることができる。
【0343】
DRAMは、例えばメインメモリに用いられる。メインメモリは、ストレージから読み出されたプログラムやデータを保持する機能を有する。DRAMの記録密度は、おおよそ0.1乃至0.3Gbit/mmである。
【0344】
3D NANDメモリは、例えばストレージに用いられる。ストレージは、長期保存が必要なデータや、演算処理装置で使用する各種のプログラムなどを保持する機能を有する。よって、ストレージには動作速度よりも大きな記憶容量と高い記録密度が求められる。ストレージに用いられる記憶装置の記録密度は、おおよそ0.6乃至6.0Gbit/mmである。
【0345】
本発明の一態様の記憶装置は、動作速度が速く、長期間のデータ保持が可能である。本発明の一態様の記憶装置は、キャッシュが位置する階層とメインメモリが位置する階層の双方を含む境界領域901に位置する記憶装置として好適に用いることができる。また、本発明の一態様の記憶装置は、メインメモリが位置する階層とストレージが位置する階層の双方を含む境界領域902に位置する記憶装置として好適に用いることができる。
【0346】
<記憶装置の構成例>
図22(A)にOSメモリ装置の構成の一例を示す。記憶装置1400は、周辺回路1411、およびメモリセルアレイ1470を有する。周辺回路1411は、行回路1420、列回路1430、出力回路1440、コントロールロジック回路1460を有する。
【0347】
列回路1430は、例えば、列デコーダ、プリチャージ回路、センスアンプ、および書き込み回路等を有する。プリチャージ回路は、配線をプリチャージする機能を有する。センスアンプは、メモリセルから読み出されたデータ信号を増幅する機能を有する。なお、上記配線は、メモリセルアレイ1470が有するメモリセルに接続されている配線であり、詳しくは後述する。増幅されたデータ信号は、出力回路1440を介して、データ信号RDATAとして記憶装置1400の外部に出力される。また、行回路1420は、例えば、行デコーダ、ワード線ドライバ回路等を有し、アクセスする行を選択することができる。
【0348】
記憶装置1400には、外部から電源電圧として低電源電圧(VSS)、周辺回路1411用の高電源電圧(VDD)、メモリセルアレイ1470用の高電源電圧(VIL)が供給される。また、記憶装置1400には、制御信号(CE、WE、RE)、アドレス信号ADDR、データ信号WDATAが外部から入力される。アドレス信号ADDRは、行デコーダおよび列デコーダに入力され、WDATAは書き込み回路に入力される。
【0349】
コントロールロジック回路1460は、外部からの入力信号(CE、WE、RE)を処理して、行デコーダ、列デコーダの制御信号を生成する。CEは、チップイネーブル信号であり、WEは、書き込みイネーブル信号であり、REは、読み出しイネーブル信号である。コントロールロジック回路1460が処理する信号は、これに限定されるものではなく、必要に応じて、他の制御信号を入力すればよい。
【0350】
メモリセルアレイ1470は、行列状に配置された、複数個のメモリセルMCと、複数の配線を有する。なお、メモリセルアレイ1470と行回路1420とを接続している配線の数は、メモリセルMCの構成、一列に有するメモリセルMCの数などによって決まる。また、メモリセルアレイ1470と列回路1430とを接続している配線の数は、メモリセルMCの構成、一行に有するメモリセルMCの数などによって決まる。
【0351】
なお、図22(A)において、周辺回路1411とメモリセルアレイ1470を同一平面上に形成する例について示したが、本実施の形態はこれに限られるものではない。例えば、図22(B)に示すように、周辺回路1411の一部の上に、メモリセルアレイ1470が重なるように設けられてもよい。例えば、メモリセルアレイ1470の下に重なるように、センスアンプを設ける構成にしてもよい。
【0352】
図23(A)乃至(C)に上述のメモリセルMCに適用できるメモリセルの構成例について説明する。
【0353】
[DOSRAM]
図23(A)乃至(C)に、DRAMのメモリセルの回路構成例を示す。本明細書等において、1OSトランジスタ1容量素子型のメモリセルを用いたDRAMを、DOSRAM(Dynamic Oxide Semiconductor Random Access Memory)と呼ぶ場合がある。図23(A)に示す、メモリセル1471は、トランジスタM1と、容量素子CAと、を有する。なお、トランジスタM1は、ゲート(フロントゲートと呼ぶ場合がある)、及びバックゲートを有する。
【0354】
トランジスタM1の第1端子は、容量素子CAの第1端子と接続され、トランジスタM1の第2端子は、配線BILと接続され、トランジスタM1のゲートは、配線WOLと接続され、トランジスタM1のバックゲートは、配線BGLと接続されている。容量素子CAの第2端子は、配線CALと接続されている。
【0355】
配線BILは、ビット線として機能し、配線WOLは、ワード線として機能する。配線CALは、容量素子CAの第2端子に所定の電位を印加するための配線として機能する。データの書き込み時、及び読み出し時において、配線CALには、低レベル電位を印加するのが好ましい。配線BGLは、トランジスタM1のバックゲートに電位を印加するための配線として機能する。配線BGLに任意の電位を印加することによって、トランジスタM1のしきい値電圧を増減することができる。
【0356】
また、メモリセルMCは、メモリセル1471に限定されず、回路構成の変更を行うことができる。例えば、メモリセルMCは、図23(B)に示すメモリセル1472のように、トランジスタM1のバックゲートが、配線BGLでなく、配線WOLと接続される構成にしてもよい。また、例えば、メモリセルMCは、図23(C)に示すメモリセル1473ように、シングルゲート構造のトランジスタ、つまりバックゲートを有さないトランジスタM1で構成されたメモリセルとしてもよい。
【0357】
上記実施の形態に示す半導体装置をメモリセル1471等に用いる場合、トランジスタM1としてトランジスタ200を用い、容量素子CAとして容量素子100を用いることができる。トランジスタM1としてOSトランジスタを用いることによって、トランジスタM1のリーク電流を非常に低くすることができる。つまり、書き込んだデータをトランジスタM1によって長時間保持することができるため、メモリセルのリフレッシュの頻度を少なくすることができる。また、メモリセルのリフレッシュ動作を不要にすることができる。また、リーク電流が非常に低いため、メモリセル1471、メモリセル1472、メモリセル1473に対して多値データ、又はアナログデータを保持することができる。
【0358】
また、DOSRAMにおいて、上記のように、メモリセルアレイ1470の下に重なるように、センスアンプを設ける構成にすると、ビット線を短くすることができる。これにより、ビット線容量が小さくなり、メモリセルの保持容量を低減することができる。
【0359】
本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、構造、方法などと適宜組み合わせて用いることができる。
【0360】
(実施の形態4)
本実施の形態は、上記実施の形態に示す記憶装置などが組み込まれた電子部品および電子機器の一例を示す。
【0361】
<電子部品>
まず、記憶装置1000が組み込まれた電子部品の例を、図24(A)および(B)を用いて説明を行う。
【0362】
図24(A)に電子部品700および電子部品700が実装された基板(実装基板704)の斜視図を示す。図24(A)に示す電子部品700は、モールド711内に記憶装置1000を有している。また、記憶装置1000は、駆動回路層1500と、複数のメモリセルアレイを有する記憶層1200を有する。図24(A)は、電子部品700の内部を示すために、一部を省略している。電子部品700は、モールド711の外側にランド712を有する。ランド712は電極パッド713と電気的に接続され、電極パッド713は記憶装置1000とワイヤ714によって電気的に接続されている。電子部品700は、例えばプリント基板702に実装される。このような電子部品が複数組み合わされて、それぞれがプリント基板702上で電気的に接続されることで実装基板704が完成する。
【0363】
図24(B)に電子部品730の斜視図を示す。電子部品730は、SiP(System in package)またはMCM(Multi Chip Module)の一例である。電子部品730は、パッケージ基板732(プリント基板)上にインターポーザ731が設けられ、インターポーザ731上に半導体装置735、および複数の記憶装置1000が設けられている。
【0364】
電子部品730では、記憶装置1000を広帯域メモリ(HBM:High Bandwidth Memory)として用いる例を示している。また、半導体装置735は、CPU、GPU、FPGAなどの集積回路(半導体装置)を用いることができる。
【0365】
パッケージ基板732は、セラミック基板、プラスチック基板、またはガラスエポキシ基板などを用いることができる。インターポーザ731は、シリコンインターポーザ、樹脂インターポーザなどを用いることができる。
【0366】
インターポーザ731は、複数の配線を有し、端子ピッチの異なる複数の集積回路を電気的に接続する機能を有する。複数の配線は、単層または多層で設けられる。また、インターポーザ731は、インターポーザ731上に設けられた集積回路をパッケージ基板732に設けられた電極と電気的に接続する機能を有する。これらのことから、インターポーザを「再配線基板」または「中間基板」と呼ぶ場合がある。また、インターポーザ731に貫通電極を設けて、当該貫通電極を用いて集積回路とパッケージ基板732を電気的に接続する場合もある。また、シリコンインターポーザでは、貫通電極として、TSV(Through Silicon Via)を用いることも出来る。
【0367】
インターポーザ731としてシリコンインターポーザを用いることが好ましい。シリコンインターポーザでは能動素子を設ける必要が無いため、集積回路よりも低コストで作製することができる。一方で、シリコンインターポーザの配線形成は半導体プロセスで行なうことができるため、樹脂インターポーザでは難しい微細配線の形成が容易である。
【0368】
HBMでは、広いメモリバンド幅を実現するために多くの配線を接続する必要がある。このため、HBMを実装するインターポーザには、微細かつ高密度の配線形成が求められる。よって、HBMを実装するインターポーザには、シリコンインターポーザを用いることが好ましい。
【0369】
また、シリコンインターポーザを用いたSiPやMCMなどでは、集積回路とインターポーザ間の膨張係数の違いによる信頼性の低下が生じにくい。また、シリコンインターポーザは表面の平坦性が高いため、シリコンインターポーザ上に設ける集積回路とシリコンインターポーザ間の接続不良が生じにくい。特に、インターポーザ上に複数の集積回路を横に並べて配置する2.5Dパッケージ(2.5次元実装)では、シリコンインターポーザを用いることが好ましい。
【0370】
また、電子部品730と重ねてヒートシンク(放熱板)を設けてもよい。ヒートシンクを設ける場合は、インターポーザ731上に設ける集積回路の高さを揃えることが好ましい。例えば、本実施の形態に示す電子部品730では、記憶装置1000と半導体装置735の高さを揃えることが好ましい。
【0371】
電子部品730を他の基板に実装するため、パッケージ基板732の底部に電極733を設けてもよい。図24(B)では、電極733を半田ボールで形成する例を示している。パッケージ基板732の底部に半田ボールをマトリクス状に設けることで、BGA(Ball Grid Array)実装を実現できる。また、電極733を導電性のピンで形成してもよい。パッケージ基板732の底部に導電性のピンをマトリクス状に設けることで、PGA(Pin Grid Array)実装を実現できる。
【0372】
電子部品730は、BGAおよびPGAに限らず様々な実装方法を用いて他の基板に実装することができる。例えば、SPGA(Staggered Pin Grid Array)、LGA(Land Grid Array)、QFP(Quad Flat Package)、QFJ(Quad Flat J-leaded package)、またはQFN(Quad Flat Non-leaded package)などの実装方法を用いることができる。
【0373】
本実施の形態は、他の実施の形態などに記載した構成と適宜組み合わせて実施することが可能である。
【0374】
(実施の形態5)
本実施の形態では、先の実施の形態に示す半導体装置を用いた記憶装置の応用例について説明する。先の実施の形態に示す半導体装置は、例えば、各種電子機器(例えば、情報端末、コンピュータ、スマートフォン、電子書籍端末、デジタルカメラ(ビデオカメラも含む)、録画再生装置、ナビゲーションシステムなど)の記憶装置に適用できる。なお、ここで、コンピュータとは、タブレット型のコンピュータや、ノート型のコンピュータや、デスクトップ型のコンピュータの他、サーバシステムのような大型のコンピュータを含むものである。または、先の実施の形態に示す半導体装置は、メモリカード(例えば、SDカード)、USBメモリ、SSD(ソリッド・ステート・ドライブ)等の各種のリムーバブル記憶装置に適用される。図25(A)乃至(E)にリムーバブル記憶装置の構成例を模式的に示す。例えば、先の実施の形態に示す半導体装置は、パッケージングされたメモリチップに加工され、様々なストレージ装置、リムーバブルメモリに用いられる。
【0375】
図25(A)はUSBメモリの模式図である。USBメモリ1100は、筐体1101、キャップ1102、USBコネクタ1103および基板1104を有する。基板1104は、筐体1101に収納されている。例えば、基板1104には、メモリチップ1105、コントローラチップ1106が取り付けられている。基板1104のメモリチップ1105などに先の実施の形態に示す半導体装置を組み込むことができる。
【0376】
図25(B)はSDカードの外観の模式図であり、図25(C)は、SDカードの内部構造の模式図である。SDカード1110は、筐体1111、コネクタ1112および基板1113を有する。基板1113は筐体1111に収納されている。例えば、基板1113には、メモリチップ1114、コントローラチップ1115が取り付けられている。基板1113の裏面側にもメモリチップ1114を設けることで、SDカード1110の容量を増やすことができる。また、無線通信機能を備えた無線チップを基板1113に設けてもよい。これによって、ホスト装置とSDカード1110間の無線通信によって、メモリチップ1114のデータの読み出し、書き込みが可能となる。基板1113のメモリチップ1114などに先の実施の形態に示す半導体装置を組み込むことができる。
【0377】
図25(D)はSSDの外観の模式図であり、図25(E)は、SSDの内部構造の模式図である。SSD1150は、筐体1151、コネクタ1152および基板1153を有する。基板1153は筐体1151に収納されている。例えば、基板1153には、メモリチップ1154、メモリチップ1155、コントローラチップ1156が取り付けられている。メモリチップ1155はコントローラチップ1156のワークメモリであり、例えばDOSRAMチップを用いればよい。基板1153の裏面側にもメモリチップ1154を設けることで、SSD1150の容量を増やすことができる。基板1153のメモリチップ1154などに先の実施の形態に示す半導体装置を組み込むことができる。
【0378】
本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、構造、方法などと適宜組み合わせて用いることができる。
【0379】
(実施の形態6)
本実施の形態では、本発明の一態様の半導体装置に適用可能な電子機器の具体例について図26(A)乃至(F)を用いて説明する。
【0380】
より具体的には、本発明の一態様に係る半導体装置は、CPUやGPUなどのプロセッサ、またはチップに用いることができる。図26(A)乃至(F)に、本発明の一態様に係るCPUやGPUなどのプロセッサ、またはチップを備えた電子機器の具体例を示す。
【0381】
<電子機器・システム>
本発明の一態様に係るGPU又はチップは、様々な電子機器に搭載することができる。電子機器の例としては、例えば、テレビジョン装置、デスクトップ型もしくはノート型のパーソナルコンピュータ、コンピュータ用などのモニタ、デジタルサイネージ(Digital Signage:電子看板)、パチンコ機などの大型ゲーム機などの比較的大きな画面を備える電子機器の他、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機、携帯型ゲーム機、携帯情報端末、音響再生装置、などが挙げられる。また、本発明の一態様に係る集積回路又はチップを電子機器に設けることにより、電子機器に人工知能を搭載することができる。
【0382】
本発明の一態様の電子機器は、アンテナを有していてもよい。アンテナで信号を受信することで、表示部で映像や情報等の表示を行うことができる。また、電子機器がアンテナ及び二次電池を有する場合、アンテナを、非接触電力伝送に用いてもよい。
【0383】
本発明の一態様の電子機器は、センサ(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を測定する機能を含むもの)を有していてもよい。
【0384】
本発明の一態様の電子機器は、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)を実行する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出す機能等を有することができる。図26(A)乃至(F)に、電子機器の例を示す。
【0385】
[携帯電話]
図26(A)には、情報端末の一種である携帯電話(スマートフォン)が図示されている。情報端末5500は、筐体5510と、表示部5511と、を有しており、入力用インターフェースとして、タッチパネルが表示部5511に備えられ、ボタンが筐体5510に備えられている。
【0386】
情報端末5500は、本発明の一態様のチップを適用することで、人工知能を利用したアプリケーションを実行することができる。人工知能を利用したアプリケーションとしては、例えば、会話を認識してその会話内容を表示部5511に表示するアプリケーション、表示部5511に備えるタッチパネルに対してユーザが入力した文字、図形などを認識して、表示部5511に表示するアプリケーション、指紋や声紋などの生体認証を行うアプリケーションなどが挙げられる。
【0387】
[情報端末1]
図26(B)には、デスクトップ型情報端末5300が図示されている。デスクトップ型情報端末5300は、情報端末の本体5301と、ディスプレイ5302と、キーボード5303と、を有する。
【0388】
デスクトップ型情報端末5300は、先述した情報端末5500と同様に、本発明の一態様のチップを適用することで、人工知能を利用したアプリケーションを実行することができる。人工知能を利用したアプリケーションとしては、例えば、設計支援ソフトウェア、文章添削ソフトウェア、献立自動生成ソフトウェアなどが挙げられる。また、デスクトップ型情報端末5300を用いることで、新規の人工知能の開発を行うことができる。
【0389】
なお、上述では、電子機器としてスマートフォン、及びデスクトップ用情報端末を例として、それぞれ図26(A)、(B)に図示したが、スマートフォン、及びデスクトップ用情報端末以外の情報端末を適用することができる。スマートフォン、及びデスクトップ用情報端末以外の情報端末としては、例えば、PDA(Personal Digital Assistant)、ノート型情報端末、ワークステーションなどが挙げられる。
【0390】
[電化製品]
図26(C)は、電化製品の一例である電気冷凍冷蔵庫5800を示している。電気冷凍冷蔵庫5800は、筐体5801、冷蔵室用扉5802、冷凍室用扉5803等を有する。
【0391】
電気冷凍冷蔵庫5800に本発明の一態様のチップを適用することによって、人工知能を有する電気冷凍冷蔵庫5800を実現することができる。人工知能を利用することによって電気冷凍冷蔵庫5800は、電気冷凍冷蔵庫5800に保存されている食材、その食材の消費期限などを基に献立を自動生成する機能や、電気冷凍冷蔵庫5800に保存されている食材に合わせた温度に自動的に調節する機能などを有することができる。
【0392】
本一例では、電化製品として電気冷凍冷蔵庫について説明したが、その他の電化製品としては、例えば、掃除機、電子レンジ、電子オーブン、炊飯器、湯沸かし器、IH調理器、ウォーターサーバ、エアーコンディショナーを含む冷暖房器具、洗濯機、乾燥機、オーディオビジュアル機器などが挙げられる。
【0393】
[ゲーム機]
図26(D)は、ゲーム機の一例である携帯ゲーム機5200を示している。携帯ゲーム機は、筐体5201、表示部5202、ボタン5203等を有する。
【0394】
携帯ゲーム機5200に本発明の一態様のGPU又はチップを適用することによって、低消費電力の携帯ゲーム機5200を実現することができる。また、低消費電力により、回路からの発熱を低減することができるため、発熱によるその回路自体、周辺回路、及びモジュールへの影響を少なくすることができる。
【0395】
更に、携帯ゲーム機5200に本発明の一態様のGPU又はチップを適用することによって、人工知能を有する携帯ゲーム機5200を実現することができる。
【0396】
本来、ゲームの進行、ゲーム上に登場する生物の言動、ゲーム上で発生する現象などの表現は、そのゲームが有するプログラムによって定められているが、携帯ゲーム機5200に人工知能を適用することにより、ゲームのプログラムに限定されない表現が可能になる。例えば、プレイヤーが問いかける内容、ゲームの進行状況、時刻、ゲーム上に登場する人物の言動が変化するといった表現が可能となる。
【0397】
また、携帯ゲーム機5200で複数のプレイヤーが必要なゲームを行う場合、人工知能によって擬人的にゲームプレイヤーを構成することができるため、対戦相手を人工知能によるゲームプレイヤーとすることによって、1人でもゲームを行うことができる。
【0398】
図26(D)では、ゲーム機の一例として携帯ゲーム機を図示しているが、本発明の一態様のGPU又はチップを適用するゲーム機はこれに限定されない。本発明の一態様のGPU又はチップを適用するゲーム機としては、例えば、家庭用の据え置き型ゲーム機、娯楽施設(ゲームセンター、遊園地など)に設置されるアーケードゲーム機、スポーツ施設に設置されるバッティング練習用の投球マシンなどが挙げられる。
【0399】
[移動体]
本発明の一態様のGPU又はチップは、移動体である自動車、及び自動車の運転席周辺に適用することができる。
【0400】
図26(E1)は移動体の一例である自動車5700を示し、図26(E2)は、自動車の室内におけるフロントガラス周辺を示す図である。図26(E2)では、ダッシュボードに取り付けられた表示パネル5701、表示パネル5702、表示パネル5703の他、ピラーに取り付けられた表示パネル5704を図示している。
【0401】
表示パネル5701乃至表示パネル5703は、スピードメーターやタコメーター、走行距離、燃料計、ギア状態、空調の設定などを表示することで、様々な情報を提供することができる。また、表示パネルに表示される表示項目やレイアウトなどは、ユーザの好みに合わせて適宜変更することができ、デザイン性を高めることが可能である。表示パネル5701乃至表示パネル5703は、照明装置として用いることも可能である。
【0402】
表示パネル5704には、自動車5700に設けられた撮像装置(図示しない)からの映像を映し出すことによって、ピラーで遮られた視界(死角)を補完することができる。すなわち、自動車5700の外側に設けられた撮像装置からの画像を表示することによって、死角を補い、安全性を高めることができる。また、見えない部分を補完する映像を映すことによって、より自然に違和感なく安全確認を行うことができる。表示パネル5704は、照明装置として用いることもできる。
【0403】
本発明の一態様のGPU又はチップは人工知能の構成要素として適用できるため、例えば、当該チップを自動車5700の自動運転システムに用いることができる。また、当該チップを道路案内、危険予測などを行うシステムに用いることができる。表示パネル5701乃至表示パネル5704には、道路案内、危険予測などの情報を表示する構成としてもよい。
【0404】
なお、上述では、移動体の一例として自動車について説明しているが、移動体は自動車に限定されない。例えば、移動体としては、電車、モノレール、船、飛行体(ヘリコプター、無人航空機(ドローン)、飛行機、ロケット)なども挙げることができ、これらの移動体に本発明の一態様のチップを適用して、人工知能を利用したシステムを付与することができる。
【0405】
[放送システム]
本発明の一態様のGPU又はチップは、放送システムに適用することができる。
【0406】
図26(F)は、放送システムにおけるデータ伝送を模式的に示している。具体的には、図26(F)は、放送局5680から送信された電波(放送信号)が、各家庭のテレビジョン受信装置(TV)5600に届くまでの経路を示している。TV5600は、受信装置を備え(図示しない)、アンテナ5650で受信された放送信号は、当該受信装置を介して、TV5600に送信される。
【0407】
図26(F)では、アンテナ5650は、UHF(Ultra High Frequency)アンテナを図示しているが、アンテナ5650としては、BS・110°CSアンテナ、CSアンテナなども適用できる。
【0408】
電波5675A、電波5675Bは地上波放送用の放送信号であり、電波塔5670は受信した電波5675Aを増幅して、電波5675Bの送信を行う。各家庭では、アンテナ5650で電波5675Bを受信することで、TV5600で地上波TV放送を視聴することができる。なお、放送システムは、図26(F)に示す地上波放送に限定せず、人工衛星を用いた衛星放送、光回線によるデータ放送などとしてもよい。
【0409】
上述した放送システムは、本発明の一態様のチップを適用して、人工知能を利用した放送システムとしてもよい。放送局5680から各家庭のTV5600に放送データを送信するとき、エンコーダによって放送データの圧縮が行われ、アンテナ5650が当該放送データを受信したとき、TV5600に含まれる受信装置のデコーダによって当該放送データの復元が行われる。人工知能を利用することによって、例えば、エンコーダの圧縮方法の一である動き補償予測において、表示画像に含まれる表示パターンの認識を行うことができる。また、人工知能を利用したフレーム内予測などを行うこともできる。また、例えば、解像度の低い放送データを受信して、解像度の高いTV5600で当該放送データの表示を行うとき、デコーダによる放送データの復元において、アップコンバートなどの画像の補間処理を行うことができる。
【0410】
上述した人工知能を利用した放送システムは、放送データの量が増大する超高精細度テレビジョン(UHDTV:4K、8K)放送に対して好適である。
【0411】
また、TV5600側における人工知能の応用として、例えば、TV5600に人工知能を有する録画装置を設けてもよい。このような構成にすることによって、当該録画装置にユーザの好みを人工知能に学習させることで、ユーザの好みにあった番組を自動的に録画することができる。
【0412】
本実施の形態で説明した電子機器、その電子機器の機能、人工知能の応用例、その効果などは、他の電子機器の記載と適宜組み合わせることができる。
【0413】
本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、構造、方法などと適宜組み合わせて用いることができる。
【符号の説明】
【0414】
60 セル
61 セル
100 容量素子
100a 容量素子
100b 容量素子
200 トランジスタ
200a トランジスタ
200b トランジスタ
204 導電体
204_1 導電体
204_2 導電体
204a 導電体
204b 導電体
205 導電体
205a 導電体
205b 導電体
210 絶縁体
211 絶縁体
212 絶縁体
214 絶縁体
216 絶縁体
218 導電体
222 絶縁体
224 絶縁体
230 酸化物
230a 酸化物
230A 酸化膜
230b 酸化物
230B 酸化膜
230c 酸化物
230C 酸化膜
238 開口
240 導電体
241 絶縁体
242 導電体
242a 導電体
242A 導電体層
242b 導電体
242c 導電体
243 酸化物
243a 酸化物
243A 酸化膜
243b 酸化物
243B 酸化物層
246 導電体
250 絶縁体
250A 絶縁膜
260 導電体
260a 導電体
260Aa 導電膜
260Ab 導電膜
260b 導電体
272 絶縁体
273 絶縁体
274 絶縁体
280 絶縁体
282 絶縁体
283 絶縁体
284 絶縁体
287 絶縁体
300 トランジスタ
311 基板
313 半導体領域
314a 低抵抗領域
314b 低抵抗領域
315 絶縁体
316 導電体
320 絶縁体
322 絶縁体
324 絶縁体
326 絶縁体
328 導電体
330 導電体
350 絶縁体
352 絶縁体
354 絶縁体
356 導電体
430 導電体
600 セルアレイ
600_n セルアレイ
600_1 セルアレイ
700 電子部品
702 プリント基板
704 実装基板
711 モールド
712 ランド
713 電極パッド
714 ワイヤ
730 電子部品
731 インターポーザ
732 パッケージ基板
733 電極
735 半導体装置
901 境界領域
902 境界領域
1000 記憶装置
1001 配線
1002 配線
1003 配線
1004 配線
1005 配線
1006 配線
1007 配線
1100 USBメモリ
1101 筐体
1102 キャップ
1103 USBコネクタ
1104 基板
1105 メモリチップ
1106 コントローラチップ
1110 SDカード
1111 筐体
1112 コネクタ
1113 基板
1114 メモリチップ
1115 コントローラチップ
1150 SSD
1151 筐体
1152 コネクタ
1153 基板
1154 メモリチップ
1155 メモリチップ
1156 コントローラチップ
1200 記憶層
1400 記憶装置
1411 周辺回路
1420 行回路
1430 列回路
1440 出力回路
1460 コントロールロジック回路
1470 メモリセルアレイ
1471 メモリセル
1472 メモリセル
1473 メモリセル
1500 駆動回路層
5200 携帯ゲーム機
5201 筐体
5202 表示部
5203 ボタン
5300 デスクトップ型情報端末
5301 本体
5302 ディスプレイ
5303 キーボード
5500 情報端末
5510 筐体
5511 表示部
5600 TV
5650 アンテナ
5670 電波塔
5675A 電波
5675B 電波
5680 放送局
5700 自動車
5701 表示パネル
5702 表示パネル
5703 表示パネル
5704 表示パネル
5800 電気冷凍冷蔵庫
5801 筐体
5802 冷蔵室用扉
5803 冷凍室用扉
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23
図24
図25
図26