(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-10-15
(45)【発行日】2024-10-23
(54)【発明の名称】農場小区分レベルの作物害虫リスクまたは作物病害リスクあるいはその両方の推定
(51)【国際特許分類】
G06Q 50/02 20240101AFI20241016BHJP
G06T 7/00 20170101ALI20241016BHJP
【FI】
G06Q50/02
G06T7/00 640
(21)【出願番号】P 2022566299
(86)(22)【出願日】2021-05-04
(86)【国際出願番号】 IB2021053724
(87)【国際公開番号】W WO2021229360
(87)【国際公開日】2021-11-18
【審査請求日】2023-10-26
(32)【優先日】2020-05-11
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】390009531
【氏名又は名称】インターナショナル・ビジネス・マシーンズ・コーポレーション
【氏名又は名称原語表記】INTERNATIONAL BUSINESS MACHINES CORPORATION
【住所又は居所原語表記】New Orchard Road, Armonk, New York 10504, United States of America
(74)【代理人】
【識別番号】100112690
【氏名又は名称】太佐 種一
(74)【代理人】
【識別番号】100120710
【氏名又は名称】片岡 忠彦
(72)【発明者】
【氏名】サイ、ジテンドラ
(72)【発明者】
【氏名】テワリ、ムクル
(72)【発明者】
【氏名】デイ、クンタル
【審査官】塚田 肇
(56)【参考文献】
【文献】特開2015-119646(JP,A)
【文献】米国特許出願公開第2019/0050948(US,A1)
【文献】米国特許出願公開第2016/0055593(US,A1)
【文献】特開2010-009163(JP,A)
【文献】米国特許出願公開第2012/0237083(US,A1)
【文献】米国特許出願公開第2020/0364843(US,A1)
【文献】米国特許出願公開第2016/0232621(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G06Q 10/00-99/00
G06T 7/00
(57)【特許請求の範囲】
【請求項1】
農場小区分レベルの作物害虫リスクまたは作物病害リスクあるいはその両方を推定するコンピュータ実装方法であって、
農場画定データを受け取ることと、
前記農場画定データに基づいて農場領域を判定することと、
前記農場領域に関連付けられ、複数の画素セットを含む入力データを、複数のデータ・ソースから取り出すことと、
前記複数の画素セットのそれぞれについて、1つまたは複数の回帰モデルを使用して前記入力データに基づいて、前記複数の画素セットのそれぞれの作物害虫リスクの推定または前記複数の画素セットのそれぞれの作物病害リスクの推定あるいはその両方を含む作物リスク・データを判定することと、
前記作物リスク・データに基づいて、前記農場領域を、各農場小区分がその農場小区分のリスク・レベル・カテゴリを画定する複数の農場小区分に分類することと
前記複数の農場小区分のそれぞれについて、複数の対応策選択肢を特定することと、
前記複数の農場小区分のうちの1つまたは複数の農場小区分を視覚ヒートマップとして表示することであって、前記複数の農場小区分のうちの1つまたは複数の農場小区分のそれぞれから栽培の保護の為に識別された1つまたは複数の推奨対応策選択肢がその農場小区分に関連付けられたテキストとして前記視覚ヒートマップ上にさらに表示される、前記表示することと
を含む
前記方法。
【請求項2】
農場小区分レベルの作物害虫リスクまたは作物病害リスクあるいはその両方を推定するコンピュータ実装方法であって、
農場画定データを受け取ることと、
前記農場画定データに基づいて農場領域を判定することと、
前記農場領域に関連付けられ、複数の画素セットを含む入力データを、複数のデータ・ソースから取り出すことと、
前記複数の画素セットのそれぞれについて、1つまたは複数の回帰モデルを使用して前記入力データに基づいて、前記複数の画素セットのそれぞれの作物害虫リスクの推定または前記複数の画素セットのそれぞれの作物病害リスクの推定あるいはその両方を含む作物リスク・データを判定することと、
前記作物リスク・データに基づいて、前記農場領域を、各農場小区分がその農場小区分のリスク・レベル・カテゴリを画定する複数の農場小区分に分類することと
前記複数の農場小区分のそれぞれについて、複数の対応策選択肢を特定することと、
前記複数の農場小区分のそれぞれについて、その農場小区分のリスク・レベルに少なくとも部分的に基づいて、前記複数の対応策選択肢のそれぞれの推奨スコアを判定することと、
前記複数の農場小区分のそれぞれについて、前記複数の推奨スコアに基づいて前記複数の対応策選択肢から1つまたは複数の推奨対応策選択肢を提供することと
を含む
前記方法。
【請求項3】
農場小区分レベルの作物害虫リスクまたは作物病害リスクあるいはその両方を推定するコンピュータ実装方法であって、
農場画定データを受け取ることと、
前記農場画定データに基づいて農場領域を判定することと、
前記農場領域に関連付けられ、複数の画素セットを含む入力データを、複数のデータ・ソースから取り出すことと、
前記複数の画素セットのそれぞれについて、1つまたは複数の回帰モデルを使用して前記入力データに基づいて、前記複数の画素セットのそれぞれの作物害虫リスクの推定または前記複数の画素セットのそれぞれの作物病害リスクの推定あるいはその両方を含む作物リスク・データを判定することと、
前記作物リスク・データに基づいて、前記農場領域を、各農場小区分がその農場小区分のリスク・レベル・カテゴリを画定する複数の農場小区分に分類することと
を含
み、
前記作物リスク・データに基づいて前記農場領域を各農場小区分がその農場小区分のリスク・レベル・カテゴリを画定する複数の農場小区分に分類することは、前記複数の農場小区分のうちの第1の農場小区分を前記複数の農場小区分のうちの第2の農場小区分における前記複数の画素セットのうちの候補画素セットを含むように拡張するか否かを、前記候補画素セットが少なくとも1つの農場小区分拡大閾値を満たすか否かに基づいて判定することを含み、前記複数の農場小区分のうちの前記第1の農場小区分は前記複数の農場小区分のうちの前記第2の農場小区分に隣接し、前記候補画素セットは前記複数の農場小区分のうちの前記第1の農場小区分における前記複数の画素セットのうちの隣接画素セットに隣り合う、前記方法。
【請求項4】
前記複数の農場小区分のうちの1つまたは複数の農場小区分を視覚ヒートマップとして表示することをさらに含む、請求項1
~3のいずれか1項に記載の方法。
【請求項5】
前記複数の画素セットのそれぞれについて1つまたは複数の回帰モデルを使用して前記入力データに基づいて作物リスク・データを判定することは、前記複数の画素セットのそれぞれについて、複数の異なる時点のそれぞれにおける時間的作物リスク・データを判定することを含む、請求項1
~3のいずれか1項に記載の方法。
【請求項6】
前記作物リスク・データに基づいて前記農場領域を各農場小区分がその農場小区分のリスク・レベル・カテゴリを画定する複数の農場小区分に分類することは、前記複数の異なる時点のそれぞれにおいて前記農場領域を、前記複数の異なる時点のそれぞれにおける前記時間的作物リスク・データに基づいて、各農場小区分がその時点におけるその農場小区分のリスク・レベル・カテゴリを画定する複数の農場小区分に分類することを含む、請求項
5に記載の方法。
【請求項7】
前記複数の異なる時点のうちのユーザ選択時点における前記複数の農場小区分のうちの1つまたは複数の農場小区分を、視覚ヒートマップとして表示することをさらに含む、請求項
6に記載の方法。
【請求項8】
前記複数の農場小区分のそれぞれについて、その農場小区分のリスク・レベルに少なくとも部分的に基づいて、前記複数の対応策選択肢のそれぞれの推奨スコアを判定することを含み、
前記1つまたは複数の推奨対応策選択肢が、前記複数の農場小区分のそれぞれについて、前記複数の推奨スコアに基づいて前記複数の対応策選択肢から提供される、請求項1に記載の方法。
【請求項9】
前記複数の農場小区分のそれぞれについて、複数の対応策選択肢を特定することと、
前記複数の農場小区分のそれぞれについて、その農場小区分のリスク・レベルに少なくとも部分的に基づいて、前記複数の対応策選択肢のそれぞれの推奨スコアを判定することと、
前記複数の農場小区分のそれぞれについて、前記複数の推奨スコアに基づいて前記複数の対応策選択肢から1つまたは複数の推奨対応策選択肢を提供することとをさらに含む、請求項
3に記載の方法。
【請求項10】
前記複数の農場小区分のそれぞれについて、前記複数の対応策選択肢が、複数の異なる時点におけるその農場小区分のための対応策選択肢を規定する複数の農場小区分時間的対応策選択肢を含む、請求項
1、2又は9に記載の方法。
【請求項11】
前記複数の農場小区分のうちの1つまたは複数の農場小区分を視覚ヒートマップとして表示することと、
前記複数の農場小区分のうちの前記1つまたは複数の農場小区分のそれぞれについて、前記1つまたは複数の推奨対応策選択肢をその農場小区分に関連付けられたテキストとして前記視覚ヒートマップ上に表示することとをさらに含む、請求項
2又は9に記載の方法。
【請求項12】
前記作物リスク・データに基づいて前記農場領域を各農場小区分がその農場小区分のリスク・レベル・カテゴリを画定する複数の農場小区分に分類することは、前記複数の農場小区分のうちの第1の農場小区分を前記複数の農場小区分のうちの第2の農場小区分における前記複数の画素セットのうちの候補画素セットを含むように拡張するか否かを、前記候補画素セットが少なくとも1つの農場小区分拡大閾値を満たすか否かに基づいて判定することを含み、前記複数の農場小区分のうちの前記第1の農場小区分は前記複数の農場小区分のうちの前記第2の農場小区分に隣接し、前記候補画素セットは前記複数の農場小区分のうちの前記第1の農場小区分における前記複数の画素セットのうちの隣接画素セットに隣り合う、請求項1
又は2に記載の方法。
【請求項13】
前記複数の農場小区分のうちの第1の農場小区分を前記複数の農場小区分のうちの第2の農場小区分内の前記複数の画素セットのうちの候補画素セットを含むように拡大するか否かを、前記候補画素セットが少なくとも1つの農場小区分拡大閾値を満たすか否かに基づいて判定することは、
前記候補画素セットの前記作物リスク・データと前記隣接画素セットの前記作物リスク・データとの差が第1の農場小区分拡大閾値未満であるか否かを判定することと、
前記候補画素セットの前記作物リスク・データと前記複数の農場小区分のうちの前記第1の農場小区分における前記複数の画素セットのそれぞれの前記作物リスク・データとの差が、第2の農場小区分拡大閾値未満であるか否かを判定することとを含む、請求項
3又は12に記載の方法。
【請求項14】
前記第1の農場小区分拡大閾値と前記第2の農場小区分拡大閾値のうちの少なくとも一方を含む分解能選択データをユーザから受け取ることをさらに含む、請求項
13に記載の方法。
【請求項15】
請求項1ないし
14いずれか一項に記載の方法を実行するプロセッサを備えたシステム。
【請求項16】
プロセッサに、請求項1ないし
14いずれか一項に記載の方法を実行させるためのプログラム。
【請求項17】
農場小区分レベルの作物害虫リスクまたは作物病害リスクあるいはその両方を推定し、少なくとも1つの対応策を推奨するためのシステムであって、
プロセッサと、ストレージ・デバイスと、前記プロセッサによる実行のために前記ストレージ・デバイスに記憶されたプログラム命令とを含むサーバ・デバイスを含み、
前記プログラム命令は、
農場画定データを受け取り、
前記農場画定データに基づいて農場領域を判定し、
前記農場領域に関連付けられ、複数の画素セットを含む入力データを、複数のデータ・ソースから取り出し、
前記複数の画素セットのそれぞれについて、1つまたは複数の回帰モデルを使用して前記入力データに基づいて、前記複数の画素セットのそれぞれの作物害虫リスクの推定または前記複数の画素セットのそれぞれの作物病害リスクの推定あるいはその両方を含む作物リスク・データを判定し、
前記作物リスク・データに基づいて、前記農場領域を、各農場小区分がその農場小区分のリスク・レベル・カテゴリを画定する複数の農場小区分に分類し、
前記複数の農場小区分のそれぞれについて、複数の対応策選択肢を特定し、
前記複数の農場小区分のそれぞれについて、その農場小区分の前記リスク・レベルに少なくとも部分的に基づいて、前記複数の対応策選択肢のそれぞれの推奨スコアを判定し、
前記複数の農場小区分のそれぞれについて、前記複数の推奨スコアに基づいて前記複数の対応策選択肢から1つまたは複数の推奨対応策選択肢を提供するように、実行可能である、システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、一般に作物監視の分野に関する。より詳細には、本発明は、1つまたは複数の時空間回帰モデルを使用した農場小区分レベルの作物害虫リスクまたは作物病害リスクあるいはその両方の推定に関する。
【発明の概要】
【0002】
本開示の実施形態は、農場小区分レベルの作物害虫リスクまたは作物病害リスクあるいはその両方の推定のための方法、装置およびコンピュータ・プログラム製品を含む。実施形態によっては、農場画定データが受け取られ、農場画定データに基づいて農場領域が判定され、農場領域に関連付けられた入力データが複数のデータ・ソースから取り出される。入力データは、複数の画素セットを含むことができる。実施形態によっては、複数の画素セットのそれぞれについて、空間および時間にわたる作物害虫リスクまたは作物病害リスクあるいはその両方をシミュレーションするために、1つまたは複数の時空間回帰モデルを使用して入力データに基づいて作物リスク・データが判定される。作物リスク・データは、複数の画素セットのそれぞれの作物害虫リスクの推定または複数の画素セットのそれぞれの作物病害リスクの推定あるいはその両方を含んでもよい。実施形態によっては、農場領域は、作物リスク・データに基づいて、各農場小区分がその農場小区分のリスク・レベル・カテゴリを画定する複数の農場小区分に分類される。実施形態によっては、複数の農場小区分のうちの1つまたは複数の農場小区分が視覚ヒートマップとして表示される。実施形態によっては、1つまたは複数の推奨対応策選択肢が、各農場小区分に関連付けられたテキストとして視覚ヒートマップ上に表示される。
【0003】
以下、実施形態について添付図面とともに説明するが、添付図面では同様の名称は同様の要素を示す。
【図面の簡単な説明】
【0004】
【
図1】1つまたは複数の実施形態による、クラウド・コンピューティング・ノードを示す図である。
【
図2】1つまたは複数の実施形態による、クラウド・コンピューティング環境を示す図である。
【
図3】1つまたは複数の実施形態による、抽象化モデル層を示す図である。
【
図4】1つまたは複数の実施形態による、農場小区分レベルでの作物害虫リスクまたは作物病害リスクあるいはその両方の評価のための例示のシステムであり、(たとえば画素レベルの)その出力が時系列配列(a
0、a
1、a
2、...、a
n)を含み、各配列が、時点t
iにおいて予測されるタプル<タイム・スタンプ,リスク値>の配列a
iを構成することができる、システムを示す図である。
【
図5】1つまたは複数の実施形態による、農場小区分レベルの作物害虫リスクまたは作物病害リスクあるいはその両方の推定のための例示のシステムであり、(たとえば画素レベルの)その出力が高分解能リスク・マップ時系列を含むシステムを示す図である。
【
図6】1つまたは複数の実施形態による、農場小区分レベルの作物害虫リスクまたは作物病害リスクあるいはその両方を表す例示の視覚ヒートマップを示す図である。
【
図7】1つまたは複数の実施形態による、農場小区分拡大を示すために特定の画素セットの基礎にあるリスク値がラベル付けされている、農場小区分レベルの作物害虫リスクまたは作物病害リスクあるいはその両方を表す例示の視覚ヒートマップを示す図である。
【
図8】1つまたは複数の実施形態による、1つまたは複数の作物害虫または1つまたは複数の作物病害のそれぞれの、画素セット・レベルの回帰モデルを構築する例示の方法を示す流れ図である。
【
図9】1つまたは複数の実施形態による、農場小区分レベルの作物害虫リスクまたは作物病害リスクあるいはその両方を推定する例示の方法を示す流れ図である。
【
図10】1つまたは複数の実施形態による、農場小区分レベルの作物病中リスクまたは作物病害リスクあるいはその両方を推定し、1つまたは複数の対応策を推奨する例示の方法を示す流れ図である。
【
図11】1つまたは複数の実施形態による、農場小区分レベルの作物害虫リスクまたは作物病害リスクあるいはその両方の推定と1つまたは複数の対応策の推奨を容易にする、例示の非限定的システムを示すブロック図である。
【
図12】1つまたは複数の実施形態による、農場小区分レベルの作物害虫リスクまたは作物病害リスクあるいはその両方の推定と1つまたは複数の対応策の推奨とを要求し、推定および推奨の結果を表示するための、例示のクライアント・システムを示す図である。
【発明を実施するための形態】
【0005】
農業従事者および農業関連業者によって、さらに政府によって、作物監視が広く利用されている。たとえば、農産物取引、種子供給、農薬製造、および物流サービスなどの農業関連業者は、それぞれの事業の様々な局面において作物監視を使用している。作物監視は、政策管理を含む多くの政府機能でも使用されている。
【0006】
作物監視は無数の多くの形態で存在する。たとえば衛星作物監視は、高解像度衛星画像のスペクトル分析を使用して対象エリア(たとえば1つまたは複数の田畑)のリアルタイム作物植生指数監視を容易にする。作物監視は、「進行中の作期の播種状況はどうか(すなわち、どれだけの面積にすでに播種が行われているか)」および「異なる作物の作付面積はどのくらいか」など、作物成長に関する質問に答えるために使用されることが多い。
【0007】
作物監視は、作物害虫および病害(P&D)管理の状況でも使用される。作物P&D管理は、害虫および病害観察(すなわち、何がすでに起こっているか)と害虫および病害リスク予測(すなわち何が起こる可能性があるか)の両方を含む。作物害虫および病害リスク予測は、農場規模で行うことができ、すなわち農場が予測のための単一の単位とみなされる。たとえば、害虫および病害リスクは、気象条件(たとえば従来の害虫および病害リスク予測では、温度値を判定するために温度グリッドが一般的に使用され、降水値を判定するために降水量グリッドが一般的に使用される)、害虫および病害ダイナミクス、ならびに1つまたは複数の作物生育シミュレーション・モデルを使用して農場レベルで予測可能である。温度グリッドは、典型的には2.5マイル(4km)×2.5マイル(4km)の、典型的には正方形の物理領域である。降水量グリッドは、温度グリッドと目的と特性が類似している。このような従来の害虫および病害リスク予測で達成可能な最良の分解能は、気象データのグリッドの分解能である。その結果、従来の害虫および病害リスク予測によって判定された予想害虫および病害リスクに対処するための改善措置が農場全体にわたって実施される。
【0008】
しかし、害虫および病害リスクは、一般には農場全体で一様ではない。むしろ、害虫および病害リスクは、気象条件(たとえば、風速、気温、露点、湿度など)、土壌水分量および土壌の特性(たとえば、土壌の種類、土壌の健康度、土壌組成など)、灌漑および高度/水流のための勾配、施肥、害虫管理の履歴記録、播種日、使用種子品種、および使用機械/装置の種類およびその殺菌などの、農場小区分要因に左右される。さらに、害虫および病害リスクは、近隣農場のP&Dリスクにも左右される。たとえば、高リスクの近隣農場は、少なくとも隣り合う農場の隣接部に対して高いリスクを生じさせる可能性がある。
【0009】
本明細書で使用する「農場」または「農場領域」という用語は、任意の形状または規模の任意の広さの土地を指す。たとえば、農場または農場領域は、栽培者の地所全体(またはその1つまたは複数の部分)、1つまたは複数の田畑、1つまたは複数の土地区画、1つまたは複数の作付け領域、1つまたは複数のゾーン、1つまたは複数の管理ゾーンなどを指し得る。
【0010】
本明細書で使用する「農場画定データ」という用語は、田畑識別子、地理的識別子、境界識別子、作物識別子、および農場の土地を識別するために使用可能な任意のその他の適切なデータを指す。たとえば、農場画定データは、コモン・ランド・ユニット(Common Land Unit(CLU))、農場番号、農場シリアル番号(farm serial number(FSN))、田畑番号、地番および番地、区画番号、範囲、区域、町区、地域番号、地理的境界、または地理座標あるいはこれらの組合せを含み得るが、これらには限定されない。米国農務省(USDA)農場サービス局(Farm Service Agency(FSA))によるCLUは、USDA農業計画に関連する農地における、永久的な連続境界と共通土地被覆および土地管理と、共通所有者と、共通生産者とを有する最小土地単位である。CLU境界は、囲い線、道路、または水路あるいはこれらの組合せなどの、比較的永続的な特徴から線引きされる。USDA農場サービス局は、米国における農場のCLUを画定する地理情報システム(GIS)データベースを維持している。CLU GISデータ層は、すべての圃場、管理された森林軌道、放牧地、牧草地、およびその他の管理エリアを含む。
【0011】
本発明の一部の実施形態によると、農場小区分レベルの作物害虫リスクまたは作物病害リスクあるいはその両方を推定するための方法、装置およびコンピュータ・プログラム製品が提供される。実施形態によっては、農場画定データが受け取られ、農場画定データに基づいて農場領域が判定され、農場領域に関連付けられた入力データが複数のデータ・ソースから取り出される。実施形態によっては、入力データは複数の画素セット(すなわち少なくとも1つの画素を含む「画素セット」)を含んでもよく、各画素セットは、意味のあるようにデータを収集することが可能な、農場の最小可能/許容分解能を画定する。農場小区分レベルの作物害虫リスクまたは病害リスクあるいはその両方の推定から得られるいくつかの利点には、農場小区分規模で農薬散布を制御することによる害虫管理のコストの低減と、農薬の過剰使用なしに作物品質を維持することと、農薬の過剰使用に関係する環境問題の軽減とが含まれるが、これらには限定されない。
【0012】
一部の実施形態による作物害虫リスクまたは作物病害リスクあるいはその両方が計算される農場小区分の最小単位は、その農場の任意の画素である。しかし、より実際的には、一部の実施形態により作物害虫リスクまたは作物病害リスクあるいはその両方が計算される農場小区分の最小単位は、データを意味のあるように収集可能な農場の最小可能/許容分解能(すなわち本明細書で「画素セット」と呼ばれる)である。
【0013】
実施形態によっては、農場画定データが受け取られ、農場画定データに基づいて農場領域が判定され、農場領域に関連付けられた入力データが複数のデータ・ソースから取り出される。取り出される入力データは複数の画素セットを含むことができる。実施形態によっては、複数の画素セットのそれぞれについて、空間および時間にわたる作物害虫リスクまたは作物病害リスクあるいはその両方をシミュレーションするために、1つまたは複数の時空間回帰モデル(たとえば、1つまたは複数の所与の作物のそれぞれについて、その所与の作物を冒す可能性のある1つまたは複数の害虫または1つまたは複数の病害あるいはその両方のそれぞれの、少なくとも1つの機械学習(ML)/作物季節学/害虫(病害)伝播モデル)を使用して、入力データに基づいて作物リスク・データが判定される。作物リスク・データは、複数の画素セットのそれぞれについての作物害虫リスクの推定または複数の画素セットのそれぞれについての作物病害リスクの推定あるいはその両方を含むことができる。実施形態によっては、農場領域は、作物リスク・データに基づいて、各農場小区分がその農場小区分のリスク・レベル・カテゴリ(たとえば、高リスク、中リスク、低リスクまたはリスクなし)を画定する複数の農場小区分に分類される。
【0014】
農場内の各画素セットについて、その画素セットの作物害虫または作物病害感染あるいはその両方のリスクを計算するための関数が配備されてもよい。この関数への入力には、気象条件(たとえば、風速および風向、気温、露点、湿度、日射、およびその他の関連条件)、土壌水分量および土壌特性のばらつき、施肥、灌漑および高度/水流のための土地の勾配、感染症数、平均感染期間などの害虫管理活動の履歴記録、感染隣接エリア数、および総流入風量の作用と風距離と風が来る方向の最近接感染エリアの強度との関数などの属性が含まれ得るが、これらには限定されない。モデルは上記の特徴の関数として学習可能である。たとえば、特徴値について入手可能な履歴データと、観察された感染強度とを使用して、回帰モデルを(たとえばサポート・ベクタ回帰(SVR)、ロジスティック回帰、またはディープ・ニューラル・リグレッサを使用して)学習することができ、その回帰モデルをテスト・インスタンスに適用することができる。モデルの出力は、任意の時点における感染(リスク)の予測強度を示す値(たとえば0と1の間の小数、0と100の間の整数など)であってもよい。実施形態によっては、モデルの出力は、経時的なリスクの値(予測感染強度)を含むタプルの配列であってもよい。上記のプロセスが異なる一定時間にわたって繰り返されてもよく、それによって、リスク・マップの空間次元とともに完全な時間リスク・マップが作成され、再調整のために有限時間間隔で予想が繰り返されてもよい。
【0015】
実施形態によっては、複数の農場小区分のうちの1つまたは複数の農場小区分が高分解能リスク・マップ(たとえば視覚ヒートマップ)として表示される。実施形態によっては、高分解能リスク・マップは、作物の健康状態の連続監視および維持のために更新されてもよい。
【0016】
実施形態によっては、ユーザによって選択された様々な分解能レベルで、報告エンジンが高分解能P&Dリスク・マップ時系列を報告する。実施形態によっては、報告エンジンが、所与のP&D状況のための分解能の推奨レベルの提供を含む、農場内の分解能(すなわち「農場小区分」の「小区分」レベル)を動的に変化させてもよい。実施形態によっては、ユーザはこの推奨分解能レベルを無効にするか否かを選択することができる。たとえば、報告エンジンは、農場の異なるリスク・レベル・ゾーン(そのそれぞれを「農場小区分」とも呼ぶ)の視覚マップ(たとえば視覚ヒートマップ)として表示可能なデータを生成することができ、農場小区分の大きさは、推奨分解能レベルとユーザの選択との組合せに基づいて選択されてもよい。
【0017】
実施形態によっては、1つまたは複数の推奨対応策選択肢が、高分解能リスク・マップ上の各農場小区分に関連付けられたテキストとして表示される。たとえば、1つまたは複数の推奨対応策選択肢は、栽培の最良の保護のための、農場内の異なる農場小区分の異なる時刻における対応策の異なる用量の形態(すなわち時間的に計画された対応策)をとってもよく、対応策を微調整するための栽培者の計画栽培タイプを追加で受け入れてもよい(たとえば、栽培者は「有機」栽培タイプを計画していてもよい)。
【0018】
実施形態によっては、農場内の農場小区分規模の変化を考慮に入れた、農場小区分規模のリスク・マップを生成するために、1つまたは複数の回帰モデルが使用される。1つまたは複数の回帰モデルによって使用される入力データは、農場レベルと農場小区分レベルの特徴を含むことできる。1つまたは複数の回帰モデルによって使用可能な入力データの例には、高分解能地理空間データ(たとえば高度、土壌水分量(SM)、リモート・センシングなど)と、土壌特性、播種日、灌漑、肥料および殺虫剤散布、機械/装置殺菌などの現場特有の情報と、任意により、気象予報の空間分解能で一般的に利用可能なエリアの粗分解能P&Dリスク・プロファイルが含まれるが、これらには限定されない。たとえば、農場レベルの粗分解能P&Dリスク・プロファイルは、IBM Watson Decision Platform for Agricultureまたは同様のシステムから入手可能である。IBM(R)およびIBM Watson(R)は、米国におけるインターナショナル・ビジネス・マシーンズ・コーポレーション(「IBM」)の登録商標である。
【0019】
そのようなモデル(すなわち1つまたは複数の回帰モデル)をトレーニングするためのデータはますます入手可能になっており、衛星、空中ドローン、航空機、(たとえば種まき機および噴霧器などの農機具に取り付けられた)IoTセンサ、(たとえば現場に設置された)リモート・センサ、ハンドヘルド・デバイスおよび地上ベースのロボットからの現場画像、クラウドソーシングなどを介して収集可能である。
【0020】
新たに出現した情報技術(IT)配信モデルは、共有資源、ソフトウェアおよび情報がインターネットを介してオンデマンドでコンピュータおよびその他のデバイスに提供される、クラウド・コンピューティングである。クラウド・コンピューティングは、ITのコストと複雑さを大幅に低減することができる一方、ワークロードの最適化とサービス配信を向上させる。この手法により、HTTPを介して従来のウェブ・ブラウザによりアクセス可能なインターネット・ベースの資源からアプリケーション・インスタンスをホストすることができ、利用可能にすることができる。アプリケーションの一例としては、eメール、カレンダー機能、連絡先管理およびインスタント・メッセージなどのメッセージング機能の共通のセットを提供するアプリケーションがある。この場合、ユーザは、インターネットを介してサービスに直接アクセスすることになる。このサービスを使用して、企業は自社のeメール、カレンダーまたは共同インフラストラクチャあるいはこれらの組合せをクラウドに配置し、エンド・ユーザは適切なクライアントを使用して自分のeメールにアクセスし、またはカレンダー操作を行うことになる。
【0021】
本開示はクラウド・コンピューティングに関する詳細な説明を含むが、本明細書に記載されている教示の実装はクラウド・コンピューティング環境には限定されないことを了解されたい。むしろ、本発明の実施形態は、現在知られているか、または今後開発される任意の他の種類のコンピューティング環境とともに実装することができる。
【0022】
クラウド・コンピューティングは、最小限の管理労力またはサービス・プロバイダとの相互連絡で迅速にプロビジョニングすることができ、解放することができる、構成可能コンピューティング資源(たとえば、ネットワーク、ネットワーク回線容量、サーバ、処理、メモリ、ストレージ、アプリケーション、仮想マシン、およびサービス)の共用プールへの便利なオンデマンドのネットワーク・アクセスを可能にするためのサービス配布のモデルである。このクラウド・モデルは、少なくとも5つの特徴と、少なくとも3つのサービス・モデルと、少なくとも4つのデプロイメント・モデルとを含み得る。
【0023】
特徴は以下の通りである。
オンデマンド・セルフサービス:クラウド消費者は、サービス・プロバイダとの間で人間の介在を必要とせずに一方的に、必要に応じて自動的に、サーバ時間およびネットワーク・ストレージなどのコンピューティング機能をプロビジョニングすることができる。
広いネットワーク・アクセス:機能は、ネットワークを介して利用可能であり、異種のシン・クライアントまたはシック・クライアント・プラットフォーム(たとえば携帯電話、ラップトップ、およびPDA)による使用を促進する標準機構を介してアクセスすることができる。
資源プール:マルチテナント・モデルを使用して複数の消費者に対応するために、プロバイダのコンピューティング資源がプールされ、需要に応じて、異なる物理資源および仮想資源が動的に割り当てられ、再割り当てされる。消費者は一般に、提供される資源の厳密な場所について管理することができないかまたは知らないが、より高い抽象レベルの場所(たとえば、国、州、またはデータセンター)を指定することが可能な場合があるという点で、位置独立感がある。
迅速な伸縮性:迅速かつ伸縮性をもって、場合によっては自動的に機能をプロビジョニングして、迅速にスケールアウトすることができ、また、迅速に機能を解放して迅速にスケールインすることができる。消費者にとっては、プロビジョニングのために利用可能な機能はしばしば無限であるように見え、いつでも好きなだけ購入することができる。
従量制サービス:クラウド・システムが、サービスの種類(たとえば、ストレージ、処理、帯域幅、およびアクティブ・ユーザ・アカウント)に応じて適切な何らかの抽象化レベルの計量機能を利用することによって、資源利用を自動的に制御し、最適化する。資源使用量を監視、制御および報告することができ、利用されたサービスの透明性をプロバイダと消費者の両方に与えることができる。
【0024】
サービス・モデルは以下の通りである。
ソフトウェア・アズ・ア・サービス(Software as a Service(SaaS)):消費者に提供される機能は、クラウド・インフラストラクチャ上で稼働するプロバイダのアプリケーションを使用することである。アプリケーションには、ウェブ・ブラウザなどのシン・クライアント・インターフェースを介して様々なクライアント・デバイスからアクセス可能である(たとえばウェブ・ベースのEメール)。消費者は、限られたユーザ固有アプリケーション構成設定の考えられる例外を除き、ネットワーク、サーバ、オペレーティング・システム、ストレージ、または個別のアプリケーション機能まで含めて、基礎にあるクラウド・インフラストラクチャを管理も制御もしない。
プラットフォーム・アズ・ア・サービス(Platform as a Service(PaaS)):消費者に提供される機能は、クラウド・インフラストラクチャ上に、プロバイダによってサポートされるプログラミング言語およびツールを使用して作成された、消費者作成または取得アプリケーションをデプロイすることである。消費者は、ネットワーク、サーバ、オペレーティング・システム、またはストレージを含む、基礎にあるクラウド・インフラストラクチャを管理も制御もしないが、デプロイされたアプリケーションと、場合によってはアプリケーション・ホスティング環境構成とを制御することができる。
インフラストラクチャ・アズ・ア・サービス(Infrastructure as a Service(IaaS)):消費者に提供される機能は、処理、ストレージ、ネットワークおよびその他の基本的コンピューティング資源をプロビジョニングすることであり、その際、消費者は、オペレーティング・システムとアプリケーションとを含み得る任意のソフトウェアをデプロイし、実行することができる。消費者は、基礎にあるクラウド・インフラストラクチャを管理も制御もしないが、オペレーティング・システムと、ストレージと、デプロイされたアプリケーションとを制御することができ、場合によっては選択されたネットワーク・コンポーネント(たとえばホスト・ファイアウォール)の限定的な制御を行うことができる。
【0025】
デプロイメント・モデルは以下の通りである。
プライベート・クラウド:このクラウド・インフラストラクチャは、組織のためにのみ運用される。組織または第三者によって管理可能であり、オンプレミスまたはオフプレミスに存在可能である。
コミュニティ・クラウド:このクラウド・インフラストラクチャは、いくつかの組織によって共用され、共通の関心事(たとえば、任務、セキュリティ要件、ポリシー、およびコンプライアンス事項)を有する特定のコミュニティをサポートする。組織または第三者が管理することができ、オンプレミスまたはオフプレミスに存在可能である。
パブリック・クラウド:このクラウド・インフラストラクチャは、公衆または大規模業界団体が利用することができ、クラウド・サービスを販売する組織によって所有される。
ハイブリッド・クラウド:このクラウド・インフラストラクチャは、独自の実体のままであるが、データおよびアプリケーション可搬性を可能にする標準化技術または専有技術(たとえば、クラウド間のロード・バランシングのためのクラウド・バースティング)によって結合された、2つ以上のクラウド(プライベート、コミュニティまたはパブリック)の複合体である。
【0026】
クラウド・コンピューティング環境は、ステートレス性、疎結合性、モジュール性、および意味的相互運用性に焦点を合わせたサービス指向型である。クラウド・コンピューティングの核心にあるのは、相互接続されたノードのネットワークを含むインフラストラクチャである。
【0027】
次に
図1を参照すると、クラウド・コンピューティング・ノードの一例の概略図が示されている。クラウド・コンピューティング・ノード10は、適切なクラウド・コンピューティングの一例に過ぎず、本明細書に記載の本発明の実施形態の使用または機能の範囲に関していかなる限定も示唆することを意図していない。いずれにしても、クラウド・コンピューティング・ノード10は、上記の機能のいずれでも実装または実行あるいはその両方を行うことができる。
【0028】
クラウド・コンピューティング・ノード10には、多くの他の汎用または専用コンピューティング・システム環境または構成とともに動作可能なコンピュータ・システム/サーバ12がある。コンピュータ・システム/サーバ12とともに使用するのに適する可能性のあるよく知られたコンピューティング・システム、環境または構成あるいはこれらの組合せの例には、パーソナル・コンピュータ・システム、サーバ・コンピュータ・システム、シン・クライアント、シック・クライアント、ハンドヘルドまたはラップトップ・デバイス、マルチプロセッサ・システム、マイクロプロセッサ・ベースのシステム、セット・トップ・ボックス、プログラマブル家庭用電子機器、ネットワークPC、ミニコンピュータ・システム、メインフレーム・コンピュータ・システム、および上記のシステムまたはデバイスのいずれかを含む分散クラウド・コンピューティング環境などが含まれるが、これらには限定されない。
【0029】
コンピュータ・システム/サーバ12について、コンピュータ・システムによって実行されるプログラム・モジュールなどのコンピュータ・システム実行可能命令の一般的文脈で説明することができる。一般に、プログラム・モジュールは、特定のタスクを行い、または特定の抽象データ・タイプを実装する、ルーチン、プログラム、オブジェクト、コンポーネント、ロジック、データ構造などを含むことができる。コンピュータ・システム/サーバ12は、通信ネットワークを介してリンクされたリモート処理デバイスによってタスクが行われる分散クラウド・コンピューティング環境で実現可能である。分散クラウド・コンピューティング環境では、プログラム・モジュールは、メモリ・ストレージ・デバイスを含むローカルとリモートの両方のコンピュータ・システム記憶媒体に配置可能である。
【0030】
図1に示すように、クラウド・コンピューティング・ノード10におけるコンピュータ・システム/サーバ12は、汎用コンピューティング・デバイスの形態で示されている。コンピュータ・システム/サーバ12のコンポーネントには、1つまたは複数のプロセッサまたは処理ユニット16と、システム・メモリ28と、システム・メモリ28を含む様々なシステム・コンポーネントをプロセッサ16に結合するバス18とが含まれ得るが、これらには限定されない。
【0031】
バス18は、様々なアーキテクチャのいずれかを使用する、メモリ・バスまたはメモリ・コントローラ、ペリフェラル・バス、アクセラレーテッド・グラフィックス・ポート、およびプロセッサ・バスまたはローカル・バスを含む、いくつかの種類のバス・アーキテクチャのいずれかのうちの1つまたは複数を表す。例として、限定ではなく、そのようなアーキテクチャには、業界標準アーキテクチャ(ISA)バス、マイクロ・チャネル・アーキテクチャ(MCA)バス、拡張ISA(EISA)バス、ビデオ・エレクトロニクス・スタンダーズ・アソシエーション(VESA)ローカル・バスおよびペリフェラル・コンポーネント・インターコネクト(PCI)バスがある。
【0032】
コンピュータ・システム/サーバ12は、典型的には、様々なコンピュータ・システム可読媒体を含む。そのような媒体は、コンピュータ・システム/サーバ12によるアクセスが可能な任意の利用可能な媒体であってよく、揮発性と不揮発性の両方の媒体と、取り外し型と非取り外し型の媒体を含む。
【0033】
システム・メモリ28は、ランダム・アクセス・メモリ(RAM)30またはキャッシュ・メモリ32あるいはその両方などの揮発性メモリの形態のコンピュータ・システム可読媒体を含むことができる。コンピュータ・システム/サーバ12は、他の取り外し型/非取り外し型、揮発性/不揮発性コンピュータ・システム記憶媒体をさらに含むことができる。例示に過ぎないが、非取り外し型不揮発性磁気媒体(図示されておらず、一般には「ハード・ドライブ」と呼ばれる)とその他の非取り外し型不揮発性媒体(たとえば「ソリッド・ステート・ドライブ」)の読み書きのために、ストレージ・システム34を設けることができる。図示されていないが、取り外し可能型不揮発性磁気ディスク(たとえば「フロッピィ・ディスク」)の読み書きのための磁気ディスク・ドライブと、CD-ROM、DVD-ROMまたはその他の光媒体などの取り外し型不揮発性光ディスクの読み出しまたは書き込みあるいはその両方のための光ディスク・ドライブを備えることができる。そのような場合、それぞれが1つまたは複数のデータ・メディア・インターフェースによってバス18に接続可能である。以下で詳述するように、メモリ28は、本発明の1つまたは複数の特徴を実施するように構成されたコンピュータ可読命令を含む1組(たとえば少なくとも1つ)のプログラム・モジュール42を記憶するコンピュータ・プログラム製品を含むことができる。
【0034】
1組(少なくとも1つ)のプログラム・モジュール42を有するプログラム/ユーティリティ40が、オペレーティング・システム、1つまたは複数のアプリケーション・プログラム、その他のプログラム・モジュール、およびプログラム・データとともに、例として、限定ではなく、メモリ28に記憶されてもよい。オペレーティング・システム、1つまたは複数のアプリケーション・プログラム、その他のプログラム・モジュール、およびプログラム・データまたはこれらの何らかの組合せのそれぞれが、ネットワーキング環境の実装形態を含むことができる。実施形態によっては、プログラム・モジュール42は、1つまたは複数の実施形態の1つまたは複数の機能または方法あるいはその両方を全般的に実施するようになされる
【0035】
コンピュータ・システム/サーバ12は、キーボード、ポインティング・デバイス、ディスプレイ24などの1つまたは複数の外部デバイス14、ユーザがコンピュータ・システム/サーバ12と対話することを可能にする1つまたは複数のデバイス、または、コンピュータ・システム/サーバ12が1つまたは複数の他のコンピューティング・デバイスと通信することを可能にする任意のデバイス(たとえばネットワーク・カード、モデムなど)、あるいはこれらの組合せと通信することも可能である。このような通信は入力/出力(I/O)インターフェース22を介して行うことができる。さらに、コンピュータ・システム/サーバ12は、ローカル・エリア・ネットワーク(LAN)、汎用ワイド・エリア・ネットワーク(WAN)、またはパブリック・ネットワーク(たとえばインターネット)あるいはこれらの組合せと、ネットワーク・アダプタ20を介して通信することができる。図のように、ネットワーク・アダプタ20は、コンピュータ・システム/サーバ12の他のコンポーネントとバス18を介して通信する。図示されていないが、他のハードウェア・コンポーネントまたはソフトウェア・コンポーネントあるいはその両方が、コンピュータ・システム/サーバ12とともに使用されてもよい。例としては、マイクロコード、デバイス・ドライバ、冗長処理ユニット、外部ディスク・ドライブ・アレイ、RAIDシステム、テープ・ドライブおよびデータ・アーカイブ・ストレージ・システムなどがあるが、これらには限定されない。
【0036】
次に
図2を参照すると、例示のクラウド・コンピューティング環境50が図示されている。図のように、クラウド・コンピューティング環境50は、たとえばパーソナル・デジタル・アシスタント(PDA)または携帯電話54A、デスクトップ・コンピュータ54B、ラップトップ・コンピュータ54Cまたは自動車コンピュータ・システム54Nあるいはこれらの組合せなど、クラウド消費者によって使用されるローカル・コンピューティング・デバイスが通信することができる、1つまたは複数のクラウド・コンピューティング・ノード10を含む。ノード10は互いに通信することができる。ノード10は、上述のプライベート・クラウド、コミュニティ・クラウド、パブリック・クラウドまたはハイブリッド・クラウドなどの1つまたは複数のネットワークにおいて物理的または仮想的にグループ化(図示せず)されてもよい。これによって、クラウド・コンピューティング環境50は、インフラストラクチャ、プラットフォーム、またはソフトウェアあるいはこれらの組合せを、クラウド消費者がそのためにローカル・コンピューティング・デバイス上で資源を維持する必要がないサービスとして提供することができる。なお、
図2に示すコンピューティング・デバイス54Aないし54Nの種類は、例示を意図したものに過ぎず、コンピューティング・ノード10およびクラウド・コンピューティング環境50は、(たとえばウェブ・ブラウザを使用して)任意の種類のネットワーク接続またはネットワーク・アドレス指定可能接続あるいはその両方を介して、任意の種類のコンピュータ化デバイスと通信することができるものと理解される。
【0037】
次に、
図3を参照すると、クラウド・コンピューティング環境50(
図2)によって提供される1組の機能抽象化層が示されている。なお、
図3に示すコンポーネント、層および機能は、例示のみを意図したものであり、本発明の実施形態はこれらには限定されないことを前もって理解されたい。図のように、以下の層および対応する機能が提供される。
【0038】
ハードウェアおよびソフトウェア層60は、ハードウェア・コンポーネントとソフトウェア・コンポーネントとを含む。ハードウェア・コンポーネントの例としては、メインフレーム61、縮小命令セットコンピュータ(RISC)アーキテクチャ・ベースのサーバ62、サーバ63、ブレード・サーバ64、ストレージ・デバイス65、およびネットワークおよびネットワーキング・コンポーネント66がある。実施形態によっては、ソフトウェア・コンポーネントは、ネットワーク・アプリケーション・サーバ・ソフトウェア67およびデータベース・ソフトウェア68を含む。
【0039】
仮想化層70は、以下のような仮想実体の例を与えることができる抽象化層を提供する。すなわち、仮想サーバ71と、仮想ストレージ72と、仮想プライベート・ネットワークを含む仮想ネットワーク73と、仮想アプリケーションおよびオペレーティング・システム74と、仮想クライアント75である。
【0040】
一実施例では、管理層80は、以下に記載の機能を提供することができる。資源プロビジョニング81は、クラウド・コンピューティング環境内でタスクを実行するために利用されるコンピューティング資源およびその他の資源の動的調達を行う。メータリングおよびプライシング82は、クラウド・コンピューティング環境内で資源が利用されるときのコスト追跡と、これらの資源の消費に対する対価の請求またはインボイス処理を行う。一実施形態ではこれらの資源にはアプリケーション・ソフトウェア・ライセンスが含まれてもよい。セキュリティは、クラウド消費者およびタスクのための本人検証と、データおよびその他の資源の保護とを行う。ユーザ・ポータル83は、消費者およびシステム管理者にクラウド・コンピューティング環境へのアクセスを提供する。サービス・レベル管理84は、必要なサービス・レベルが満たされるようにクラウド・コンピューティング資源割り当ておよび管理を行う。サービス・レベル・アグリーメント(Service Level Agreement(SLA))計画および履行85は、SLAに従って将来の要求が予想されるクラウド・コンピューティング資源のための事前取り決めおよび調達を行う。
【0041】
ワークロード層90は、クラウド・コンピューティング環境を利用することができる機能の例を提供する。この層から提供することができるワークロードおよび機能の例には、マッピングおよびナビゲーション91、ソフトウェア開発およびライフサイクル管理92、仮想教室教育配信93、データ分析処理94、トランザクション処理95、および作物害虫リスクまたは作物病害リスクあるいはその両方の推定96が含まれる。
【0042】
次に
図4を参照すると、1つまたは複数の実施形態による、農場小区分レベルの作物害虫リスクまたは作物病害リスクあるいはその両方の推定のための例示のシステム400が図示されている。
図4に示す例示のシステム400は、回帰学習器402と、作物リスク・データを含む出力404(たとえば画素レベル)とを含む。回帰学習器402によって判定される作物リスク・データは、それぞれが時点t
iにおいて予測されているタプル<タイム・スタンプ,リスク値>の配列a
iを構成することができる配列の時系列(a
1、a
2、...、a
n)を含むことができる。たとえば、回帰学習器402の出力404は、時点t
1において予測されているタプル<タイム・スタンプ=t
1,リスク値t
1>の配列a
1、時点t
2において予測されているタプル<タイム・スタンプt
2,リスク値t
2>の配列a
2、...、時点t
nにおいて予測されているタプル<タイム・スタンプt
n、リスク値t
n>の配列a
nを含んでもよい。各タプルは農場の「画素セット」に対応する。回帰学習器402は、空間および時間にわたる作物害虫リスクまたは作物病害リスクあるいはその両方をシミュレーションすべく、1つまたは複数の時空間回帰モデルを学習するために機械学習を採用することができる。実施形態によっては、1つまたは複数の所与の作物のそれぞれについて、その所与の作物を冒す可能性のある1つまたは複数の害虫または1つまたは複数の病害あるいはその両方のそれぞれのための1組のトレーニング・データについて少なくとも1つの機械学習(ML)/作物季節学/害虫(病害)伝播モデルがトレーニングされてもよい。回帰学習器402は、1つまたは複数の回帰モデルを学習するために、たとえばロジスティック回帰、サポート・ベクタ回帰、またはディープ・ニューラル回帰あるいはこれらの組合せを採用してもよい。1つまたは複数の回帰モデルが学習された後は、回帰学習器402は、回帰学習器402が以前に見たことがないデータ(たとえばテスト・インスタンスからのデータ)にその1つまたは複数の回帰モデルを適用し、それらのデータに関する予測を行ってもよい。
【0043】
回帰学習器402の出力404は、「画素レベル」、またはより一般的には「画素セット・レベル」とすることができる。「画素セット」(少なくとも1つの画素)とは、そこからデータを意味があるように収集することができる農場の最小可能/許容分解能を指す。実施形態によっては、出力404は、時点tiにおいて予測されているタプルの配列aiにおける各タプル<タイム・スタンプ,リスク値>が農場の画素に対応するという意味で画素レベルである。そのような実施形態では、農場の各画素についてリスク値が予測される。実施形態によっては、出力404は、時点tiにおいて予測されているタプルの配列aiにおける各タプル<タイム・スタンプ,リスク値>が農場の画素セットに対応するという意味で「画素セット・レベル」である。そのような実施形態では、農場の各画素セットについてリスク値が予測される。
【0044】
データは1つまたは複数のネットワーク406を介して回帰学習器402に提供され、画素レベル、画素セット・レベルまたは、農場レベルなどの1つまたは複数の比較的粗い分解能、あるいはこれらの組合せであってもよい。このようなネットワーク406には、セルラ・ネットワーク、ワイド・エリア・ネットワーク(WAN)(たとえばインターネット)、またはローカル・エリア・ネットワーク(LAN)あるいはこれらの組合せを含む、無線および有線ネットワークが含まれ、その非限定的な例には、セルラ、WAN、ワイヤレス・フィディリティ(Wi-Fi)、Wi-Mal、WLAN、電波通信、マイクロ波通信、衛星通信、光通信、音波通信、電磁誘導通信、量子通信、または任意のその他の適切な通信技術あるいはこれらの組合せが含まれる。
【0045】
図4に示す例示のシステム400において、回帰学習器402は、1つまたは複数の機械学習モデル・モジュール408と、1つまたは複数の作物季節学モデル・モジュール410と、1つまたは複数の害虫(病害)伝播モデル・モジュール412とを含む。1つもしくは複数の機械学習モデル・モジュール408、1つもしくは複数の作物季節学モデル・モジュール410、または1つもしくは複数の害虫(病害)伝播モデル・モジュール412あるいはこれらの組合せは、
図4に示す例示のシステム400に示すように別々のコンポーネントであってもよく、または全部もしくは一部が組み合わされてもよい。
【0046】
実施形態によっては、回帰学習器402は、1つもしくは複数のデータ・ソース・インジェスト・モジュールまたは1つもしくは複数のデータ同化モジュールあるいはその両方を含んでもよい。たとえば、入力データを、データ・ソースインジェスト・モジュールを介して1つまたは複数の機械学習モデル・モジュール408、1つまたは複数の作物季節学モデル・モジュール410、1つまたは複数の害虫(病害)伝播モデル・モジュール412、あるいはこれらの組合せにインジェストすることができる。
【0047】
1つまたは複数の機械学習モデル・モジュール408は、1つまたは複数のアルゴリズム(たとえば1つまたは複数の「回帰モデル」)を提供するために、トレーニング・データを推論し、学習することができる。たとえば、1つまたは複数の回帰モデルを学習するために、1つまたは複数の機械学習モデル・モジュール408は、1つまたは複数のネットワーク406を介した農場の履歴データ(たとえば、1つもしくは複数の気象属性420、1つもしくは複数の土壌および土地特性422、1つもしくは複数のリモート・センシング入力424、1つもしくは複数の農場入力426、ならびに/または、害虫および/もしくは病害に関する近隣情報などの1つもしくは複数のその他の入力428)と、1つもしくは複数の作物季節学モデル・モジュール410からの出力データ、または1つもしくは複数の害虫(病害)伝播モデル・モジュール412からの出力データ、あるいはその両方に関して、ロジスティック回帰、サポート・ベクタ回帰、またはディープ・ニューラル回帰を採用してもよい。
【0048】
たとえば、ロジスティック回帰モデルは、1つまたは複数の予測変数(たとえば、1つもしくは複数の気象属性420、1つもしくは複数の土壌および土地特性422、1つもしくは複数のリモート・センシング入力424、1つもしくは複数の農場入力426、ならびに/または、害虫および/もしく病害に関する近隣情報などの1つもしくは複数のその他の入力428)と、0=蔓延なし、1=蔓延という2値反応変数、すなわち蔓延の発生の確率との関係を表すアルゴリズムの形態で、作物害虫または作物病害あるいはその両方の挙動をかなり適切に捕捉することができる。この蔓延発生の確率を「リスク」(すなわち、作物害虫リスクまたは作物病害リスクあるいはその両方のリスク)と呼ぶ。
【0049】
1つまたは複数の回帰モデルが学習された後は、1つまたは複数の機械学習モデル・モジュール408は、その1つまたは複数の回帰モデルを、1つまたは複数の機械学習モデル・モジュール408が以前に見たことがないデータに適用することができる。たとえば、1つまたは複数の機械学習モデル・モジュール408は、1つまたは複数の回帰モデルを、1つまたは複数のネットワーク406を介して受け取った農場の履歴データ、現在のデータまたは予測データあるいはこれらの組合せ(たとえば1つもしくは複数の気象属性420、1つもしくは複数の土壌および土地特性422、1つもしくは複数のリモート・センシング入力424、1つもしくは複数の農場入力426、ならびに/または害虫および/もしくは病害に関する近隣情報などの1つもしくは複数のその他の入力428)と、1つまたは複数の作物季節学モデル・モジュール410からの出力データまたは1つまたは複数の害虫(病害)伝播モデル・モジュール412からの出力データあるいはその両方とに適用してもよい。
【0050】
1つまたは複数の気象属性420は、気温、湿度、露点、風速および風向、降水量などを含み得るが、これらには限定されない。
【0051】
1つまたは複数の土壌および土地特性422は、土壌の種類、土壌組成、土壌の健康度、土壌深度、土壌水分量、灌漑および土地高度/水流のための勾配などを含み得るが、これらには限定されない。
【0052】
1つまたは複数のリモート・センシング入力424は、植生指数、後方散乱などを含み得るが、これらには限定されない。実施形態によっては、リモート・センシング入力424は、1つまたは複数のリモート・センサ・データベース(たとえば
図11の1126)、またはIBM(R)PAIRS(Physical Analytics Integrated Data Repository and Services)-Geoscopeなどの地理空間データ・プラットフォームによって提供されてもよい。IBM(R)は米国におけるインターナショナル・ビジネス・マシーンズ・コーポレーション(「IBM」)の登録商標である。IBM(R)PAIRS-Geoscopeは、膨大な地理空間時間データ(地図、衛星、気象、ドローン、IoT)、照会および解析サービスのために特別に設計されたプラットフォームである。IBM(R)PAIRS-Geoscopeは、履歴および連続更新リモート・センサ・データへのアクセスを提供する。
【0053】
1つまたは複数の農場入力426は、作物の種類、種子品種、播種日などの栽培情報、施肥、灌漑、殺虫剤散布、除草剤散布、殺菌剤散布などの害虫管理の履歴記録などを含み得るが、これらには限定されない。
【0054】
1つまたは複数のその他の入力428は、使用機械/装置の種類およびその殺菌などの農場管理入力、害虫または病害あるいはその両方に関する近隣情報などを含み得るが、これらには限定されない。
【0055】
実施形態によっては、1つまたは複数のアルゴリズムを学習するために1つまたは複数の機械学習モデル・モジュール408によって使用されるトレーニング・データの1つまたは複数のセットは、1つもしくは複数の所与の作物とその所与の作物を冒す可能性のある1つもしくは複数の害虫とのそれぞれの組合せに関連付けられたトレーニング・データのセット、または1つもしくは複数の所与の作物とその所与の作物を冒す可能性のある1つもしくは複数の病害との組合せに関連付けられたトレーニング・データのセット、あるいはその両方を含むことができる。たとえば、トレーニング・データの1つまたは複数のセットは、トウモロコシ作物とそのトウモロコシ作物を冒す可能性のある第1の害虫(または病害)との組合せに関連付けられたトレーニング・データの第1のセットと、トウモロコシ作物とトウモロコシ作物を冒す可能性のある第2の害虫(または病害)との組合せに関連付けられたトレーニング・データの第2のセットと、大豆作物と大豆作物を冒す可能性のある第3の害虫(または病害)との組合せに関連付けられたトレーニング・データの第3のセットとを含んでもよい。トレーニング・データの各セットは、農場の履歴データ(たとえば、1つもしくは複数の気象属性420、1つもしくは複数の土壌および土地特性422、1つもしくは複数のリモート・センシング入力424、1つもしくは複数の農場入力426、ならびに/または害虫および/もしくは病害に関する近隣情報などの1つもしくは複数のその他の入力428)と、1つもしくは複数の作物季節学モデル・モジュール410からの出力データまたは1つもしくは複数の害虫(病害)伝播モデル・モジュール412からの出力データ、あるいはその両方とを含んでもよい。
【0056】
実施形態によっては、1つまたは複数の機械学習モデル・モジュール408によって学習される1つまたは複数のアルゴリズムは、1つもしくは複数の所与の作物とその所与の作物を冒す可能性のある1つもしくは複数の害虫との各組合せのための回帰モデル、または1つもしくは複数の所与の作物とその作物を冒す可能性のある1つもしくは複数の病害との各組合せのための回帰モデル、あるいはその両方を含んでもよい。
【0057】
たとえば、蔓延が発生する確率はP(E=1)によって表すことができ、ここで、蔓延の場合はE=1、蔓延でない場合はE=0である。回帰モデルは、
p(E=1)=1/(1+exp(-z)) (式1)
によって与えられ、ここでzは、1つまたは複数の予測変数(たとえば、(所与の作物としての)マンゴと(その所与の作物を冒す可能性のある害虫/病害としての)Oidium mangiferae Berhetに起因するうどん粉病との組合せに関する以下の例では「最高気温」と「相対湿度」)の関数である。回帰モデル(式1)の右辺で付加誤差項eが想定されてもよい。P(E=1)≧0.5である場合、蔓延の確率が高い可能性があり、P(E=1)<0.5である場合、蔓延の確率は低いとみなすことができる。関数zは、
z=β0+β1x1+β2x2+...+βnxn (式2)
によって与えることができ、ここでx1、x2、...およびxnは、n個の予測変数を示し、β0、β1、β2...およびβnは求めるパラメータを示す。たとえば、マンゴとうどん粉病との組合せに関する以下の例では、x1は「最高気温」を示し、x2は「相対湿度」を示し、β0、β1およびβ2は求めるパラメータを示し得る。パラメータβ0、β1、β2...およびβnは、統計分析ソフトウェアを使用してトレーニング・データに基づいて求められる。そのような統計分析ソフトウェアの例としては、IBM SPSS(R)Statistics、KNIME(R)Analytic Platformなどがある。IBM(R)およびSPSS(R)は米国におけるインターナショナル・ビジネス・マシーンズ・コーポレーション(「IBM」)の登録商標である。頭字語「SPSS」は、Statistical Product and Service Solutionを指す。回帰モデル(式1)に関数z(式2)を代入すると、回帰モデルは
P(E=1)=1/(1+exp{-(β0+β1x1+β2x2+…+βnxn)}) (式3)
となる。
【0058】
回帰モデル(式3)におけるパラメータβ0、β1、β2、...およびβnが求められると、1つまたは複数の機械学習モデル・モジュール408は、回帰モデル(式3)を、1つまたは複数の機械学習モデル・モジュール408が以前に見たことがないデータ(たとえば、トレーニング・データ外のテスト・インスタンスからのデータ)に適用することができ、それらのデータに関する予想を行うことができる。
【0059】
上記のように、(所与の作物としての)マンゴと(その所与の作物を冒す可能性のある害虫/病害としての)Oidium mangiferae Berhetによって生じるうどん粉病との組合せの場合、1つまたは複数の機械学習モデル・モジュール408によって学習される1つまたは複数のアルゴリズムは、最高気温と相対湿度などの変数を含んでもよい。これらの変数(すなわち最高気温と相対湿度)は、1つまたは複数の気象属性420に含まれるかまたは基づいてもよい。実施形態によっては、これらの変数は、1期間または複数期間にわたって農場小区分規模で、農場における気温および相対湿度を定期的に(たとえば1時間ごと、15分ごとなどに)感知することによって取得することができ、次にそれらの気温および相対湿度からその1期間または複数期間中の平均最高気温と平均相対湿度とを求めることができる。1期間または複数期間のそれぞれの期間の平均最高気温は、たとえば1時間ごとに気温を感知し、その期間にわたる毎日の最高気温を平均することによって求めることができる。1期間または複数期間のそれぞれの期間の平均相対湿度は、たとえば1時間ごとに相対湿度を感知し、その期間にわたる相対湿度を平均することによって求めることができる。1期間または複数期間は、うどん粉病の反復生活環に基づいてもよい。たとえば、蔓延の可能性のある発生の開始が典型的には各年の同じ時期に起こると考えると、また、うどん粉病の反復生活環が約4日から7日であると考えると、複数年のそれぞれの年の蔓延の可能性のある発生の開始直前のそのような4期間(すなわち7日間、6日間、5日間および4日間)を、その複数年のうちの各年の蔓延の可能性のある発生の開始後に観察されるうどん粉病の状況とともにトレーニング・データとして使用してもよい。
【0060】
上記の気象変数(すなわち最高気温と相対湿度)に加えて、またはそれらに代えて、1つまたは複数の機械学習モデル・モジュール408によって学習される1つまたは複数のアルゴリズムは、1つもしくは複数の気象属性420に含まれるおよび/もしくは基づく1つもしくは複数の他の気象変数(たとえば最低温度、風速、風向など)、1つもしくは複数の土壌および土地特性422に含まれるおよび/もしくは基づく1つもしくは複数の変数、1つもしくは複数のリモート・センシング入力424に含まれるおよび/もしくは基づく1つもしくは複数の変数、1つもしくは複数の農場入力426に含まれるおよび/もしくは基づく1つもしくは複数の変数、1つもしくは複数のその他の入力428(たとえば害虫および/もしくは病害に関する近隣情報)に含まれるおよび/もしくは基づく1つもしくは複数の変数、1つもしくは複数の作物季節学モデル・モジュール410からの出力データに含まれるおよび/もしくは基づく1つもしくは複数の変数、ならびに/または、1つもしくは複数の害虫(病害)伝播モデル・モジュール412からの出力データに含まれるおよび/もしくは基づく1つもしくは複数の変数を含んでもよい。
【0061】
所与の作物としてマンゴを含む異なる一実施例では、マンゴとミバエとの組合せについて、1つまたは複数の機械学習モデル・モジュール408によって学習される1つまたは複数のアルゴリズムは、最高気温、最低気温、および相対湿度(朝)などの変数を含んでもよい。これらの変数(すなわち最高気温、最低気温および相対湿度(朝))は、1つまたは複数の気象属性420に含まれるかまたは基づくかあるいはその両方であってもよい。実施形態によっては、これらの変数は、1期間または複数期間にわたって、農場小区分規模で、農場における気温および相対湿度を定期的に(たとえば1時間ごと、15分ごとなど)感知することによって得てもよく、次にそれらの気温および相対湿度からその1期間または複数期間の平均最高気温、平均最低気温および平均相対湿度(朝)を求めてもよい。1期間または複数期間のそれぞれの期間の平均最高気温は、たとえば、1時間ごとに気温を感知し、その期間にわたる毎日の最高気温を平均することによって求めてもよい。1期間または複数期間のそれぞれの期間の平均最低気温は、たとえば、1時間ごとに気温を感知し、その期間にわたる毎日の最低気温を平均することによって求めてもよい。1期間または複数期間のそれぞれの期間の平均相対湿度(朝)は、たとえば1時間ごとに相対湿度を検知し、その期間の毎朝の相対湿度を平均することによって求めてもよい。
【0062】
上記の気象変数(すなわち最高温度、最低温度、および相対湿度(朝))に加えて、またはこれらに代えて、1つまたは複数の機械学習モデル・モジュール408によって学習される1つまたは複数のアルゴリズムは、1つもしくは複数の気象属性420に含まれるおよび/もしくは基づく1つもしくは複数のその他の気象変数(たとえば風速、風向など)、1つもしくは複数の土壌および土地特性に含まれるおよび/もしくは基づく1つもしくは複数の変数、1つもしくは複数のリモート・センシング入力424に含まれるおよび/もしくは基づく1つもしくは複数の変数、1つもしくは複数の農場入力426に含まれるおよび/もしくは基づく1つもしくは複数の変数、1つもしくは複数のその他の入力428(たとえば害虫および/もしくは病害に関する近隣情報)に含まれるおよび/もしくは基づく1つもしくは複数の変数、1つもしくは複数の作物季節学モデル・モジュール410からの出力データに含まれるおよび/もしくは基づく1つもしくは複数の変数、ならびに/または、1つもしくは複数の害虫(病害)伝播モデル・モジュール412からの出力データに含まれるおよび/もしくは基づく1つもしくは複数の変数を含んでもよい。
【0063】
別の実施例では、ミカンとPhytophthora citrophthoraによって生じる柑橘樹脂病との組合せについて、1つまたは複数の機械学習モデル・モジュール408によって学習される1つまたは複数のアルゴリズムが、気温、降雨量、葉面積指数、および葉のクロロフィル含有量などの変数を含んでもよい。これらの変数の一部(すなわち気温と降雨量)が1つまたは複数の気象属性420に含まれるかまたは基づくかあるいはその両方であってもよい。実施形態によっては、これらの変数(すなわち気温と降雨量)は、1期間または複数期間にわたり、農場小区分規模で、農場における気温および降雨量を定期的に(たとえば1時間ごと、15分ごとなど)感知することによって得てもよく、次にこれらの気温および降雨量からその1期間または複数期間中の平均気温と累加降雨量とを求めてもよい。1期間または複数期間の各期間の平均気温は、たとえば1時間ごとに気温を感知し、その期間にわたる毎日の気温を平均することによって求めることができる。1期間または複数期間のそれぞれの累加降雨量は、たとえば、毎日の総降雨量を感知し、その期間にわたる毎日の降雨量を合計することによって求めることができる。これらの変数のうちの他の変数(すなわち葉面積指数と葉のクロロフィル含有量)は1つまたは複数のリモート・センシング入力424に含まれるかまたは基づくかあるいはその両方であってもよい。たとえば、これらの他の変数のうちの1つまたは複数の変数(すなわち葉面積指数と葉のクロロフィル含有量)は、1期間または複数期間にわたり定期的に(たとえば1時間ごとに)農場小区分規模で農場の画像データをキャプチャすることによって得られ、次にその画像データからその1期間または複数期間中の葉面積指数および葉のクロロフィル含有量を求めることができる。実施形態によっては、葉面積指数および葉のクロロフィル含有量を抽出するために、葉ベースの逆PROSAIL(PROSPECT+SAIL)モデルなどの従来のモデルが使用されてもよい。あるいは、これらの他の変数のうちの1つまたは複数の変数(すなわち葉面積指数と葉のクロロフィル含有量)は、1つまたは複数の作物季節学モデル・モジュール410からの出力データに含まれるかまたは基づくかあるいはその両方であってもよい。たとえば、これらの他の変数のうちの1つまたは複数(すなわち葉面積指数と葉のクロロフィル含有量)は、農場小区分規模で1期間または複数期間にわたり、その1期間または複数期間中の葉面積指数および葉のクロロフィル含有量を定期的に(たとえば1時間ごとに)シミュレーションするために1つまたは複数の作物季節学モデル・モジュール410を使用することによって得られる。
【0064】
上記の変数(すなわち気温、降雨量、葉面積指数および葉のクロロフィル含有量)に加えて、または上記の変数に代えて、1つまたは複数の機械学習モデル・モジュール408によって学習される1つまたは複数のアルゴリズムは、1つもしくは複数の気象属性420、1つもしくは複数の土壌および土地特性422、1つもしくは複数のリモート・センシング入力424、1つもしくは複数の農場入力426、1つもしくは複数のその他の入力428(たとえば害虫および/もしくは病害に関する近隣情報)、1つもしくは複数の作物季節学モデル・モジュール410からの出力データ、ならびに/または1つもしくは複数の害虫(病害)伝播モデル・モジュール412からの出力データに含まれるかまたは基づくかあるいはその両方である1つまたは複数のその他の変数を含んでもよい。
【0065】
さらに別の実施例では、カラシと褐斑病との組合せについて、1つまたは複数の機械学習モデル・モジュール408によって学習される1つまたは複数のアルゴリズムは、最低気温、相対湿度(朝)、および相対湿度(晩)などの変数を含んでもよい。これらの変数(すなわち最低温度、相対湿度(朝)および相対湿度(晩))は、1つまたは複数の気象属性420に含まれるかまたは基づくかあるいはその両方であってもよい。実施形態によっては、これらの変数は1期間または複数期間にわたり、農場小区分規模で農場における気温および相対湿度を定期的に(たとえば1時間ごと、15分ごとなど)感知することによって得てもよく、次に、これらの気温および相対湿度からその1期間または複数期間中の平均最低気温、平均相対湿度(朝)、および平均相対湿度(晩)を求めてもよい。
【0066】
上記の変数(すなわち、最低気温、相対湿度(朝)および相対湿度(晩))に加えて、またはこれらに代えて、1つまたは複数の機械学習モデル・モジュール408によって学習される1つまたは複数のアルゴリズムは、1つもしくは複数の気象属性420、1つもしくは複数の土壌および土地特性422、1つもしくは複数のリモート・センシング入力424、1つもしくは複数の農場入力426、1つもしくは複数のその他の入力428(たとえば害虫および/もしくは病害に関する近隣情報)、1つもしくは複数の作物季節学モデル・モジュール410からの出力データ、ならびに/または1つもしくは複数の害虫(病害)伝播モデル・モジュール412からの出力データに含まれるかまたは基づくかあるいはその両方である1つまたは複数のその他の変数を含んでもよい。
【0067】
所与の作物としてカラシを含む異なる実施例では、カラシと白さび病との組合せについて、1つまたは複数の機械学習モデル・モジュール408によって学習される1つまたは複数のアルゴリズムは、最高気温、最低気温、および相対湿度(朝)などの変数を含んでもよい。これらの変数(すなわち最高気温、最低気温および相対湿度(朝))は、1つまたは複数の気象属性420に含まれるかまたは基づくかあるいはその両方であってもよい。実施形態によっては、これらの変数は、農場小区分規模で1期間または複数期間にわたり、農場における気温および相対湿度を定期的に(たとえば1時間ごと、15分ごとなど)感知することによって得てもよく、次にそれらの気温および相対湿度からその1期間または複数期間中の平均最高気温、平均最低気温および平均相対湿度(朝)を求めてもよい。
【0068】
上記の変数(すなわち最高気温、最低気温および相対湿度(朝))に加えて、または上記の変数に代えて、1つまたは複数の機械学習モデル・モジュール408によって学習される1つまたは複数のアルゴリズムは、1つもしくは複数の気象属性420、1つもしくは複数の土壌および土地特性422、1つもしくは複数のリモート・センシング入力424、1つもしくは複数の農場入力426、1つもしくは複数のその他の入力428(たとえば害虫および/もしくは病害に関する近隣情報)、1つもしくは複数の作物季節学モデル・モジュール410からの出力データ、ならびに/または、1つもしくは複数の害虫(病害)伝播モデル・モジュール412からの出力データに含まれるかまたは基づくかあるいはその両方である、1つまたは複数のその他の変数を含んでもよい。
【0069】
さらに別の実施例では、綿とコナジラミとの組合せについて、1つまたは複数の機械学習モデル・モジュール408によって学習される1つまたは複数のアルゴリズムは、最高気温、最低気温、相対湿度(朝)および相対湿度(晩)などの変数を含んでもよい。これらの変数(すなわち最高気温、最低気温、相対湿度(朝)および相対湿度(晩))は、1つまたは複数の気象属性420に含まれるかまたは基づくかあるいはその両方であってもよい。実施形態によっては、これらの変数は、1期間または複数期間にわたり農場小区分規模で農場における気温および相対湿度を定期的に(たとえば1時間ごと、15分ごとなど)感知することによって得てもよく、次にそれらの気温および相対湿度からその1期間または複数期間中の平均最高気温、平均最低気温、平均相対湿度(朝)および平均相対湿度(晩)を求めてもよい。
【0070】
上記の変数(すなわち最高気温、最低気温、相対湿度(朝)および相対湿度(晩))に加えて、または上記の変数に代えて、1つまたは複数の機械学習モデル・モジュール408によって学習される1つまたは複数のアルゴリズムは、1つもしくは複数の気象属性420、1つもしくは複数の土壌および土地特性422、1つもしくは複数のリモート・センシング入力424、1つもしくは複数の農場入力426、1つもしくは複数のその他の入力428(たとえば害虫および/もしくは病害に関する近隣情報)、1つもしくは複数の作物季節学モデル・モジュール410からの出力データ、ならびに/または、1つもしくは複数の害虫(病害)伝播モデル・モジュール412からの出力データに含まれるかまたは基づくかあるいはその両方である1つまたは複数のその他の変数を含んでもよい。
【0071】
さらに別の実施例では、サトウキビとピリラとの組合せについて、1つまたは複数の機械学習モデル・モジュール408によって学習される1つまたは複数のアルゴリズムは、最高気温および中間相対湿度などの変数を含んでもよい。これらの変数(すなわち最高気温と中間相対湿度)は、1つまたは複数の気象属性420に含まれるかまたは基づくかあるいはその両方であってもよい。実施形態によっては、これらの変数は、1期間または複数期間にわたり、農場小区分規模で農場における温度および相対湿度を定期的に(たとえば1時間ごと、15分ごとなど)感知することによって得てもよく、次にそれらの温度および相対湿度からその1期間または複数期間中の平均最高気温および平均中間相対湿度を求めてもよい。
【0072】
上記の変数(すなわち最高気温と中間相対湿度)に加えて、または上記の変数に代えて、1つまたは複数の機械学習モデル・モジュール408によって学習される1つまたは複数のアルゴリズムは、1つもしくは複数の気象属性420、1つもしくは複数の土壌および土地特性422、1つもしくは複数のリモート・センシング入力424、1つもしくは複数の農場入力426、1つもしくは複数のその他の入力428(たとえば害虫および/もしくは病害に関する近隣情報)、1つもしくは複数の作物季節学モデル・モジュール410からの出力データ、ならびに/または、1つもしくは複数の害虫(病害)伝播モデル・モジュール412からの出力データに含まれるかまたは基づくかあるいはその両方である1つまたは複数のその他の変数を含んでもよい。
【0073】
1つまたは複数の作物季節学モデル・モジュール410は、作物の種類ごとに、1つまたは複数のネットワーク406を介して受信した農場の履歴データ、現在のデータまたは予測データあるいはこれらの組合せ(たとえば、1つもしくは複数の気象属性420、1つもしくは複数の土壌および土地特性422、1つもしくは複数のリモート・センシング入力424、1つもしくは複数の農場入力426、ならびに/または、害虫および/もしくは病害に関する近隣データなどの1つもしくは複数のその他の入力428)に基づいて、農場の(たとえば農場規模の)シミュレーション作物生育時系列を判定してもよい。たとえば、1つまたは複数の作物季節学モデル・モジュール410は、播種から種子成熟までの生育時間と、開始登熟段階などの異なる生育段階のタイミングとを推定してもよい。
【0074】
たとえば、トウモロコシに関しては、1つまたは複数の作物季節学モデル410によってシミュレーションされる生育段階は、発芽期、出芽期、幼苗終了期、花成誘導期、75%花柱出現期、登熟開始期、成熟期、および収穫期を含むことができる。別の実施例では、小麦に関して、1つまたは複数の作物季節学モデル・モジュール410によってシミュレーションされる生育段階は、発芽期、出芽期、幼穂分化期、穂揃い期、乳熟期、成熟期および収穫期を含んでもよい。さらに別の実施例では、大麦に関して、1つまたは複数の作物季節学モデル・モジュール410によってシミュレーションされる生育段階は、発芽期、出芽期、最大原基期、穂揃い期、乳熟期、成熟期および収穫期を含んでもよい。
【0075】
1つまたは複数の作物季節学モデル・モジュール410は、従来の作物生育シミュレーション・モデルにおける1つまたは複数の季節学モデル・モジュールを含んでもよい。一般的な作物生育シミュレーション・モデルには、Crop Estimation through Resource and Environment Synthesis(CERES)、Decision Support System for Agrotechnology Transfer(DSSAT)およびInfoCropが含まれるが、これらには限定されない。作物生育シミュレーション・モデルによって必要とされる入力データの量はモデルごとに異なるが、作物生育シミュレーション・モデルは、多くの場合、現場、土壌、初期条件、天候および作物管理に関する情報を必要とする。作物成長シミュレーション・モデルは、典型的には、作物成長の履歴プロファイルを提供するために、作物植え付けから現在の日付までに発生した累積気象条件を使用する。全体または一部を作物季節学モデル・モジュール410に含めるのに適した季節学モデル・モジュールを含む従来の作物生育シミュレーション・モデルの例には、DSSAT(たとえばDSSAT作付けシステム・モデル(DSSAT-CSM))、CERES(たとえばCERES-Wheat、CERES-Maize、CERES-Sorghum、CERES-Riceなど)、CROPGRO、SOYGROなどにおける季節学モデルが含まれるが、これらには限定されない。
【0076】
実施形態によっては、1つまたは複数の作物季節学モデル・モジュール410によって各作物種類について判定され、1つまたは複数の機械学習モデル・モジュール408に提供される農場のシミュレーション作物生育時系列は、1つまたは複数の従来の作物生育シミュレーション・モデルの植物成長モジュール出力を含んでもよい。たとえば、(たとえばCROPGRO Plant Templateモジュールまたは、CERES-Maize、CERES-Wheat、CERES-Sorghum、CERES-Riceなど個別植物成長モジュールあるいはその両方からの)そのような植物成長モジュール出力は、NSTRES{窒素ストレス因子。1=ストレスなし、0=最大ストレス}、RLV(L){土壌層Lの根長密度(cm[根]/cm3[土壌])}、SENCLN(I,J){日老化植物、表面の場合はI=0、土壌の場合はI=1、Cの場合はJ=1、リグニンの場合はJ=2、Nの場合はJ=3(g[C、Nまたはリグニン]/(m2d))}、STGDOY(I){植物段階Iが発生した日}、UNH4(L){NH4の根吸収速度(kg[N]/ha d)}}、UNO3(L){NO3の根吸収速度(kg[N](ha d)}、XHLAI{健康な葉面積指数}LAI)(m2[葉]/m2[地面])、XLAI{葉面積指数(LAI)(m2[葉]/m2[地面])}、YREMGR(出芽日)、およびYRNR8{収穫成熟日}を含み得るが、これらには限定されない。
【0077】
1つまたは複数の害虫(病害)伝播モデル・モジュール412は、作物の種類とその作物の種類を冒す可能性のある害虫(病害)との組合せごとに、1つまたは複数のネットワーク406を介して受信した履歴データ、現在のデータまたは予測データ(たとえば1つもしくは複数の気象属性420、1つもしくは複数の土壌および土地特性422、1つもしくは複数のリモート・センシング入力424、1つもしくは複数の農場入力426、ならびに/または、害虫および/もしくは病害に関する近隣情報などの1つもしくは複数のその他の入力428)に基づいて、農場の(たとえば農場規模の)シミュレーション作物害虫伝播時系列またはシミュレーション作物病害伝播時系列あるいはその両方を判定することができる。1つまたは複数の害虫(病害)伝播モデル・モジュール412は、1つまたは複数の従来の害虫(病害)伝播モデリング・システムを含んでもよい。全体または一部を1つまたは複数の害虫(病害)伝播モデル・モジュール412に含めるのに適した従来の害虫(病害)伝播モデリング・システムの例には、CLIMEX、DYMEX、NAPPFASTなどが含まれるが、これらには限定されない。
【0078】
CLIMEXモデリング・システムは、昆虫、植物、病原菌、および脊椎動物の分布を含む、天候が種に与える影響を予測する。CLIMEXは、種の地理的分布を制限する生物学的メカニズムを模倣するためと、それらの種の季節学および相対存在量を判定するために、シミュレーションとモデリング技術を使用する。
【0079】
DYMEXモデリング・システムは、ユーザが生物有機体の決定論的集団モデルを迅速に作成し、実行することができるようにするモジュラ・モデリング・パッケージである。集団モデルは、種の個体がその生存期間にたどる成長段階に基づく種の生活環を中心に構築される。
【0080】
CLIMEXおよびDYMEXモデリング・システムは市販されている。
【0081】
NAPPFAST(NCSU-APHIS Plant Pest Forecast)は、ジオリファレンス気候学的気象データ(たとえば日次機構および履歴天候データ)を植物病虫害モデリングのための生物学的モデルとリンクさせるウェブ・ベースのモデリング・システムである。頭字語「NCSU」は、ノースカロライナ州立大学(North Carolina State University)を指す。頭字語「APHIS」は、米国農務省の動植物検疫局(U.S. Department of Agriculture's Animal and Plant Health Inspection Service(USDA-APHIS))を指す。NAPPFASTモデリング・システムは対話型テンプレートを含み、対話型テンプレートは、植物病原菌の感染テンプレート、経験的モデルを作成するための事前プログラムされた式を備えた汎用テンプレート、およびデグリーデー・テンプレートを含む。たとえば、デグリーデー・テンプレートは、デグリーデーに基づいて害虫およびその他の有機体(たとえば、雑草、クモなどのその他の節足動物)または作物の季節学的成長をモデリングするために使用することができる。デグリーデー・テンプレートは、季節学的段階の数と世代数の選択を可能にする。たとえば、ある害虫に関して、デグリーデー・テンプレートは、入力データとして以下の害虫成長パラメータ、すなわち害虫のデグリーデー要件(たとえば、害虫の季節学的段階ごとのデグリーデー要件)と害虫の成長温度閾値(すなわち害虫の成長温度ベースおよび上限閾値)とを必要とする。
【0082】
NAPPFASTモデリング・システムおよびその他の従来の害虫(病害)伝播モデリング・システムの入力データとして使用される害虫成長パラメータは、通常、少なくとも重要な害虫種については、科学文献に見られる。また、Centre for Agriculture and Bioscience International(CABI)Crop Protection Compendium(CPC)は、ウェブサイト<http://www.cabi.org/cpc/>で虫の成長についてまとめている。さらに、カリフォルニア大学(UC)のStatewide Integrated Pest Management (IPM) Programは、ウェブサイト<http://ipm.ucanr.edu/MODELS/>で成長データをリストしている。また、NAPPFASTモデリング・システムなどの昆虫季節学モデルをサポートするために開発された500を超える害虫および寄生捕食者の成長要件が記載されたInsect Development Database(IDD)が、<http://ring.ciard.net/nappfast-pest-database-thresholds-and-growing-degree-days>で利用可能である。IDDにおける成長要件データには、可能な場合には、昆虫のライフ・ステージ(卵、幼虫、蛹、成虫)の成長のベース閾値(℃)、上限成長閾値(℃)および成長要件(デグリーデー(DD))が含まれている。NAPPFASTモデリング・システムおよびその他の従来の害虫(病害)伝播モデリング・システムのこのような入力データは
図4に示すその他の入力データ428に含まれるかまたは基づくかあるいはその両方であってもよい。
【0083】
NAPPFASモデリング・システムおよびその他の従来の害虫(病害)伝播モデリング・システムの入力データとして使用可能な追加のパラメータには、毎日の天候および履歴気象データが含まれるがこれらには限定されない。たとえば、そのような追加パラメータには、日次平均気温(℃)、日次最低気温(℃)、日次最高気温(℃)、日次気温範囲(℃)、霜日頻度(1カ月当たり)、雨天頻度(1カ月当たり日数)、1日当たり総葉面濡れ時間(h、派生変数)、平均日次相対湿度(%)、平均日次風速(k/h)、降水量(mm)、5cm深度における平均土壌温度(℃)、蒸気圧(ヘクトパスカル)、雲量(%)、および蒸発量(mm、派生変数)が含まれ得る。NAPPFASTモデリング・システムおよびその他の従来の害虫(病害)伝播・モデリング・システムのこのような入力データは、
図4に示す、1つまたは複数の気象属性420、1つまたは複数の土壌および土地特性422、ならびに1つまたは複数のリモート・センシング入力424に含まれるかまたは基づくかあるいはその両方であってもよい。
【0084】
NAPPFASTモデリング・システムまたはその他の従来の害虫(病害)伝播モデリング・システムあるいはその両方による害虫(病害)伝播モデルの作成に続いて、グラフ、地図または生データあるいはこれらの組合せの形態で数値出力がエクスポートされてもよい。たとえば、NAPPFASTモデリング・システムは、10km2分解能でバーンズ補間を使用してラスタまたはグリッド・ベースの地図を作成することができる。バーンズ補間(スタンリーL.バーンズにちなんで命名)は、2次元における未知の関数の1組の測定値からの構造化されていないデータ点の、2つの変数の解析関数への補間である。バーンズ解析を使用して、不規則に間隔をあけた観測値の重み付き平均からグリッドを作成することができる。NAPPFASTモデリング・システムで作成された地図は、たとえばGeoTiff画像としてエクスポートすることができ、その後、さらに解析するために、1つまたは複数の機械学習モデル・モジュール408に直接(または地理情報システム(GIS)ソフトウェアを介して間接的に)インポートすることができる。NAPPFASTモデリング・システムの空間分解能(10km2)および時間分解能(日数/月数)は、比較的粗いが、NAPPFASTモデリング・システムの数値出力モデル出力は、機械学習モジュール408に害虫の定着の可能性の最初の推定を与えることができる。
【0085】
実施形態によっては、1つまたは複数の機械学習モジュール408が1つまたは複数の害虫(病害)伝播モデル・モジュール412から農場のシミュレーション作物害虫伝播時系列またはシミュレーション作物病害伝播時系列(たとえばNAPPFASTモデリング・システムもしくはその他の従来の害虫(病害)伝播モデリング・システムまたはその両方によってエクスポートされた数値出力)を受け取ることに加えて、またはそれに代えて、回帰学習器402または1つまたは複数の機械学習モジュール408あるいはその両方が、IBM Watson Decision Plattform for Agricultureまたはその他の同様のシステムから農場の(たとえば農場規模の)粗分解能P&Dリスク・プロファイルを受け取ってもよい。たとえば、農場のそのような粗分解能P&Dリスク・プロファイルは、
図4に示すその他の入力428に含まれるかまたは基づくかあるいはその両方であってもよい。
【0086】
実施形態によっては、回帰学習器402または1つもしくは複数の機械学習モデル・モジュール408あるいはその両方が、害虫または病害あるいはその両方に関する近隣情報を受け取ってもよい。害虫または病害あるいはその両方に関する近隣情報は、IBM Watson Decision Platform for Agricultureまたは同様のシステムからの1つまたは複数の近隣農場(すなわち、その農場の近隣の1つまたは複数の農場)の粗分解能(たとえば農場規模の)P&Dリスク・プロファイル情報を含んでもよい。たとえば、1つまたは複数の近隣農場のそのような粗分解能P&Dリスク・プロファイルは、
図4に示すその他の入力428に含まれるかまたは基づくかあるいはその両方であってもよい。実施形態によっては、害虫または病害あるいはその両方に関する近隣情報は、1つまたは複数の近隣学習入力430(すなわち回帰学習器402からのフィードバック・ループ)に基づいて精緻化されてもよい。たとえば、1つまたは複数の近隣学習入力430は、IBM Watson Decision Platform for Agricultureまたはその他の同様のシステムによって循環関係を計算するために使用されてもよい。
【0087】
次に
図5を参照すると、1つまたは複数の実施形態による、農場小区分レベルでの作物害虫リスクまたは作物病害リスクの推定のための例示のシステム500が図示されており、その出力502(たとえばピクセル・レベル)が高分解能P&Dリスク・マップ時系列504(農場小区分規模)として(たとえば
図11のディスプレイ1142または
図12の組み込みディスプレイ/タッチ・スクリーン1204あるいはその両方に)表示可能なデータを含む。
図5に示す例示のシステム500は、回帰学習器508と報告エンジン510とを含む害虫または病害予測モジュール506を含む。
図5の回帰学習器508は、
図4に示す回帰学習器402に対応し得る。実施形態によっては、回帰学習器508は、農場領域の複数の画素セットのそれぞれについて作物リスク・データを判定する。実施形態によっては、報告エンジン510は、回帰学習器508によって判定された作物リスク・データに基づいて、農場領域を、各農場小区分がその農場小区分のリスク・レベル・カテゴリ(たとえば高リスク、中リスク、低リスクまたはリスクなし)を画定する複数の農場小区分に分類することができる。
【0088】
図5に示す実施形態では、回帰学習器508は、農場の(農場規模の)粗分解能P&Dリスク・プロファイル514を含む、粗分解能入力512を受け取ってもよい。たとえば、回帰学習器508は、IBM Watson Decision Platform for Agricultureまたはその他の同様のシステムから粗分解能P&Dリスク・プロファイル514を受け取ってもよい。実施形態によっては、粗分解能P&Dリスク・プロファイル514は、
図4に示すその他の入力428に含まれるかまたは基づくかあるいはその両方であってもよい。
【0089】
図5に示す実施例では、粗分解能P&Dリスク・プロファイル514は、塗り潰しパターン518を含む形状要素516として表示可能な、時点=t
0におけるリスク・プロファイルを含む。形状要素516の塗り潰しパターン518は、時点=t
0における農場内の(農場規模の)作物害虫リスクまたは作物病害リスクあるいはその両方の推定を反映することができる。
図5に示す実施例では、形状要素516は、限定ではなく例示のために、正方形である。形状要素516は、任意の形状をとってもよい。形状要素516の塗り潰しパターン518は、粗分解能P&Dリスク・プロファイル514が農場規模であるため、形状要素516全体で一様である。
図5に示す実施例では、形状要素516の塗り潰しパターン518は、農場が(全体として)、リスク凡例520に記載されている4つの可能なリスク・レベル(すなわち、「高リスク」、「中リスク」、「低リスク」および「リスクなし」)のうちの1つである、「高リスク」と推定されていることを示している。しかし、より一般的には、形状要素516の塗り潰しパターン518は、任意の数のリスク・レベルのうちの1つに対応することができる。実施形態によっては、粗分解能P&Dリスク・プロファイル514は、時系列の形態(すなわち、時点=t
0、t
1、t
2、...t
nにおける農場内の(農場規模の)作物害虫リスクまたは作物病害リスクあるいはその両方の推定)であってもよい。
【0090】
図5に示す実施例では、回帰学習器508は、(農場規模の)粗分解能P&Dリスク・プロファイル514を含む粗分解能入力512を、1つまたは複数の画素レベル入力513とともに受け取り、1つまたは複数の画素レベル入力513と、任意により粗分解能入力512とに含まれるかまたは基づくデータに、1つまたは複数の回帰モデルを適用してもよい。たとえば、回帰学習器508は、回帰学習器508によってトレーニング・データを使用して事前に学習されたアルゴリズムを、1つまたは複数の画素レベル入力513と、任意により粗分解能入力512とに含まれるかまたは基づくデータに適用してもよい。画素レベル入力513(および任意により粗分解能入力512)は、学習されたアルゴリズムによって使用される1つまたは複数の予測変数を含んでもよい。実施形態によっては、回帰学習器508によって受け取られる1つまたは複数の画素レベル入力513は、1つもしくは複数の気象属性(たとえば
図4の420)、1つもしくは複数の土壌および土地特性(たとえば
図4の422)、1つもしくは複数のリモート・センシング入力424(
図4の424)、1つもしくは複数の農場入力(
図4の426)、ならびに/または、害虫および/もしくは病害に関する近隣情報などの1つもしくは複数のその他の入力(たとえば
図4の428)を含んでもよい。
【0091】
実施形態によっては、(農場規模の)粗分解能P&Dリスク・プロファイル514は、回帰学習器508によって1つまたは複数の回帰モデルの予測変数として使用されてもよい。実施形態によっては、(農場規模の)粗分解能P&Dリスク・プロファイル514は、回帰学習器508によって、特定の作物害虫または特定の作物病害あるいはその両方がさらなる(すなわちより細分度の高い)解析に値するか否かの閾値決定を与えるために使用されてもよい。実施形態によっては、(農場規模の)粗分解能P&Dリスク・プロファイル514は省かれてもよい。
【0092】
回帰学習器508は、配列の時系列(たとえばa
0、a
1、a
2、...、a
n)を出力(たとえば
図4に示す回帰学習器402に関して上述した方式と類似した方式で)してもよく、各配列は時点t
iにおいて予測されているタプル<タイム・スタンプ,リスク値>の配列a
iであってもよい。たとえば、回帰学習器508の出力522は、時点t
0において予測されているタプル<タイム・スタンプ=t
0,リスク値t
0>の配列、時点t
1において予測されているタプル<タイム・スタンプ=t
1,リスク値=t
1>の配列a
1、時点t
2において予測されているタプル<タイム・スタンプ=t
2,リスク値=t
2>の配列a
2、...、時点t
nにおいて予測されているタプル<タイム・スタンプ=t
n,リスク値=t
n>の配列a
nを含むことができる。各タプルは農場の「画素セット」(少なくとも1つの画素)に対応する。
【0093】
たとえば、時点t0において予測されているタプル<タイム・スタンプ=t0,リスク値=t0>の配列a0(すなわち、報告エンジン510に入力として供給可能な、回帰学習器508の時系列出力522の最初の配列)は、粗分解能P&Dリスク・プロファイル514と同じ時点(時点=t0)における作物害虫リスクまたは作物病害リスクあるいはその両方の推定を表すことができる。回帰学習器508は、1つまたは複数の画素レベル入力513と、任意により粗分解能入力512とに含まれるかまたは基づくかあるいはその両方の履歴データまたは現在のデータあるいはその両方に、1つまたは複数の回帰モデルを適用することによって、タプルのこの配列(すなわちa0)を出力することができる。
【0094】
また、時点t1において予測されているタプル<タイム・スタンプ=t1,リスク値=t1>の配列a1、時点t2において予測されているタプル<タイム・スタンプ=t2,リスク値t2>の配列a2、...、および時点tnにおいて予測されているタプル<タイム・スタンプ=tn,リスク値tn>の配列an(すなわち、報告エンジン510への入力として提供可能な、回帰学習器508の時系列出力522の後続の配列)は、粗分解能P&Dリスク・プロファイル514(時点=t0)に続く連続した時点(時点=t1、t2、...、およびtn)における作物害虫リスクまたは作物病害リスクあるいはその両方の推定を表すことができる。回帰学習器508は、(履歴データまたは現在のデータあるいはその両方に代えて、またはそれに加えて)1つまたは複数の画素レベル入力513と任意により粗分解能入力512とに含まれるかまたは基づくかあるいはその両方の予測データに、1つまたは複数の回帰モデルを適用することによって、タプルのこれらの配列(すなわちa1、a2、...、およびan)を出力してもよい。
【0095】
図5に示す実施例では、報告エンジン510は、回帰学習器508の出力に基づいて、(たとえば農場小区分規模の)高分解能P&Dリスク・マップ時系列504として(たとえば
図11のディスプレイ1142または
図12の組み込みディスプレイ/タッチ・スクリーン1204に)表示可能なデータを含む出力502を提供することができる。たとえば、報告エンジン510によって提供される高分解能P&Dリスク・マップ時系列504は、回帰学習器508から出力される配列の時系列に基づいてもよい。
図5に示す実施例では、高分解能P&Dリスク・マップ時系列504は、回帰学習器508から出力される、時点t
0において予測されているタプル<タイム・スタンプ=t
0,リスク値t
0>の配列a
0、時点t
1において予測されているタプル<タイム・スタンプ=t
1,リスク値t
1>の配列a
1、時点t
2において予測されているタプル<タイム・スタンプ=t
2,リスク値t
2>の配列a
2、...、および時点t
nにおいて予測されているタプル<タイム・スタンプ=t
n,リスク値t
n>の配列a
nにそれぞれ基づく、時点=t
0におけるリスク・マップ530、時点=t
1におけるリスク・マップ532、時点=t
2におけるリスク・マップ534、...、および時点=t
nにおけるリスク・マップ536を含むことができる。リスク・マップ530、532、534および536のそれぞれは、視覚ヒートマップの形態で(たとえば
図11のディスプレイ1142または
図12の組み込みディスプレイ/タッチ・スクリーン1204あるいはその両方に)表示可能である。
【0096】
図5に示す実施例では、リスク・マップ530、532、534および536のそれぞれが、9つの「画素セット」(少なくとも1つの画素)の3×3マトリックスからなり、画素セットのそれぞれが塗り潰しパターン542を含む形状要素540として(たとえば
図11のディスプレイ1142または
図12の組み込みディスプレイ/タッチ・スクリーン1204あるいはその両方に)表示可能である。
図5に示す実施例では、各リスク・マップ530、532、534および536は、限定ではなく例示を目的として、3×3マトリックスとして構成される。各リスク・マップは任意の数の画素セットを、任意の構成で含むことができる。リスク・マップ530、532、534および536のそれぞれは、異なる時点(それぞれ、時点=t
0、t
1、t
2、...、t
n)における農場を表すことができる。形状要素540は、農場の画素セットを表すことができる。リスク・マップ530、532、534および536のそれぞれの各形状要素540の塗り潰しパターン542は、異なる時点(それぞれ、時点=t
0、t
1、t
2、...、t
n)における農場のその所与の画素セットにおける作物害虫リスクまたは作物病害リスクあるいはその両方の推定を反映することができる。たとえば、(時点=t
0における)リスク・マップ530における形状要素540の塗り潰しパターン542は、時点t
0において予測されているタプル<タイム・スタンプ=t
0、リスク値t
0>の配列a
0に基づくことができる。
図5に示す実施例では、各形状要素540は、限定ではなく例示を目的として、正方形である。形状要素540は任意の形状をとることができる。
【0097】
図5に示す実施例では、形状要素540の塗り潰しパターン542は、リスク凡例520に記載されている4つの可能なリスク・レベル(すなわち、「高リスク」、「中リスク」、「低リスク」および「リスクなし」)のうちのいずれか1つとすることができる。しかし、より一般的には、形状要素540の塗り潰しパターン542は、任意の複数の可能なリスク・レベルのうちの1つに対応してもよい。時点t
iにおけるリスク・マップ内の所与の画素セットのリスク・レベルは、時点t
iにおいて予測されているタプル<タイム・スタンプ=t
i,リスク値t
i>の配列a
i内のその所与の画素セットのリスク値t
iに基づくことができる。たとえば、(たとえば1つまたは複数の回帰モデルによって判定された)リスク値が0.00と1.00の間であると仮定すると、リスク・マップ内の所与の画素セットは、以下のように、リスク・レベル閾値に基づくリスク・レベル(すなわちリスク・レベル・カテゴリ)を有するものとして分類可能である。
1.00≧リスク値>0.70の場合、「高リスク」、
0.70≧リスク値>0.50の場合、「中リスク」、
0.50≧リスク値>0.20の場合、「低リスク」、および
0.20≧リスク値≧0.00の場合、「リスクなし」。
【0098】
図5に示す実施例では、リスク・マップ時系列(530→532→534→536)内の「高リスク」画素セットの数は時間の経過とともに増加する。たとえば、(それぞれ時点=t
0およびt
1における)リスク・マップ530および532のそれぞれでは、農場の「高リスク」画素セットは1つである。(時点=t
2における)リスク・マップ534では、農場領域の「高リスク」画素セットの数は2に増加すると予想されている。最後に、(時点=t
nにおける)農場領域の「高リスク」画素セットの数は、さらに4に増加すると予測されている。
【0099】
実施形態によっては、報告エンジン510は、所与のP&D状況またはユーザからの入力あるいはその両方に基づいて、リスク・レベルの可能な数と、各リスク・レベルのリスク値閾値を調整してもよい。
【0100】
実施形態によっては、報告エンジン510は、出力502を、様々なレベルの分解能(たとえば、報告エンジン510によって判定された推奨分解能レベルまたはユーザによって選択された分解能レベル)で高分解能P&Dリスク・マップ時系列504として表示可能なデータとして提供してもよい。実施形態によっては、報告エンジン510は、所与のP&D状況の推奨分解能レベルの提供を含む、農場領域内の分解能(すなわち「農場小区分」の「部分」レベル)を動的に変更してもよい。実施形態によっては、ユーザは、この推奨分解能レベルを無効にするか否かを選択してもよい。たとえば、報告エンジン510は、異なるリスク・レベル・ゾーン、または農場領域の「農場小区分」の視覚マップ(たとえば
図6の視覚ヒートマップ600などの視覚ヒートマップ)として(たとえば
図11のディスプレイ1142または
図12の組み込みディスプレイ/タッチ・スクリーン1204あるいはその両方に)表示可能なデータを生成してもよく、農場小区分の大きさは推奨分解能レベルとユーザの選択との組合せに基づいて選択される。
【0101】
次に
図6を参照すると、1つまたは複数の実施形態による、作物害虫リスクまたは作物病害リスクあるいはその両方の推定を表す例示の視覚ヒートマップ600が図示されている。視覚ヒートマップ600は、農場領域の全体またはその一部を表すことができる。たとえば、視覚ヒートマップ600は、栽培者またはその他のユーザが特に関心または懸念を持つ農場領域の一部内の、農場小区分レベルでの作物害虫リスクまたは作物病害リスクあるいはその両方の推定を表すことができる。1つまたは複数の実施形態によると、栽培者またはその他のユーザは、農場領域の全体内の農場小区分レベルでの作物害虫リスクまたは作物病害リスクあるいはその両方を表す視覚ヒートマップのうちから、農場領域の任意の部分に「ズームイン」する(たとえば、視覚ヒートマップ600は農場領域のその部分に対応してもよい)ように、
図12の組み込みディスプレイ/タッチ・スクリーン1204などの組み込みディスプレイ/タッチ・スクリーンを操作することができる。一般に、視覚ヒートマップ600は、特定の時点における農場小区分レベルでの農場領域内またはその一部内の作物害虫リスクまたは作物病害リスクあるいはその両方を表す。実施形態によっては、農場領域または農場領域の一部あるいはその両方は、栽培者またはその他のユーザから受け取った農場画定データに基づいて判定されてもよい。
【0102】
図6に示す実施例では、視覚ヒートマップ600は、各「画素セット」が塗り潰しパターン612を含む形状要素610として(たとえば
図11のディスプレイ1142または
図12の組み込みディスプレイ/タッチ・スクリーンあるいはその両方に)表示される、484個の「画素セット」(少なくとも1つの画素)の22×22マトリックスからなる。
図6に示す実施例では、視覚ヒートマップ600は、限定ではなく例示を目的として、22×22マトリックスとして構成されている。より一般的には、視覚ヒートマップ600は、任意の数の画素セットを任意の構成で含むことができる。
図6に示す実施例では、各形状要素610は、限定ではなく例示を目的として、正方形である。形状要素610は任意の形状をとり得る。
【0103】
図6に示す実施例では、農場領域は複数の農場小区分(たとえば後述する620、622、624および626)に分類される。たとえば、特定の時点における農場領域の所与の画素セットにおける作物害虫リスクまたは作物病害リスクあるいはその両方の推定に基づいて、分類方法が各形状要素610の塗り潰しパターン612の選択を主導してもよい。分類方法は、たとえば、任意の時点における農場領域の農場小区分を様々なリスク・カテゴリに分類してもよい。実施形態によっては、1組のスコア(たとえば画素セットのうちの各画素セットのリスク値)とそれらのスコアに関連付けられたリスクとが与えられると、報告エンジン(たとえば
図5の報告エンジン510)が、その所与の時点について各農場小区分領域をカテゴリに対応付けるカテゴリ・マップを作成することができる。報告エンジンは次に、その所与の時点について、農場小区分エリアの異なるリスク・レベルに異なる「ヒート・レベル」を関連付ける(たとえば、「リスクの高い」農場小区分に「暖」色を関連付け、「リスクの少ない」農場小区分に「寒」色を関連付ける)ことによって、そのカテゴリ・マップから1つまたは複数の色分けされたヒートマップ(たとえばそのうちの1つは視覚ヒートマップ600であってもよい)を生成することができる。実施形態によっては、報告エンジンは、各農場小区分エリアのカテゴリおよびヒート・レベルが時間の経過とともに変化する時間的な図を作成してもよい(たとえば農場小区分エリアが時間の経過とともに結合または分離するかあるいはその両方を生じてもよい)。
【0104】
図6に示す実施例では、視覚ヒートマップ600は、ゾーンA、BおよびCを含む。ゾーンA、BおよびCを互いに分離する境界が、
図6では点線として示されている。本明細書で使用される「ゾーン」という用語は、1つまたは複数の田畑、1つまたは複数の土地小区画、1つまたは複数の栽培領域、1つまたは複数の管理ゾーンなどを指し得る。たとえば、ゾーンA、BおよびCは農場の異なる栽培領域であってもよい(たとえば、ゾーンAが小麦栽培領域、ゾーンBが大豆栽培領域、ゾーンCがトウモロコシ栽培領域であってもよい)。
【0105】
実施形態によっては、報告エンジン(たとえば
図5の報告エンジン510)が、画素セット・レベルの作物リスク・データに基づいて、農場領域、農場領域の1つもしくは複数の部分、または農場領域の1つもしくは複数のゾーンあるいはこれらの組合せを、各農場小区分がその農場小区分のリスク・レベル・カテゴリ(たとえば高リスク、中リスク、低リスクまたはリスクなし)を画定する複数の農場小区分に分類することができる。
図6に示す実施例では、ゾーンCが、4つの農場小区分620、622、624および626に分類され、そのそれぞれがリスク凡例630に記載されているようなその農場小区分のリスク・レベル・カテゴリを画定する。
図6に示す実施例では、農場小区分620、622、624および626がそれぞれ、リスク・レベルの4つの可能なカテゴリ(すなわち、「高リスク」、「中リスク」、「低リスク」および「リスクなし」)のうちの1つを有するものとして分類された領域を画定する。たとえば、農場小区分620は「リスクなし」というリスク・レベルを有するものとして分類された領域を画定する。農場小区分622は、「低リスク」というリスク・レベルを有するものとして分類された領域を画定する。農場小区分624は、「中リスク」というリスク・レベルを有するものとして分類された領域を画定する。農場小区分626は、「高リスク」というリスク・レベルを有するものとして分類された領域を画定する。しかし、より一般的には、任意の数の可能なリスク・レベル・カテゴリがあってもよい。また、各リスク・レベル・カテゴリが1つまたは複数の農場小区分を含んでもよい。農場小区分620、622、624および626のそれぞれの構成は、特定の時点の農場の1つまたは複数の基礎にある画素セットのそれぞれにおける作物害虫リスクまたは作物病害リスクあるいはその両方の推定を反映する。
【0106】
次に
図7を参照すると、1つまたは複数の実施形態による、農場小区分の拡大を示すために特定の画素セットの基礎にあるリスク値がラベル付けされた、農場小区分レベルの作物害虫リスクまたは作物病害リスクあるいはその両方を表す例示の視覚ヒートマップ700が図示されている。
図7の視覚ヒートマップ700は、「低リスク」農場小区分622における画素セットのそれぞれと「リスクなし」農場小区分620における画素セットのうちの1つ(すなわち画素セット702)の基礎にあるリスク値がラベル付けされている以外は、
図6に示す視覚ヒートマップ600に対応する。
【0107】
実施形態によっては、報告エンジン(たとえば
図5の報告エンジン)が、農場小区分内により大きなリスク・ブロックを形成するように隣接画素セットを結合するか否かを判定するサブブロック拡張プロセスを実装することによって、「理想的分解能」を生成することができる。たとえば、サブブロック拡張プロセスは、以下の制約に従ってもよい。
・ 拡大は、拡張される農場小区分の少なくとも1つの既知の画素セットに隣り合う候補画素セットを結合することによってのみ行うことができ、
・ (拡張に含めることが考慮されている)候補画素セットのリスク要因の値(たとえばリスク値)と(すでに、拡張が考慮されている農場小区分の一部となっている)隣接画素セットのリスク要因の値(たとえばリスク値)との差は、許容閾値Th1未満である必要があり、
・ 候補画素セット間のリスク要因の値(たとえばリスク値)は、すでに(農場小区分の拡張の候補画素セットを評価している)隣接農場小区分の一部であるリスク要因のすべての値(たとえばリスク値)の許容閾値Th2以内である必要がある。
【0108】
サブブロック拡張プロセスは、2つの農場小区分を結合してもよい。たとえば、実施形態によっては、2つの画素セットが結合によって同じ農場小区分に含まれる場合、それらの画素が属する2つの農場小区分も結合(拡張)されてもよい。
【0109】
実施形態によっては画素セットのいずれもそれ以上拡張することができなくなったらただちにマッピング・プロセスは終了し、農場小区分の数、大きさおよび場所はすでに定まっており、これが「理想的分解能」を含む理想的な分布である。
【0110】
実施形態によっては、栽培者またはその他のユーザが、理想的分布に閾値(たとえばTh1およびTh2)を手動で適用し、それによって画素セットの結合または分割あるいはその両方を行い、それに応じて農場領域の図を生成することによって、分解能を変化させてもよい。
【0111】
実施形態によっては、閾値(たとえばTh1およびTh2)は、所与のP&D状況のための推奨分解能レベルを生成するために異なるP&D状況(たとえば、作物と害虫/病害の異なる組合せ)について異なる値を有するように調整可能である。たとえば、報告エンジンが、所与のP&D状況のための閾値を調整してもよく、それによって「理想的分解能」がその特定のP&D状況の「推奨分解能」となってもよい。
【0112】
実施形態によっては、報告エンジンは、複数の農場小区分のうちの第1の農場小区分(たとえば「低リスク」農場小区分622)を、複数の農場小区分のうちの第2の小区分(たとえば「リスクなし」農場小区分620)内の複数の画素セットのうちの候補画素セット(たとえば画素セット702)を含むように拡大するか否かを、その候補画素セットが少なくとも1つの農場小区分拡大閾値を満たすか否かに基づいて判定してもよく、この場合、複数の農場小区分のうちの第1の農場小区分は複数の農場小区分のうちの第2の農場小区分に隣接し、候補画素セットは、複数の農場小区分のうちの第1の農場小区分における複数の画素セットのうちの隣接画素セット(たとえば画素セット704)に隣り合う。
【0113】
図7で、上記のように、農場小区分拡大を示すために、特定の画素セットの基礎となっているリスク値がラベル付けされる。
図7に示す実施例では、「リスクなし」農場小区分620における画素セット702が「低リスク」農場小区分622への拡大の候補画素セットである。候補画素セット702の場合、リスク値=19である。「リスクなし」農場小区分620における画素セット702は、近隣「低リスク」農場小区分622における隣接画素セット704に隣り合う。隣接画素セット704の場合、リスク値=20である。実施形態によっては、報告エンジンは、候補画素セット702(リスク値=19)の作物リスク・データ(たとえばリスク値)と隣接画素セット704(リスク値=20)の作物リスク・データ(たとえばリスク値)との差が第1の農場小区分拡大閾値(たとえばTh1)未満であるか否かを判定することと、候補画素セット702(リスク値=19)の作物リスク・データ(たとえばリスク値)と「低リスク」農場小区分622(リスク値=20から26)における複数の画素セットのそれぞれの作物リスク・データ(たとえばリスク値)との差が第2の農場小区分拡大閾値(たとえばTh2)未満であるか否かを判定することとを含む、農場小区分拡張プロセスを実装してもよい。この実施例では、閾値Th1>1(20-19)であって閾値Th2>7(26-19)である限りこれらの基準の両方が満たされ、したがって、報告エンジンは候補画素セット702を含むように「低リスク」農場小区分622を拡大することを決定してもよい。
【0114】
実施形態によっては、報告エンジンは、栽培者またはその他のユーザから分解能選択データを受け取ってもよく、分解能選択データは第1および第2の農場小区分拡大閾値(たとえばTh1およびTh2)のうちの少なくとも一方を含む。
【0115】
次に
図8を参照すると、1つまたは複数の実施形態による、1つもしくは複数の作物害虫または1つもしくは複数の作物病害あるいはその両方のそれぞれの、画素セット・レベルの回帰モデルを構築する例示の方法の流れ
図800が図示されている。方法800は、ブロックの好ましい順序を記載している。しかし、様々なブロックは互いに対して相対的に任意の時点で行われてもよいことを理解されたい。
【0116】
方法800は、農場画定データを受け取ることで開始する(ブロック802)。たとえば、ブロック802で、農場画定データがサーバ・デバイス上の1つまたは複数の害虫または病害あるいはその両方の予測モジュールによって受け取られてもよい。実施形態によっては、農場画定データは、栽培者の農場内の農場小区分レベルでの作物害虫リスクまたは作物病害リスクあるいはその両方の推定を要求するために、栽培者によってクライアント・デバイスを使用して送信される、害虫または病害リスクあるいはその両方の予測要求に含まれてもよい。たとえば、クライアント・デバイスは、栽培者の農場を画定するGPS抽出地理位置データの形態の農場画定データを含む要求を送信してもよい。実施形態によっては、クライアント・デバイスは、栽培者の農場を画定するコモン・ランド・ユニット(CLU)の形態の農場画定データを含む要求を送信してもよい。
【0117】
方法800は、続いて農場画定データに基づいて農場領域を判定する(ブロック804)。たとえば、ブロック804で、サーバ・デバイス上の1つまたは複数の害虫または病害あるいはその両方の予測モジュールが、ブロック802で受け取ったGPS抽出地理位置データまたはCLUあるいはその両方に基づいて農場領域を判定してもよい。
【0118】
次に、方法800は、続いて農場領域に関連付けられた入力データであって、複数の画素セットを含む入力データを取り出す(ブロック806)。実施形態によっては、ブロック806で、方法800は、農場領域(たとえば、ブロック802で受け取った農場画定データによって画定された農場)に関連付けられた入力データを取り出してもよい。実施形態によっては、ブロック806で、方法800は、農場領域(たとえば、ブロック802で受け取った農場画定データによって画定された農場と1つまたは複数の近隣農場とを包含する「拡張農場」)に直接または間接的に関連付けられた入力データを取り出してもよい。実施形態によっては、入力データは、各画素セットが、データを意味のあるように収集することができる農場の最小可能/許容分解能を画定する、複数の画素セット(少なくとも1つの画素)を含んでもよい。実施形態によっては、ブロック806で取り出される入力データは、入力データ内のノイズおよびひずみ作用を除去する(たとえば入力データにバイアスをかけることになる外れ値を除去する)ために前処理されてもよい。
【0119】
実施形態によっては、ブロック806で、入力データは農場の履歴データ(たとえば、1つもしくは複数の気象属性、1つもしくは複数の土壌および土地特性、1つもしくは複数のリモート・センシング入力、1つもしくは複数の農場入力、ならびに/または、害虫および/もしくは病害に関する近隣情報などの1つもしくは複数のその他の入力)と、1つもしくは複数の作物季節学モデル・モジュール(たとえば
図4の1つもしくは複数の作物季節学モデル・モジュール410)からの出力データ、または1つもしくは複数の害虫(病害)伝播モデル・モジュール(たとえば
図4の1つもしくは複数の害虫(病害)伝播モデル・モジュール412)からの出力データあるいはその両方とを含んでもよい。入力データは、観察された感染強度などの農場のその他の履歴データも含んでもよい。
【0120】
次に方法800は、続いて1つもしくは複数の害虫または1つもしくは複数の病害あるいはその両方のそれぞれについて、画素セット・レベルで1つまたは複数の回帰モデルを学習する(ブロック808)。実施形態によっては、1つまたは複数の所与の作物のそれぞれについて、少なくとも1つの機械学習(ML)/作物季節学/害虫(病害)伝播モデルが、その所与の作物を冒す可能性のある1つもしくは複数の害虫または1つもしくは複数の病害あるいはその両方のそれぞれのための1組のトレーニング・データ(すなわち、ブロック806で受け取った入力データ)によってトレーニングされてもよい。方法800は、ブロック808で、1つまたは複数の回帰モデルを学習するために、ロジスティック回帰、サポート・ベクタ回帰、またはディープ・ニューラル回帰あるいはこれらの組合せを採用する回帰学習器(たとえば
図4の回帰学習器402)を使用してもよい。たとえば、ロジスティック回帰、サポート・ベクタ回帰、またはディープ・ニューラル回帰あるいはこれらの組合せが、履歴データ(たとえば、1つもしくは複数の気象属性、1つもしくは複数の土壌および土地特性、1つもしくは複数のリモート・センシング入力、1つもしくは複数の農場入力、ならびに/または、害虫および/もしくは病害に関する近隣情報などの1つもしくは複数のその他の入力)と、1つもしくは複数の作物季節学モデル・モジュールからの出力データまたは1つもしくは複数の害虫(病害)伝播モデル・モジュールからの出力データあるいはその両方に関して採用されてもよい。
【0121】
次に方法800は、続いて、画素セット・レベルで、1つもしくは複数の作物害虫または1つもしくは複数の作物病害あるいはその両方のそれぞれのための1つまたは複数の回帰モデルを、1つまたは複数のテスト・インスタンスに適用してもよい(ブロック810)。たとえば、1つまたは複数の回帰モデルが学習された後は、方法800はブロック810で、1つまたは複数の回帰モデルを、以前に見たことがないデータ(たとえば、トレーニング・データ以外の1つまたは複数のテスト・インスタンスからのデータ)に適用し、1つまたは複数の回帰モデルを検証する目的でそれらのデータに関する予測を行ってもよい。
【0122】
次に
図9を参照すると、1つまたは複数の実施形態による、作物害虫リスクまたは作物病害リスクあるいはその両方を推定する例示の方法900の流れ図が示されている。方法900は、ブロックの好ましい順序を記載している。しかし、様々なブロックは互いに対して相対的に任意の時点で行われてもよいことを理解されたい。
【0123】
方法900は、農場画定データを受け取ることで開始する(ブロック902)。たとえば、ブロック902で、農場画定データが、サーバ・デバイス上の1つまたは複数の害虫または病害あるいはその両方の予測モジュールによって受け取られてもよい。実施形態によっては、農場画定データは、栽培者の農場内の農場小区分レベルの作物害虫リスクまたは作物病害リスクあるいはその両方の推定を要求するために栽培者によってクライアント・デバイスを使用して送信される害虫または病害予測要求に含まれてもよい。たとえば、クライアント・デバイスは、栽培者の農場を画定するGPS抽出地理位置データの形態の農場画定データを含む要求を送信してもよい。実施形態によっては、クライアント・デバイスは、栽培者の農場を画定するコモン・ランド・ユニット(CLU)の形態の農場画定データを含む要求を送信してもよい。実施形態によっては、農場画定データは、作物の種類、使用種子品種、播種日などの栽培情報と、栽培者が推定に含めるために選択した1つもしくは複数の作物害虫または1つもしくは複数の病害あるいはその両方などの害虫/病害情報などを追加で含んでもよい。
【0124】
方法900は、続いて農場画定データに基づいて農場領域を判定する(ブロック904)。たとえば、ブロック904で、サーバ・デバイス上の1つまたは複数の害虫または病害あるいはその両方の予測モジュールが、ブロック902で受け取ったGPS抽出地理位置データまたはCLUに基づいて農場領域を判定してもよい。
【0125】
次に、方法900は、続いて、農場領域に関連付けられた入力データであって、複数の画素セットを含む入力データを取り出す(ブロック906)。実施形態によっては、ブロック906で方法900は、農場領域(たとえば、ブロック902で受け取った農場画定データによって画定された農場)に関連付けられた入力データを取り出してもよい。実施形態によっては、ブロック906で、方法900は、農場領域(たとえば、ブロック902で受け取った農場画定データによって画定された農場と、1つまたは複数の近隣農場とを包含する「拡張農場」)に直接または間接的に関連付けられた入力データを取り出してもよい。実施形態によっては、入力データは、各画素セットが、データを意味のあるように収集することができる農場の最小可能/許容分解能を画定する、複数の画素セット(少なくとも1つの画素)を含んでもよい。実施形態によっては、ブロック906で取り出される入力データは、入力データ内のノイズおよびひずみ作用を除去する(たとえば入力データにバイアスをかけることになる外れ値を除去する)ために前処理されてもよい。
【0126】
実施形態によっては、ブロック906で、入力データは、農場の履歴データ、現在のデータまたは予測データあるいはこれらの組合せ(たとえば、1つもしくは複数の気象属性、1つもしくは複数の土壌および土地特性、1つもしくは複数のリモート・センシング入力、1つもしくは複数の農場入力、ならびに/または、害虫および/もしくは病害に関する近隣情報などの1つもしくは複数のその他の入力)と、1つもしくは複数の作物季節学モデル・モジュール(たとえば
図4の1つもしくは複数の作物季節学モデル・モジュール410)からの出力データまたは1つもしくは複数の害虫(病害)伝播モデル・モジュール(たとえば
図4の1つもしくは複数の害虫(病害)伝播モデル・モジュール412)からの出力データあるいはその両方とを含んでもよい。
【0127】
方法900は、続いて、複数の画素セットのそれぞれについて、1つまたは複数の回帰モデルを使用し、入力データに基づいて作物リスク・データを判定する(ブロック908)。実施形態によっては、作物リスク・データは、複数の画素セットのそれぞれの作物害虫リスクの推定、または複数の画素セットのそれぞれの作物病害リスクの推定あるいはその両方を含んでもよい。ブロック906で農場領域に直接または間接的に関連付けられていると特定された入力データ内の各画素セットについて、方法900は、その画素セットの作物害虫または作物病害あるいはその両方のリスクを計算するために少なくとも1つの関数を採用してもよい。たとえば、ブロック908で、複数の画素セットのそれぞれについて、方法900は
図8の方法800によって構築された1つまたは複数の回帰モデルを適用してもよい。実施形態によっては、ブロック908で、方法900は、作物と作物害虫または作物病害あるいはその両方との異なる組合せに異なる回帰モデルを適用してもよい。実施形態によっては、それらの異なる回帰モデルは入力データの異なる部分を使用してもよい。
【0128】
実施形態によっては、ブロック908で、作物リスク・データの判定は、複数の画素セットのそれぞれについて、複数の異なる時点のそれぞれにおける時間的作物リスク・データを判定することを含んでもよい。たとえば、時間的作物リスク・データは、各配列が時点t
iにおいて予測されているタプル<タイム・スタンプ,リスク値>の配列a
iを構成することができる配列の時系列(a
1、a
2、...、a
n)を含んでもよい。時間的作物リスク・データは、たとえば、時点t
1において予測されているタプル<タイム・スタンプ=t
1,リスク値t
1>の配列a
1、時点t
2において予測されているタプル<タイム・スタンプ=t
2,リスク値t
2>の配列a
2、...、および時点t
nにおいて予測されているタプル<タイム・スタンプ=t
n,リスク値t
n>の配列a
nを含んでもよい。各タプルは農場の「画素セット」に対応する。実施形態によっては、時間的作物リスク・データは、回帰学習器(たとえば
図4の回帰学習器402または
図5の回帰学習器508)によって出力されてもよい。
【0129】
次に方法900は、続いて作物リスク・データに基づいて農場領域を各農場小区分がその農場小区分のリスク・レベル・カテゴリ(たとえば高リスク、中リスク、低リスクまたはリスクなし)を画定する複数の農場小区分に分類する(ブロック910)。たとえば、特定の時点における農場領域の所与の画素セットにおける作物害虫リスクまたは作物病害リスクあるいはその両方の推定に基づいて、方法900は、ブロック910で、分類方法を使用して任意の時点における農場領域の農場小区分を様々なリスク・カテゴリに分類してもよい。実施形態によっては、1組のスコア(たとえば画素セットのそれぞれのリスク値)とそれらのスコアに関連付けられたリスクとが与えられると、報告エンジン(たとえば
図5の報告エンジン510)がその所与の時点について、各農場小区分領域をカテゴリに対応付けるカテゴリ・マップを作成してもよい。報告エンジンは、次に、その所与の時点について、農場小区分エリアの異なるリスク・レベルに異なる「ヒート・レベル」を関連付ける(たとえば、「リスクの高い」農場小区分に「暖」色を関連付け、「よりリスクの低い」農場小区分に「寒」色を関連付ける)ことによって、カテゴリ・マップから1つまたは複数の色分けヒートマップを作成してもよい。
【0130】
実施形態によっては、ブロック910で、農場領域を複数の農場小区分に分類することが、農場小区分におけるより大きいリスク・ブロックを形成するように隣接画素セットを結合するか否かを判定するサブブロック拡張プロセスを実施することを含んでもよい。
【0131】
実施形態によっては、ブロック910で、農場領域を複数の農場小区分に分類することが、複数の異なる時点のうちのそれぞれの時点において、複数の異なる時点の各時点における(ブロック908で判定された)時間的作物リスク・データに基づいて、農場領域を、各農場小区分がその時点におけるその農場小区分のリスク・レベル・カテゴリを画定する複数の農場小区分に分類することを含んでもよい。たとえば、報告エンジン(たとえば
図5の報告エンジン510)は次に、各農場小区分エリアのカテゴリおよびヒート・レベルが時間の経過とともに変化する(たとえば農場小区分エリアが時間の経過とともに結合または分離あるいはその両方を生じ得る)時間図を作成してもよい。
【0132】
方法900は、続いて複数の農場小区分のうちの1つまたは複数の農場小区分を視覚ヒートマップとして表示する(ブロック912)。たとえば、視覚ヒートマップは、栽培者が害虫または病害あるいはその両方の予測要求を送信するために使用するクライアント・デバイスのディスプレイ(たとえば、
図11のディスプレイ1142または
図12の組み込みディスプレイ/タッチ・スクリーン1204あるいはその両方)上に表示されてもよい。
【0133】
実施形態によっては、ブロック912で、栽培者は複数の異なる時点の中から表示のために1つまたは複数の視覚ヒートマップを選択することができる。たとえば、栽培者ユーザは、時点=t0における視覚ヒートマップ、時点=t1における視覚ヒートマップ、時点=t2における視覚ヒートマップ、...、および時点=tnにおける視覚ヒートマップの中から1つまたは複数の視覚ヒートマップを表示のために選択することができる。たとえば、それらの視覚ヒートマップにおける各農場小区分エリアのカテゴリおよびヒート・レベルは時間の経過とともに変化し得る(たとえば、農場小区分エリアが時間の経過とともに結合または分離あるいはその両方を生じ得る)。
【0134】
P&Dリスクが検出され、そのP&Dに対処する対応策がわかっている場合、その対応策が視覚ヒートマップなどの時空マップに重ね合わせられてもよい。たとえば、P&Dの到達および/もしくは拡散を防止する(または少なくともP&Dの到達を遅らせるおよび/もしくはP&Dの拡散を縮小する)可能性の高い推奨対応策(たとえば薬剤、活動など)が、任意の時点におけるそのような時空マップの所与の農場小区分レベル空間上に対応付けられてもよい。対応策として推奨可能な薬剤には、1つまたは複数の殺虫剤の散布、1つまたは複数の除草剤の散布、1つまたは複数の殺菌剤の散布などが含まれるがこれらには限定されない。対応策として推奨可能な活動には、施肥、灌漑装置の作動などが含まれるがこれらには限定されない。たとえば、
図12の凡例/対応策ウィンドウ1210は、視覚ヒートマップ・ウィンドウ1208に表示された農場小区分に関する対応策を対応付けている。
【0135】
次に
図10を参照すると、1つまたは複数の実施形態による、農場小区分レベルの作物害虫リスクまたは作物病害リスクあるいはその両方を推定し、1つまたは複数の対応策を推奨する例示の方法1000の流れ図が示されている。方法1000は、ブロックの好ましい順序を記載している。しかし、様々なブロックは互いに対して相対的に任意の時点で行われてもよいことを理解されたい。
【0136】
方法1000は、農場画定データを受け取ることで開始する(ブロック1002)。
図10のブロック1002は、
図9に示す方法900のブロック902に対応し得る。
【0137】
方法1000は、続けて、農場画定データに基づいて農場領域を判定する(ブロック1004)。
図10のブロック1004は、
図9の方法900のブロック904に対応し得る。
【0138】
方法1000は、続いて、農場領域に関連付けられた入力データであって、複数の画素セットを含む入力データを取り出す(ブロック1006)。
図10のブロック1006は、
図9の方法900のブロック906に対応し得る。
【0139】
次に、方法1000は、続けて、複数の画素セットのそれぞれについて、1つまたは複数の回帰モデルを使用し、入力データに基づいて、作物リスク・データを判定する(ブロック1008)。
図10のブロック1008は
図9の方法900のブロック908に対応し得る。
【0140】
次に方法1000は、続いて作物リスク・データに基づいて農場領域を、各農場小区分がその農場小区分のリスク・レベル・カテゴリ(たとえば高リスク、中リスク、低リスクまたはリスクなし)を画定する複数の農場小区分に分類する(ブロック1010)。
図10のブロック1010は
図9の方法900のブロック910に対応し得る。
【0141】
次に方法1000は、続いて複数の農場小区分のそれぞれについて、複数の対応策選択肢を特定する(ブロック1012)。たとえば、ブロック1012で、方法1000は、複数の農場小区分のそれぞれについて、異なるP&D状況のための対応策情報を含む1つまたは複数の対応策データベース(たとえば
図11の1つまたは複数の対応策データベース1128)にアクセスすることによって、複数の対応策選択肢を特定してもよい。
【0142】
実施形態によっては、ブロック1012で、方法1000は複数の農場小区分のそれぞれについて、複数の時点におけるその農場小区分のための対応策選択肢を規定する複数の農場小区分時間的対応策選択肢を特定してもよい。
【0143】
次に方法1000は、続いて複数の農場小区分のそれぞれについて、その農場小区分のリスク・レベルに少なくとも部分的に基づいて、複数の対応策選択肢のそれぞれの推奨スコアを判定する(ブロック1014)。たとえば、ブロック1014で、方法1000は複数の農場小区分のそれぞれについて、その所与の農場小区分のリスク・レベルにおける所与の対応策選択肢の有効性をシミュレーションするための1つまたは複数のシミュレーション・モデルを使用して、複数の対応策選択肢のそれぞれの推奨スコアを判定してもよい。
【0144】
次に方法1000は、続いて複数の農場小区分のそれぞれについて、複数の推奨スコアに基づいて1つまたは複数の対応策選択肢を提供する(ブロック1016)。たとえば、ブロック1016で、方法1000は複数の農場小区分のそれぞれについて、最高推奨スコアを有する対応策選択肢に基づいて単一の推奨対応策選択肢を提供してもよい。例示の一実施例では、
図12の凡例/対応策ウィンドウ1210によって複数の農場小区分のそれぞれのための単一の推奨対応策選択肢が示されており、「指示X」は、高リスク農場小区分のための推奨対応策選択肢であり、「指示Y」は中リスク農場小区分のための推奨対応策選択肢であり、「指示Z」は低リスク農場小区分のための推奨対応策選択肢であり、「対策不要」はリスクなし農場小区分のための推奨対応策選択肢である。
【0145】
実施形態によっては、栽培者が計画栽培を有する場合、P&Dに対する1つまたは複数の推奨対応策選択肢は、栽培者の計画栽培に関する安全性について調べられてもよい。所与の推奨対応策選択肢が栽培者の計画栽培にとって安全である場合、その推奨対応策選択肢がその場所の詳細な地図とその推奨対応策(たとえば散布される1つまたは複数の薬剤または実施する活動あるいはその両方)を実施すべき時点とともに表示するためにそのまま生成されてもよい。一方、所与の推奨対応策選択肢が栽培者の計画栽培にとって安全ではない場合、(たとえば「次善の」推奨スコアを有する対応策選択肢に基づいて)1つまたは複数の代替推奨対応策選択肢(ある場合)が提案されてもよい。それ以外の場合、1つまたは複数の代替栽培要件(ある場合)が、たとえば所与の1組の条件(たとえば土壌の種類、土壌水分量、気象/気候など)に合った栽培を選択する1つまたは複数の外部推奨システムを使用して提案されてもよい。
【0146】
例示の一実施例では、栽培者の計画栽培が有機農業技術のみを使用することを必要とする。この実施例では、ブロック1016で、方法1000は所与の推奨対応策選択肢がすべての必要な有機農業認証要件を満たす限り、その所与の推奨対応策選択肢を表示のためにそのまま生成してもよい。
【0147】
次に方法1000は、続いて複数の農場小区分のうちの1つまたは複数の農場小区分を視覚ヒートマップとして表示する(ブロック1018)。
図10のブロック1018は
図9の方法900のブロック912に対応し得る。
【0148】
次に方法1000は、続いて複数の農場小区分のうちの1つまたは複数の農場小区分のそれぞれについて、1つまたは複数の推奨対応策選択肢をその農場小区分に関連付けられたテキストとして視覚ヒートマップ上に表示する(ブロック1020)。たとえば、ブロック1020で、方法1000は、複数の農場小区分のうちの1つまたは複数の農場小区分のそれぞれについて、単一の対応策選択肢をその農場小区分に関連付けられたテキストとして視覚ヒートマップに表示してもよい(たとえば「指示X」が高リスク農場小区分のための推奨対応策選択肢であり、「指示Y」が中リスク農場小区分のための推奨対応策選択肢であり、「指示Z」が低リスク農場小区分のための推奨対応策選択肢であり、「対策不要」がリスクなし農場小区分のための推奨対応策選択肢である、
図12の凡例/対応策ウィンドウ1210)。
【0149】
次に
図11を参照すると、1つまたは複数の実施形態による、農場小区分レベルの作物害虫リスクまたは作物病害リスクあるいはその両方の推定と1つまたは複数の対応策の推奨とを容易にする、例示の非限定的システム1100のブロック図が示されている。簡潔にするために、本明細書に記載の他の実施形態で採用されている同様の要素の繰り返しの説明は省く。本開示で説明するシステム(たとえばシステム1100など)、装置またはプロセスの態様は、マシン内で具現化された、たとえば1つまたは複数のマシンに関連付けられた1つまたは複数のコンピュータ可読媒体で具現化された、マシン実行可能プログラム・モジュールを構成することができる。そのようなプログラム・モジュールは、1つまたは複数のマシン、たとえば1つまたは複数のコンピュータ、1つまたは複数のコンピューティング・デバイス、1つまたは複数の仮想マシンなどによって実行されると、その1つまたは複数のマシンに、記載の動作を行わせることができる。
【0150】
図11に示すように、システム1100は、1つまたは複数のクライアント・システム(たとえばモバイル・デバイス)1102、1112と、1つまたは複数のサーバ・システム1104、1114と、1つまたは複数のネットワーク1106と、1つまたは複数の農場入力データベース1120と、1つまたは複数の地理空間データベース1122と、1つまたは複数の気象データベース1124と、1つまたは複数のリモート・センサ・データベース1126と、1つまたは複数の対応策データベース1128とを含んでもよい。1つまたは複数のクライアント・システム1102、1112と、1つまたは複数のサーバ・システム1104、1114と、1つまたは複数の農場入力データベース1120と、1つまたは複数の地理空間データベース1122と、1つまたは複数の気象データベース1124と、1つまたは複数のリモート・センサ・データベース1126と、1つまたは複数の対応策データベース1128とは、1つまたは複数のネットワーク1106を介した1つまたは複数のクライアント・システム1102、1112、1つまたは複数のサーバ・システム1104、1114、1つまたは複数の農場入力データベース1120、1つまたは複数の地理空間データベース1122、1つまたは複数の気象データベース1124、1つまたは複数のリモート・センサ・データベース1126、および1つまたは複数の対応策データベース1128の間の通信を可能にする、通信デバイス(たとえば、クライアント・システム1102に関連して後述する1つまたは複数の通信コンポーネント1130)を備えてもよい。
【0151】
クライアント・システム1102、1112は、作物害虫リスクまたは病害リスクあるいはその両方の推定と1つまたは複数の対応策の推奨の要求と、その推定および推奨の結果の表示に関して本明細書で説明されている機能を備えてもよい。1つまたは複数のクライアント・システム1102、1112は、1つまたは複数のサーバ・システム1104、1114に害虫または病害あるいはその両方の予測要求を送信するためと、1つまたは複数のサーバ・システム1104、1114から返された推定の結果を表示するためとに使用されてもよい。たとえば、作物害虫または作物病害あるいはその両方の推定の要求が、農業従事者と、農産物取引、種子供給、農薬製造業、および物流サービスなどの農業関連業者、さらに政府機関から発信されてもよい。クライアント・システム1112は、クライアント・システム1102とは異なる種類のクライアント・システムであってもよい。クライアント・システム1112は、クライアント・システム1102であるか、またはクライアント・システム1102の1つもしくは複数のコンポーネントを含んでもよく、あるいはその両方であってもよい。複数のクライアント・システムが採用される以下の説明では、クライアント・システムは1つもしくは複数のクライアント・システム1102または1つもしくは複数のクライアント・システム1112あるいはその両方を含んでもよいことを理解されたい。
【0152】
クライアント・システム1102、1112は、たとえば1つまたは複数の携帯電話(たとえば
図12の1202)、タブレット、PDA、ラップトップ、またはその他のモバイル・デバイスを含んでもよい。
【0153】
サーバ・システム1104、1114は、作物害虫リスクまたは作物病害リスクあるいはその両方の推定と1つまたは複数の時間空間的対応策の推奨とに関連して本明細書で説明している機能を備えてもよい。サーバ・システム1114は、サーバ・システム1104とは異なるサーバ・システムであってもよい。サーバ・システム1114は、サーバ・システム1104であるか、またはサーバ・システム1104の1つもしくは複数のコンポーネントを含むか、あるいはその両方であってもよい。複数のサーバ・システムが採用される以下の説明では、サーバ・システムは1つもしくは複数のサーバ・システム1104または1つもしくは複数のサーバ・システム1114あるいはその両方を含んでもよいことを理解されたい。
【0154】
システム1100の様々なコンポーネント(たとえば、クライアント・システム1102、1112、サーバ・システム1104、1114、農場入力データベース1120、地理空間データベース1122、気象データベース1124、リモート・センサ・データベース1126、対応策データベース1128、通信コンポーネント1130、1150、メモリ1132、1152、プロセッサ1138、1158、ディスプレイ1142、キーボード1144、GPS1146、カメラ1148またはその他のコンポーネントあるいはこれらの組合せ)は、直接、または1つもしくは複数のネットワーク1106を介して接続可能である。そのようなネットワーク1106は、セルラ・ネットワーク、ワイド・エリア・ネットワーク(WAN)(たとえばインターネット)、またはローカル・エリア・ネットワーク(LAN)、あるいはこれらの組合せを含むがこれらには限定されない無線または有線ネットワークを含んでもよく、その非限定的な例には、セルラ、WAN無線、ワイヤレス・フィディリティ(Wi-Fi)、Wi-Mal、WLAN、伝播通信、マイクロ波通信、衛星通信、光通信、音波通信、電磁誘導通信、量子通信、または任意のその他の適切な通信技術あるいはこれらの組合せが含まれる。
【0155】
クライアント・システム1102は、クライアント・システム1102が1つもしくは複数のサーバ・システム1104、1114、1つもしくは複数のクライアント・デバイス1112、1つもしくは複数の農場入力データベース1120、1つもしくは複数の地理空間データベース1122、1つもしくは複数の気象データベース1124、1つもしくは複数のリモート・センサ・データベース1126、または1つもしくは複数の対応策データベース1128あるいはこれらの組合せと、1つまたは複数のネットワーク1106を介して無線通信または有線通信あるいはその両方により通信することができるようにする、1つまたは複数の通信コンポーネント1130を含んでもよい。たとえば、1つまたは複数の通信コンポーネント1130は、
図1のネットワーク・アダプタ20に対応し得る。
【0156】
クライアント・システム1102は、コンピュータ実行可能プログラム・モジュール(たとえば、コンピュータ実行可能プログラム・モジュールは害虫または病害あるいはその両方の予測要求/表示モジュール1134および関連プログラム・モジュールを含み得るがこれらには限定されない)を記憶可能な少なくとも1つのメモリ1132を含むか、またはその他の方法で関連付けられてもよい。害虫または病害あるいはその両方の予測要求/表示モジュール1134は、
図1のプログラム・モジュール42に対応し得る。クライアント・システム1102は、メモリ1132に記憶されているコンピュータ実行可能プログラム・モジュールを実行する少なくとも1つのプロセッサ1138を含むかまたはその他の方法で関連付けられてもよい。クライアント・システム1102は、通信コンポーネント1130、メモリ1132、プロセッサ1138、ディスプレイ1142、ユーザ入力デバイス1144、GPS1146、カメラ1148、またはその他のコンポーネント(たとえば加速度計、ジャイロスコープ、磁力計)あるいはこれらの組合せを含むがこれらには限定されない、様々なコンポーネントを結合することができるシステム・バス1140をさらに含んでもよい。
【0157】
クライアント・システム1102は
図11では害虫または病害あるいはその両方の予測要求/表示モジュール1134を含むものとして示されているが、他の実施形態では、任意の数の異なる種類のデバイスが、害虫または病害あるいはその両方の予測要求/表示モジュール1134の全部または一部と関連付けられ、または含んでもよい。たとえば、1つまたは複数のサーバ・システム1104、1114は、害虫または病害あるいはその両方の要求/表示モジュール1134の全部または一部を含んでもよい。言い換えると、作物害虫リスクまたは作物病害リスクあるいはその両方の推定の要求と推定の結果の表示とに関連するデータ処理がローカルで(たとえばプロセッサ1138を使用して)、またはリモートで(たとえばプロセッサ1158を使用するサーバ・システム1104で)、あるいはその両方で行われてもよい。このようなすべての実施形態が想定される。
【0158】
クライアント・システム1102は、推定結果と、害虫または病害あるいはその両方の予測要求/表示モジュール1134の使用に関する情報(たとえば、農場領域を画定する座標のキー入力、農場領域を画定するコモン・ランド・ユニット(CLU)のキー入力、農場領域を画定するGPS抽出地理位置データの使用、または農場領域を画定する画像データの使用あるいはこれらの組合せなど、それによって農場画定データを入力することができる1つまたは複数の入力選択肢を表す)とを表示可能な、少なくとも1つのディスプレイ1142も含むかまたはその他の方法で関連付けられてもよい。ディスプレイ1142は、任意の適切なディスプレイ・デバイスであってよい。たとえば、ディスプレイ1142は、携帯電話、タブレット、PDAまたはラップトップに組み込まれたディスプレイであってもよい。他の実施形態では、ディスプレイ1142は、携帯電話、タブレット、PDAまたはラップトップに通信可能に結合されたデバイスのコンポーネントであってもよい。実施形態によっては、ディスプレイ1142は、ユーザが指またはスタイラスを使用してクライアント・システム1102と対話することを可能にするタッチ・スクリーンであってもよい。
【0159】
クライアント・システム1102は、ユーザがそれを使用して入力データ(たとえば農場領域を画定する入力データ)を提供することができる、キーボードまたはポインティング・デバイス(たとえばグラフィックス・タブレット、マウス、スタイラス、ポインティング・スティック、トラックボールなど)あるいはその両方などの、少なくとも1つのユーザ入力デバイス1144も含むかまたはその他の方法で関連付けられてもよい。ユーザ入力デバイス1144は、任意の適切なユーザ入力デバイスであってよい。たとえば、ユーザ入力デバイス1144は、携帯電話、タブレット、PDAまたはラップトップに組み込まれたキーボードまたはポインティング・デバイスあるいはその両方であってもよい。他の実施形態では、ユーザ入力デバイス1144は、携帯電話、タブレットPDAまたはラップトップに通信可能に結合されたデバイスのコンポーネントであってもよい。
【0160】
クライアント・システム1102は、地理位置データ(たとえば農場領域を画定する地理位置データ)を提供可能な少なくとも1つのGPS1146も含むかまたはその他の方法で関連付けられてもよい。GPS1146は、グローバル・ポジショニング・システム(GPS)、グローバル・ナビゲーション衛星システム(GLONASS)、ガリレオ、準天頂衛星システム(QZSS)などの任意の適切な地球規模の衛星ベースの地理位置システムであってよい。たとえば、GPS1146は、携帯電話、タブレット、PDAまたはラップトップに組み込まれた地球規模の衛星ベースの地理位置システムであってもよい。他の実施形態では、GPS1146は、携帯電話、タブレット、PDAまたはラップトップに通信可能に結合されたデバイスのコンポーネントであってもよい。
【0161】
クライアント・システム1102は、画像(たとえば農場領域を画定する土地区画地図の画像またはその他の画像)をキャプチャすることができる少なくとも1つのカメラ1148も含むかまたはその他の方法で関連付けられてもよい。カメラ1148は、任意の適切な画像キャプチャ・デバイスであってよい。たとえば、カメラ1148は、携帯電話、タブレット、PDAまたはラップトップに組み込まれたカメラであってもよい。他の実施形態では、カメラ1148は、携帯電話、タブレット、PDAまたはラップトップに通信可能に結合されたデバイスのコンポーネントであってもよい。
【0162】
サーバ・システム1104は、サーバ・システム1104が1つまたは複数のネットワーク1106を介して無線または有線通信によって、1つもしくは複数のクライアント・システム1102、1112、1つもしくは複数の他のサーバ・デバイス1114、1つもしくは複数の農場入力データベース1120、1つもしくは複数の地理空間データベース1122,1つもしくは複数の気象データベース1124、1つもしくは複数のリモート・センサ・データベース1126、または1つもしくは複数の対応策データベース1128あるいはこれらの組合せと通信することができるようにする、1つまたは複数の通信コンポーネント1150を含んでもよい。たとえば、1つまたは複数の通信コンポーネント1150は、
図1のネットワーク・アダプタ20に対応し得る。
【0163】
サーバ・システム1104は、コンピュータ実行可能プログラム・モジュール(たとえば、コンピュータ実行可能プログラム・モジュールは害虫または病害あるいはその両方の予測モジュール1154、対応策モジュール1156、および関連プログラム・モジュールを含み得るがこれらには限定されない)を記憶することができる、少なくとも1つのメモリ1152を含むかまたはその他の方法で関連付けられてもよい。害虫または病害あるいはその両方の予測モジュール1154および対応策モジュール1156は、
図1のプログラム・モジュール42に対応し得る。害虫または病害あるいはその両方の予測モジュール1154は、
図5の害虫または病害予測モジュール506にも対応し得る。サーバ・システム1104は、メモリ1152に記憶されたコンピュータ実行可能プログラム・モジュールを実行する少なくとも1つのプロセッサ1158も含むかまたはその他の方法で関連付けられてもよい。サーバ・システム1104は、通信コンポーネント1150、メモリ1152、プロセッサ1158、またはその他のコンポーネントあるいはこれらの組合せなどを含むがこれには限定されない様々なコンポーネントを結合することができるシステム・バス1160をさらに含んでもよい。
【0164】
サーバ・システム1104は、
図11では害虫または病害あるいはその両方の予測モジュール1154と対応策モジュール1156とを含むものとして示されているが、他の実施形態では、任意の数の異なる種類のデバイスが、害虫または病害あるいはその両方の予測モジュール1154または対応策モジュール1156あるいはその両方の全部または一部に関連付けられるかまたはそれらを含んでもよい。たとえば、1つまたは複数のクライアント・システム1102、1112が害虫または病害あるいはその両方の予測モジュール1154または対応策モジュール1156あるいはその両方の全部または一部を含んでもよい。言い換えると、害虫または病害あるいはその両方の予測モジュール1154または対応策モジュール1156あるいはその両方に関連するデータ処理が、ローカルで(たとえばプロセッサ1158を使用して)またはリモートで(たとえばプロセッサ1138を使用するクライアント・システム1102で)あるいはその両方で行われてもよい。このようなすべての実施形態が想定される。
【0165】
1つまたは複数の農場入力データベース1120は、任意のデータベースであってよく、その非限定的な例には農場入力データ(たとえば、殺虫剤、除草剤、殺菌剤、肥料、灌漑など)を記憶する1つまたは複数のデータベースが含まれる。1つまたは複数の農場入力データベース1120は、
図4の農場入力426に対応する農場入力データを記憶してもよい。
【0166】
1つまたは複数の地理空間データベース1122は、任意のデータベースであってよく、その非限定的な例には、地理空間データ(たとえば、土壌の種類、土壌組成、土壌深度、土壌水分量、土地高度および勾配など)を記憶する1つまたは複数のデータベースが含まれる。1つまたは複数の地理空間データベース1122は、
図4の土壌および土地特性422に対応する地理空間データを記憶してもよい。
【0167】
1つまたは複数の気象データベース1124は、任意のデータベースであってよく、その非限定的な例には、気象データ(たとえば、気温、湿度、風速、降水量など)を記憶する1つまたは複数のデータベースが含まれる。1つまたは複数の気象データベース1124は、
図4の気象属性420に対応する気象データを記憶してもよい。
【0168】
1つまたは複数のリモート・センサ・データベース1126は、任意のデータベースであってよく、その非限定的な例には、リモート・センサ・データ(たとえば植生指数、後方散乱など)を記憶する1つまたは複数のデータベースが含まれる。1つまたは複数のリモート・センサ・データベース1126は、
図4のリモート・センサ入力424に対応するリモート・センサ・データを記憶してもよい。
【0169】
1つまたは複数の対応策データベース1128は、任意のデータベースであってよく、その非限定的な例には、対応策データ(たとえば、異なるP&D状況のための対応策情報)を記憶する1つまたは複数のデータベースが含まれる。たとえば、1つまたは複数の対応策データベース1128は、異なる作物成長段階における複数の作物のそれぞれに影響を与える、異なるP&D成長段階におけるP&Dリスクに対処するための、スカウティング実践方法、処置方法およびその他の対応策情報を含んでもよい。
【0170】
次に
図12を参照すると、1つまたは複数の実施形態による、農場小区分レベルでの作物害虫リスクまたは作物病害リスクあるいはその両方の推定と、1つまたは複数の対応策の推奨を要求し、推定と推奨の結果を表示するための、例示のクライアント・システム1200が図示されている。例示のクライアント・システム1200は
図11のクライアント・システム1102、1112に対応し得る。
図12に示す例示のクライアント・システム1200は、組み込みディスプレイ/タッチ・スクリーン1204を備えた携帯電話1202を含む。他の実施形態では、クライアント・システムは、タブレット、PDA、ラップトップまたは、異なる構成を有する携帯電話を含むその他のクライアント・デバイスであってもよい。一部の実施形態によると、組み込みディスプレイ/タッチ・スクリーン1204に表示されるのは、作物害虫リスクまたは作物病害の推定の要求に応答してサーバ・システム(たとえば
図11の1104)によって返される、農場小区分レベルの作物害虫リスクまたは作物病害リスクあるいはその両方の推定の結果1206と、1つまたは複数の対応策の推奨である。クライアント・システム1200は、農場領域を画定するGPS抽出地理位置データを含み得る要求を、その前にサーバ・システムに送信していてもよい。たとえば、携帯電話1202は内蔵GPS(
図11の1146)を含んでもよく、電話のGPS抽出地理位置データが農場領域を画定してもよい(たとえば、害虫または病害あるいはその両方の予測要求/表示モジュール(
図11の1134)が、携帯電話1202が位置するCLUを農場領域として画定してもよい)。
【0171】
図12に示す実施形態では、作物害虫リスクまたは作物病害リスクあるいはその両方の推定の結果1206が、1つまたは複数のウィンドウ(たとえば、視覚ヒートマップ・ウィンドウ1208および凡例/対応策ウィンドウ1210など)、アイコン、または表示された結果とユーザがインタラクトすることができるようにするボタンあるいはこれらの組合せを含む、グラフィカル・ユーザ・インターフェース(GUI)を使用して表示される。たとえば、GUIは、視覚ヒートマップ・ウィンドウ1208内の農場領域全体、または(たとえばズーム機能を使用して)農場領域の一部を表示するように、ユーザが表示された結果とインタラクトすることを可能にしてもよい。
図12に示す実施形態では、視覚ヒートマップ・ウィンドウ1208は、
図6の視覚ヒートマップ600に対応する視覚ヒートマップを表示する。また、
図12に示す実施形態では、凡例/対応策ウィンドウ1210は、農場小区分ごとの視覚ヒートマップの塗り潰しグラフィックの凡例と、農場小区分ごとの推奨対応策とを表示する。
図12に示すGUIの構成および機能は例示のみを意図しており、本発明の実施形態はこれには限定されないことを理解されたい。たとえば、作物害虫リスクまたは作物病害リスクあるいはその両方の推定の結果は、テキスト・ベースのユーザ・インターフェースを使用して表示されてもよい。
【0172】
また、
図12に示す実施形態では、推奨対応策は凡例/対応策ウィンドウ1210内にテキストとして示される。この構成は限定ではなく例示を目的としている。推奨対応策は、任意の適切な方式で、任意の適切な場所に提示されてもよい。推奨対応策は、空間(たとえば推奨対応策が農場小区分ごとに異なり得る)と時間(たとえば推奨対応策が時間の経過とともに変化し得る)の両方について調整された時間空間的な指示であってもよい。
【0173】
本発明は、システム、方法、またはコンピュータ・プログラム製品あるいはこれらの組合せとすることができる。コンピュータ・プログラム製品は、プロセッサに本発明の態様を実施させるためのコンピュータ可読プログラム命令が記憶されたコンピュータ可読記憶媒体(または複数の媒体)を含み得る。
【0174】
コンピュータ可読記憶媒体は、命令実行デバイスによって使用される命令を保持し、記憶することができる有形デバイスとすることができる。コンピュータ可読記憶媒体は、たとえば、電子ストレージ・デバイス、磁気ストレージ・デバイス、光学式ストレージ・デバイス、電磁ストレージ・デバイス、半導体ストレージ・デバイス、またはこれらの任意の適切な組合せであってよいが、これらには限定されない。コンピュータ可読記憶媒体のより具体的な例の非網羅的なリストには、可搬コンピュータ・ディスケット、ハード・ディスク、ランダム・アクセス・メモリ(RAM)、読み取り専用メモリ(ROM)、消去可能プログラマブル読み取り専用メモリ(EPROMまたはフラッシュ・メモリ)、スタティック・ランダム・アクセス・メモリ(SRAM)、可搬コンパクト・ディスク読み取り専用メモリ(CD-ROM)、デジタル・バーサタイル・ディスク(DVD)、メモリ・スティック、フロッピィ・ディスク、パンチカードまたは命令が記録された溝内の隆起構造などの機械的に符号化されたデバイス、およびこれらの任意の適切な組合せが含まれる。本明細書で使用されるコンピュータ可読記憶媒体とは、電波もしくはその他の自由に伝播する電磁波、導波路もしくはその他の伝送媒体を伝播する電磁波(たとえば光ファイバ・ケーブルを通る光パルス)、またはワイヤを介して伝送される電気信号などの、一過性の信号自体であると解釈すべきではない。
【0175】
本明細書に記載のコンピュータ可読プログラム命令は、コンピュータ可読記憶媒体から、ネットワーク、たとえばインターネット、ローカル・エリア・ネットワーク、ワイド・エリア・ネットワーク、または無線ネットワークあるいはこれらの組合せを介して外部コンピュータまたは外部記憶デバイスにダウンロードすることができる。ネットワークは、銅伝送ケーブル、光伝送ファイバ、無線伝送、ルータ、ファイアウォール、スイッチ、ゲートウェイ・コンピュータ、またはエッジ・サーバあるいはこれらの組合せを含んでもよい。各コンピューティング/処理デバイスにおけるネットワーク・アダプタ・カードまたはネットワーク・インターフェースが、ネットワークからコンピュータ可読プログラム命令を受信し、それらのコンピュータ可読プログラム命令を、それぞれのコンピューティング/処理デバイス内のコンピュータ可読記憶媒体への記憶のために転送する。
【0176】
動作を実行するためのコンピュータ可読プログラム命令は、アセンブラ命令、インストラクション・セット・アーキテクチャ(ISA)命令、マシン命令、マシン依存命令、マイクロコード、ファームウェア命令、状態設定データ、または、Smalltalk(R)、C++などのオブジェクト指向プログラミング言語、および「C」プログラミング言語、もしくは同様のプログラム言語などの従来の手続き型プログラミング言語を含む、1つもしくは複数のプログラミング言語の任意の組合せで書かれたソース・コードもしくはオブジェクト・コードとすることができる。コンピュータ可読プログラム命令は、スタンドアロン・ソフトウェア・パッケージとして全体がユーザのコンピュータ上でもしくは一部がユーザのコンピュータ上で、または一部がユーザのコンピュータ上で一部がリモート・コンピュータ上で、または全体がリモート・コンピュータもしくはサーバ上で実行されてもよい。後者の場合、リモート・コンピュータは、ローカル・エリア・ネットワーク(LAN)もしくはワイド・エリア・ネットワーク(WAN)を含む、任意の種類のネットワークを介してユーザのコンピュータに接続することができ、または接続は(たとえば、インターネット・サービス・プロバイダを使用してインターネットを介して)外部コンピュータに対して行ってもよい。1つまたは複数の実施形態では、本発明の態様を実行するために、たとえばプログラマブル論理回路、フィールド・プログラマブル・ゲート・アレイ(FPGA)、またはプログラマブル・ロジック・アレイ(PLA)を含む電子回路が、コンピュータ可読プログラム命令の状態情報を使用して電子回路をパーソナライズすることにより、コンピュータ可読プログラム命令を実行することができる。
【0177】
態様について、本明細書では、1つまたは複数の実施形態による方法、装置(システム)、およびコンピュータ・プログラム製品を示すフローチャート図またはブロック図あるいはその両方を参照しながら説明している。フローチャート図またはブロック図あるいはその両方の図の各ブロックおよび、フローチャート図またはブロック図あるいはその両方の図のブロックの組合せは、コンピュータ可読プログラム命令によって実装可能であることを理解されたい。
【0178】
これらのコンピュータ可読プログラム命令は、汎用コンピュータ、専用コンピュータ、またはその他のプログラマブル・データ処理装置のプロセッサにより実行される命令が、フローチャートまたはブロック図あるいはその両方のブロックで指定されている機能/動作を実装する手段を形成するように、汎用コンピュータ、専用コンピュータまたはその他のプログラマブル・データ処理装置のプロセッサに供給されて、マシンを作り出すものであってよい。これらのコンピュータ可読プログラム命令は、命令が記憶されたコンピュータ可読記憶媒体が、フローチャートまたはブロック図あるいはその両方のブロックで指定されている機能/動作の態様を実装する命令を含む製造品を含むように、コンピュータ可読記憶媒体に記憶され、コンピュータ、プログラマブル・データ処理装置、またはその他のデバイスあるいはこれらの組合せに対して特定の方式で機能するように指示することができるものであってもよい。
【0179】
コンピュータ可読プログラム命令は、コンピュータ、その他のプログラマブル装置またはその他のデバイス上で実行される命令がフローチャートまたはブロック図あるいはその両方のブロックで指定されている機能/動作を実装するように、コンピュータ実装プロセスを実現するべく、コンピュータ、その他のプログラマブル・データ処理装置、またはその他のデバイスにロードされ、コンピュータ、その他のプログラマブル装置、またはその他のデバイス上で一連の動作ステップを実行させるものであってもよい。
【0180】
図面中のフローチャートおよびブロック図は、様々な実施形態によるシステム、方法およびコンピュータ・プログラム製品の可能な実装形態のアーキテクチャ、機能および動作を示す。これに関連して、フローチャートまたはブロック図の各ブロックは、指定されている論理機能を実装するための1つまたは複数の実行可能命令を含む、命令のモジュール、セグメント、または部分を表し得る。一部の別の実装形態では、ブロックに記載されている機能は、図に記載されている順序とは異なる順序で行われてもよい。たとえば、連続して示されている2つのブロックは、関与する機能に応じて、実際には、実質的に並行して実行されてもよく、またはブロックは場合によっては逆の順序で実行されてもよい。また、ブロック図またはフローチャート図あるいはその両方の図の各ブロック、およびブロック図またはフローチャート図あるいはその両方の図のブロックの組合せは、指定されている機能または動作を実行する専用ハードウェア・ベースのシステムによって実装可能であるか、または専用ハードウェアとコンピュータ命令との組合せを実施することができることにも留意されたい。
【0181】
当業者には、本発明の範囲内で多くの変形が可能であることがわかるであろう。たとえば、本明細書に記載の特定のハードウェアおよびソフトウェア実装の詳細は、例示を目的としたものに過ぎず、記載されている主題の範囲を限定することは意図されていない。したがって、本発明についてその好ましい実施形態に関連して具体的に図示し、説明したが、本発明の思想および範囲から逸脱することなく、それらの実施形態に形態および詳細の変更を加えることができることが、当業者にはわかるであろう。