IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社西部技研の特許一覧

<>
  • 特許-植物へのガス施用装置および施用方法 図1
  • 特許-植物へのガス施用装置および施用方法 図2
  • 特許-植物へのガス施用装置および施用方法 図3
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-10-08
(45)【発行日】2024-10-17
(54)【発明の名称】植物へのガス施用装置および施用方法
(51)【国際特許分類】
   A01G 7/02 20060101AFI20241009BHJP
【FI】
A01G7/02
【請求項の数】 13
(21)【出願番号】P 2020087792
(22)【出願日】2020-05-20
(65)【公開番号】P2021180636
(43)【公開日】2021-11-25
【審査請求日】2023-04-20
(73)【特許権者】
【識別番号】390020215
【氏名又は名称】株式会社西部技研
(72)【発明者】
【氏名】吉田 和行
【審査官】吉田 英一
(56)【参考文献】
【文献】特開2017-127302(JP,A)
【文献】特開2014-161241(JP,A)
【文献】特開2006-067888(JP,A)
【文献】特開2000-209969(JP,A)
【文献】特開昭51-100444(JP,A)
【文献】実開平02-034798(JP,U)
【文献】国際公開第2018/020935(WO,A1)
【文献】国際公開第2012/133026(WO,A1)
【文献】米国特許出願公開第2019/0029186(US,A1)
【文献】米国特許出願公開第2012/0216459(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
A01G 7/02
A01G 9/18
A01G 31/00
JSTPlus(JDreamIII)
JST7580(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
ガス供給源からの目的ガスを植物へ施用する配管の側面の少なくとも一面に整流格子を設け、前記整流格子を通して植物にガスを施用するようにしたことを特徴とする植物へのガス施用装置。
【請求項2】
前記配管の断面形状が多角形、円形、楕円形もしくは扇形のいずれか少なくとも一つの形状であることを特徴とする請求項1に記載の植物へのガス施用装置。
【請求項3】
前記整流格子はハニカム形状、格子状、三角形状、六角形状、円形状、楕円形状、扇形状のいずれか少なくとも一つの形状であることを特徴とする請求項1または2に記載の植物へのガス施用装置。
【請求項4】
前記整流格子が樹脂シート、プラスチックシート、無機繊維シート、金属シート、有機繊維シート、不織布の少なくとも1種類以上から選ばれるシートにより構成されることを特徴とする請求項1から3のいずれか一項に記載の植物へのガス施用装置。
【請求項5】
前記整流格子は吸水性を有することを特徴とする請求項1から4のいずれか一項に記載の植物へのガス施用装置。
【請求項6】
前記整流格子に触媒及び/又は吸着材を担持したことを特徴とする請求項1から5のいずれか一項に記載の植物へのガス施用装置。
【請求項7】
前記整流格子に植物の生育や人体に有害なガス成分を浄化する機能性のあるシートを用いることを特徴とする請求項1から5のいずれか一項に記載の植物へのガス施用装置。

【請求項8】
前記配管が栽培植物の中間部、左右両側もしくは片側、あるいは上部のうち、少なくとも一箇所以上から目的ガスを施用することを特徴とする請求項1から7のいずれか一項に記載の植物へのガス施用装置。
【請求項9】
前記ガス供給源がハニカムロータを用いたガス供給装置であることを特徴とする請求項1から8のいずれか一項に記載の植物へのガス施用装置。
【請求項10】
前記ガスは二酸化炭素であって、前記ガス供給源として、燃焼方式、液化炭酸ガス方式、ハニカムロータを用いたガス供給装置、あるいはガスタンクのうち少なくともいずれか一つを用いたことを特徴とする請求項1から8のいずれか一項に記載の植物へのガス施用装置。
【請求項11】
ガス供給源からのガスを施用する配管の断面形状が多角形、円形、楕円形もしくは扇形であって、前記配管側面の少なくとも一面に整流格子を設け、前記整流格子を通して栽培植物に目的ガスを施用するようにしたことを特徴とする植物へのガス施用方法。
【請求項12】
前記ガス供給源がハニカムロータを用いたガス供給装置であることを特徴とする請求項11に記載の植物へのガス施用方法。
【請求項13】
前記ガスは二酸化炭素であって、前記ガス供給源として、燃焼方式、液化炭酸ガス方式、ハニカムロータを用いたガス供給装置、あるいはガスタンクのうち少なくともいずれか1つを用いたことを特徴とする請求項11に記載の植物へのガス施用方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ハウスや植物工場などのガスの施用において、簡易な構造でありながらガス供給源から遠く離れた位置にある栽培植物にも均一かつ適量の目的ガスを施用することができるガス施用装置および施用方法に関する。
【背景技術】
【0002】
ハウスや植物工場などの屋内での植物栽培において、栽培植物に例えば二酸化炭素のような目的ガスを供給し、栽培植物の生育を促進させるための装置及び方法が提案されている(例えば、特許文献1~5)。
【0003】
目的ガスが二酸化炭素の場合、ガス供給源として主に燃焼方式と液化炭酸ガス方式が利用されている。燃焼方式は灯油やLPG(液化石油ガス、Liquefied Petroleum Gas)を燃焼させた排ガスを利用する方式で、灯油の場合、環境負荷はあるが導入コスト、ランニングコストが他の方式に比べて低い。液化炭酸ガス方式は液化炭酸ガスボンベから純ガスを供給する方式である。設備的には他の方式より安価だが、液化炭酸ガスが灯油やLPGに比べて高価であるため、ランニングコストが高くなる。
【0004】
二酸化炭素は光合成の原料であり、植物の生産行為である光合成を促進させることを目的として施用される。植物は光合成によって糖を合成し、適切に転流させ、果実などを肥大させると収量や品質を高めることができる。
【0005】
最近では、光合成が始まらない日の出前や光が弱い早朝での二酸化炭素施用は、あまり効果が上がらないことが分かっている。また、ビニールハウス全体に二酸化炭素を充満させるような施用方法はビニールハウスの外へ漏れ出す炭酸ガスが多く、施用効率が悪い。効果的な施用方法として、光合成速度が最も高まる時間帯に大気中の二酸化炭素濃度(400ppm程度)、あるいは外気より高い濃度に維持するように栽培植物の葉の周りに二酸化炭素を施用する方法がある。ビニールハウスはハウス内の温度が高くなる日中には換気を行い、ハウス内の温度を下げることがあるが、換気が行われている状態でも、有効な時間帯にチューブやダクトなどを使って栽培植物の葉の近くに局所的に二酸化炭素を施用することで、栽培植物の周りの二酸化炭素濃度を高くすることができるため、局所的に二酸化炭素を施用する方法が試みられるようになっている。
【0006】
燃焼方式において、特許文献1記載の二酸化炭素施用装置は、二酸化炭素を発生する燃焼式二酸化炭素発生器に送風機を設け、この送風機とダクト、潅水用チューブが連結される。栽培作物の群落内に配設された潅水用チューブの長さ方向に一定の間隔で設けられた複数の孔から二酸化炭素が噴出され、栽培作物の群落内の二酸化炭素濃度を上昇させ、成長を促進させることができる。
【0007】
液化炭酸ガス方式においてガスボンベのようにガス圧が高い場合、特許文献2に記載のように、二酸化炭素局所施用チューブとして、多孔質潅水チューブを用いることが一般的である。特許文献2では、栽培作物の葉部分に効率的に二酸化炭素を施用するため、多孔質潅水チューブの上部をカバーで覆い、下方向や横方向のみに二酸化炭素が施用できるようにしてある。また、同方式において、均等かつ適当な量の二酸化炭素を撒布するために、特許文献3では、パイプに複数の孔を長さ方向に設け、孔の位置に合わせて気体の流出量を平均化する流量調節機構を有するバルブを取り付けた植物栽培補助装置が開示されている。
【0008】
さらに、特許文献4や5にも、植物栽培育成用の空気を均等に効率よく供給する装置が開示されている。特許文献4に記載の植物栽培用吹出装置において、二酸化炭素供給源は特定されていないが、搬送部材の壁部と栽培ベッドで栽培スペースを仕切っており、搬送部材から送られた栽培空気はノズルを通って吹出し、ノズルの空気吹出口付近で誘引部材との間隔が狭まっているので負圧となり、栽培スペース内の空気は負圧によって誘引部材の風上側から誘引されて、栽培用空気とともに誘引部材の風下側から植物に向かって出る。誘引部材の風下側が広がっているので、誘引空気と栽培用空気が拡散して層流から乱流への遷移が促進され、誘引部材の風上側が広がっているので、栽培スペース内の空気が多量に誘引されて空気の循環スペースが広がり、植物全体に気流が接触する。よって、光合成速度が一層高まり、植物生育促進と送風動力削減の両立が図れて栽培コストダウンにつながることが開示されている。
【0009】
特許文献5に記載の植物育成用空気放射装置は、複数の空気放射部により、1個の茎部が生長する植物体(リーフレタスなど)の茎部の頂部に生える若葉に、空気流がすぐそばからそれぞれ放射されるので、葉部からの蒸散作用を促進し、植物体の根からの水分や肥料の吸い上げを促進させる効果があり、空気放射部が放射する風量は小さくてよく、強い風により葉部同士が触れ合って生じる葉傷を防ぐ効果がある。この植物育成用放射装置の二酸化炭素供給源は二酸化炭素貯留タンクである。また、各空気放射部に内蔵されたファンにより栽培用空気を放射する実施例も開示されており、この場合、空気を送る配管や大規模な供給設備を設けることなく、簡素で低コストの設備とすることができる。
【0010】
前記燃焼方式や液化炭酸ガス方式による施用は、定期的に燃料やガスボンベの購入が必要で、地球温暖化の主原因である二酸化炭素を有効に活用できているとは言い難い。また燃焼方式は発熱するので、夏期の場合デメリットとなる。さらにハウスや植物工場では、栽培植物が不足する時期や、必要とする時期あるいは高値で取り引きされる時期に育成出荷タイミングをコントロールするために、夜間照明や冷暖房など一時的な給電が必要になることもある。そのための受電設備費や受電契約料金も負担となっている。
【0011】
ここで、燃焼方式や液化炭酸ガス方式に代わる新しいガス供給源として、ハニカムロータを用いた二酸化炭素供給装置が提案されている(例えば、特許文献6)。二酸化炭素の吸着材を担持したハニカムロータにおいて、吸着ゾーンに大気やハウス内の空気など処理対象空気を通風することでハニカムが二酸化炭素を吸着・分離除去し、再生ゾーンでは再生ヒータなどで加熱した再生空気を通すことで二酸化炭素を脱着し、二酸化炭素濃度を高めた再生空気を連続的に栽培植物に供給する。このため、環境負荷がなく、クリーンなガスを施用することができる。再生温度は50℃(以下、温度は全て「摂氏」とする)程度と再生可能エネルギーや排熱を利用することができるので、他の方式に比べてランニングコストが低くなり、二酸化炭素を栽培植物に施用して、収量を上げて二酸化炭素削減も行うことができる。燃焼方式や液化炭酸ガス方式のように、燃料やガスボンベをわざわざ調達する必要もなくなる。
【先行技術文献】
【特許文献】
【0012】
【文献】特開2009-153459号公報
【文献】特開2014-161337号公報
【文献】実用新案登録第3197682号公報
【文献】特許第6367992号公報
【文献】特許第6420235号公報
【文献】特開2017-154063号公報
【発明の概要】
【発明が解決しようとする課題】
【0013】
燃焼方式においては、二酸化炭素をハウス内に充満させるので、換気による影響が大きく、二酸化炭素の無駄が多いという問題がある。例えば、栽培植物がイチゴの場合、ハウス内が25℃以上になるとハウスの天井や側面部を開けて外気を入れることにより、ハウス内の温度を低下させる必要がある。その際に、ハウス内に充満した二酸化炭素が外に放出されてしまう。また、燃料の排気に含まれる硫黄化合物(SO)や窒素化合物(NO)や一酸化炭素(CO)などの栽培植物や人への影響が懸念される。さらに、燃料の高騰により、収益が低下することもある。
【0014】
特許文献1に記載の二酸化炭素施用装置は長さ方向に一定の間隔で設けられた複数の孔から二酸化炭素が供給されるので、ガス供給源に近い孔からは十分な量の流体が流れ出るものの、ガス供給源から遠くなるほど、孔からの流出量が少なくなるので、二酸化炭素の量が一定とならず、一部では適量よりも過大に、他の一部では適量よりも過小になりやすく、群落内の栽培植物の生育などに差が出てしまうことがある。
【0015】
一方、液化炭酸ガス方式において、特許文献2や特許文献3に記載の施用装置は、ガスボンベのようにガス圧が高い供給源では使用できるが、ガス圧の高くない燃焼方式などのガス供給源に用いるのは不向きである。また、ハウスは例えば30mと長く、ガス供給源から遠く離れた位置では、チューブやパイプの内径が小さく、圧力損失があるので、二酸化炭素が出ない、もしくはガス流出量が少なく、濃度が低くなる可能性がある。特許文献3に記載の装置では、孔が開いている部分は二酸化炭素濃度が高くなるが、孔と孔の間の部分では濃度が上がらず、葉の周りの濃度が不均一となる虞がある。
【0016】
特許文献4や5に記載の装置では、特殊な形状や仕様のノズルや空気放射部を設ける必要があり、局所供給手段としてはイニシャルコストが高くなる。特許文献4に記載の装置では、搬送部材の壁部と栽培ベッドで栽培スペースを仕切り、ノズルや吹出部材などを工夫することで空気の循環量を低減し、送風動力を少なくしているが、それでも空気を吹出す際の圧力損失は高く、供給のための送風動力削減に限界がある。
【0017】
以上のような実情に鑑み、本発明は目的ガスの供給源によらず、特許文献4や5より簡易な構造でありながら、ガス供給源から遠く離れた場所においても、均一に栽培植物に適量の目的ガスを施用することができるガス施用装置及び施用方法を提供する。
【課題を解決するための手段】
【0018】
以上の課題を解決するため、本発明のガス施用装置は、配管側面の少なくとも一面に整流格子を設け、ガス供給源からの目的ガスを栽培植物に施用するように構成したことを特徴とする。
【発明の効果】
【0019】
本発明のガス施用装置によれば、整流格子は特許文献1~5に記載のようなチューブやパイプよりガスが通る断面積を大きく取ることで、圧力損失が非常に小さくなり、長い配管によりガス供給源から遠く離れた位置に供給しても、均一に適量の目的ガスを施用することができる。このため、ガスボンベのようにガスを高圧にする必要がなく、種々の供給源に適用することができる。また、簡易な構造でありながら均一に適切な量の目的ガスを施用できるので、製作コストを低減できる。
【0020】
また、本発明のガス施用装置および施用方法は、目的ガスを栽培植物近傍の局所に施用するため、換気が行われた状態においても、栽培植物近傍のガス濃度は下がることなく、目的ガスがハウスなどの外に放出されることを低減することができる。
【0021】
さらに、整流格子に触媒や吸着材などを担持したり、吸水性や機能性のあるシートを用いることにより、機能性を持たせた整流格子を用いることによって、植物の生育や人体に有害なガス成分を浄化して影響を排除しつつ、湿度を調整することも可能となる。
【図面の簡単な説明】
【0022】
図1図1は本発明に係るガス施用装置における配管形態の一例を示す図である。
図2図2は本発明に係るガス施用装置のフローを示す図である。
図3図3は本発明に係る栽培植物へのガス施用形態の一例を示す図である。
【発明を実施するための形態】
【0023】
図1に本発明に係るガス施用装置の配管形態の一例を示す。本発明のガス施用装置の配管1に用いる整流格子2は、ポリプロピレンなどの樹脂シートやプラスチックシート、ガラス繊維やセラミック繊維などの無機繊維シート、アルミなどの金属シート、有機繊維シート、不織布など、様々な材料を用いることができる。このシートをハニカム形状にコルゲート(波付け加工)し、複数積層接着して整流格子を作製する。整流効果を高めるため、望ましくは非通気性のシートを用いる。この整流格子を、目的ガスを施用する配管1の少なくとも一面に設ける。本発明に用いる配管1の断面形状は、例えば図1の(A)~(D)のように、多角形(三角形、四角形含む)、円形や楕円形、扇形などが挙げられるが、特に限定されない。整流格子を設けない非通気性側面3の材料は金属製、ゴム製、塩化ビニル製、アクリル製、ポリエチレン製などのプラスチック製などが挙げられる。安価なシート材料や配管材料を用いれば、製作コストを低減できる。
【0024】
なお、整流格子2を設ける配管側面はガスの施用形態や配管の断面形状に応じて、設けるようにするとよい。また、配管側面の少なくとも一面に整流格子を設ける構成としたが、配管側面の全面、あるいは側面の一部分に整流格子を設けるようにしてもよい。
【0025】
図1の(a)~(d)は整流格子の種々の形状の例を示す。(a)ハニカム状、(b)格子状、(c)三角形状、(d)六角形状などが挙げられ、他にも円形状、楕円状、扇形状など、ガスを通気できる様々な形状が考えられる。形状に応じて、整流格子の加工方法を変える。整流格子の形状やサイズも、用途や目的に応じて変えることができる。
【0026】
整流格子2の形状が(a)ハニカム状の場合、ハニカムのサイズは、この例に限定されないが、例えば山高2.5mm、ピッチ4.2mmなどのサイズが挙げられる。送風機の動力や風量調整の他に、ハニカムサイズを変えることで、栽培植物に供給されるガスの流速を調整することができる。また、送風機に近い部分ではハニカムサイズを小さくし、送風機から遠ざかるにつれてハニカムサイズを大きくすると供給されるガスの量が全体的に均一となる。ハニカムサイズなどにより適度に流速を調整することで、栽培植物の葉に適度に目的ガスを含む空気が供給され、空気が入れ替わり、空気の淀みおよび温度ムラがなくなり、蒸散作用が促進され、根から水分や養分の吸い上げを促し、成長が促進される効果がある。また、葉面境界層抵抗が低下して光合成速度が一層高まるので、植物生育促進と送風動力削減の両立が図れて栽培コストダウンにもつながる。特許文献2のように、ガスボンベから多孔質チューブで二酸化炭素を施用する場合は、多孔質チューブから二酸化炭素が漏れ出し、栽培植物周辺で空気の流れがほとんどないため、本発明の施用装置で目的ガスを送る方が植物の生育に優位である。
【0027】
整流格子を吸水性のある材料で製作することにより、水や温水を整流格子に送り、目的ガスが通る時の気化によって、湿度の高い空気を送ることも可能である。この際に気化冷却が生じるので、栽培植物周辺の温度を下げることも可能である。湿度が高く調整された空気を供給することで、栽培植物の葉の乾燥を防ぎ、効率よく光合成させ、成長を促進することができる。
【0028】
さらに、整流格子に触媒や吸着材などを担持して、あるいは活性炭シートのように機能性のあるシートによって、機能性を持たせた整流格子を用いることで、植物の生育や人体に有害なガス成分を浄化して影響を排除することも可能となる。例えば、光触媒を担持することで、栽培植物に有害な有機化合物や細菌などを除去してガスの浄化作用、脱臭作用、抗菌作用、防汚作用、浄水作用などが期待できる。また、ガス供給源として燃焼方式を採用する場合、燃料の燃焼に伴うSO、NO、COなどの有害なガス成分の除去も可能となる。
【0029】
図2に本発明に係るガス施用装置のフローを示す。ガス施用装置4は、ガス供給源5に送風機6を設け、この送風機6とダクト(図示せず)などによって、配管1が連結される。ガス供給源5から供給される目的ガスは、そのまま、あるいは必要に応じて空気と混合され、送風機6により植物工場やハウス内に配設された配管1に目的ガスを供給して、配管1の配管側面に設けられた整流格子2を通じて、栽培植物に目的ガスが施用される。
【0030】
整流格子2は、チューブやパイプによるガス施用と比較して、ガスが通る断面積を大きく取ることで、圧力損失が非常に小さくなり、長い配管によりガス供給源から遠く離れた位置に供給しても、均一に適量の目的ガスを施用することができる。このため、ガスボンベのようにガスを高圧にする必要がなく、種々の供給源に適用することができる。従って、ガス供給源5は限定されず、例えば、目的ガスが二酸化炭素の場合、燃焼方式、液化炭酸ガス方式、特許文献6に記載のようにハニカムロータを用いた二酸化炭素供給装置や、圧力スイング吸着(Pressure Swing Adsorption、PSA)方式により濃縮した二酸化炭素タンクなど様々なガス供給源に適用することができる。なお、ガス供給源は一つに限らず、複数組み合わせてもよい。送風機6の能力については、ハウスや植物工場の規模や二酸化炭素施用領域の広さなどによって決定される。
【0031】
液化炭酸ガスや二酸化炭素タンクを用いる場合、ガスボンベやガスタンクからの二酸化炭素を空気と混合して所定の二酸化炭素濃度に調整した後、本発明のガス施用装置を用いてガスを施用することもできる。
【0032】
特許文献6に記載のようなハニカムロータを用いたガス供給装置をガス供給源として用いる場合、ハニカムロータを出た目的ガスを大気圧で供給するので、特に本発明のガス施用装置が適している。ガスフローや再生温度、ロータ回転数などを調整することにより、目的ガスの濃度は用途や目的に応じて、変化させることができる。目的ガスが二酸化炭素の場合、ハニカムロータを用いたガス供給装置を用いて大気の二酸化炭素を濃縮回収しながら、栽培植物に二酸化炭素を同時に供給することができ、環境負荷がなく、クリーンなガスを施用することができる。また、ハニカムロータの吸着材として二酸化炭素とともに水分を吸着することができる吸着材を用いることで、再生ゾーンを出た二酸化炭素濃度と水分が多く含むガスを栽培植物に施用することができる。一方で、夏期など湿度が高すぎる場合は、ハニカムロータの処理ゾーンを出た空気を混合して水分を調整するようにしてもよい。
【0033】
図3は本発明に係る栽培植物(例えばイチゴ)へのガス施用の一例を示す図である。ガス施用形態として、図3(A)に示すように、栽培植物7がイチゴの場合、栽培植物7の中間部近くに配管1を設置すると、二酸化炭素がイチゴの葉の近くに供給される。他の形態として、図3(B)のように、栽培植物7の左右両側あるいは片側に配管1を設置し、一つの配管側面に整流格子を設けた配管により目的ガスを施用するようにしてもよい。また、図3(C)のように、栽培植物7の高さ方向中間部に配管1を設置し、上下方向にガスを供給したり、図3(D)のように栽培植物の上部に配管1を設置して(例えば、天井から配管を吊るし)、下方向のみや左右両側面の整流格子からガスを供給するようにしたりしてもよい。なお、配管形状や整流格子の配置、配管の設置位置や向きなどは図3に示す形態に限定されず、栽培植物周辺の複数の位置から目的ガスを施用するようにしてもよい。
【0034】
近年、畝の栽培植物や地面に固定された栽培ベッドの栽培植物のみだけでなく、栽培ベッドを載せた栽培ベンチを移動させることにより通路となる部分を減らし、固定式より多くの栽培ベッドを設置することができる栽培ベッド移動式システムが実用化されている。そこで、本発明のガス施用装置の配管を設置するための梁や柱を設置する場所を畝の栽培植物や栽培ベッドの栽培植物、栽培ベッド移動式システムの移動する栽培ベッドとその栽培植物の移動の妨げとならない場所とすることにより、様々な栽培形態の栽培植物のガス施用に展開することができる。
【0035】
外気の二酸化炭素濃度はおよそ400ppmだが、ハウス内の二酸化炭素濃度は光合成により栽培植物が吸収するため外気を下回ることがある。ハウス内の二酸化炭素濃度の測定により、二酸化炭素がいつ低下するかを検出し、日の出後に栽培植物が光合成を開始し、日中の光合成量の増大に合わせて、外気濃度を下回らないように施用すると効果的である。また、ハウス内の経時的な二酸化濃度推移を把握し、目的濃度に維持できるように管理するようにするとよい。例えば、栽培植物の葉に近い部分に二酸化炭素濃度検知センサを設置して、設定上限濃度以上になった場合はガスの施用を停止し、設定下限濃度以下になった場合は施用を開始する。このように、ガス濃度検知センサを適宜設けるようにし、センサの検出濃度に応じて供給する二酸化炭素などの目的ガスの量を調整するようにしてもよい。
【0036】
また、照度計をハウス内で栽培植物が日陰にならない場所に設置し、照度を測定して設定照度以上になった場合はガスの供給を開始し、設定照度より小さくなった場合は供給を停止するようにすると、曇天や雨天、夕方から夜間にガスを施用しないようにすることができる。あるいは、タイマーで施用時間を制御して、光合成の盛んな時間帯のみガスを施用するようにしてもよい。前述のガス濃度検知センサやこれらを組み合わせることにより、より細やかなガス施用を行うことができ、光合成に使用されない二酸化炭素の施用を抑制することができる。また、栽培植物の生育状況に合わせて二酸化炭素などの目的ガスの濃度を調整するようにしてもよい。さらに、必要に応じて、湿度センサを設ける構成にしてもよい。
【0037】
栽培植物が例えばイチゴの場合、燃焼方式によってハウス内全体へ二酸化炭素を施用すると収量は15%程度増加するが、前述のように温度上昇するため、ハウス内温度を25℃以下に保つために換気しなければならず、12月~2月までしか二酸化炭素の施用ができない。一方、本発明にかかるガス施用装置および方法によれば、ハウスの天井や側面を開けて換気しても植物近傍の二酸化炭素濃度が保たれているので、イチゴの栽培期間の10月~5月まで施用期間を延ばすことができ、この分収量の増加も期待できる。
【0038】
さらに温度や湿度を調整した二酸化炭素を供給するようにしてもよく、その他のガスを用いるようにしてもよい。光合成の行われていない時間帯は二酸化炭素の供給を停止し、湿度調整を行った空気のみを供給するようにしてもよい。
【0039】
施用配管の整流格子を設けない非通気性側面の、少なくとも一面に光を反射させる反射面を設けるようにすると、反射面が照明や太陽光を反射することにより、光強度を大きくして、光合成速度が一層高まるので、植物生育促進と照明消費電力削減を図ることができる。反射面は、反射材や反射塗料、そのほかの反射物質を用いて構成するとよい。
【0040】
また、栽培植物に光を照射する発光装置を配管側面に適宜設けるようにすると、発光装置が整流格子からのガスの施用を遮ることがなく、ガス施用とともに光照射を効率よく行うことができ、しかもガス施用装置と光照射装置が一体型となるので、コンパクトな装置となる。
【0041】
栽培植物については、イチゴを例示したがこれに限定されず、キュウリやトマト、メロンなど、目的ガスの施用により品質や収量が高まる種々の栽培植物に応用することができる。
【0042】
本発明において、二酸化炭素を例にして説明したが、他の目的ガスとして、果物類の追熟効果のあり、菊に使用した場合開花時期の抑制効果や一部の植物に対して伸長成長を阻害する効果のあるエチレンガスや、出荷調達等を目的として植物の生育を抑制したい場合には窒素など、栽培植物の成長を促進・抑制するためのガスを施用するようにしてもよい。
【0043】
上記の具体的構成は、本発明の一例を示したものであり、本発明はそのような具体的構成に限定されることなく、本発明の趣旨を逸脱しない範囲で様々な態様を取り得るものである。
【実施例1】
【0044】
本発明に係るガス施用装置において、ハニカム形状の整流格子を用いて、ガス施用実験を行った。ガスは二酸化炭素とし、外気と液化炭酸ガスボンベからの二酸化炭素を送風機で混合して二酸化炭素濃度1160ppm、供給流量を20m/hとなるよう調整した。ガス施用配管は図1(A)のように、断面形状は四角形とし、配管の左側面と右側面に無機繊維シートからなるハニカム形状整流格子を配置し、配管長さを10mとした。二酸化炭素供給源に近い方からの配管距離が0m地点のとき二酸化炭素濃度は1160ppm、3m地点のとき1170ppm、10m地点においては1160ppmとなり、均一に二酸化炭素が供給されていることがわかった。送風機の選定や風量調整、整流格子のセルサイズ、供給流量を調整することにより、ガス施用装置から栽培植物へのガス供給量を柔軟に均一に調整することが可能である。
【実施例2】
【0045】
ガス供給源としてハニカムロータによる二酸化炭素供給装置を用い、本発明のガス施用装置をイチゴのハウス内に設置し、二酸化炭素を施用した。無施用の場合、ハウス内の二酸化炭素濃度は、光合成の盛んな時間帯では外気濃度400ppmを下回った。一方、本発明に係る装置を用いることで、ハウス内温度を25℃以下に保つために二酸化炭素施用時間中は換気が行われていても、イチゴの葉周辺の二酸化炭素濃度はガス供給源から最も離れた位置においても400~500ppmとなり、無施用よりも高い二酸化炭素濃度を維持することができた。
【産業上の利用可能性】
【0046】
ハウスや植物工場などの屋内での植物栽培におけるガス施用において、本発明に係るガス施用装置およびガス施用方法によれば、簡易な構造でありながら、ガス供給源から遠く離れた位置にある栽培植物にも均一かつ適量の目的ガスを施用することができるガス施用装置および施用方法に関する。また、目的ガスが二酸化炭素の場合、ハニカムロータを用いたガス供給装置と組み合わせることにより、大気の二酸化炭素を濃縮回収しながら、栽培植物に二酸化炭素を同時に供給することができ、環境負荷がなく、クリーンなガスを施用することができる。
【符号の説明】
【0047】
1 配管
2 整流格子
3 非通気性側面
4 ガス施用装置
5 ガス供給源
6 送風機
7 栽培植物
図1
図2
図3