IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社富士通ゼネラルの特許一覧

<>
  • 特許-ヒートポンプサイクル装置 図1
  • 特許-ヒートポンプサイクル装置 図2
  • 特許-ヒートポンプサイクル装置 図3
  • 特許-ヒートポンプサイクル装置 図4
  • 特許-ヒートポンプサイクル装置 図5
  • 特許-ヒートポンプサイクル装置 図6
  • 特許-ヒートポンプサイクル装置 図7
  • 特許-ヒートポンプサイクル装置 図8
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-10-15
(45)【発行日】2024-10-23
(54)【発明の名称】ヒートポンプサイクル装置
(51)【国際特許分類】
   F25B 13/00 20060101AFI20241016BHJP
【FI】
F25B13/00 N
【請求項の数】 2
(21)【出願番号】P 2020210025
(22)【出願日】2020-12-18
(65)【公開番号】P2022096824
(43)【公開日】2022-06-30
【審査請求日】2023-08-31
(73)【特許権者】
【識別番号】000006611
【氏名又は名称】株式会社富士通ゼネラル
(74)【代理人】
【識別番号】110003339
【氏名又は名称】弁理士法人南青山国際特許事務所
(74)【代理人】
【識別番号】100104215
【弁理士】
【氏名又は名称】大森 純一
(74)【代理人】
【識別番号】100196575
【弁理士】
【氏名又は名称】高橋 満
(74)【代理人】
【識別番号】100144211
【弁理士】
【氏名又は名称】日比野 幸信
(72)【発明者】
【氏名】冨田 稔久
(72)【発明者】
【氏名】安河内 雄多
【審査官】森山 拓哉
(56)【参考文献】
【文献】特開2012-017878(JP,A)
【文献】特開2011-007482(JP,A)
【文献】特開2010-261606(JP,A)
【文献】特開2017-133763(JP,A)
【文献】国際公開第2013/144996(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
F25B 13/00
(57)【特許請求の範囲】
【請求項1】
圧縮機と、利用側熱交換器と、熱源側熱交換器と、前記利用側熱交換器と前記熱源側熱交換器との間に配置された膨張弁と、前記圧縮機から吐出される冷媒の流れ方向を切り替える流路切替弁と、を有する冷媒回路と、
前記圧縮機から吐出される冷媒の圧力である吐出圧力を検出する吐出圧力センサと、
前記圧縮機から吐出される冷媒の流れ方向が前記利用側熱交換器である暖房運転時において、前記利用側熱交換器から流出する冷媒の温度である膨張弁前温度を検出する冷媒温度センサと、
前記吐出圧力と前記膨張弁前温度とに基づいて冷媒過冷却度を算出する算出部と、算出した前記冷媒過冷却度が所定の目標冷媒過冷却度となるように前記膨張弁の開度を調整する調整部と、前記膨張弁の開度が所定の閾開度より大きいとき、前記目標冷媒過冷却度を所定値増加させる補正部と、を有する制御ユニットと
を備え
前記所定の閾開度は、前記冷媒過冷却度が前記目標冷媒過冷却度となる目標開度よりも大きい開度と、当該開度よりも大きい開度領域における前記冷媒過冷却度が前記目標冷媒過冷却度となる開度との間の任意の開度である
ヒートポンプサイクル装置。
【請求項2】
請求項に記載のヒートポンプサイクル装置であって、
前記目標冷媒過冷却度の前記補正値は、前記冷媒過冷却度が補正後の目標冷媒過冷却度より常に小さくなるように定められる
ヒートポンプサイクル装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ヒートポンプ式給湯装置、ヒートポンプ式温水暖房装置、ヒートポンプ式温冷水空気調和機などのヒートポンプサイクル装置に関する。
【背景技術】
【0002】
従来、ヒートポンプサイクル装置は、圧縮機と、四方弁と、利用側熱交換器と、膨張弁と、熱源側熱交換器である室外熱交換器とを順次配管接続してなる冷媒回路を有している。このヒートポンプサイクル装置で暖房運転や給湯運転を行う際は、冷媒回路が暖房サイクルとなり、圧縮機で圧縮された高温高圧のガスとなった冷媒は四方弁を通過し、利用側熱交換器で熱を放出して液冷媒となり、さらに膨張弁で減圧された後に室外熱交換器で蒸発して室外空気と熱交換し、ガスとなって再び圧縮機で圧縮される過程を繰り返す。なお、冷房/除霜運転の際は、冷媒回路は、四方弁が切り替わって上述した冷媒の流れとは逆方向の流れとなる冷房サイクルとなる。
【0003】
このようなヒートポンプサイクル装置で暖房運転を行う場合、膨張弁の開度を冷媒の過冷却度の大きさに応じて制御する方法(以下、過冷却制御と記載する場合がある)が知られている。冷媒過冷却度は、一般に、利用側熱交換器(室内熱交換器あるいは水冷媒熱交換器に相当)における冷媒の凝縮温度から、利用側熱交換器から流出して膨張弁へと流れる冷媒の温度を減じることで算出される。膨張弁の開度の調整方法としては、算出された冷媒過冷却度と、ヒートポンプサイクル装置で意図した暖房能力が発揮されるために必要な値である目標冷媒過冷却度とを比較し、算出された冷媒過冷却度が、目標冷媒過冷却度よりも大きいときは膨張弁の開度を大きくし、目標冷媒過冷却度よりも小さいときは膨張弁の開度を小さくする。なお、利用側熱交換器から流出して膨張弁へと流れる冷媒温度は、利用側熱交換器と膨張弁とを接続する冷媒配管に配置される温度センサで検出する。
【0004】
しかしながら、暖房運転時に利用側熱交換器から膨張弁へ向かって流れる液冷媒が、利用側熱交換器と膨張弁との間を接続する冷媒配管(液管)内における冷媒の圧力損失により気液二相状態になる場合がある。冷媒の圧力損失は、配管長や配管内の異物の堆積量などによってその値が異なり、圧力損失による圧力の低下により冷媒が気液二相状態となって冷媒温度が液相状態の冷媒温度より低い温度となる。そして、上述した温度センサが、利用側熱交換器と膨張弁とを接続する冷媒配管における膨張弁の近傍に配置される場合に、圧力損失によって冷媒温度が低下すれば、低下した冷媒温度を用いて算出する冷媒過冷却度は圧力損失が小さい場合と比べて大きくなる。なお、温度センサが、利用側熱交換器と膨張弁とを接続する冷媒配管における膨張弁の近傍に配置される場合としては、例えば、圧縮機と四方弁と膨張弁と熱源側熱交換器を有する室外機と、利用側熱交換器を有する室内ユニットとが冷媒配管で接続されるヒートポンプサイクル装置において、室外機に温度センサを設ける場合である。
【0005】
一般的には、目標冷媒過冷却度は、利用側熱交換器から流出して膨張弁に流入するまでの冷媒が液相状態であることを前提に決められる、つまり、圧力損失による冷媒温度の低下を加味せずに決定される。このため、算出する冷媒過冷却度が圧力損失の影響で大きくなれば、膨張弁に流入する冷媒が液相状態である場合と比べて、冷媒過冷却度が目標冷媒過冷却度より小さいときに膨張弁の開度が小さくされないため、あるいは、冷媒過冷却度が目標冷媒過冷却度より大きいときに膨張弁の開度が大きくされ過ぎるため、膨張弁の過冷却制御を行ってもヒートポンプサイクル装置で意図した暖房能力を発揮できないおそれがある。
【0006】
上述した圧力損失を考慮した過冷却度制御として、例えば特許文献1には、圧縮機の運転周波数を検知する周波数センサの値から圧縮機と室内熱交換器との間の圧力損失を計算する圧力損失算出器と、圧縮機から吐出される冷媒の圧力である吐出圧力から圧力損失算出器で算出された圧力損失を減じ、吐出圧力から圧力損失を減じて求めた圧力に相当する飽和温度を算出する補正飽和温度算出器と、補正飽和温度算出器で算出された飽和温度から室内熱交換器から流出する冷媒の温度を減じて室内熱交換器の過冷却度を算出する補正過冷却度算出器と、補正過冷却度算出器で算出された過冷却度とあらかじめ設定された設定過冷却度とを比較して膨張弁の開度を制御する膨張弁制御器とを備えた空気調和機が開示されている。
【先行技術文献】
【特許文献】
【0007】
【文献】特開平9-280681号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
ところで、利用側熱交換器から流出して膨張弁に流入するまでの冷媒が気液二相状態となった場合は、膨張弁の開度が大きいほど、つまり、利用側熱交換器から膨張弁へと流れる冷媒量が多くなるほど、冷媒が受ける圧力損失が大きくなる。このとき、膨張弁の最小開度から最大開度の間のいずれかの開度で膨張弁へと流れる冷媒温度が最大値となって冷媒冷却度が最小値となり、冷媒冷却度が最小値となる開度より開度が大きくなるほど圧力損失により膨張弁へと流れる冷媒の温度が低くなって冷媒過冷却度が大きくなる。このため、膨張弁の開度が冷媒冷却度が最小値となる開度より大きいときに、冷媒過冷却度が目標冷媒過冷却度より大きい場合は、冷媒過冷却度を目標冷媒過冷却度に近づけるために膨張弁の開度を大きくしても圧力損失の増大により冷媒過冷却度が低下しない。そして、膨張弁が最大開度に達しても冷媒過冷却度を目標冷媒過冷却度とならず、意図した暖房能力を発揮できないという問題があった。
【0009】
以上のような事情に鑑み、本発明の目的は、暖房運転時に冷媒の圧力損失の影響を低減して過冷却度制御を適切に行うことができるヒートポンプサイクル装置を提供することにある。
【課題を解決するための手段】
【0010】
上記目的を達成するため、本発明の一形態に係るヒートポンプサイクル装置は、冷媒回路と、吐出圧力センサと、冷媒温度センサと、制御ユニットとを備える。
前記冷媒回路は、圧縮機と、利用側熱交換器と、熱源側熱交換器と、前記利用側熱交換器と前記熱源側熱交換器との間に配置された膨張弁と、前記圧縮機から吐出される冷媒の流れ方向を切り替える流路切替弁と、を有する。
前記吐出圧力センサは、前記圧縮機から吐出される冷媒の圧力である吐出圧力を検出する。
前記冷媒温度センサは、前記圧縮機から吐出される冷媒の流れ方向が前記利用側熱交換器である暖房運転時において、前記利用側熱交換器から流出する冷媒の温度である膨張弁前温度を検出する。
前記制御ユニットは、前記吐出圧力と前記膨張弁前温度とに基づいて冷媒過冷却度を算出する算出部と、算出した前記冷媒過冷却度が所定の目標冷媒過冷却度となるように前記膨張弁の開度を調整する調整部と、前記膨張弁の開度が所定の閾開度より大きいとき、前記目標冷媒過冷却温度を所定値増加させる補正部と、を有する。
【0011】
前記所定の閾開度は、前記冷媒過冷却度が前記目標冷媒過冷却度となる目標開度よりも大きい開度と、当該開度よりも大きい開度領域における前記冷媒過冷却度が前記目標冷媒過冷却度となる開度との間の任意の開度であってもよい。
【0012】
また、前記目標冷媒過冷却度の前記補正値は、前記冷媒過冷却度が補正後の目標冷媒過冷却度より常に小さくなるように定められてもよい。
【発明の効果】
【0013】
本発明によれば、暖房運転時に冷媒の圧力損失の影響を低減して過冷却度制御を適切に行うことができる。
【図面の簡単な説明】
【0014】
図1】本実施形態のヒートポンプサイクル装置であるヒートポンプ式温水暖房装置を示す概略構成図である。
図2】制御ユニットの構成を示すブロック図である。
図3】過冷却度と膨張弁の開度との関係を示す典型例である。
図4】圧力損失と、膨張弁の開度と、液管の長さとの関係を示す説明図である。
図5】液管内の冷媒が気液二相状態のときにおける過冷却度と膨張弁の開度との関係を示す説明図である。
図6】冷凍サイクル制御を行えない不具合が発生したときの実験例を示す図である。
図7】補正部の作用を説明するための過冷却度と膨張弁開度との関係を示す図である。
図8】制御ユニットにより実行される処理手順の一例を示すフローチャートである。
【発明を実施するための形態】
【0015】
以下、図面を参照しながら、本発明の実施形態を説明する。
【0016】
図1は、本実施形態のヒートポンプサイクル装置であるヒートポンプ式温水暖房装置を示す概略構成図である。
【0017】
[ヒートポンプ式温水暖房装置]
図1に示されるように、ヒートポンプ式温水暖房装置100は、冷媒回路10と、温水回路20と、制御ユニット60とを備える。冷媒回路10においては、圧縮機1と、四方弁2と、冷媒と水との熱交換を行う水冷媒熱交換器3と、膨張弁4と、熱源側熱交換器5と、アキュムレータ6とが順に冷媒配管11で接続されている。温水回路20においては、水冷媒熱交換器3と、流量計31と、利用側ユニットである室内ユニット(温水ユニット)40と、循環ポンプ30とが順に水配管16で接続されている。さらにヒートポンプ式温水暖房装置100は、熱源側熱交換器5に室外空気を送風する室外ファン90と、水冷媒熱交換器3における水の温度を検出する温度センサ58および温度センサ59とを備える。
【0018】
ここで、圧縮機1、四方弁2、膨張弁4、熱源側熱交換器5およびアキュムレータ6は室外機に格納され、水冷媒熱交換器3および室内ユニット40は室内機に格納される。これら室外機と室内機との間は、水冷媒熱交換器3と膨張弁4との間を接続する冷媒配管である液管3Aと、四方弁2と水冷媒熱交換器3との間を接続する冷媒配管であるガス管3Bとにより接続される。
【0019】
(冷媒回路の構成)
圧縮機1は、インバータにより回転数が制御される図示しないモータによって駆動される。圧縮機1は、運転容量が可変の能力可変型圧縮機である。四方弁2は、冷媒回路10における冷媒循環方向を切り替える流路切替弁である。水冷熱交換器3は、冷媒配管11を流れて水冷媒熱交換器3に流入した冷媒と、水配管16を流れて水冷媒熱交換器3に流入した水とを熱交換させる。水冷媒熱交換器3は、利用側熱交換器である。
【0020】
膨張弁4は、ステッピングモータを用いてパルス制御により弁の開度を制御する。膨張弁4は、熱源側熱交換器5に流入あるいは熱源側熱交換器5から流出する冷媒量を調整する。熱源側熱交換器5は、冷媒配管11を流れて熱源側熱交換器5に流入する冷媒と、室外ファン90の回転により取り込まれた外気とを熱交換させる。アキュムレータ6は、四方弁2から流入した冷媒をガス冷媒と液冷媒に分離し、ガス冷媒のみを圧縮機1に吸入させる。
【0021】
冷媒配管11における圧縮機1の冷媒吐出口付近には、圧縮機1から吐出された冷媒の圧力である吐出圧力を検出する吐出圧力センサ51と、圧縮機1から吐出された冷媒の温度である吐出温度を検出する吐出温度センサ52とが設けられている。冷媒配管11におけるアキュムレータ6の冷媒流入側付近には、圧縮機1に吸入される冷媒の圧力である吸入圧力を検出する吸入圧力センサ53と、圧縮機1に吸入される冷媒の温度である吸入温度を検出する吸入温度センサ54とが設けられている。
【0022】
吐出圧力センサ51は、冷媒配管11における圧縮機1の冷媒吐出側と水冷媒熱交換器3の間に配置すればよく、例えば、図1において一点鎖線で仮想的に示すように、四方弁2と水冷媒熱交換器3との間に配置する。また、圧縮機1の回転数を検出する回転数センサが圧縮機1に設けられてもよい。
【0023】
冷媒配管11における水冷媒熱交換器3と膨張弁4との間の膨張弁4の接続口付近には、冷媒温度センサ55が設けられている。冷媒温度センサ55は、暖房運転時において水冷媒熱交換器3から流出する冷媒の温度である膨張弁前温度を検出する。なお、冷媒温度センサ55が、膨張弁4の接続口付近に配置される、つまり、室外機に設けられる場合としては、例えば、ヒートポンプ式温水暖房装置100が室外機に組み合わせる室内機を選択できるものであって、室外機に冷媒温度センサ55を設けることで、冷媒温度センサ55に相当するセンサが搭載されていない室内機を室外機に組み合わせることができるようにしたい場合である。
【0024】
膨張弁4と熱源側熱交換器5との間の冷媒配管11には、熱源側熱交換器5側に熱交温度センサ57が設けられている。熱交温度センサ57は、暖房運転時に熱源側熱交換器5に流入する冷媒の温度を検出する。熱交温度センサ57は、除霜運転時には熱源側熱交換器5から流出する冷媒の温度を検出する。熱源側熱交換器5の近傍には、外気温度を検出するための外気温度センサ56が設けられている。
【0025】
(温水回路の構成)
水冷媒熱交換器3には、冷媒配管11と水配管16が接続されている。水配管16には、流量計31と室内ユニット40と循環ポンプ30とが順次接続されている。循環ポンプ30は、回転数が固定されたモータまたは回転数が変更可能なモータによって駆動される。これにより、温水回路20では、矢印80の方向に水が循環する。特に、循環ポンプ30として、回転数が変更可能なモータを使用した場合は、温水回路20を流れる水の流量を変更することができる。循環ポンプ30が回転数の変更可能なモータを使用しない場合は、水配管16を流れる水の流量は、ヒートポンプ式温水暖房装置100が配置されたときの予め定められた固定の流量となる。室内ユニット40は、床暖房装置やラジエタなどといった室内を暖房するための端末である。流量計31は、温水回路20における単位時間あたりの水の流量を計測する。
【0026】
温水回路20は、水の温度を検知する検知手段を有する。例えば、水配管16における水冷媒熱交換器3の水の出口側には、水冷媒熱交換器3から流出する水の温度である往き温度を検出する温度センサ58が設けられている。水配管16における水冷媒熱交換器3の水の入口側には、水冷媒熱交換器3に流入する水の温度である戻り温度を検出する温度センサ59が設けられている。
【0027】
(制御ユニット)
図2は、制御ユニット60の構成を示すブロック図である。制御ユニット60は、CPU(Central Processing Unit)601と、ヒートポンプ式温水暖房装置100の運転制御に関わる各種プログラムや、各種プログラムの実行時に利用される制御パラメータを記憶する記憶部602と、冷媒回路10や温水回路20に設けられた各種センサでの検出値を取り込むセンサ入力部603と、室内ユニット40を操作するための図示しないリモコンから送信される信号を受信する受信部604とを有する。
【0028】
制御ユニット60は、各種センサで検出した値をセンサ入力部603を介して取り込む。制御ユニット60は、使用者のリモコン操作によって送信される室内ユニット40の運転に関わる各種要求を受信部604を介して取り込む。制御ユニット60は、取り込んだ各種センサで検出した値や運転に関わる各種要求に基づいて、圧縮機1や循環ポンプ30の駆動制御、四方弁2の切り換え制御、膨張弁4の開度調整などといった、ヒートポンプ式温水暖房装置100の各装置の制御を行う。
【0029】
[冷媒回路および温水回路の動作]
続いて、ヒートポンプ式温水暖房装置100が暖房運転を行う際の、冷媒回路10における冷媒の流れや各部の動作、および、温水回路20における水の流れや各部の動作について図1を参照して説明する。まず、ヒートポンプ式温水暖房装置100が暖房運転を行う場合について説明する。次に、ヒートポンプ式温水暖房装置100が除霜運転を行う場合について説明する。
【0030】
(暖房運転)
ヒートポンプ式温水暖房装置100が暖房運転を行う場合は、四方弁2が操作されて冷媒回路10が暖房サイクルとされる。また、循環ポンプ30が起動されて水回路16に実線矢印80の方向に水が循環する。この状態で圧縮機1が駆動すると、冷媒が冷媒回路10を実線矢印70の方向に流れる。圧縮機1から吐出された冷媒は、冷媒配管11を流れて四方弁2を経て水冷媒熱交換器3に流入する。圧縮機1の回転数は、温度センサ58で検出する水温である往き温度が室内ユニット40で使用者が要求する暖房能力に応じた目標往き温度となるように制御される。
【0031】
水冷媒熱交換器3に流入した冷媒は、水冷媒熱交換器3に流入した水と熱交換を行って凝縮する。水冷媒熱交換器3から冷媒配管11に流出した冷媒は、膨張弁4を通過する際に減圧されて熱源側熱交換器5に流入する。膨張弁4の開度は、後述するように、水冷媒熱交換器3の出口側(暖房運転時の膨張弁4側)における冷媒の過冷却度が、あらかじめ設定された目標過冷却度となるように調整される。
【0032】
熱源側熱交換器5に流入した冷媒は、外気と熱交換を行って蒸発する。熱源側熱交換器5から冷媒配管11に流出した冷媒は、四方弁2、アキュムレータ6を介して圧縮機1に吸入されて再び圧縮される。
【0033】
一方、温水回路20では、前述したように循環ポンプ30が駆動することで温水回路20を実線矢印80の方向に水が流れる。水配管16を流れて水冷媒熱交換器3に流入した水は冷媒によって加熱されて温水となって、室内ユニット40に流入する。室内ユニット40に温水が流れることで、室内ユニット40が配置された部屋の暖房が行われる。尚、温水回路20において水が流れる方向は、冷媒回路10が暖房サイクルであっても冷房サイクルであっても、実線矢印80の方向である。
【0034】
[冷媒の過冷却度制御(膨張弁の開度制御)]
暖房運転時における膨張弁4の開度は、水冷媒熱交換器3の出口側(暖房運転時の膨張弁4側)における冷媒過冷却度が、ヒートポンプ式温水暖房装置100で所望の暖房能力が発揮されるために必要な値である目標冷媒過冷却度となるように調整される。冷媒過冷却度は、以下のように、水冷媒熱交換器3における冷媒の凝縮温度から膨張弁4に流入する前の冷媒の温度(以下、膨張弁前温度ともいう)を減じることで算出される。

冷媒過冷却度=凝縮温度-膨張弁前温度 ・・・(1)

すなわち、冷媒過冷却度は、水冷媒熱交換器3における冷媒の凝縮温度と水冷媒熱交換器3から流出する冷媒の温度との温度差であり、この温度差が大きいほど冷媒過冷却度は大きくなる。本実施形態では、凝縮温度は、吐出圧力センサ51で検出される圧力から換算され、膨張弁前温度は、冷媒温度センサ55の検出値である。
【0035】
また、一般的には目標冷媒過冷却度は、水冷媒熱交換器3から流出して膨張弁4に流入するまでの冷媒が液相状態であることを前提に決定されるものである。目標冷媒過冷却度は、圧縮機1の回転数(冷媒の循環量)および吐出圧力(または凝縮温度)に応じて定まる可変値である。例えば、圧縮機1の回転数および吐出圧力(または凝縮温度)に対応させて目標冷媒過冷却度を定めたテーブル値を予め作成しておき、このテーブルを参照して目標冷媒過冷却度が決定される。このテーブル値は、制御ユニット60の記憶部602に格納される。目標冷媒過冷却度の具体例としては、例えば、運転条件に応じて3℃~5℃の範囲に設定される。
【0036】
図3は、水冷媒熱交換器3から膨張弁4へ向かって流れる冷媒が液冷媒である場合の、過冷却度と膨張弁4の開度との関係を示すものである。図3に示すように、冷媒過冷却度は、膨張弁4の開度が大きくなるほど低下し、開度が最大となれば冷媒過冷却度が最小値となる。したがって、冷媒過冷却度の算出値が目標冷媒過冷却度Sc0よりも低い場合は膨張弁4の開度を小さくし、冷媒過冷却度の算出値が目標冷媒過冷却度Sc0よりも高い場合は膨張弁4の開度を大きくすることで、冷媒過冷却度を目標冷媒過冷却度ScOとすることができる。なお、図3では、冷媒過冷却度が目標冷媒過冷却度となったときの膨張弁4の開度を目標開度X0としている。
【0037】
ところで、暖房運転時に水冷媒熱交換器3と膨張弁4との間を接続する液管3Aを流れる液冷媒が、冷媒配管11における水冷媒熱交換器3と膨張弁4との間を流れる際に受ける圧力損失により気液二相状態になる場合がある。このとき、圧力損失によって冷媒の温度が低下し、膨張弁前温度が冷媒が液相状態の場合と比べて低い温度となるため、算出する冷媒過冷却度が大きくなる。前述したように、目標冷媒過冷却度は、利用側熱交換器から流出して膨張弁に流入するまでの冷媒が、液管3Aが短くこれを流れる冷媒が受ける圧力損失が小さくて液相状態であることを前提に決められる、つまり、圧力損失を加味せずに決定されるため、算出する冷媒過冷却度が圧力損失の影響で変化すれば、図5を用いて後述するように、膨張弁4の過冷却制御を行ってもヒートポンプサイクル装置100で意図した暖房能力を発揮できないおそれがある。
【0038】
ここで、暖房運転時に冷媒が気液二相状態になるような条件としては、例えば、液管3Aを冷媒が流れる際に受ける圧力損失が挙げられる。図4は、圧力損失と膨張弁4の開度との関係を示す説明図であり、「長」、「中」および「短」はそれぞれ液管3Aの長さに相当する。同図に示すように、液管3Aの配管長が長いほど圧力損失が大きくなる。また、膨張弁4の開度が大きいほど冷媒の循環量が多くなって圧力損失が大きくなる。つまり、液管3Aの配管長が長いほど、また、膨張弁4の開度が大きいほど、液管3Aを流れる冷媒が受ける圧力損失が大きくなって、気液二相状態におけるガス冷媒の比率が多くなって膨張弁前温度が低下する。
【0039】
図5は、液管3A内の冷媒が気液二相状態である場合の、冷媒過冷却度と膨張弁4の開度との関係を示す説明図である。液管3Aを流れる冷媒が気液二相状態となっていれば、図3に示した液管3Aを流れる冷媒が液相状態の場合のように膨張弁4の開度を大きくするほど冷媒過冷却度が低下するのではなく、膨張弁前温度が最高となって算出した冷媒過冷却度が目標冷媒過冷却度Sc0よりも小さい値の最小値となる、目標開度X0よりも大きい開度である開度X1がある。そして、膨張弁4の開度が開度X1よりも大きい場合は、開度を大きくするほど冷媒過冷却度は大きくなる。これは、図4を用いて説明したように、膨張弁4の開度が大きくなるほど液管3Aを流れる冷媒量が多くなって冷媒が受ける圧力損失が大きくなることで、気液二相状態の冷媒におけるガス冷媒の比率が多くなって膨張弁前温度が低下するためである。
なお、開度X1は、図4で示した液管3Aの配管長で決まる値であり、配管長が長いほど開度X1は目標開度X0に近づく。
【0040】
膨張弁4の開度が開度X1よりも大きい場合は、上述したように膨張弁4の開度が大きくなるほど冷媒過冷却度が大きくなるため、図5に示すように開度X1から膨張弁4の最大開度X2の間には、算出した冷媒過冷却度が目標冷媒過冷却度Sc0となる開度Xaがある。ここで、算出した冷媒過冷却度と目標冷媒過冷却度Sc0との差に応じて膨張弁4の開度を調整する場合、算出した冷媒過冷却度が目標冷媒過冷却度Sc0よりも低いときは膨張弁の開度が小さくされる、つまり、開度X1を超えて目標開度X0に近づくため問題はない。一方、算出した冷媒過冷却度が目標冷媒過冷却度Sc0よりも高いときは膨張弁4の開度が大きくされるが、このときは膨張弁4の開度を大きくするほど膨張弁前温度が低くなって算出する冷媒過冷却度が大きくなるため、膨張弁4の開度が最大開度X2に到達しても目標とする冷媒過冷却度が得られなくなる。その結果、所望とする暖房性能を発揮できないおそれがある。
【0041】
図6に示すのは、ヒートポンプサイクル装置100で暖房運転を行っているときに、膨張弁4の開度が開度Xaより大きくなって算出した過冷却度を目標過冷却度とできない状態を実験で再現したものである。この例では、外気温度が10℃である場合に、室内ユニット40を循環する温水の設定温度を55℃、液管3Aの配管長を30mとしている。図6(A)は、温度センサ58で検出される温水往き温度と、温度センサ59で検出される温水戻り温度と、暖房能力の時間変化を示しており、図6(B)は、膨張弁パルス(開度)と圧縮機回転数の時間変化を示している。
【0042】
図6(A),(B)に示すように、運転が開始し、圧縮機1の回転数が安定する通常運転に達した後は、温水往き温度とともに暖房能力が上昇する。しかし、温水往き温度が最大値に到達した当たりから暖房能力が急激に低下する。これは、液管3Aを流れる冷媒が圧力損失により気液二相状態となっているためである。つまり、冷媒が気液二相状態になっていると、暖房運転開始直後から膨張弁4の開度が図5に示す開度Xaより大きい開度(冷媒過冷却度の算出値が目標冷媒過冷却度より高い場合)となることがあり、この場合は膨張弁4の開度を大きくしても目標冷媒過冷却度に到達せずに増加を続け、最終的に膨張弁4の開度は最大開度X2に達して過冷却度制御ができなくなってしまい、暖房能力が発揮されなくなる(図6(A)参照)。
【0043】
[制御ユニットの詳細]
このような問題を解消するため、制御ユニット60のCPU601は、算出部611、調整部612および補正部613を有する(図2参照)。算出部611は、暖房運転時において、吐出圧力センサ51の検出値である吐出圧力と冷媒温度センサ55の検出値である膨張弁前温度とに基づいて冷媒過冷却度を算出する。調整部613は、算出した冷媒過冷却度が所定の目標冷媒過冷却度となるように膨張弁4の開度を調整する。補正部613は、膨張弁4の開度が所定の閾開度より大きいとき、目標冷媒過冷却温度を所定値だけ増加させる。
【0044】
図7は、補正部613の作用を説明するための冷媒過冷却度と膨張弁開度との関係を示す図であり、液管3Aを流れる冷媒が気液二相状態である場合について、図5に以下に説明する閾開度Xおよび補正値Yを追記したものである。補正部613は、膨張弁4の開度が所定の閾開度Xより大きいとき、目標冷媒過冷却度Sc0を所定値Yだけ増加させる。ここでは、目標冷媒過冷却度Sc0から所定値Y増加させた冷媒過冷却度を、補正目標冷媒過冷却度Sc1という。
【0045】
ここで、閾開度Xは、液管3Aの配管長と、開度X1および開度Xaとを用いて決定される。具体的には、想定される液管3Aの最大の配管長で暖房負荷を異ならせてヒートポンプ式温水暖房装置100で暖房運転を試験的に行い、それぞれの暖房負荷時の開度X1と開度Xaを求めて、開度X1の最大値と開度Xaの最小値との間の開度を閾開度Xと定める。また、目標冷媒過冷却度Sc0の補正量であるYの値は、予め試験などを行って求められた値であり、例えば、5℃である。この補正量Yは、補正目標冷媒過冷却度Sc1が、膨張弁4の開度が全開(開度X2)とされた場合の冷媒過冷却度よりも大きな値となるように設定されるものであり、ヒートポンプ式温水暖房装置100によって個別に定められるものである。
【0046】
このように、膨張弁4の開度が閾開度Xより大きいときに、目標冷媒過冷却度Sc0を補正量Yで補正することで、算出部611により算出される冷媒過冷却度は補正目標冷媒過冷却度Sc1よりも大きくなることがなくなる。その結果、調整部612による膨張弁4の開度調整は、常に膨張弁開度を小さくする方向に行われるため、膨張弁4の開度が目標開度X0へ向けて小さくなる。そして、膨張弁4の開度が閾開度Xより小さくなれば、元の目標冷媒過冷却度に戻す。これにより、液管3Aを流れる冷媒が圧力損失の影響により気液二相状態となっているときに、目標冷媒過冷却度Sc0を補正することによって膨張弁4の開度を大きくすることがなくなる、つまり、冷媒過冷却度が大きくなることがなくなるため、冷媒過冷却度を目標冷媒過冷却度とすることができ、所望とする暖房能力が維持される。
【0047】
なお、閾開度Xは、開度Xaであってもよい。前述したように、液管3Aを流れる冷媒が気液二相状態である場合は、膨張弁4が開度Xaより大きな開度となれば、冷媒過冷却度が目標冷媒過冷却度Sc0より大きい場合に、膨張弁4の開度を大きくしても冷媒過冷却度が低下しないため、膨張弁4の開度が開度Xaより大きくなれば目標冷媒過冷却度Sc0を補正する。この場合は、膨張弁4の開度調整のばらつきを考慮して、閾開度Xを開度Xaよりも多少小さい開度に設定してもよい。具体的には、閾開度Xは、開度Xaよりも、制御パルスの1パルス分に相当する開度を減じた値、あるいは、更にこれに加えて開度調整のばらつきを考慮した任意の値を減じた値であってもよい。
【0048】
また、閾開度Xは、開度X1であってもよい。ただ、膨張弁4の開度が開度X1であるときは、冷媒過冷却度が目標過冷却度Sc0より小さい値であり、かつ、膨張弁4の開度が開度X1より大きい場合と比べて液管3Aを流れる冷媒が圧力損失の影響を受けていない。このときに目標冷媒過冷却度Sc0を補正して大きな値とすれば、冷媒過冷却度と補正目標冷媒過冷却度Sc1との差が補正前より大きくなり、膨張弁4の開度がより小さくされるため、水冷媒熱交換器3を流れる冷媒量が少なくなって暖房能力が低下するおそれがある。このため、閾開度Xは開度X1よりも大きな開度とすることが好ましい。
【0049】
図8は、制御ユニット60により実行される暖房運転時の膨張弁4の開度調整に関わる処理を示すフローチャートである。以下、図8を参照して本実施形態のヒートポンプ式温水暖房装置100の作用について説明する。
【0050】
暖房運転が開始されると、制御ユニット60は、圧縮機1の回転数と、圧縮機1から吐出される冷媒の圧力(吐出圧力)を読み込む(ステップ101)。圧縮機1の回転数は、図示しない回転数センサの検出値から取得でき、吐出圧力は、吐出圧力センサ51から取得できる。
【0051】
続いて、制御ユニット60は、圧縮機1の回転数および吐出圧力に基づき、目標冷媒過冷却度Sc0を算出する(ステップ102)。目標冷媒過冷却度Sc0は、上述のように、圧縮機1の回転数および吐出圧力(または凝縮温度)との対応関係を基に予め作成したテーブル値を参照して決定される。
【0052】
続いて、制御ユニット60は、膨張弁4の開度が閾開度X以上であるか否かを判定する(ステップ103)。膨張弁4の開度が閾開度X未満のとき(ステップ103において「N」)、ステップ105に移行する。一方、膨張弁4の開度が閾開度X以上のとき(ステップ103において「Y」)、制御ユニット60は、目標冷媒過冷却度Sc0をY℃補正することで、目標冷媒過冷却度Sc0を補正目標冷媒過冷却度Sc1に設定する(ステップ104、図7)。
【0053】
続いて、制御ユニット60は、吐出圧力センサ51の検出値に基づいて、水冷媒熱交換器3における冷媒の凝縮温度を算出する(ステップ105)。さらに制御ユニット60は、冷媒温度センサ55の検出値である膨張弁前温度を取り込む(ステップ106)。そして制御ユニット60は、ステップ105,106で算出した凝縮温度と膨張弁前温度との差分である現在の冷媒過冷却度を算出する(ステップ107)。
【0054】
続いて、制御ユニット60は、目標冷媒過冷却度から現在の冷媒過冷却度を減じた値である偏差Zを算出し(ステップ108)、偏差Zが-1℃以上+1℃以下であるか否かを判定する(ステップ109)。偏差Zが-1℃以上+1℃以下の場合(ステップ109において「Y」)、制御ユニット60は、現在の冷媒過冷却度が目標冷媒過冷却度に一致すると判定し、膨張弁4の開度(膨張弁パルス数)を変更することなく、現在の開度に維持する(ステップ110)。
【0055】
また、偏差Zが-1℃以上+1℃以下でない場合(ステップ109において「N」)、制御ユニット60は、偏差Zが+1℃より高いか否かを判定する(ステップ111)。偏差Zが冷媒過冷却度よりも1℃超低い場合(ステップ111において「Y」)は、制御ユニット60は、膨張弁パルス数を所定量減算することで、膨張弁4を所定量閉じる(ステップ112)。これにより、膨張弁4の開度が、目標開度X0より大きい開度から目標開度X0に向かうように調整される(図7参照)。
【0056】
一方、偏差Zが+1℃より高くない場合(ステップ111において「N」)、つまり、現在の冷媒過冷却度が目標冷媒過冷却度よりも1℃超高い場合は、制御ユニット60は、膨張弁パルス数を所定量加算することで、膨張弁4を所定量開く(ステップ113)。これにより、膨張弁4の開度が、目標開度X0より小さい開度から目標開度X0に向かうように調整される(図7参照)。
【0057】
その後、制御ユニット60は、ステップ101に復帰し、再び上述した処理を実行する。これらの処理を所定周期ごとに繰り返し実行することにより、膨張弁4の開度を目標開度X0に合わせ込むことができる。なお、偏差Zのバラツキ量を示す温度範囲は±1℃に限られず、任意の値に設定可能である。また、図8に示すフローでは記載を省略しているが、ステップ103において膨張弁4の開度が閾開度X未満である場合に、目標冷媒過冷却度が補正量Yで補正されていた場合は、元の目標冷媒過冷却度に戻す。
【0058】
以上のように本実施形態によれば、膨張弁4の開度が閾開度以上であるときは目標冷媒過冷却度Sc0を補正目標冷媒過冷却度Sc1に設定するようにしているため、液管3Aを流れる冷媒が気液二相状態になっている場合においても、膨張弁4の開度が閾開度Xより大きな開度領域において算出される冷媒過冷却度を目標冷媒過冷却度よりも小さくすることができる。これにより、冷媒過冷却度が目標冷媒過冷却度よりも所定量低い場合は常に、膨張弁4の開度を小さくする制御が実現されるので、液管3Aを流れる冷媒の圧力損失の影響を受けることなく安定した過冷却度制御を実現し、所望とする暖房能力を維持することができる。
【0059】
以上、本発明の実施形態について説明したが、本発明は上述の実施形態にのみ限定されるものではなく種々変更を加え得ることは勿論である。
例えば、以上の実施形態では、ヒートポンプサイクル装置として、ヒートポンプ式温水暖房装置100を例に挙げて説明したが、これに限られず、ヒートポンプ式給湯装置やヒートポンプ式温冷水空気調和機などのヒートポンプサイクル装置にも、本発明は適用可能である。
【符号の説明】
【0060】
1…圧縮機
2…四方弁(流路切替弁)
3…水冷媒熱交換器(利用側熱交換器)
4…膨張弁
5…熱源側熱交換器
10…冷媒回路
20…温水回路
30…循環ポンプ
40…室内ユニット
60…制御ユニット
611…算出部
612…調整部
613…補正部
100…ヒートポンプ式温水暖房装置(ヒートポンプサイクル装置)
図1
図2
図3
図4
図5
図6
図7
図8