IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ コグネクス コーポレイションの特許一覧

特許7568752スペックルレーザー線の発生を低減する系および方法
<>
  • 特許-スペックルレーザー線の発生を低減する系および方法 図1
  • 特許-スペックルレーザー線の発生を低減する系および方法 図2
  • 特許-スペックルレーザー線の発生を低減する系および方法 図3
  • 特許-スペックルレーザー線の発生を低減する系および方法 図4
  • 特許-スペックルレーザー線の発生を低減する系および方法 図5
  • 特許-スペックルレーザー線の発生を低減する系および方法 図6
  • 特許-スペックルレーザー線の発生を低減する系および方法 図7
  • 特許-スペックルレーザー線の発生を低減する系および方法 図8
  • 特許-スペックルレーザー線の発生を低減する系および方法 図9
  • 特許-スペックルレーザー線の発生を低減する系および方法 図10
  • 特許-スペックルレーザー線の発生を低減する系および方法 図11
  • 特許-スペックルレーザー線の発生を低減する系および方法 図12
  • 特許-スペックルレーザー線の発生を低減する系および方法 図13
  • 特許-スペックルレーザー線の発生を低減する系および方法 図14
  • 特許-スペックルレーザー線の発生を低減する系および方法 図15
  • 特許-スペックルレーザー線の発生を低減する系および方法 図16
  • 特許-スペックルレーザー線の発生を低減する系および方法 図17
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-10-07
(45)【発行日】2024-10-16
(54)【発明の名称】スペックルレーザー線の発生を低減する系および方法
(51)【国際特許分類】
   G01B 11/00 20060101AFI20241008BHJP
【FI】
G01B11/00 H
【請求項の数】 26
【外国語出願】
(21)【出願番号】P 2023000726
(22)【出願日】2023-01-05
(62)【分割の表示】P 2019539240の分割
【原出願日】2018-01-19
(65)【公開番号】P2023026639
(43)【公開日】2023-02-24
【審査請求日】2023-02-06
(31)【優先権主張番号】62/448,250
(32)【優先日】2017-01-19
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】15/675,629
(32)【優先日】2017-08-11
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】502045574
【氏名又は名称】コグネクス コーポレイション
(74)【代理人】
【識別番号】110000523
【氏名又は名称】アクシス国際弁理士法人
(72)【発明者】
【氏名】ジョン・エフ・フィルハーバー
【審査官】山▲崎▼ 和子
(56)【参考文献】
【文献】国際公開第2012/032668(WO,A1)
【文献】国際公開第2006/137326(WO,A1)
【文献】特開2015-145972(JP,A)
【文献】特開2009-294249(JP,A)
【文献】特開2012-093238(JP,A)
【文献】特開2013-011908(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01B 11/00-11/30
G03H 1/00-5/00
G02B 27/00-30/60
(57)【特許請求の範囲】
【請求項1】
照射対象から反射した光におけるスペックル現象を低減するための照射装置であって、
コヒーレント光を照射するように構成された光源と、
前記照射対象と前記光源との間の光路内に位置し、かつ前記コヒーレント光を、前記照射対象の少なくとも一部を横切る一つの面に沿って拡がる散光へと拡散するように構成される、ホログラムまたはシリンダーアレイを含んだリニアディフューザーと、
前記光路内において、前記光源と前記リニアディフューザーとの間に位置するビーム偏向子と、
前記ビーム偏向子に結合した制御手段と
を含み、
前記散光が、前記一つの面に対して垂直な方向に沿っては概して拡がらないような平面ファン光を形成するものであり、
前記制御手段が、前記ビーム偏向子を稼動することで、前記リニアディフューザー上の複数の位置を通って掃引するように、前記コヒーレント光が前記ビーム偏向子へと投射されるようにするように構成され、かつ
前記複数の位置が、前記リニアディフューザーを横切る距離にわたって存在し、前記距離が、前記平面ファン光の前記照射対象との交わりから反射する光について、撮像素子において十分に無相関なスペックルパターンを与え、前記撮像素子により撮像される際に非コヒーレント的に加算されるものであり、
前記リニアディフューザーが、前記平面ファン光を前記照射対象上に投射することにより、前記一つの面に沿う光路に沿った入射光の掃引に基づいて、前記一つの面に沿って非連続的であるパターンを形成するように構成される
ことを特徴とする、照射装置。
【請求項2】
前記光源がレーザーを含む、請求項1に記載の照射装置。
【請求項3】
前記ビーム偏向子が、微小電気機械システム(MEMS)鏡を含む、請求項1または2に記載の照射装置。
【請求項4】
前記ビーム偏向子が、音響光学変調(AOM)装置を含む、請求項1または2に記載の照射装置。
【請求項5】
さらに
前記光路内において、前記リニアディフューザーと前記ビーム偏向子との間に位置するシリンダーレンズ
を含み、
前記シリンダーレンズが、前記リニアディフューザーに向けられた前記コヒーレント光のすべてを集約することで、効率を上げるための視野レンズとして機能する
ことを特徴とする、請求項1に記載の照射装置。
【請求項6】
さらに
シリンダーレンズ
を含み、
前記リニアディフューザーが、前記ビーム偏向子と前記シリンダーレンズとの間に位置し、かつ、
前記シリンダーレンズが、前記照射対象に向けられた前記散光のすべてを集約することで、効率を上げるための視野レンズとして機能するように構成される
ことを特徴とする、請求項1に記載の照射装置。
【請求項7】
前記リニアディフューザーが、前記一つの面に沿ったフラットトップ強度プロファイルを備える加工ディフューザーを含む、請求項1に記載の照射装置。
【請求項8】
前記リニアディフューザーが自由スペクトル範囲(Free Spectral Range; FSR)を備えるチャープ回折格子を含むことにより、前記平面ファン光中における回折線の間隔が、前記リニアディフューザーに投射される前記コヒーレント光の掃引角に伴って変化させられる、請求項1に記載の照射装置。
【請求項9】
前記リニアディフューザーが、前記ビーム偏向子の基部に対して固定され、
前記制御手段が、前記ビーム偏向子を稼動して、前記コヒーレント光が前記リニアディフューザーに対して周期的に左右に掃引を行うように構成されることで、前記コヒーレント光が、前記散光により前記照射対象が照らされる露光時間内に、掃引周期の半分である左から右への掃引もしくは右から左への掃引のいずれかを介して誘導される
ことを特徴とする、請求項1に記載の照射装置。
【請求項10】
レーザー変位測定系であって、
視覚システムプロセッサと、
前記視覚システムプロセッサと結合するカメラ部品と、
前記視覚システムプロセッサと結合し、かつコヒーレント光を照射するように構成されるレーザービーム部品と、
前記コヒーレント光を受けるように設置されるビーム偏向子と、
前記ビーム偏向子と結合する制御手段と、
光路内において、照射対象と前記ビーム偏向子とのあいだに位置し、ホログラムまたはシリンダーアレイを含んだリニアディフューザーと
を含み、
前記制御手段が、前記ビーム偏向子を稼動することで、前記コヒーレント光が前記ビーム偏向子へ投射されるように誘導し、前記リニアディフューザー上の複数の位置を通って掃引するように構成され、
前記リニアディフューザーが、前記複数の位置において、前記ビーム偏向子から受ける前記コヒーレント光を拡散して散光を得るように構成され、前記散光は、前記照射対象の少なくとも一部を横切る一つの面内に拡がるものであり、かつ、前記散光は、前記一つの面に対して垂直な方向に実質的に拡がらないような平面ファン光を形成し、
前記複数の位置が、前記リニアディフューザーを横切る距離にわたって存在し、前記平面ファン光の前記照射対象との交わりから反射する光について、撮像素子において十分に無相関なスペックルパターンを与えることで、前記撮像素子により撮像される際に非コヒーレント的に加算され
前記リニアディフューザーが、前記平面ファン光を前記照射対象上に投射することにより、前記一つの面に沿う光路に沿った入射光の掃引に基づいて、前記一つの面に沿って非連続的であるパターンを形成するように構成される
ことを特徴とする、レーザー変位測定系。
【請求項11】
前記リニアディフューザーが、前記ビーム偏向子の基部に対して固定され、
前記制御手段が、前記ビーム偏向子を稼動して、前記コヒーレント光が前記リニアディフューザーに対して周期的に左右に掃引を行うように構成され、かつ、前記制御手段が、前記ビーム偏向子を稼動して、前記コヒーレント光を、前記散光により前記照射対象が照らされる露光時間内に、掃引周期の半分である左から右への掃引もしくは右から左への掃引のいずれかを介して誘導するように構成される
ことを特徴とする、請求項10に記載のレーザー変位測定系。
【請求項12】
前記リニアディフューザーが、前記一つの面に沿ったフラットトップ強度プロファイルを備える加工ディフューザーを含む、請求項10または11に記載のレーザー変位測定系。
【請求項13】
記パターンが、点群、および非照射間隔により分割される線分群のうちの少なくとも一方を含む、請求項10または11に記載のレーザー変位測定系。
【請求項14】
前記リニアディフューザーが、前記リニアディフューザーへ投射される前記コヒーレント光の掃引角に伴って、回折光線の前記平面ファン光中における間隔を変化させられるような自由スペクトル範囲(FSR)を有するチャープ回折格子を含む、請求項10または11に記載のレーザー変位測定系。
【請求項15】
前記ビーム偏向子が、微小電気機械システム(MEMS)鏡を含む、請求項10に記載のレーザー変位測定系。
【請求項16】
前記ビーム偏向子が、音響光学変調(AOM)装置を含む、請求項10に記載のレーザー変位測定系。
【請求項17】
さらに
前記光路内にて、前記リニアディフューザーと前記ビーム偏向子との間に位置するシリンダーレンズ
を含み、
前記シリンダーレンズは、前記リニアディフューザーに向けられた前記コヒーレント光のすべてを集約することで、効率を上げるための視野レンズとして機能するよう構成される
ことを特徴とする、請求項10に記載のレーザー変位測定系。
【請求項18】
さらに
シリンダーレンズ
を含み、
前記リニアディフューザーが、前記ビーム偏向子と前記シリンダーレンズとの間に位置し、かつ、
前記シリンダーレンズが、前記照射対象に向けられた前記散光のすべてを集約することで、効率を上げるための視野レンズとして機能するように構成される
ことを特徴とする、請求項10に記載のレーザー変位測定系。
【請求項19】
前記レーザービーム部品がレーザーを含む、請求項10に記載のレーザー変位測定系。
【請求項20】
前記カメラ部品が、
前記平面ファン光の前記照射対象との交わりから反射する光を捕捉し、
捕捉した光から画像データを生成する
ように構成される、請求項10に記載のレーザー変位測定系。
【請求項21】
前記視覚システムプロセッサが、
前記カメラ部品から前記画像データを受信し、
前記画像データを処理して、前記照射対象の領域における測定および検査のうちの少なくとも一方を行う
ように構成される、請求項20に記載のレーザー変位測定系。
【請求項22】
前記カメラ部品が、第一の光軸面を持つ撮像センサーと、前記第一の光軸面とは非平行な第二の光軸面を持つレンズ部品とを含み、それぞれが前記平面ファン光に対してScheimpflugの原理に従って配向する、請求項10に記載のレーザー変位測定系。
【請求項23】
前記リニアディフューザーが、散乱角を有する前記シリンダーアレイを含み、
前記リニアディフューザーが、前記リニアディフューザーの第一の側において前記コヒーレント光を受けるように構成され、かつ、前記散乱角に基づいて、前記リニアディフューザーの第二の側から前記散光を出力するように構成されるものであり、
ここで前記第二の側は、前記第一の側の反対側であり、
前記散光は、前記照射対象の前記少なくとも一部を横切る前記一つの面に沿って、照射線として拡がる
ことを特徴とする、請求項1に記載の照射装置。
【請求項24】
前記散乱角が、 2*(atan((LL/2)/DO)) 以上であり、ここでLLは前記照射線の長さであり、DOは前記リニアディフューザーと前記照射対象との間の作業距離である、請求項23に記載の照射装置。
【請求項25】
前記リニアディフューザーが、散乱角を有する前記シリンダーアレイを含み、
前記リニアディフューザーが、前記リニアディフューザーの第一の側において前記コヒーレント光を受けるように構成され、かつ、前記散乱角に基づいて、前記リニアディフューザーの第二の側から前記散光を出力するように構成されるものであり、
ここで前記第二の側は、前記第一の側の反対側であり、
前記散光は、前記照射対象の前記少なくとも一部を横切る前記一つの面に沿って、照射線として拡がる
ことを特徴とする、請求項10に記載のレーザー変位測定系。
【請求項26】
前記散乱角が、 2*(atan((LL/2)/DO)) 以上であり、ここでLLは前記照射線の長さであり、DOは前記リニアディフューザーと前記照射対象との間の作業距離である、請求項25に記載のレーザー変位測定系。
【発明の詳細な説明】
【技術分野】
【0001】
[関連出願]
本出願は、共に係属中である2017年01月19日出願の米国特許仮出願第62/448,250号「SYSTEM AND METHOD FOR REDUCED-SPECKLE LASER LINE GENERATION」および2017年08月11日出願の米国特許出願第15/675,629号「SYSTEM AND METHOD FOR REDUCED-SPECKLE LASER LINE GENERATION」の優先権の利益を、35 U.S.C.§119(e)(1)に則って主張するものである。これらの先願の教示内容はこの参照により本出願に明示的に含まれる。
【0002】
[技術分野]
本開示は、レーザー線の生成および照射のためのシステム、装置、および方法に関する。特には本開示は、三次元(3D)の機械視覚(マシンビジョン)系中で使用できるようなレーザー線の生成および照射のためのシステム、装置、および方法に関する。
【背景技術】
【0003】
スペックル(speckle; 斑点模様)は、あらゆるレーザーおよびレーザー線照射器に影響する現象である。スペックルは、照射対象面の粗さにより微小な回折領域ができるために発生する。この微小な回折領域を持つ面にレーザー照射をすると、不規則な粒々の「斑点模様」が現れてしまうのである。こうしたスペックル現象が起こるのは、同一周波数でありかつ異なる相および振幅である多数の波が干渉し、コヒーレント的に足し合わされて振幅(ひいては強度)が不規則に変わる波ができるためである。面に光波を照射すると、回折理論に従って、照射された面上の各点が、二次球面波の源としてふるまうことになる。散乱光野中のどの点における光も、照射面上の各点から散乱してきた波同士から成っているということである。そして面の粗さが、一波長分よりも大きな経路長の違いができる程度の粗さであった場合には、その経路長の違いによって相変化が2πを超えるようになるので、得られる光における振幅そして強度が不規則に変わってきてしまうというわけである。また低コヒーレンスの光(すなわち、多数の波長から成っている光)を使う場合には、通常はスペックルパターンは観察されないのだが、これは個々の波長から生成するスペックルパターン群は異なる大きさを有しているので、通常は互いに均されてしまうからである。しかしながらレーザーなどのコヒーレントな光源にとっては、スペックルパターンは避けられないものである。
【0004】
スペックルが問題になってくるのは、例えばレーザー変位センサー(displacement sensor; DS)系などの撮像用途である。そうしたレーザーDS系は、物体に対して平面ファン(光扇)光を投射して、投射された平面ファンがその物体の3D表面と交わることになる。その3D表面は、照射輪郭(照射線とも言う)に沿ってDSの方を向いている。なお、この物体の3D表面自体が平面である場合は、平面ファン光とその3D表面との交わりが真の直線の一部分になるのに留意されたい。しかしながらその物体の3D表面が曲がっている場合には、平面ファン光が交わるのは、その3D表面の曲がった輪郭を表わす曲線に沿ってのことになる。レーザーDS系から物体に投射される平面ファンには、一個以上のレーザーファンが含まれる。こうしたレーザーファンは例えば、非球面レンズ(Powellレンズなど)またはその他の適切な発生器(シリンダーレンズ、ホログラフィック、シリンダーアレイ、リニアディフューザー、もしくはそれらの組み合わせなど)にレーザービームを通すことによって形成可能である。レーザーDS系が有するカメラセンサーは、平面ファンの軸とは平行ではないカメラ軸に沿って、照射輪郭(illumination contour)に対応する3D表面の一部から反射する光を拾う。そしてレーザーDS系はこの照射線(直線光 line lightとも呼ぶ)から受けた光を用いて、カメラセンサー上で照射線を結像する。するとこのレーザーDS系に関連づけられたプロセッサが、照射線の画像に基づいて、3D表面の輪郭上での三角測量を行う。しかしながら拾える直線光は、スペックルのせいで凸凹のある非対称な不規則性を持っているため、カメラセンサー上で結像する照射線の位置はあまり正確にならない。すなわち照射線画像における凸凹、および照射線の軸に対して垂直な方向の非対称性が、3D表面の高さにおける誤差として表われてしまう。よってスペックルを低減すれば、レーザーDS系による輪郭の測定において、不確実性を減らしかつ正確性を向上できることになる。
【0005】
スペックルを低減しようとした現行技術はいくつかある。例えば可動式ディフューザー(拡散板)を固定ビーム光路内に設置することで、光線の画像中の不作為なスペックルを、無相関なスペックルパターン群の平均によって非コヒーレントに重ね合わせるという手法がある。しかしながら、このディフューザーではビームを或る方向へと拡散させてしまうので、光線プロファイルの品質を劣化させてしまうし、さらにはこうしたディフューザーの質量は(他の部品よりも)比較的重い傾向があるため、ディフューザーを動かすためには複雑な機構が要る上、スペックルパターンを変化させる速度(ひいては系のフレームレート)には制限が課されてしまうという欠陥がある。波長拡大を伴うような他のスペックル低減法にも、エクステント(画像範囲)を変更するにあたって不都合があり、コストが嵩む、複雑さが増す、および/もしくは他の不都合を伴ってしまうといった問題がある。したがってこれらの手法は、レーザー線を照射するための実用的な構成で用いるにはいまいち望ましいものとは言えない。
【0006】
また、散光からなる平面ファンを使って物体を正確に走査する試みもなされている。一般的には大概の走査構成は、動く物体、カメラ、および/もしくは照射器に依存している。これは視覚システム(ビジョンシステム)のプロセッサにて、その運動を追跡して相対距離へと換算しているからである。それゆえに機械系が必要になるわけだが、そうした機械系は摩耗するし、走査環境下の条件などによって劣化もしていってしまう。
【発明の概要】
【0007】
本開示に係る技術によれば、コヒーレントな光(レーザー)ビームを(例えば横方向に、巡回するように)動かして、固定式リニアディフューザー(フラットトップ強度プロファイルを有する加工リニアディフューザー、ホログラムその他の拡散部品、および/もしくはシリンダーアレイなど)を通過するようにさせることで、従来技術の欠陥を克服できる。こうすることで、ディフューザーを介して3D表面へと投射される散光からなる平面ファンがその3D表面と交わる箇所において生成される照射線の局所相を、十分に高速に変化可能となる。これは、可動式鏡構造を使って比較的小さな質量を周期的に動かすことによってビームの向きを変えているからである。例えば、MEMS鏡または可動質量が無いようなその他の構成(AOMなどの固相ビーム偏向子など)を、そうした可動構造として使ってもよい。このような構成によって比較的短い露光時間が可能になるのだが、それは投射される相そして撮像されるスペックルパターンが、露光時間に比べて高速に変化するためである。リニアディフューザーをこのように使うのは、高品質な平面ファンが得られるのを考慮してのことである。この高品質な平面ファンとは、平面ファンの軸に実質的に垂直な方向(つまり平面ファンの厚さ方向)における拡散および/もしくは(厚さの)増大が実質的に無いものである。撮像センサーを使うDSなどの実施形態においては、ビームの移動速度を、撮影フレームあたり1/2周期(左右移動)以上とすることで、撮像センサーが照射線の全長を撮像場面内に捉えられることになる。また、散光の平面ファンを作業面上に投射することでディフューザーが生成する照射線を、当該作業面上に実質的に固定するように視野レンズを付加することで維持できる。この視野レンズの付加によって、照射線強度のフレーム間のばらつきおよび光線内のばらつきを低減できる。なおこうした照射線強度のばらつきは、二分の一(1/2)周期に満たないか超える部分的走査から生じてしまうと考えられる。動作上、ディフューザーを横切る距離の存在によって、露光時間内に十分に非相関なスペックルパターンを提供できることになる。これにより、滑らかな照射線へと実質的に平均化でき、しかもスペックルコントラストを低減できる。さらなる実施形態では、二自由度の鏡部品(MEMSなど)を上述した構成に与えることで、第一の方向に沿って平面ファンを生成し、かつ第二の(直交する)方向に沿って対象面を走査するようにできる。一般的には、第一の方向の走査は高周波数で、第二の方向の走査は遅めの周波数で行う。
【0008】
例示的な実施形態では、スペックルを低減しつつ3D作業面に当てる照射線を発生するための系および方法が、平行ビーム(コリメートビーム)の形態を取るレーザー源(発振レーザー源など)と、リニアディフューザーとを含む。このリニアディフューザーは、移動する平行ビームの少なくとも一部を受け、自身を通過する光から平面ファンを形成し、散光からなる当該平面ファンを3D作業面へと投射することで、平面ファンの3D作業面との交わりとして照射線を形成する。可動部は、実質的にひとつ以上の平面内で走査挙動(周期的な掃引挙動など)を取るように平行ビームを動かす。例えばレーザー源は、固定レーザービーム源と、可動部によって駆動される移動式ビーム偏向子(周期的移動式ビーム偏向子など)とを含んでよい。非限定的な例として、ビーム偏向子はMEMS鏡を含んでよい。あるいは別の手法として、ビーム偏向子が別の機構(ガルバノメーターなど)により駆動されるものであってもよいし、またはビーム偏向子が固相ユニット(AOMなど)であってもよい。別の実施形態では、リニアディフューザーを可動部によって動かすことで、ディフューザーの光学的特性と振動挙動との組み合わせにより、平行ビームが一つの光線になるように形成されるようにできる。こうした構成においては、振動するレーザー源とリニアディフューザーとの間かまたはリニアディフューザーの直後に、さらに視野レンズを有していてもよい。またこうした視野レンズは、リニアディフューザーと一体化したものであってもよく、例えばリニアディフューザーとしての機能も提供できるホログラム中に視野レンズを作ってもよい。MEMS鏡が、実質的に直交する二つの自由度の各々に関して振動するように構成されていてもよく、そうすることで、第一の(高速な)走査方向に沿って平面ファンが生成し、かつ第二の(低速な)走査方向に沿って作業面上を平面ファンが移動するようにできる。種々の実施形態では、平面ファンを生成する装置を採用/使用して、レーザー変位センサー(DS)を構成/構築可能である。こうしたDSは、視覚システムプロセッサに動作可能に接続できる。或る実施形態では平面ファン生成装置が、加工リニアディフューザー、ホログラム、およびシリンダーアレイのうちの一種以上を有する光学部品を含んでよく、非連続的パターンを以って平面ファンを投射できるように構成可能である。こうした非連続的パターンにより、ドット、非照射間隔(ギャップ)により分割される光線セグメント、または他の適切なパターンのうちの一種以上を劃定できる。或る実施形態では、センサーを備えた作業面上に投射される平面ファンにより形成される照射線の少なくとも一部から、光が捕捉される。そしてこのセンサーが、捕捉した光から画像データを生成できるというわけである。こういった画像データを処理/使用して、作業面の或る領域上で測定および/もしくは検査を行うことができる。作業面が、測定対象物の少なくとも一部を成していてもかまわない。
【0009】
別の実施形態では、表面に投射される照射線におけるスペックル現象(speckle effect)および閃光現象(sparkle effect)のうちの少なくとも一方を低減するための系および方法が提供される。こうした系および方法では、平行光源と、中央光軸の両側に所定の(一種以上の)角度のついたファン光を生成できる光学部品とを採用する。ビームまたはファンが通過することになるリニアディフューザーは、その光学部品と作業面との間に位置する。光学部品としては、MEMS鏡、固相偏向子、およびPowellレンズのうちの一種以上が含まれてよい。また平行光源としてはレーザーがある。
【0010】
別の実施形態では、表面を走査して3D輪郭を定量するための系および方法が提供され、その輪郭探査器(profiler)と対象物とを走査中に相対的に静止したままにできるという利点を有している。視覚システムカメラにより、その光軸に沿って表面を撮影するように構成できる。また平行光源を離して用いて、光軸に対して非平行な角度を以ってビームを投射するようにも構成可能である。平行光源からのビームをMEMS鏡が受けて、光軸に対して非平行な角度を以って表面へと投射できる。鏡の制御手段は、二つ以上の直交する自由度に応じてMEMS鏡を駆動/振動させることができ、それによって(a) 中央光軸の両側にて、一種以上の所定の角度範囲内で、第一の方向に沿ったファン光を生成すること、および、(b) ファンを第二の方向に沿って動かし、そのファンが表面を走査するようにさせること、が可能となる。ファンが通過することになるリニアディフューザーは、そのMEMS鏡と表面との間に置かれる。例えば偏光ビーム分割子・1/4λ光学移相子を、平行光源の光路内に設置できる。円筒面レンズ(シリンドリカルレンズ)をその光路内に置いてもよい。鏡の制御手段によって、MEMS鏡を第一の速度を以って第一の方向に振動させ、かつ第一の速度よりも遅い第二の速度を以って第二の方向に振動させるように構成してもよい。視覚システムカメラには、第一の光軸面(optical plane)を持つ撮像センサーと、その第一の光軸面とは非平行な第二の光軸面を持つレンズ部品とを含めてよい。第一の光軸面と第二の光軸面はそれぞれ、ファンが定める平面に対して、Scheimpflugの原理に従って配向するようにしてよい。
【0011】
別の態様では、ここに開示した技術を、照射対象から反射してくる光におけるスペックル現象を低減するための照射装置として実装できる。そうした系には、コヒーレント光を照射するよう構成された光源と、照射対象と光源との間の光路内に設置されるリニアディフューザーとが含まれ、このリニアディフューザーは、コヒーレント光を、照射対象の少なくとも一部を横切る一つの面(one dimension)に沿って拡がる散光へと、分散(拡散、散乱)させるように構成されている。またこのリニアディフューザーは、散光により照射対象が照らされることについて関連づけられた露光時間を有する。こうすることでその散光によって、その一つの面に対して垂直な方向に実質的に拡がらないような平面ファン光を形成できる。また当該系は、光源とリニアディフューザーとの間の光路内に設置されるビーム偏向子と、当該ビーム偏向子に結合した制御手段とをさらに含む。当該制御手段が、ビーム偏向子を稼動することで、散光により照射対象が照らされる露光時間内に、リニアディフューザー上の複数の位置を通って掃引するように、コヒーレント光が当該ビーム偏向子へと投射されるように構成する。くわえて、リニアディフューザー上の複数の位置が或る距離に亘っていることによって、平面ファン光と照射対象との交わりから反射する光について、撮像素子において十分に無相関なスペックルパターンを与えられ、さらに、散光により照射対象が照らされる露光時間内に当該撮像素子により撮像される際に非コヒーレント的に加算される。
【0012】
前述したものその他の実施形態群はそれぞれ、以降に述べる特徴群のうちの一種以上を、個別にかもしくは組み合わせとして任意に含んでよい。或る実装では、光源がレーザーを含んでよい。或る実装では、ビーム偏向子が微小電気機械システム(MEMS)鏡を含んでよい。また或る実装では、ビーム偏向子が音響光学変調(AOM)装置を含んでよい。
【0013】
或る実装では系が、リニアディフューザーとビーム偏向子との間の光路内に位置するシリンダーレンズ(円筒面レンズ)を有していてもよく、このシリンダーレンズは、リニアディフューザーに向けられたコヒーレント光のすべてを集約することで、効率を上げるための視野レンズとして機能できる。また或る実装では、系がシリンダーレンズを含み、リニアディフューザーがビーム偏向子とシリンダーレンズとの間に置かれるようにしてもよく、そのシリンダーレンズは、照射対象に向けられた散光のすべてを集約することで、効率を上げるための視野レンズとして機能するように構成されてもよい。
【0014】
或る実装ではリニアディフューザーが、上述した一つの面に沿ったフラットトップ強度プロファイルを備える加工ディフューザーを含んでいてもよい。或る実装ではリニアディフューザーが、当該リニアディフューザーへ投射されるコヒーレント光の掃引角に伴って、回折光線の平面ファン光中における間隔を変化させられるような自由スペクトル範囲(Free Spectral Range; FSR)を有するチャープ回折格子を含んでいてもよい。或る実装ではリニアディフューザーが、ホログラムまたはシリンダーアレイを含んでいてもよい。
【0015】
或る実装ではリニアディフューザーが、ビーム偏向子の基部に対して静止するようになっている。ここで制御手段は、ビーム偏向子を稼動することで、コヒーレント光がリニアディフューザーに対して周期的に左→右→左…と周期的に掃引するように構成されている。これにより散光により照射対象が照らされる露光時間内に、左→右→左掃引のうちの左→右半分か右→左半分かのいずれかを介して、コヒーレント光が誘導されることになる。
【0016】
別の態様では、本開示に係る技術をレーザー変位測定系として実施可能である。こうした系には、視覚システムプロセッサと、当該視覚システムプロセッサに結合するカメラ部品と、当該視覚システムプロセッサに結合し且つコヒーレント光を照射するように構成されたレーザービーム部品と、コヒーレント光を受けるように位置するビーム偏向子と、当該ビーム偏向子と結合する制御手段と、照射対象とビーム偏向子との間の光路内に位置するリニアディフューザーとが含まれる。この制御手段がビーム偏向子を稼動させて、コヒーレント光が当該ビーム偏向子に投射されリニアディフューザー上の複数の位置を通って掃引するように構成される。リニアディフューザーは、ビーム偏向子からのコヒーレント光を複数の位置で受け、当該コヒーレント光を散光にするべく拡散するように構成される。この散光は、照射対象の少なくとも一部を横切る一つの面に沿って拡がる。当該リニアディフューザーは、その散光によって当該照射対象が照らされることについて関連づけられた露光時間を有する。ここで当該散光は、その一つの面に対して垂直な方向に沿っては概して拡がらないような平面ファン光を形成するものである。くわえて、リニアディフューザー上の複数の位置は、そのリニアディフューザーを横切る或る距離にわたって存在し、この距離によって、平面ファン光の照射対象との交わりから反射する光について、撮像素子において十分に無相関なスペックルパターンを与えられるようになっており、そして当該散光により照射対象が照らされる露光時間内にその撮像素子により撮像される際に非コヒーレント的に加算できるようになっている。
【0017】
前述した実施形態その他の実施形態群にはそれぞれ、後述する特徴群のうちの一種以上を任意に、単独にまたは組み合わせとして含めてよい。或る実装ではリニアディフューザーが、ビーム偏向子の基部に対して静止するものであってよい。このとき制御手段は、ビーム偏向子を稼動して、コヒーレント光がリニアディフューザーに対して左→右→左…と周期的に掃引するように構成される。またその制御手段は、散光により照射対象が照らされる露光時間内に、その左→右→左掃引のうちの左→右半分か、右→左半分かのいずれかを介して、コヒーレント光を誘導するように構成される。
【0018】
或る実装ではリニアディフューザーが、上述した一つの面に沿ったフラットトップ強度プロファイルを備える加工ディフューザーを含んでいてもよい。或る実装ではリニアディフューザーが、シリンダーアレイを含んでいてもよい。或る実装ではリニアディフューザーが、ホログラムを含んでいてもよい。ここでそのホログラムは、平面ファン光を非連続的なパターンとして照射対象へと投射するように構成される。そうした非連続的なパターンとしては例えば、一個以上の点(ドット)や、非照射間隔により分劃された線分(ラインセグメント)が含まれてよい。或る実装ではリニアディフューザーが、当該リニアディフューザーへ投射されるコヒーレント光の掃引角に伴って、回折光線の平面ファン光中における間隔を変化させられるような自由スペクトル範囲(FSR)を有するチャープ回折格子を含んでいてもよい。
【0019】
或る実装ではビーム偏向子が微小電気機械システム(MEMS)鏡を含んでよい。また或る実装では、ビーム偏向子が音響光学変調(AOM)装置を含んでよい。
【0020】
或る実装では系が、リニアディフューザーとビーム偏向子との間の光路内に位置するシリンダーレンズを有していてもよく、このシリンダーレンズは、リニアディフューザーに向けられたコヒーレント光のすべてを集約することで、効率を上げるための視野レンズとして機能できる。また或る実装では系がシリンダーレンズを含み、リニアディフューザーがビーム偏向子とシリンダーレンズとの間に置かれるようにしてもよい。このときシリンダーレンズは、照射対象に向けられた散光のすべてを集約することで、効率を上げるための視野レンズとして機能するように構成される。
【0021】
或る実装では、レーザービーム部品がレーザーを含んでよい。
【0022】
或る実装ではカメラ部品が、平面ファン光の照射対象との交わりから反射する光を捉え、その捉えた光から画像データを生成するように構成できる。ここで視覚システムプロセッサは、そのカメラ部品から画像データを受信し、その画像データを処理することで、照射対象上の領域の測定、検査、またはその双方を行うように構成される。また或る実装ではカメラ部品が、第一の光軸面を持つ撮像センサーと、その第一の光軸面とは非平行な第二の光軸面を持つレンズ部品とを含んでいてよい。第一の光軸面と第二の光軸面はそれぞれ、平面ファン光に対して、Scheimpflugの原理に従って配向するようにしてよい。
【図面の簡単な説明】
【0023】
下記記載では以下の付図を参照する。
図1】物体の画像を走査方向における相対運動として取得する、レーザー変位センサー(DS)系の模式的透視図であって、実施形態例に係るスペックル低減系を採用しているものである。
図2図1の実施形態例に係るスペックル低減構成(デスペックル構成、反スペックル構成)を備える、レーザー線源の側方透視図である。
図3図2のレーザー線源の前面図である。
図4】レーザー線源へと周期的振動ビームを伝送する、可動式レーザー(ビーム源)を示す図である。
図5】光線発生系の部品と、光線が投射される作業面との間の相対位置関係を説明する図である。
図6】例示的な実施形態に係る光線生成系をなす部品群を示しており、分劃された形状の光線を生成できるようになっている。
図7図6の構成を採る場合に生成される、点線形状の例を示した図である。
図8図6の構成を採る場合に生成される、複数の棒形状の例を示した図である。
図9】別の実施形態に係る例示的DS系の側方断面図であって、レーザー光線生成器がスペックル低減構成と走査構成との双方を含んでおり、実質的に直交する二軸の各々を中心として回転できるMEMS鏡を使っているものである。
図10図9の実施形態例に係る、デスペックル・単独光線走査構成を備えたレーザー光線生成器の側方透視図である。
図11図10のレーザー光線生成器の前方から見た図であって、作業区域(working section)の例を示してある。
図12】表面へと同時に投射される複数の光線(実線として示す)と、それらが走査により動いた後の位置とを描いた模式図である。
図13図9の例示的DS系により生成したレーザー光線例の画像を、従来技術に係る光学製品/部品を使って生成したスペックル化してしまった光線を横に並べて比較した模式図である。
図14図9のDS系を稼動するための一般的手順を示すフロー図である。
図15】或る実施形態に係る手法で振動するリニアディフューザーなどの、光線生成器を駆動する可動部を有する、一般化した光線生成系を描いた図である。
図16】上述した構成群または実施形態群のいずれかに係る光線生成系を示す図であって、種々の用途に応じた或る距離を以って光線を照射しているさまを描いてある。
図17】2D撮像用途での照射を行うために使われる光線生成系を示す図であって、その照射はカメラの作業区域を満たせるような離散光線としてかまたは走査光線として提供される。
【発明を実施するための形態】
【0024】
I. 視覚システムの実装
【0025】
非限定的な例として図1には視覚システム 100 の例を示しており、これにはレーザー変位センサー(DS)部品 110 が含まれ、対象物 120 (「部分」とも称することがある)を撮像するように向けられている。DS部品 110 は単独の筐体 112 中に収めて、撮像風景に対して適切な場所に置けるようになっている。別の実施形態では、変位センサーが、分離した別々の副部品を含んでいてもかまわない。実装例では、対象物 120 および変位センサー 110 が、相対座標系 124 が持つ軸の一種以上に沿って(走査動作方向に)移動する変位センサー 110 もしくは対象物 120 またはその双方に対して相対運動(両矢印MYで示す)を行う(なおこの例では、上記の走査動作方向は物理y軸方向になっている)。典型的な構成では対象物 120 が、(破線で示した)運動手段(motion conveyance) 130 の上に置かれる。この運動手段 130 は、当業者には明らかな手法を以って駆動系 132 に動作可能に結合されたエンコーダその他の装置から、動作データ(モーションデータ)を提供できるようになっている。
【0026】
また詳しくは後述するが、当該系および方法を、さらなる処理のために取得され保存される画像に対して使用してもよい。当該系および方法(すなわちフィルタリング工程と関連する視覚システムツール)によって処理するために、プロセッサをカメラ部品その他の画像取得構成には接続することなく、そうした画像を転送できる。
【0027】
一例として対象物 120 が、概して三次元(3D)の輪郭を定める表面 140 を有する構造体であってよく、例えばこのときその高さ(すなわち物理z軸に沿った変位量)は、x軸方向およびy軸方向に対して変動しうる。なおこれは、さまざまにありえる表面形状のうちのあくまで一例に過ぎず、当該系および方法に係る例示的実施形態の原則に従う有用な例を示しただけであるのに留意されたい。別の例としては、外周面がもっと複雑な境界線を定めるものであって、別の形態/付加的な形態を備えるものが挙げられる。
【0028】
DS部品 110 には、コヒーレントビーム 152 を投射できるレーザービーム部品 150 が含まれる。ビーム 152 は可動式ビーム偏向子 153 (鏡など、詳しくは後述)へと向けられる。この実施形態では偏向子 153 が、ビームの中心軸(破線 170 )を約90度曲げている。なおここで示した90度(右方向)という角度はあくまで例示であって、系の構成その他所望の設計基準に応じてビーム偏向の角度はさまざまに変更できることに留意されたい。また偏向子 153 は、駆動手段その他の機構 155 (後述する固相構成も含む)を有することで、偏向子 153 がビームを横方向に、周期的パターン(左→右など)を以ってビームを反射できるようになっている。或る実施形態では駆動手段 155 によって、偏向子が或る軸に沿って或る+/-角度範囲で旋回運動(ピボット)ができるようになっていてもよい。反射されたビームは左右に周期的に動くので、その軌跡がファン軸 170 を中心にした掃引ファン 154 となる。このビームからなるファンが、シリンダーレンズ 156 およびリニアディフューザー 157 を有する光学構造を通過する。(別の実施形態では任意付加であってよい)このレンズが所望の構成を以って、平面ファン 158 を対象物 120 およびその周囲の風景の方へと導く。詳しくは後述するが、ディフューザー 157 および可動式偏向子 153 が、散光からなる平面ファン 158 を生成し、この平面ファン 158 は平面外の厚みが僅かである実質的にGaussianなビームを有しており、かつ撮像対象の風景(例えばこの実施形態では対象物 120 および運動手段 130 )と照射輪郭 159 に沿って交わる。こうすることでその照射輪郭からは、効率的にスペックルが無くなり、しかも照射輪郭の平面内変位にかかわらず均一な厚さを有することになる。
【0029】
上述したように照射輪郭 159 (「照射線」とも呼ぶ)は、物理x軸に沿って定まる(つまり、走査動作方向 MY を横切る方向に沿って定まる)。本実施形態の平面ファン 158 は、参照面に対してほぼ垂直(または実質的に垂直)である。ここでいう参照面とは例えば、運動手段 130 の物理x-y平面、および/もしくは対象物 120 の表面 140 が定める表面などを指す。変位センサー部品 110 はまた、カメラ部品 160 (破線の四角で示した)も含む。カメラ部品 160 は概して、レンズ/光学部品 162 および撮像素子 164 からなる。レンズ/光学部品 162 は、公知のScheimpflug構成(もしくは当業者に理解できるその他適切な光学構成)を以って配置可能である。撮像素子 164 は所定の解像度を定める感光性画素アレイを有する。そしてカメラ部品 160 は光軸 OA を概して定める。この光軸 OA は、照射線 159 の領域内で対象物 120 と交わることになる。カメラの光軸 OA には、平面ファン 158 のなす平面(と関連する軸 170 )に対して、非平行な角度(鋭角など) A がつけられる。つまり、物理x軸に沿照射線 159 における物理z軸方向のいかなる高さ変化/変位も、カメラ部品 160 によって(画像中の軸 YI に沿った)位置変化として撮影でき、ここでは二次元(2D)画像 172 中の結像線 171 として表されている。こうした二次元画像は、例示的(であり任意付加的な)ユーザーインタフェイスディスプレイ 174 中に概して表示できる。
【0030】
なお、ここで示した軸x,y,zの配置は慣習的なものであって、その他の相対的方向の表現(極座標系など)も予期できるのは明らかである。上述したように、所与の軸の周囲を巡る回転運動も表現されており、例えば曲がった両矢印 Rx は、物理x軸を中心とした回転を表している。
【0031】
撮像素子 164 は、視覚システムプロセッサ 180 に動作可能に相互接続している。本実施形態では視覚システムプロセッサ 180 は、変位センサー 110 の筐体 112 に内包されている。別の実施形態では、視覚システムプロセッサのコンポーネント群および/もしくはプロセス群の一部またはすべてを、当該筐体から離して設置してもよい(例えば、ディスプレイ 172 に関連していてもよいような相互接続したタブレット、ラップトップ、またはPCに設置してもよい)。詳しくは後述するが、例示的実施形態に従って視覚システムプロセッサ 180 は、変位感知プロセス 182 を実行できる。またプロセッサ 180 は、運動手段 130 または別の可動装置(変位センサーおよび/もしくは対象物を保持する架台またはマニュピレーターなど)から、相対運動信号を受信できる。そうした動作信号に関連づけて画像を得ることで、照射線 159 を風景中の物理的位置(実位置)と共に登録できる。そして適切なメモリまたはストレージの在るところ 188 に画像を保存して、さらなる伝送および/または解析に供することもできる。なお検査対象物に対して相対運動するDS部品を使うというのはあくまで一例であって、本実施形態に係る光線生成系は多種多様な用途にも使えることに留意されたい。例えば上述した種類のDS部品を、種々の用途における静的な構成において採用してもよく、例えば静止している対象物へ、静的な光線プロファイルまたは断面を(相対運動が無い状態で)生成するようにしてもよい。こうした実施形態例により生成できる、スペックルを低減した光線は、測定の正確性を高めるという効果を奏する。
【0032】
DS部品 110 その他の装置には、適切な視覚システムツールおよびプロセス/プロセッサ 183 を含む/組み込んでよく、その例としては辺縁検出器(エッジディテクター)、感光器(ラインファインダー)、染み分析器(ブロブアナライザー)、端度器(キャリパー)などが挙げられる。これらのツールおよびプロセス/プロセッサ 183 は、撮像素子 164 が提供する3D画像を解析し、その解析に基づいて結果を得ることができる。非限定的な例として、画像データ(すなわち距離画像または3D点群)および/または解析結果を、下流のデータ処理装置およびプロセスへと渡し、さまざまな生産活動に用いることができる。そうした生産活動としては、検査、品質管理、物体操作、組立などが挙げられる。
【0033】
プロセッサ 180 その他のモジュールには、ビーム偏向子の駆動手段 155 に相互接続した、鏡/偏向子の制御プロセス/プロセッサ 190 を含めてもよい。この制御手段 190 は、適切な周期速度(周波数)を以って偏向子を稼動させることができる。その制御は、撮像素子の撮影フレームレートに基づき、各フレームにおいて、リニアディフューザー 157 上のビーム 152 の完全な軌跡に対応する照射線 159 の一連のインスタンスが写るようにできる。
【0034】
II. 汎用デスペックル化ビーム構成
【0035】
上述したDSの実施形態では、デスペックル化した光線を有益に使って、視覚システムの成果を上げられるような実装を提供できる。このビーム生成構成は様々な用途で採用可能であり、例えば距離計、3D形態走査システム、レーザー水準器、別形態の三角測量システムなどといった用途が挙げられる。図2および図3には、レーザー生成系 200 の汎用構成を示す。こうした汎用構成は、照射線 260 をデスペックル化して光線変位測定をより高精度かつ高整合性を以って行うために使用できる。
【0036】
例えば生成器 200 には適切な出力と波長を備えたレーザー 210 が含まれる。レーザー 210 はダイオードベースの固相装置であってもよいし、あるいは比較的コンパクトな設計と外形因子を持つ別の適切なユニットであってもかまわない。こうしたレーザーは必然的に、任意の適切な波長(近可視光UVやIRなど)を持ち時間的・空間的にコヒーレントな平行光(コリメート光) 212 を投射する。
【0037】
入射ビーム 212 は、入射光路を辿ってビーム偏向子 220 (任意の形態を有する鏡/反射面もしくは固相掃引生成器)へと誘導される。ビーム偏向子 220 は、ビーム 212 の全てまたはほぼ全てを、軸 CA を中心として示す出射光路へと向けて反射する。図のとおり出射光路の軸 CA には、入射ビーム 212 に対し、90度(直角)である角度 AL がつけられている。別の実装では、角度 AL はさまざまに変更できる。ビーム偏向子は、一つの軸に沿った往復運動(回転運動など)を行う。ビーム偏向子 220 には、ビームの反射光路を中心軸 CAから逸らせるような任意の機械的構造または固相機構が含まれていてもよい。例えばビーム偏向子 220 が、微小電気機械システム(MEMS)鏡、ガルバノメーター鏡、音響光学変調(AOM)装置その他の装置、または、ニオブ酸リチウム(LiNIBO3)などの物質その他の何かを含むことによって、反射した出射ビーム(掃引ファン 230 の一端にて光条 320 として示した)を掃引し(図3の両矢印 310 )、平面掃引ファン 230 を成すようにできる。
【0038】
この実施形態では、ビーム偏向子 220 の掃引(曲がった両矢印 224 で表す)が、入射ビーム 212 が中心に来る旋回軸(ピボット軸) 222 の周りでの配向となっている。駆動のための回路および/または機構 240 (駆動子)は、偏向子 220 に動作可能に接続する。この駆動子は、偏向子を実施する上で使われる技術にとって適切な回路および/または機構であって、当業者にとって明らかなものであるべきである。後述するようにこれらの駆動子および偏向子はまとまって、露出時間一単位(1撮影フレームなど)内に照射線 260 が十分に無作為なスペックルパターンを提供できる程度に大きな或る速度と振幅(左右)を以って、周期的なビーム掃引と、それによるビーム軌跡の形成(掃引ファン 230 をなす)とを実施可能なのである。こうすることで、撮影されたパターン中のスペックルが均され、視覚的に滑らかな線が得られる。例えばビーム 320 を、撮影フレーム毎に1/2サイクル以上の速度を以って動かすことで、撮影される風景 290 (または 130 + 140 )内の照射線 260 の全長の画像を、撮像素子(撮像素子 160 など)によって捕捉できるようになる。さて走査がもっと短い場合、例えば撮影フレーム毎に(左→右→左サイクル 310 のうちの)1/4サイクル、例えば左→中央や中央→右などであったとすると、スペックル均しの品質は落ちてしまう。例えば上述の1/2サイクル走査でのスペックル均しの品質に比べて、上述の1/4サイクル走査でのスペックル均しの品質は71%(1/√2)になってしまうと考えられる。
【0039】
また系 200 には、任意付加のシリンダーレンズ 250 またはそれに類似する光学構造を含めてよい。これは視野レンズとして機能し、掃引ビーム 320 からの光の全てを集約することで効率を向上できる。レンズ 250 により得られる照射線 260 の全長では、撮影対象物 290 における照射強度およびスペックル均しがさらに均一なものとなる。レンズ 250 は任意付加なので、別の実施形態では省略してもよい。別の実施形態では、そうしたレンズの機能を、ホログラムまたは光線生成器内の加工として組み込んでもよい。後述するように、本明細書において「光線生成器」line generatorという語は、リニアディフューザー(一つの面だけに拡がるように入射光を拡散するように設計された、特定の強度プロファイルを有する加工リニアディフューザー、ホログラム、チャープ回折格子、および/またはシリンダーアレイなど)、あるいは、平面ファン光を形成する上で協働できる他の部品と組み合わせた(統合するなど)リニアディフューザーのことを指す。
【0040】
系 200 には光線生成器 270 が含まれ、光線生成器 270 には従来の設計によるかまたは特注設計のリニアディフューザーを含めてよい。例えば光線生成器 270 を、「フラットトップ」な強度プロファイルを有する加工ディフューザーとして実装してもよい。これを用いて(典型的には照射線 260 の方向に沿って)主に一方向への拡散を行うようにしてもよいし、あるいは本実施形態で想定するように一方向のみへの拡散を行うようにしてもよい。非限定的な例として、リニアディフューザーを、ニューヨーク州ロチェスターのRPC Photonics, Inc.から入手可能な、適切なパラメータを有するEngineered Diffuser(商標) Line (EDL)としてもよい。例えば型式「EDL-40-A」は、線像強度分布が+/-20度であって、この角度範囲内に収まる相対定数(フラットトップ)強度を有し、かつこのフラットトップの両側を過ぎると強度はゼロへと急落するように定められている。このリニアディフューザーによる散乱は、開光角内では比較的均一になる。またその他の型式では、線像強度分布がそれより小さくても大きくてもよい(例えば+/-60度、つまり計120度)。このディフューザーの散乱はとりわけ、専ら一自由度であって、この一つの自由度を横切るような散乱はほぼ存在しないという特徴がある。この特徴によって、照射線 260 が太ったり拡がったりしないので、ファン光のなす面に対して垂直な方向に関するファン光の厚さは実質的に、用いるレーザーのGaussianプロファイルに等しくなる。なお、仮にリニアディフューザー 270 (加工、ホログラフィック、またはその他のものでもよい)においてレーザービームが静止したとしたならば、リニアディフューザー 270 によって、対象物 290 上にはっきりとした客観的(objective)スペックルが顕れてしまうだけでなく、その他の散乱や反射によるアーチファクトまでもが生じてしまい、照射プロファイル 260 の均一性に悪影響が出てしまうことになり、そしてこれらのすべては観察者に対して静止し、同様の外観を以って見えることになる。これとは対照的に、本開示に係る技術の主題でもある主観的(subjective)スペックルは、異なる観察者、口径、および位置に対して変化するものである。ビーム 320 の掃引 310 はディフューザー 270 を横切り、こうした客観的スペックルその他のアーチファクトを、(i) 撮影対象物 290 における照射線の向きにおける強度プロファイル、および(ii) 元のレーザービーム 212 のプロファイルと実質的に等しくかつ掃引方向に垂直なビームプロファイル(掃引方向に関して一定となるプロファイル)へと均し込める。
【0041】
別の実施形態では光線生成器 270 が、通過する光線を、主要方向(線 260 )に沿って複数の光線に分割できるような、ホログラフィックディフューザーまたはその他の種類のディフューザーを含んでもよい。このことは図3のビーム 320 が、光線生成器 270 により分たれて、作業区域の少なくとも一部(例えば照射線 260 の長さ)へと分散する複数のビーム 330 になっていることで示してある。図2~3に示した例では、レンズ 250 と光線生成器 270 との組み合わせの配置および構成によって、複数の光線 330 がファン形状散光パターン 330F を形成するようになっている。この散光パターン 330F は、照射線 260 の最初の状態に沿って、対象物 290 と交わることになる。ビーム 310 がその光路を通じて掃引されると、ビーム 340 やビーム 350 として示してあるようにパターンは維持される。例えばビーム 340 が別のファン形状散光パターン 340F を形成して、照射線 260 の別の状態に沿って対象物 290 と交わり、また、ビーム 350 はさらに別のファン形状散光パターン 350F を形成して、照射線 260 のさらに別の状態に沿って対象物 290 と交わるようにしてもよい。こうした効果により、照射線 260 の散光を生じる各状態内でスペックルを均すことで、照射線 260 の定常的かつ正確な累積画像が得られる。言い換えれば、照射線 260 の撮影される状態が有する全ての点を、露光間隔(撮影フレームなど)に亘って非コヒーレント的に加算することで、完全な光線の映像を形成できるということである。
【0042】
軸 CA の両側への掃引ファン 230 の掃引角Θを、光線生成器 270 のサイズ、およびビーム偏向子 220 の掃引角 224 に(部分的に)基づいてさまざまに変更してもよい。非限定的な例として、角度Θを20~30度の範囲(MEMSを使う実装の場合など)にし、照射線 260 が約1メートルの作業区域を定めるようにしてよい。さらなる例として、ビーム偏向子 220 が有する鏡面(MEMSを使う実装の場合など)が、約1.0ミリメートルの直径を定めるようにしてもよい。例えばMEMSを、その固有周波数で動作するように設定してもよい。一例としてそうしたMEMS鏡の固有周波数が、約20KHzの範囲としてもよい。なおMEMSの実装は、当業者にとって明らかな手法により、ユーザー仕様書に従って適切な製作者が作れるものであることに留意されたい。
【0043】
ここまで可動ビーム偏向子または固相ビーム偏向子について述べてきたが、例えば同軸部品(分光構造および/もしくは屈折構造など)を介することで、ビーム源を周期的に駆動または偏向させることも想定可能である。例えばレーザーダイオードにボイスコイルを組み込んで、自由度に沿って振動させるようにもできる。つまり、ビーム源から周期的振動ビーム 320 を、一方向または一つの面に沿って提供することで、掃引ファン 230 を生成できるとも概して想定可能である。こうした振動ビーム 320 が、光線生成器 270 を通過すると、その自由度に沿った固有の散乱を介して、光線生成器 270 の開光角に従って拡がり、平面ファン 280 がファン形状散光パターン 330F, …, 340F, …, 350F として形成される。
【0044】
図4に示した配置 400 では、レーザー 410 が適切な駆動回路または制御手段 430 によって、軸 420 を周るように駆動し、周期的振動をするようになっている(曲がった両矢印 422 で示す)。レーザー 410 は平行ビーム 441 を照射するものであり、屈曲部、ボイスコイル、またはその他の部品の上に搭載することで、平行ビームを自由度に沿って中心軸 442 に対して動かせるようにして、平面(掃引ファン)パターン 440 の軌跡を得るようにできる。別の実施形態では、レーザーの同軸光学部品(プリズムおよび/もしくはレンズなど)を搭載して、平行ビーム 441 を周期的に動かすようにしてもよい。平面パターン 440 をなぞる振動ビーム 441 は、光線生成器 450 へと伝送される。上述したように「光線生成器」line generatorという語は、(一つの面だけに拡がるように入射光を拡散するように設計された)リニアディフューザー、または平面ファン光を形成する上で協働できる他の部品と組み合わせた(統合するなど)リニアディフューザーのことを指す。したがってビーム 441 は、一つの自由度に沿って散乱し、ファン形状散光パターン 451 の対応する状態を形成し、これが作業面 460 に線分 461 として投射されることになる。ビーム 441 が平面 パターン 440 をなぞることで生成する線分 461 の一連の状態は重なり合い、そしてスペックル低減光線 462 が得られることになる。ここで言うスペックル低減光線 462 とは、散光 480 のなす平面ファンの交わりであって、ファン形状散光パターン 451 の一連の状態が重なりあって、作業面 460 と交わることで生じている。レーザー 410 と光線生成器 450 との間に、視野レンズその他の絞り構造を同軸で含めてもよいし、あるいは光線生成器内に形成してもよい。別の実施形態ではレンズを省略してもよい。なお「振動レーザー源」oscillating laser sourceという語は、可動式レーザーおよび/もしくはそのレーザーの同軸光学部品、または上述したようなビーム偏向子と組み合わせたレーザー、またはそれら部品の組合せを含むように広汎な解釈をされたい。
【0045】
III. 距離および部品配置法
【0046】
光線生成系 200 または光線生成系 400 の上述した部品群(レーザー、ビームを周期的に振動させるためのビーム偏向子その他の機構、任意付加的なレンズおよび光線生成器)は、さまざまな組み合わせを以って一個以上の筐体/格納装置内に収めてよく、その相関関係は正確かつ安定に、所望の作業のために求められる形状因子および機能が得られるようなやりかたで行えるのは明らかであろう。格納装置は、任意の適切な材料で作成でき、例えばポリマー(ポリカーボネート、アクリルなど)または金属(アルミニウム合金、鉄、マグネシウム合金など)が挙げられる。部品間の距離と部品サイズは、照射線の長さに応じた作業区域、およびビーム偏向子 270 またはビーム偏向子 450 から作業面までの作業距離に基づいて、当業者に明らかなやりかたを以って決めてよい。
【0047】
図5は、光線生成系 500 の例を示す模式図である。ここではレーザーおよびビーム偏向子(より一般的に言えば振動レーザー源)が、単独のユニット 510 (回路基板など)に収められ、電源に相互接続している。レーザーは中心軸 520 に対して+/-Θ度の掃引を所定の周波数 F を以って行え、系の制御手段と関連インターフェイスの間の通信に基づいて変更可能である。振動レーザー源 510 は、(任意付加の)シリンダーレンズおよび光線生成器(リニアディフューザー)部品 530 から、距離 DL だけ離して置かれている。ΘとDLの値によって、部品 530 に必要な最小の幅 WLG が定まる。つまり WLG = 2tanΘ*DL である。(任意付加の)レンズおよび光線生成器部品 530 は、別々であってもよいし、あるいはレーザー源 510 と組み合わさって単独の筐体に収まっていてもよい(破線四角 540 として示すように)。別の実施形態では、レンズと光線生成器が、軸 520 に沿って互いに離れて置かれてもよい。一般的には、光線生成器と作業面 550 との間の作業距離 DO は、照射線の所望の最大長 LL ならびにレンズおよび光線生成器部品 530 のジオメトリと同様に、用途に応じて変更可能である。長さ LL をまた、上述したように自由度に沿った光線生成器に固有な散乱開光角αに基づいて定めてもよい。例えば所望の最大長 LL = 100mm かつ作業距離 DO = 300mm のとき、光線生成系 500 の設計を、(i) 共振周波数が20kHz、光学走査角θが+/-15度であるビーム偏向子(MEMS鏡など)、および(ii) ビームウエスト径が500ミクロンで掃引方向に1/e2であるレーザー(レーザー 150, 210 など)、を含めるようにしてよい。ここで最小幅 WLG = 10mm である光線生成器部品 530 は、レーザー源 510 から距離 DL だけ離して設置され、この距離 DL はビーム偏向子(ビーム偏向子 153, 220 など)にとってレーザービームを距離 WLG に掃引する上で十分な距離となる。リニアディフューザー 530 における40ビーム径での走査に求められる開光角(2θ)が30°、WLGが20mmであるとしてビーム偏向子を掃引する場合には、必要な距離 DL = (WLG/2)/(tan(15°)) = 37mm となる。また、掃引するレーザービームが周波数 F (20kHzなど)である場合には、スペックル低減を最大にするための最小撮影時間(露光時間など)は、MEMS鏡の周期(この例では50μs)の半倍、つまりΔt = 25μs となる。ディフューザーの全散乱角 α の設定は、静止レーザービームからリニアディフューザー 530 により形成される散乱ビームが、作業距離 DO における光線全長 LL を少なくとも照射できるようにして選ぶ。上記の例では、 α = 2*(atan((LL/2)/DO)) = 18.9°となる。リニアディフューザー 530 の散乱角は20°以上であれば十分と考えられる。視野レンズを使わない場合には、この散乱角を二倍にして、連続照射とスペックル低減の最大化ができるようにする。視野レンズを使い、リニアディフューザーの隣に設定する場合には、単に焦点距離(f)のシリンダーレンズを置けばよく、その焦点距離は共役長 s1 = DL = 37mm と s2 = DO = 300mm から計算できる。つまりレンズ方程式 1/s1 + 1/s2 = 1/f を使って焦点距離を計算する。この場合は f = 32.9mm であり、レンズ長はディフューザー長 WLG とだいたい等しくなる。
【0048】
IV. 光学効果
【0049】
本開示に係る部品群の配置によれば、光線の生成に際し、有益にスペックル低減ができることに加えてさらに、さまざまな形態を投影できる。図6は光線生成器 600 の例であって、レーザーおよび偏向器(またはその他の動き生成用部品) 610 は、上述したように掃引光線ファン 620 を生成する。ファン 620 は光学部品 630 を通して伝送される。光学部品 630 は、任意のレンズとリニアディフューザー機能の組み合わせを規定できる。上述したように光学部品 630 は、(例えば)シリンダーアレイもしくは回折素子および/またはホログラムを含むことで、特別な光線効果を生成できる。例えばそうした回折素子として、回折光線の平面ファン 640 中における間隔を変化させられるような自由スペクトル範囲(FSR)を有するチャープ回折格子を使って、リニアディフューザー 630 上に投射されるコヒーレント光 620 の掃引角を変化させられる。図示しているように散乱光条 640 は、破線のように示した非照射間隔 654 で分たれた線分 652 からなり光線軸に沿った非連続線 650 を投影できる。これはあくまで、生成可能な種々の効果の一例である。例えば線分の長さは、(ホログラムを使うなどして)軸に沿って変更可能である。
【0050】
図7では光線生成系 600 を使って、適切な間隔を以って点(ドット)を配置したような点線状模様 700 を生成できる。同様に図8では光線生成系 600 を使って、平行な複数の直線 810 および直線 820 からなる直線形態 800 を生成できる。(当業者には明らかな)種々の光学部品群(特注設計のホログラムなど)を使って、投射したファンを複数の直線へと分割可能である。こうした直線は上述したように、点や破線などへと分劃できる。
【0051】
V. 他の表面効果
【0052】
上述した原理および実施形態群はスペックル現象に関連するものであったが、以下では、照射線が反射する表面仕上に関連する望ましくない光学効果を低減するための適用例を示していく。例えば反射切子面(ファセット)が小さい表面(切削加工した金属、砂目加工した金属、ビーズ吹付加工した金属、かしめ加工、輝性塗装もしくは金属塗装仕上げなど)は、通常のレーザー線源では正確な測定が難しい。通常のレーザー線源というのは従来から点源から生成しているので、無作為な輝点または閃光が発生しやすく、これらによって撮像素子(もしくはその他の受光部品)が飽和してしまい、撮影/検出する光線の品質が低下しかねない。この現象のことを「閃光」sparkleとも称し、上記のスペックルと同様に、光学的な不具合を起こすことが経験的にわかっている。つまり本開示の目的については、「スペックル」という語が、閃光も含むように広く解釈されるべきである。なお、閃光はあらゆる種類の光の反射によって生じうるが、スペックルはコヒーレント光の反射に固有なものであることには留意されたい。上述した光線生成器(リニアディフューザーなど)の実装により、閃光現象も十分に低減できる。この点に関して、ディフューザーの役割は曇天昼間の照明をする従来のディフューザーと似てはいるのだが、この例の場合、光線生成器により生成する散乱効果が、単独の面(照射線に平行な面)内だけで生じるので、閃光を生じやすい表面においても光線の品質が劣化せず、したがって撮影される光線の品質を向上できる。
【0053】
例示的に、照射線もしくは類似の光線を発生する光源におけるスペックル現象の低減は、上述した種々の構成(群)を使って実現でき、例えば、リニアディフューザー、ホログラム、および/もしくは回折アレイを含んだ光線発生器を、光源(コヒーレント光もしくはその他の平行な光を出す光源)と組み合わせて、その光線が可動式偏向子(MEMS装置もしくは固相装置など)へと伝送されるような構成によって実現できる。あるいは別の手法として、従来技術に係るファン発生光学部品(Powellレンズなど)へと光線を伝送した後に、光線発生器を通すようにしてもよい。
【0054】
VI. 走査の実施法
【0055】
図9には或る実施形態に係るDS系 900 を示しており、ここでは生成される平面ファン 910 が、風景/対象物上に投射され、当該平面ファンにほぼ直交する方向に沿って走査が行われる。つまり、所定の作業距離に亘る走査を機能させる上で、動作発生機構を別に用意しなくてよいわけである。プロセッサの配置は、図1に関して述べたところ(視覚システムプロセッサ 180 )と同様である。一方、鏡制御 190 (ならびに感知プロセス 182 および/もしくは視覚ツール)を後述するように使うことで、一体型走査を可能にしている。或る実施形態では、市販のダイオードベースのレーザー(約40mWのものなど)を使ってよい。投射光線は赤色でもよいし、別の所望の波長のものでもよい。
【0056】
DS系 900 はカメラ部品 920 を含む。カメラ部品 920 は、光軸 OA1 に沿って規定される光学パッケージ(レンズ部品) 922 と、撮像素子 924 とを有する。非限定的な例として、こうした光学パッケージ 922 は、マサチューセッツ州ネイティックのCognex Corporationから入手可能なDS 1050 displacement sensorとしてモデル化されている。この実施形態例における撮像素子 924 は2Dセンサーであり、直交する二軸により規定される作業領域の画像を取得できる(詳しくは後述)。とりわけレンズ部品 922 のレンズ面(破線 OP )は、結像風景の一般化平面(直線 PS で示す)に対して鋭角 AOP で配向しており、その角度範囲は約20~30度である。撮像素子 924 の結像面(破線 SP で示す)は、(風景の面 PS に対して)鋭角 ASP を以って配向しており、これは光角 AOP よりも概して狭く、例えば10~15度の範囲にできる。角度 AOP および角度 ASP の選択は、Scheimpflugの原理に概して従って、作業区域内で光線がカメラ部品 920 によって撮像できるようなものとする。ここで撮像素子 924 から見える光線は、作業区域の近接範囲と遠方範囲との間で、厚さに関して比較的一定になるようにする。
【0057】
DS系 900 は適切な筐体 930 内に格納でき、部品群同士の適切な空間位置関係を保ち、腕木などを使って系を風景に対して据えつけ可能である。筐体 930 には固相レーザー部品(または同様のコヒーレント光を投射できる他の機構)が含まれる。本実施形態でのレーザーは、適切な厚みを持つ鉛筆状ビーム 940 を発振し、図中では下方向、偏光ビーム分割子 942 の方へと向かうようになっている。図示しているように偏光ビーム分割子 942 は、偏光ビーム 944 を90度の角度で反射するようになっている。別の配置として、レーザーのサイズや筐体形状因子が異なっていてもよいし、またレーザーを偏光子、ビーム分割子部品 950 、またはその他の構造化された光/調節部品へと真っ直ぐ向かわせてもよい。偏光ビーム 944 は、ビーム分割鏡 952 を備えたビーム分割子部品 950 へと誘導され、さらにその反射ビーム 954 は今度は上方向の波長板 956 (1/4λ波長板など)へと向かう。上への反射ビーム 954 はMEMS鏡 960 へと投射される。MEMS鏡 960 は、隣接板部品 964 上に搭載された回路基板(PCB) 962 により駆動される。PCBは、上述したプロセッサによる鏡制御の一部として制御される。隣接板部品によって、製作者は鏡を細かく傾ける調整ができ、(ネジなどを使って)鏡の配向を適切にできる。鏡搭載全体配置 966 は筐体 930 内に固定され、概ね振動を受けることなく、光軸 OA1 と照射線との間の相対角度を安定させたままに動作可能である。
【0058】
とりわけ本実施形態におけるMEMS鏡には多軸(二自由度)設計を含んでよく、非限定的な例としては、台湾のOpus Microsystemsから入手可能なものが含まれてよい。或るモデル(OP-6111など)では、固定走査周波数が高速方向(+/-20度)では22,000Hz、低速方向(+/-15度)では1,400Hzとなっている。まもなく市販される鏡(OP-6200など)では、高速走査周波数18,500Hz(+/-22度)および電圧波形信号を使い制御可能な低速走査周波数(+/-12度)をサポートする。上述した各旋回軸についての動作角度範囲はあくまで例示であり、実際には全角度範囲のサブセット内にDS作業区域を設置できる。
【0059】
MEMS鏡 960 から反射したビーム(破線 970 )は、波長板 956 を通り、偏光ビーム分割鏡 952 を通る。そしてビームは(例えば)シリンダーレンズ/リニアディフューザー部品 980を通過する。上述したように、また後述するように、このリニアディフューザーは本開示に係る原理を用いて、ビーム 970 を所望の平面ファン 910 へと拡散する。とりわけ偏光ビーム分割子 942 とλ/4波長板 956 の組み合わせは、光路内の戻り反射をすべて効率的に除去できる。また光路には(適切な位置に)薄い覆いを含めることで、MEMS鏡から逸れた光、ならびにMEMS鏡との周囲の反射面、λ/4波長板 956 の前面、および偏光ビーム分割子 952 の背面から反射してくる光を減衰できる。こうした特徴により、製造時に系の配置要件を大きく軽減できる。
【0060】
図10では、DS系 1000 の例として、図9のDS系 900 に従う走査レーザー構成の動作原理をさらに詳細に説明する。図示のようにレーザー源 1010 は、旋回(MEMS)鏡部品 1020 へ、或る軸に沿ってビーム 1012 を投射する。鏡部品 1020 は直交する二軸 1030, 1032 (典型的には互いに直角となるよう配向する)の周囲で振動する(曲がった両矢印 1022, 1024 )。軸 1032 を周る鏡部品 1020 の回転により通常はファンパターンが生成され、これのことを掃引ファンとも称する。この掃引ファンは三本の直線 1050, 1052, 1054 で示してある。この掃引ファンの特性は、掃引ファン 154, 230 に関して述べたところと同様である。掃引ファンの形態となったレーザーは、(任意付加の)シリンドリカルレンズ 1070 およびリニアディフューザー 1072 へと誘導される。レンズ 1070 とディフューザー 1072 の組み合わせにより、三本の直線 1050, 1052, 1054 のそれぞれについて、対応するファン形状散光パターン 1080F が生成する(直線群 1080 で示す)。この手法により掃引ビーム 1050~1054 は効率的に平面ファン 1085 (ファン形状散光パターン 1080F の一連の状態から形成される)を表面 1090 上に投射できるので、平面ファンのこの表面との交わりでは、デスペックル化した照射線 1082 を規定できる。このデスペックル化した照射線 1082 は、鏡 1020 の高速走査方向での振動(両矢印 1092 )により生成する。上述したように或る実施形態では、高速走査を20,000Hz超の振動で行える。また鏡部品 1020 は、軸 1030 の周りで低速走査方向にも振動し(両矢印 1094 )、典型的には1,000~2,500Hzもしくはそれ以下で振動できる。これにより平面ファン 1085 の全体とデスペックル化した照射線 1082 が、低速走査方向 1094 に沿って掃引することになる。また図11でもDS系 1000 を説明していく。ここでは作業区域 1110 を示しており、実質的に均一な光線(境界線 1120 で描写してある)が表面 1090 に投射されている。また近接作業区域 NW および遠方作業区域 FW も示してあり、投射された照射(レーザー)線は、(低速)走査範囲(両矢印 1094 )にわたって実質的に均一になっている。これは、光学パッケージ 920 の部品のために選んだ角度が故である。
【0061】
なお光路内でリニアディフューザー 1072 がシリンドリカルレンズ 1070 の下に来るように説明してきたが、リニアディフューザーを光路内の別の位置に設けてもよいことは理解できよう。例えばリニアディフューザーを、鏡部品 1020 とレンズ 1070 の間(図10の位置 1096 )に設けてもよいし、その他当業者にとって明らかな適切な位置に設けてもかまわない。同様に、偏光子および/またはビーム分割子(群)を用いて説明したが、DSの性能要求および/または内部レイアウトに適するように、当業者にとって明らかな手法を以ってこれらの部品を省略してもよいし、あるいは置き換えてもよい。
【0062】
図12には、表面 1210 上に投射される走査パターン 1200 の例を示す(なお平面にしたのは説明しやすくするためである)。MEMS鏡部品は、高速走査方向(両矢印 1222 )に光線を生成し、低速走査方向(両矢印 1224 )に沿って表面 1210 を掃引する。これにより、作業区域一面を扱える。一連の走査線 1232 を示してあるが、得られる各画像フレーム毎に一つの直線が観え、それから輪郭を決定できる。或る実施形態では、低速方向において鏡が比較的高速に掃引し(MEMS鏡の掃引が、その方向に共振モードで行われる場合など)、このときには、撮像素子で得られる光線の画像がボケるのを避けるべく、レーザーをパルス化したりまたはシャッターを噛ませてもよいことは理解できよう。例えばMEMS鏡の走査を高速走査方向 1222 にて20kHzで行い、かつ低速走査方向 1224 にて2kHzで行うとすると、直線 1232 の中央部の傾きを適切に補償するには、二方向に向けるため、リニアディフューザー 1072 を5.7°(atan(2/20))回転する必要があると考えられる。この例ではレーザー 1010 を入にするのは、ディフューザー 1072 の拡散部に対して実質的に垂直な方向で掃引を動かすことにある一方向だけについて、掃引のうちの中央部分80%だけでよいと考えられる。この例ではさらに、鏡 1020 を掃引する相ではレーザー 1010 の周期を10kHzとし、デューティサイクルを40%未満とすればよいと考えられる。空間サンプリングについては、その他の線走査系と変わるところはない。x方向(照射線方向)では、サンプリング解像度 Sx は、(i) 供試部分 1210 (PUT)に投射される画素数 Np を、(ii) 画素からなる投射線の長さ Lp で割って得られ、 Sx = Lp/Np 。我々の例では投射画素からなる線長が100mmで、その線が1000画素からなる場合には、x方向(照射線方向)における空間サンプリングは1/100ミクロンとなる。y方向(照射線に垂直な方向)では空間サンプリング Sy はサンプル間距離 Ds に等しく、 Sy = Ds 。我々の例では各露光後に直線が1mm進むとすると、空間サンプリングは1/1mmとなる。空間解像度 Rx, Ry もまた微分器を有する標準的な撮像系と似たように計算でき、撮像系のボケ点の畳み込みに加え、掃引線のy方向の(掃引により平均化される)線幅も、すべてのレーザー線三角測量系と同様に畳み込みが必要となる。しかしより一般的には、低速走査速度を制御すれば、撮像素子の動作フレームレートで正確に求められる掃引ができることも理解できるだろう。例えば低速軸 1224 の線型制御ができるMEMS鏡を使うと、走査線が測定対象位置にステップし、積分/露光時間中にはその位置にとどまるようにできる。スペックル低減を最大化するには、最小積分時間をMEMS鏡の高速軸 1222 の全周期長の1/2以上とすべきである。20kHz鏡の場合は25マイクロ秒となる。視野レンズ 1070 を有する系を使うと、照射線 1232 が部分 1210 上で(照射線方向で)静止するので、さらに短い積分時間でよい。そのように短い積分時間では、スペックルコントラストが、最小時間の各半分ごとに二の平方根の係数で増加する。積分が完了すると、撮像素子にシャッターを噛ませて読み出しを行い、その読み出し時間中にMEMS鏡が照射線を進めるようにできる。空間サンプリングは上述と同様である。照射線が表面上を動いて掃引するため、ボケを最小限にして照射線を撮影するためには撮影速度を十分に高速にすべきである。照射線の(y軸方向に沿った)位置は、鏡制御に基づいて鏡の動きから導けるので、作業区域内の照射線の(y軸方向に沿った)相対的位置を決定するために使用できる。例えば鏡に通常位置から角度5度だけ動くよう命令する場合、反射法則から、ビームはその角度の倍だけ偏向することが導かれ、つまり 2 X 5° = 10° である。また静電MEMSとガルバノメーターを使う場合の両方の電圧か、または電磁気MEMSを使う場合の電流かについて予め校正しておいたルックアップテーブルを用いて、鏡の偏向角を開ループで決定できる。この角度についての知識を使って、標準的な三角測量法により輪郭(プロファイル)の高さを調整できる。空間サンプリングと解像度は、上述のように計算できる。あるいは別の手法として、作業区域の近接境界線および遠方境界線に対する照射線の(y軸方向に沿った)相対位置を使って、その照射線の相対位置を求めてもよい。例えば視界よりも小さい部分を走査する場合であって、その測定領域の背景が平板であるときには、光線の一部がその部分を越えるので、それを使い各照射面が必ず通過する直線を正確に決定できる。これらの照射面のすべては、レーザービームとMEMS鏡の交わりを必ず通過するので、これらの照射面の完全な位置は十分に決定されることになる。空間サンプリングと空間解像度は上述したように算出できる。DSの内部校正を使って、すべての撮像される線の輪郭を、高さ方向(z軸方向)について正確に計算できる。
【0063】
さらなる実施形態では、任意付加の第二のリニア拡散素子を使うことで、光線をy軸方向に沿って複数の光線へと拡散することもできる。こうすると複数の光線で画像を掃引できるので、複数の輪郭(プロファイル)を生成できる。実線 1232 同士の間に描いた破線状走査線群 1230 は、単独の撮影画像フレーム内の光線を括って表したものである。これにより、各画像フレームごとに複数の輪郭を撮影でき、走査工程全体を速やかにできる。例えば単独の走査により、部分に沿って一つの直線を走査できると考えられる。各カメラフレームでは、画像ごとに一つの輪郭を収集するだろう。するとn本の等間隔の直線が部分上にあるとすれば、部分上の距離または鏡の角度は、たった1/n動くだけでよいことになる。各カメラフレームでは、n本の直線を読み込むとn倍のデータが得られることになる。したがって必要なフレーム数は、単独の走査で必要なフレーム数の1/n倍だけになったわけである。y方向の空間解像度が100ミクロンとして100mmの部分を走査したとして、フレームレートを200Hzと仮定すると1000枚の画像と5秒間が必要になるだろう。もしそこで10本の光線を照射したならば、たった100枚の画像と1/2秒間あればよいことになるのだ。
【0064】
図13で描いた画像 1300 には、二本の撮影された線 1310, 1320がある。上側の線 1310 は、例えばPowellレンズを使って生成される典型的なスペックル化した光線である。このように概して不均一なエッジとざらついた肌理は、輪郭の正確性を削いでしまうことに留意されたい。さて下側の線 1320 は上述したDS構成を使って生成されたものである。これは実質的にずっと均一かつはっきりとしたものになっているので、輪郭の正確性が向上し、照射をより明るくでき、ひいては対象物を高速に走査可能になる。一例として上側の線 1310 は0.240 pixels rms幅、分散1σであり、下側の線 1320 は0.074 pixels rms幅、分散1σである。これは本開示に係る技術に従った最初の試作品から初めて得られた測定データである。我々は初期型実証基盤のノイズフロア(5%)にてスペックルコントラストを測定した。ディフューザー走査長がたった25mmでありかつ視野レンズ不使用であることから差をつけるべく、1メートルのディフューザーを使ったところ、スペックルコントラストが10%未満になるという粗測定結果が得られている。
【0065】
さて図14には、例示的実施形態に係るDS(DS 900 など)の動作を説明する汎用フロー図 1400 を示す。ステップ 1410 では、鏡制御が適切な入力(例えば定常電圧および/または変調電圧)を使って、第一の方向に第一の速度(高速)で、かつ第一の方向に実質的に直交する第二の方向に第二の速度(低速)でMEMS鏡を駆動する。ステップ 1420 では、投射ビームを(任意に)パルス化するかシャッターを噛ますことで、ボケを低減できる。これにより低速走査速度が素子の撮像速度よりも速い場合でも扱えるようになる。ステップ 1430 では、鏡制御が低速についての情報を視覚処理(プロセッサ)へと送ることで、y軸に沿った光線の位置を決定できる。また、画像フレーム内の撮影した光線の相対的位置を作業区域の境界に対して定量すること、および/もしくは各撮影タイミングを通じて鏡(および光線)が各画像フレーム内でどれほど動くかについての知識から、この情報を取得した画像からも導くことが可能である。ステップ 1440 では、風景中の対象物へ投射された光線により、撮像素子が撮影する輪郭(プロファイル)が生成できる。ステップ 1450 では、この輪郭を使ってそのスライスでの対象物の高さを算出でき、この際には低速走査速度と同様に内部校正データに基づいてもよいし、または輪郭スライスのy軸位置を与えるような他のデータに基づいてもよい。ステップ 1460 では、対象物全体の輪郭を保存するか、および/もしくは下流処理へその情報を伝送してさらなる解析やタスク(検査など)に供してもよい。
【0066】
所望の視覚システムタスクに適するようにDS(DS 900 など)のサイズを設定できることは明らかであろう。また当業者には、関連部品群の尺度を上下して、タスクを行う上で求められる機能を得るようにできることも明らかであろう。
【0067】
VII. さらなる構成および用途
【0068】
本開示に従って、スペックルを低減した照射線の多種多様なその他の使用方法および/または実装も提供できる。図15には、スペックル低減照射線生成系 1510 を含んだDS系 1500 の例を示す。DS系 1500 では、レーザー源 1511 が上述のように平行ビーム 1512 を光線生成器 1520 (上述のように或る形態のリニアディフューザーを含む)へと照射する。種々の光学部品、フィルター、偏光子、ビーム分割子なども上述したように提供できる。光線生成器 1520 は可動部(振動駆動子) 1530 と動作可能に接続し、この可動部 1530 により、一つ以上の面内で振動運動(周期運動など)を起こせる(両矢印 1532 で示す)。この可動部は、MEMSに基づく部品、ボイスコイル、またはその他の適切な駆動系(電磁気原理に従い稼動するものなど)であってよい。光線生成器 1520 の運動 1532 により、軌跡ファン 1542 の作業面 1541 との交わりにおいて、照射線 1540 が得られる。光線生成器 1520 は、ビーム 1512 の拡散と変位の組み合わせを介して、軌跡ファン 1542 を生成できる。系 1510 には上述したように適切な電源と制御手段により給電できる。
【0069】
図16には光線生成系 1610 を含んだDS系 1600 の例を示す。光線生成系 1610 は、レーザー源 1620 と、可動部 1630 と、光線生成器 1640 と、ビーム偏向子 1650 (任意付加であり破線で示す)とを有する。可動部 1630 は、図15でDS系 1500 について述べたところと同様に、光線生成器 1640 を駆動できる。あるいは、静止光線生成器素子(リニアディフューザーなど)を与えて、ビーム偏向子 1650 (可動部により動かせる鏡など)が平行ビームから軌跡ファン 1660 を生成するようにしてもよい。この例での「光線生成器」という語は、(図15の実施形態のように)可動部と直接組み合わせた拡散光学素子(またはその他の光学素子)のことか、または、拡散素子を静止状態でビーム偏向子(MEMS鏡の実施形態など)と組み合わせた可動部と共に搭載する形態のいずれかとして定義できる。つまりビーム偏向子 1650 を、光線生成器 1640 と組み合わせてあるように(括り 1652 で)描いてあるのは、これら二種の部品をまとめて「光線生成器」と称する実施形態があってもよいためである。特に本開示に係る種々の構成に従う光線生成系 1610 を、機械視覚用途以外の、デスペックル化されたおよび/もしくはより均一な光線の照射が望まれるような用途にも使ってよい。図示しているように照射線 1670 は、軌跡ファン 1660 の離隔面 1680 との交わりであって、光線生成器 1640 から作業距離 DD だけ離れている。種々の実施形態では、この作業距離 DD はセンチメートル単位、メートル単位、または10メートル単位であってよく、あるいはその他の距離であってもかまわない。例えば建築用途(測量や目標設定など)においてこの光線生成系を用いて、より均一かつ鮮明な光線を生成できる。
【0070】
より一般的には、本開示に係る種々の実施形態に従う光線生成系を照射系として、機械視覚(視覚システム)および/またはその他の用途において用いることもできる。図17に示したDS系 1700 の例では、本開示に係るいずれかの実施形態もしくは構成に従う光線生成系 1710 を使って、2D撮像用途で風景/対象物 1720 を照射できる。提供される照射には、より鮮明であってより際が立っているという利点がある。またこの照射はより均一でもある上、本質的にはさらに、照射線 1730 (平面ファン 1732 と風景/対象物 1720 との交わりとして形成される)を障害物の傍で屈曲させられる、表面の欠陥(切り欠き)による歪みに概して耐性がある、などの利点もある。複数軸に沿った振動ができる(複数の自由度の)ビーム偏向子(MEMS鏡など)を備えた光線生成系 1720 を構成することで、撮像素子 SI の作業区域内の領域 1740 として照射を提供できる。撮像素子 SI は、ビーム分割子などを介して配置できるカメラ系 1750 の一部であってよく、平面ファン 1732 と同軸/同一平面上である光軸 OAI を有してよい。光線の振動を十分に高速に制御することで、撮像素子 SI からは単独の照射領域として(加算的に)見える。あるいは別の手法として、カメラ 1760 により、平面ファン 1732 の面に平行な光軸 OAI1 を定めてもよい。一般的にはDSユニットは2Dグレイスケール測定が得意であるが、照射線 1730 から高さ変位データを得られるので、一層その長所を伸ばせる。照射線 1730 でスペックルを低減できかつ均一性を向上できるため、風景/対象物のグレイスケール表現をより正確にできるのである。
【0071】
或る実装では、照射対象から反射する光におけるスペックル現象を低減するための照射装置を、下記の態様に従って構成可能である。
【0072】
概括的な態様1として、照射装置は、
コヒーレント光を照射するように構成された光源と、
前記照射対象と前記光源との間の光路内に位置し、かつ前記コヒーレント光を、前記照射対象の少なくとも一部を横切る一つの面に沿って拡がる散光へと拡散するように構成され、かつ前記散光により前記照射対象が照らされることについて関連づけられた露光時間を有する、リニアディフューザーと、
前記光路内において、前記光源と前記リニアディフューザーとの間に位置するビーム偏向子と、
前記ビーム偏向子に結合した制御手段と
を含み、
前記散光が、前記一つの面に対して垂直な方向に沿っては概して拡がらないような平面ファン光を形成するものであり、
前記制御手段が、前記ビーム偏向子を稼動することで、前記散光により前記照射対象が照らされる前記露光時間内に、前記リニアディフューザー上の複数の位置を通って掃引するように、前記コヒーレント光が前記ビーム偏向子へと投射されるようにするように構成され、かつ
前記複数の位置が、前記リニアディフューザーを横切る距離にわたって存在し、前記距離が、前記平面ファン光の前記照射対象との交わりから反射する光について、撮像素子において十分に無相関なスペックルパターンを与え、前記散光により前記照射対象が照らされる前記露光時間内に前記撮像素子により撮像される際に非コヒーレント的に加算するものである
ことを特徴とする。
【0073】
態様1に従う態様2として、前記レーザー源がレーザーを含む。
【0074】
態様1または2に従う態様3として、前記ビーム偏向子が、微小電気機械システム(MEMS)鏡を含む。
【0075】
態様1または2に従う態様4として、前記ビーム偏向子が、音響光学変調(AOM)装置を含む。
【0076】
態様1~4のいずれかに従う態様5として、
前記光路内において、前記リニアディフューザーと前記ビーム偏向子との間に位置するシリンダーレンズ
を含み、
前記シリンダーレンズが、前記リニアディフューザーに向けられた前記コヒーレント光のすべてを集約することで、効率を上げるための視野レンズとして機能する。
【0077】
態様1~4のいずれかに従う態様6として、
シリンダーレンズ
を含み、
前記リニアディフューザーが、前記ビーム偏向子と前記シリンダーレンズとの間に位置し、かつ、
前記シリンダーレンズが、前記照射対象に向けられた前記散光のすべてを集約することで、効率を上げるための視野レンズとして機能するように構成される。
【0078】
態様1~6のいずれかに従う態様7として、前記リニアディフューザーが、前記一つの面に沿ったフラットトップ強度プロファイルを備える加工ディフューザーを含む。
【0079】
態様1~6のいずれかに従う態様8として、前記リニアディフューザーが自由スペクトル範囲(Free Spectral Range; FSR)を備えるチャープ回折格子を含むことにより、前記平面ファン光中における回折線の間隔が、前記リニアディフューザーに投射される前記コヒーレント光の掃引角に伴って変化させられる。
【0080】
態様1~6のいずれかに従う態様9として、前記リニアディフューザーが、ホログラムまたはシリンダーアレイを含む。
【0081】
上記態様のいずれかに従う態様10として、
前記リニアディフューザーが、前記ビーム偏向子の基部に対して静止し、
前記制御手段が、前記ビーム偏向子を稼動して、前記コヒーレント光が前記リニアディフューザーに対して周期的に左→右→左と掃引を行うように構成されることで、前記コヒーレント光が、前記散光により前記照射対象が照らされる前記露光時間内に、左→右→左と掃引するうちの左→右半分か右→左半分かのいずれかを介して誘導される。
【0082】
或る実装では、レーザー変位測定系を下記の態様に従って構成可能である。
【0083】
概括的な態様11として、レーザー変位測定系は、
視覚システムプロセッサと、
前記視覚システムプロセッサと結合するカメラ部品と、
前記視覚システムプロセッサと結合し、かつコヒーレント光を照射するように構成されるレーザービーム部品と、
前記コヒーレント光を受けるように設置されるビーム偏向子と、
前記ビーム偏向子と結合する制御手段と、
光路内において、照射対象と前記ビーム偏向子とのあいだに位置するリニアディフューザーと
を含み、
前記制御手段が、前記ビーム偏向子を稼動することで、前記コヒーレント光が前記ビーム偏向子へ投射されるように誘導し、前記リニアディフューザー上の複数の位置を通って掃引するように構成され、
前記リニアディフューザーが、前記複数の位置において、前記ビーム偏向子から受ける前記コヒーレント光を拡散して散光を得るように構成され、前記散光は、前記照射対象の少なくとも一部を横切る一つの面内に拡がるものであり、かつ、前記散光により前記照射対象が照らされることについて関連づけられた露光時間を有し、前記散光は、前記一つの面に対して垂直な方向に実質的に拡がらないような平面ファン光を形成し、
前記複数の位置が、前記リニアディフューザーを横切る距離にわたって存在し、前記平面ファン光の前記照射対象との交わりから反射する光について、撮像素子において十分に無相関なスペックルパターンを与えることで、前記散光により前記照射対象が照らされる前記露光時間内に、前記撮像素子により撮像される際に非コヒーレント的に加算する。
【0084】
態様11に従う態様12として、
前記リニアディフューザーが、前記ビーム偏向子の基部に対して静止し、
前記制御手段が、前記ビーム偏向子を稼動して、前記コヒーレント光が前記リニアディフューザーに対して周期的に左→右→左と掃引を行うように構成され、かつ、前記制御手段が、前記ビーム偏向子を稼動して、前記コヒーレント光を、前記散光により前記照射対象が照らされる前記露光時間内に、左→右→左と掃引するうちの左→右半分か右→左半分かのいずれかを介して誘導するように構成される。
【0085】
態様11または12に従う態様13として、前記リニアディフューザーが、前記一つの面に沿ったフラットトップ強度プロファイルを備える加工ディフューザーを含む。
【0086】
態様11または12に従う態様14として、前記リニアディフューザーが、シリンダーアレイを含む。
【0087】
態様11または12に従う態様15として、前記リニアディフューザーが、ホログラムを含む。
【0088】
態様15に従う態様16として、前記ホログラムが、前記平面ファン光を前記照射対象上に非連続的パターンを以って投射するように構成される。
【0089】
態様16に従う態様17として、前記非連続的パターンが、点群、および非照射間隔により分割される線分群のうちの少なくとも一方を含む。
【0090】
態様11または12に従う態様18として、前記リニアディフューザーが、前記リニアディフューザーへ投射される前記コヒーレント光の掃引角に伴って、回折光線の前記平面ファン光中における間隔を変化させられるような自由スペクトル範囲(FSR)を有するチャープ回折格子を含む。
【0091】
態様11~18のいずれかに従う態様19として、前記ビーム偏向子が、微小電気機械システム(MEMS)鏡を含む。
【0092】
態様11~18のいずれかに従う態様20として、前記ビーム偏向子が、音響光学変調(AOM)装置を含む。
【0093】
態様11~20のいずれかに従う態様21として、
前記光路内にて、前記リニアディフューザーと前記ビーム偏向子との間に位置するシリンダーレンズ
を含み、
前記シリンダーレンズは、前記リニアディフューザーに向けられた前記コヒーレント光のすべてを集約することで、効率を上げるための視野レンズとして機能するよう構成される。
【0094】
態様11~20のいずれかに従う態様22として、
シリンダーレンズ
を含み、
前記リニアディフューザーが、前記ビーム偏向子と前記シリンダーレンズとの間に位置し、かつ、
前記シリンダーレンズが、前記照射対象に向けられた前記散光のすべてを集約することで、効率を上げるための視野レンズとして機能するように構成される。
【0095】
態様11~22のいずれかに従う態様23として、前記レーザービーム部品がレーザーを含む。
【0096】
態様11~23のいずれかに従う態様24として、
前記カメラ部品が、
前記平面ファン光の前記照射対象との交わりから反射する光を捕捉し、
捕捉した光から画像データを生成する
ように構成される。
【0097】
態様24に従う態様25として、
前記視覚システムプロセッサが、
前記カメラ部品から前記画像データを受信し、
前記画像データを処理して、前記照射対象の領域における測定および検査のうちの少なくとも一方を行う
ように構成される。
【0098】
態様11~25のいずれかに従う態様26として、前記カメラ部品が、第一の光軸面を持つ撮像センサーと、前記第一の光軸面とは非平行な第二の光軸面を持つレンズ部品とを含み、それぞれが前記平面ファン光に対してScheimpflugの原理に従って配向する。
【0099】
或る実装では、作業面上にスペックルを低減した光線を生成するための系を、下記の態様に従って構成可能である。
【0100】
概括的な態様27として、系は、
平行ビームの形態であるレーザー源と、
前記平行ビームの少なくとも一部を受けて、通過する光を作業面上へと光線として投射する、光線生成器と、
前記平行ビームを、実質的に一つ以上の面内で振動運動を以って動かす、可動部と
を含む。
【0101】
態様27に従う態様28として、前記レーザー源は、静止レーザー源を含み、
さらに
前記可動部と動作可能に接続する、可動ビーム偏向子
を含む。
【0102】
態様28に従う態様29として、前記可動部および前記ビーム偏向子が、MEMS鏡、ボイスコイルにより操作される鏡、圧電により操作される鏡、および固相鏡ユニットのうちのいずれかを含む。
【0103】
態様29に従う態様30として、前記MES鏡が、実質的に直交する二自由度に沿って振動するように構成されることで、前記光線が第一の方向に沿って生成され、前記光線が前記作業面上で第二の方向に沿って動く。
【0104】
態様28に従う態様31として、さらに前記ビームの光路内に、
ビーム分割子と、
前記ビーム分割子からの戻り反射を低減し、前記ビームを前記ビーム偏向子へと導く、偏光子部品
を含む。
【0105】
態様27~31のいずれかに従う態様32として、前記光線生成器がリニアディフューザーを含む。
【0106】
態様27~32のいずれかに従う態様33として、さらに
(a) 振動する前記レーザー源と前記光線生成器との間に位置する、および(b) 前記光線生成器と一体化し、かつ振動する前記レーザー源と前記光線生成器との間に位置する、のうちのいずれかである視野レンズ
を含む。
【0107】
態様27~33のいずれかに従う態様34として、前記作業面の少なくとも一部からの光を、センサー(撮像素子)により捕捉し、前記センサーは捕捉した光から画像データを生成する。
【0108】
態様34に従う態様35として、前記画像データをプロセッサが使い、作業面の領域の測定および検査のうちの少なくとも一方を行う。
【0109】
態様27~35のいずれかに従う態様36として、前記作業面が、測定もしくは検査される対象物の少なくとも一部を定める。
【0110】
態様27~36のいずれかに従う態様37として、レーザー変位センサーおよび照射源のうちの少なくとも一方を構築するために、前記光線生成器を使う。
【0111】
態様37に従う態様38として、前記レーザー変位センサーが、視覚システムプロセッサに動作可能に接続する。
【0112】
態様27~31、33~38のいずれかに従う態様39として、前記光線生成器が、リニアディフューザー、ホログラム、およびシリンダーアレイのうちの一種以上を有する光学部品を含む。
【0113】
態様39に従う態様40として、前記光線生成器を使って、(a) 非連続的パターンを以って前記光線を投射する、ならびに(b) 点群、および非照射間隔により分割される線分群のうちの少なくとも一方で規定されるパターンを以って前記光線を投射する、のいずれか一方を行う。
【0114】
或る実装では、スペックルを低減した光線を生成するための方法を、下記の態様に従って実施可能である。
【0115】
概括的な態様41として、方法が、
平行ビームの形態のレーザー源を照射するステップと、
前記平行ビームを、光線生成器を通り、前記作業面上へと伝送するステップと、
前記平行ビームを、実質的に一つの面内で振動運動をするように、前記平行ビームを振動させるステップと
を含む。
【0116】
態様41に従う態様42として、前記振動が、静止レーザービーム源を可動ビーム偏向子へと投射するステップを含む。
【0117】
態様41または42に従う態様43として、前記伝送が、前記平行ビームを、前記光線生成器と同軸で位置する視野レンズに通過させるステップを含む。
【0118】
態様41~43のいずれかに従う態様44として、さらに
前記作業面上に投射される前記光線の少なくとも一部を、センサー(撮像素子)により捕捉するステップと、
前記センサーにより、捕捉した光から画像データを生成するステップと
を含む。
【0119】
態様44に従う態様45として、さらに
前記画像データを処理して、前記作業面の領域上の測定および検査のうちの少なくとも一方を行うステップ
を含む。
【0120】
態様41~45のいずれかに従う態様46として、前記作業面が、測定もしくは検査される対象物の少なくとも一部を定める。
【0121】
態様41~43のいずれかに従う態様47として、振動させるステップが、
前記ビーム偏向子を、第一の軸の周りに第一の速度で振動させ、かつ前記第一の軸に実質的に直交する第二の軸の周りに第二の速度で振動させるステップ
を含む。
【0122】
或る実装では、表面へ投射される光線におけるスペックル現象および閃光現象のうちの少なくとも一方を低減するための系を、下記の態様に従って構成可能である。
【0123】
概括的な態様48として、系は、
平行光源と、
中心光軸の両側に、一種以上の所定の角度内にファン光を生成する、光学部品と、
前記光学部品と表面との間に位置し、前記ファン光が通過する、光線生成器と
を含む。
【0124】
態様48に従う態様49として、前記光学部品が、MEMS鏡、固相偏向子、およびPowellレンズのうちの一種以上を含む。
【0125】
或る実装では、表面を走査して3D輪郭(プロファイル)を定量するための系を、下記の態様に従って構成可能である。
【0126】
概括的な態様50として、系は、
光軸に沿って表面を撮影する、視覚システムカメラと、
平行光源と、
前記平行光源を受け、前記光軸に対して非平行な角度を以って前記表面へと投射する、MEMS鏡と、
二以上の直交する自由度に沿って前記MEMS鏡を振動させることで、(a) 中心光軸の両側に、一種以上の所定の角度内に、第一の方向に沿ってファン光を生成し、(b) 前記ファン光を第二の方向に沿って動かして前記ファン光に表面を走査させる、鏡制御手段と、
前記MEMS鏡と前記表面との間に位置し、前記ファン光が通過する、光線生成器と
を含む。
【0127】
態様50に従う態様51として、さらに(a) 前記平行光源の光路に沿って設置される偏光ビーム分割子・偏光子、および(b) 前記光路内のシリンドリカルレンズ、のうちの少なくとも一方を含む。
【0128】
態様50または51に従う態様52として、前記光線生成器が、リニアディフューザーを含む。
【0129】
態様50~52のいずれかに従う態様53として、前記鏡制御手段が、前記MEMS鏡を、前記第一の方向に沿って第一の速度で、かつ前記第二の方向に沿って前記第一の速度よりも遅い第二の速度で、振動させる。
【0130】
態様50~52のいずれかに従う態様54として、前記視覚システムカメラが、第一の光軸面を備える撮像素子と、前記第一の光軸面と非平行である第二の光軸面を備えるレンズとを含み、その各々は前記ファンが定める平面に対して、Scheimpflugの原理に従って配向する。
【0131】
或る実装では、作業面上にスペックルを低減した光線を生成するための系を、下記の態様に従って構成可能である。
【0132】
概括的な態様55として、系は、
面内の掃引する周期的運動を以って動く平行ビームの形態である、振動レーザー源と、
動く前記平行ビームを受け、光を通して前記作業面上へ直線として投射する、光線生成器と
を含む。
【0133】
態様55に従う態様56として、前記振動レーザー源が、静止レーザー源と、周期的可動ビーム偏向子とを含む。
【0134】
態様56に従う態様57として、前記ビーム偏向子がMEMS鏡を含む。
【0135】
態様56に従う態様58として、前記ビーム偏向子がガルバノメーターにより駆動される。
【0136】
態様56に従う態様59として、前記ビーム偏向子が固相ユニットである。
【0137】
態様55~59のいずれかに従う態様60として、前記光線生成器がリニアディフューザーである。
【0138】
態様55~60のいずれかに従う態様61として、さらに
前記振動レーザー源と前記光線生成器との間に位置する視野レンズ
を含む。
【0139】
態様61に従う態様62として、前記視野レンズが前記光線生成器と一体化している。
【0140】
態様55~62のいずれかに従う態様63として、前記光線生成器がレーザー変位センサー内に搭載される。
【0141】
態様63に従う態様64として、前記レーザー変位センサーが、視覚システムプロセッサに動作可能に接続する。
【0142】
態様55~59、61~64のいずれかに従う態様65として、前記光線生成器が、リニアディフューザー、ホログラム、およびシリンダーアレイのうちの一種以上を有する光学部品を含む。
【0143】
態様65に従う態様66として、前記光線生成器が、非連続的パターンを以って前記光線を投射する。
【0144】
態様66に従う態様67として、前記非連続的パターンが、点群、および非照射間隔により分割される線分群のうちの少なくとも一方を定める。
【0145】
或る実装では、スペックルを低減した光線を生成するための方法を、下記の態様に従って実施可能である。
【0146】
概括的な態様68として、方法は、
平行ビームの形態であるレーザー源を、面内で周期掃引運動をするように振動させるステップと、
前記平行ビームを、光線生成器を通し、作業面上に直線として伝送するステップと
を含む。
【0147】
態様68に従う態様69として、前記振動が、静止レーザービーム源を周期的可動ビーム偏向子へと投射するステップを含む。
【0148】
態様68または69に従う態様70として、前記伝送するステップが、前記光線生成器と同軸に位置する視野レンズに、前記平行ビームを通すステップを含む。
【0149】
態様68~70のいずれかに従う態様71として、前記伝送するステップが、リニアディフューザー、ホログラム、およびシリンダーアレイのうちの一種以上に、前記平行ビームを通過させるステップを含む。
【0150】
態様68~71に従う態様72として、さらに
前記作業面からの(前記光線を含んだ)反射光を、視覚システムセンサーにより受けるステップと、
前記視覚システムセンサーにより生成された画像データを処理するステップと
を含む。
【0151】
或る実装では、表面上に投射される光線中のスペックル現象および閃光現象のうちの少なくとも一方を低減するための系を、下記の態様に従って構成可能である。
【0152】
概括的な態様73として、系は、
平行光源と、
中心光軸の両側に、一種以上の所定の角度内にファン光を生成する、光学部品と、
前記光学部品と表面の間に位置し、前記ファン光が通過する、光線生成器と
を含む。
【0153】
態様73に従う態様74として、前記光学部品が、MEMS鏡、固相偏向子、およびPowellレンズのうちの一種以上を含む。
【0154】
態様73または74に従う態様75として、前記平行光源がレーザーである。
【0155】
VIII. 結論
【0156】
上述したスペックルを軽減できる光線生成系により、さまざまな目的で使用可能な改良照射線が提供できることは明らかであろう。そうした目的としては、3D変位センサーおよび関連する視覚システム操作が挙げられる。源ビームを周期的に振動させるためのビーム偏向子その他の機構を使い、かつ光線を効率的に生成するためにリニアディフューザーを使うことによって、Powellレンズその他の光線生成用光学部品を用いる必要が無くなる。これにより系のコストを低減でき、かつ投射され撮影される光線の品質を十分に向上できるという利益がある。また或る実施形態では2D走査レーザーを使うことで、対象物の走査にあたって別に動作部品(モーションステージ、コンベヤなど)を用意する必要がなくなる。またディフューザーと組み合わせて走査レーザーを使うことによって、この系ではあらゆる外来の対象物の欠陥(光学部品の内表面・外表面上の塵埃など)を効率的にぼやけ補正できる。これにより、DSの製造品質を優れたものにできる。
【0157】
上記記載は、本発明の例示的実施形態群を詳細に説明したものである。本発明の精髄と範囲から逸脱することなく、種々の改変や付加が可能である。上述した種々の実施形態群の各々が有する特徴を、記載した他の実施形態群が有する別の特徴と適切に組み合わせて、新たな実施形態に関連する特徴の多様な組み合わせを提供できる。なお上記では、本発明に係る装置および方法の実施形態群を数多記載してきたが、本明細書の記載事項はあくまで本発明の原理の適用例を示したものに過ぎないことに留意されたい。例えば本明細書で用いたような、方角と向きを表す種々の術語(およびその文法的活用語)、一例として「垂直」vertical、「水平」horizontal、「上」up、「下」down、「底」bottom、「天」top、「側」side、「前」front、「背」rear、「左」left、「右」right、「前方」forward、「後方」rearwardなどといった術語は、あくまで相対的な取り決め事として使っているものであって、固定座標系に対する絶対的な向き(重力の作用方向など)として用いているわけではない。また、「実質的に」substantiallyまたは「およそ」approximatelyという術語を所与の測定、値、または特性に対して使う場合、それは所望の結果が得られる通常作業範囲内の量を指しているが、系の許容誤差(1~2%など)内の回避不能な偏差・誤差に因るばらつきも含まれることに留意されたい。また本明細書では「処理」processおよび/または「プロセッサ」processorという語は、機能と部品(コンポーネント)に基づく種々の電子ハードウェアおよび/またはソフトウェアを含むよう広く解釈されるべきである。また示した処理またはプロセッサは、他のプロセスおよび/またはプロセッサと組み合わせてもよいし、あるいは種々の副処理もしくは下位プロセッサ群へと分割してもよい。そうした副処理および/または下位プロセッサ群も、本開示に係る実施形態に従ってさまざまな組み合わせが可能である。同様に本明細書におけるあらゆる機能、処理、および/またはプロセッサは、電子ハードウェア、プログラム命令を有する非一過性コンピュータ可読媒体からなるソフトウェア、またはハードウェアとソフトウェアの組み合わせを用いて実装可能であることも明白だろう。また本明細書において走査速度に関する「低速」slowおよび「高速」fastという語は相対的な用語であって、別案の断わりがない限りは、いかなる速度の絶対値範囲をも表しているというわけではない。したがって本開示はあくまで例示と解釈されるべきであり、本発明の範囲を限定するものと解釈されるべきではない。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17