(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-10-04
(45)【発行日】2024-10-15
(54)【発明の名称】電子機器、電子機器の制御方法、及びプログラム
(51)【国際特許分類】
A61B 5/16 20060101AFI20241007BHJP
A61B 3/113 20060101ALI20241007BHJP
【FI】
A61B5/16 100
A61B3/113
(21)【出願番号】P 2021176978
(22)【出願日】2021-10-28
【審査請求日】2024-01-17
(73)【特許権者】
【識別番号】000006633
【氏名又は名称】京セラ株式会社
(74)【代理人】
【識別番号】100147485
【氏名又は名称】杉村 憲司
(74)【代理人】
【識別番号】230118913
【氏名又は名称】杉村 光嗣
(74)【代理人】
【識別番号】100132045
【氏名又は名称】坪内 伸
(72)【発明者】
【氏名】西井 裕亮
(72)【発明者】
【氏名】宮崎 淳吾
【審査官】喜々津 徳胤
(56)【参考文献】
【文献】特開2019-139277(JP,A)
【文献】米国特許出願公開第2019/0135300(US,A1)
【文献】国際公開第2021/145131(WO,A1)
【文献】堀 憲太郎,"自己注意機構付きオートエンコーダによるRR間隔データを用いた居眠り運転手法の開発",一般社団法人 人工知能学会 第36回(2022) [online],2022年08月01日,[2024年8月30日検索], インターネット<URL:https://www.jstage.jst.go.jp/article/pjsai/JSAI2022/0/JSAI2022_3I3OS5a03/_pdf/-char/ja>
(58)【調査した分野】(Int.Cl.,DB名)
A61B 5/00 - 5/398
(57)【特許請求の範囲】
【請求項1】
対象者の画像から抽出される前記対象者の視線データを含む第1生体情報、前記対象者の視覚的特性に基づいて設定されるパラメータ、及び前記対象者の内部状態を示す情報に基づいて、未知の値を推定するエンコーダと、
前記未知の値、前記対象者の視覚的特性に基づいて設定されるパラメータ、及び前記対象者の内部状態を示す情報に基づいて、前記対象者の視線データを含む第2生体情報を推定するデコーダと、
を備え、
前記第2生体情報による前記第1生体情報の再現度に基づいて、前記エンコーダ及び前記デコーダのパラメータ並びに前記対象者の視覚的特性に基づいて設定されるパラメータを調整する、電子機器。
【請求項2】
対象者の画像から抽出される前記対象者の視線データを含む第1生体情報、前記対象者の視覚的特性に基づいて設定されるパラメータ、及び前記対象者の内部状態を示す情報として仮定される値に基づいて、未知の値を推定するエンコーダと、
前記未知の値、前記対象者の視覚的特性に基づいて設定されるパラメータ、及び前記対象者の内部状態を示す情報として仮定される値に基づいて、前記対象者の視線データを含む第2生体情報を推定するデコーダと、
前記対象者の内部状態を示す情報として複数の値を仮定して、当該複数の値のうち前記第2生体情報による前記第1生体情報の再現度が最も高くなる値を、前記対象者の内部状態を示す情報と推定する推定部と、を備える電子機器。
【請求項3】
前記複数の値のうち前記第2生体情報による前記第1生体情報の再現度が最も高くなる値が所定の条件を満たす場合、所定の警報を出力する、請求項2に記載の電子機器。
【請求項4】
前記対象者の内部状態を示す情報は、前記対象者の集中度を示す情報を含む、請求項1から3のいずれかに記載の電子機器。
【請求項5】
前記対象者の内部状態を示す情報は、前記対象者が乗り物を運転している最中の集中度を示す情報を含む、請求項4に記載の電子機器。
【請求項6】
前記エンコーダ及び前記デコーダのパラメータの調整は、
前記再現度に加えて、前記エンコーダが推定した前記未知の値の従う確率分布が所定の確率分布からどのくらい逸脱しているかを表す分布逸脱度に基づいて行われる、請求項1に記載の電子機器。
【請求項7】
前記推定部は、
前記エンコーダが推定した前記未知の値又は当該未知の値の従う確率分布が所定の確率分布からどのくらい逸脱しているかを表す分布逸脱度に基づいて推定を行う、請求項2に記載の電子機器。
【請求項8】
前記対象者の内部状態を示す情報は、前記対象者の感情又は気分を示す情報を含む、請求項1から7のいずれかに記載の電子機器。
【請求項9】
前記所定の警報として、前記対象者の感情又は気分に応じた警報を出力する、請求項3を引用する請求項8に記載の電子機器。
【請求項10】
前記パラメータは、前記対象者の画像及び前記視線データの少なくとも一方から抽出される当該対象者の視覚的特性に基づいて設定される、請求項1から9のいずれかに記載の電子機器。
【請求項11】
前記パラメータは、前記対象者のマイクロサッカードの速さ及び当該対象者の視野の広さの少なくとも一方に基づいて設定される、請求項1から10のいずれかに記載の電子機器。
【請求項12】
前記パラメータは少なくとも1つの値を含む、請求項1から11のいずれかに記載の電子機器。
【請求項13】
前記パラメータは2以上の値を含む、請求項12に記載の電子機器。
【請求項14】
前記対象者の視覚的特性に基づいて設定されるパラメータを、当該対象者に関連付けて記憶する記憶部を備える、請求項1から13のいずれかに記載の電子機器。
【請求項15】
対象者の画像から抽出される前記対象者の視線データを含む第1生体情報、前記対象者の視覚的特性に基づいて設定されるパラメータ、及び前記対象者の内部状態を示す情報に基づいて、未知の値を推定するエンコーダと、
前記未知の値、前記対象者の視覚的特性に基づいて設定されるパラメータ、及び前記対象者の内部状態を示す情報に基づいて、前記対象者の視線データを含む第2生体情報を推定するデコーダと、
を備え、
前記対象者の視覚的特性に基づいて設定されるパラメータを記憶部に新たに記憶する際、前記第2生体情報による前記第1生体情報の再現度に基づいて、前記対象者の視覚的特性に基づいて設定されるパラメータを調整する、電子機器。
【請求項16】
対象者の画像から抽出される前記対象者の視線データを含む第1生体情報、前記対象者の視覚的特性に基づいて設定されるパラメータ、及び前記対象者の内部状態を示す情報に基づいて、未知の値をエンコーダによって推定するステップと、
前記未知の値、前記対象者の視覚的特性に基づいて設定されるパラメータ、及び前記対象者の内部状態を示す情報に基づいて、前記対象者の視線データを含む第2生体情報をデコーダによって推定するステップと、
前記第2生体情報による前記第1生体情報の再現度に基づいて、前記エンコーダ及び前記デコーダのパラメータ並びに前記対象者の視覚的特性に基づいて設定されるパラメータを調整するステップと、
を含む、電子機器の制御方法。
【請求項17】
前記エンコーダ及び前記デコーダのパラメータ並びに前記対象者の視覚的特性に基づいて設定されるパラメータを調整するステップは、
前記エンコーダによって推定された前記未知の値の従う確率分布が所定の確率分布からどのくらい逸脱しているかを表す分布逸脱度に基づいて行われる、請求項16に記載の電子機器の制御方法。
【請求項18】
対象者の画像から抽出される前記対象者の視線データを含む第1生体情報、前記対象者の視覚的特性に基づいて設定されるパラメータ、及び前記対象者の内部状態を示す情報として仮定される値に基づいて、未知の値をエンコーダによって推定するステップと、
前記未知の値、前記対象者の視覚的特性に基づいて設定されるパラメータ、及び前記対象者の内部状態を示す情報として仮定される値に基づいて、前記対象者の視線データを含む第2生体情報をデコーダによって推定するステップと、
前記対象者の内部状態を示す情報として複数の値を仮定して、当該複数の値のうち前記第2生体情報による前記第1生体情報の再現度が最も高くなる値を、前記対象者の内部状態を示す情報と推定するステップと、
を含む、電子機器の制御方法。
【請求項19】
前記対象者の内部状態を示す情報を推定するステップは、
前記エンコーダによって推定された前記未知の値又は当該未知の値の従う確率分布が所定の確率分布からどのくらい逸脱しているかを表す分布逸脱度に基づいて行われる、請求項18に記載の電子機器の制御方法。
【請求項20】
対象者の視覚的特性に基づいて設定されるパラメータが未知である対象者に対して、前記対象者の画像から抽出される前記対象者の視線データを含む第1生体情報、前記対象者の視覚的特性に基づいて設定されるパラメータ、及び前記対象者の内部状態を示す情報に基づいて、未知の値をエンコーダによって推定するステップと、
前記未知の値、前記対象者の視覚的特性に基づいて設定されるパラメータ、及び前記対象者の内部状態を示す情報に基づいて、前記対象者の視線データを含む第2生体情報をデコーダによって推定するステップと、
前記第2生体情報による前記第1生体情報の再現度に基づいて、前記対象者の視覚的特性に基づいて設定されるパラメータを調整するステップと、
を含む、電子機器の制御方法。
【請求項21】
電子機器に、
対象者の画像から抽出される前記対象者の視線データを含む第1生体情報、前記対象者の視覚的特性に基づいて設定されるパラメータ、及び前記対象者の内部状態を示す情報に基づいて、未知の値をエンコーダによって推定するステップと、
前記未知の値、前記対象者の視覚的特性に基づいて設定されるパラメータ、及び前記対象者の内部状態を示す情報に基づいて、前記対象者の視線データを含む第2生体情報をデコーダによって推定するステップと、
前記第2生体情報による前記第1生体情報の再現度に基づいて、前記エンコーダ及び前記デコーダのパラメータ並びに前記対象者の視覚的特性に基づいて設定されるパラメータを調整するステップと、
を実行させる、プログラム。
【請求項22】
前記エンコーダ及び前記デコーダのパラメータ並びに前記対象者の視覚的特性に基づいて設定されるパラメータを調整するステップは、
前記エンコーダによって推定された前記未知の値の従う確率分布が所定の確率分布からどのくらい逸脱しているかを表す分布逸脱度に基づいて行われる、請求項21に記載したプログラム。
【請求項23】
電子機器に、
対象者の画像から抽出される前記対象者の視線データを含む第1生体情報、前記対象者の視覚的特性に基づいて設定されるパラメータ、及び前記対象者の内部状態を示す情報として仮定される値に基づいて、未知の値をエンコーダによって推定するステップと、
前記未知の値、前記対象者の視覚的特性に基づいて設定されるパラメータ、及び前記対象者の内部状態を示す情報として仮定される値に基づいて、前記対象者の視線データを含む第2生体情報をデコーダによって推定するステップと、
前記対象者の内部状態を示す情報として複数の値を仮定して、当該複数の値のうち前記第2生体情報による前記第1生体情報の再現度が最も高くなる値を、前記対象者の内部状態を示す情報と推定するステップと、
を実行させる、プログラム。
【請求項24】
前記対象者の内部状態を示す情報を推定するステップは、
前記エンコーダによって推定された前記未知の値又は当該未知の値の従う確率分布が所定の確率分布からどのくらい逸脱しているかを表す分布逸脱度に基づいて行われる、請求項23に記載のプログラム。
【請求項25】
電子機器に、
対象者の視覚的特性に基づいて設定されるパラメータが未知である対象者に対して、前記対象者の画像から抽出される前記対象者の視線データを含む第1生体情報、前記対象者の視覚的特性に基づいて設定されるパラメータ、及び前記対象者の内部状態を示す情報に基づいて、未知の値をエンコーダによって推定するステップと、
前記未知の値、前記対象者の視覚的特性に基づいて設定されるパラメータ、及び前記対象者の内部状態を示す情報に基づいて、前記対象者の視線データを含む第2生体情報をデコーダによって推定するステップと、
前記第2生体情報による前記第1生体情報の再現度に基づいて、前記対象者の視覚的特性に基づいて設定されるパラメータを調整するステップと、
を実行させる、プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電子機器、電子機器の制御方法、及びプログラムに関する。
【背景技術】
【0002】
移動体の安全な運転には、運転者の注意力が求められる。それゆえ、運転者の注意力を観察して、注意力が低下する場合、運転者への警告を発したり、運転の支援を行ったりすることが検討されている。注意力の観察として、自車の周辺の対向車などの対象物に対する視線の重なり度合いの累積値である累積視認度を算出し、基準値と比較することが提案されている(特許文献1参照)。
【0003】
また、近年、対象者の集中度又は感情などの内部状態の推定を試みる研究が行われている。例えば、講義中に、教師の発話、学習者の生体情報、及び学習者の動画を記録し、講義後に学習者が各シーンにおける自身の感情を内観報告することにより、学習者の心的状態を推定する試みが報告されている(非特許文献1参照)。さらに、例えば、X線写真を診る読影士の視線データ及び診断結果のデータを収集して、深層学習によって胸部X線写真を診断する試みも報告されている(非特許文献2参照)。
【先行技術文献】
【特許文献】
【0004】
【非特許文献】
【0005】
【文献】松居 辰則、宇野 達朗、田和辻 可昌、「心的状態の時間遅れと持続モデルを考慮した生体情報からの学習者の心的状態推定の試み」、2018年度人工知能学会全国大会(第32回)、一般社団法人 人工知能学会
【文献】井上 大輝、木村 仁星、中山 浩太郎、作花 健也、Rahman Abdul、中島 愛、Patrick Radkohl、岩井 聡、河添 悦昌、大江 和彦、「視線データを活用した深層学習による胸部X線写真の診断的分類」、2019年度人工知能学会全国大会(第33回)、一般社団法人 人工知能学会
【発明の概要】
【発明が解決しようとする課題】
【0006】
特許文献1においては、累積視認度を算出するために、毎時における視認度を、テーブルを用いて算出している。しかしながら、実環境の多様な運転状況に対して適切なテーブルは異なっており、多様な運転状況において、運転者の注意力を正確に観察することは困難であった。
【0007】
非特許文献1においては、対象者の生体情報と内部状態(感情など)との因果関係は、単純な識別モデルによっては合理的なモデル化が困難になることが懸念される。すなわち、本来、感情など心的状態が原因となって生体反応が生起されるのが合理的な情報処理の流れと考えられる。しかしながら、単純な識別モデルの学習では、逆に、生体情報から心的状態を推論する流れになっている。このため、モデルの構造が真実とは異なり、モデルの学習がうまく進まないことが想定される。また、対象者の生体情報に基づいて内部状態を推定するモデルのふるまいを使用者に説明することが必要な場面もある。このような観点からも、対象者の生体情報に基づいて内部状態を推定するモデルの因果関係について、合理性の更なる検証が望まれる。非特許文献2においても、非特許文献1と同様に、対象者の生体情報(視線データなど)と内部状態(疾患判断など)との因果関係も同様に、単純な識別モデルによっては合理的なモデル化が困難になることが懸念される。また、非特許文献2においても、対象者の生体情報に基づいて内部状態を推定するモデルの因果関係については、合理性の更なる検証が望まれる。以上のように、対象者の生体情報から対象者の集中度又は感情などの内部状態を良好な精度で推定するためには、データ生成の因果関係に関する合理的なモデル化が望ましい。
【0008】
本開示の目的は、対象者の集中度のような内部状態をデータ生成過程に基づいて合理的に推定する電子機器、電子機器の制御方法、及びプログラムを提供することにある。
【課題を解決するための手段】
【0009】
一実施形態に係る電子機器は、
対象者の画像から抽出される前記対象者の視線データを含む第1生体情報、前記対象者の視覚的特性に基づいて設定されるパラメータ、及び前記対象者の内部状態を示す情報に基づいて、未知の値を推定するエンコーダと、
前記未知の値、前記対象者の視覚的特性に基づいて設定されるパラメータ、及び前記対象者の内部状態を示す情報に基づいて、前記対象者の視線データを含む第2生体情報を推定するデコーダと、
を備える。
前記電子機器は、前記第2生体情報による前記第1生体情報の再現度に基づいて、前記エンコーダ及び前記デコーダのパラメータ並びに前記対象者の視覚的特性に基づいて設定されるパラメータを調整する。
【0010】
また、一実施形態に係る電子機器は、
対象者の画像から抽出される前記対象者の視線データを含む第1生体情報、前記対象者の視覚的特性に基づいて設定されるパラメータ、及び前記対象者の内部状態を示す情報として仮定される値に基づいて、未知の値を推定するエンコーダと、
前記未知の値、前記対象者の視覚的特性に基づいて設定されるパラメータ、及び前記対象者の内部状態を示す情報として仮定される値に基づいて、前記対象者の視線データを含む第2生体情報を推定するデコーダと、
前記対象者の内部状態を示す情報として複数の値を仮定して、当該複数の値のうち前記第2生体情報による前記第1生体情報の再現度が最も高くなる値を、前記対象者の内部状態を示す情報と推定する推定部と、
を備える。
【0011】
また、一実施形態に係る電子機器は、
対象者の画像から抽出される前記対象者の視線データを含む第1生体情報、前記対象者の視覚的特性に基づいて設定されるパラメータ、及び前記対象者の内部状態を示す情報に基づいて、未知の値を推定するエンコーダと、
前記未知の値、前記対象者の視覚的特性に基づいて設定されるパラメータ、及び前記対象者の内部状態を示す情報に基づいて、前記対象者の視線データを含む第2生体情報を推定するデコーダと、
を備える。
前記電子機器は、前記対象者の視覚的特性に基づいて設定されるパラメータを記憶部に新たに記憶する際、前記第2生体情報による前記第1生体情報の再現度に基づいて、前記対象者の視覚的特性に基づいて設定されるパラメータを調整する。
【0012】
一実施形態に係る電子機器の制御方法は、
対象者の画像から抽出される前記対象者の視線データを含む第1生体情報、前記対象者の視覚的特性に基づいて設定されるパラメータ、及び前記対象者の内部状態を示す情報に基づいて、未知の値をエンコーダによって推定するステップと、
前記未知の値、前記対象者の視覚的特性に基づいて設定されるパラメータ、及び前記対象者の内部状態を示す情報に基づいて、前記対象者の視線データを含む第2生体情報をデコーダによって推定するステップと、
前記第2生体情報による前記第1生体情報の再現度に基づいて、前記エンコーダ及び前記デコーダのパラメータ並びに前記対象者の視覚的特性に基づいて設定されるパラメータを調整するステップと、
を含む。
【0013】
また、一実施形態に係る電子機器の制御方法は、
対象者の画像から抽出される前記対象者の視線データを含む第1生体情報、前記対象者の視覚的特性に基づいて設定されるパラメータ、及び前記対象者の内部状態を示す情報として仮定される値に基づいて、未知の値をエンコーダによって推定するステップと、
前記未知の値、前記対象者の視覚的特性に基づいて設定されるパラメータ、及び前記対象者の内部状態を示す情報として仮定される値に基づいて、前記対象者の視線データを含む第2生体情報をデコーダによって推定するステップと、
前記対象者の内部状態を示す情報として複数の値を仮定して、当該複数の値のうち前記第2生体情報による前記第1生体情報の再現度が最も高くなる値を、前記対象者の内部状態を示す情報と推定するステップと、
を含む。
【0014】
また、一実施形態に係る電子機器の制御方法は、
対象者の視覚的特性に基づいて設定されるパラメータが未知である対象者に対して、前記対象者の画像から抽出される前記対象者の視線データを含む第1生体情報、前記対象者の視覚的特性に基づいて設定されるパラメータ、及び前記対象者の内部状態を示す情報に基づいて、未知の値をエンコーダによって推定するステップと、
前記未知の値、前記対象者の視覚的特性に基づいて設定されるパラメータ、及び前記対象者の内部状態を示す情報に基づいて、前記対象者の視線データを含む第2生体情報をデコーダによって推定するステップと、
前記第2生体情報による前記第1生体情報の再現度に基づいて、前記対象者の視覚的特性に基づいて設定されるパラメータを調整するステップと、
を含む。
【0015】
一実施形態に係るプログラムは、
電子機器に、
対象者の画像から抽出される前記対象者の視線データを含む第1生体情報、前記対象者の視覚的特性に基づいて設定されるパラメータ、及び前記対象者の内部状態を示す情報に基づいて、未知の値をエンコーダによって推定するステップと、
前記未知の値、前記対象者の視覚的特性に基づいて設定されるパラメータ、及び前記対象者の内部状態を示す情報に基づいて、前記対象者の視線データを含む第2生体情報をデコーダによって推定するステップと、
前記第2生体情報による前記第1生体情報の再現度に基づいて、前記エンコーダ及び前記デコーダのパラメータ並びに前記対象者の視覚的特性に基づいて設定されるパラメータを調整するステップと、
を実行させる。
【0016】
また、一実施形態に係るプログラムは、
電子機器に、
対象者の画像から抽出される前記対象者の視線データを含む第1生体情報、前記対象者の視覚的特性に基づいて設定されるパラメータ、及び前記対象者の内部状態を示す情報として仮定される値に基づいて、未知の値をエンコーダによって推定するステップと、
前記未知の値、前記対象者の視覚的特性に基づいて設定されるパラメータ、及び前記対象者の内部状態を示す情報として仮定される値に基づいて、前記対象者の視線データを含む第2生体情報をデコーダによって推定するステップと、
前記対象者の内部状態を示す情報として複数の値を仮定して、当該複数の値のうち前記第2生体情報による前記第1生体情報の再現度が最も高くなる値を、前記対象者の内部状態を示す情報と推定するステップと、
を実行させる。
【0017】
また、一実施形態に係るプログラムは、
電子機器に、
対象者の視覚的特性に基づいて設定されるパラメータが未知である対象者に対して、前記対象者の画像から抽出される前記対象者の視線データを含む第1生体情報、前記対象者の視覚的特性に基づいて設定されるパラメータ、及び前記対象者の内部状態を示す情報に基づいて、未知の値をエンコーダによって推定するステップと、
前記未知の値、前記対象者の視覚的特性に基づいて設定されるパラメータ、及び前記対象者の内部状態を示す情報に基づいて、前記対象者の視線データを含む第2生体情報をデコーダによって推定するステップと、
前記第2生体情報による前記第1生体情報の再現度に基づいて、前記対象者の視覚的特性に基づいて設定されるパラメータを調整するステップと、
を実行させる。
【発明の効果】
【0018】
一実施形態によれば、対象者の集中度のような内部状態を合理的に推定する電子機器、電子機器の制御方法、及びプログラムを提供することができる。
【図面の簡単な説明】
【0019】
【
図1】一実施形態に係る電子機器の概略構成を示すブロック図である。
【
図2】一実施形態に係る電子機器によるエンコードの例を説明する概念図である。
【
図3】一実施形態に係る電子機器によるデコードの例を説明する概念図である。
【
図4】一実施形態に係る電子機器における自己符号化器の動作を説明する概念図である。
【
図5】一実施形態に係る電子機器が学習フェーズにおいて行う動作を説明するフローチャートである。
【
図6】一実施形態に係る電子機器が推定フェーズにおいて行う動作を説明するフローチャートである。
【
図7】他の実施形態に係る電子機器が学習フェーズにおいて行う動作を説明するフローチャートである。
【発明を実施するための形態】
【0020】
以下、本開示を適用した電子機器の実施形態について、図面を参照して説明する。以下の説明は、本開示を適用した、電子機器の制御方法、及びプログラムの説明を兼ねてもよい。
【0021】
本開示において、「電子機器」とは、電力により駆動する機器としてよい。ここで、「電子機器」は、バッテリを内蔵してもよいし、外部から電力を供給されてもよい。一実施形態に係る電子機器は、対象者の例えば集中度のような内部状態を推定する。ここで、「対象者」とは、一実施形態に係る電子機器によって内部状態が推定される対象となる者(典型的には人間)としてよい。また、本開示において、「ユーザ」とは、一実施形態に係る電子機器を使用する者(典型的には人間)としてよい。「ユーザ」は、「対象者」と同じ者としてもよいし、異なる者としてもよい。また、「ユーザ」及び「対象者」は、人間としてもよいし、人間以外の動物としてもよい。
【0022】
本開示の一実施形態に係る電子機器は、例えば、移動体に設けられてよい。移動体は、例えば車両、船舶、及び航空機等を含んでよい。車両は、例えば自動車、産業車両、鉄道車両、及び生活車両、又は滑走路を走行する固定翼機等を含んでよい。自動車は、例えば乗用車、トラック、バス、二輪車、及びトロリーバス等を含んでよい。産業車両は、例えば農業及び建設向けの産業車両等を含んでよい。産業車両は、例えばフォークリフト及びゴルフカート等を含んでよい。農業向けの産業車両は、例えばトラクター、耕耘機、移植機、バインダー、コンバイン、及び芝刈り機等を含んでよい。建設向けの産業車両は、例えばブルドーザー、スクレーバー、ショベルカー、クレーン車、ダンプカー、及びロードローラ等を含んでよい。車両は、人力で走行するものを含んでよい。車両の分類は、上述した例に限られない。例えば、自動車は、道路を走行可能な産業車両を含んでよい。複数の分類に同じ車両が含まれてよい。船舶は、例えばマリンジェットなど(personal watercraft(PWC))、ボート、及びタンカー等を含んでよい。航空機は、例えば固定翼機及び回転翼機等を含んでよい。また、本開示の「ユーザ」及び「対象者」は、車両などの移動体を運転している者でもよいし、車両などの移動体を運転していない、当該車両の同乗者などとしてもよい。
【0023】
一実施形態に係る電子機器1は、各種の機器としてよい。例えば、一実施形態に係る電子機器は、専用に設計された端末の他、汎用のスマートフォン、タブレット、ファブレット、ノートパソコン(ノートPC)、コンピュータ、又はサーバなどのように、任意の機器としてよい。また、一実施形態に係る電子機器は、例えば携帯電話又はスマートフォンのように、他の電子機器と通信を行う機能を有してもよい。ここで、上述の「他の電子機器」とは、例えば携帯電話又はスマートフォンのような電子機器としてもよいし、例えば基地局、サーバ、専用端末、又はコンピュータのように、任意の機器としてもよい。また、本開示における「他の電子機器」も、電力によって駆動される機器又は装置などとしてよい。一実施形態に係る電子機器が、他の電子機器と通信を行う際には、有線及び/又は無線による通信を行うものとしてよい。
【0024】
以下、一例として、一実施形態に係る電子機器1は、例えば乗用車のような移動体に設けられるものとして説明する。この場合、一実施形態に係る電子機器1は、乗用車のような移動体に搭乗している者(運転者又は非運転者)の所定の内部状態(例えば所定の心理状態)を推定することができる。以下、一実施形態に係る電子機器1が、乗用車のような移動体を運転する運転者の内部状態として、運転者の運転時の集中度を推定する例について説明する。この場合、一実施形態に係る電子機器1は、例えば運転中に撮像された運転者の画像などに基づいて、運転者の運転時の集中度を推定することができる。
【0025】
図1は、一実施形態に係る電子機器の機能的な概略構成を示すブロック図である。
【0026】
図1に示すように、一実施形態に係る電子機器1は、制御部10、撮像部20、記憶部30、及び報知部40を含んで構成されてよい。また、制御部10は、
図1に示すように、抽出部12、推定部14、及び判定部16を含んで構成されてよい。一実施形態に係る電子機器1は、
図1に示す全ての機能部を含んでもよいし、
図1に示す機能部の少なくとも一部を含まなくてもよい。例えば、一実施形態に係る電子機器1は、
図1に示す制御部10のみを備えてもよい。この場合、一実施形態に係る電子機器1は、例えば外部機器として用意される、撮像部20、記憶部30、及び報知部40などに接続されるようにしてもよい。
【0027】
また、以下に説明するエンコーダENN及びデコーダDNNの機能は、制御部10、推定部14、及び記憶部30の少なくともいずれか1つの機能により実現される。入力した情報及び/又はデータは、例えば、抽出部12、エンコーダENN、デコーダDNN、判定部16の順に送信されるとしてよい。また、エンコーダENNから、以下に説明する未知の値Zが出力されてもよい。この場合、出力された未知の値Zは、デコーダDNNに入力されてもよい。
【0028】
制御部10は、電子機器1を構成する各機能部をはじめとして、電子機器1の全体を制御及び/又は管理する。制御部10は、種々の機能を実行するための制御及び処理能力を提供するために、例えばCPU(Central Processing Unit)又はDSP(Digital Signal Processor)のような、少なくとも1つのプロセッサを含んでよい。制御部10は、まとめて1つのプロセッサで実現してもよいし、いくつかのプロセッサで実現してもよいし、それぞれ個別のプロセッサで実現してもよい。プロセッサは、単一の集積回路として実現されてよい。集積回路は、IC(Integrated Circuit)ともいう。プロセッサは、複数の通信可能に接続された集積回路及びディスクリート回路として実現されてよい。プロセッサは、他の種々の既知の技術に基づいて実現されてよい。
【0029】
制御部10は、1以上のプロセッサ及びメモリを含んでもよい。プロセッサは、特定のプログラムを読み込ませて特定の機能を実行する汎用のプロセッサ、及び特定の処理に特化した専用のプロセッサを含んでよい。専用のプロセッサは、特定用途向けIC(ASIC;Application Specific Integrated Circuit)を含んでよい。プロセッサは、プログラマブルロジックデバイス(PLD;Programmable Logic Device)を含んでよい。PLDは、FPGA(Field-Programmable Gate Array)を含んでよい。制御部10は、1つ又は複数のプロセッサが協働するSoC(System-on-a-Chip)、及びSiP(System In a Package)のいずれかであってもよい。制御部10は、電子機器1の各構成要素の動作を制御する。
【0030】
制御部10は、例えば、ソフトウェア及びハードウェア資源の少なくとも一方を含んで構成されてよい。また、一実施形態に係る電子機器1において、制御部10は、ソフトウェアとハードウェア資源とが協働した具体的手段によって構成されてもよい。制御部10に含まれる抽出部12、推定部14、及び判定部16の少なくともいずれかは、ソフトウェア及びハードウェア資源の少なくとも一方を含んで構成されてよい。また、一実施形態に係る電子機器1において、抽出部12、推定部14、及び判定部16の少なくともいずれかは、ソフトウェアとハードウェア資源とが協働した具体的手段によって構成されてもよい。
【0031】
抽出部12は、撮像部20によって撮像された対象者の画像から、対象者の視線などを抽出する。推定部14は、例えば対象者の集中度のような内部状態などを推定する。判定部16は、推定部14によって推定された対象者の内部状態が所定の条件を満たすか否かなどを判定する。判定部16は、対象者の内部状態が所定の条件を満たす場合(例えば対象者の集中度が所定以下に低下した場合など)、所定の警報信号を報知部40に出力する。本開示において、対象者の視線をデータとして抽出した視線データは、例えば注視点の座標値(x,y)を含んでよい。また、本開示において、視線データは、例えば瞳孔径及び/又は眼球の回転情報などを視線の特徴量として抽出したものを含んでもよい。本開示において、視線データは、例えば、注視点を含まず、眼球の回転速度のみを用いるとしてもよい。眼球の回転情報は、眼球の回転角度及び/又は回転角速度を含んでもよい。また、視線データは、対象者の眼球領域の画像を含んでもよい。視線データが眼球領域の画像を含む場合、抽出部12は、画像の変形及び/又は画素値の正規化を行ってもよい。本開示において、視線データは、注視点座標、視線の特徴量、及び眼球領域の画像の少なくとも1つを含むものとしてよい。また、視線データは、注視点座標、視線の特徴量、及び眼球領域の画像の少なくとも1つの時系列を含むものとしてもよい。
【0032】
制御部10の動作、並びに、制御部10に含まれる抽出部12、推定部14、及び判定部16の動作については、さらに後述する。
【0033】
撮像部20は、例えばデジタルカメラのような、電子的に画像を撮像するイメージセンサを含んで構成されてよい。撮像部20は、CCD(Charge Coupled Device Image Sensor)又はCMOS(Complementary Metal Oxide Semiconductor)センサ等のように、光電変換を行う撮像素子を含んで構成されてよい。例えば、撮像部20は、撮像した画像に基づく信号を、制御部10などに供給してよい。このため、
図1に示すように、撮像部20は、制御部10に有線及び/又は無線で接続されてよい。撮像部20は、対象者の画像を撮像するものであれば、デジタルカメラのような撮像デバイスに限定されず、任意の撮像デバイスとしてよい。例えば、撮像部20は、近赤外線カメラを採用することで、光を反射する特徴の差異、及び/又は、光を吸収する特徴の差異などを、画像として撮像することができる。
【0034】
撮像部20は、対象者の画像を撮像する。以下、対象者の例として、乗用車のような移動体を運転する運転者を想定して説明する。すなわち、一実施形態において、撮像部20は、乗用車のような移動体を運転する運転者を撮像する。一実施形態において、撮像部20は、例えば対象者を所定時間ごと(例えば秒間30フレーム)の静止画として撮像してもよい。また、一実施形態において、撮像部20は、例えば対象者を連続した動画として撮像してもよい。撮像部20は、RGBデータ、及び/又は、赤外線データなどの各種のデータ形態で対象者の画像を撮像するものとしてよい。
【0035】
撮像部20は、運転者を撮像するために、例えば乗用車のような移動体の内部前方において、運転者に向けて設置されてよい。撮像部20によって撮像された対象者の画像は、制御部10に供給される。後述のように、制御部10において、抽出部12は、対象者の画像から、対象者の視線データを含む生体情報などを抽出する。このため、撮像部20は、運転者の眼球領域を含む画像を撮像するのに適した箇所に設置されてよい。
【0036】
記憶部30は、各種の情報を記憶するメモリとしての機能を有してよい。記憶部30は、例えば制御部10において実行されるプログラム、及び、制御部10において実行された処理の結果などを記憶してよい。また、記憶部30は、制御部10のワークメモリとして機能してよい。このため、
図1に示すように、記憶部30は、制御部10に有線及び/又は無線で接続されてよい。記憶部30は、例えば、RAM(Random Access Memory)及びROM(Read Only Memory)の少なくとも一方を含んでもよい。記憶部30は、例えば半導体メモリ等により構成することができるが、これに限定されず、任意の記憶装置とすることができる。例えば、記憶部30は、一実施形態に係る電子機器1に挿入されたメモリカードのような記憶媒体としてもよい。また、記憶部30は、制御部10として用いられるCPUの内部メモリであってもよいし、制御部10に別体として接続されるものとしてもよい。
【0037】
記憶部30は、例えば機械学習データを記憶してもよい。ここで、機械学習データは、機械学習によって生成されるデータとしてよい。機械学習データは、機械学習によって生成されるパラメータを含むものとしてよい。また、機械学習とは、特定のタスクがトレーニングによって実行可能になるAI(Artificial Intelligence)の技術に基づくものとしてよい。より具体的には、機械学習とは、コンピュータのような情報処理装置が多くのデータを学習し、分類及び/又は予測などのタスクを遂行するアルゴリズム又はモデルを自動的に構築する技術としてよい。本明細書において、AIの一部には、機械学習が含まれるとしてもよい。本明細書において、機械学習には、正解データをもとに入力データの特徴又はルールを学習する教師あり学習が含まれるものとしてよい。また、機械学習には、正解データがない状態で入力データの特徴又はルールを学習する教師なし学習が含まれるものとしてもよい。さらに、機械学習には、報酬又は罰などを与えて入力データの特徴又はルールを学習する強化学習などが含まれるものとしてもよい。また、本明細書において、機械学習は、教師あり学習、教師なし学習、及び強化学習を任意に組み合わせたものとしてもよい。
【0038】
本実施形態の機械学習データの概念は、入力データに対して学習されたアルゴリズムを用いて所定の推論(推定)結果を出力するアルゴリズムを含むものとしてもよい。本実施形態は、このアルゴリズムとして、例えば、従属変数と独立変数との関係を予測する線形回帰、人の脳神経系ニューロンを数理モデル化したニューラルネットワーク(NN)、誤差を二乗して算出する最小二乗法、問題解決を木構造にする決定木、及びデータを所定の方法で変形する正則化など、その他適宜なアルゴリズムを用いることができる。本実施形態は、ニューラルネットワークの一種であるディープニューラルネットワークを利用するとしてよい。ディープニューラルネットワークは、ニューラルネットワークの一種であり、一般にネットワークの中間層が1層以上の深い構造のものを意味する。ディープニューラルネットワークを用いた機械学習のアルゴリズムは、ディープラーニングと呼ばれている。ディープラーニングは、AIを構成するアルゴリズムとして多用されている。
【0039】
一実施形態において、記憶部30に記憶される情報は、例えば工場出荷時などまでに予め記憶された情報としてもよいし、制御部10などが適宜取得する情報としてもよい。一実施形態において、記憶部30は、制御部10又は電子機器1などに接続された通信部(通信インタフェース)から受信する情報を記憶してもよい。この場合、通信部は、例えば外部の電子機器又は基地局などと無線又は有線の少なくとも一方で通信することにより、各種の情報を受信してよい。また、一実施形態において、記憶部30は、制御部10又は電子機器1に接続された入力部(入力インタフェース)などに入力された情報を記憶してもよい。この場合、電子機器1のユーザ又はその他の者は、入力部を操作することにより、各種の情報を入力してよい。
【0040】
報知部40は、制御部10から出力される所定の信号(例えば警報信号など)に基づいて、電子機器1のユーザなどに注意を促すための所定の警報を出力してよい。このため、
図1に示すように、報知部40は、制御部10に有線及び/又は無線で接続されてよい。し報知部40は、所定の警報として、例えば音、音声、光、文字、映像、及び振動など、ユーザの聴覚、視覚、及び触覚の少なくともいずれかを刺激する任意の機能部としてよい。具体的には、報知部40は、例えばブザー又はスピーカのような音声出力部、LEDのような発光部、LCDのような表示部、及びバイブレータのような触感呈示部などの少なくともいずれかを含んで構成されてよい。このように、報知部40は、制御部10から出力される所定の信号に基づいて、所定の警報を出力してよい。一実施形態において、報知部40は、所定の警報を、人間などの生物の聴覚、視覚、及び触覚の少なくともいずれかに作用する情報として出力してもよい。
【0041】
一実施形態において、報知部40は、例えば対象者の内部状態として当該対象者の集中度が所定の閾値以下に低下したと推定されると、対象者の集中力が低下した旨の警報を出力してよい。例えば、一実施形態において、視覚情報を出力する報知部40は、例えば運転者の集中度が所定の閾値以下に低下したと推定されると、その旨を発光又は所定の表示などによって運転者及び/又は他のユーザなどに報知してよい。また、一実施形態において、聴覚情報を出力する報知部40は、例えば運転者の集中度が所定の閾値以下に低下したと推定されると、その旨を所定の音又は音声などによって運転者及び/又は他のユーザなどに報知してよい。また、一実施形態において、触覚情報を出力する報知部40は、例えば運転者の集中度が所定の閾値以下に低下したと推定されると、その旨を所定の振動などによって運転者及び/又は他のユーザなどに報知してよい。このようにして、運転者及び/又は他のユーザなどは、例えば運転者の集中度が低下している旨を知ることができる。
【0042】
次に、一実施形態に係る電子機器1による、対象者の内部情報の推定について説明する。
【0043】
一実施形態に係る電子機器1は、自己符号化器(auto encoder)を用いて、運転者の運転中の視線データなどに基づく機械学習を行うことにより、運転者の集中度などのような内部状態を推定する。自己符号化器は、ニューラルネットワークのアーキテクチャの1つである。自己符号化器は、エンコーダ(以下、符号ENNを対応させることがある)及びデコーダ(以下、符号DNNを対応させることがある)を含むニューラルネットワークである。一実施形態に係る電子機器1において、制御部10は、自己符号化器としての機能を含んでよい。すなわち、一実施形態に係る電子機器1の制御部10は、エンコーダENN及びデコーダDNNとしての機能を備える(
図1参照)。
【0044】
図2及び
図3は、一実施形態に係る電子機器1において自己符号化器として機能するニューラルネットワークを概念的に示す図である。
図2は、エンコーダを概念的に示す図である。すなわち、
図2は、一実施形態に係る電子機器1において自己符号化器として機能するニューラルネットワークのエンコーダENNを概念的に示す図である。また、
図3は、デコーダを概念的に示す図である。すなわち、
図3は、一実施形態に係る電子機器1において自己符号化器として機能するニューラルネットワークのデコーダDNNを概念的に示す図である。
【0045】
まず、一実施形態に係る電子機器1が対象者(運転者)の画像から抽出される視線データに基づいて、対象者の集中度のような内部状態を推定する原理について説明する。
【0046】
一実施形態に係る電子機器1によって対象者の内部状態を推定するに際し、
図3に示すように、対象者の画像に関連する第2生体情報X’は、内部状態を示す情報Yと、未知の値Zと、パラメータSが原因となって生じる、という生成プロセスを仮定する。ここで、対象者の画像に関連する第2生体情報X’は、対象者(例えば運転者)の眼球領域の画像から抽出される視線データを含む情報としてよい。また、内部状態を示す情報Yは、対象者の例えば集中度のような内部状態を示す情報を含むものとしてよい。また、未知の値Zは、観測できない潜在変数を含むものとしてよい。さらに、パラメータSは、対象者の視覚的特性に基づいて設定されるパラメータとしてよい。
【0047】
一実施形態に係る電子機器1による機械学習時においては、まず、
図2に示すように、ニューラルネットワークのエンコーダENNを用いて、対象者の画像に関連する第1生体情報Xと、内部状態を示す情報Yと、パラメータSとから、未知の値Zを推論する。ここで、対象者の画像に関連する第1生体情報Xは、対象者(例えば運転者)の視線などの眼球領域の画像から抽出される視線データを含む情報としてよい。この第1生体情報Xに含まれる対象者の視線データは、撮像部20によって撮像される対象者の画像から、抽出部12によって抽出されるものとしてよい。また、内部状態を示す情報Yは、上述のように、対象者の例えば集中度のような内部状態を示す情報を含むものとしてよい。また、パラメータSは、上述のように、対象者の視覚的特性に基づいて設定されるパラメータとしてよい。対象者の視覚的特性に基づいて設定されるパラメータとは、例えば撮像部20によって撮像される対象者の画像及び/又は視線データから抽出される当該対象者の視覚的特性に基づいて設定されるものとしてよい。このパラメータSについては、さらに後述する。さらに、未知の値Zは、上述のように、観測できない潜在変数を含むものとしてよい。以下、対象者の内部状態を推定するための学習を行うフェーズを、単に「学習フェーズ」と記すことがある。
【0048】
上述のように未知の値Zが推論されると、
図3に示すニューラルネットワークのデコーダDNNを用いて、推論された未知の値Zと、内部状態を示す情報Yと、パラメータSとから、対象者の画像に関連する第2生体情報X’を生成することができる。ここで、対象者の画像に関連する第2生体情報X’は、対象者の画像に関連する第1生体情報Xを再構成したものとなる。一実施形態に係る電子機器1において、この第2生体情報X’が、元の第1生体情報Xから変化した度合いを損失関数とし、誤差逆伝搬によってニューラルネットワークの重みパラメータを更新してよい。また、この損失関数に、未知の値Zの従う確率分布が所定の確率分布からどの程度逸脱したかを表す正則化項を含んでもよい。この所定の確率分布は、例えば正規分布であってもよい。この所定の確率分布と未知の値Zが従う分布との逸脱度合いを表す項として、カルバック・ライブラダイバージェンスを用いてもよい。
【0049】
図4は、一実施形態に係る電子機器1における自己符号化器による実装を概念的に示す図である。まず、一実施形態に係る電子機器1による学習フェーズについて説明する。
【0050】
図4に示すように、一実施形態に係る電子機器1において、最下段に示す第1生体情報Xが与えられ、さらに内部状態を示す情報Y及びパラメータSが与えられると、
図4の中段に示す未知の値Zが推論される。そして、一実施形態に係る電子機器1において、未知の値Zが推論され、さらに内部状態を示す情報Y及びパラメータSが与えられると、最上段に示す第2生体情報X’が得られる。
【0051】
一実施形態に係る電子機器1において、第1生体情報X及びパラメータSのみが与えられることにより、内部状態を示す情報Y及び未知の値Zが推定されるようにしてもよい。また、対象者の視覚的特性に基づいて設定されるパラメータSは、例えば撮像部20によって撮像される対象者の画像から抽出される当該対象者の視覚的特性に基づいて設定されるものとしてよい。この、パラメータSは、対象者ごとに予め記憶部30に記憶されてもよいし、通信部から受信してもよい。
【0052】
図4に示すように、一実施形態に係る電子機器1において、自己符号化器は、対象者の画像に関連する第1生体情報X、内部状態を示す情報Y、及びパラメータSから、未知の値Zを介して、対象者の画像に関連する第2生体情報X’を再現する。すなわち、一実施形態に係る電子機器1において、自己符号化器は、第1生体情報Xに含まれる対象者の視線データに基づいて、第2生体情報X’に含まれる視線データを再構成する機能を備える。本開示において、対象者の視線データは、例えば注視点の座標値(x,y)を含んでよい。また、本開示において、視線データは、例えば瞳孔径及び/又は眼球の回転情報などを視線の特徴量として抽出したものを含んでもよい。眼球の回転情報は、眼球の回転角度及び/又は回転角速度を含んでもよい。また、視線データは、対象者の眼球領域の画像を含んでもよい。視線データが眼球領域の画像を含む場合、前記眼球領域の画像は、変形及び/又は画素値の正規化などの処理を加えたものとしてよい。本開示において、視線データは、注視点座標、視線の特徴量、眼球領域の画像の少なくとも1つを含むものとしてよい。また、視線データは、注視点座標、視線の特徴量、眼球領域の画像の少なくとも1つの時系列を含むものとしてもよい。本開示において、対象者の視線データを抽出することを、単に「視線を抽出する」又は「視線を取得する」等と表記することがある。本開示において、対象者の視線データを推定することを、単に「視線を推定する」又は「視線を算出する」等と表記することもある。
【0053】
一実施形態に係る電子機器1において、内部状態を示す情報Yを推定するために、例えば集中度とする内部状態の種々の場合について、対象者の視線データ(第2生体情報X’)を再構成してよい。例えば、対象者が移動体の運転のみに完全に集中している状態を意図的に作り出し、その時の内部状態を示す情報Yに対応する対象者の視線データ(第2生体情報X’)を、一実施形態に係る電子機器1の自己符号化器によって再構成してよい。また、例えば、対象者が移動体の運転に完全には集中していない状態を意図的に作り出し、その時の内部状態を示す情報Yに対応する対象者の視線データ(第2生体情報X’)を、一実施形態に係る電子機器1の自己符号化器によって再構成してよい。ここで、対象者が移動体の運転に完全には集中していない状態とは、運転者が運転以外のタスクに注意を奪われている状態であるとしてよい。例えば、運転者が移動体の運転中に、運転以外のタスクとして所定の暗算などを同時に行う状態としてもよい。そして、所定の暗算のレベル(比較的簡単な暗算又は比較的複雑な暗算など)に応じて、対象者が移動体の運転に完全には集中していない状態の度合いを段階的に調節してもよい。例えば、運転者が移動体の運転中に非常に簡単な暗算を同時に行う状態は、対象者が移動体の運転に完全には集中していないが比較的集中している状態としてもよい。また、運転者が移動体の運転中に相当複雑な暗算を同時に行う状態は、対象者が移動体の運転に比較的集中していない状態としてもよい。
【0054】
上述のようにして、一実施形態に係る電子機器1において、内部状態を示す情報Yの種々の場合について、対象者の視線データ(第2生体情報X’)を再構成してよい。内部状態を示す情報Yは、例えば集中している状態においてY=0とし、例えば集中していない状態においてY=1などとしてよい。そして、種々の内部状態を示す情報Yに基づいて再構成される対象者の視線データ(第2生体情報X’)が、元の対象者の視線データ(第1生体情報X)を再現した度合いに応じて、内部状態を示す情報Yの妥当性を判断してよい。例えば、ある内部状態を示す情報Y1に基づいて再構成された対象者の視線データ(第2生体情報X’)が、元の対象者の視線データ(第1生体情報X)を再現する度合いが高い場合、内部状態を示す情報Y1の妥当性は高い(すなわち正解に近い)と判断してよい。一方、ある内部状態を示す情報Y2に基づいて再構成された対象者の視線の画像又は視線の特徴量(第2生体情報X’)が、元の視線データ(第1生体情報X)を再現する度合いが低い場合、内部状態を示す情報Y2の妥当性は低い(すなわち正解から遠い)と判断してよい。このようにして、一実施形態に係る電子機器1は、第2生体情報X’による第1生体情報Xの再現度に基づいて、エンコーダENN及びデコーダDNNのパラメータ、並びに対象者の視覚的特性に基づいて設定されるパラメータSを調整してよい。また、この再現度に加えて、エンコーダENNによって推定された未知の値Zの従う確率分布が所定の確率分布からどのくらい逸脱しているかを表す分布逸脱度も含めた損失関数に基づいて、前述の各パラメータ、並びにパラメータSを調整してよい。この場合、所定の確率分布は、正規分布であってもよい。また、前述の場合、分布逸脱度はカルバック・ライブラダイバージェンスであってもよい。
【0055】
図5は、一実施形態に係る電子機器1による学習フェーズを説明するフローチャートである。以下、
図5を参照して、一実施形態に係る電子機器1による学習フェーズを説明する。
【0056】
図5に示す学習フェーズの動作が開始するに際し、対象者(運転者)は移動体を運転しているものとする。ここで、対象者は、乗用車のような移動体を現実に運転していてもよいし、例えばドライブシミュレータを用いて仮想的に移動体を運転していてもよい。また、
図5に示す動作が開始するに際し、撮像部20は対象者の画像を撮像しているものとする。ここで、撮像部20は、対象者の画像から対象者の注視点座標、視線の特徴量、及び眼球領域の画像の少なくとも1つを含む視線データが抽出できるように、対象者の眼球領域を含む画像を撮像するものとしてよい。
【0057】
また、
図5に示す動作が開始するに際し、記憶部30は、対象者の視覚的特性に基づいて設定されるパラメータSを記憶しているものとする。記憶部30は、上述のような対象者の視覚的特性に基づいて設定されるパラメータSを予め記憶していてもよい。また、制御部10は、必要に応じてパラメータSを通信部などから受信して、記憶部30に記憶してもよい。
【0058】
ここで、対象者の視覚的特性に基づいて設定されるパラメータSについて、さらに説明する。このパラメータSは、対象者の画像及び/又は視線データから抽出される当該対象者の視覚的特性に基づいて、例えば制御部10によって設定されるものとしてよい。対象者の画像は、例えば撮像部20によって撮像されるものとしてよい。また、対象者の視覚的特性は、例えば抽出部12によって抽出されるものとしてよい。
【0059】
対象者の視覚的特性とは、対象者の視覚に関する種々の特性としてよい。例えば、対象者の視覚的特性とは、マイクロサッカードあるいはマイクロサッケード(microsaccade)、又は対象者の視野の広狭などとしてよい。マイクロサッカードあるいはマイクロサッケードとは、対象者が固視している最中の眼球運動(固視微動)のうち、高速度の跳躍的運動であるものを指す。以下、マイクロサッカードあるいはマイクロサッケードを、単に「サッカード」とも記す。一般的に、サッカードにおいて、振幅は1度以下、運動にかかる時間(duration)は25ms程度、平均速度は10度/s程度、頻度は1~3Hz程度とされている。サッカードは、対象者の意志によって止めることは出来ない非随意的運動である。サッカードの方向及び/又は頻度は、対象者の注意などによって影響を受ける。対象者のサッカードの速さは、一般的に対象者が眠気を感じるときは遅くなるとされるが、覚醒時でも対象者によって速さに個人差がある。また、対象者の視野の広さは、集中時のほうが広い傾向にあるが、対象者の運転歴などによって集中時でも個人差がある。
【0060】
一実施形態において、電子機器1の制御部10(例えば抽出部12)は、種々の時点における対象者の視線から、サッカードの速さ及び/又は視野の広さなどを抽出してよい。このように、制御部10(例えば抽出部12)は、対象者の運転中の視線から、個人差が生じうる視線の特徴を抽出してよい。そして、制御部10は、抽出した特徴を合わせて、対象者の視覚的特性に基づいて設定されるパラメータSを設定してよい。ニューラルネットにより、例えば対象者のサッカードが遅い及び/又は対象者の視線の範囲である視野が狭いときは、対象者が非集中であると学習されるものと期待される。しかしながら、基準となるサッカードの速さ/視線の広さは、各対象者によって異なる。したがって、一実施形態において、その基準の情報を、パラメータSとして設定してよい。このように、一実施形態において、パラメータSは、対象者のマイクロサッカードの速さ及び対象者の視野の広さの少なくとも一方に基づいて設定されてもよい。
【0061】
一実施形態において、対象者の視覚的特性に基づいて設定されるパラメータSは、例えば少なくとも1つの値を含んで設定されてよい。また、一実施形態において、対象者の視覚的特性に基づいて設定されるパラメータSは、例えば2以上の値を含んで設定されてよい。
【0062】
制御部10は、上述のようにしてパラメータSを設定し、当該パラメータSを、パラメータSが設定された対象者に関連付けて、記憶部30に記憶してよい。すなわち、記憶部30は、対象者の視覚的特性に基づいて設定されるパラメータを、当該対象者に関連付けて記憶してよい。例えば、記憶部30は、対象者の視覚的特性に基づいて設定されるパラメータを、当該対象者のIDなどに関連付けて記憶してよい。対象者のIDは、例えば任意の番号又は記号などとしてよい。これにより、制御部10は、対象者のID番号の判別に基づいて、当該対象者のパラメータSを取得する(記憶部30から読み出す)ことができる。
【0063】
図5に示す動作が開始する時点おいて、一実施形態に係る電子機器1の制御部10は、各対象者のIDに対応するパラメータSがまだ記憶されていない状態であれば、各パラメータSを初期化してよい。制御部10は、各対象者のIDに対応するパラメータSがまだ記憶されていない場合、各パラメータSを例えばランダム値とするなど、任意の所定の値に初期化したものを記憶してよい。
【0064】
また、
図5に示す動作が開始する時点おいて、一実施形態に係る電子機器1の制御部10は、対象者のIDを取得してよい。例えば、一実施形態に係る電子機器1の制御部10は、IDの入力を求め、対象者による入力からIDを取得してよい。また、一実施形態に係る電子機器1の制御部10は、撮像部20によって撮像された対象者の画像の顔認証により対象者を判定し、判定された対象者に関連付けられたIDを取得してもよい。また、一実施形態に係る電子機器1の制御部10は、例えばニューラルネットワークなどによって、所定の手がかりから対象者を判定してもよい。
【0065】
図5に示す動作が開始すると、一実施形態に係る電子機器1の制御部10は、撮像部20によって撮像された対象者の画像を取得する(ステップS11)。ステップS11において取得される対象者の画像とは、上述のように、注視点座標、視線の特徴量、及び眼球領域の画像の少なくとも1つを含む視線データが抽出できるように、対象者の眼球領域を含む画像としてよい。
【0066】
ステップS11において対象者の画像を取得したら、制御部10の抽出部12は、対象者の画像から対象者の注視点座標、視線の特徴量、及び眼球領域の画像の少なくとも1つを含む視線データを抽出する(ステップS12)。ステップS12において、対象者の画像から対象者の視線データを抽出する技術は、例えば画像認識などの任意の技術を採用してよい。このようにして、一実施形態に係る電子機器1の制御部10は、ステップS12において、対象者の画像から抽出される対象者の視線データを含む第1生体情報Xを取得する。
【0067】
ステップS12において対象者の視線が抽出されたら、制御部10は、対象者の視覚的特性に基づいて設定されるパラメータSを取得する(ステップS13)。ステップS13において、制御部10は、対象者の視覚的特性に基づいて設定されるパラメータSを例えば記憶部30から取得してよい。一実施形態において、制御部10は、対象者のID番号の判別に基づいて、当該対象者のパラメータSを取得してよい(記憶部30から読み出してよい)。
【0068】
ステップS13においてパラメータSを取得したら、制御部10の推定部14は、未知の値を推定する(ステップS14)。ステップS14において、推定部14は、自己符号化器のエンコーダENNによって、対象者の視線データを含む第1生体情報X、パラメータS、及び対象者の内部状態を示す情報Yに基づいて、未知の値Zを推定してよい(
図2参照)。ここで、対象者の内部状態を示す情報Yは、上述のように、外的に作り出した対象者の集中度に対応する値としてよい。
【0069】
ステップS14において未知の値が推定されたら、制御部10の推定部14は、対象者の視線データを含む第2生体情報を推定する(ステップS15)。ステップS14において、推定部14は、自己符号化器のデコーダDNNによって、対象者の内部状態を示す情報Y、未知の値Z、及びパラメータSに基づいて、対象者の視線データを含む第2生体情報X’を推定してよい(
図3参照)。
【0070】
ステップS15において第2生体情報X’が推定されたら、制御部10は、エンコーダENN及びデコーダDNNのパラメータ、並びに対象者の視覚的特性に基づいて設定されるパラメータSを調整する(ステップS16)。ステップS16において、制御部10は、対象者の視線データを含む第2生体情報X’によって、対象者の視線データを含む第1生体情報Xが再現される度合いに基づいて、エンコーダENN及びデコーダDNNのパラメータ並びにパラメータSを調整してよい。また、前述のように、この再現の度合いに加えて、エンコーダENNによって推論された未知の値Zの従う確率分布が所定の確率分布からどのくらい逸脱しているかを表す分布逸脱度も含めた損失関数に基づいて、エンコーダENN及びデコーダDNNのパラメータ並びにパラメータSを調整してよい。以上のような学習フェーズにおける動作によって、一実施形態に係る電子機器1は学習を行うことができる。制御部10は、このようにして調整されたエンコーダENN及びデコーダDNNのパラメータ並びにパラメータSの少なくともいずれかを、例えば記憶部30などに記憶してもよい。
【0071】
このように、一実施形態に係る電子機器1において、制御部10のエンコーダENNは、対象者の画像から抽出される対象者の視線データを含む第1生体情報X、パラメータS、及び対象者の内部状態を示す情報Yに基づいて、未知の値Zを推定する。また、一実施形態に係る電子機器1において、制御部10のデコーダDNNは、未知の値Z、パラメータS、及び対象者の内部状態を示す情報Yに基づいて、対象者の視線データを含む第2生体情報X’を推定する。そして、一実施形態に係る電子機器1は、第2生体情報X’による第1生体情報Xの再現度、及び当該再現度と未知の値Zの分布逸脱度のうちの少なくとも一方に基づいて、エンコーダENN及びデコーダDNNのパラメータ並びにパラメータSを調整する。このようにして調整されたパラメータSは、各対象者の視線データを含む第1生体情報を第2生体情報として再構成するのに適した値となる。ここで、視線データは、対象者ごとに、その視覚的特性によって傾向が異なる。そのため、上述の動作により、各対象者に対応するパラメータSは、該当する対象者の視覚的特性に基づくパラメータとして調整される。
【0072】
一実施形態において、対象者の内部状態を示す情報Yは、対象者の集中度を示す情報を含んでもよい。特に、一実施形態において、対象者の内部状態を示す情報Yは、対象者が乗り物を運転している最中の集中度を示す情報を含んでもよい。
【0073】
上述のようにして、一実施形態に係る電子機器1は、学習フェーズを実行することにより、エンコーダENN及びデコーダDNNのパラメータ並びにパラメータSを調整する。これにより、対象者の内部状態の推定に適したエンコーダENN及びデコーダDNNのパラメータ並びにパラメータSを獲得することができる。以下、対象者の内部状態を推定するフェーズを、単に「推定フェーズ」と記すことがある。
【0074】
図6は、一実施形態に係る電子機器1による推定フェーズを説明するフローチャートである。以下、
図6を参照して、一実施形態に係る電子機器1による推定フェーズを説明する。
【0075】
図6に示す推定フェーズの動作が開始するに際し、対象者(運転者)は移動体を運転しているものとする。ここで、対象者は、乗用車のような移動体を現実に運転しているものとする。また、検証実験のようなテストにおいては、対象者は、例えばドライブシミュレータを用いて仮想的に移動体を運転していてもよい。また、
図6に示す動作が開始するに際し、撮像部20は対象者の画像を撮像しているものとする。ここで、撮像部20は、対象者の画像から対象者の視線が抽出できるように、対象者の眼球領域を含む画像を撮像するものとしてよい。
【0076】
また、
図6に示す動作が開始する時点おいて、一実施形態に係る電子機器1の制御部10は、対象者のIDを取得してよい。例えば、一実施形態に係る電子機器1の制御部10は、IDの入力を求め、対象者による入力からIDを取得してよい。また、一実施形態に係る電子機器1の制御部10は、撮像部20によって撮像された対象者の画像の顔認証により対象者を判定し、判定された対象者に関連付けられたIDを取得してもよい。また、一実施形態に係る電子機器1の制御部10は、例えばニューラルネットワークなどによって、所定の手がかりから対象者を判定してもよい。
【0077】
また、
図6に示す動作が開始するに際し、記憶部30は、パラメータSを記憶しているものとする。ここで、パラメータSとは、例えば、
図5に示した学習フェーズなどによって調整されたパラメータSとしてよい。特に、一実施形態において、
図6に示す動作が開始するに際し、記憶部30は、これから内部状態を推定しようとする対象者の調整されたパラメータSを記憶していてよい。
【0078】
図6に示す動作が開始すると、一実施形態に係る電子機器1の制御部10は、撮像部20によって撮像された対象者の画像を取得する(ステップS21)。ステップS21において取得される対象者の画像とは、上述のように、対象者の視線が抽出できるように、対象者の眼球領域を含む画像としてよい。ステップS21の動作は、
図5に示したステップS11の動作と同様に行ってよい。
【0079】
ステップS21において対象者の画像を取得したら、制御部10の抽出部12は、対象者の画像から対象者の注視点座標、視線の特徴量、及び眼球領域の画像の少なくとも1つを含む視線データを抽出する(ステップS22)。ステップS22の動作は、
図5に示したステップS12の動作と同様に行ってよい。このようにして、一実施形態に係る電子機器1の制御部10は、ステップS22において、対象者の画像から抽出される対象者の視線データを含む第1生体情報Xを取得する。
【0080】
ステップS22において対象者の視線データが抽出されたら、制御部10の推定部14は、対象者の内部状態を示す情報Yを推定する(ステップS23)。ステップS23において推定される対象者の内部状態を示す情報Yは、例えば対象者の集中度を示す情報としてよい。特に、一実施形態において、対象者の内部状態を示す情報Yは、例えば対象者が乗用車のような乗り物(移動体)を運転している最中の集中度を示す情報を含んでよい。
【0081】
ステップS23において、一実施形態に係る電子機器1は、例えば以下のようにして、対象者の内部状態を示す情報Yを推定してよい。すなわち、例えば、一実施形態に係る電子機器1の制御部10は、例えば集中している状態における内部状態を示す情報Yを0とし、例えば集中していない状態における内部状態を示す情報Yを1とするなどとして、複数の内部状態を示す情報Yを仮定する。同様に、一実施形態において、制御部10は、例えば内部状態を示す情報Yを0から1の間で複数仮定してもよい。
【0082】
そして、制御部10は、このように仮定した複数の内部状態を示す情報Yのそれぞれについて、再構成された対象者の注視点座標、視線の特徴量、及び眼球領域の画像の少なくとも1つ(第2生体情報X’)が、元の対象者の視線データ(第1生体情報X)を再現する度合いを検証する。そして、推定部14は、再構成された対象者の注視点座標、視線の特徴量、及び眼球領域の画像の少なくとも1つ(第2生体情報X’)が、元の対象者の注視点座標、視線の特徴量、及び眼球領域の画像の少なくとも1つ(第1生体情報X)を再現する度合い(再現度)を最も高くする内部状態を示す情報Yを、その時の対象者の内部状態(集中度)と推定する。例えば、対象者の内部状態を示す情報Yが0の時に、上述の再現度が最も高くなる場合、推定部14は、対象者が集中している状態と推定してよい。一方、例えば、対象者の内部状態を示す情報Yが1の時に、上述の再現度が最も高くなる場合、推定部14は、対象者が集中していない状態と推定してよい。また、例えば、対象者の内部状態を示す情報Yが0から1の間の値の時に、上述の再現度が最も高くなる場合、推定部14は、対象者が当該値に対応する集中度である状態と推定してよい。また、推定部14は、エンコーダENNが推定した未知の値Z又は当該未知の値Zの従う確率分布が所定の確率分布からどれくらい逸脱しているかを表す分布逸脱度を用いて対象者の内部状態を推定してもよい。当該所定の確率分布は正規分布であってもよい。例えば当該分野逸脱度はカルバック・ライブラダイバージェンスを用いてもよい。また、例えば、当該分布逸脱度は、前記未知の値Zの前記所定の確率分布における確率又は確率密度を用いてもよい。
【0083】
ステップS23において対象者の内部状態を示す情報Yが推定されたら、判定部16は、推定された集中度が所定の閾値以下であるか否かを判定する(ステップS24)。ステップS24の処理を行うに際し、対象者の集中度について警報を出す基準となる所定の閾値を予め設定しておいてよい。このようにして設定された所定の閾値は、例えば記憶部30に記憶してもよい。ステップS24において、判定部16は、推定された集中度が所定の閾値以下であるか否かのように、推定された集中度が所定の条件を満たすか否かを判定してよい。
【0084】
ステップS24において集中度が所定の閾値以下である(集中度が低下した)場合、判定部16は、所定の警報を報知部40から出力して(ステップS25)、
図6に示す動作を終了してよい。一方、ステップS24において集中度が所定の閾値以下でない(集中度が低下していない)場合、判定部16は、
図6に示す動作を終了してよい。
図6に示す動作が終了すると、制御部10は、適宜、
図6に示す処理を再び開始してもよい。
【0085】
このように、一実施形態に係る電子機器1において、制御部10のエンコーダENNは、対象者の画像から抽出される対象者の視線データを含む第1生体情報X、調整されたパラメータS、及び対象者の内部状態を示す情報Yとして仮定される値に基づいて、未知の値Zを推定する。また、一実施形態に係る電子機器1において、制御部10のデコーダDNNは、未知の値Z、調整されたパラメータS、及び対象者の内部状態を示す情報Yとして仮定される値に基づいて、対象者の視線データを含む第2生体情報X’を推定する。そして、一実施形態に係る電子機器1は、対象者の内部状態を示す情報Yとして複数の値を仮定して、その複数の値のうち第2生体情報X’による第1生体情報Xの再現度が最も高くなる値を、対象者の内部状態を示す情報Yと推定する。また、一実施形態に係る電子機器1において、当該再現度に加えて、エンコーダENNが推定した未知の値Z又は当該未知の値Zの従う確率分布が所定の確率分布からどのくらい逸脱しているかを表す分布逸脱度も考慮して、対象者の内部状態を示す情報Yと推定するとしてもよい。当該所定の確率分布は正規分布であってもよい。例えば、当該分野逸脱度はカルバック・ライブラダイバージェンスを用いてもよい。また、例えば、当該分布逸脱度は、前記未知の値Zの前記所定の確率分布における確率又は確率密度を用いてもよい。
【0086】
一実施形態に係る電子機器1は、対象者の内部状態を示す情報Yとして仮定される複数の値のうち第2生体情報X’による第1生体情報Xの再現度が最も高くなる値が所定の条件を満たす場合、所定の警報を出力してもよい。また、当該再現度に加えて、エンコーダENNが推定した未知の値Z又は当該未知の値Zの従う確率分布が所定の確率分布からどのくらい逸脱しているかを表す分布逸脱度も考慮して所定の警報を出力するかを決定してもよい。当該所定の確率分布は正規分布であってもよい。当該分野逸脱度はカルバック・ライブラダイバージェンスを用いてもよい。また、例えば、当該分布逸脱度は、前記未知の値Zの前記所定の確率分布における確率又はと確率密度を用いてもよい。
【0087】
以上のように、一実施形態に係る電子機器1は、対象者の内部状態を原因として、対象者の視線データを含む生体情報が生成されるというモデルに基づいて、対象者の内部状態を推定することができる。したがって、一実施形態に係る電子機器1は、自然な因果関係によって、対象者の集中度のような内部状態を合理的に推定することができる。また、一実施形態に係る電子機器1は、例えば移動体を運転中の対象者の集中度が低下したら、所定の警報を出力することができる。したがって、一実施形態に係る電子機器1によれば、例えば移動体を運転中の対象者の安全性を高めることができる。
【0088】
一般的に、人間の視線及び/又は注意行動などは、本来個体差が大きいものである。例えば、高齢者は若年者より視線の可動域が狭いなどの例を挙げることができる。したがって、対象者の内部状態を推定する際には、例えば上述のような個体差を適切に考慮しないと、良好な精度の結果が得られないことが懸念される。また、対象者の内部状態を推定する際には、推定結果がどのようなモデルに基づくものなのか、ユーザに客観的に説明可能であることが望ましい。
【0089】
例えば、対象者を撮像した画像から、対象者の集中度のような内部状態を推定する場合、従来の機械学習のように、両者の因果関係とは逆に、すなわち対象者の視線などの生体反応データから内部状態を推定するように学習を行うことも想定される。しかしながら、このような場合、因果関係が逆のモデル構造であるがゆえにそのモデル内部のデータ構造がブラックボックス化されてしまうため、要因を特定できずに誤った構造を学習してしまうおそれがある。また、因果関係がブラックボックス化されるため、因果関係のモデルをユーザに客観的に説明することは困難になる。
【0090】
一実施形態に係る電子機器1において対象者の内部状態を推定するアルゴリズムは、一般の認識モデル又は回帰モデルとは異なる生成モデルに基づくものである。電子機器1における生成モデルは、対象者の内部状態及び対象者の視覚的特性を原因として、対象者の視線が生成されるという過程を、データから学習する。このため、一実施形態に係る電子機器1によれば、対象者の個体の特性ないし傾向を考慮して推定精度を向上させることが期待できる。また、一実施形態に係る電子機器1によれば、データ生成過程を踏まえたメカニズムをユーザに客観的に説明することができる。一実施形態によれば、対象者の集中度のような内部状態を、データ生成過程に基づいて合理的に推定することができる。
【0091】
以下、他の実施形態について説明する。
【0092】
図5を参照して説明した実施形態(学習フェーズ)においては、予めIDが登録された対象者のパラメータSを、エンコーダ・デコーダのパラメータとともに調整する態様を想定した。そこで、以下、予めIDが登録されていない対象者のパラメータSを調整する態様を説明する。
【0093】
学習フェーズ(
図5)の実行時にIDが登録されていない対象者については、当該対象者のパラメータSが記憶部30に記憶されていない。そのような対象者については、制御部10は、当該対象者のパラメータSを記憶部30から読み出すことができない。そこで、一実施形態に係る電子機器1は、当該対象者に比較的高い集中度で例えば自動車を所定の期間(時間)走行することを促してよい。一実施形態に係る電子機器1は、その走行中に撮像部20によって撮像される対象者の眼球領域の画像などに基づいて、パラメータSを取得してよい。
【0094】
図7は、学習フェーズ(
図5)の実行時にIDが登録されていない対象者のパラメータSの調整を説明するフローチャートである。以下、
図5と異なる点を中心に説明する。
【0095】
図7に示す動作が開始するに際し、一実施形態に係る電子機器1の制御部10は、IDが登録されていない対象者の新たに生成したIDと、例えばランダム値とするなどの所定の値のパラメータSとを関連付けて、記憶部30に記憶してよい。
【0096】
以下、
図7に示すステップS11からステップS15までの動作は、
図5に示した動作と同様に実行してよい。
【0097】
図7に示す動作においては、ステップS15の動作の後、制御部10は、対象者の視覚的特性に基づいて設定されるパラメータSを調整する(ステップS17)。すなわち、
図7に示す動作においては、ステップS15の動作の後、制御部10は、エンコーダENN及びデコーダDNNのパラメータを調整せずに、パラメータSのみを調整してよい。このように、一実施形態に係る電子機器1は、学習フェーズ実行時とは異なる対象者のパラメータSを登録して調整してもよい。パラメータSは、各対象者の視線データを含む第1生体情報を第2生体情報として再構成するのに適した値に調整してよい。ここで、視線データは、対象者ごとに、その視覚的特性によって傾向が異なる。そのため、上述の動作により、各対象者に対応するパラメータSは、該当する対象者の視覚的特性に基づくパラメータとして調整される。
【0098】
図1を参照して説明した構成による実施形態においては、撮像部20が撮像する対象者の視線眼球領域の画像から抽出される対象者の視覚的特性に基づいて、パラメータSを設定する態様を想定した。しかしながら、一実施形態において、パラメータSの設定は、撮像部20が撮像する対象者の視線の画像から抽出される対象者の視覚的特性に基づくものに限定されない。
【0099】
次に、上述した実施形態の変形例について説明する。
【0100】
上述した実施形態において、対象者の内部状態を示す情報Yは、(乗用車のような移動体を運転している)対象者の集中度を示す情報を含むものとして説明した。一実施形態に係る電子機器において、推定部14は、対象者の内部状態を示す情報Yとして、対象者の感情又は気分を示す情報を含んで推定してもよい。ここで、対象者の感情又は気分を示す情報とは、例えば、対象者のストレスの度合いを示す情報、対象者の苛つき又は怒りの感情を示す情報、対象者の疲れ、不安又は心配事を抱えた感情を示す情報など、種々の情報としてよい。
【0101】
対象者の内部状態を示す情報Yとして、対象者の感情又は気分を示す情報を含んで推定することにより、一実施形態に係る電子機器は、例えば対象者の集中度が低下した場合に、対象者の感情又は気分に応じた警報を出力することができる。例えば、一実施形態に係る電子機器の推定部14は、
図6のステップS23において、対象者の内部状態を推定する際に、対象者の感情又は気分を示す情報も含んで推定してよい。そして、一実施形態に係る電子機器の制御部10は、
図6のステップS25において、対象者の感情又は気分に応じて、所定の警報を出力してよい。具体的には、対象者の集中度が低下した際に、対象者の苛つき又は怒りの感情が示される場合、一実施形態に係る電子機器の制御部10は、例えば対象者をなだめるような口調及び/又は言葉遣いの警報を出力してもよい。
【0102】
このように、一実施形態に係る電子機器において、対象者の内部状態を示す情報Yは、対象者の感情又は気分を示す情報を含んでもよい。また、一実施形態に係る電子機器は、例えば対象者の集中度が所定以下に低下した場合、所定の警報として、対象者の感情又は気分に応じた警報を出力してもよい。
【0103】
上述した実施形態の変形例に係る電子機器1は、対象者の感情又は気分に応じた警報を出力することができる。したがって、上述した実施形態の変形例に係る電子機器1は、例えば移動体を運転中の対象者の安全性を一層高めることが期待できる。
【0104】
本開示の内容は、当業者であれば本開示に基づき種々の変形及び修正を行うことができる。したがって、これらの変形及び修正は本開示の範囲に含まれる。例えば、各実施形態において、各機能部、各手段、各ステップなどは論理的に矛盾しないように他の実施形態に追加し、若しくは、他の実施形態の各機能部、各手段、各ステップなどと置き換えることが可能である。また、各実施形態において、複数の各機能部、各手段、各ステップなどを1つに組み合わせたり、或いは分割したりすることが可能である。また、上述した本開示の各実施形態は、それぞれ説明した各実施形態に忠実に実施することに限定されるものではなく、適宜、各特徴を組み合わせたり、一部を省略したりして実施することもできる。
【符号の説明】
【0105】
1,2 電子機器
10 制御部
12 抽出部
14 推定部
16 判定部
18 視線予測部
20 撮像部
21 第1撮像部
22 第2撮像部
30 記憶部
40 報知部
50 視覚情報取得部
ENN エンコーダ
DNN デコーダ