IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ リンテック株式会社の特許一覧

特許7569794硬化性組成物、硬化物、及び、硬化性組成物の使用方法
<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-10-09
(45)【発行日】2024-10-18
(54)【発明の名称】硬化性組成物、硬化物、及び、硬化性組成物の使用方法
(51)【国際特許分類】
   C08L 83/04 20060101AFI20241010BHJP
   C08K 5/5419 20060101ALI20241010BHJP
   H01L 21/52 20060101ALI20241010BHJP
   H01L 23/29 20060101ALI20241010BHJP
   H01L 23/31 20060101ALI20241010BHJP
【FI】
C08L83/04
C08K5/5419
H01L21/52 E
H01L23/30 F
【請求項の数】 10
(21)【出願番号】P 2021548481
(86)(22)【出願日】2020-09-28
(86)【国際出願番号】 JP2020036722
(87)【国際公開番号】W WO2021060562
(87)【国際公開日】2021-04-01
【審査請求日】2023-06-30
(31)【優先権主張番号】P 2019177171
(32)【優先日】2019-09-27
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000102980
【氏名又は名称】リンテック株式会社
(74)【代理人】
【識別番号】100108419
【弁理士】
【氏名又は名称】大石 治仁
(72)【発明者】
【氏名】森 瑶子
(72)【発明者】
【氏名】宮脇 学
【審査官】尾立 信広
(56)【参考文献】
【文献】特開2019-119804(JP,A)
【文献】特開2013-087215(JP,A)
【文献】特開2010-034414(JP,A)
【文献】特開2012-155200(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C08L 1/00-101/14
C08K 3/00-13/08
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
下記(A)成分、及び、(C)成分を含有する硬化性組成物。
(A)成分:下記式(a-1)
【化1】
〔Rは、無置換の炭素数6~12のアリール基、又は、置換基を有する炭素数6~12のアリール基を表す。〕
で示される繰り返し単位〔繰り返し単位(1)〕、及び、下記式(a-2)
【化2】
〔Rは、無置換の炭素数1~10のアルキル基、又は、置換基を有する炭素数1~10のアルキル基を表す。〕
で示される繰り返し単位〔繰り返し単位(2)〕を有し、(A)成分中の繰り返し単位(1)と繰り返し単位(2)の合計量が、(A)成分の全繰り返し単位中90~100mol%であるポリシルセスキオキサン化合物であって、下記要件1及び要件2を満たすことを特徴とするポリシルセスキオキサン化合物
〔要件1〕
繰り返し単位(1)と繰り返し単位(2)の合計量に対して、繰り返し単位(1)の量が40mol%以上、80mol%未満である。
〔要件2〕
下記式(a-3)で示されるTサイト(T1サイト)、下記式(a-4)で示されるTサイト(T2サイト)、及び下記式(a-5)で示されるTサイト(T3サイト)の合計量に対して、前記T2サイトの量が、20~70mol%である。
【化3】
〔Gは、R又はRで表される基を表す。Rは、水素原子又は炭素数1~10のアルキル基を表す。*には、ケイ素原子が結合している。〕
(C)成分:シランカップリング剤
【請求項2】
(A)成分の質量平均分子量(Mw)が500~25,000である、請求項1に記載の硬化性組成物。
【請求項3】
(C)成分の含有量が、(A)成分100質量部に対して、0.1~70質量部である、請求項1又は2に記載の硬化性組成物。
【請求項4】
(A)成分と(C)成分の合計量が、硬化性組成物の固形分中50~100質量%である、請求項1~のいずれかに記載の硬化性組成物。
【請求項5】
さらに希釈剤を含有し、固形分濃度が、60質量%以上、100質量%未満である、請求項1~のいずれかに記載の硬化性組成物。
【請求項6】
25℃における屈折率(nD)が、1.46~1.56である、請求項1~のいずれかに記載の硬化性組成物。
【請求項7】
請求項1~のいずれかに記載の硬化性組成物を硬化させて得られる硬化物。
【請求項8】
光素子固定材である請求項に記載の硬化物。
【請求項9】
請求項1~のいずれかに記載の硬化性組成物を、光素子固定材用接着剤として使用する方法。
【請求項10】
請求項1~のいずれかに記載の硬化性組成物を、光素子固定材用封止材として使用する方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、屈折率が高く、光学分野において好適に用いられる硬化性組成物、前記硬化性組成物が硬化してなる硬化物、及び、前記硬化性組成物を、光素子固定材用接着剤又は光素子固定材用封止材として使用する方法に関する。
【背景技術】
【0002】
従来、硬化性組成物は用途に応じて様々な改良がなされ、光学部品や成形体の原料、接着剤、コーティング剤等として産業上広く利用されてきている。
また、硬化性組成物は、光素子固定材用接着剤や光素子固定材用封止材等の光素子固定材用組成物としても注目を浴びてきている。
【0003】
光素子には、半導体レーザー(LD)等の各種レーザーや発光ダイオード(LED)等の発光素子、受光素子、複合光素子、光集積回路等がある。
近年においては、発光のピーク波長がより短波長である青色光や白色光の光素子が開発され広く使用されてきている。このような発光のピーク波長の短い発光素子の高輝度化が飛躍的に進み、これに伴い、光素子の発熱量が更に大きくなっていく傾向にある。
【0004】
ところが、近年における光素子の高輝度化に伴い、光素子固定材用組成物の硬化物が、より高いエネルギーの光や、光素子から発生するより高温の熱に長時間さらされ、接着力が低下するという問題が生じた。
【0005】
この問題を解決するべく、特許文献1~3には、ポリシルセスキオキサン化合物を主成分とする光素子固定材用組成物が提案されている。
【0006】
ところで、硬化性組成物を用いて光素子等を固定する場合、光取り出し効率を高めるために、周囲の部材の屈折率に合わせて、適切な屈折率の硬化性組成物が選択されることがある。
例えば、封止剤と固定材の界面での反射を抑え、光取り出し効率を高めるためには、封止剤の屈折率と固定材の屈折率の差が小さいことが好ましい。
したがって、比較的高い屈折率を有する封止剤を用いる場合、同じように高い屈折率を有する硬化性組成物を用いて固定材を形成することが必要になる。
【先行技術文献】
【特許文献】
【0007】
【文献】特開2004-359933号公報
【文献】特開2005-263869号公報
【文献】特開2006-328231号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
本発明は、上記した従来技術の実情に鑑みてなされたものであり、屈折率が高く、光学分野において好適に用いられる硬化性組成物、前記硬化性組成物が硬化してなる硬化物、及び、前記硬化性組成物を、光素子固定材用接着剤又は光素子固定材用封止材として使用する方法を提供することを目的とする。
【課題を解決するための手段】
【0009】
本発明者らは、上記課題を解決すべく、ポリシルセスキオキサン化合物を含有する硬化性組成物について鋭意検討を重ねた。
その結果、
(i)ポリシルセスキオキサン化合物として、アリール基を多く含むポリシルセスキオキサン化合物を用いることで、屈折率が高い硬化性組成物が得られること、
(ii)アリール基を多く含むポリシルセスキオキサン化合物を含有する硬化性組成物の硬化物には、クラックが発生するおそれがあること、
(iii)アリール基を多く含むポリシルセスキオキサン化合物を含有する硬化性組成物の硬化物は、接着性に劣る傾向があること、
(iv)ポリシルセスキオキサン化合物中のアリール基の量を調節すること、ポリシルセスキオキサン化合物に特定の分子構造を導入すること、及び、硬化性組成物中にシランカップリング剤を添加すること、により、上記(ii)、(iii)の問題を解決し得ること、
を見出し、本発明を完成するに至った。
【0010】
かくして本発明によれば、下記〔1〕~〔7〕の硬化性組成物、〔8〕、〔9〕の硬化物、及び〔10〕、〔11〕の硬化性組成物の使用方法が提供される。
【0011】
〔1〕下記(A)成分、及び、(C)成分を含有する硬化性組成物。
(A)成分:下記式(a-1)
【0012】
【化1】
【0013】
〔Rは、無置換の炭素数6~12のアリール基、又は、置換基を有する炭素数6~12のアリール基を表す。〕
で示される繰り返し単位〔繰り返し単位(1)〕、及び、下記式(a-2)
【0014】
【化2】
【0015】
〔Rは、無置換の炭素数1~10のアルキル基、又は、置換基を有する炭素数1~10のアルキル基を表す。〕
で示される繰り返し単位〔繰り返し単位(2)〕を有するポリシルセスキオキサン化合物であって、下記要件1及び要件2を満たすことを特徴とするポリシルセスキオキサン化合物
〔要件1〕
繰り返し単位(1)と繰り返し単位(2)の合計量に対して、繰り返し単位(1)の量が40mol%以上、80mol%未満である。
〔要件2〕
下記式(a-3)で示されるTサイト(T1サイト)、下記式(a-4)で示されるTサイト(T2サイト)、及び下記式(a-5)で示されるTサイト(T3サイト)の合計量に対して、前記T2サイトの量が、20~70mol%である。
【0016】
【化3】
【0017】
〔Gは、R又はRで表される基を表す。Rは、水素原子又は炭素数1~10のアルキル基を表す。*には、ケイ素原子が結合している。〕
(C)成分:シランカップリング剤
〔2〕(A)成分の質量平均分子量(Mw)が500~25,000である、〔1〕に記載の硬化性組成物。
〔3〕(A)成分中の繰り返し単位(1)と繰り返し単位(2)の合計量が、(A)成分の全繰り返し単位中90~100mol%である、〔1〕又は〔2〕に記載の硬化性組成物。
〔4〕(C)成分の含有量が、(A)成分100質量部に対して、0.1~70質量部である、〔1〕~〔3〕のいずれかに記載の硬化性組成物。
〔5〕(A)成分と(C)成分の合計量が、硬化性組成物の固形分中50~100質量%である、〔1〕~〔4〕のいずれかに記載の硬化性組成物。
〔6〕さらに希釈剤を含有し、固形分濃度が、60質量%以上、100質量%未満である、〔1〕~〔5〕のいずれかに記載の硬化性組成物。
〔7〕25℃における屈折率(nD)が、1.46~1.56である、〔1〕~〔6〕のいずれかに記載の硬化性組成物。
〔8〕前記〔1〕~〔7〕のいずれかに記載の硬化性組成物を硬化させて得られる硬化物。
〔9〕光素子固定材である〔8〕に記載の硬化物。
〔10〕前記〔1〕~〔7〕のいずれかに記載の硬化性組成物を、光素子固定材用接着剤として使用する方法。
〔11〕前記〔1〕~〔7〕のいずれかに記載の硬化性組成物を、光素子固定材用封止材として使用する方法。
【発明の効果】
【0018】
本発明によれば、屈折率が高く、かつ、光学分野において好適に用いられる硬化性組成物、前記硬化性組成物が硬化してなる硬化物、及び、前記硬化性組成物を、光素子固定材用接着剤又は光素子固定材用封止材として使用する方法が提供される。
【発明を実施するための形態】
【0019】
以下、本発明を、1)硬化性組成物、2)硬化物、及び、3)硬化性組成物の使用方法、に項分けして詳細に説明する。
【0020】
1)硬化性組成物
本発明の硬化性組成物は、下記(A)成分、及び、(C)成分を含有する。
(A)成分:上記式(a-1)で示される繰り返し単位、及び、上記式(a-2)で示される繰り返し単位を有するポリシルセスキオキサン化合物であって、上記要件1及び要件2を満たすことを特徴とするポリシルセスキオキサン化合物〔以下、「ポリシルセスキオキサン化合物(A)」と記載することがある。〕
(C)成分:シランカップリング剤
【0021】
〔(A)成分〕
本発明の硬化性組成物を構成するポリシルセスキオキサン化合物(A)は、下記式(a-1)で示される繰り返し単位〔繰り返し単位(1)〕を有する。
【0022】
【化4】
【0023】
〔Rは、無置換の炭素数6~12のアリール基、又は、置換基を有する炭素数6~12のアリール基を表す。〕
【0024】
繰り返し単位(1)はRを有するため、繰り返し単位(1)を有するポリシルセスキオキサン化合物は高い屈折率を有する。このため、本発明の硬化性組成物は屈折率が高いものとなる。
【0025】
の「無置換の炭素数6~12のアリール基」としては、フェニル基、1-ナフチル基、2-ナフチル基等が挙げられる。
の「無置換の炭素数6~12のアリール基」の炭素数は6が好ましい。
【0026】
の「置換基を有する炭素数6~12のアリール基」の炭素数は6が好ましい。なお、この炭素数は、置換基を除いた部分(アリール基の部分)の炭素数を意味するものである。したがって、Rが「置換基を有する炭素数6~12のアリール基」である場合、Rの炭素数は12を超える場合もあり得る。
の「置換基を有する炭素数6~12のアリール基」のアリール基としては、「無置換の炭素数6~12のアリール基」として示したものと同様のものが挙げられる。
【0027】
の「置換基を有する炭素数6~12のアリール基」の置換基の原子数(ただし、水素原子の数を除く)は、通常1~30、好ましくは1~20である。
の「置換基を有する炭素数6~12のアリール基」の置換基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、イソオクチル基等のアルキル基;塩素原子、臭素原子等のハロゲン原子;メトキシ基、エトキシ基等のアルコキシ基;等が挙げられる。
【0028】
これらの中でも、屈折率が高い硬化性組成物を効率よく調製することができることから、Rとしては、無置換の炭素数6~12のアリール基が好ましく、フェニル基がより好ましい。
【0029】
ポリシルセスキオキサン化合物(A)は、1種のRを有するものであっても、2種以上のRを有するものであってもよい。
【0030】
ポリシルセスキオキサン化合物(A)は、更に、下記式(a-2)で示される繰り返し単位〔繰り返し単位(2)〕を有する。
【0031】
【化5】
【0032】
〔Rは、無置換の炭素数1~10のアルキル基、又は、置換基を有する炭素数1~10のアルキル基を表す。〕
【0033】
ポリシルセスキオキサン化合物(A)は、繰り返し単位(2)を有することで、高分子量化するとともに、分子鎖の柔軟性が向上する。このため、本発明の硬化性組成物の硬化物にはクラックが発生しにくくなり、さらに、本発明の硬化性組成物は接着性に優れる。
【0034】
の「無置換の炭素数1~10のアルキル基」の炭素数は、1~6が好ましく、1~3がより好ましい。
の「無置換の炭素数1~10のアルキル基」としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、n-ノニル基、n-デシル基等が挙げられる。
【0035】
の「置換基を有する炭素数1~10のアルキル基」の炭素数は、1~6が好ましく、1~3がより好ましい。なお、この炭素数は、置換基を除いた部分(アルキル基の部分)の炭素数を意味するものである。したがって、Rが「置換基を有する炭素数1~10のアルキル基」である場合、Rの炭素数は10を超える場合もあり得る。
の「置換基を有する炭素数1~10のアルキル基」のアルキル基としては、「無置換の炭素数1~10のアルキル基」として示したものと同様のものが挙げられる。
【0036】
「置換基を有する炭素数1~10のアルキル基」の置換基の原子数(ただし水素原子の数を除く)は、通常1~30、好ましくは1~20である。
「置換基を有する炭素数1~10のアルキル基」の置換基としては、塩素原子、臭素原子等のハロゲン原子;シアノ基;等が挙げられる。
【0037】
これらの中でも、Rとしては、無置換の炭素数1~10のアルキル基が好ましく、無置換の炭素数1~6のアルキル基がより好ましく、無置換の炭素数1~3のアルキル基が更に好ましい。
が、無置換の炭素数1~10のアルキル基であるポリシルセスキオキサン化合物(A)を用いることで、ポリシルセスキオキサン化合物(A)の分子量を効率よく制御することができる。
【0038】
ポリシルセスキオキサン化合物(A)は、1種のRを有するものであっても、2種以上のRを有するものであってもよい。
【0039】
ポリシルセスキオキサン化合物(A)は、ランダム共重合体、ブロック共重合体、グラフト共重合体、交互共重合体等のいずれであってもよいが、製造容易性等の観点からは、ランダム共重合体が好ましい。
また、ポリシルセスキオキサン化合物(A)の構造は、ラダー型構造、ダブルデッカー型構造、籠型構造、部分開裂籠型構造、環状型構造、ランダム型構造のいずれの構造であってもよい。
【0040】
繰り返し単位(1)や繰り返し単位(2)は、下記式(a-6)で示されるものである。
【0041】
【化6】
【0042】
〔Gは、R又はRで表される基を表す。R、Rは、それぞれ上記と同じ意味を表す。O1/2とは、酸素原子が隣の繰り返し単位と共有されていることを表す。〕
【0043】
式(a-6)で示されるように、ポリシルセスキオキサン化合物(A)は、一般にTサイトと総称される、ケイ素原子に酸素原子が3つ結合し、それ以外の基(Gで表される基)が1つ結合してなる部分構造を有する。
ポリシルセスキオキサン化合物(A)に含まれるTサイトとしては、下記式(a-3)で示されるTサイト(T1サイト)、下記式(a-4)で示されるTサイト(T2サイト)、下記式(a-5)で示されるTサイト(T3サイト)が挙げられる。
【0044】
【化7】
【0045】
式(a-3)、(a-4)及び(a-5)中、Gは、上記と同じ意味を表す。Rは、水素原子又は炭素数1~10のアルキル基を表す。Rの「炭素数1~10のアルキル基」としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基等が挙げられる。複数のR同士は、すべて同一であっても相異なっていてもよい。また、上記式(a-3)~(a-5)中、*には、ケイ素原子が結合している。
【0046】
ポリシルセスキオキサン化合物(A)を合成する際、反応開始直後は、生成物にはT1サイトやT2サイトが多く含まれるが、反応が進行するとともにこれらのサイトの量が減少し、徐々にT3サイトの量が増加する。
したがって、T1サイトやT2サイトの含有割合が高いポリシルセスキオキサン化合物は比較的低分子の化合物であるのに対して、T3サイトの含有割合が高いポリシルセスキオキサン化合物は比較的高分子の化合物であり、分子鎖の運動は制限される。
また、残存する反応性基(-OR)の数から示されるように、T1サイトやT2サイトの含有割合が高いポリシルセスキオキサン化合物は十分な反応性を有しているのに対して、T3サイトの含有割合が高いポリシルセスキオキサン化合物は反応性に劣る傾向がある。
【0047】
ポリシルセスキオキサン化合物(A)は、上記要件1を満たすものである。
すなわち、ポリシルセスキオキサン化合物(A)は、繰り返し単位(1)と繰り返し単位(2)の合計量に対して、繰り返し単位(1)の量が40mol%以上、80mol%未満のものである。
本発明の硬化性組成物は、要件1を満たすポリシルセスキオキサン化合物を含有するため、屈折率が高いものとなる。さらに、硬化性組成物が要件1を満たすことで、その硬化物は、クラックが発生しにくくなり、また、接着性が向上する。
これらの効果がよりバランスよく得られることから、繰り返し単位(1)の量は、繰り返し単位(1)と繰り返し単位(2)の合計量に対して、45~77mol%が好ましく、50~74mol%がより好ましく、55~71mol%がより更に好ましい。
【0048】
ポリシルセスキオキサン化合物(A)中の、繰り返し単位(1)や繰り返し単位(2)の割合は、例えば、ポリシルセスキオキサン化合物(A)の29Si-NMRを測定することにより求めることができる。
ポリシルセスキオキサン化合物(A)は、アセトン等のケトン系溶媒;ベンゼン等の芳香族炭化水素系溶媒;ジメチルスルホキシド等の含硫黄系溶媒;テトラヒドロフラン等のエーテル系溶媒;酢酸エチル等のエステル系溶媒;クロロホルム等の含ハロゲン系溶媒;及びこれらの2種以上からなる混合溶媒;等の各種有機溶媒に可溶である。このため、これらの溶媒を用いて、ポリシルセスキオキサン化合物(A)の溶液状態での29Si-NMRを測定することができる。
【0049】
ポリシルセスキオキサン化合物(A)は、上記要件2を満たすものである。
すなわち、ポリシルセスキオキサン化合物(A)は、T1サイト、T2サイト、及びT3サイトの合計量に対して、前記T2サイトの量が、20~70mol%のものであり、T2サイトを比較的多く含む。
本発明の硬化性組成物は、上記要件1に加えて要件2を満たすことで、本発明の硬化性組成物の硬化物は、クラックがさらに発生しにくくなり、また、接着性がさらに向上する。
【0050】
すなわち、T1サイトを多く含むポリシルセスキオキサン化合物を含有する硬化性組成物は、硬化する際に、加水分解反応や縮合反応が過度に起き、硬化収縮により、その硬化物中にクラックが発生しやすくなる。
また、T3サイトを多く含むポリシルセスキオキサン化合物は、比較的高分子の化合物であり、運動性に劣るものであるため、そのようなポリシルセスキオキサン化合物を含有する硬化性組成物の硬化物は、残留応力が生じやすく、クラックが発生しやすくなる。
【0051】
一方、T2サイトを多く含むポリシルセスキオキサン化合物を含有する硬化性組成物は、加水分解反応や縮合反応を過度に起こすことなく硬化し得るものであるため、その硬化物中にクラックが発生しにくい。
また、T2サイトを多く含むポリシルセスキオキサン化合物は、それほど分子量が高くなく適度な運動性を有するものであるため、T2サイトを多く含むポリシルセスキオキサン化合物を含有する硬化性組成物の硬化物は、残留応力が生じにくく、クラックが発生しにくい。
【0052】
上記の効果が得られ易いことから、T1サイト、T2サイト、及びT3サイトの合計量に対するT2サイトの量は、20~70mol%であり、好ましくは22~60mol%、より好ましくは24~55mol%であり、より更に好ましくは26~50mol%である。
【0053】
また、T1サイト、T2サイト、及びT3サイトの合計量に対するT1サイトの量は、好ましくは0~40mol%、より好ましくは0~30mol%であり、より更に好ましくは0~20mol%であり、より更に好ましくは0~10mol%である。
ポリシルセスキオキサン化合物(A)がT1サイトを適度に含むことで、硬化性により優れる硬化性組成物を得ることができる。
また、T1サイト、T2サイト、及びT3サイトの合計量に対するT3サイトの量は、好ましくは10~80mol%、より好ましくは20~70mol%であり、より更に好ましくは30~50mol%である。
ポリシルセスキオキサン化合物(A)がT3サイトを適度に含むことで、硬化する際の縮合反応によって生じる副生成物の発生を抑制することができる。
【0054】
T1サイト、T2サイト、及びT3サイトの含有割合は、ポリシルセスキオキサン化合物(A)の溶液状態での29Si-NMRを測定することにより求めることができる。
例えば、測定溶媒としてアセトンを使用し、内部標準としてTMS(テトラメチルシラン)を使用した場合、式(a-3)~(a-6)において、Gがフェニル基のTサイト中のケイ素原子に由来するシグナルは、T1サイトで-65~-58ppm、T2サイトで-74~-65ppm、T3サイトで-82~-75ppmに観測され、式(a-3)~(a-6)において、Gがメチル基のTサイト中のケイ素原子に由来するシグナルは、T1サイトで-50~-46ppm、T2サイトで-61~-52ppm、T3サイトで-70~-61ppmに観測される。
【0055】
ポリシルセスキオキサン化合物(A)の質量平均分子量(Mw)は、好ましくは500~25,000、より好ましくは700~20,000、更に好ましくは1,000~15,000であり、より更に好ましくは2,000~10,000である。質量平均分子量(Mw)が上記範囲内にあるポリシルセスキオキサン化合物(A)を用いることで、硬化後にクラックが生じにくい硬化性組成物が得られ易くなる。
【0056】
ポリシルセスキオキサン化合物(A)の分子量分布(Mw/Mn)は特に限定されないが、通常1.0~10.0、好ましくは1.1~6.0であり、より好ましくは1.1~4.0である。分子量分布(Mw/Mn)が上記範囲内にあるポリシルセスキオキサン化合物(A)を用いることで、耐熱性及び接着性により優れる硬化物を与える硬化性組成物が得られ易くなる。
質量平均分子量(Mw)及び数平均分子量(Mn)は、例えば、テトラヒドロフラン(THF)を溶媒とするゲル・パーミエーション・クロマトグラフィー(GPC)による標準ポリスチレン換算値として求めることができる。
【0057】
ポリシルセスキオキサン化合物(A)中の繰り返し単位(1)と繰り返し単位(2)の合計量は、ポリシルセスキオキサン化合物(A)の全繰り返し単位中、好ましくは90~100mol%、より好ましくは95~100mol%、更に好ましくは98~100mol%である。
【0058】
ポリシルセスキオキサン化合物(A)の25℃における屈折率(nD)は、好ましくは1.46~1.56、より好ましくは1.48~1.55であり、より更に好ましくは1.50~1.55である。
ポリシルセスキオキサン化合物(A)の25℃における屈折率(nD)が、1.46~1.56の範囲内であることで、屈折率が高い硬化性組成物や硬化物が得られ易くなる。
ポリシルセスキオキサン化合物(A)の屈折率(nD)は、アッベ屈折計を用いて測定することができる。
【0059】
本発明において、ポリシルセスキオキサン化合物(A)は1種単独で、あるいは2種以上を組み合わせて用いることができる。
【0060】
ポリシルセスキオキサン化合物(A)の合成方法は特に限定されない。例えば、下記式(a-7)で示されるシラン化合物(1)の少なくとも1種と、下記式(a-8)で示されるシラン化合物(2)の少なくとも1種を重縮合させることにより、ポリシルセスキオキサン化合物(A)を合成することができる。
【0061】
【化8】
【0062】
(式中、Rは前記と同じ意味を表す。Rは炭素数1~10のアルキル基を表し、Xはハロゲン原子を表し、pは0~3の整数を表す。複数のR、及び複数のXは、それぞれ、互いに同一であっても、相異なっていてもよい。)
【0063】
【化9】
【0064】
(式中、Rは前記と同じ意味を表す。Rは炭素数1~10のアルキル基を表し、Xはハロゲン原子を表し、qは0~3の整数を表す。複数のR、及び複数のXは、それぞれ、互いに同一であっても、相異なっていてもよい。)
【0065】
、Rの「炭素数1~10のアルキル基」としては、Rの「炭素数1~10のアルキル基」として示したものと同様のものが挙げられる。
、Xのハロゲン原子としては、塩素原子、及び臭素原子等が挙げられる。
【0066】
シラン化合物(1)の具体例としては、
フェニルトリメトキシシラン、フェニルトリエトキシシラン等の無置換のアリールトリアルコキシシラン化合物類;
フェニルクロロジメトキシシラン、フェニルクロロジエトキシシラン、フェニルジクロロメトキシシラン、フェニルジクロロエトキシシラン等の無置換のアリールハロゲノアルコキシシラン化合物類;
フェニルトリクロロシラン等の無置換のアリールトリハロゲノシラン化合物類;
4-メチルフェニルトリメトキシシラン、4-メトキシフェニルトリメトキシシラン、4-クロロフェニルトリメトキシシラン、4-メチルフェニルトリエトキシシラン、4-メトキシフェニルトリエトキシシラン、4-クロロフェニルトリエトキシシラン等の置換基を有するアリールトリアルコキシシラン化合物類;
4-メチルフェニルクロロジメトキシシラン、4-メトキシフェニルクロロジメトキシシラン、4-クロロフェニルクロロジメトキシシラン、4-メチルフェニルジクロロメトキシシラン、4-メトキシフェニルジクロロメトキシシラン、4-クロロフェニルジクロロメトキシシラン等の置換基を有するアリールハロゲノアルコキシシラン化合物類;
4-メチルフェニルトリクロロシラン、4-メトキシフェニルトリクロロシラン、4-クロロフェニルトリクロロシラン等の置換基を有するアリールトリハロゲノシラン化合物類;等が挙げられる。
これらのシラン化合物(1)は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
【0067】
シラン化合物(2)の具体例としては、
メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリプロポキシシラン等の無置換のアルキルトリアルコキシシラン化合物類;
メチルクロロジメトキシシラン、メチルクロロジエトキシシラン、メチルジクロロメトキシシラン、メチルブロモジメトキシシラン、エチルクロロジメトキシシラン、エチルクロロジエトキシシラン、エチルジクロロメトキシシラン、エチルブロモジメトキシシラン等の無置換のアルキルハロゲノアルコキシシラン化合物類;
メチルトリクロロシラン、メチルトリブロモシラン、エチルトリクロロシラン、エチルトリブロモシラン等の無置換のアルキルトリハロゲノシラン化合物類;
2-シアノエチルトリメトキシシラン、3-クロロプロピルトリメトキシシラン、2-シアノエチルトリエトキシシラン、3-クロロプロピルトリエトキシシラン等の置換基を有するアルキルトリアルコキシシラン化合物類;
2-シアノエチルクロロジメトキシシラン、3-クロロプロピルクロロジメトキシシラン、2-シアノエチルクロロジエトキシシラン、3-クロロプロピルクロロジエトキシシラン、2-シアノエチルジクロロメトキシシラン、3-クロロプロピルジクロロメトキシシラン、2-シアノエチルジクロロエトキシシラン、3-クロロプロピルジクロロエトキシシラン等の置換基を有するアルキルハロゲノアルコキシシラン化合物類;
2-シアノエチルトリクロロシラン、3-クロロプロピルトリクロロシラン等の置換基を有するアルキルトリハロゲノシラン化合物類;等が挙げられる。
これらのシラン化合物(2)は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
【0068】
前記シラン化合物を重縮合させる方法は特に限定されない。例えば、溶媒中、又は無溶媒で、シラン化合物に、所定量の重縮合触媒を添加し、所定温度で撹拌する方法が挙げられる。より具体的には、(a)シラン化合物に、所定量の酸触媒を添加し、所定温度で撹拌する方法、(b)シラン化合物に、所定量の塩基触媒を添加し、所定温度で撹拌する方法、(c)シラン化合物に、所定量の酸触媒を添加し、所定温度で撹拌した後、過剰量の塩基触媒を添加して、反応系を塩基性とし、所定温度で撹拌する方法等が挙げられる。
これらの中でも、目的とするポリシルセスキオキサン化合物(A)を効率よく得ることができることから、(a)の方法が好ましい。
【0069】
用いる重縮合触媒は、酸触媒及び塩基触媒のいずれであってもよい。また、2以上の重縮合触媒を組み合わせて用いてもよいが、少なくとも酸触媒を用いることが好ましい。
酸触媒としては、リン酸、塩酸、ホウ酸、硫酸、硝酸等の無機酸;クエン酸、酢酸、メタンスルホン酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸等の有機酸;等が挙げられる。これらの中でも、リン酸、塩酸、ホウ酸、硫酸、クエン酸、酢酸、及びメタンスルホン酸から選ばれる少なくとも1種が好ましい。
【0070】
塩基触媒としては、アンモニア水;トリメチルアミン、トリエチルアミン、リチウムジイソプロピルアミド、リチウムビス(トリメチルシリル)アミド、ピリジン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、アニリン、ピコリン、1,4-ジアザビシクロ[2.2.2]オクタン、イミダゾール等の有機塩基;水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム等の有機水酸化物;ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムt-ブトキシド、カリウムt-ブトキシド等の金属アルコキシド;水素化ナトリウム、水素化カルシウム等の金属水素化物;水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等の金属水酸化物;炭酸ナトリウム、炭酸カリウム、炭酸マグネシウム等の金属炭酸塩;炭酸水素ナトリウム、炭酸水素カリウム等の金属炭酸水素塩;等が挙げられる。
【0071】
重縮合触媒の使用量は、シラン化合物の総mol量に対して、通常、0.05~10mol%、好ましくは0.1~5mol%の範囲である。
【0072】
重縮合時に溶媒を用いる場合、用いる溶媒は、シラン化合物の種類等に応じて、適宜選択することができる。例えば、水;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル等のエステル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、s-ブチルアルコール、t-ブチルアルコール等のアルコール類;等が挙げられる。これらの溶媒は1種単独で、あるいは2種以上を組み合わせて用いることができる。
【0073】
溶媒の使用量は、シラン化合物の総モル量1モル当たり、0.1リットル以上10リットル以下、好ましくは0.1リットル以上2リットル以下である。
【0074】
シラン化合物を重縮合させるときの温度は、通常0℃から用いる溶媒の沸点までの温度範囲、好ましくは20℃以上100℃以下の範囲である。反応温度があまりに低いと重縮合反応の進行が不十分となる場合がある。一方、反応温度が高くなりすぎるとゲル化抑制が困難となる。反応は、通常30分から30時間で完結する。
【0075】
上記方法により、ポリシルセスキオキサン化合物(A)を合成する際、シラン化合物(1)のOR又はXや、シラン化合物(2)のOR又はXのうち、脱アルコール等が起こらなかった部分は、ポリシルセスキオキサン化合物(A)中に残存する。このため、ポリシルセスキオキサン化合物(A)中に、前記式(a-5)で示される繰り返し単位以外に、前記式(a-3)、式(a-4)で示される繰り返し単位が含まれることがある。
【0076】
〔(C)成分〕
本発明の硬化性組成物を構成する(C)成分は、シランカップリング剤である。
本発明の硬化性組成物は、(C)成分を含有するものであるため、本発明の硬化性組成物の硬化物は、常温時や高温時における接着性にさらに優れたものとなる。
【0077】
シランカップリング剤とは、ケイ素原子と、官能基と、前記ケイ素原子に結合した加水分解性基とを有するシラン化合物をいう。
官能基とは、他の化合物(主に有機物)と反応性を有する基をいい、例えば、アミノ基、置換アミノ基、イソシアネート基、ウレイド基、イソシアヌレート骨格を有する基等の窒素原子を有する基;酸無水物基(酸無水物構造を有する基);ビニル基;アリル基;エポキシ基;(メタ)アクリル基;メルカプト基;等が挙げられる。
本発明において、シランカップリング剤は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
【0078】
シランカップリング剤の含有量は、ポリシルセスキオキサン化合物(A)100質量部に対して、好ましくは0.1~70質量部であり、より好ましくは1~60質量部、更に好ましくは5~55質量部であり、より更に好ましくは10~50質量部であり、特に好ましくは15~45質量部である。
シランカップリング剤の含有量が上記範囲内である硬化性組成物を用いることで、常温時や高温時における接着性により優れた硬化物を形成することができる。
【0079】
シランカップリング剤としては、分子内に窒素原子を有するシランカップリング剤や、分子内に酸無水物構造を有するシランカップリング剤が好ましく、分子内にイソシアヌレート構造を有するシランカップリング剤や、分子内にコハク酸無水物構造を有するシランカップリング剤が更に好ましい。
【0080】
分子内に窒素原子を有するシランカップリング剤としては、例えば、下記式(c-1)で表されるトリアルコキシシラン化合物、式(c-2)で表されるジアルコキシアルキルシラン化合物又はジアルコキシアリールシラン化合物等が挙げられる。
【0081】
【化10】
【0082】
上記式中、Rは、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、t-ブトキシ基等の炭素数1~6のアルコキシ基を表す。複数のR同士は同一であっても相異なっていてもよい。
は、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基等の炭素数1~6のアルキル基;又は、フェニル基、4-クロロフェニル基、4-メチルフェニル基、1-ナフチル基等の、置換基を有する、又は置換基を有さないアリール基;を表す。
【0083】
は、窒素原子を有する、炭素数1~10の有機基を表す。また、Rは、更に他のケイ素原子を含む基と結合していてもよい。
の炭素数1~10の有機基の具体例としては、N-2-(アミノエチル)-3-アミノプロピル基、3-アミノプロピル基、N-(1,3-ジメチル-ブチリデン)アミノプロピル基、3-ウレイドプロピル基、N-フェニル-アミノプロピル基等が挙げられる。
【0084】
上記式(c-1)又は(c-2)で表される化合物のうち、Rが、他のケイ素原子を含む基と結合した有機基である場合の化合物としては、イソシアヌレート骨格を介して他のケイ素原子と結合してイソシアヌレート系シランカップリング剤を構成するものや、ウレア骨格を介して他のケイ素原子と結合してウレア系シランカップリング剤を構成するものが挙げられる。
【0085】
これらの中でも、分子内に窒素原子を有するシランカップリング剤としては、接着性により優れる硬化物が得られ易いことから、イソシアヌレート系シランカップリング剤、及びウレア系シランカップリング剤が好ましく、更に、分子内に、ケイ素原子に結合したアルコキシ基を4以上有するものが好ましい。
ケイ素原子に結合したアルコキシ基を4以上有するとは、同一のケイ素原子に結合したアルコキシ基と、異なるケイ素原子に結合したアルコキシ基との総合計数が4以上という意味である。
【0086】
ケイ素原子に結合したアルコキシ基を4以上有するイソシアヌレート系シランカップリング剤としては、下記式(c-3)で表される化合物が挙げられる。ケイ素原子に結合したアルコキシ基を4以上有するウレア系シランカップリング剤としては、下記式(c-4)で表される化合物が挙げられる。
【0087】
【化11】
【0088】
式中、Rは上記と同じ意味を表す。t1~t5はそれぞれ独立して、1~10の整数を表し、1~6の整数であるのが好ましく、3であるのが特に好ましい。
【0089】
これらの中でも、分子内に窒素原子を有するシランカップリング剤としては、1,3,5-N-トリス(3-トリメトキシシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-トリエトキシシリルプロピル)イソシアヌレート(以下、「イソシアヌレート化合物」という。)、N,N’-ビス(3-トリメトキシシリルプロピル)ウレア、N,N’-ビス(3-トリエトキシシリルプロピル)ウレア(以下、「ウレア化合物」という。)、及び、上記イソシアヌレート化合物とウレア化合物との組み合わせを用いるのが好ましい。
【0090】
本発明の硬化性組成物が分子内に窒素原子を有するシランカップリング剤を含有する場合、その含有量は特に限定されないが、その量は、上記(A)成分と分子内に窒素原子を有するシランカップリング剤の質量比〔(A)成分:分子内に窒素原子を有するシランカップリング剤〕で、好ましくは100:0.1~100:65、より好ましくは100:0.3~100:60、より好ましくは100:1~100:50、更に好ましくは100:3~100:40、特に好ましくは100:5~100:35となる量である。
このような割合で(A)成分及び分子内に窒素原子を有するシランカップリング剤を含有する硬化性組成物の硬化物は、耐熱性及び接着性により優れたものになる。
【0091】
分子内に酸無水物構造を有するシランカップリング剤は、一つの分子中に、酸無水物構造を有する基と、加水分解性基の両者を併せ持つ有機ケイ素化合物である。具体的には下記式(c-5)で表される化合物が挙げられる。
【0092】
【化12】
【0093】
式中、Qは酸無水物構造を有する基を表し、Rは炭素数1~6のアルキル基、又は、置換基を有する、若しくは置換基を有さないフェニル基を表し、Rは炭素数1~6のアルコキシ基又はハロゲン原子を表し、i、kは1~3の整数を表し、jは0~2の整数を表し、i+j+k=4である。jが2であるとき、R同士は同一であっても相異なっていてもよい。kが2又は3のとき、複数のR同士は同一であっても相異なっていてもよい。iが2又は3のとき、複数のQ同士は同一であっても相異なっていてもよい。
Qとしては、下記式
【0094】
【化13】
【0095】
(式中、hは0~10の整数を表す。)で表される基等が挙げられ、(Q1)で表される基が特に好ましい。
【0096】
分子内に酸無水物構造を有するシランカップリング剤としては、2-(トリメトキシシリル)エチル無水コハク酸、2-(トリエトキシシリル)エチル無水コハク酸、3-(トリメトキシシリル)プロピル無水コハク酸、3-(トリエトキシシリル)プロピル無水コハク酸等の、トリ(炭素数1~6)アルコキシシリル(炭素数2~8)アルキル無水コハク酸;
2-(ジメトキシメチルシリル)エチル無水コハク酸等の、ジ(炭素数1~6)アルコキシメチルシリル(炭素数2~8)アルキル無水コハク酸;
2-(メトキシジメチルシリル)エチル無水コハク酸等の、(炭素数1~6)アルコキシジメチルシリル(炭素数2~8)アルキル無水コハク酸;
【0097】
2-(トリクロロシリル)エチル無水コハク酸、2-(トリブロモシリル)エチル無水コハク酸等の、トリハロゲノシリル(炭素数2~8)アルキル無水コハク酸;
2-(ジクロロメチルシリル)エチル無水コハク酸等の、ジハロゲノメチルシリル(炭素数2~8)アルキル無水コハク酸;
2-(クロロジメチルシリル)エチル無水コハク酸等の、ハロゲノジメチルシリル(炭素数2~8)アルキル無水コハク酸;等が挙げられる。
【0098】
これらの中でも、分子内に酸無水物構造を有するシランカップリング剤としては、トリ(炭素数1~6)アルコキシシリル(炭素数2~8)アルキル無水コハク酸が好ましく、3-(トリメトキシシリル)プロピル無水コハク酸又は3-(トリエトキシシリル)プロピル無水コハク酸が特に好ましい。
【0099】
本発明の硬化性組成物が分子内に酸無水物構造を有するシランカップリング剤を含有する場合、その含有量は特に限定されないが、その量は、上記(A)成分と分子内に酸無水物構造を有するシランカップリング剤の質量比〔(A)成分:分子内に酸無水物構造を有するシランカップリング剤〕で、好ましくは100:0.1~100:30、より好ましくは100:0.3~100:20、より好ましくは100:0.5~100:15、更に好ましくは100:1~100:10となる量である。
このような割合で(A)成分及び分子内に酸無水物構造を有するシランカップリング剤を含有する硬化性組成物の硬化物は、接着性により優れたものになる。
【0100】
〔硬化性組成物〕
本発明の硬化性組成物は、(A)成分と(C)成分の合計量が、硬化性組成物の固形分中50~100質量%であることが好ましく、70~100質量%であることがより好ましい。
本発明において、「固形分」とは、硬化性組成物中の溶媒以外の成分をいう。
【0101】
本発明の硬化性組成物は、(B)成分として、平均一次粒子径が、5nm以上、40nm以下の微粒子(以下、「微粒子(B)」と記載することがある。)を含有してもよい。
微粒子(B)を含有する硬化性組成物は、塗布工程における作業性に優れる。
この効果がより得られ易いことから、微粒子(B)の平均一次粒子径は、好ましくは5~30nm、より好ましくは5~20nmである。
【0102】
微粒子(B)の平均一次粒子径は、透過型電子顕微鏡を用いて微粒子の形状を観察することにより求められる。
【0103】
微粒子(B)の材質としては、金属;金属酸化物;鉱物;炭酸カルシウム、炭酸マグネシウム等の金属炭酸塩;硫酸カルシウム、硫酸バリウム等の金属硫酸塩;水酸化アルミニウム等の金属水酸化物;珪酸アルミニウム、珪酸カルシウム、珪酸マグネシウム等の金属珪酸塩;シリカ等の無機成分;シリコーン;アクリル系重合体等の有機成分;等が挙げられる。
また、用いる微粒子(B)は表面が修飾されたものであってもよい。
【0104】
微粒子(B)は1種単独で、あるいは2種以上を組み合わせて用いることができる。
本発明の硬化性組成物が微粒子(B)〔(B)成分〕を含有する場合、(B)成分の含有量は特に限定されないが、その量は、上記(A)成分と(B)成分の質量比〔(A)成分:(B)成分〕で、好ましくは100:0.1~100:90、より好ましくは100:0.2~100:60、より好ましくは100:0.3~100:50、より好ましくは100:0.5~100:40、より好ましくは100:0.8~100:30となる量である。(B)成分を上記範囲で用いることにより、(B)成分を加える効果をより発現することができる。
【0105】
本発明の硬化性組成物は、本発明の目的を阻害しない範囲で、その他の成分を含有してもよい。
その他の成分としては、酸化防止剤、紫外線吸収剤、光安定剤等が挙げられる。
【0106】
酸化防止剤は、加熱時の酸化劣化を防止するために添加される。酸化防止剤としては、リン系酸化防止剤、フェノール系酸化防止剤、硫黄系酸化防止剤等が挙げられる。
【0107】
リン系酸化防止剤としては、ホスファイト類、オキサホスファフェナントレンオキサイド類等が挙げられる。フェノール系酸化防止剤としては、モノフェノール類、ビスフェノール類、高分子型フェノール類等が挙げられる。硫黄系酸化防止剤としては、ジラウリル-3,3’-チオジプロピオネート、ジミリスチル-3,3’-チオジプロピオネート、ジステアリル-3,3’-チオジプロピオネート等が挙げられる。
【0108】
これらの酸化防止剤は1種単独で、あるいは2種以上を組み合わせて用いることができる。酸化防止剤の含有量は特に限定されないが、(A)成分に対して、通常10質量%以下である。
【0109】
紫外線吸収剤は、得られる硬化物の耐光性を向上させる目的で添加される。
紫外線吸収剤としては、サリチル酸類、ベンゾフェノン類、ベンゾトリアゾール類、ヒンダードアミン類等が挙げられる。
紫外線吸収剤は1種単独で、あるいは2種以上を組み合わせて用いることができる。紫外線吸収剤の含有量は特に限定されないが、(A)成分に対して、通常10質量%以下である。
【0110】
光安定剤は、得られる硬化物の耐光性を向上させる目的で添加される。
光安定剤としては、例えば、ポリ[{6-(1,1,3,3,-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジン)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジン)イミノ}]等のヒンダードアミン類等が挙げられる。
これらの光安定剤は1種単独で、あるいは2種以上を組み合わせて用いることができる。光安定剤の含有量は、(A)成分に対して、通常20質量%以下である。
【0111】
本発明の硬化性組成物は、希釈剤を含有してもよい。希釈剤は、本発明の硬化性組成物の成分を溶解又は分散し得るものであれば特に限定されない。希釈剤は1種類でもよいし、2種類以上を併用してもよい。
【0112】
本発明の硬化性組成物が希釈剤を含有する場合、その含有量は、固形分濃度が、好ましくは60質量%以上、100質量%未満、より好ましくは65~98質量%、より更に好ましくは70~95質量%になる量である。
本発明に用いるポリシルセスキオキサン化合物(A)は、比較的分子量が小さいことが多い。そのようなポリシルセスキオキサン化合物(A)を含有する硬化性組成物においては、希釈剤を大量に含有しなくても(すなわち、固形分濃度が高くても)、良好な塗布性を有する。
固形分濃度が高い硬化性組成物を用いる場合、塗膜の乾燥条件や、硬化条件を厳密に管理しなくても、硬化物には溶媒がほとんど含まれないため、一定の特性を有する硬化物を安定的に形成することができる。
【0113】
本発明の硬化性組成物はポリシルセスキオキサン化合物(A)を含有するため、屈折率が高い。
本発明の硬化性組成物の、25℃における屈折率(nD)は、通常1.46以上であり、好ましくは1.46~1.56、より好ましくは1.46~1.54であり、より更に好ましくは1.47~1.53である。
硬化性組成物の屈折率(nD)は、実施例に記載の方法を用いて測定することができる。
【0114】
本発明の硬化性組成物は、例えば、上記(A)成分と(C)成分、及び、所望によりこれら以外の成分を所定割合で混合し、脱泡することにより調製することができる。
混合方法、脱泡方法は特に限定されず、公知の方法を利用することができる。
【0115】
2)硬化物
本発明の硬化物は、本発明の硬化性組成物を硬化させて得られるものである。
本発明の硬化性組成物を硬化させる方法としては加熱硬化が挙げられる。硬化させるときの加熱温度は、通常100~200℃であり、加熱時間は、通常10分から20時間、好ましくは30分から10時間である。
【0116】
本発明の硬化物は、耐熱性及び接着性に優れるものである。
本発明の硬化物がこれらの特性を有することは、例えば、次のようにして確認することができる。すなわち、シリコンチップのミラー面に、本発明の硬化性組成物を所定量塗布し、塗布面を被着体の上に載せ、圧着し、加熱処理して硬化させる。これを、予め所定温度(例えば、23℃、100℃)に加熱したボンドテスターの測定ステージ上に30秒間放置し、被着体から50μmの高さの位置より、接着面に対し水平方向(せん断方向)に応力をかけ、試験片と被着体との接着力を測定する。
【0117】
本発明の硬化物の接着力は、23℃において100N/4mm以上であることが好ましく、120N/4mm以上であることがより好ましい。
本発明の硬化物の接着力は、100℃において40N/4mm以上であることが好ましく、45N/4mm以上であることがより好ましい。
本明細書において、「4mm」とは、「2mm square」、すなわち、2mm×2mm(1辺が2mmの正方形)を意味する。
【0118】
本発明の硬化物は、屈折率が高く、かつ、優れた接着性を有する。したがって、本発明の硬化物は、屈折率が高い接着剤層等として好ましく用いられる。
本発明の硬化物の、25℃における屈折率(nD)は、通常1.46以上であり、好ましくは1.46~1.56、より好ましくは1.46~1.54であり、より更に好ましくは1.47~1.53である。
硬化物の屈折率(nD)は、アッベ屈折計を用いて測定することができる。
【0119】
上記特性を有することから、本発明の硬化物は、光素子固定材として好ましく用いられる。
【0120】
3)硬化性組成物の使用方法
本発明の方法は、本発明の硬化性組成物を、光素子固定材用接着剤又は光素子固定材用封止材として使用する方法である。
光素子としては、LED、LD等の発光素子、受光素子、複合光素子、光集積回路等が挙げられる。
【0121】
〈光素子固定材用接着剤〉
本発明の硬化性組成物は、光素子固定材用接着剤として好適に使用することができる。
本発明の硬化性組成物を光素子固定材用接着剤として使用する方法としては、接着の対象とする材料(光素子とその基板等)の一方又は両方の接着面に該組成物を塗布し、圧着した後、加熱硬化させ、接着の対象とする材料同士を強固に接着させる方法が挙げられる。本発明の硬化性組成物の塗布量は、特に限定されず、硬化させることにより、接着の対象とする材料同士を強固に接着することができる量であればよい。通常、硬化性組成物の塗膜の厚みが0.5~5μm、好ましくは1~3μmとなる量である。
【0122】
光素子を接着するための基板材料としては、ソーダライムガラス、耐熱性硬質ガラス等のガラス類;セラミックス;サファイア;鉄、銅、アルミニウム、金、銀、白金、クロム、チタン及びこれらの金属の合金、ステンレス(SUS302、SUS304、SUS304L、SUS309等)等の金属類;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、エチレン-酢酸ビニル共重合体、ポリスチレン、ポリカーボネート、ポリメチルペンテン、ポリスルホン、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルイミド、ポリイミド、ポリアミド、アクリル樹脂、ノルボルネン系樹脂、シクロオレフィン樹脂、ガラスエポキシ樹脂等の合成樹脂;等が挙げられる。
【0123】
加熱硬化させる際の加熱温度は、用いる硬化性組成物等にもよるが、通常100~200℃である。加熱時間は、通常10分から20時間、好ましくは30分から10時間である。
【0124】
〈光素子固定材用封止材〉
本発明の硬化性組成物は、光素子固定材用封止材として好適に用いることができる。
本発明の硬化性組成物を光素子固定材用封止材として使用する方法としては、例えば、該組成物を所望の形状に成形して、光素子を内包した成形体を得た後、このものを加熱硬化させることにより、光素子封止体を製造する方法等が挙げられる。
本発明の硬化性組成物を所望の形状に成形する方法としては、特に限定されるものではなく、通常のトランスファー成形法や、注型法等の公知のモールド法を採用できる。
【0125】
加熱硬化させる際の加熱温度は、用いる硬化性組成物等にもよるが、通常、100~200℃である。加熱時間は、通常10分から20時間、好ましくは30分から10時間である。
【0126】
得られる光素子封止体は、本発明の硬化性組成物を用いているので、耐熱性及び接着性に優れる。
【実施例
【0127】
以下、実施例を挙げて本発明を更に詳細に説明する。但し、本発明は、以下の実施例になんら限定されるものではない。
【0128】
(平均分子量測定)
ポリシルセスキオキサン化合物の質量平均分子量(Mw)及び数平均分子量(Mn)は、標準ポリスチレン換算値とし、以下の装置及び条件にて測定した。
装置名:HLC-8220GPC、東ソー株式会社製
カラム:TSKgelGMHXL、TSKgelGMHXL、及び、TSKgel2000HXLを順次連結したもの
溶媒:テトラヒドロフラン
注入量:20μl
測定温度:40℃
流速:0.6ml/分
検出器:示差屈折計
【0129】
29Si-NMR測定)
ポリシルセスキオキサン化合物の繰り返し単位とその量を調べるために、以下の条件で29Si-NMR測定を行った。
装置:ブルカー・バイオスピン社製 AV-500
29Si-NMR共鳴周波数:99.352MHz
プローブ:5mmφ溶液プローブ
測定温度:室温(25℃)
試料回転数:20kHz
測定法:インバースゲートデカップリング法
29Si フリップ角:90°
29Si 90°パルス幅:8.0μs
繰り返し時間:5s
積算回数:9200回
観測幅:30kHz
【0130】
29Si-NMR試料作製方法)
緩和時間短縮のため、緩和試薬としてFe(acac)を添加し測定した。
ポリシルセスキオキサン化合物濃度:15質量%
Fe(acac)濃度:0.6質量%
測定溶媒:アセトン
内部標準:TMS
【0131】
(波形処理解析)
フーリエ変換後のスペクトルの各ピークについて、ピークトップの位置によりケミカルシフトを求め、以下の範囲で各ピークの積分を行った。得られた値をもとに、T1サイト、T2サイト、T3サイトの割合を算出した。
フェニル基を有するTサイト(T1:-65~-58ppm、T2:-74~-65ppm、T3:-82~-75ppm)
メチル基を有するTサイト(T1:-50~-46ppm、T2:-61~-52ppm、T3:-70~-61ppm)
【0132】
(屈折率)
多波長アッベ屈折計(株式会社アタゴ製、DR-M2)を用いて、25℃で、ポリシルセスキオキサン化合物の屈折率(nD)を測定した。
【0133】
(製造例1)
300mlのナス型フラスコに、フェニルトリメトキシシラン9.34g(47.1mmol)およびメチルトリエトキシシラン8.40g(47.1mmol)を仕込んだ後、これを撹拌しながら、蒸留水5.09gに35質量%塩酸0.025g(シラン化合物全量に対してHClが0.25mol%)を溶解した水溶液を加え、全容を30℃にて2時間、次いで80℃に昇温して20時間撹拌した。
反応液を室温まで放冷した後、そこに、酢酸プロピル50g及び水100gを加えて分液処理を行い、反応生成物を含む有機層を得た。この有機層に硫酸マグネシウムを加えて乾燥処理を行った。硫酸マグネシウムを濾別除去した後、有機層をエバポレーターで濃縮し、次いで、得られた濃縮物を真空乾燥することにより、ポリシルセスキオキサン化合物(A1)を得た。
【0134】
(製造例2)
300mlのナス型フラスコに、フェニルトリメトキシシラン12.55g(63.3mmol)およびメチルトリエトキシシラン4.83g(27.1mmol)を仕込んだ後、これを撹拌しながら、蒸留水4.88gに35質量%塩酸0.024g(シラン化合物全量に対してHClが0.25mol%)を溶解した水溶液を加え、全容を30℃にて2時間、次いで80℃に昇温して20時間撹拌した。
内容物の撹拌を継続しながら、そこに、酢酸プロピル17gと、28質量%アンモニア水0.149g(フェニルトリエトキシシランに対して2.5mol%)を加え、80℃に昇温して20時間撹拌した。
反応液を室温まで放冷した後、製造例1と同様に分液、乾燥処理等を行うことにより、ポリシルセスキオキサン化合物(A2)を得た。
【0135】
(製造例3)
300mlのナス型フラスコに、フェニルトリメトキシシラン9.34g(47.1mmol)およびメチルトリエトキシシラン8.40g(47.1mmol)を仕込んだ後、これを撹拌しながら、蒸留水5.09gに35質量%塩酸0.294g(シラン化合物全量に対してHClが3.00mol%)を溶解した水溶液を加え、全容を30℃にて2時間、次いで80℃に昇温して20時間撹拌した。
反応液を室温まで放冷した後、そこに、酢酸プロピル50g及び水100gを加えて分液処理を行い、反応生成物を含む有機層を得た。この有機層に硫酸マグネシウムを加えて乾燥処理を行った。硫酸マグネシウムを濾別除去した後、有機層をエバポレーターで濃縮し、次いで、得られた濃縮物を真空乾燥することにより、ポリシルセスキオキサン化合物(A3)を得た。
【0136】
(比較製造例1)
300mlのナス型フラスコに、フェニルトリメトキシシラン14.455g(72.9mmol)を仕込んだ後、これを撹拌しながら、蒸留水3.937gに35質量%塩酸0.0188g(フェニルトリメトキシシランに対してHClが0.25mol%)を溶解した水溶液を加え、全容を30℃にて2時間、次いで70℃に昇温して22時間撹拌した。
内容物の撹拌を継続しながら、そこに、酢酸プロピル15gと、28質量%アンモニア水0.0109g(フェニルトリエトキシシランに対して0.25mol%)を加え、80℃に昇温して20時間撹拌した。
反応液を室温まで放冷した後、製造例1と同様に分液、乾燥処理等を行うことにより、ポリシルセスキオキサン化合物(A4)を得た。
【0137】
(比較製造例2)
300mlのナス型フラスコに、フェニルトリメトキシシラン28.77g(145.1mmol)およびメチルトリエトキシシラン0.2675g(1.5mmol)を仕込んだ後、これを撹拌しながら、蒸留水8.24gに35質量%塩酸0.477g(シラン化合物全量に対してHClが3mol%)を溶解した水溶液を加え、全容を30℃にて2時間、次いで80℃に昇温して20時間撹拌した。
反応液を室温まで放冷した後、製造例1と同様に分液、乾燥処理等を行うことにより、ポリシルセスキオキサン化合物(A5)を得た。
【0138】
得られたポリシルセスキオキサン化合物(PSQ)の詳細を第1表に示す。
【0139】
【表1】
【0140】
実施例、比較例、及び参考例で用いた化合物を以下に示す。
【0141】
(シランカップリング剤)
シランカップリング剤(C1):1,3,5-N-トリス〔3-(トリメトキシシリル)プロピル〕イソシアヌレート
シランカップリング剤(C2):3-(トリメトキシシリル)プロピルコハク酸無水物
【0142】
(フィラー)
シリカ微粒子:(日本アエロジル株式会社製、製品名「AEROSIL RX300」、平均一次粒子径:7nm、比表面積:210m/g)
【0143】
(実施例1)
ポリシルセスキオキサン化合物(A1)100質量部に、シリカ微粒子5質量部を加え、更に、ジエチレングリコールモノブチルエーテルアセテート:トリプロピレングリコール-n-ブチルエーテル=40:60(質量比)の混合溶剤を加え、全容を撹拌した。三本ロールミルによる分散処理後、シランカップリング剤(C1)30質量部、シランカップリング剤(C2)3質量部を加え、全容を十分に混合、脱泡することにより、固形分濃度が80質量%の硬化性組成物を得た。
【0144】
(実施例2)
実施例1において、ポリシルセスキオキサン化合物(A1)に代えてポリシルセスキオキサン化合物(A2)を使用し、シリカ微粒子の含有量を20質量部に変更し、更に混合溶剤量を変更したこと以外は、実施例1と同様にして、固形分濃度が80質量%の硬化性組成物を得た。
【0145】
(実施例3)
実施例1において、ポリシルセスキオキサン化合物(A1)に代えてポリシルセスキオキサン化合物(A3)を使用したこと以外は、実施例1と同様にして、固形分濃度が80質量%の硬化性組成物を得た。
【0146】
(比較例1)
実施例1において、ポリシルセスキオキサン化合物(A1)に代えてポリシルセスキオキサン化合物(A4)を使用したことと、シリカ微粒子の含有量を20質量部に変更し、更に混合溶剤量を変更したこと以外は、実施例1と同様にして、固形分濃度が80質量%の硬化性組成物を得た。
【0147】
(比較例2)
実施例1において、ポリシルセスキオキサン化合物(A1)に代えてポリシルセスキオキサン化合物(A5)を使用したことと、シランカップリング剤(C1)とシランカップリング剤(C2)を使用しなかったこと、混合溶剤量を変更したこと以外は、実施例1と同様にして、固形分濃度が78質量%の硬化性組成物を得た。
【0148】
(比較例3)
実施例1において、シランカップリング剤(C1)とシランカップリング剤(C2)を使用しなかったこと、混合溶剤量を変更したこと以外は、実施例1と同様にして、固形分濃度が75質量%の硬化性組成物を得た。
【0149】
実施例、比較例、及び参考例で得た硬化性組成物を用いて、それぞれ以下の測定、試験を行った。
〔屈折率測定〕
多波長アッベ屈折計(株式会社アタゴ製、DR-M2)を用いて、25℃で、硬化性組成物の屈折率(nD)を測定した。
【0150】
〔耐クラック性評価〕
一辺の長さが0.5mmの正方形のガラスチップのミラー面に、実施例及び比較例で得た硬化性組成物を、それぞれ、厚さが約2μmになるよう塗布し、塗布面を被着体(銀メッキ銅板)の上に載せ圧着した。その後、170℃で2時間加熱処理して硬化させて試験片付被着体を得た。なお、硬化性組成物1種につき、20個の試験片付被着体を作製した。走査型電子顕微鏡(キーエンス社製、VE-9800S)を用いてガラスチップからはみ出している樹脂部(フィレット部)を観察し、クラックを有するサンプルの数を数え、クラック発生率が0%以上25%未満を「A」、25%以上50%未満を「B」、50%以上100%以下を「C」と評価した。
【0151】
〔接着強度評価〕
一辺の長さが2mmの正方形(面積が4mm)のシリコンチップのミラー面に、実施例及び比較例で得た硬化性組成物を、それぞれ、厚さが約2μmになるように塗布し、塗布面を被着体(銀メッキ銅板)の上に載せ圧着した。その後、170℃で2時間加熱処理して硬化させて試験片付被着体を得た。この試験片付被着体を、予め所定温度(23℃、100℃)に加熱したボンドテスター(デイジ社製、シリーズ4000)の測定ステージ上に30秒間放置し、被着体から50μmの高さの位置より、スピード200μm/sで接着面に対し水平方向(せん断方向)に応力をかけ、23℃及び100℃における、試験片と被着体との接着力(N/4mm)を測定した。
【0152】
測定結果、評価結果を第2表に示す。
【0153】
【表2】
【0154】
上記実施例、比較例及び参考例から以下のことが分かる。
実施例1~3の硬化性組成物は、繰り返し単位(1)を有するポリシルセスキオキサン化合物(PSQ(A1)、PSQ(A2)、PSQ(A3))を含有するため、屈折率が適度に高い。
また、実施例1~3の硬化性組成物は、シランカップリング剤を含有する。さらに、PSQ(A1)とPSQ(A2)及び、PSQ(A3)は、いずれも繰り返し単位(2)を有し、かつ、T2サイトを適度に含むものである。このため、実施例1~3の硬化物は、耐クラック性及び接着性に優れている。
一方、比較例1の硬化性組成物もまた、繰り返し単位(1)の含有割合が高いポリシルセスキオキサン化合物(PSQ(A4))を含有するため屈折率が高い。
しかしながら、PSQ(A4)は、繰り返し単位(2)を有さず、さらに、T2サイトの割合が高くないため、比較例1の硬化性組成物の硬化物は耐クラック性に劣っている。
一方、比較例2及び比較例3で得られた硬化性組成物は、シランカップリング剤を含有しないものであるため、その硬化物は十分な接着強度を有していない。