IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ レイサーチ ラボラトリーズ エービーの特許一覧

特許7566798生物学的不確実性に関する堅牢な放射線治療計画作成のための方法及びシステム
<>
  • 特許-生物学的不確実性に関する堅牢な放射線治療計画作成のための方法及びシステム 図1
  • 特許-生物学的不確実性に関する堅牢な放射線治療計画作成のための方法及びシステム 図2
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-10-04
(45)【発行日】2024-10-15
(54)【発明の名称】生物学的不確実性に関する堅牢な放射線治療計画作成のための方法及びシステム
(51)【国際特許分類】
   A61N 5/10 20060101AFI20241007BHJP
【FI】
A61N5/10 P
A61N5/10 H
【請求項の数】 10
(21)【出願番号】P 2021572852
(86)(22)【出願日】2020-06-02
(65)【公表番号】
(43)【公表日】2022-09-22
(86)【国際出願番号】 EP2020065172
(87)【国際公開番号】W WO2020249419
(87)【国際公開日】2020-12-17
【審査請求日】2023-05-11
(31)【優先権主張番号】19179427.0
(32)【優先日】2019-06-11
(33)【優先権主張国・地域又は機関】EP
(73)【特許権者】
【識別番号】522454806
【氏名又は名称】レイサーチ ラボラトリーズ エービー
(74)【代理人】
【識別番号】100114775
【弁理士】
【氏名又は名称】高岡 亮一
(74)【代理人】
【識別番号】100121511
【弁理士】
【氏名又は名称】小田 直
(74)【代理人】
【識別番号】100202751
【弁理士】
【氏名又は名称】岩堀 明代
(74)【代理人】
【識別番号】100208580
【弁理士】
【氏名又は名称】三好 玲奈
(74)【代理人】
【識別番号】100191086
【弁理士】
【氏名又は名称】高橋 香元
(72)【発明者】
【氏名】ウェデンバーグ,ミンナ
(72)【発明者】
【氏名】オデン,ヤコブ
(72)【発明者】
【氏名】フレドリクソン,アルビン
(72)【発明者】
【氏名】トラヌス,エリック
【審査官】滝沢 和雄
(56)【参考文献】
【文献】特表2017-514532(JP,A)
【文献】特表2012-506724(JP,A)
【文献】特表2019-510585(JP,A)
【文献】特表2007-531556(JP,A)
【文献】特表2012-521792(JP,A)
【文献】特表2013-529481(JP,A)
【文献】特表2016-520385(JP,A)
【文献】特表2016-532530(JP,A)
【文献】米国特許出願公開第2012/0136194(US,A1)
【文献】米国特許第06411675(US,B1)
(58)【調査した分野】(Int.Cl.,DB名)
A61N 5/10
(57)【特許請求の範囲】
【請求項1】
複数のボクセルを使用して定義される被検者の治療体積の堅牢な放射線治療計画を生成するための医療装置の作動方法であって、
前記医療装置が、放射線治療に関係する生物学的エンドポイントに関する少なくとも1つの最適化関数を使用して最適化問題を定義するステップ(S100)であって、前記生物学的エンドポイントは特定の生物学的効果を表す、ステップ(S100)と、
前記医療装置が、少なくとも第1のシナリオ及び第2のシナリオを含むシナリオのセットを定義するステップ(S102)であって、
前記シナリオのセットにおけるシナリオのうちの少なくとも2つは、同じ生物学的エンドポイントを定量化するための異なる生物学的モデルを表す、ステップ(S102)と、
前記医療装置が、前記シナリオのセットにおける各シナリオの最適化関数値を計算するステップ(S104)と、
前記医療装置が、前記シナリオのセットで評価される最適化関数値を堅牢に最適化することによって放射線治療計画を生成するステップ(S106)と、
包含し、
前記シナリオのセットは少なくとも第3のシナリオをさらに含み、前記第3のシナリオは、粒子の範囲、治療体積の空間位置、放射線治療装置のセットアップ、照射組織の密度、相互作用効果、臓器の移動、及び/又は生物学的モデルのパラメータ値を含む、治療計画作成に関連する1つ以上のパラメータを表す、
療装置の作動方法。
【請求項2】
前記生物学的モデルは、等価均一分布(EUD)、等価標準分割線量(EQD)、生物学的等価線量(BED)、生物学的効果比(RBE)、RBE荷重線量、腫瘍制御確率(TCP)、正常組織障害発生確率(NTCP)、合併症なしの治癒、二次癌、及び/又は全生存率を定量化したモデルである、請求項1に記載の医療装置の作動方法。
【請求項3】
前記少なくとも1つの最適化関数は、最適化中に維持されるパラメータを定義する制約を含む、請求項1又は請求項2に記載の医療装置の作動方法。
【請求項4】
前記少なくとも1つの最適化関数は、生物学的モデルに基づく生物学的目標又は物理的目標を含む、請求項1~3のいずれか一項に記載の医療装置の作動方法。
【請求項5】
前記物理的目標は、治療体積における標的及びリスク臓器(OAR)への線量制限、線量体積ヒストグラム(DVH)制限、線エネルギー付与(LET)制限、粒子の停止位置、及び/又は均一性指数及び原体性指数を含む、請求項4に記載の医療装置の作動方法。
【請求項6】
前記堅牢な最適化は、目的関数の期待値が最小にされる確率的プログラミング手法、エラーシナリオの目的関数の最大値が最小にされるミニマックス手法、又は一般にミニマックス確率的プログラミングと呼ばれるこの2つの任意の組み合わせ、又は個々に考慮される各ボクセルへのワーストケース線量が最適化されるボクセルごとのワーストケース手法を含む、請求項1~5のいずれか一項に記載の医療装置の作動方法。
【請求項7】
前記放射線治療計画を生成するステップは、自動的に取得されるデフォルトのパラメータ値を使用して生成された標準的な放射線治療計画を適応させることを含む、請求項1~のいずれか一項に記載の医療装置の作動方法。
【請求項8】
コンピュータで実行されるときに請求項1~請求項のいずれか一項に記載の医療装置の作動方法をコンピュータに実行させるコンピュータ可読命令を備えるコンピュータプログラム製品(130)。
【請求項9】
プロセッサ(120)によって実行されるときにプロセッサ(120)に請求項1~請求項のいずれか一項に記載の医療装置の作動方法を実行させるコンピュータ可読命令を格納しているメモリ(110)に結合されたプロセッサ(120)を備えるコンピュータシステム(100)。
【請求項10】
請求項に記載のコンピュータシステム(100)を含む放射線治療計画作成システム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、一般に、放射線治療の分野、特に、放射線治療計画の生成、最適化、及び評価に関する。
【発明の概要】
【発明が解決しようとする課題】
【0002】
癌は、異常な細胞の誤増殖を通じて現れる広範囲に及ぶ疾患である。これらの細胞の際限のない増殖が止められなければ致命的であり得る。世界中の癌の致命的な傾向は、癌管理の全体的な推定コストとともに着実に増している。そのため、病気を治療する及び治すためのより効果的なツール及び技術を開発することへの公衆の需要が高まっている。医用イメージングの急速な進歩に伴い、腫瘍はまだ局所的又は限局的な初期の段階で診断されている。小線源療法及び粒子線療法を含む様々な種類の放射線療法、手術、及び化学療法を含む全身療法は、局所的な癌細胞又は腫瘍を治療するのに効果的である。
【0003】
放射線療法は、照射領域内のDNAを損傷して細胞死を引き起こす電離放射線を使用する癌治療の一種である。放射線療法の主な目標は、すべての標的腫瘍細胞を死滅させるのに十分なだけ高い放射線量を送達しながら同時に健康な構造への容認できない損傷を回避することによって癌細胞を根絶することである。単位質量あたりの減損エネルギーの物理量、いわゆる、吸収線量は、国際単位系(SI)によれば、グレイ(Gy)の単位で表され、1Gyは、物質1キログラムあたりに吸収される1ジュールのエネルギーに相当する。
【0004】
最新の放射線治療計画は、通常、患者のイメージング、標的の定義(すなわち、構造体の輪郭描出)、処方線量、マシン及び粒子のタイプの選択、パラメータの定義、ビーム構成の選択、計画の生成(多くの場合、計画の最適化の形態での)、並びに品質保証及び/又は品質管理といったステップの組に関係する。
【0005】
放射線治療計画の分野では、治療計画作成者は、外部照射治療のための様々なタイプの放射線治療計画を生成することができる。治療計画を生成するために、専門家は、コンピュータ断層撮影法(CT)などの従来のスキャン技術を使用して患者の体内の治療領域を特定し、リスク臓器(OAR)を評価する必要がある。その場合、標的体積は、患者の体内の腫瘍がある体積、例えば、前立腺として定義される。治療計画の品質は、治療を行う人の経験、イメージング装置及び治療装置の品質、並びにビーム品質などの多くの技術的パラメータに密接に関連することが研究で示されている。これは、特に治療計画が経験の浅い人によって用意された場合、多くの治療計画には改善の余地があることを示唆している。さらに、不適切な計画作成方法の使用、最適化プロセスの早期の終了、又は不適切な方法での計画品質の測定、並びにパラメータのウエイトの誤った解釈は、治療品質に重大な悪影響を及ぼすことがある。
【0006】
治療領域がイメージングされると、医師は、腫瘍及びOARの輪郭を描画し、腫瘍を治療するための所望の線量を処方する。その後、医学物理学者が、計画の生成に着手し、患者を治療するための1つ又は複数のフィールド及びビームによる計画を生成する。周囲組織への悪影響を最小にし、計画の有効性を高めるために、計画の最適化と品質管理に多くの人的作業時間が費やされる。これは、病院や社会にさらにコストが掛かることを示唆しており、放射線治療を時間通りに送達することの課題を生み出す。
【0007】
放射線療法では、例えば、高エネルギーの光子(X線)又は陽子、或いはヘリウム又は炭素などのより重いイオンのビームを使用することがある。すべての放射線タイプは、物理的、化学的、及び生物学的効果に影響する、物質内のエネルギー付与の独自の特徴的な分布を有する。光子の場合、細胞の損傷は、吸収されたエネルギー(=線量)に比例する。陽子及びより重いイオンの場合、細胞の損傷はさらに、例えばイオントラックに沿った粒子あたりのイオン化密度で特徴付けられる、吸収されたエネルギーイベントの分布に依存する。イオン化密度は、とりわけ、粒子のエネルギーに依存する。イオン化密度は、線エネルギー付与(LET)、すなわち、距離あたりのエネルギー損失(一般的な単位は、MeV/cm又はkeV/μm)の観点で定量化される場合が多い。LETは、例えば、陽子エネルギーが高いと低くなる。LETは、陽子エネルギーが低くなるにつれて増加し、最大に達した後に減少する。LETの最大値は、陽子の残留範囲が小さいときに到達する、したがって、ブラッグピークで生じる。
【0008】
腫瘍細胞を可能な限り効果的に死滅させる必要があるので、腫瘍の内部では高LET部分が望ましい。腫瘍の外部の健康な組織では、可能な限り低線量及び低LETにすることが望ましい。
【0009】
吸収線量とエネルギー付与の空間分布は、放射線の生物学的影響に関して重要な量である。しかしながら、生物系(細胞、組織、臓器など)の固有の放射線感受性、酸素化度、照射体積内の線量分布、及び線量分割スケジュール(フラクションあたりの線量、フラクション間の時間、総治療時間など)を含む、生物学的応答に影響を及ぼす多くの因子がある。
【0010】
治癒的な放射線療法の目的は、容認できない副作用のリスクが高すぎることなく、高い確率で局所腫瘍制御を得ることである。しかしながら、治療計画では、代わりに、臨床目標は、標的への処方線量及び関心領域への線量-体積制限などの物理量の観点で表記されることが多く、放射線治療計画の品質は、普通は、その線量原体性、物理的な臨床目標の達成、及び治療送達時間によって判断される。線量原体性は、高放射線量領域が標的腫瘍にどれだけ良好に適合し、周囲の健康な組織を回避するかを表し、一方、治療送達時間は、治療にかかる時間及び使用される治療マシンの効率を表す。
【0011】
これらの物理量は、治癒と副作用の確率を直接推定する代わりに用いられる患者の生物学的結果を表すものである。数学的放射線生物学モデルは、腫瘍及びリスク臓器の放射線感受性に基づいて所望の線量分布が決定されるように腫瘍制御確率(TCP)と正常組織障害発生確率(NTCP)を明示的に推定することでこのギャップを埋めることを目的としている。一般に、放射線生物学モデルは、例えば、放射線の物理量と生物学的影響との関係性を記述し、既知の結果を補間及び外挿して、新しい治療技術の結果を推定する、治療の中断、過剰線量、又は過少線量を補償する、及び意思決定を支援するために用いることができる。結果を直接推定する代わりに、生物学的モデルは、実際には、非標準の線量分布を従来の線量分布に変換するためによく用いられてきた。2Gy程度の分割線量での均一強度の光子ビームを使用した長期治療から、吸収線量と臨床転帰との関係性についての大きな経験が得られている。新しい治療技術をもたらしたこの経験を活かすために、生物学的モデルは、生物学的効果比の係数を使用して陽子及びイオン線量を同等の光子線量に変換する(RBEモデル)、不均質線量分布を等価均一分布に変換する(EUDモデル)、及び特別な分割スケジュールを等価標準分割線量に変換する(EQDモデル及びBEDモデル)ために用いられている。これらのモデルは、生物学的な側面を含めるために計画の最適化及び評価に用いることができる。
【0012】
陽子及びイオン療法の治療計画作成での標準は、吸収された物理的線量をいくつかのRBEモデルで得られたRBE係数でスケーリングして、同じレベルの生物学的損傷で、基準線質、多くの場合、光子エネルギースペクトルの、対応する線量分布を得ることである。陽子線治療では、1.1に等しい一定のRBE係数での吸収線量の単純なスケーリングが臨床標準である。陽子範囲の端でのRBEの増加による範囲の不確実性は(他の範囲の不確実性とともに)、ビーム角及びマージンの選択を通じて、代わりに間接的に取り扱われる。今日の時点でまだ臨床的に用いられていない他のRBEモデルは、LET、フラクションあたりの線量、細胞タイプ/組織タイプ、及び生物学的エンドポイントなどの、陽子RBEに影響を及ぼす因子を含めることによってRBEをより正確に推定することを目的としている。単純な1.1手法を用いることの適切性について活発な議論がなされているが、RBEが線量、LET、及び組織パラメータなどにどれだけ正確に依存するかは不確実であるため、代わりにどのモデルを用いるかについての意見の一致はない。RBEモデルの不確実性を回避するために考慮すべき他の手法は、LET最適化とトラックエンド最適化であり、これらは純粋な物理量を用いて高RBE陽子をOARから標的又はどこか別の場所に向け直すものである。
【0013】
炭素イオンの場合、RBEの変動がビーム全体で非常に大きいため、可変のRBEモデルが必要とされる。局所効果モデルとMK(microdosimetric kinetic)モデルとの2つのモデルが炭素イオンの分野では主流である。この2つの異なるモデルは、臨床的に用いられ、異なる線量分布をもたらす。
【0014】
病気を治す可能性と正常組織毒性のリスクを推定するために、TCPモデル及びNTCPモデルと呼ばれる他の放射線生物学モデルが用いられる。それらは通常、患者コホートからのフォローアップデータに基づいており、線量(いくつかの他の入力パラメータと組み合わされる可能性がある)と腫瘍制御又は正常組織毒性との関係性を数学的に記述する。TCPモデルの臨床使用は限られており、一方、NTCPモデルの使用は、治療計画の評価においてわずかにより一般的である。例えば、NTCPは、従来の光子線治療の代わりに陽子線治療に最も適した患者コホートの選択に用いられることが提案されている。様々な治療技術と異なる分割スケジュールで治療された患者コホートを活用するために、TCP及びNTCPモデルで入力された不均一線量を(EUDモデルを使用して)等価均一分布に変換し、(EQDモデルを使用して)分割効果を補正することができる。
【0015】
生物学的モデルとそれらのパラメータ値は、診療での使用を制限する大きな不確実性の影響を受ける。不確実性の重要な要因は、モデルの基礎となる実験データの変動性である。不確実性を取り扱うための一般的手法は、シナリオベースの堅牢な最適化である。この技術は、ビームに対する標的の位置、癌細胞の位置、臓器の動き、及び患者密度データにおける不確実性を含む、放射線療法における不確実性の他の要因を軽減するために用いられてきた。次いで、不確実性から生じる可能性のあるエラーが、それぞれ不確実性の1つ又はいくつかの要因に関する特異的構成を表す異なるシナリオに離散化される。
【0016】
次いで、目的関数及び場合によっては制約を含む最適化問題が定式化され、これは、交渉不可能な条件を記述する。最適化アルゴリズムは、制約を満たしながら目的関数を最小にする(又は最大にする)ことを目的としている。最適化問題の目的、目的の構成要素、又は制約として用いられる関数は、「最適化関数」と呼ばれる。
【0017】
最適化では、例えば、ワーストケースのシナリオで評価される目的関数を最小にする、すべてのシナリオで目的関数の期待値を最小にする、又は別の手法を用いることができる。代替的に、異なるシナリオで評価される関数を、制約として最適化に含めることができる。代替的に、異なるシナリオで評価される関数を、構成要素として目的関数に含めることができる。例えば、様々な堅牢な最適化技術が、以下の文献:Fredriksson, A.,“A characterization of robust radiation therapy treatment planning methods - from expected value to worst-case optimization”, Medial Physics, 39(8), 5169-5181(2012).、及び、Fredriksson, A., and Bokrantz, R.,“A critical evaluation of worst-case optimization methods for robust intensity-modulated proton therapy planning”, Medical Physics, 41(2014).で比較され説明されている。このようにして、1つのシナリオのみを条件とする最適化と比較して、エラーの影響を受けにくい計画が得られる。本発明の1つの目的は、放射線生物学モデルから生じる不確実性も取り扱うために、シナリオベースの堅牢な最適化フレームワークを用いることである。
【課題を解決するための手段】
【0018】
本発明の目的は、生物学的モデルの不確実性を取り扱う同様の堅牢な最適化手法を提供し、モデル選択とパラメータ値の両方の不確実性を同時に取り扱うことができる、改善されたソリューションを提供することである。この目的は、複数のボクセルを使用して定義される被検者の特定の体積の堅牢な放射線治療計画を生成するための方法であって、
放射線治療に関係する生物学的エンドポイントに関する少なくとも1つの最適化関数を使用して最適化問題を定義するステップと、
少なくとも第1のシナリオ及び第2のシナリオを含むシナリオのセットを定義するステップと、
シナリオのセットにおけるシナリオのうちの少なくとも2つは、同じ生物学的エンドポイントを定量化するための異なる生物学的モデルを表し、
シナリオのセットにおける各シナリオの最適化関数値を計算するステップと、
シナリオのセットで評価される最適化関数値を堅牢に最適化することによって放射線治療計画を生成するステップと、
を含む方法、を提供する本発明の第1の態様で達成される。
【0019】
異なる放射線生物学モデル及び/又は異なるパラメータ値を異なるシナリオとして堅牢な最適化設定に追加することにより、モデル選択とパラメータ値の両方に関して堅牢な治療計画を得ることができる。
【0020】
本開示は、目標がすべての構成で可能な限り良好に得られるように、異なるシナリオとしてそれぞれパラメータ値の異なるセットを有する少なくとも2つの異なる生物学的モデルを使用して堅牢な最適化を行うことを提案する。したがって、結果として得られる放射線治療計画は、モデル選択及びパラメータ値の影響を受けにくく、且つ、モデル及び/又はパラメータの不正確さによって引き起こされるエラーに対してより堅牢である。これらのシナリオは、範囲の不確実性、セットアップエラー、臓器の動きなどの不確実性について定義される他のシナリオと組み合わせることもできる。
【0021】
この手法は、物理的な不確実性のみが考慮される公知の手法を上回る明確な利点を有する、すなわち、関連する不確実性を明示的に認識することで生物学的モデルをより有効に活用し、モデルとパラメータ値の組み合わせを堅牢な最適化及び評価に含めることができる。
【0022】
計画には、パラメータ値に対する堅牢性だけでなく、モデル選択の堅牢性も含める必要がある。例えば、このアイデアは、患者のセットアップ、密度、及び臓器の動きの不確実性を堅牢な最適化及び評価に含めることが今日できるのと同様に、異なるシナリオとして取り扱われる様々なパラメータ値をそれぞれ有するいくつかの生物学的モデルを堅牢な最適化及び/又は評価に含めることができるようにすることである。
【0023】
好ましい実施形態において、生物学的モデルは、等価均一分布(EUD)、等価標準分割線量(EQD)、生物学的等価線量(BED)、生物学的効果比(RBE)、RBE荷重線量、腫瘍制御確率(TCP)、正常組織障害発生確率(NTCP)、合併症なしの治癒、二次癌、及び/又は全生存率を含む生物学的エンドポイントを定量化する。本開示によれば、治療後の生物学的応答を推定することを目的とした任意のモデルを用いることができる。
【0024】
さらに好ましい実施形態において、最適化問題は、最適化中に維持されるパラメータを定義する制約を含む。制約は、例えば、最適化中に変化しない定義済みのサブ体積(例えば標的)の所定の線量の形態であり得る。このようにして、標的線量は、特定の線量分布を確実なものにするべく維持されるが、放射線治療計画の残りの部分は堅牢に最適化される。
【0025】
有利な実施形態において、最適化問題は、生物学的目標又は物理的目標を含む。好ましくは、物理的目標は、治療体積における標的及びリスク臓器(OAR)への線量制限、線量体積ヒストグラム(DVH)制限、LET制限、粒子の停止位置、及び/又は均一性指数及び原体性指数を含む。このようにして、生物学的不確実性は、他の(物理的)目的と組み合わせることもできる。計画の最適化及び評価は、異なる生物学的モデルを組み合わせて、並びに、物理的な最適化関数及び目標と組み合わせて使用することができるべきである。
【0026】
最適化問題は、標的及びリスク臓器へのそれぞれ最小線量及び最大線量、及びDVH制限などの物理的目標と、EUD、TCP、及びNTCPなどの生物学的目標との組み合わせとすることもできる。
【0027】
好ましい実施形態において、堅牢な最適化は、最適化関数の期待値が最小にされる確率的プログラミング手法、エラーシナリオの最適化関数の最大値が最小にされるミニマックス手法、又は一般にミニマックス確率的プログラミングと呼ばれるこの2つの任意の組み合わせ、又は個々に考慮される各ボクセルへのワーストケース線量が最適化されるボクセルごとのワーストケース手法を含む。
【0028】
有利な実施形態において、シナリオのセットは少なくとも第3のシナリオをさらに含み、第3のシナリオは、粒子の範囲、治療体積の空間位置、放射線治療装置のセットアップ、照射組織の密度、相互作用効果、臓器の移動、及び/又は生物学的モデルのパラメータ値を含む、治療計画作成に関連する1つ以上のパラメータの不確実性の明確な認識を表す。このようにして、生物学的不確実性はまた、治療計画作成に関連するパラメータに関連付けられる他の不確実性と組み合わせることができる。
【0029】
代替的な実施形態では、放射線治療計画を生成するステップは、既存の放射線治療を適応させることを含む。このようにして、「ウォームスタート」は、ゼロから始める場合に比べて堅牢に最適化された放射線治療計画により速く且つより少ない計算負荷で到達するべく、既存の放射線治療計画から始めることによって達成され得る。既存の放射線治療計画は、患者のために以前に生成された任意の放射線治療計画(又は自動的に取得されるデフォルトのパラメータ値を使用して生成された標準的な放射線治療計画)であり得る。
【0030】
別の態様によれば、コンピュータで実行されるときに第1の態様に係る方法をコンピュータに実行させるコンピュータ可読コード手段を備えるコンピュータプログラム製品が提供される。
【0031】
また別の態様によれば、プロセッサによって実行されるときに第1の態様に係る方法をプロセッサに実行させるコンピュータ可読命令を格納しているメモリに結合されたプロセッサを備えるコンピュータシステムが提供される。
【0032】
さらなる態様によれば、前述のコンピュータシステムを含む治療計画作成システムが提供される。
【0033】
本開示のこれらの及び他の特徴、態様、及び利点は、添付図を参照しながら以下の記述でさらに説明される。
【図面の簡単な説明】
【0034】
図1】本開示の一実施形態に係る、堅牢な放射線治療計画を生成するためのコンピュータベースの方法のステップを表す流れ図である。
図2】本開示の一実施形態に係る、放射線治療計画を評価する、視覚化する、生成する、及び改善するためのコンピュータベースのシステムを概略的に示す図である。
【発明を実施するための形態】
【0035】
本明細書では、可能な場合、図面に共通の同一の要素を表すために同一の参照番号が用いられる。また、図面の画像は、説明のために簡略化されており、必ずしも一定の縮尺で描かれているわけではない。
【0036】
図1は、放射線治療計画を生成することと併せて用いられ得る、本発明に係る方法の一実施形態の流れ図である。一実施形態において、開始点は、最初の治療計画と考慮すべきいくつかのシナリオであり、この方法は、最初の治療計画に基づいて改善された治療計画を得ること、いくつかの制約を伴う最初の計画を修正すること、又は最初の治療計画がすべてのマシン制限を満たさない場合に送達可能な治療計画を得ることを目的としている。計画に含まれるデータのタイプに応じて、線量計算のために他の入力データ、例えば、患者に関連するデータが必要とされる場合がある。最初の治療計画は、シナリオベースの方法及び非シナリオベースの方法を含む当該技術分野では公知の任意の様態で得ることができる。通常、これは同じ患者向けに作成された以前の計画である(「ウォームスタート」に対応する)が、前述のように標準的な計画のライブラリから自動的に取得することもできる。
【0037】
治療計画は、腫瘍又は腫瘍細胞のクラスタであり得る標的を含む臓器であり得る被検者(患者)の治療体積の放射線治療を提供することを目的として生成される。治療体積は、当該技術分野では公知のように複数のボクセルを使用して定義される。
【0038】
第1のステップS100において、放射線治療に関係する生物学的エンドポイントに関する最適化関数が定義される。生物学的エンドポイントは、前述のように放射線の生物学的影響を推定するために生物学的モデルに基づいて定量化され、例えば、等価均一分布(EUD)、等価標準分割線量(EQD)、生物学的等価線量(BED)、生物学的効果比(RBE)、RBE荷重線量、腫瘍制御確率(TCP)、正常組織障害発生確率(NTCP)、合併症なしの治癒、二次癌、及び/又は全生存率のうちの1つ又は複数に課される最大及び/又は最小限界又は目標を含み得る。
【0039】
最適化関数は、制約として最適化に含まれ得る。代替的に、最適化関数は、目的関数の構成要素として最適化に含まれ得る。通常、治療の目標が設定され、これらの目標は、目的関数の構成要素、制約、又はこれらの組み合わせを定義するのに用いられる。目的関数の構成要素は、最適化が目指すべき、又は最適化が可能な限り達成することを試みる所望の目標であり、一方、制約は、腫瘍への最小線量又はOARへの最大線量又は目的関数を制御する変数の境界などの正確に満たされなければならない厳しい目標又は条件である。
【0040】
一般に、第1の放射線生物学的目的は、1つ以上のシナリオを使用して定義される。例えば、第1のシナリオは、第1の放射線生物学モデルに基づいている場合があり、第2のシナリオは、第2の放射線生物学モデルに基づいている場合がある。第1及び第2の放射線生物学モデルのうちの一方又は両方がパラメータ値の1つよりも多いセットを有する場合、各放射線生物学モデルのパラメータ値の各セットは、本開示に係る方法で用いられる異なるシナリオをもたらし得る。この原理は、様々な放射線生物学モデル及びパラメータセットに基づくさらなるシナリオをもたらすさらなる放射線生物学的目的、並びに、1つ以上のシナリオでの物理的目標を用いてさらに拡張することができる。
【0041】
例として、陽子線治療計画では、目標がすべての構成で可能な限り良好に達成されるように、異なるシナリオとしてそれぞれパラメータ値の異なるセットを有するいくつかのRBEモデル(一定のRBEモデルを含む)を使用して、RBE荷重線量に基づいていくつかの定義された目標を達成することを目的として治療計画を最適化することを選択することができる。したがって、計画は、モデル選択及びパラメータ値の影響を受けにくく、且つ、モデル及び/又はパラメータの不正確さによって引き起こされるエラーに対してより堅牢である。
【0042】
陽子計画の堅牢な最適化では、RBE荷重線量は、標準の一定のRBEモデル(RBE=1.1)と、例えばそれぞれ様々なパラメータ値を含む異なる可変のLETベースのRBEモデルとの両方を用いて計算することができる。したがって、計画は、公称パラメータ値を有する1つのモデルに強く依存することはなく、不確実性を組み込むために例えばワーストケース最適化を使用する。これは以下の例1でより詳細に説明する。
【0043】
別の例は、同じエンドポイントに関して異なるTCP及びNTCPモデルを用いることであり、各モデルは、別のエンドポイントに関する他のモデル及びパラメータ値のセットと共に、パラメータ値の異なるセットを有することができる。これらの生物学的モデルは、他の物理的目標と組み合わせることができる。これは以下の例2でより詳細に説明する。
【0044】
ステップS102において、少なくとも第1のシナリオ及び第2のシナリオを含むシナリオのセットが定義される。シナリオは、放射線治療に関係した生物学的エンドポイントを定量化するときの生物学的モデルの不確実性を表す。シナリオは手動で又は自動的に定義することができる。シナリオを定義するいくつかの半自動の方法も考えられる。好ましい実施形態において、ユーザは、システムへの入力として不確実性の大きさを設定することができ、これにより、不確実性に基づいてシナリオの適切なセットが計算される。
【0045】
ステップS104において、シナリオのセットにおける各シナリオの最適化関数値が計算される。ステップS106において、最適化関数値が堅牢に最適化され、シナリオのセットで評価され、放射線治療計画が生成される。
【0046】
堅牢性を達成するための様々なタイプの最適化方法を本開示に係る方法と併せて用いることができる。例えば、合成目的関数のワーストケースのシナリオが最適化される、ミニマックス(又は「合成ワーストケース」)最適化を用いることができる。この最適化問題は、次のように定式化され、
【数1】
式中、Xは、実行可能な最適化変数のセット(例えば、可能なスポットウェイト、MLCリーフ位置などのセット)であり、Sは、様々な生物学的モデルを列挙するシナリオのセットであり、f(x;s)は、シナリオsの下での最適化変数xの関数としての合成目的関数である。例えば、f(x;s)は、g(d(x;s))によって与えられ、式中、gは、シナリオsの下での最適化変数xから得られる線量d(x;s)に関係する関数である。ここで、sは、当該関数を完全に変化させ得るパラメータであり、例えば、f(x;s)は、第1のNTCPモデルから得られるNTCPであり、f(x;s)は、第2のNTCPモデルから得られるNTCPであり、同様に、d(x;s)は、第1のRBEモデルから得られるRBE荷重線量であり、d(x;s)は、第2のRBEモデルから得られるRBE荷重線量であり得る。
【0047】
堅牢性を達成するための別のタイプの最適化方法は、不確実性の期待値が最適化される、期待値最適化である。この最適化問題は、以下のように定式化され、
【数2】
式中、Eは、期待値演算子であり、Yは、シナリオのセットSからの値をとる確率変数である。
【0048】
第3の代替例は、ボクセルごとのワーストケース最適化方法である。この方法では、2つの人工ワーストケース線量分布dhigh及びdlowが計算される。ここで、dhighは、個々に考慮される各ボクセルへのシナリオ全体の最高線量として計算され、dlowは、個々に考慮される各ボクセルへのシナリオ全体の最低線量として計算され、すなわち、
【数3】
【数4】
であり、式中、dは、ボクセルiへの線量を示し、Nはボクセルの数である。
【0049】
この最適化問題は、次のように定式化され、
【数5】
式中、fhighは、過剰線量を回避するために用いられる構成要素を有する合成目的関数(例えば、リスク臓器OARに関する目的関数)であり、flowは、過少線量を回避するために用いられる構成要素を有する合成目的関数(例えば、標的に関する最小線量要件)である。
【0050】
別の代替例は、シナリオの全セットSに必ずしも(しかしおそらく)関係しない目的関数h(x)を最小にし、Sにおけるすべてのsに関する関数f(x;s)の制約を含めることである、すなわち、
【数6】
【数7】
である。この目的関数h(x)は、上記の方法のいずれかに従って定式化することができるが、エラーがないことに対応する公称シナリオのみを考慮に入れるように定式化することもできる。
【0051】
合成ワーストケース最適化と期待値最適化との組み合わせである確率的ミニマックス法などの他の方法も用いることができ、当該技術分野では公知である。
【0052】
ここで図2に移ると、本開示に係る、放射線治療計画114を生成するためのコンピュータベースのシステム100の簡略化された概略図が示されている。コンピュータベースのシステム100は、放射線治療計画114が格納されているメモリ又はデータベース110と、改善された放射線治療計画118を生成するためのコンピュータプログラム116を含む。メモリ110は、フラッシュドライブ、ハードドライブ、光学ドライブ、ダイナミックランダムアクセスメモリ(DRAM)、スタティックランダムアクセスメモリ(SRAM)、及び情報の格納とその後の情報の取得及びデータ処理に用いるための任意の他の適切なデバイスなどの、任意の揮発性又は不揮発性メモリデバイスとすることができる。また、システム100は、メモリ110にアクセスすることができる、データ処理を実行するための1つ以上のハードウェアプロセッサ120を含む。ハードウェアプロセッサ120は、中央処理装置(CPU)、デジタル・シグナル・プロセッサ(DSP)、縮小命令セットコンピュータ(RISC)、特定用途向け集積回路(ASIC)、コンプレックス・プログラマブル・ロジック・デバイス(CPLD)、フィールド・プログラマブル・ゲート・アレイ(FPGA)、パラレルプロセッサシステム、又はこれらの異なるハードウェアプロセッサタイプの組み合わせのうちの1つ以上で作製することができる。
【0053】
コンピュータプログラム116は、ハードウェアプロセッサ120に転送することができ、且つ、ハードウェアプロセッサ120によって実行することができる、コンピュータ可読命令で作製される。ハードウェアプロセッサ120上で実行されるときに、コンピュータ可読命令は、改善された放射線治療計画118を生成するための方法を実行する。コンピュータプログラム116を実行するときにハードウェアプロセッサ120によって実行される処理の結果、例えば、改善された放射線治療計画118及び関連するデータを、メモリ110に格納することができる。ハードウェアプロセッサ120はまた、ダイレクトメモリアクセス(DMA)を介してメモリ110にアクセスすることができ、一時的な処理結果を記憶するためにキャッシュメモリを用いることもできる。コンピュータプログラム116はまた、一時的でないコンピュータ可読媒体130、例えば、ユニバーサルシリアルバス(USB)フラッシュドライブ、CD-ROM、DVD-ROM、及びブルーレイディスクなどの光学データキャリア、フロッピーディスク、交換可能なハードウェアドライブ、USB外付けハードドライブ(HDD)、又は他の任意のポータブル情報記憶装置に格納することができ、ゆえに、コンピュータプログラム116は、異なるコンピューティングシステムに転送する、及び、システム100のメモリ110にロードすることもできる。これは、データリーダ/ライタ140、例えば、光学ドライブ、USBインターフェースなどを介して、コンピュータ可読媒体130をシステム100に接続することによって行うことができる。
【0054】
さらに、システム100はまた、データ処理の結果の視覚化、例えば腫瘍又は癌細胞を含む患者の標的体積と線量投与を防ぐ必要がある健康なリスク臓器の三次元(3D)表現、3D輪郭データ、又は標的体積とリスク臓器との両方における様々な交差方向及びLET分布の二次元(2D)スライス表現、生物学的影響(例えば、損傷/細胞死/副作用の確率)などを視覚化することを可能にするディスプレイドライバを有するディスプレイユニット150を含む。例えば、CTスキャンの3Dコンピュータ再現を表示することができる。また、ディスプレイユニット150は、グラフィカルな2Dフォーマットを用いることによって3D線量分布を要約する線量体積ヒストグラム(DVH)を表示することができる。例えば、ディスプレイユニット150は、放射線治療計画114の線量寄与を示す患者の体積に関するDVH線図と、最適化又は改善された放射線治療計画118の同じ体積に関するDVH線図の比較を示すように構成され、LET分布も視覚的に比較することができる。
【0055】
ディスプレイユニット150は、治療前に、治療中に、又は治療後に行われる患者の3Dスキャンを表示するために用いられる。例えば、CTスキャンの3Dコンピュータ再現を表示することができる。また、ディスプレイユニット150は、LET、線量、及び/又はグラフィカルな2Dフォーマットを用いること又は数値フォーマットを用いることによって3D線量分布を要約するDVHを表示することができる。例えば、ディスプレイユニット150は、癌細胞破壊又は放射線治療計画114の線量寄与を示す患者の体積に関するLET線図の比較を示すように構成される。これは、改善を視覚的に比較することができるように、最適化又は改善された放射線治療計画の同じ体積に関して示され、比較される。また、ディスプレイユニット150は、タッチスクリーン機能を搭載し、システム100を動作させるためにグラフィカルユーザインターフェースを表示することが可能であり得る。
【0056】
加えて、コンピュータシステム100は、ハードウェアプロセッサ120、メモリ110、データリーダ140、タッチスクリーン、及び図示していない他の様々なデータ入力-出力インターフェース及び周辺装置を接続するシステムバス160を有する。例えば、コンピュータシステム100は、ユーザによるデータ入力のためにキーボード170に接続することができ、放射線治療計画を作成した外部照射治療計画作成デバイス180、例えば、高性能の専用コンピュータに接続することができる。また、システム100は、図示していないCTスキャナに接続することができる。例えば、放射線治療計画114を作成した外部デバイス180は、線量及びLET分布計算アルゴリズムを策定することができ、これは、ソフトウェアにコード化され、処方線量分布に関する放射線データ、及びマシン校正データ、及び患者の標的体積及びリスク臓器の患者固有の情報にアクセスし得る。次いで、この外部デバイス180は、評価、視覚化、新しい計画の作成、LET分布を考慮に入れた既存の計画の改善のために、放射線治療計画114をコンピュータシステム100に送達することができる。しかしながら、コンピュータプログラム116が外部デバイス自体で実行され、これにより、放射線治療計画114を生成するだけでなく改善された放射線治療計画118を生成することも可能である。
【0057】
さらに、パラメータの最適化を行うためのコンピュータプログラム製品が導入される。このコンピュータプログラム製品130は、コンピュータで実行されるときに前述の方法を実行するコンピュータ可読コード手段を備える。
【0058】
例1:RBE荷重線量の堅牢な生物学的最適化
荷電粒子を用いた放射線療法(陽子線治療、炭素イオン治療など)では、腫瘍及びリスク臓器への線量を処方するときに生物学的効果比(RBE)を考慮に入れる必要がある。線量を用いる代わりに、各ボクセルの線量にそのボクセルの局所RBEを乗算したRBE荷重線量が用いられる。しかしながら、RBEは、粒子の微視的エネルギー付与特徴、局所線量、組織特徴、関心ある生物学的エンドポイント、組織の酸素化度などの合成関数である。RBEを計算するためにいくつかのモデルを利用することができ、モデルは多かれ少なかれ生物学的メカニズムによるものなので、実験RBEデータの大きな不確実性に起因して、結果として得られるRBEはモデルに大きく依存する。
【0059】
問題:RBE荷重線量を計算するためにどのRBEモデルを用いるべきか?
【0060】
推奨される解:RBEの不確実性を考慮に入れるために、少なくとも2つのRBEモデルを選択し、RBE荷重線量を堅牢に最適化する。
- 新しい治療計画を定義する、又は、任意の最適化方法を使用して以前に最適化された治療計画から開始する。
- RBEの不確実性に対して堅牢に最適化することが望まれるRBE荷重線量に関する少なくとも1つの目的を定義する。このような目的の例は、以下であり得る。
- 腫瘍への最小又は最大RBE荷重線量
- OARへの最大RBE荷重線量
- OARへの最大平均RBE荷重線量
- 随意的に、合成目的関数に他の目的又は制約を追加する。
- RBEを計算するために少なくとも2つの異なる放射線生物学モデルを選択する。
- 選択された各RBEモデルのシナリオを定義する。その場合、各シナリオは、堅牢な最適化に用いられるシナリオを表す。
- 好ましい堅牢な最適化フレームワークを使用して治療計画を堅牢に最適化する。
【0061】
例2:TCP及び/又はNTCPの堅牢な生物学的最適化
放射線療法では、単位質量あたりの減損エネルギーの物理量、いわゆる、吸収線量が、生物学的影響の代用としてよく用いられる。したがって、生物学的影響が関心ある初期量であるが、放射線治療計画は、多くの場合、線量の観点から最適化される。
【0062】
しかしながら、腫瘍制御確率(TCP)及び正常組織障害発生確率(NTCP)に関する放射線生物学モデルの使用により、生物学的影響を直接最適化することもできる。しかしながら、例えばTCP及びNTCPに関する臨床データにおける大きな不確実性により、同じ生物学的エンドポイント(特定の生物学的影響に関するTCP又はNTCP)の計算のためのいくつかの放射線生物学モデルが存在する。さらに、線量以外にも、様々なモデルはまた、喫煙、糖尿病、年齢、性別などの因子の影響を考慮に入れている。
【0063】
問題:放射線治療計画の生物学的最適化にどのTCP及び/又はNTCPモデルを用いるべきか?
【0064】
推奨される解:生物学的不確実性を考慮に入れるために、同じ生物学的エンドポイントの少なくとも2つの放射線生物学モデルを選択し、堅牢に最適化する。
- 新しい治療計画を定義する、又は、任意の最適化方法を使用して以前に最適化された治療計画から開始する。
- 放射線生物学モデルに基づいて少なくとも1つの目的を定義する。このような目的の例は、以下であり得る。
・特定の生物学的エンドポイントに関するNTCPは、最小にされるか又は特定の確率を下回るべきである。
・TCPは、最大にされるか又は特定の確率を上回るべきである。
- 随意的に、合成目的関数に他の目的又は制約を追加する。
- TCP及び/又はNTCPを計算するために少なくとも2つの異なる放射線生物学モデルを選択する。
- 選択された各放射線生物学モデルのシナリオを定義する。その場合、各シナリオは、堅牢な最適化に用いられるシナリオを表す。
- 好ましい堅牢な最適化フレームワークを使用して治療計画を堅牢に最適化する。
【0065】
放射線治療計画を生成するための方法及びシステムの好ましい実施形態を上記に開示してきた。しかしながら、これは本発明のアイデアから逸脱することなく付属の特許請求の範囲内で変更され得ることが当業者にはわかるであろう。
【0066】
上記のすべての説明した代替的な実施形態又は実施形態の一部は、組み合わせが矛盾しない限り、本発明のアイデアから逸脱することなく互いに自由に組み合わせる又は別々に使用することができる。
【0067】
以下の略語が用いられる:
BED: biological equivalent dose(生物学的等価線量)
CT: computer tomography(コンピュータ断層撮影法)
CTV: clinical tumor volume(臨床腫瘍体積)
DICOM: digital imaging and communications in medicine(医用におけるデジタル画像と通信)
DVH: dose volume histogram(線量体積ヒストグラム)
EHR: electronic health record system(電子カルテシステム)
EQD: equivalent standard fraction dose(等価標準分割線量)
EUD: equivalent uniform distribution(等価均一分布)
eMIX: electronic medical information exchange system(電子医療情報交換システム)
GUI: graphical user interface(グラフィカルユーザインターフェース)
GTV: gross tumor volume(肉眼的腫瘍体積)
HIS: hospital information system(病院情報システム)
HIM: health information management system(健康情報管理システム)
IMRT: intensity-modulated radiotherapy(強度変調放射線療法)
LET: linear energy transfer(線エネルギー付与)
MLC: multileaf collimator(マルチリーフコリメータ)
MRI: magnetic resonance imaging system(核磁気共鳴画像法システム)
MU: monitor units(モニタユニット)
NTCP: normal tissue complication probability(正常組織障害発生確率)
OAR: organ at risk(リスク臓器)
PBS: pencil beam scanning(ペンシルビームスキャニング)
PET: positron emission tomography(ポジトロン断層撮影法)
PTV: planning tumor volume(計画腫瘍体積)
QA: quality assurance(品質保証)
QC: quality control(品質管理)
US: ultrasonography(超音波検査)
RBE: relative biological effectiveness(生物学的効果比)
ROI: region of interest(関心領域)
RVS: record and verify system(記録検証システム)
SPECT: single photon positron emission tomography(単一光子ポジトロン断層撮影法)
TCP: tumor control probability(腫瘍制御確率)
図1
図2