(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-10-04
(45)【発行日】2024-10-15
(54)【発明の名称】測定システム及び測定方法
(51)【国際特許分類】
G01L 1/25 20060101AFI20241007BHJP
G01N 23/205 20180101ALI20241007BHJP
G01N 23/20008 20180101ALI20241007BHJP
【FI】
G01L1/25
G01N23/205
G01N23/20008
(21)【出願番号】P 2021127010
(22)【出願日】2021-08-02
【審査請求日】2023-09-01
(31)【優先権主張番号】P 2020152007
(32)【優先日】2020-09-10
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000001199
【氏名又は名称】株式会社神戸製鋼所
(74)【代理人】
【識別番号】100159499
【氏名又は名称】池田 義典
(74)【代理人】
【識別番号】100120329
【氏名又は名称】天野 一規
(74)【代理人】
【識別番号】100159581
【氏名又は名称】藤本 勝誠
(74)【代理人】
【識別番号】100106264
【氏名又は名称】石田 耕治
(72)【発明者】
【氏名】足立 瞳
(72)【発明者】
【氏名】松田 真理子
(72)【発明者】
【氏名】矢倉 亮太
(72)【発明者】
【氏名】兜森 達彦
【審査官】大森 努
(56)【参考文献】
【文献】特表2008-522142(JP,A)
【文献】特開2005-227138(JP,A)
【文献】特開2019-124481(JP,A)
【文献】中国特許出願公開第108731865(CN,A)
【文献】特開2001-336992(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01L 1/00-1/26,5/00-5/28
G01N 23/00-23/2276
(57)【特許請求の範囲】
【請求項1】
軸部とこの軸部から径方向に突出するフランジ部とを有し、上記軸部と上記フランジ部との接続部分にフィレット部を有する金属構造物の上記フィレット部にX線を照射して得られる回折X線の強度分布を測定可能な測定システムであって、
X線を上記フィレット部に照射する照射部を有する回折X線測定装置と、
上記フィレット部に対して上記回折X線測定装置を位置決めする位置決め装置と
を備え、
上記位置決め装置が、
上記回折X線測定装置を上記フィレット部に対して三次元で相対移動させる移動機構と、
上記フィレット部に対する上記X線の入射角度が変化する方向に上記回折X線測定装置を回転させる回転機構と
を有し、
上記回折X線測定装置と上記軸部及び上記フランジ部とが接触しないように上記移動機構による移動及び上記回転機構による回転を制御する制御部をさらに備え、
上記制御部が、上記回折X線測定装置によって回折X線のピークを検出可能な範囲内で上記移動機構による移動及び上記回転機構による回転を制御し、
フィレット中心を通り、上記軸部の中心軸と平行な軸をX軸、上記フィレット中心を通り、上記フランジ部の突出方向と平行な軸をZ軸とし、上記フィレット中心の座標を(0、0)、上記回折X線測定装置の回転中心の座標を(X、Z)、上記回折X線測定装置によるX線の照射距離をL[mm]、上記X線の照射距離の最小値をL
min[mm]、上記X線の照射距離の最大値をL
max[mm]、フィレット角度をθ[°]、フィレット半径をR[mm]、X線の入射角度をΨ[°]、X線の照射方向における上記回折X線測定装置の筐体の上記フィレット部側の端部と上記回転中心との距離をh[mm]、上記筐体の上記フィレット部に隣接する側の端部の上下幅をW[mm]、ブラッグ角の余角をη[°]、上記回折X線測定装置の二次元検出器の検出領域の上下幅をD[mm]、上記フィレット中心を通り上記フランジ部に平行な仮想直線と上記フランジ部との間隔をa[mm]とした場合、上記制御部が、
上記フィレット半径R及び上記間隔aを制御定数とし、上記回折X線測定装置の回転中心の座標(X、Z)、上記照射距離L、上記フィレット角度θ及び上記入射角度Ψを制御変数として、上記制御変数を下記式1から4の関係に基づいて決定する測定システム。
【数1】
【数2】
但し、X線の入射角度Ψは、測定部位及びフィレット中心を通る仮想直線に対し上記軸部側に傾斜した場合をプラス、上記フランジ部側に傾斜した場合をマイナスとし、Ψ≧0の場合、X線の照射距離Lは下記式3を満たし、Ψ<0の場合、X線の照射距離Lは下記式4を満たす。
【数3】
【数4】
【請求項2】
上記制御部が、Ψ≧0の場合、下記式5に基づいて
上記制御変数を決定し、Ψ<0の場合、下記式6に基づいて
上記制御変数を決定する請求項1に記載の測定システム。
【数5】
【数6】
【請求項3】
上記移動機構が、
上記軸部の外周面に篏合し、上記軸部に対して周方向に相対回転可能な環状の内周面を有する第1移動体と、
上記第1移動体に接続され、上記内周面の軸と垂直な方向に延びる垂直軸と、
上記垂直軸に接続され、上記垂直軸の軸方向に移動可能な第2移動体と、
上記第1移動体又は上記垂直軸を上記内周面の軸方向に移動させるスライド機構と
を有し、
上記回折X線測定装置が上記第2移動体に接続されている請求項1又は請求項2に記載の測定システム。
【請求項4】
上記回折X線測定装置が、cosα法によって上記フィレット部の残留応力を算出可能に設けられている請求項1から請求項3のいずれか1項に記載の測定システム。
【請求項5】
上記回折X線測定装置が、X線回折強度曲線の半価幅を算出可能に設けられている請求項1から請求項4のいずれか1項に記載の測定システム。
【請求項6】
軸部とこの軸部から径方向に突出するフランジ部とを有し、上記軸部と上記フランジ部との接続部分にフィレット部を有する金属構造物の上記フィレット部にX線を照射して得られる回折X線の強度分布を測定可能な測定方法であって、
X線を上記フィレット部に照射する照射部を有する回折X線測定装置を用い、
上記回折X線測定装置を上記フィレット部に対して三次元で相対移動させる工程と、
上記フィレット部に対する上記X線の入射角度が変化する方向に上記回折X線測定装置を回転させる工程と、
上記回折X線測定装置と上記軸部及び上記フランジ部とが接触しないように上記移動工程による移動及び上記回転工程による回転を制御する工程と、
上記回折X線測定装置によって上記回折X線の強度分布を測定する工程と
を備え、
上記制御工程で、上記回折X線測定装置によって回折X線のピークを検出可能な範囲内で上記移動工程による移動及び上記回転工程による回転を制御し、
フィレット中心を通り、上記軸部の中心軸と平行な軸をX軸、上記フィレット中心を通り、上記フランジ部の突出方向と平行な軸をZ軸とし、上記フィレット中心の座標を(0、0)、上記回折X線測定装置の回転中心の座標を(X、Z)、上記回折X線測定装置によるX線の照射距離をL[mm]、上記X線の照射距離の最小値をL
min[mm]、上記X線の照射距離の最大値をL
max[mm]、フィレット角度をθ[°]、フィレット半径をR[mm]、X線の入射角度をΨ[°]、X線の照射方向における上記回折X線測定装置の筐体の上記フィレット部側の端部と上記回転中心との距離をh[mm]、上記筐体の上記フィレット部に隣接する側の端部の上下幅をW[mm]、ブラッグ角の余角をη[°]、上記回折X線測定装置の二次元検出器の検出領域の上下幅をD[mm]、上記フィレット中心を通り上記フランジ部に平行な仮想直線と上記フランジ部との間隔をa[mm]とした場合、上記制御工程で、
上記フィレット半径R及び上記間隔aを制御定数とし、上記回折X線測定装置の回転中心の座標(X、Z)、上記照射距離L、上記フィレット角度θ及び上記入射角度Ψを制御変数として、上記制御変数を下記式1から4の関係に基づいて決定する測定方法。
【数1】
【数2】
但し、X線の入射角度Ψは、測定部位及びフィレット中心を通る仮想直線に対し上記軸部側に傾斜した場合をプラス、上記フランジ部側に傾斜した場合をマイナスとし、Ψ≧0の場合、X線の照射距離Lは下記式3を満たし、Ψ<0の場合、X線の照射距離Lは下記式4を満たす。
【数3】
【数4】
【請求項7】
上記測定工程で、cosα法によって上記フィレット部の残留応力を算出する請求項6に記載の測定方法。
【請求項8】
上記測定工程で、X線回折強度曲線の半価幅を算出する請求項6又は請求項7に記載の測定方法。
【請求項9】
上記移動工程と上記回転工程との少なくとも一方と並行してX線を上記フィレット部に連続して照射させ、
上記測定工程で、上記X線の回折によって生じる複数の回折環が重ね合わさることにより得られる単一の回折環を求める請求項7又は請求項8に記載の測定方法。
【請求項10】
上記測定工程後に、上記移動工程及び上記回転工程の少なくともいずれかと上記測定工程とを繰り返し行う工程を備える請求項7又は請求項8に記載の測定方法。
【請求項11】
上記測定工程によって得られた複数の算出値の平均値を求める工程をさらに備える請求項10に記載の測定方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、測定システム及び測定方法に関する。
【背景技術】
【0002】
近年、X線を用いて残留応力を測定する技術が普及している。この技術は、X線を用いることにより結晶構造を有する被検査体の内部に生じている格子ひずみを測定し、測定結果を残留応力に換算するものである。
【0003】
X線を用いた残留応力測定方法としては、cosα法が知られている。cosα法は、被検査体に対して特定の入射角度でX線を照射し、このX線が被検査体で反射することによって生じる回折X線の強度を二次元で検出し、検出された回折X線の強度分布により形成される回折環に基づいて残留応力を測定するものである。
【0004】
また、今日では、回折X線の強度分布に基づくX線回折強度曲線の半価幅を算出することで、被検査体の硬度等を求めることも行われている。
【0005】
円柱状の軸部とこの軸部から径方向に突出するフランジ部(板状部)とを備え、軸部とフランジ部との接続部分に応力集中を緩和するためのフィレット部が設けられた金属構造物における上記フィレット部の残留応力を測定するX線応力測定装置として、X線を出射するX線出射器、回折X線による回折環が形成されるイメージングプレート等が単一の筐体に配置されたX線応力測定装置が使用できる(特開2012-225796号公報参照)。
【先行技術文献】
【特許文献】
【0006】
【発明の概要】
【発明が解決しようとする課題】
【0007】
cosα法による残留応力の測定においては、測定精度を高められるよう、通常入射角度は15°以上65°以下に設定される。しかし、円柱状の軸部とこの軸部から径方向に突出するフランジ部(板状部)とを備え、軸部とフランジ部との接続部分に応力集中を緩和するためのフィレット部が設けられた金属構造物に対しては、例えばフィレット部の複数の位置にX線を照射するような場合において、フランジ部又は軸部とX線応力測定装置とが干渉するおそれが高くなり、X線応力測定装置を所望の位置に配置し難い場合がある。
【0008】
本発明は、このような事情に基づいてなされたもので、回折X線の強度分布を所望の配置で容易に測定することが可能な測定システム及び測定方法を提供することを目的とする。
【課題を解決するための手段】
【0009】
本発明の一態様に係る測定システムは、軸部とこの軸部から径方向に突出するフランジ部とを有し、上記軸部と上記フランジ部との接続部分にフィレット部を有する金属構造物の上記フィレット部にX線を照射して得られる回折X線の強度分布を測定可能な測定システムであって、X線を上記フィレット部に照射する照射部を有する回折X線測定装置と、上記フィレット部に対して上記回折X線測定装置を位置決めする位置決め装置とを備え、上記位置決め装置が、上記回折X線測定装置を上記フィレット部に対して三次元で相対移動させる移動機構と、上記フィレット部に対する上記X線の入射角度が変化する方向に上記回折X線測定装置を回転させる回転機構とを有する。
【0010】
当該測定システムは、上記フィレット部に対して上記回折X線測定装置を位置決めする位置決め装置を備えており、上記位置決め装置が、上記回折X線測定装置を上記フィレット部に対して三次元で相対移動させる移動機構と、上記フィレット部に対する上記X線の入射角度が変化する方向に上記回折X線測定装置を回転させる回転機構とを有しているので、上記フィレット部にX線を照射して得られる回折X線の強度分布を所望の配置で容易に測定することができる。
【0011】
当該測定システムは、上記回折X線測定装置と上記軸部及び上記フランジ部とが接触しないように上記移動機構による移動及び上記回転機構による回転を制御する制御部をさらに備えるとよい。当該測定システムは、上記回折X線測定装置と上記軸部及び上記フランジ部とが接触しないように上記移動機構による移動及び上記回転機構による回転を制御する制御部をさらに備えることによって、上記回折X線の強度分布を所望の配置でより容易に測定することができる。
【0012】
上記制御部が、上記回折X線測定装置によって回折X線のピークを検出可能な範囲内で上記移動機構による移動及び上記回転機構による回転を制御するとよい。このように、上記制御部が、上記回折X線測定装置によって回折X線のピークを検出可能な範囲内で上記移動機構による移動及び上記回転機構による回転を制御することによって、上記回折X線の強度分布を容易かつ確実に測定することができる。
【0013】
フィレット中心を通り、上記軸部の中心軸と平行な軸をX軸、上記フィレット中心を通り、上記フランジ部の突出方向と平行な軸をZ軸とし、上記フィレット中心の座標を(0、0)、上記回折X線測定装置の回転中心の座標を(X、Z)、上記回折X線測定装置によるX線の照射距離をL[mm]、上記X線の照射距離の最小値をL
min[mm]、上記X線の照射距離の最大値をL
max[mm]、フィレット角度をθ[°]、フィレット半径をR[mm]、X線の入射角度をΨ[°]、X線の照射方向における上記回折X線測定装置の筐体の上記フィレット部側の端部と上記回転中心との距離をh[mm]、上記筐体の上記フィレット部に隣接する側の端部の上下幅をW[mm]、ブラッグ角の余角をη[°]、上記回折X線測定装置の二次元検出器の検出領域の上下幅をD[mm]、上記フィレット中心を通り上記フランジ部に平行な仮想直線と上記フランジ部との間隔をa[mm]とした場合、下記式1及び下記式2を満たすとよい。
【数1】
【数2】
但し、X線の入射角度Ψは、測定部位及びフィレット中心を通る仮想直線に対し上記軸部側に傾斜した場合をプラス、上記フランジ部側に傾斜した場合をマイナスとし、Ψ≧0の場合、X線の照射距離Lは下記式3を満たし、Ψ<0の場合、X線の照射距離Lは下記式4を満たす。
【数3】
【数4】
【0014】
当該測定システムは、上記式1及び上記式2を満たす範囲内で上記回折X線測定装置を位置決めすることで、上記軸部及び上記フランジ部と上記回折X線測定装置との接触を容易に抑制することができる。
【0015】
上記制御部が、Ψ≧0の場合、下記式5に基づいて上記移動機構による移動及び上記回転機構による回転を制御し、Ψ<0の場合、下記式6に基づいて上記移動機構による移動及び上記回転機構による回転を制御するとよい。
【数5】
【数6】
【0016】
このように、上記制御部が、上記式5及び上記式6に基づいて上記移動機構による移動及び上記回転機構による回転を制御することで、上記軸部及び上記フランジ部と上記回折X線測定装置との接触を抑制しつつ、上記回折X線の強度分布を容易かつ確実に測定することができる。
【0017】
上記移動機構が、上記軸部の外周面に篏合し、上記軸部に対して周方向に相対回転する第1移動体と、上記第1移動体に接続され、上記軸部の中心軸と直交する方向に延びる垂直軸と、上記垂直軸に接続され、上記垂直軸の軸方向に移動可能な第2移動体と、上記第1移動体又は上記垂直軸を上記軸部の軸方向に移動させるスライド機構とを有し、上記回折X線測定装置が上記第2移動体に接続されているとよい。このように、上記移動機構が、上記軸部の外周面に篏合し、上記軸部に対して周方向に相対回転する第1移動体と、上記第1移動体に接続され、上記軸部の中心軸と直交する方向に延びる垂直軸と、上記垂直軸に接続され、上記垂直軸の軸方向に移動可能な第2移動体と、上記第1移動体又は上記垂直軸を上記軸部の軸方向に移動させるスライド機構とを有し、上記回折X線測定装置が上記第2移動体に接続されていることによって、上記回折X線の強度分布を所望の配置でより容易に測定することができる。
【0018】
上記回折X線測定装置が、cosα法によって上記フィレット部の残留応力を算出可能に設けられているとよい。当該測定システムは、上記回折X線の強度分布を所望の配置で容易に測定できるので、上記フィレット部の残留応力を算出するのに適している。
【0019】
上記回折X線測定装置が、X線回折強度曲線の半価幅を算出可能に設けられているとよい。当該測定システムは、上記回折X線の強度分布を所望の配置で容易に測定できるので、上記X線回折強度曲線の半価幅を算出するのに適している。
【0020】
本発明の他の一態様に係る測定方法は、軸部とこの軸部から径方向に突出するフランジ部とを有し、上記軸部と上記フランジ部との接続部分にフィレット部を有する金属構造物の上記フィレット部にX線を照射して得られる回折X線の強度分布を測定可能な測定方法であって、X線を上記フィレット部に照射する照射部を有する回折X線測定装置を用い、上記回折X線測定装置を上記フィレット部に対して三次元で相対移動させる工程と、上記フィレット部に対する上記X線の入射角度が変化する方向に上記回折X線測定装置を回転させる工程と、上記回折X線測定装置によって上記回折X線の強度分布を測定する工程とを備える。
【0021】
当該測定方法は、上記回折X線測定装置を上記フィレット部に対して三次元で相対移動させる工程と、上記フィレット部に対する上記X線の入射角度が変化する方向に上記回折X線測定装置を回転させる工程とを備えているので、上記フィレット部にX線を照射して得られる回折X線の強度分布を所望の配置で容易に測定することができる。
【0022】
上記測定工程で、cosα法によって上記フィレット部の残留応力を算出するとよい。当該測定方法は、上記回折X線の強度分布を所望の配置で容易に測定できるので、上記フィレット部の残留応力を算出するのに適している。
【0023】
上記測定工程で、X線回折強度曲線の半価幅を算出するとよい。当該測定方法は、上記回折X線の強度分布を所望の配置で容易に測定できるので、上記X線回折強度曲線の半価幅を算出するのに適している。
【0024】
上記移動工程と上記回転工程との少なくとも一方と並行してX線を上記フィレット部に連続して照射させ、上記測定工程で、上記X線の回折によって生じる複数の回折環が重ね合わさることにより得られる単一の回折環を求めるとよい。このように、上記移動工程と上記回転工程との少なくとも一方と並行してX線を上記フィレット部に連続して照射させ、上記測定工程で、上記X線の回折によって生じる複数の回折環が重ね合わさることにより得られる単一の回折環を求めることによって、上記残留応力又は上記半価幅を容易かつ高精度に算出することができる。
【0025】
当該測定方法は、上記測定工程後に、上記移動工程及び上記回転工程の少なくともいずれかと上記測定工程とを繰り返し行う工程を備えるとよい。このように、上記測定工程後に、上記移動工程及び上記回転工程の少なくともいずれかと上記測定工程とを繰り返し行う工程を備えることによって、上記残留応力又は上記半価幅をより正確に測定することができる。
【0026】
当該測定方法は、上記測定工程によって得られた複数の算出値の平均値を求める工程をさらに備えるとよい。このように、上記測定工程によって得られた複数の算出値の平均値を求める工程をさらに備えることによって、上記残留応力又は上記半価幅を容易かつ高精度に測定することができる。
【0027】
なお、本発明において、「フィレット中心」とは、フィレット部の曲率中心を意味する。「フィレット角度」とは、フィレット中心を通り軸部と直交する仮想直線と、測定部位及びフィレット中心を通る仮想直線との側面視におけるなす角度(
図2のθ参照)を意味する。「フィレット半径」とは、フィレット部の曲率半径を意味する。「上下幅」とは、軸部に隣接する側の面と、この面に対向し、フランジ部に隣接する側の面との幅を意味する。「フィレット中心を通りフランジ部に平行な仮想直線とフランジ部との間隔」とは、上記仮想直線と上記フランジ部(但しフィレット部を除く)との任意の5点における間隔の平均値を意味する。
【発明の効果】
【0028】
以上説明したように、本発明の一態様に係る測定システム及び本発明の他の一態様に係る測定方法は、回折X線の強度分布を所望の配置で容易に測定することができる。
【図面の簡単な説明】
【0029】
【
図1】
図1は、本発明の一実施形態に係る測定システムの使用時の状態を示す模式的斜視図である。
【
図2】
図2は、
図1の測定システムの回折X線測定装置でフィレット部の残留応力を測定している状態を示す模式的側面図である。
【
図3】
図3は、
図1の測定システムの移動機構の主要部分を示す模式的A-A線断面図である。
【
図4】
図4は、X線の入射角度Ψと残留応力の測定誤差との関係を示すグラフである。
【
図5】
図5は、X線の照射面積と残留応力の測定誤差との関係を示すグラフである。
【
図6】
図6は、
図1の測定システムとは異なる形態に係る測定システムの使用時の状態を示す模式的側面図である。
【
図7】
図7は、
図1の測定システムを用いた残留応力の測定結果を示すグラフである。
【
図8】
図8は、実施例及び比較例における測定点数と測定時間との関係を示すグラフである。
【
図9】
図9は、
図7の測定において導出された配置で得られたX線回折強度曲線により算出した半価幅を示すグラフである。
【発明を実施するための形態】
【0030】
以下、図面を参照しつつ、本発明の実施の形態を詳説する。
【0031】
[測定システム]
図1及び
図2に示すように、当該測定システム1は、軸部2と、軸部2から径方向に突出するフランジ部3とを有し、軸部2とフランジ部3との接続部分にフィレット部4を有する金属構造物Mのフィレット部4にX線を照射して得られる回折X線の強度分布を測定する。フランジ部3は軸部2の中心軸に対して垂直な方向に突出している。
図2に示すように、当該測定システム1は、X線をフィレット部4に照射する照射部11を有する回折X線測定装置10を備える。回折X線測定装置10としては、例えばX線応力測定装置が挙げられる。また、
図1及び
図3に示すように、当該測定システム1は、フィレット部4に対して回折X線測定装置10を位置決めする位置決め装置20を備える。さらに、
図1及び
図3に示すように、当該測定システム1は、回折X線測定装置10と軸部2及びフランジ部3とが接触しないように位置決め装置20による回折X線測定装置10の動作を制御する制御部30を備える。
【0032】
(回折X線測定装置)
図2に示すように、回折X線測定装置10は、X線を照射する照射部11と、照射部11からフィレット部4(より詳しくは、フィレット部4における測定部位S)に照射されたX線のブラッグ回折により生じる回折環を検出する二次元検出器12と、照射部11及び二次元検出器12が装着される筐体13とを有する。回折X線測定装置10は、cosα法によってフィレット部4の残留応力を算出可能に構成されている。具体的には、回折X線測定装置10は、測定部位SにX線を照射し、このX線が反射されることによって生じる回折X線の強度を二次元検出器12で検出し、検出された回折X線の強度分布により形成される回折環に基づいて残留応力を算出可能に構成されている。また、回折X線測定装置10は、回折X線の強度分布に基づくX線回折強度曲線の半価幅を算出可能に構成されている。「X線回折強度曲線の半価幅」とは、X線回折強度曲線のピークの半分の強度値におけるプロファイルの幅を意味している。上記半価幅は、焼入れ、焼き戻しや塑性変形などによって引き起こされる不均一な歪みを反映して変化するといわれており、例えばフィレット部4の硬度、塑性歪み等と相関していると考えられる。上記半価幅は、例えば上記回折環を構成する任意のX線回折強度曲線において算出される値であってもよく、上記回折環を構成する複数のX線回折強度曲線において算出される値の平均値等であってもよい。
【0033】
二次元検出器12は、筐体13からX線が出射される側の端部に設けられている。すなわち、二次元検出器12は、測定部位Sと対向する側の端部に設けられている。二次元検出器12としては、例えばイメージングプレートが挙げられる。筐体13は、例えば略直方体状である。筐体13は、軸部2に隣接する下面13aと、下面13aに対向し、フランジ部3に隣接する上面13bとを有する。照射部11及び二次元検出器12は、筐体13に配置されることで、一体的に設けられている。筐体13には、上記回折環を用い、cosα法によって残留応力を算出可能な算出機14が接続されている。また、この算出機14は、回折X線の強度分布に基づくX線回折強度曲線の半価幅を算出可能に構成されている。
【0034】
(位置決め装置)
図3に示すように、位置決め装置20は、回折X線測定装置10をフィレット部4に対して三次元で相対移動させる移動機構21と、フィレット部4に対するX線の入射角度Ψ(
図2参照)が変化する方向に回折X線測定装置10を回転させる回転機構22とを有する。移動機構21は、軸部2又はフランジ部3に接続されており、本実施形態では軸部2に接続されている。
【0035】
〔移動機構〕
移動機構21は、軸部2の外周面に篏合し、軸部2に対して周方向に相対回転する第1移動体23と、第1移動体23に接続され、軸部2の中心軸と直交する方向に延びる垂直軸24と、垂直軸24に接続され、垂直軸24の軸方向に移動可能な第2移動体25と、垂直軸24を軸部2の軸方向に移動させるスライド機構26とを有する。回折X線測定装置10は、第2移動体25に接続されている。
【0036】
図3に示すように、第1移動体23は、軸部2の外周面に篏合するフレーム23aと、回転軸23bが軸部2の中心軸と平行に配置され、軸部2の外周面に当接する複数のローラ23cと、複数のローラ23cを回転駆動するモータ23dとを有する。第1移動体23は、モータ23dによって複数のローラ23cを回転駆動することで、回折X線測定装置10を軸部2に対して周方向に相対回転させる。第1移動体23は、軸部2を周方向に回転させることで回折X線測定装置10を軸部2に対して周方向に相対回転させてもよい。また、当該測定システム1は、第1移動体23が軸部2の周方向に回転することで回折X線測定装置10を軸部2に対して周方向に相対回転させてもよい。
【0037】
垂直軸24は、第1移動体23に直接接続されていてもよく、他の部材を介して第1移動体23に接続されていてもよい。本実施形態では、垂直軸24は、スライド機構26を介して第1移動体23に接続されている。
【0038】
第2移動体25は、垂直軸24に篏合し、モータ(不図示)によって垂直軸24の軸方向に移動可能に構成される。第2移動体25は、例えば垂直軸24に外篏される枠状である。
【0039】
スライド機構26は、垂直軸24を軸部2の軸方向にスライド可能に支持する支持部26aと、垂直軸24を軸部2の軸方向に駆動するモータ(不図示)とを有する。
【0040】
当該測定システム1は、移動機構21が、第1移動体23、垂直軸24、第2移動体25及びスライド機構26を有し、回折X線測定装置10が第2移動体25に接続されているので、移動機構21が回折X線測定装置10を所望の位置に配置する妨げとなり難い。すなわち、回折X線測定装置10によってフィレット部4の残留応力等を測定する場合、回折X線測定装置10又は位置決め装置20と、軸部2又はフランジ部3とが干渉することで所望の配置でフィレット部4にX線を照射し難い場合がある。この点において、当該測定システム1は、移動機構21が上述の構成を有することで、回折X線測定装置10又は位置決め装置20と、軸部2又はフランジ部3とが干渉するのを抑制しつつ、所望の配置でフィレット部4の残留応力等を容易かつ確実に測定することができる。
【0041】
〔回転機構〕
回転機構22は、第2移動体25と回折X線測定装置10とを接続する接続体22aと、接続体22aを軸部2の中心軸と垂直な軸の回りに回転駆動するモータ(不図示)とを有する。回折X線測定装置10は、直接的には接続体22aに接続されており、接続体22aを介して第2移動体25に接続されている。
【0042】
(制御部)
制御部30は、例えばデータ処理を行うCPU(Central Processing Unit)や各種情報を一時的或いは恒久的に記憶する半導体メモリ等の記憶部を有するコンピュータを含んで構成される。制御部30は、回折X線測定装置10と軸部2及びフランジ部3とが接触しないように移動機構21による移動及び回転機構22による回転を制御する。当該測定システム1は、制御部30を備えることで、フィレット部4の残留応力等を所望の配置で容易に測定することができる。
【0043】
制御部30は、回折X線測定装置10(より詳しくは二次元検出器12)によって回折X線のピークを検出可能な範囲内で移動機構21による移動及び回転機構22による回転を制御する。この構成によると、フィレット部4の残留応力等を容易かつ確実に測定することができる。
【0044】
図2を参照して、制御部30による制御手順について説明する。制御部30は、フィレット中心Pの座標を(0、0)とし、フィレット中心Pを通り、軸部2の中心軸と平行な軸をX軸、フィレット中心Pを通り、フランジ部3の突出方向と平行な軸をZ軸とする二次元直交座標系を用いて筐体13の配置を制御する。
【0045】
制御部30は、回折X線測定装置10の回転中心Qの座標を(X、Z)、回折X線測定装置10によるX線の照射距離をL[mm]、X線の照射距離Lの最小値をLmin[mm]、X線の照射距離Lの最大値をLmax[mm]、フィレット角度をθ[°]、フィレット半径をR[mm]、X線の入射角度(測定部位S及びフィレット中心Pを通る仮想直線NとX線のなす角度)をΨ[°]、X線の照射方向における筐体13のフィレット部4側の端部と回転中心Qとの距離をh[mm]、筐体13のフィレット部4に隣接する側の端部の上下幅(下面13aと上面13bとの幅)をW[mm]、ブラッグ角の余角をη[°]、二次元検出器12の上下幅をD[mm]、フィレット中心Pを通りフランジ部3に平行な仮想直線とフランジ部3との間隔をa[mm]とした場合、下記式1及び下記式2を満たすように回折X線測定装置10の配置を制御する。
【0046】
【0047】
【0048】
但し、X線の入射角度Ψは、測定部位S及びフィレット中心Pを通る仮想直線Nに対し軸部2側に傾斜した場合をプラス、フランジ部3側に傾斜した場合をマイナスとし、Ψ≧0の場合、X線の照射距離Lは下記式3を満たし、Ψ<0の場合、X線の照射距離Lは下記式4を満たす。
【0049】
【0050】
【0051】
当該測定システム1は、上記式1及び上記式2を満たす範囲内で回折X線測定装置10を位置決めすることで、軸部2及びフランジ部3と回折X線測定装置10との接触を容易に抑制することができる。
【0052】
制御部30は、Ψ≧0の場合、下記式5に基づいて移動機構21による移動及び回転機構22による回転を制御することが好ましい。
【0053】
【0054】
また、制御部30は、Ψ<0の場合、下記式6に基づいて移動機構21による移動及び回転機構22による回転を制御することが好ましい。
【0055】
【0056】
当該測定システム1は、上記式5及び上記式6に基づいて移動機構21による移動及び回転機構22による回転を制御することで、軸部2及びフランジ部3と回折X線測定装置10との接触を抑制しつつ、フィレット部4の残留応力等を容易かつ確実に測定することができる。
【0057】
X線の入射角度Ψと残留応力の測定誤差との関係を
図4に示す。
図4に示すように、X線の入射角度Ψの絶対値が小さくなるほどX線の入射角度の設定誤差の影響は大きくなる。特に、X線の入射角度Ψの絶対値が10°未満になると、X線の入射角度の設定誤差の影響は顕著となる。そのため、制御部30は、X線の入射角度Ψの絶対値が10°以上、好ましくは20°以上になるように筐体13の配置を制御することが好ましい。
【0058】
当該測定システム1は、移動機構21及び回転機構22を制御部30によって制御することで、X線の入射角度Ψの絶対値が大きくなるように筐体13を容易に配置することができる。すなわち、仮に手作業で筐体13を配置する場合、軸部2及びフランジ部3に接触しない範囲でX線の入射角度Ψの絶対値が大きくなるような配置を見つけることは容易ではない。これに対し、当該測定システム1は、制御部30が移動機構21及び回転機構22を制御することで、筐体13の所望の配置を自動的に見つけ、かつこの配置になるように筐体13を移動及び回転させることができる。
【0059】
制御部30は、フィレット部4のフィレット角度θに対して、回折X線測定装置10と軸部2及びフランジ部3とが接触しないX線の照射距離L及びX線の入射角度Ψを導出することが好ましい。具体的には、制御部30は、特定のフィレット角度θに対して、ユーザが所望するX線の照射距離L及びX線の入射角度Ψの入力を受け付ける。制御部30は、X線の照射距離L及びX線の入射角度Ψが入力されると、上記式5又は上記式6に基づいて、ユーザによって入力されたX線の照射距離L及びX線の入射角度Ψで筐体13を配置することが可能か否かを判定する。制御部30は、ユーザによって入力されたX線の照射距離L及びX線の入射角度Ψで筐体13を配置することが可能である場合、入力値に対応する配置に筐体13を移動及び回転させるか、又は筐体13の配置が可能であることをユーザに伝える。この構成によると、フィレット部4の残留応力等を所望の配置でより容易に測定することができる。
【0060】
制御部30は、筐体13を配置可能なX線の照射距離L及びX線の入射角度Ψを複数のフィレット角度θに対して導出することが好ましい。当該測定システム1は、制御部30によって移動機構21及び回転機構22を制御することで、所望の配置かつ短時間で複数回に亘ってフィレット部4の残留応力を算出することができる。
【0061】
なお、回折X線測定装置10は、X線回折強度曲線の半価幅を算出する際には、X線の入射角度Ψの絶対値が大きくなるように配置されなくてもよい。例えばX線回折強度曲線の半価幅を算出する場合であれば、X線の入射角度Ψは0°であってもよい。但し、当該測定システム1は、回折X線測定装置10をフィレット部4の残留応力を算出するのに適した配置とすることで、フィレット部4の残留応力とX線回折強度曲線の半価幅との両方を容易に算出しやすい。
【0062】
制御部30は、回折X線測定装置10を、軸部2の周方向に回転させ、又は軸部2の中心軸を含む特定の面内で移動させるよう移動機構21による移動及び回転機構22による回転を制御することが好ましい。
【0063】
回折X線測定装置10は、位置決め装置20による位置決めと並行してX線を連続的に照射してもよく、位置決め装置20によって特定の配置に位置決めされた後にX線を照射してもよい。回折X線測定装置10が位置決め装置20による位置決めと並行してX線を連続的に照射する具体例としては、例えば回折X線測定装置10を軸部2の周方向に相対的に回転させながらX線を照射する構成が挙げられる。この構成によると、フィレット部4の残留応力等を容易かつ高精度に測定することができる。
【0064】
回折X線測定装置10で複数回に亘ってフィレット部4の残留応力を算出した場合、回折X線測定装置10は、算出機14によって複数の算出値(残留応力の算出値)の平均値を求めることが好ましい。また、回折X線測定装置10で複数回に亘ってX線回折強度曲線の半価幅を算出した場合、回折X線測定装置10は、算出機14によって複数の算出値(半価幅の算出値)の平均値を求めることが好ましい。当該測定システム1は、算出機14によって複数の算出値の平均値を求めることで、上記残留応力や上記半価幅の測定誤差を低減することができる。
【0065】
X線の照射面積と残留応力の測定誤差との関係を
図5に示す。
図5では、X線を通過させるコリメート径が1mmであり、1点の照射面積は約6.5mm
2である。
図5に示すように、照射面積の合計値を大きくすることで残留応力の測定誤差を低減することができる。特に、照射面積の合計値を25mm
2以上とすることで、残留応力の測定誤差を十分に低減することができる。X線の照射面積の合計値を大きくする方法としては、例えば筐体13の配置を任意に変更して複数回に亘ってX線を照射する方法や、軸部2の周方向に筐体13を揺動しながらX線を照射する方法、複数の入射角度ΨでX線を照射する方法等が挙げられる。なお、
図5では、ベイナイト組織の偏析部、ベイナイト組織の偏析がない部分、及びマルテンサイト組織について、それぞれ照射面積の合計値が大きくなるように複数回に亘ってX線を照射している。
【0066】
[測定方法]
次に、本発明の一実施形態に係る測定方法について説明する。当該測定方法では、軸部2と軸部2から径方向に突出するフランジ部3とを有し、軸部2とフランジ部3との接続部分にフィレット部4を有する金属構造物Mのフィレット部4にX線を照射して得られる回折X線の強度分布を測定する。当該測定方法は、
図1の測定システム1を用いて行うことができる。そのため、以下では、当該測定システム1を用いた測定方法について説明する。
【0067】
当該測定方法は、回折X線測定装置10をフィレット部4に対して三次元で相対移動させる工程(移動工程)と、フィレット部4に対するX線の入射角度Ψが変化する方向に回折X線測定装置10を回転させる工程(回転工程)と、回折X線測定装置10によって上記回折X線の強度分布を測定する工程(測定工程)とを備える。当該測定方法は、上記測定工程後に、上記移動工程及び上記回転工程の少なくともいずれかと上記測定工程とを繰り返し行う工程(繰り返し工程)を備えていてもよい。さらに、当該測定方法は、上記測定工程によって得られた複数の算出値(複数の残留応力の算出値、又は複数の半価幅の算出値)の平均値を求める工程(平均値算出工程)を備えていてもよい。
【0068】
(移動工程)
上記移動工程では、制御部30によって移動機構21を制御することで、筐体13を所望の位置に移動させる。
【0069】
(回転工程)
上記回転工程では、制御部30によって回転機構22を制御することで、筐体13を所望の角度に回転させる。なお、上記移動工程及び上記回転工程は、いずれを先に行ってもよく、両方を同時に行ってもよい。
【0070】
(測定工程)
上記測定工程では、cosα法によってフィレット部4の残留応力を算出する。具体的には、上記測定工程では、回折X線測定装置10からフィレット部4(より詳しくは測定部位S)に対して照射されたX線のブラッグ回折により生じる回折環に基づいて残留応力を算出する。また、上記測定工程では、回折X線の強度分布に基づくX線回折強度曲線の半価幅を算出する。
【0071】
上記測定工程では、例えば上記移動工程及び上記回転工程後の配置でフィレット部4に対してX線を照射し、照射されたX線のブラッグ回折により生じる回折環を二次元検出器12で検出し、算出機14によってcosα法を用いて残留応力を算出してもよい。また、上記測定工程では、上記移動工程及び上記回転工程後の配置でフィレット部4に対してX線を照射し、X線回折強度曲線の半価幅を算出してもよい。
【0072】
また、当該測定方法では、上記移動工程と上記回転工程との少なくも一方と並行してX線をフィレット部4に連続して照射させ、上記測定工程で、上記X線の回折によって生じる複数の回折環が重ね合わさることにより得られる単一の回折環を求めてもよい。この場合、上記測定工程では、得られた単一の回折環に基づいて残留応力を算出してもよい。より詳しくは、上記移動工程及び上記回転工程の少なくとも一方と並行してフィレット部4の連続的につながる部分に対して回折X線測定装置10からX線を常時照射させ、各X線がフィレット部4で回折することにより形成される複数の回折環を重ね合わせることによって得られる単一の回折環を二次元検出器12で検出し、上記測定工程で、この単一の回折環に基づいて残留応力を算出してもよい。上記移動工程と上記回転工程との少なくも一方と並行してX線をフィレット部4に連続して照射させる構成としては、例えば回折X線測定装置10を軸部2の周方向に相対的に回転させながらフィレット部4にX線を連続的に照射する方法が挙げられる。当該測定方法は、上記測定工程で、上記単一の回折環に基づいて残留応力を算出することによって、フィレット部4の残留応力を容易かつ高精度に測定することができる。また、当該測定方法は、上記単一の回折環に基づいて(すなわち、上記移動工程と上記回転工程との少なくも一方と並行してX線をフィレット部4に連続して照射させることで得られるX線回折強度曲線に基づいて)半価幅を算出してもよい。なお、当該測定方法は、上記測定工程で、上記単一の回折環に基づいて残留応力等を算出する場合、後述の繰り返し工程及び平均値算出工程を備えていなくてもよい。
【0073】
(繰り返し工程)
上記繰り返し工程では、上記測定工程後に、上記移動工程及び上記回転工程の少なくとも一方を行い、フィレット部4に対する筐体13の配置を変更する。上記繰り返し工程では、この変更後の配置で回折X線測定装置10からX線を照射してフィレット部4の残留応力を算出する。通常フィレット部4の残留応力には一定の分布があるため、上記繰り返し工程を行うことで、残留応力の分布を把握しやすい。また、上記繰り返し工程では、上記変更後の配置で回折X線測定装置10からX線を照射してX線回折強度曲線の半価幅を算出する。X線回折強度曲線の半価幅は、X線の照射位置によって変化し得るため、上記繰り返し工程を行うことで、上記半価幅をより正確に把握しやすい。
【0074】
上記繰り返し工程による繰り返し回数は任意であり、1回であってもよい。但し、
図5に示されるように、残留応力の測定誤差を十分に低減する観点からは、上記繰り返し工程は、X線の照射面積の合計値が25mm
2以上となるまで繰り返し行うことが好ましい。上記繰り返し工程では、1つの測定部位Sに対してX線の入射角度Ψを変化させつつ複数の入射角度Ψで残留応力を算出してもよい。例えば上記繰り返し工程では、X線の入射角度Ψを10°毎変化させながら複数の入射角度Ψで残留応力を算出してもよい。
【0075】
(平均値算出工程)
上記平均値算出工程では、上記繰り返し工程を含めて複数回実施した上記測定工程による算出値の平均値を求める。当該測定方法では、この平均値(残留応力の平均値)をフィレット部4の残留応力として算出する。また、当該測定方法では、この平均値(半価幅の平均値)をX線回折強度曲線の半価幅として算出する。当該測定方法は、上記平均値算出工程を備えることで、測定誤差の低減された残留応力及び半価幅を容易に測定することができる。
【0076】
<利点>
当該測定システム1は、フィレット部4に対して回折X線測定装置10を位置決めする位置決め装置20を備えており、位置決め装置20が、回折X線測定装置10をフィレット部4に対して三次元で相対移動させる移動機構21と、フィレット部4に対するX線の入射角度Ψが変化する方向に回折X線測定装置10を回転させる回転機構22とを有しているので、フィレット部4にX線を照射して得られる回折X線の強度分布を所望の配置で容易に測定することができる。
【0077】
当該測定システム1は、上記回折X線の強度分布を所望の配置で容易に測定できるので、フィレット部4の残留応力を算出するのに適している。すなわち、通常フィレット部4は、X線の入射角度Ψが変化する方向や軸部2の周方向等に残留応力の分布を有する。当該測定システム1は、回折X線測定装置10の位置決めを高精度かつ短時間で行うことが可能であるので、フィレット部4の複数の位置における残留応力を容易に測定することができる。その結果、フィレット部4の残留応力の分布を容易に把握することができる。
【0078】
また、当該測定システム1は、上記回折X線の強度分布を所望の配置で容易に測定できるので、上記X線回折強度曲線の半価幅を算出するのに適している。
【0079】
当該測定方法は、回折X線測定装置10をフィレット部4に対して三次元で相対移動させる工程と、フィレット部4に対するX線の入射角度Ψが変化する方向に回折X線測定装置10を回転させる工程とを備えているので、フィレット部4にX線を照射して得られる回折X線の強度分布を所望の配置で容易に測定することができる。
【0080】
当該測定方法は、上記回折X線の強度分布を所望の配置で容易に測定できるので、フィレット部4の残留応力を算出するのに適している。また、当該測定方法は、上記回折X線の強度分布を所望の配置で容易に測定できるので、上記X線回折強度曲線の半価幅を算出するのに適している。
【0081】
[その他の実施形態]
上記実施形態は、本発明の構成を限定するものではない。従って、上記実施形態は、本明細書の記載及び技術常識に基づいて上記実施形態各部の構成要素の省略、置換又は追加が可能であり、それらは全て本発明の範囲に属するものと解釈されるべきである。
【0082】
上記位置決め装置の構成は上記実施形態に記載の構成に限定されるものではない。例えば上記位置決め装置は、移動機構がフランジ部に接続されるものであってもよい。
図6を参照して、移動機構がフランジ部に接続される構成の一例について説明する。
図6の位置決め装置40は、移動機構41がフランジ部3の上面に接続されている。移動機構41は、フランジ部3の上面に配置される支持台41aと、支持台41aから上方に突出し、周方向に回転可能な第1支持棒41bと、第1支持棒41bに接続され、第1支持棒41bと直交する方向に延びる第2支持棒41cと、第2支持棒41cに接続され、第2支持棒41cの軸法方向に移動可能な移動体41dと、移動体41dに接続され、第1支持棒41bと平行に配置されて上下方向に移動可能な第3支持棒41eとを有する。回折X線測定装置10は、回転機構42を介して第3支持棒41eの下部に接続されている。当該測定システムは、
図6の構成によっても所望の配置でフィレット部4の残留応力等を測定することができる。
【0083】
上記実施形態では、上記スライド機構が上記垂直軸を軸部の軸方向に移動させる構成について説明した。但し、当該測定システムは、上記スライド機構が上記第1移動体を軸部の軸方向に移動させるように構成されていてもよい。
【0084】
当該測定システムは、上述の制御部を備えない構成とすることも可能である。例えば当該測定システムは、上記移動機構及び上記回転機構をユーザが操作することで回折X線測定装置を所望の位置に配置するように構成されていてもよい。また、当該測定システムは、上記制御部を備える場合でも、この制御部による具体的な制御手順は上記実施形態に記載された構成に限定されるものではない。例えば上記制御部は、特定のフィレット角度に対して、X線の入射角度Ψが±35°に近づくように回折X線測定装置を配置するように上記移動機構及び上記回転機構を制御してもよい。
【0085】
当該測定システム及び当該測定方法は、上記フィレット部の残留応力及びX線回折強度曲線の半価幅のいずれか一方のみを算出可能に構成されていてもよい。また、当該測定システム及び当該測定方法は、上記フィレット部の残留応力及びX線回折強度曲線の半価幅以外の値を算出するように構成されていてもよい。
【0086】
上述のように、当該測定方法は、測定誤差を低減する観点から、複数の配置でフィレット部の残留応力等を算出することが好ましい。但し、当該測定方法は、X線の入射角度Ψの絶対値を十分に大きくできる場合等であれば、所望の1点のみの値によってフィレット部の残留応力等を求めてもよい。この場合、当該測定方法は、上述の繰り返し工程及び平均値算出工程を備えていなくてもよい。
【実施例】
【0087】
以下、実施例に基づき本発明を詳述するが、この実施例の記載に基づいて本発明が限定的に解釈されるものではない。
【0088】
図1の測定システム1によって、軸部2及びこの軸部2から径方向に突出するフランジ部3を有する金属構造物Mのフィレット部4の残留応力をcosα法を用いて測定した。回折X線測定装置10としては、二次元検出器12の検出領域の上下幅Dが70mmであり、筐体13の上下幅が102mmであるX線応力測定装置を用いた。フィレット部4のフィレット半径Rは29mm、ブラッグ角の余角ηは23.6°、フィレット中心Pを通りフランジ部3に平行な仮想直線とフランジ部3との間隔aは8mmであった。
【0089】
図7に、当該測定システム1を用いた残留応力の測定結果を示す。
図7では、複数のフィレット角度θに対して、回折X線測定装置10と軸部2及びフランジ部3とが接触しないX線の照射距離L及びX線の入射角度Ψを制御部30によって導出し、この導出された配置でフィレット部4の残留応力を測定している。
図7に示すように、当該測定システム1を用いることで、複数のフィレット角度θに対して自動で残留応力を測定することができる。
【0090】
図8に、当該測定システム1を用いた場合(実施例)と、当該測定システム1を用いずに筐体を手動で配置した場合(比較例)とにおける測定点数と測定時間との関係を示す。
図8に示すように、測定点数が大きくなる程、当該測定システム1を用いた方が測定時間を大幅に短縮できている。
【0091】
また、
図9に、
図7の測定において導出された配置で得られたX線回折強度曲線により算出した半価幅を示す。
図9において、エラーバーは、回折環を構成するX線回折強度曲線における半価幅の最大値と最小値との幅を示しており、各点は半価幅の平均値を示している。
図9に示すように、当該測定システム1によると、X線回折強度曲線の半価幅を算出することができることが分かる。
【産業上の利用可能性】
【0092】
以上説明したように、本発明の一態様に係る測定システムは、フィレット部の残留応力等を測定するのに適している。
【符号の説明】
【0093】
1 測定システム
2 軸部
3 フランジ部
4 フィレット部
10 回折X線測定装置
11 照射部
12 二次元検出器
13 筐体
13a 下面
13b 上面
14 算出機
20、40 位置決め装置
21、41 移動機構
22、42 回転機構
22a 接続体
23 第1移動体
23a フレーム
23b 回転軸
23c ローラ
23d モータ
24 垂直軸
25 第2移動体
26 スライド機構
26a 支持部
30 制御部
41a 支持台
41b 第1支持棒
41c 第2支持棒
41d 移動体
41e 第3支持棒
a フィレット中心を通りフランジ部に平行な仮想直線とフランジ部との間隔
D 二次元検出器の検出領域の上下幅
h X線の照射方向における筐体のフィレット部側の端部と回転中心との距離
L X線の照射距離
M 金属構造物
N 測定部位及びフィレット中心を通る仮想直線
P フィレット中心
Q 回折X線測定装置の回転中心
R フィレット半径
S 測定部位
W 筐体のフィレット部に隣接する側の端部の上下幅
θ フィレット角度
Ψ X線の入射角度
η ブラッグ角の余角