(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-10-15
(45)【発行日】2024-10-23
(54)【発明の名称】蒸気分解と流動接触脱水素化との統合システムにおけるアセチレン水素化ユニットを操作するための方法
(51)【国際特許分類】
C07C 2/74 20060101AFI20241016BHJP
C07C 4/06 20060101ALI20241016BHJP
C07C 5/08 20060101ALI20241016BHJP
C07C 5/09 20060101ALI20241016BHJP
C07C 9/04 20060101ALI20241016BHJP
C07C 9/06 20060101ALI20241016BHJP
C07C 9/08 20060101ALI20241016BHJP
C07C 11/04 20060101ALI20241016BHJP
C07C 11/06 20060101ALI20241016BHJP
C07B 61/00 20060101ALN20241016BHJP
【FI】
C07C2/74
C07C4/06
C07C5/08
C07C5/09
C07C9/04
C07C9/06
C07C9/08
C07C11/04
C07C11/06
C07B61/00 300
(21)【出願番号】P 2021576949
(86)(22)【出願日】2020-06-08
(86)【国際出願番号】 US2020036586
(87)【国際公開番号】W WO2020263545
(87)【国際公開日】2020-12-30
【審査請求日】2023-05-25
(32)【優先日】2019-06-24
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】502141050
【氏名又は名称】ダウ グローバル テクノロジーズ エルエルシー
(74)【代理人】
【識別番号】100092783
【氏名又は名称】小林 浩
(74)【代理人】
【識別番号】100095360
【氏名又は名称】片山 英二
(74)【代理人】
【識別番号】100120134
【氏名又は名称】大森 規雄
(74)【代理人】
【識別番号】100187964
【氏名又は名称】新井 剛
(72)【発明者】
【氏名】ルオ、リン
(72)【発明者】
【氏名】ワン、ハンヤオ
(72)【発明者】
【氏名】リウ、ユイ
(72)【発明者】
【氏名】プレッツ、マシュー、ティー.
(72)【発明者】
【氏名】マレク、アンジェイ
【審査官】石田 傑
(56)【参考文献】
【文献】特表2016-510731(JP,A)
【文献】国際公開第2018/024650(WO,A1)
【文献】特表2017-511835(JP,A)
【文献】米国特許出願公開第2010/0331589(US,A1)
【文献】特表2018-536713(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C07C
(57)【特許請求の範囲】
【請求項1】
蒸気分解と流動接触脱水素化(FCDh)との統合システムにおいてアセチレン水素化ユニットを操作するための方法であって、
蒸気分解システム内で第1の炭化水素供給物の少なくとも一部を分解して、少なくとも水素、一酸化炭素(CO)、およびアセチレンを含む分解ガスを生成することと、
FCDhシステム内で第2の炭化水素供給物の少なくとも一部を脱水素化して、少なくとも水素およびCOを含むFCDh流出物を生成することと、
前記分解ガスと前記FCDh流出物の少なくとも一部とを水素化供給物およびアセチレン低減流に分離すること
と(ここで、前記水素化供給物が、少なくとも水素、CO、およびアセチレンを含み、前記水素化供給物が、前記分解ガスおよび前記FCDh流出物からのCOの少なくとも95%を含み、通常の操作条件中に、前記水素化供給物中のCOの少なくとも20%が前記分解ガスからのものである
)、
アセチレン水素化ユニット内で前記水素化供給物をアセチレン水素化触媒と接触させること
と(ここで、前記接触によって、前記水素化供給物中の前記アセチレンの少なくとも一部が水素化されて、水素化された流出物が生成される
)、
を含み、
前記蒸気分解システムが、前記FCDh流出物の流量がゼロであるときに前記水素化供給物中のCO濃度が少なくとも100ppmvになるほど前記分解ガス中のCO濃度が十分に高くなるようにCO生成を増加させる条件下で操作される、方法。
【請求項2】
前記FCDh流出物の前記流量がゼロであるときに前記水素化供給物中の前記CO濃度が少なくとも100ppmvになるほど前記分解ガス中の前記CO濃度が十分に高くなるようにCO生成を増加させる条件下で前記蒸気分解システムを操作することによって、前記アセチレン水素化ユニットへの前記FCDh流出物の流れの中断に応答した前記アセチレン水素化ユニットの熱暴走を低減または防止する、請求項1に記載の方法。
【請求項3】
前記FCDh流出物の前記流量がゼロであるときに前記水素化供給物中の前記CO濃度が100ppmv~450ppmvになるほど前記分解ガス中の前記CO濃度が十分に高くなる、請求項1または2に記載の方法。
【請求項4】
前記水素化供給物中の前記分解ガスからの前記COの量を前記水素化供給物中のCO総量の20質量%以上に維持することによって、前記アセチレン水素化ユニットへの前記FCDh流出物の流れの中断に応答した前記アセチレン水素化ユニットの熱暴走を低減または防止する、
請求項1~3のいずれか一項に記載の方法。
【請求項5】
前記蒸気分解システムが、前記蒸気分解システムに導入される硫黄含有化合物、メタノール、またはそれらの両方の量を変更することによってCO生成を増加させる条件下で操作される、
請求項1~4のいずれか一項に記載の方法。
【請求項6】
前記硫黄含有化合物が、ジメチルジスルフィド(DMDS)、ジメチルスルフィド(DMS)、ジエチルジスルフィド(DEDS)、メチルメルカプタン(MM)、またはそれらの組み合わせのうちの少なくとも1つを含む、請求項
5に記載の方法。
【請求項7】
前記分解ガス中のCO量を増加させることに応答して前記水素化供給物の温度を上昇させて、前記水素化された流出物中のアセチレン濃度を目標アセチレン濃度よりも低く維持することをさらに含む、
請求項1~6のいずれか一項に記載の方法。
【請求項8】
前記アセチレン水素化ユニットが、少なくとも第1の水素化反応器と、前記第1の水素化反応器の下流の第2の水素化反応器と、を含み、前記水素化供給物中の前記分解ガスからのCOの量を前記水素化供給物中のCO総量の20%以上に維持することによって、前記アセチレン水素化ユニットへの前記FCDh流出物の流れの減少に応答した総エチレン選択率の損失を80%以下に維持する、
請求項1~7のいずれか一項に記載の方法。
【請求項9】
分離器への前記FCDh流出物の少なくとも一部の流れの減少に応答して、前記アセチレン水素化ユニットの第1の水素化反応器のデルタTの変化の絶対値が、10℃未満であり、前記第1の水素化反応器の前記デルタTが、前記第1の水素化反応器の入口温度と出口温度との間の差である、
請求項1~8のいずれか一項に記載の方法。
【請求項10】
流量比が、1/2以下であり、前記流量比が、分離システムに送られる前記FCDh流出物の前記一部の質量流量を、前記水素化供給物中の前記分解ガスの前記一部の質量流量で割ったものである、
請求項1~9のいずれか一項に記載の方法。
【請求項11】
前記水素化供給物が、メチルアセチレン、プロパジエン、および少なくとも1つの分解器生成物を含み、前記少なくとも1つの分解器生成物が、エチレン、プロピレン、メタン、エタン、プロパン、またはこれらの組み合わせのうちの1つ以上を含む、
請求項1~10のいずれか一項に記載の方法。
【請求項12】
前記水素化された流出物が、2体積ppm以下のアセチレン濃度を有する、
請求項1~11のいずれか一項に記載の方法。
【請求項13】
前記FCDh流出物が、少なくとも1つのFCDh生成物を含み、前記少なくとも1つのFCDh生成物が、エチレン、プロピレン、またはそれらの両方を含む、
請求項1~12のいずれか一項に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は、2019年6月24日に出願された米国仮特許出願第62/865,594号の優先権を主張するものであり、その開示全体が、参照によって本明細書に組み込まれる。
【0002】
背景
本開示は、一般に、オレフィンを生成するための化学処理システムおよびその操作に関し、より具体的には、蒸気分解プロセスと統合された流動接触脱水素化(FCDh)プロセスを含むオレフィン生成プロセスにおいてアセチレン水素化ユニットを操作するための方法に関する。
【背景技術】
【0003】
軽質オレフィンは、多くの種類の商品および材料を製造するためのベース材料として利用することができる。例えば、エチレンは、ポリエチレン、エチレンクロリド、またはエチレンオキシドを製造するために利用することができる。そのような生成物は、製品の包装、建設、繊維などに利用することができる。したがって、エチレン、プロピレン、およびブテンのような軽質オレフィンに対する業界の需要がある。
【0004】
軽質オレフィンは、天然ガスコンデンセートまたは石油化学操作からの生成物流のような所与の化学供給物流に応じて異なる反応プロセスによって生成することができる。例えば、炭化水素分解(例えば、蒸気分解)、接触脱水素化、および他のプロセスを使用して、炭化水素流からオレフィンを生成することができる。しかしながら、軽質オレフィンを生成するための炭化水素分解および他のプロセスは、下流プロセスおよび触媒に対して阻害物質となり得るアセチレン化合物およびアレン化合物のような副生成物および不純物を生成する可能性がある。さらに、高濃度のアセチレンの存在は、これらの化合物の反応性のために、下流のプロセスにおける安全上の懸念を示す場合がある。炭化水素分解ユニットの下流の選択的水素化プロセスにおける水素化によって、オレフィン含有炭化水素分解流出物からアセチレンならびに他の不純物および副生成物を除去することができる。炭化水素分解流出物中のアセチレン化合物の選択的水素化により、エチレンおよびプロピレンのような追加の生成物オレフィンを回収することもできる。
【発明の概要】
【0005】
いくつかのオレフィン生成プロセスでは、例えば、エチレンおよびプロピレンのような軽質オレフィンは、蒸気分解と流動接触脱水素化(FCDh)との組み合わせによって生成され得る。これらのプロセスからの流出物の組成が類似していることから、蒸気分解システムとFCDhシステムとを統合して、蒸気分解システムからの分解ガスとFCDhシステムからのFCDh流出物の少なくとも一部とを組み合わせ、蒸気分解システムおよびFCDhシステムの下流の一般的な流出物処理システム内で処理することができる。流出物処理システムは、生成物流を単離して不要な汚染物質および反応副生成物を除去するための分離および精製システムを含み得る。一般的な流出物処理システムは、蒸気分解ユニット内で生成されたアセチレンを水素化するように操作可能なアセチレン水素化ユニットを含み得る。
【0006】
アセチレン水素化ユニットは、アセチレン水素化ユニットへの供給物中の一酸化炭素(CO)濃度に敏感であり得る。特定の理論によって限定されることを意図するものではないが、COは、アセチレン水素化ユニット内の水素化触媒と相互作用して、アセチレンを水素化するための水素化触媒の活性を低下させると考えられている。逆に、アセチレン水素化ユニットのCO濃度を減少させると、水素化触媒の活性を上昇させることができる。アセチレン水素化ユニットへの水素化供給物中のCO濃度が突然減少することによって、水素化触媒の活性が増加し得、それによって、水素化供給物中のエチレンおよびプロピレンなどのオレフィン生成物の水素化の増加、ならびにオレフィン選択率の低減がもたらされ得る。エチレンおよびプロピレンなどのオレフィンの水素化が急速に増加すると、発熱性のオレフィン水素化反応からの急速な熱放出によって、アセチレン水素化ユニットの熱暴走がもたらされ得る。
【0007】
FCDhプロセスからのFCDh流出物は、一般に、蒸気分解ユニットからの分解ガス中のCO濃度よりも高いCO濃度を有し得る。したがって、オレフィンを生成するための統合プロセスが、流出物処理システムに送られる分解ガスとFCDh流出物の少なくとも一部との両方を用いて操作している場合、アセチレン水素化ユニットへの供給物中のCO濃度は、分解ガスのみからのCO濃度よりもかなり大きくなり得る。予期されていないFCDhトリップ中など、FCDhシステムの操作が中断されると、流出物処理システムへのFCDh流出物の流れの突然の減少または完全な喪失が引き起こされ得る。これによって、水素化供給物のCO濃度が突然かつ大幅に低下し得る。前述のように、CO濃度の低減は、オレフィン生成物の水素化の増加および発熱性の水素化反応からの熱の発生を原因として、アセチレン水素化ユニットの熱暴走をもたらし得る。したがって、流出物処理システムへのFCDh流出物の流れが減少または完全に喪失すると、アセチレン水素化反応器の熱暴走がもたらされ得る。流出物処理システムへのFCDh流出物の流れが減少または喪失すると、アセチレン水素化ユニットを通る反応物の総流量も減少し得、その結果、ガス時空間速度(GHSV)が小さくなり、水素化供給物の滞留時間が長くなり、それによって、変換オレフィンも増加し、熱暴走がもたらされ得る。熱暴走中に発生する200℃超の温度上昇は、アセチレン水素化ユニットをトリップさせ、システムの再起動が必要とされ得る。さらに、200℃超の温度上昇は、水素化触媒、ならびに反応器、計器、熱交換器、および他の機器のような機器を損傷させる可能性があり、安全上の危険性を高め得る。多くの暴走の場面において、熱暴走に起因する触媒性能の深刻な喪失によって触媒の交換が必要となり得、これは、重大なユニットのダウンタイムに繋がる。熱暴走はまた、エチレンおよびプロピレンの過剰水素化によってオレフィン生成物の喪失を増加させ得る。
【0008】
本明細書に開示されている方法は、蒸気分解システムからの分解ガスとFCDhシステムからのFCDh流出物の少なくとも一部とを組み合わせるオレフィン生成のための統合プロセスのアセチレン水素化ユニットの熱暴走を低減または防止することができる。特に、本明細書に開示されている方法は、蒸気分解システムの蒸気分解ユニットを操作して分解ガス中のCO濃度を増加させることによって、流出物処理システムへのFCDh流出物の流れの減少または完全な喪失の間のアセチレン水素化ユニットの熱暴走を低減または防止する。分解ガス中のCO量を増加させると、蒸気分解システムによって寄与される水素化供給物中のCOの割合が増加し、それにより、FCDh流出物によって寄与される水素化供給物中のCOの割合が低減することで、アセチレン水素化ユニットの熱暴走を防止または低減することができる。FCDh流出物によって寄与される水素化供給物中のCOの割合が低減すると、流出物処理システムへのFCDh流出物の流れの突然の減少または完全な喪失によって引き起こされる触媒活性の瞬間的な増加およびアセチレン水素化ユニットの選択率の急速な損失の影響を低減させることができる。本明細書に開示されている方法は、FCDhシステムが突然停止した場合の熱暴走の可能性を低減し、したがって、機器および触媒への熱損傷を低減または防止すること、ならびに蒸気分解およびFCDhシステムにおいて生成される価値あるオレフィン生成物の過剰水素化および喪失を低減または防止することができる。
【0009】
ここに記載されている一実施形態によると、蒸気分解と流動接触脱水素化(FCDh)との統合システムにおいてアセチレン水素化ユニットを操作するための方法は、蒸気分解システム内で第1の炭化水素供給物の少なくとも一部を分解して、少なくとも水素、一酸化炭素(CO)、およびアセチレンを含む分解ガスを生成することと、FCDhシステム内で第2の炭化水素供給物の少なくとも一部を脱水素化して、少なくとも水素およびCOを含むFCDh流出物を生成することと、分解ガスとFCDh流出物の少なくとも一部とを水素化供給物およびアセチレン低減流に分離することと、を含み得る。水素化供給物は、少なくとも水素、CO、およびアセチレンを含み得る。水素化供給物は、分解ガスおよびFCDh流出物からのCOの少なくとも95%を含み得る。通常の操作条件中に、水素化供給物中のCOの少なくとも20%が分解ガスからのものであり得る。この方法は、アセチレン水素化ユニット内で水素化供給物をアセチレン水素化触媒と接触させることをさらに含み得る。この接触によって、水素化供給物中のアセチレンの少なくとも一部の水素化が生じ、水素化された流出物を生成することができる。蒸気分解システムは、FCDh流出物の流量がゼロであるときに水素化供給物中のCO濃度が少なくとも100ppmvになるほど分解ガス中のCO濃度が十分に高くなるようにCO生成を増加させる条件下で操作され得る。
【0010】
1つ以上の実施形態では、FCDh流出物の流量がゼロであるときに水素化供給物中のCO濃度が少なくとも100ppmvになるほど分解ガス中のCO濃度が十分に高くなるようにCO生成を増加させる条件下で蒸気分解システムを操作することによって、アセチレン水素化ユニットへのFCDh流出物の流れの中断に応答したアセチレン水素化ユニットの熱暴走を低減または防止することができる。
【0011】
1つ以上の他の実施形態では、FCDh流出物の流量がゼロであるときに水素化供給物中のCO濃度が100ppmv~450ppmvになり得るほど分解ガス中のCO濃度が十分に高くなり得る。
【0012】
1つ以上の実施形態では、水素化供給物中の分解ガスからのCOの量を水素化供給物中のCO総量の20質量%以上に維持することによって、アセチレン水素化ユニットへのFCDh流出物の流れの中断に応答したアセチレン水素化ユニットの熱暴走を低減または防止することができる。
【0013】
1つ以上の実施形態では、蒸気分解システムは、蒸気分解システムに導入される硫黄含有化合物、メタノール、またはそれらの両方の量を変更することによってCO生成を増加させる条件下で操作され得る。硫黄含有化合物としては、ジメチルジスルフィド(DMDS)、ジメチルスルフィド(DMS)、ジエチルジスルフィド(DEDS)、メチルメルカプタン(MM)、またはそれらの組み合わせのうちの少なくとも1つを挙げることができる。
【0014】
1つ以上の実施形態では、この方法は、分解ガス中のCO量を増加させることに応答して水素化供給物の温度を上昇させて、水素化された流出物中のアセチレン濃度を目標アセチレン濃度よりも低く維持することをさらに含み得る。
【0015】
いくつかの実施形態では、アセチレン水素化ユニットは、少なくとも第1の水素化反応器と、第1の水素化反応器の下流の第2の水素化反応器と、を含み得る。水素化供給物中の分解ガスからのCOの量を水素化供給物中のCO総量の20%以上に維持することによって、アセチレン水素化ユニットへのFCDh流出物の流れの減少に応答して、第1の水素化反応器内のアセチレン変換率を80%以上に維持することができる。
【0016】
1つ以上の実施形態では、分離器へのFCDh流出物の少なくとも一部の流れの減少に応答して、アセチレン水素化ユニットの第1の水素化反応器のデルタTの変化の絶対値は、10℃未満であり得る。第1の水素化反応器のデルタTは、第1の水素化反応器の入口温度と出口温度との間の差であり得る。
【0017】
いくつかの実施形態では、流量比は、1/2以下であり得る。流量比とは、分離システムに送られるFCDh流出物の一部の質量流量を、水素化供給物中の分解ガスの一部の質量流量で割ったものであり得る。
【0018】
いくつかの実施形態では、水素化供給物は、メチルアセチレン、プロパジエン、および少なくとも1つの分解器生成物を含み得、少なくとも1つの分解器生成物は、エチレン、プロピレン、メタン、エタン、プロパン、またはこれらの組み合わせのうちの1つ以上を含む。
【0019】
いくつかの実施形態では、水素化された流出物は、2体積ppm以下のアセチレン濃度を有し得る。
【0020】
いくつかの実施形態では、FCDh流出物は、少なくとも1つのFCDh生成物を含み得、少なくとも1つのFCDh生成物は、エチレン、プロピレン、またはそれらの両方を含む。
【図面の簡単な説明】
【0021】
本開示の特定の実施形態の以下の詳細な説明は、以下の図面と併せて読むと最も良く理解することができ、これらの図面では、同様の構造体が同様の参照番号で示されている。
【0022】
【
図1】本明細書に示され、記載される1つ以上の実施形態による、蒸気分解システムおよび共有流出物処理システムと統合されたFCDhシステムを含む、オレフィンを生成するための統合プロセスを概略的に示す。
【
図2】本明細書に示され、記載される1つ以上の実施形態による、
図1の統合プロセスの蒸気分解システムを概略的に示す。
【
図3】本明細書に示され、記載される1つ以上の実施形態による、
図1の統合プロセスのFCDhシステムを概略的に示す。
【
図4】本明細書に示され、記載される1つ以上の実施形態による、
図1の統合プロセスの流出物処理システムの一部を概略的に示す。
【
図5】本明細書に示され、記載される1つ以上の実施形態による、アセチレン水素化ユニットに送られる水素化供給物の温度(x軸)の関数としてのアセチレン水素化ユニットのアセチレン濃度(y軸左)およびエチレン選択率(y軸右)をグラフで表す。
【0023】
図面は本質的に概略的であり、限定なしに、センサ、温度伝送器、圧力伝送器、流量計、ポンプ、バルブ、熱交換器、内部反応器構造などの当技術分野で一般的に使用される反応器システムのいくつかの構成要素を含まない場合があると理解されたい。これらの構成要素は、開示された本実施形態の意図および範囲の内にあることが知られているであろう。しかし、本開示に記載されているものなどの操作的構成要素は、本開示に記載されている実施形態に追加することができる。
【0024】
ここで、様々な実施形態をより詳細に参照し、そのいくつかの実施形態が添付の図面に例示されている。可能な場合はいつでも、同じまたは類似の部分を参照するために、図面全体で同じ参照番号が使用されるであろう。
【発明を実施するための形態】
【0025】
本開示の1つ以上の実施形態は、オレフィンを生成するための統合プロセスにおいてアセチレン水素化ユニットを操作するための方法を対象とする。特に、本開示の1つ以上の実施形態は、流出物処理システムへのFCDh流出物の流れが突然減少した場合および/または喪失した場合のアセチレン水素化ユニットの熱暴走を低減または防止すべくオレフィン生成プロセスのアセチレン水素化ユニットを操作する方法に関する。本開示のいくつかの実施形態では、蒸気分解と流動接触脱水素化(FCDh)との統合システムにおいてアセチレン水素化ユニットを操作するための方法は、蒸気分解システム内で第1の炭化水素供給物の少なくとも一部を分解して、少なくとも水素、一酸化炭素(CO)、およびアセチレンを含む分解ガスを生成することと、FCDhシステム内で第2の炭化水素供給物の少なくとも一部を脱水素化して、少なくとも水素およびCOを含むFCDh流出物を生成することと、を含む。これらの方法は、分解ガスとFCDh流出物の少なくとも一部とを水素化供給物およびアセチレン低減流に分離することであって、水素化供給物が、少なくとも水素、CO、およびアセチレンを含む、分離することをさらに含み得る。水素化供給物は、分解ガスおよびFCDh流出物からのCOの少なくとも99%を含み得る。通常の操作条件中に、水素化供給物中のCOの少なくとも20%が分解ガスからのものである。これらの方法は、アセチレン水素化ユニット内で水素化供給物をアセチレン水素化触媒と接触させることであって、この接触によって、水素化供給物中のアセチレンの少なくとも一部が水素化されて、水素化された流出物が生成される、接触させることをさらに含み得る。蒸気分解システムは、FCDh流出物の流量がゼロであるときに水素化供給物中のCO濃度が少なくとも100ppmvになるほど分解ガス中のCO濃度が十分に高くなるようにCO生成を増加させる条件下で操作され得る。分解ガス中のCOが増加すると、分離システムへのFCDh流出物の流れの低減または完全な喪失に応答したアセチレン水素化ユニットの活性増加の程度が低減し、それによって、アセチレン水素化ユニットの熱暴走を低減または防止することができる。
【0026】
本明細書には、FCDhと組み合わせて蒸気分解することおよび一般的なアセチレン水素化ユニットを利用することによってオレフィンを生成するための統合プロセスの例が記載されている。この統合プロセスは、ここで開示されているアセチレン水素化ユニットを操作する方法の状況を提供するために利用され、これによって、アセチレンが下流プロセスに貫流することを低減または防止することができる。
図1~4の概略図は単なる例示的なシステムであり、オレフィンの生成に適した他のシステムが本明細書で企図されており、本明細書で説明される概念はそのような代替的なシステムで利用されてもよいと理解されたい。例えば、本明細書に記載されている概念は、非流動条件下で操作するものまたはライザーではなくダウナーであるものなどの代替的な反応器ユニットおよび再生ユニットを有する他のシステムに等しく適用することができる。さらに、反応器システム内で化学物質流を処理するためのここに記載されている方法およびプロセスは、オレフィンを生成するための他のプロセス(例えば、異なる供給原料を利用する)が企図されることから、流動接触脱水素化と統合された蒸気分解によって軽質オレフィンまたはアルキル芳香族化合物を生成するように設計された反応器システム、例えば、
図1に関して記載されている反応器システムの実施形態のみに限定されるべきではない。
【0027】
これより、化学物質流を処理するための反応器システムおよび方法について、
図1を参照してさらに詳細に論じる。処理される化学物質流は、供給流または単に供給物と呼ばれ得、これは、反応、分離、または他のプロセスによって処理されて、生成物流、反応器流出物、または単に流出物を形成する。供給物は組成物を含み得、供給物の組成に応じて、適切な触媒を利用して、供給物の内容物を、軽質オレフィンまたは他の化学生成物を含み得る流出物に変換することができる。
【0028】
本明細書で使用される場合、「スタートアップ」とは、一般に、反応器温度、反応器圧力、流量(例えば、反応器への供給ガス(炭化水素および/または不活性ガス)、触媒再生のための燃料ガスおよび空気、触媒ストリッピングおよび流動化のためのガス、触媒を処理する酸素のための酸素含有ガスなどの流量)、触媒再循環速度、またはこれらの組み合わせが確立されているが、所与の反応の安定した操作のための所望の値にまだ達していない時間を指し得る。
【0029】
本明細書で使用される場合、「シャットダウン」とは、一般に、反応器システム(例えば、反応器および/または再生器)の温度、圧力、流量、および/または触媒再循環速度がプロセス反応の終了前に低減している時間を指し得る。
【0030】
システム再循環とは、反応器流出物(例えば、FCDh流出物)の少なくとも一部を炭化水素供給物にまたは直接反応器に再循環で戻し得る、反応器システムの操作を指し得る。システム再循環の場合、反応器流出物および/または反応器の操作条件が目標または通常の操作条件に戻るまで反応器システムがシステム再循環モードで操作される規格外の生成物の場合が含まれ得る。反応器システムはまた、本明細書に開示されている反応器システムと統合された蒸気分解システムの操作の中断など、他の反応器システムの操作の計画的または計画外の中断に応答して、システム再循環モードで操作され得る。いくつかの実施形態では、システム再循環によって、反応器の温度が低温(すなわち、<550℃)に低下する場合がある。他の状況では、システム再循環は、不活性ガスを反応器に通して循環させて、触媒を流動状態に維持することを含み得る。
【0031】
ユニットトリップとは、反応器ユニットが完全にシャットダウンしたときの状態、または温度が低減した状態、および/または例えば化学処理中の暴走状態を理由に1つ以上の流れの流量が低減した、もしくは側管に通された状態を指し得る。ユニットトリップには、反応器システム全体が完全にシャットダウンされる深刻なユニットトリップ、または温度が低減するか、圧力が低減するか、もしくは1つ以上の流が側管に通される中間レベルのトリップなど、様々なレベルのユニットトリップが含まれ得る。スタートアップ、シャットダウン、システム再循環、またはユニットトリップ中に存在するような低温反応条件、および不活性ガスが炭化水素供給流なしで反応器システムを通って循環する条件は、本明細書では、非通常の操作条件と呼ばれ得る。通常の操作条件とは、550℃超の温度または所与の反応物の触媒反応に適した温度など、高温の定常状態条件を指す。
【0032】
本明細書で使用される場合、「水素化供給物」という用語は、分離システムに導入された分解ガスからのアセチレンの少なくとも95質量%を含む、分離システムからアセチレン水素化ユニットを通過した流出物を指す。
【0033】
本明細書で使用される場合、「アセチレン低減流」という用語は、水素化供給物とは異なるものであり、かつ分離システムに送られる分解ガスからのアセチレンの5質量%未満を含む、分離システムからの別の流出物流を指す。
【0034】
本明細書で使用される場合、「上流」および「下流」という用語は、統合プロセスを通る材料の流れの方向に関連している。例えば、1つ以上の材料の流が第1のユニット操作から第2のユニット操作に流れる場合、第1のユニット操作は第2のユニット操作の上流である。1つ以上の材料の流が第2のユニット操作から第1のユニット操作に流れる場合、第1のユニット操作は第2のユニット操作の下流である。
【0035】
本明細書で使用される場合、「選択率」という用語は、反応器流出物中のすべての生成物のモルに対する所望の生成物のモルの比率を指し得て、すべての生成物は、同じ炭素数に正規化されている。例えば、アセチレン水素化ユニットのエチレン選択率は、水素化された流出物中の追加的に生成されたエチレンのモルを、水素化反応中に生成されたすべての生成物の総モルで割った比率であり得る。例えば、すべてのアセチレンがエチレンに変換される場合、選択率は100%である。すべてのアセチレンがエタンに変換される場合、選択率は0(ゼロ)である。すべてのアセチレンおよび一部の新たに入ってくるエチレンがエタンに変換される場合、選択率は負になる。
【0036】
本明細書で使用される場合、「貫流」という用語は、アセチレン、メチルアセチレン、プロパジエン、または他の化合物などであるがこれらに限定されることはない特定の反応物を、あるプロセスユニットから別の下流のプロセスユニットに、オレフィンのユーザによって指定された閾値、例えば2体積百万分率(ppmv)より多い量で送ることを指す。一例では、特定の反応物が反応システムにおいて実質的に不完全な変換を経て、その結果、反応システムから排出される流出物が、オレフィンのユーザおよび場所に応じて、2ppmv超または1ppmv超の特定の反応物の濃度を有する場合、貫流が起こり得る。
【0037】
本明細書で使用される場合、「閾値アセチレン濃度」という用語は、それ以下で、アセチレン濃度が、オレフィンのユーザによって提供される生成物純度の規格内にあるとみなされる、および/または下流のプロセスで触媒の汚損もしくは他の中断を引き起こさない、アセチレン水素化ユニットからの水素化された流出物中のアセチレン濃度を指し得る。
【0038】
本明細書で使用される場合、「熱暴走」という用語は、プロセスの温度の段階的な上昇によって、熱を生成または発生させてそれによってさらに温度を上昇させるように操作条件が変化する、プロセスの条件を指し得る。
【0039】
本明細書で使用される場合、「通常の操作条件」という用語は、アセチレン水素化ユニット内でアセチレン水素化反応を実施するのに適した温度など、所与の反応の触媒反応に適した温度などの高温の定常状態条件を指し得る。
【0040】
図1を参照すると、オレフィンを生成するための統合プロセス10が概略的に示されている。統合プロセス10は、蒸気分解システム20と、流動接触分解(FCDh)システム30と、蒸気分解システム20およびFCDhシステム30からの生成物流出物を処理するように操作可能であり得る流出物処理システム38と、を含み得る。蒸気分解システム20は、第1の炭化水素供給物22の少なくとも一部を変換して、少なくとも水素、一酸化炭素(CO)、アセチレン、および少なくとも1つの蒸気分解器生成物を含む分解ガス28を生成するように操作可能であり得る。FCDhシステム30は、第2の炭化水素供給物32の少なくとも一部を変換して、少なくとも水素、CO、および少なくとも1つのFCDh生成物を含むFCDh流出物34を生成するように操作可能であり得る。分解ガス28、または分解ガス28およびFCDh流出物34の少なくとも一部は、流出物処理システム38に送られ得、この流出物処理システム38は、分解ガス28および/またはFCDh流出物34を処理して、1つ以上の生成物流(図示せず)を生成するように操作可能であり得る。流出物処理システム38は、少なくとも分離システム40と、分離システム40の下流のアセチレン水素化ユニット50と、分離システム40とアセチレン水素化ユニット50との間に配置された熱交換器60と、を含み得る。流出物処理システム38は、アセチレン水素化ユニット50の下流に配置された追加の分離および/または精製プロセス(図示せず)を含み得る。
【0041】
図2を参照すると、蒸気分解システム20の実施形態が概略的に示されている。蒸気分解システム20は、蒸気分解ユニット110と、油急冷ユニット120、水急冷ユニット130、圧縮機システム140またはこれらの組み合わせのうちの1つ以上と、を含み得る。いくつかの実施形態では、蒸気分解システム20はまた、酸性ガス除去ユニット(図示せず)も含み得る。第1の炭化水素供給物22は、第1の炭化水素供給物22の1つ以上の炭化水素成分を分解して1つ以上のオレフィンを生成するための蒸気分解ユニット110に導入され得る。第1の炭化水素供給物22は、石油化学プロセスからの、または原油、シェールガスもしくは他の炭化水素供給源の精製操作からの生成物流などの任意の炭化水素流であり得る。いくつかの実施形態では、第1の炭化水素供給物22は、蒸気分解ユニット110の前にまたはその内部で組み合わされた複数の異なる炭化水素流を含み得る。いくつかの実施形態では、第1の炭化水素供給物22は、エタン、プロパン、ブタン、ナフサ、他の軽質炭化水素、またはこれらの組み合わせを含む供給原料のような軽質炭化水素供給原料であり得る。
【0042】
蒸気分解ユニット110は、第1の炭化水素供給物22を受け取り、第1の炭化水素供給物22の1つ以上の成分を分解して、分解器流出物112を生成するように操作可能であり得る。蒸気分解ユニット110は、第1の炭化水素供給物22を500℃~850℃の温度の蒸気と接触させて分解器流出物112を生成するように操作可能であり得る。硫黄含有組成物24、メタノール含有流26、またはそれらの両方を蒸気分解ユニット110に導入することもできる。硫黄含有組成物24、メタノール含有流26、またはそれらの両方を、蒸気分解ユニット110に直接導入しても、または蒸気分解ユニット110の上流の第1の炭化水素供給物22と組み合わせてもよい。硫黄含有組成物24は、ジメチルジスルフィド(DMDS)、ジメチルスルフィド(DMS)、ジエチルジスルフィド(DEDS)、メチルメルカプタン(MM)、またはそれらの組み合わせなどであるがこれらに限定されることはない1つ以上の硫黄含有化合物を含み得る。硫黄含有組成物24からの硫黄含有化合物は、蒸気分解ユニット110の蒸気分解炉内の加熱コイルを不動態化して、蒸気分解ユニット110内のコークスの形成を管理することができる。硫黄含有化合物を増加または減少させると、蒸気分解ユニット110内で生成されるCOの量が変化し、それによって、分解器流出物112中のCO濃度(例えば、COの量)が変化し得る。
【0043】
第1の炭化水素供給物22中に存在するエタン、プロパン、ナフサ、および他の炭化水素は、蒸気分解ユニット110内で蒸気分解されて、エチレン、プロピレン、ブテン、またはそれらの組み合わせなどであるがこれらに限定されることはない少なくとも1つ以上の軽質オレフィンを生成することができる。蒸気分解ユニット110は、第1の炭化水素供給物22中の炭化水素からエチレンおよびプロピレンなどの1つ以上の軽質オレフィンを生成するのに十分な条件(すなわち、温度、圧力、滞留時間など)下で操作され得る。いくつかの実施形態では、蒸気分解ユニット110は、500℃~850℃、500℃~810℃、550℃~850℃、550℃~810℃、600℃~850℃、または600℃~810℃の温度で操作され得る。蒸気分解ユニット110の温度は、蒸気分解ユニット110に導入される第1の炭化水素供給物22の組成に依存し得る。炭化水素分解プロセスの他の好適な操作条件は、当技術分野で周知である。
【0044】
分解器流出物112は、エチレン、プロピレン、ブテン(例えば、1-ブテン、トランス-2-ブテン、シス-2-ブテン、イソブテン)、エタン、プロパン、他の軽質炭化水素、またはこれらの組み合わせなどであるがこれらに限定されることはない1つ以上の分解反応生成物を含み得る。分解器流出物112はまた、水素、CO、アセチレン、メチルアセチレン、プロパジエン、メタン、蒸気分解ユニット110内で生成される他の化合物、第1の炭化水素供給物22の未反応成分、またはこれらの組み合わせも含み得る。例えば、蒸気分解ユニット110内での分解反応によって、水素およびCOなどの副生成物、ならびにアセチレン、メチルアセチレン、プロパジエンなどの副反応生成物、他の副反応生成物、またはこれらの組み合わせを生成することができる。さらに、第1の炭化水素供給物22の未反応炭化水素および/または他の成分は、反応を受けずに蒸気分解ユニット110を通過することができ、その結果、分解器流出物112は、第1の炭化水素供給物22のこれらの未反応成分を含む。酸およびアルコールガスもまた、蒸気分解ユニット110内で生成され得る。
【0045】
さらに
図2を参照すると、分解器流出物112は、蒸気分解ユニット110から蒸気分解ユニット110の下流の油急冷ユニット120に送ることができる。油急冷ユニット120は、分解器流出物112を炭化水素急冷液122で急冷して、分解器流出物112の温度を低減させ、重炭化水素成分を除去して、油急冷流出物126を生成するように操作可能であり得る。油急冷流出物126は、油急冷ユニット120から油急冷ユニット120の下流の水急冷ユニット130に送ることができる。水急冷ユニット130は、分解器流出物112を液状の水で急冷して、油急冷流出物126の温度をさらに低減させ、蒸気を除去して、分解ガス28を生成するように操作可能であり得る。水急冷ユニット130は、油急冷ユニット120の下流にあるものとして
図2に示されているが、水急冷ユニット130は、代わりに、油急冷ユニット120の上流に位置していてもよいと理解される。蒸気分解システム20は、任意選択的に、分解ガス28から酸性ガスを除去するための酸性ガス除去システム(図示せず)を含み得る。あるいは、いくつかの実施形態では、酸性ガス除去システムは、流出物処理システム38(
図1)に組み込まれ得る。分解ガス28は、流出物処理システム38の上流の分解ガス28の体積を低減させるように操作可能な圧縮システム140に送ることができる。
【0046】
ここで
図3を参照すると、FCDhシステム30は、第2の炭化水素供給物32を受け取り、第2の炭化水素供給物32を脱水素化触媒と接触させて、FCDh流出物34を生成するように操作可能であり得る。FCDhシステム30への第2の炭化水素供給物32は、プロパン、n-ブタン、イソブタン、エタン、またはエチルベンゼンのうちの少なくとも1つを含み得る。第2の炭化水素供給物32は、炭化水素処理施設からの1つ以上の炭化水素流を含み得る。第2の炭化水素供給物32は、第1の炭化水素供給物22と同じであっても、または異なっていてもよい。いくつかの実施形態では、第2の炭化水素供給物32は、流出物処理システム38から回収されてFCDhシステム30に再循環で戻るプロパンまたはエタン流を含み得る。FCDhシステム30では、第2の炭化水素供給物32の少なくとも一部が、脱水素化触媒の存在下での脱水素化によって軽質オレフィンまたは他の生成物に変換され得る。脱水素化触媒は、炭化水素を脱水素化してオレフィンを生成するための当技術分野で知られている任意の触媒であり得る。FCDh流出物34は、少なくともCO、水素、および少なくとも1つのFCDh生成物を含み得る。少なくとも1つのFCDh生成物は、エチレン、プロピレン、またはそれらの組み合わせのうちの1つ以上を含み得る。
【0047】
図3を参照すると、例示的なFCDhシステム30が概略的に示されている。FCDhシステム30は、反応器部分200および触媒処理部分300を含み得る。
図1の文脈で本明細書で使用されるように、反応器部分200は、主要なプロセス反応が起こるFCDhシステム30の部分を指し得る。例えば、第2の炭化水素供給物32は、FCDhシステム30の反応器部分200において脱水素化触媒の存在下で脱水素化され得る。反応器部分200は、下流の反応器区画230と、上流の反応器区画250と、反応器202内で形成された化学生成物から触媒を分離する役割を果たす触媒分離区画210と、を含み得る反応器202を含む。
【0048】
また、本明細書で使用される場合、
図3のFCDhシステム30の触媒処理部分300は、一般に、FCDhシステム30の通常の操作中に、コークス堆積物の除去、触媒の加熱、触媒の再活性化、他の処理操作、またはこれらの組み合わせなどの、何らかの手法で触媒が処理されるFCDhシステム30の部分を指す。いくつかの実施形態では、触媒処理部分300は、燃焼器350、ライザー330、触媒分離区画310、および酸素処理ゾーン370を含み得る。触媒処理部分300の燃焼器350は、1つ以上の下部燃焼器入口ポート352を含み得、ライザー330と流体連通にあり得る。燃焼器350は、移送ライン426を介して触媒分離区画210と流体連通にあり得、この移送ライン426は、触媒処理(例えば、コークス除去、加熱、再活性化など)のために、(通常の操作条件の間)不活性化された触媒を反応器部分200から触媒処理部分300に供給することができる。酸素処理ゾーン370は、(例えば、移送ライン424および輸送ライザー430を介して)上流の反応器区画250と流体連通にあり得、それによって、処理された触媒を触媒処理部分300から反応器部分200に返送することができる。燃焼器350は、空気入口428が燃焼器350に接続する下部燃焼器入口ポート352を含み得る。空気入口428は、空気または他の反応性ガス、例えば酸素含有ガスを燃焼器350に供給することができる。補助燃料の燃焼を助けるために、空気および/または他の反応性ガスを燃焼器350に導入することができる。燃焼器350はまた、燃料入口354も含み得る。燃料入口354は、炭化水素流356などの燃料を燃焼器350に供給することができる。酸素処理ゾーン370は、触媒の酸素処理のために酸素含有ガス374を酸素処理ゾーン370に供給することができる酸素含有ガス入口372を含み得る。
【0049】
図3を参照して、通常の操作条件下で連続反応を実施するFCDhシステム30の一般的な操作について説明する。FCDhシステム30の反応器部分200の操作中に、第2の炭化水素供給物32が、輸送ライザー430に入ることができ、FCDh流出物34が、管420を介してFCDhシステム30から出ることができる。1つ以上の実施形態によると、FCDhシステム30は、第2の炭化水素供給物32および流動脱水素化触媒を上流の反応器区画250に供給することによって操作することができる。第2の炭化水素供給物32中の炭化水素は、上流の反応器区画250内の脱水素化触媒と接触することができ、各々が下流の反応器区画230に上向きに入って、これを通って流れ、通常の操作条件下で少なくとも1つのFCDh生成物を生成することができる。
【0050】
FCDh流出物34および脱水素化触媒は、下流の反応器区画230から触媒分離区画210内の分離デバイス220に送られ得る。FCDh流出物34は、水素、CO、および少なくとも1つのFCDh生成物を含み得る。FCDh流出物34はまた、第2の炭化水素供給物32の未反応部分、流動化ガス、副生成物、反応中間体、他のガス、またはこれらの組み合わせも含み得る。少なくとも1つのFCDh生成物は、エチレン、プロピレン、または他の軽質オレフィンを含み得る。FCDh流出物34は、蒸気分解システム20からの分解ガス28中のCO濃度よりも高いCO濃度を有し得る。FCDh流出物34は、600体積百万分率(ppmv)~2400ppmv、例えば、1000ppmv~2000ppmvのCO濃度を有し得る。
【0051】
脱水素化触媒は、分離デバイス220内でFCDh流出物34から分離され得る。次いで、FCDh流出物34は、触媒分離区画210から輸送され得る。例えば、FCDh流出物34の分離された蒸気は、触媒分離区画210のガス出口ポートで管420を介してFCDhシステム30から除去され得る。いくつかの実施形態では、分離デバイス220は、2つ以上の段階のサイクロン分離を含み得るサイクロン分離システムであり得る。
【0052】
いくつかの実施形態によると、分離デバイス220におけるFCDh流出物34の蒸気(vapor)からの分離に続いて、脱水素化触媒は、一般に、ストリッパー224を通って反応器触媒出口ポート222に移動することができ、そこで、脱水素化触媒は、移送ライン426を介して反応器部分200から出て、触媒処理部分300に移送され得る。任意選択的に、脱水素化触媒を、スタンドパイプ422を介して上流の反応器区画250に直接移送することもできる。いくつかの実施形態では、ストリッパー224からの再循環された脱水素化触媒は、触媒処理部分300から輸送ライザー430への処理された脱水素化触媒と予備混合され得る。
【0053】
分離された脱水素化触媒は、触媒分離区画210から触媒処理部分300の燃焼器350に送られ得る。コークス堆積物の除去、触媒の加熱、触媒の再活性化、他の触媒処理、またはこれらの任意の組み合わせを行うように、脱水素化触媒を通常の操作中に触媒処理部分300で処理することができる。前述のように、触媒処理部分300における脱水素化触媒の処理は、触媒からのコークス堆積物の除去、燃焼燃料源の燃焼による触媒温度の上昇、触媒の再活性化、触媒からの1つ以上の成分のストリッピング、他の処理操作、またはこれらの組み合わせを含み得る。いくつかの実施形態では、処理部分300における脱水素化触媒の処理は、燃焼器350内で脱水素化触媒の存在下で燃焼燃料源を燃焼させて、コークス堆積物を除去すること、および/または脱水素化触媒を加熱して加熱された触媒を生成することを含み得る。加熱された脱水素化触媒は、触媒分離区画310において燃焼ガスから分離され得る。
【0054】
いくつかの実施形態では、加熱された脱水素化触媒は、次いで、加熱された脱水素化触媒の酸素処理を実施することによって再活性化され得る。酸素処理は、加熱された脱水素化触媒を、脱水素化触媒を再活性化するのに十分な時間にわたって酸素含有ガス374に曝露することを含み得る。脱水素化触媒を再活性化するための酸素処理は、脱水素化触媒を加熱するための補助燃料の燃焼後に実施され得る。酸素処理は、加熱された脱水素化触媒を酸素含有ガス374で少なくとも2分間処理することを含み得、それによって、脱水素化触媒を再活性化して、再活性化された脱水素化触媒を生成することができる。酸素含有ガス374は、酸素含有ガス374の総モル流量に基づいて、5mol%~100mol%の酸素含有量を含み得る。いくつかの実施形態では、脱水素化触媒の酸素処理は、2分超であり、かつ補助燃料の燃焼によって加熱した後に加熱された脱水素化触媒よりも大きい触媒活性を有する再活性化された脱水素化触媒を生成するのに十分な時間にわたって、脱水素化触媒を酸素含有ガス374の流れに曝露しながら、脱水素化触媒を少なくとも660℃の温度に維持することを含み得る。酸素処理は、触媒処理部分300の触媒分離区画310の下流にあり得る酸素処理ゾーン370において実施され得る。
【0055】
脱水素化触媒の処理中のコークスおよび/もしくは補助燃料の燃焼からの燃焼ガス、または触媒処理および触媒再活性化中に脱水素化触媒に導入される他のガスは、再生器流出物出口432を介して触媒処理部分300から除去され得る。
【0056】
図3および前述に論じた内容は、炭化水素を接触脱水素化して軽質オレフィンを生成するためのシステムの一実施形態を提示している。しかしながら、本開示の範囲から逸脱することなく、炭化水素の接触脱水素化のために他の反応器システム構成を用いて、軽質オレフィンを生成することができると理解される。例えば、いくつかの実施形態では、FCDhシステム30は、バブリング領域、スラグフロー領域、乱流領域、高速流動化領域、空気式輸送領域、またはそれらの組み合わせなどの流動化領域において第2の炭化水素供給物32を触媒と接触させるように操作可能な任意のタイプの流動反応器システムを含み得る。
【0057】
再び
図3を参照すると、FCDhシステム30は、システム再循環式に操作することができ、ここでは、FCDh流出物34の少なくとも一部が、FCDhシステム30の反応器部分200に再循環で戻る。FCDhシステム30は、FCDhシステム30のスタートアップ中に、またはFCDh流出物34の組成が生成物流の目標基準に適合しない規格外の場合に応答して、システム再循環モードで操作することができる。これらの場面では、FCDh流出物34の組成を適合するように戻すためにFCDhシステム30に調整が行われる一方で、FCDh流出物34をFCDhシステム30に再循環で戻すことができる。システム再循環は、反応器システムが別の反応器システム(例えば、蒸気分解システム20など)と統合され、他の反応器システムが中断される場合(例えば、計画されたメンテナンスのような計画された出来事、または炉、圧縮機もしくは他の機器のような機器の予期されていない故障のような計画外の出来事)にも行われ得る。システム再循環の操作中に、FCDh流出物34の少なくとも一部またはすべてを、FCDh流出物再循環36においてFCDhシステム30に再循環で戻すことができる。FCDh流出物再循環36は、
図3に示されるように、輸送ライザー430の上流の第2の炭化水素供給物32と組み合わせることができる。いくつかの実施形態では、FCDh流出物再循環36は、輸送ライザー430に直接送ることができ、FCDh流出物再循環36は、次いで、第2の炭化水素供給物32および脱水素化触媒と組み合わされる。
【0058】
図4を参照すると、前述のように、流出物処理システム38は、少なくとも分離システム40と、分離システム40の下流のアセチレン水素化ユニット50と、分離システム40とアセチレン水素化ユニット50との間に配置された熱交換器60と、を含み得る。分解ガス28、FCDh流出物34の少なくとも一部、またはそれらの両方が分離システム40に送られ得る。いくつかの実施形態では、分解ガス28およびFCDh流出物34は、独立して、分離システム40に直接送られ得る。いくつかの実施形態では、分解ガス28およびFCDh流出物34は、分離システム40の上流で組み合わされ、組み合わされた流39として送られ得る。FCDh流出物34は、水急冷ユニット130および油急冷ユニット120の下流の任意の点で分解ガス28と組み合わされ得る。
【0059】
分離システム40は、分解ガス28、FCDh流出物34、またはそれらの両方から少なくとも水素化供給物42およびアセチレン低減流44を生成するように操作可能であり得る。分離システム40は、1つまたは複数の分離ユニットを含み得る。分離システム40は、分解ガス28、FCDh流出物34、またはそれらの両方から水素化供給物42を生成するように操作可能な任意のタイプの分離ユニットを含み得る。いくつかの実施形態では、分離システム40は、分解ガス28、FCDh流出物34、またはそれらの両方を、成分の沸点温度の差によって水素化供給物42およびアセチレン低減流44に分離することができる蒸留ユニットを含み得る。いくつかの実施形態では、分離システム40は、多段蒸留塔であり得る。沸点温度の差による分解ガス28、FCDh流出物34、またはそれらの両方の成分の分離は、分解ガス28、FCDh流出物34、またはそれらの両方を、1つ以上の成分の沸点温度よりも低い温度に最初に冷却することを含み得る。したがって、分離システム40は、蒸留ユニットの上流の分解ガス28、FCDh流出物34、またはそれらの両方の1つ以上の成分を凝縮するように操作可能な凝縮器を含み得る。分離システム40は、蒸留プロセスに限定されることはない。分解ガス28、FCDh流出物34、またはそれらの両方から水素化供給物42を生成するための他の方法およびプロセスが企図されると理解される。
【0060】
前述のように、水素化供給物42は、分離システム40に送られた分解ガス28からのアセチレンの少なくとも95重量%を含み得る。水素化供給物42は、エチレン(C2H4)、プロピレン(C3H6)、アセチレン(C2H2)、メチルアセチレン(H3C-C≡CH)、プロパジエン(H2C=C=CH2)、メタン(CH4)、エタン(C2H6)、プロパン(C3H8)、またはこれらの組み合わせなどであるがこれらに限定されることはない飽和および不飽和炭化水素を含み得る。水素化供給物42はまた、水素、CO、二酸化炭素(CO2)、不活性ガス、またはこれらの組み合わせなどであるがこれらに限定されることはない非炭化水素ガスも含み得る。不活性ガスは、窒素、アルゴン、または蒸気分解システム20、FCDhシステム30もしくはそれらの両方に存在する他の不活性ガスを含み得る。いくつかの実施形態では、水素化供給物42は、アセチレン、水素、CO、および少なくとも1つの生成物を含み得る。水素化供給物42は、メチルアセチレン、プロパジエン、またはそれらの両方をさらに含み得る。水素化供給物42中の生成物は、エチレン、プロピレン、メタン、エタン、プロパン、またはこれらの組み合わせのうち1つ以上を含み得る。
【0061】
アセチレン低減流44は、分解ガス28からのアセチレンの5重量%未満を含み得る。アセチレン低減流44は、水素化供給物42と比較して、より高い沸点の炭化水素をより高い重量パーセントで含み得る。これらの高沸点炭化水素には、プロパン、プロピレン、ブタン、ブテン、ブタジエン、ペンタン、または他のより高い沸点温度の炭化水素などであるがこれらに限定されることはない飽和および不飽和炭化水素を含み得る。
【0062】
分離システム40は、フロントエンド脱プロパン塔(FEDP)またはフロントエンド脱エタン塔(FEDE)であり得る。分離システム40がFEDPである場合、水素化供給物42は、C3炭化水素および非炭化水素ガスを含み得る。C3炭化水素は、メタン、エタン、プロパン、エチレン、プロピレン、アセチレン、メチルアセチレン、プロパジエン、およびこれらの組み合わせを含み得るが、これらに限定されることはない。水素化供給物42中の軽質ガスは、水素、CO、二酸化炭素、窒素、または他の非炭化水素ガスを含み得る。分離システム40がFEDPである場合、アセチレン低減流44は、ブタン、ブテン、ブタジエン、ペンタン、ペンテン類(すなわち、ペンテンの様々な異性体のうちの1つ以上)、および他のC4+炭化水素などのC4+炭化水素を含み得る。いくつかの実施形態では、分離システム40はFEDEであり得、その場合、プロパンおよびプロピレンの大部分は、水素化供給物42ではなく、アセチレン低減流44中に存在し得る。いくつかの実施形態では、分離システム40がFEDEである場合、アセチレン低減流44は、水素化供給物42と比較して、メチルアセチレンおよびプロパジエンのより大きな割合を含み得る。オレフィン生成プロセスにおけるアセチレン水素化の様々なフロントエンド構成のさらなる情報については、Edgar L.Mohundroによる「Overview on C2 and C3 Selective Hydrogenation in Ethylene Plants」15th Ethylene Produces Conference、2003 AICHE Spring National Meeting、New Orleans、LAにおいて見出すことができ、その内容全体は、参照によって本明細書に組み込まれる。
【0063】
図4を参照すると、流出物処理システム38は、分離システム40の下流にあり、かつ分離システム40から水素化供給物42を受け取るように位置した、アセチレン水素化ユニット50を含み得る。水素化供給物42は、分離システム40からアセチレン水素化ユニット50に送られ得る。水素化供給物42をアセチレン水素化ユニット50内で水素化触媒と接触させることができる。水素化供給物42と水素化触媒との接触は、水素化供給物42中のアセチレンの少なくとも一部を水素化して、水素化された流出物52を生成し、それによって、水素化供給物42と比較してアセチレン濃度を低減させることができる。水素化された流出物52は、水素化反応からの反応生成物および水素化供給物42の未反応成分を含み得る。アセチレン水素化ユニット50は、1つ、2つ、3つ、または3つより多くの水素化反応器などの1つまたは複数の水素化反応器を含み得る。アセチレン水素化ユニット50の水素化反応器は、水素化触媒の固定床を含む固定床反応器であり得る。アセチレン水素化ユニット50の水素化反応器は、水素化触媒(固体)と気相の反応物との接触を介して水素化反応を実施するように操作可能な気相反応器であり得る。
【0064】
図4を参照すると、いくつかの実施形態では、アセチレン水素化ユニット50は、直列に配置された複数の水素化反応器(例えば、第1の水素化反応器150、第2の水素化反応器160、および第3の水素化反応器170)を含み得る。
図4を参照すると、一実施形態では、アセチレン水素化ユニット50は、少なくとも第1の水素化反応器150と、第1の水素化反応器150の下流の第2の水素化反応器160と、を含み得る。アセチレン水素化ユニット50はまた、第2の水素化反応器160の下流の第3の水素化反応器170も含み得る。第1の水素化反応器150は、水素化供給物42中のアセチレンの大部分を除去することができ、第2の反応器160は、残りのアセチレンを除去することができる。第3の反応器170は、水素化された流出物52がアセチレン濃度について規格外になることを防止するための研磨床として機能し得る。アセチレン水素化ユニット50はまた、任意選択的に、水素化反応器の各々の間に配置された熱交換器180も含み得る。熱交換器180は、水素化反応器間の発熱性の水素化反応から発生した熱を除去するように操作可能であり得る。
【0065】
水素化供給物42は、第1の水素化反応器150に送ることができ、この第1の水素化反応器150は、水素化供給物42からの少なくともアセチレンを水素化して、第1の水素化された流出物152を生成するように操作可能であり得る。第1の水素化された流出物152は、水素化供給物42中のアセチレン濃度よりも低いアセチレン濃度を有し得る。第1の水素化反応器150は、水素化された流出物52中のアセチレン濃度を閾値アセチレン濃度よりも低く維持するために、アセチレン水素化ユニット50の通常の操作条件の間、85%以上、90%以上、または95%以上のアセチレン変換率を有し得る。第1の水素化された流出物152を熱交換器180に送ることによって、第1の水素化された流出物152から熱を除去することができる。第1の水素化された流出物152は、第2の水素化反応器160に送ることができ、この第2の水素化反応器160は、第1の水素化された流出物152中のアセチレンをさらに水素化して、第2の水素化された流出物162を生成するように操作可能であり得る。第2の水素化された流出物162を熱交換器180に送ることによって、第2の水素化された流出物162から熱を除去することができる。第2の水素化された流出物162は、第3の水素化反応器170に送ることができ、この第3の水素化反応器170は、第2の水素化された流出物162中のアセチレンをさらに水素化して、第3の水素化された流出物172を生成するように操作可能であり得る。第3の水素化された流出物172を熱交換器180に通すことによって、第3の水素化された流出物172から熱を除去することができる。第3の水素化された流出物172は、水素化された流出物52としてアセチレン水素化ユニット50から送ることができる。
【0066】
図には示されていないが、アセチレン水素化ユニット50は、アセチレン水素化ユニット50の1つまたは複数の位置で温度、圧力、またはガス流量を測定するための温度センサ、圧力センサ、流量計、またはこれらの組み合わせのうちの1つまたは複数を含み得る。温度、圧力、および/またはガス流量は、アセチレン水素化ユニット50の複数のアセチレン水素化反応器のうちの1つ以上について、および/またはアセチレン水素化ユニット50に導入された水素化供給物42について決定され得る。アセチレン水素化ユニット50を操作する方法は、アセチレン水素化ユニット50の温度、アセチレン水素化ユニット50に送られる水素化供給物42の温度、またはそれらの両方を決定することを含み得る。
【0067】
アセチレン水素化ユニット50はまた、水素化供給物42、水素化された流出物52、アセチレン水素化ユニット50の水素化反応器のうちの1つ以上からの中間流出物、またはこれらの組み合わせにおけるCO、水素、または他の成分の濃度を測定するように操作可能なGC分析計のような1つまたは複数の分析計も含み得る。いくつかの実施形態では、組成分析のための流は、水素化供給物42をアセチレン水素化ユニット50に導入する前に、水素化供給物42から回収することができる。あるいは、またはさらに、組成分析のための流は、アセチレン水素化ユニット50から送られた水素化された流出物52から回収することができる。いくつかの実施形態では、組成分析のための流は、アセチレン水素化ユニット50の水素化反応器のうちの1つから送られた1つ以上の中間流出物流から回収することができる。アセチレン水素化ユニット50を操作する方法は、アセチレン水素化ユニット50内のCO、水素、または他の成分の濃度を決定することを含み得る。
【0068】
水素化触媒は、水素化供給物42中の生成物化合物に対してアセチレンの水素化に選択的な触媒であるアセチレン水素化触媒であり得る。水素化触媒は、アセチレンを選択的に水素化するための任意の既知の触媒であり得る。アセチレン水素化のための市販の触媒は、広く入手可能であり、本開示は、本明細書に記載の特定のいずれかの組成物に限定されることはない。
【0069】
アセチレン水素化ユニット50は、触媒による水素化が、プロピレンおよびエチレンの水素化よりもアセチレンの水素化に対して選択的である条件で操作することができる。アセチレン水素化ユニット50は、下流プロセスへのアセチレンの貫流を防止する変換速度でアセチレンを水素化するのに十分な温度であるが、オレフィンの水素化の増加およびアセチレン水素化ユニット50の熱暴走をもたらす温度未満で操作することができる。本明細書でさらに詳細に論じられるように、アセチレン水素化ユニット50の操作温度は、水素化供給物42の組成に依存し得るが、アセチレン水素化ユニット50の操作温度は、10℃~200℃、例えば、10℃~100℃であり得る。アセチレン水素化ユニット50の操作温度に影響を与える他の要因は、水素化触媒の種類、水素化触媒の経年数/活性、流量、入口アセチレン濃度、CO濃度、汚染物質または毒性の存在、他の要因、またはこれらの組み合わせを含み得るが、これらに限定されることはない。アセチレン水素化ユニット50は、100ポンド毎平方インチゲージ(psig)~1000psig(すなわち、約690キロパスカル(kPa)~約6900kPa)の圧力で操作することができる。アセチレン水素化ユニット50はさらに、1,000~14,000のガス空間速度(GHSV)(1時間毎の触媒の体積当たりの体積)で操作することができる。
【0070】
通常の操作条件下で操作する場合、アセチレン水素化ユニット50の第1の水素化反応器150におけるアセチレン変換率は、水素化された流出物52中のアセチレン濃度を閾値アセチレン濃度以下に維持するのに十分であり得る。いくつかの実施形態では、第1の水素化反応器150におけるアセチレン変換率は、通常の操作条件下で、85%以上、例えば、88%以上、90%以上、またはさらには95%以上であり得る。通常の操作条件とは、水素化された流出物52中のアセチレン濃度が閾値アセチレン濃度以下である定常状態でのアセチレン水素化ユニット50の操作を指す。いくつかの実施形態では、通常の操作条件下で、第1の水素化反応器150におけるアセチレン変換率は、85%~95%、または88%~92%であり得る。
【0071】
水素化された流出物52は、アセチレン水素化ユニット50から、例えば、アセチレン水素化ユニット50の最後の水素化反応器から送られた流出物または組成物を指し得る。水素化された流出物52は、水素化供給物42のアセチレン濃度よりも低いアセチレン濃度を有し得る。水素化された流出物52は、オレフィン生成物のユーザによって指定され得る閾値アセチレン濃度以下のアセチレン濃度を有し得る。いくつかの実施形態では、水素化された流出物52は、2体積百万分率(ppmv)以下、1ppmv以下、0.5ppmv以下、またはさらには0.1ppmv以下のアセチレン濃度を有し得る。アセチレン水素化ユニット50における水素化反応によって、水素化供給物42からの水素を消費することができるが、水素化供給物42と比較した水素化された流出物52中の水素濃度の変化は、水素化供給物42中の水素濃度に対するアセチレン濃度が小さいために、分析機器の測定不確実性よりも小さくなり得る。アセチレン水素化ユニット50の水素化触媒および操作条件は、蒸気分解システム20および/またはFCDhシステム30内で生成されるプロピレンおよびエチレンのような生成物化合物の水素化に比べて、アセチレンの水素化に対して選択的であり得る。
【0072】
図4を参照すると、流出物処理システム38は、分離システム40とアセチレン水素化ユニット50との間に配置された熱交換器60を含み得る。熱交換器60は、制御バルブ64を有する側管62を含み得る。熱交換器60を通過する水素化供給物42の量および側管62を介して熱交換器60を通過する水素化供給物42の量を制御することによって、アセチレン水素化ユニット50の入口における水素化供給物42の温度を上昇または低下させることができる。熱交換器60の側管を通る水素化供給物42の量を制御することにより、アセチレン水素化ユニット50の入口における水素化供給物42の温度を上昇または低下させることが可能になる。水素化供給物42のための熱交換器60は、化学産業で知られているいずれのタイプの熱交換器であってもよい。
【0073】
いくつかの実施形態では、流出物処理システム38は、分離システム40の下流に酸性ガス除去プロセス(図示せず)を含み得る。酸性ガス除去プロセスは、アセチレン水素化ユニット50の上流で、スクラビングなどによって、水素化供給物42から酸性ガスを除去するように操作可能であり得る。いくつかの実施形態では、酸性ガス除去プロセスは、分離システム40と熱交換器60との間に配置され得る。前述のように、いくつかの実施形態では、酸性ガス除去プロセスは、分離システム40の上流に配置され得る。
【0074】
水素化された流出物52は、水素化された流出物52のさらなる処理のために、アセチレン水素化ユニット50の下流の1つ以上のユニット操作および/またはプロセスに送ることができる。下流プロセスとしては、蒸気圧縮、分離、乾燥、または他の操作およびプロセスを挙げることができる。アセチレン水素化ユニット50の下流のユニット操作およびプロセスは、最終的に、水素化された流出物52を、エチレン生成物流、プロピレン生成物流、プロパン流、他の流、またはこれらの流の組み合わせなどであるがこれらに限定されることはない複数のガス流に分離することができる。これらの生成物流のうちの1つ以上は、反応物または原料として、ポリマー生成プロセスのようなさらなる生成プロセスに送ることができる。
【0075】
ここで
図5を参照すると、水素化された流出物52中のアセチレン濃度(y軸左)およびアセチレン水素化ユニット50のエチレン選択率(y軸右)が、アセチレン水素化ユニット50への入口における水素化供給物42の温度(x軸)の関数として示されている。
図5の線502は、それ以下で、アセチレン濃度が、オレフィンのユーザの要件を満たすのに、および/または触媒の汚損、規格外の生成物流、もしくは下流のプロセスにおける他の問題を防止または低減するのに十分なレベルに低減されているとみなすことができる、水素化された流出物52の閾値アセチレン濃度を表す。
図5に示されるように、水素化された流出物52中のアセチレン濃度(曲線510)は、水素化供給物42の所与の組成物の入口温度の上昇とともに低下する。
図5は、水素化された流出物52中のアセチレン濃度510を、アセチレン水素化ユニット50への入口温度を低下または上昇させることによって、それぞれ増加または減少させることができることを示す。曲線510の水素化供給物42の所与の組成物の温度T
1は、水素化された流出物52中のアセチレン濃度が閾値アセチレン濃度502以下である最低温度として定義することができる。T
1より高い水素化供給物42の温度では、水素化された流出物52中のアセチレン濃度(510)は、閾値アセチレン濃度よりも低い。T
1より低い水素化供給物42の温度の場合、水素化された流出物52中のアセチレン濃度(510)は、閾値アセチレン濃度よりも高くなり得る。
【0076】
図5はまた、曲線510と同じ水素化供給物42の組成物について、入口温度の関数としてのアセチレン水素化ユニット50のエチレン選択率(曲線520)も示す。
図5に示されるように、エチレン選択率(曲線520)は、入口温度の上昇に伴い低下する。したがって、アセチレン水素化ユニット50への入口温度が上昇するにつれて、アセチレン水素化ユニット50のエチレン選択率が低下し、これは、より多くのアセチレンおよび/またはさらには一部のエチレンがエタンに変換されることを示し、これは、アセチレン水素化ユニット50におけるエチレンの水素化の増加によって起こり得る。エチレンの水素化の増加は、熱暴走をもたらし得る。例えば、温度T
2よりも高い水素化供給物42の温度では、エチレン選択率は、許容できない量のエチレンが水素化を受ける点まで低下し得る。エチレン水素化反応は発熱性であるため、エチレンおよび他のオレフィンの水素化の増加による追加の熱が放出され、アセチレン水素化ユニット50の温度をさらに上昇させ得て、それによって、水素化反応がエチレンおよびプロピレンの水素化に向かってさらにシフトされる。エチレンおよび他のオレフィンの水素化の増加から発生する熱の増加は、アセチレン水素化ユニット50の熱暴走をもたらし得る。熱暴走は、エチレンおよびプロピレンの過剰水素化によってオレフィン生成物の喪失を増加させる可能性がある。さらに、熱暴走中に発生する200℃超の温度上昇は、水素化触媒ならびに反応器、計器、熱交換器、および他の機器などの機器に損傷を与える可能性があり、安全上の危険性を高め得る。
【0077】
再び
図5を参照すると、水素化供給物42の所与の組成物についてアセチレン水素化ユニット50に導入された水素化供給物42の入口温度の操作ウィンドウは、入口温度T
1と入口温度T
2との間で定義することができ、入口温度T
1を下回ると、水素化された流出物52中のアセチレン濃度が閾値アセチレン濃度502よりも高くなり、入口温度T
2を上回ると、エチレン選択率が低下し、オレフィン生成物の水素化によって、アセチレン水素化ユニット50が熱暴走する可能性がある。
【0078】
水素化供給物42のCO濃度を変化させることによって、アセチレン水素化ユニット50の操作ウィンドウを変化させることができる。水素化供給物42中のCO濃度を増加させると、水素化供給物42の温度に対するプロセスウィンドウをより高い温度に向かってシフトさせて、プロセスウィンドウを広げることができる。
図5では、曲線512は、FCDh流出物が流出物処理システム38に統合されている場合のようなより高い濃度のCOを用いたアセチレン水素化ユニット50の操作について、水素化供給物42の入口温度の関数としての水素化された流出物52中のアセチレン濃度を、曲線510(例えば、分解ガス28のみが流出物処理システム38に送られる場合)のCO濃度と比較して表す。水素化供給物42の所与の温度では、CO濃度を増加させると、アセチレン変換率が低減する。アセチレン水素化ユニット50におけるCO濃度を増加させることによって、水素化された流出物52中のアセチレン濃度が閾値アセチレン濃度502に等しくなる水素化供給物42の入口温度T
3は、曲線510(CO濃度がより低い)の水素化供給物42の対応する温度T
1よりも高くなる。
【0079】
また、アセチレン水素化ユニット50におけるCO濃度を増加させることによって、エチレン選択率の曲線をより高い入口温度に向かってシフトさせることもできる。
図5を参照すると、エチレン選択率の曲線522は、(例えば、FCDh流出物34が流出物処理システム38に統合されている場合などの)より高いCO濃度について、水素化供給物の入口温度の関数としてのアセチレン水素化ユニット50のエチレン選択率を、曲線520(例えば、分解ガス28のみが流出物処理システム38に送られる場合)のCO濃度と比較して表す。
図5に示すように、アセチレン水素化ユニット50におけるCO濃度を増加(曲線522)させることによって、所与の温度でのエチレン選択率を増加させることができる。これによって、より低いCO濃度でアセチレン水素化ユニット50を操作する場合と比較してより高い入口温度でアセチレン水素化ユニット50を操作することが可能になり得る。しかしながら、FCDh流出物34の流れの減少または完全な喪失による水素化供給物中のCO濃度の突然の減少は、同じ温度での水素化ユニットにおける触媒活性を大幅に増加させ、プロセスをより低いオレフィン選択率にシフトさせ得て、その結果、エチレンおよび/またはプロピレンのようなオレフィン生成物の水素化が増加し、これは、本明細書で前述したように、熱暴走をもたらす可能性がある。
【0080】
再び
図1を参照すると、蒸気分解システム20およびFCDhシステム30は、これらのプロセスが、少なくとも分離システム40およびアセチレン水素化ユニット50を含み得る一般的な流出物処理システム38を共有するように統合され得る。蒸気分解システム20を操作することができ、分解ガス28を流出物処理システム38に送ることができる。FCDhシステム30も操作することができ、FCDhシステム30からのFCDh流出物34の少なくとも一部を流出物処理システム38に統合することができる。FCDh流出物34の一部を、FCDh流出物34の一部を分離システム40に送ることによって、FCDh流出物34の一部を分離システム40の上流の分解ガス28と組み合わせることによって、またはそれらの両方によって、流出物処理システム38に統合することができる。いくつかの実施形態では、FCDh流出物34全体を、分離システム40に送ることができるか、分解ガス28と組み合わせることができるか、またはそれらの両方であり得る。いくつかの実施形態では、FCDh流出物34の一部のみを、分離システム40に送ることができるか、分解ガス28と組み合わせることができるか、またはそれらの両方であり得る。残りのFCDh流出物は、FCDhシステム30に再循環で戻しても、またはFCDh流出物再循環36を介して戻して第2の炭化水素供給物32と組み合わせてもよい。さらに、いくつかの実施形態では、分離システム40に送られる、分解ガス28と組み合わされる、またはそれらの両方であるFCDh流出物34の一部は、流出物処理システムに38にすでに送られているFCDh流出物の第1の部分を補うFCDh流出物の第2の部分であり得る。
【0081】
前述のように、FCDh流出物34中のCO濃度は、分解ガス28中のCO濃度よりも高くなり得る。分解ガス28は、50ppmv~400ppmvのCO濃度を有し得る。FCDh流出物34は、600ppmv~2400ppmv、例えば、1000ppmv~2000ppmvのCO濃度を有し得る。分解ガス28と一部のFCDh流出物34との両方が流出物処理システム38に送られる場合、水素化供給物42中のCO量は、分解ガス28中のCO量よりも多くなり得る。
【0082】
FCDhシステム30のユニットトリップは、FCDhシステム30の完全なシャットダウンを引き起こし得るか、またはFCDh再循環36を介してFCDh流出物34の大部分をFCDhシステム30に再循環させ得る。これが起こると、流出物処理システム38へのFCDh流出物34の流れは、(例えば、FCDhシステム30への再循環の増加によって)突然減少するか、または排除される(例えば、FCDhシステム30が完全にシャットダウンしてFCDh流出物34の流量がゼロに低減するか、またはFCDhシステム30が流出物処理システム38から完全に切断される)。分離システム40へのFCDh流出物34の一部の流れ(例えば、直接または分解ガス28との組み合わせ)の実質的な低減または完全な喪失は、アセチレン水素化ユニット50への水素化供給物42中のCO濃度の低下をもたらし得る。
【0083】
前述のように、水素化供給物42中のCO濃度を低下させると、アセチレン水素化ユニット50におけるCO濃度が低下し、アセチレン水素化ユニット50におけるエチレンおよび他のオレフィン生成物の水素化が増加し、それによって、エチレン選択率が低下し得る。流出物処理システム38へのFCDh流出物34の流れの減少または完全な喪失による水素化供給物42中のCO濃度の減少は、水素化触媒の活性を増加させ、一定温度でのアセチレンの水素化反応の反応速度を増加させ得る。反応速度の増加は、エチレンおよび他の生成物オレフィンの水素化を増加させ、エチレン選択率を低減させ得る。FCDh流出物34の流れの低減または完全な喪失はまた、水素化供給物42の質量流量およびアセチレン水素化ユニット50を通る質量流量も減少させ得る。これによって、水素化供給物のガス時空間速度または滞留時間がより小さくなる可能性があり、それによって、アセチレン水素化ユニット50におけるエチレンおよび他の生成物オレフィンの水素化が増加し得る。前述のように、アセチレン水素化ユニット50におけるエチレンおよび他のオレフィンの水素化の増加は、アセチレン水素化ユニットの熱暴走をもたらし得る。熱暴走は、エチレンおよびプロピレンの過剰水素化によってオレフィン生成物の喪失を増加させる可能性がある。さらに、熱暴走中に発生する200℃超の温度上昇は、水素化触媒ならびに反応器、計器、熱交換器、および他の機器などの機器に損傷を与える可能性があり、安全上の危険性を高め得る。熱暴走はまた、蒸気分解システム20のユニットトリップまたはシャットダウンももたらし得る。
【0084】
再び
図1を参照すると、アセチレン水素化ユニット50を操作するための本明細書に開示されている方法は、FCDh流出物34によって寄与されるCOの量に比べて分解ガス28によって寄与されるCOの量を増加させてアセチレン水素化ユニット50を操作することを含み得る。本明細書で使用される場合、「分解器CO」という用語は、分解ガス28によって寄与される水素化供給物42中のCOの一部を指し得て、「FCDh CO」という用語は、FCDh流出物34によって寄与される水素化供給物42中のCOの一部を指し得る。アセチレン水素化ユニット50を操作するための方法は、水素化供給物中の総COの少なくとも20%が分解ガス28からのものである条件下で、アセチレン水素化ユニット50を操作することを含み得る。水素化供給物42中の総COは、分解ガス28からの分解器COとFCDh流出物34からのFCDh COとの合計であり得る。アセチレン水素化ユニット50を操作するための方法はまた、FCDh流出物34の流量がゼロであるときに水素化供給物42中のCO濃度が少なくとも100ppmvになるほど分解ガス28中のCO濃度が十分に高くなるようにCO生成を増加させる条件下で、蒸気分解システム20を操作することも含み得る。
【0085】
分解ガス28によって寄与される分解器COの割合をFCDh流出物34によって寄与されるFCDh COに比べて増加させてアセチレン水素化ユニット50を操作することによって、流出物処理システム38へのFCDh流出物34の流れの突然の低減または完全な喪失の影響を低減することができる。これによって、流出物処理システム38へのFCDh流出物34の流れの低減または喪失をもたらすFCDhシステム30のユニットトリップまたはシャットダウンに応答したアセチレン水素化ユニット50の熱暴走を低減または防止することができる。
【0086】
再び
図1および
図2を参照すると、水素化供給物42中の分解器COの割合は、分解ガス28中のCO量を増加させることによって増加させることができる。分解ガス28中のCO量は、蒸気分解システム20内で生成されるCOの量を増加させる条件下で蒸気分解システム20を操作することによって増加させることができる。分解ガス28中のCO量を増加させる条件下で蒸気分解システム20を操作することは、蒸気分解システム20の蒸気分解ユニット110(
図2)の1つ以上の操作パラメータを変えることを含み得る。いくつかの実施形態では、分解ガス28中のCO濃度を増加させる条件下で蒸気分解システム20を操作することは、蒸気分解ユニット110に導入される硫黄含有化合物、メタノール、またはそれらの両方の量を変えることを含み得る。いくつかの実施形態では、分解ガス28中のCO濃度は、蒸気分解ユニット110に導入される硫黄含有化合物の量を減少または増加させることによってそれぞれ増加または減少させることができる。硫黄含有化合物としては、ジメチルジスルフィド(DMDS)、ジメチルスルフィド(DMS)、ジエチルジスルフィド(DEDS)、メチルメルカプタン(MM)、またはそれらの組み合わせのうちの1つ以上を挙げることができるが、これらに限定されることはない。蒸気分解ユニット110に導入される硫黄含有化合物の量は、蒸気分解ユニット110に送られる、および/または蒸気分解ユニット20の上流の第1の炭化水素供給物22と組み合わされる硫黄含有化合物24の流量を増加または減少させることによって増加または減少させることができる。特定の理論によって限定されることを意図するものではないが、蒸気分解ユニット110に導入される硫黄含有化合物24を増加させると、蒸気分解ユニット20の分解炉内の加熱要素を不動態化して、それによって、蒸気分解ユニット110内で形成されるコークスの量および生成されるCOの量を制御することができると考えられる。
【0087】
通常、凍結防止剤として蒸気分解ユニット110に添加されるが、蒸気分解ユニット110に導入されるメタノールの量は、蒸気分解システム20内で生成されるCOの量にも影響を及ぼし得る。蒸気分解ユニット110に送られるメタノールの量は、蒸気分解ユニット110に送られるメタノール含有流26の流量を増加または減少させることによって増加または減少させることができる。
【0088】
水素化供給物42中の分解器CO量を増加させると、水素化供給物42中のCO総量を増加させることができる。水素化供給物42中のCO総量の増加には、水素化供給物42の温度の増加が伴い、アセチレン水素化ユニット50の操作条件を、増加したCO濃度に対応するプロセスウィンドウ内に位置させることができる。水素化供給物42中のCO濃度の増加に従って水素化供給物42の温度を上昇させると、アセチレン水素化ユニット50におけるアセチレン変換率を増加させることができ、それによって、水素化された流出物52中のアセチレンの濃度は、閾値アセチレン濃度よりも低くなる。水素化供給物42の温度は、アセチレン水素化ユニット50から排出される水素化された流出物52のアセチレン濃度を、閾値アセチレン濃度よりも低く、例えば、2体積ppm(ppmv)以下、1ppmv以下、0.5ppmv以下、またはさらには0.1ppmv以下に維持するのに十分であり得る。前述のように、水素化供給物42の温度は、側管64を介して熱交換器60の周りで側管に通される水素化供給物42の量を制御することによって制御することができる。水素化供給物42および/またはアセチレン水素化ユニット50の温度を制御する他の方法もまた企図される。
【0089】
再び
図1を参照すると、オレフィンを生成するための統合プロセス10において、蒸気分解システム20は、水素化供給物42中の分解ガス28の一部の流量が、流出物処理システム38に送られる(例えば、分解ガス28と組み合わされる、分離システム40に送られる、またはそれらの両方)FCDh流出物34の一部の流量よりも大きくなるように、FCDhシステム30の容量よりも大きい容量を有し得る。統合システム10における蒸気分解システム20に対するFCDhシステム30の相対的なサイズは、流量比によって特徴付けることができる。本明細書で使用される場合、統合プロセス10の「流量比」は、分離システム40に送られるFCDhシステム30からのFCDh流出物34の一部の質量流量を、分解ガス28によって寄与される水素化供給物42の一部の質量流量で割った比であり得る。分解ガス28によって寄与される水素化供給物42の一部は、分離システム40によって水素化供給物42に分離される分解ガス28の一部を指し、最終的にアセチレン低減流44になる分解ガス28の一部を含まない。FEDP構成の場合、分解ガス28によって寄与される水素化供給物42の一部は、分解ガス28からのC3およびC3成分、CO、および水素の少なくとも95%を含み得る。FEDE構成の場合、分解ガスによって寄与される水素化供給物42の一部は、分解ガス28からのC2およびC2成分、CO、および水素の少なくとも95%を含み得る。オレフィンを生成するための統合プロセス10の流量比は、1/2以下、1/4以下、1/8以下、または1/12以下であり得る。
【0090】
あるいは、統合システム10における蒸気分解システム20に対するFCDhシステム30の相対的なサイズは、分離システム40に送られるFCDhシステムからのFCDh流出物34の一部の質量流量を、分離システム40に送られる分解ガス28の質量流量で割った比として定義され得るサイズ比によって特徴付けることができる。サイズ比は、一般に、流量比よりも小さくなり得る。いくつかの実施形態では、オレフィンを生成するための統合プロセス10は、FCDhシステム30と蒸気分解システム20とのサイズ比が、1/2未満、1/4未満、1/8未満、またはさらには1/12未満であり得る。
【0091】
いくつかの実施形態では、蒸気分解システム20は、FCDh流出物34の流量がゼロであるときに水素化供給物42中のCO濃度が少なくとも100ppmvになるほど分解ガス28中のCO濃度が十分に高くなるようにCO生成を増加させる条件下で操作され得る。言い換えるなら、蒸気分解システム20は、分解ガス28中のCO量が、FCDh流出物34の流量が止められるときに少なくとも100ppmvの水素化供給物42中のCO濃度を生成するのに十分である条件下で操作され得る。FCDh流出物34の流量がゼロであるときに110ppmv超の水素化供給物42中のCO濃度を生成するのに十分な分解ガス28中のCO増加量を維持する条件下で蒸気分解システム20を操作することによって、アセチレン水素化ユニット50へのFCDh流出物34の流れの中断に応答したアセチレン水素化ユニット50の熱暴走を低減または防止することができる。いくつかの実施形態では、蒸気分解システム20は、FCDh流出物34の流量がゼロであるときに水素化供給物42中のCO濃度が水素化供給物42の体積に基づいて150ppmv以上またはさらには200ppmv以上になり得るほど分解ガス28中のCO濃度が十分に高くなるようにCO生成を増加させる条件下で操作され得る。いくつかの実施形態では、蒸気分解システム20は、FCDh流出物34の流量がゼロであるときに水素化供給物42中のCO濃度が、水素化供給物42の総体積に基づいて、100ppmv~450ppmv、100ppmv~200ppmv、150ppmv~400ppmv、または200ppmv~450ppmvになり得るほど分解ガス28中のCO濃度が十分に高くなるようにCO生成を増加させる条件下で操作され得る。
【0092】
いくつかの実施形態では、水素化供給物42中の分解器CO量は、水素化供給物42中のCO総量の20%以上であり得る。水素化供給物42中のCO総量は、分解ガス28によって寄与される分解器COおよびFCDh流出物34によって寄与されるFCDh COの両方を含み得る。水素化供給物42中の分解器CO量を水素化供給物42中のCO総量の20%以上に維持することは、FCDh流出物34の流量がゼロであるときに水素化供給物42中のCO濃度が100ppmv以上になるほど分解ガス28中のCO濃度が十分に高くなるようにCO生成を増加させる条件下で蒸気分解システム20を操作することに対する追加または代替であり得る。水素化供給物42中の分解器CO量を水素化供給物42中の総COの20%以上にしてアセチレン水素化ユニット50を操作することによって、アセチレン水素化ユニット50へのFCDh流出物34の流れの中断に応答したアセチレン水素化ユニット50の熱暴走を低減または防止することができる。いくつかの実施形態では、アセチレン水素化ユニット50は、分解器COの量を水素化供給物42中のCO総量の20%~90%にして操作され得る。いくつかの実施形態では、水素化供給物42中のFCDh COの量は、水素化供給物42中のCO総量の80%未満であり得る。言い換えるなら、水素化供給物42中のFCDh流出物34(すなわち、FCDh CO)によって寄与されるCOの量は、水素化供給物42中のCO総量の80%未満であり得て、水素化供給物42中のCO総量は、少なくともFCDh COおよび分解器COを含む。水素化供給物42中の分解器CO量は、水素化供給物42中のCO総量の20質量%以上であり得る。
【0093】
図4を参照すると、いくつかの実施形態では、水素化供給物42中の分解器CO量は、FCDh流出物34の流れの減少または喪失に応じて、第1の水素化反応器150のデルタTの変化を、10℃以下、8℃以下、またはさらには4℃以下に制限するのに十分であり得る。第1の水素化反応器150のデルタTは、第1の水素化ユニット150の出口における第1の水素化された流出物152の温度であり得る出口温度と、第1の水素化ユニット150への入口における水素化供給物42の温度であり得る入口温度との間の差の絶対値を指し得る。FCDh流出物34の流れの減少または喪失に応答して第1の水素化反応器150のデルタTが10℃超増加すること(すなわち、水素化供給物42のCO濃度が突然減少すること)によって、アセチレン水素化ユニット50の熱暴走の可能性が増加し得る。したがって、CO濃度の突然の減少に応答して第1の水素化反応器150のデルタTを10℃未満に維持することは、その結果、アセチレン水素化ユニット50の熱暴走の可能性を低減し得る。FCDh流出物34の流れの減少または喪失に応答して第1の水素化反応器150のデルタTの変化を10℃未満に維持することは、分解ガス28によって寄与される水素化供給物42中の分解器CO量を増加させてアセチレン水素化ユニット50を操作することによって達成され得る。
【0094】
再び
図4を参照すると、いくつかの実施形態では、水素化供給物42中の分解器CO量は、FCDh流出物34の流れの減少または喪失に応答してアセチレン水素化ユニット50(反応器150、反応器160、および任意選択的に第3の反応器170を含む)における総エチレン選択率の変化を80%以下に維持するのに十分であり得る。FCDh流出物34の流れの減少または喪失に応答してアセチレン水素化ユニット50における総エチレン選択率の損失を80%以下に維持することによって、アセチレン水素化ユニット50の熱暴走の可能性を低減することができる。統合システム10へのFCDh流出物34の流れの減少または喪失に応答した、アセチレン水素化ユニット50におけるエチレン選択率の80%以下の損失は、分解ガス28によって寄与される水素化供給物42中の分解器CO量を増加させてアセチレン水素化ユニット50を操作することによって達成され得る。
【0095】
再び
図1を参照すると、いくつかの実施形態では、アセチレン水素化ユニット50は、水素化供給物42中のFCDh CO量を水素化供給物42中のCO総量の80%未満にして操作され得て、この方法は、補助CO流(図示せず)を、アセチレン水素化ユニット50の上流の水素化供給物42、または分解ガス28、またはそれらの両方と組み合わせることを含み得る。これらの実施形態では、水素化供給物42中のCO総量は、FCDh CO、分解器CO、および補助COを含み得る。したがって、水素化供給物42中のFCDh COの量は、補助COを導入して水素化供給物42中のCO総量を増加させることによって、水素化供給物42中のCO総量の80%未満に維持され得る。補助CO流を導入することは、前述のように、蒸気分解ユニット110内で生成されるCOの量を増加させることに対する追加または代替であり得る。
【0096】
再び
図1を参照すると、蒸気分解と流動接触脱水素化(FCDh)との統合システム10においてアセチレン水素化ユニット50を操作するための方法は、蒸気分解システム20内で第1の炭化水素供給物22の少なくとも一部を分解して、少なくとも水素、一酸化炭素(CO)、およびアセチレンを含む分解ガス28を生成することと、FCDhシステム30内で第2の炭化水素供給物32の少なくとも一部を脱水素化して、少なくとも水素およびCOを含むFCDh流出物34を生成することと、を含み得る。第1の炭化水素供給物22、第2の炭化水素供給物32、分解ガス28、およびFCDh流出物34の各々が、第1の炭化水素供給物22、第2の炭化水素供給物32、分解ガス28、およびFCDh流出物34のそれぞれについて本明細書で前述した組成、性質、および/または特性のうちのいずれかを有し得る。この方法は、分解ガス28とFCDh流出物34の少なくとも一部とを水素化供給物42およびアセチレン低減流44に分離することをさらに含み得る。水素化供給物42は、少なくとも水素、CO、およびアセチレンを含み得る。水素化供給物42は、分解ガス28およびFCDh流出物34からのCOの少なくとも99%を含み得る。通常の操作条件中に、水素化供給物42中のCOの少なくとも20%が分解ガス28からのものであり得る。この方法は、アセチレン水素化ユニット50内で水素化供給物42をアセチレン水素化触媒と接触させることであって、この接触によって、水素化供給物42中のアセチレンの少なくとも一部が水素化されて、水素化された流出物52が生成される、接触させることをさらに含み得る。蒸気分解システム20は、FCDh流出物34の流量がゼロであるときに水素化供給物42中のCO濃度が少なくとも100ppmvになるほど分解ガス28中のCO濃度が十分に高くなるようにCO生成を増加させる条件下で操作され得る。蒸気分解システム20、FCDhシステム30、分離システム40、およびアセチレン水素化ユニット50は、これらのそれぞれのシステムおよびユニットの各々について、本明細書に記載の特徴または特性のうちのいずれかを有し得る。統合システム10は、1/2以下の流量比を有し得て、流量比は、分離システムに送られるFCDh流出物の一部の質量流量を、分解ガスによって寄与される水素化供給物の一部の質量流量で割ったものである。
【0097】
いくつかの実施形態では、FCDh流出物34の流量がゼロであるときに水素化供給物42中のCO濃度が少なくとも100ppmvになるほど分解ガス28中のCO濃度が十分に高くなるようにCO生成を増加させる条件下で蒸気分解システム20を操作することによって、アセチレン水素化ユニット50へのFCDh流出物34の流れの中断に応答したアセチレン水素化ユニット50の熱暴走を低減または防止することができる。いくつかの実施形態では、蒸気分解システム20は、FCDh流出物34の流量がゼロであるときに水素化供給物42中のCO濃度が100ppmv~450ppmvになり得るほど分解ガス28中のCO濃度が十分に高くなるようにCO生成を増加させる条件下で操作され得る。
【0098】
いくつかの実施形態では、水素化供給物42中の分解器CO量を水素化供給物42中の総COの20%質量以上に維持することによって、アセチレン水素化ユニット50へのFCDh流出物34の流れの中断に応答したアセチレン水素化ユニット50の熱暴走を低減または防止することができる。統合システムの流量比は、1/2以下であり得て、流量比は、分離システムに送られるFCDh流出物34の一部の質量流量を、水素化供給物42中の分解ガス28の一部の質量流量で割ったものである。前述のように、いくつかの実施形態では、蒸気分解システム20は、蒸気分解システム20に導入される硫黄含有化合物24、メタノール26、またはそれらの両方の量を変更することによってCO生成を増加させる条件下で操作され得る。いくつかの実施形態では、ジメチルジスルフィド(DMDS)、ジメチルスルフィド(DMS)、ジエチルジスルフィド(DEDS)、メチルメルカプタン(MM)、またはそれらの組み合わせのうちの少なくとも1つを挙げることができる。
【0099】
本明細書に開示されている方法のうちのいずれかは、水素化供給物42中のCO濃度が増加されているときに、水素化された流出物52中のアセチレン濃度を閾値アセチレン濃度よりも低く維持するのに十分な水素化供給物42の上昇した温度でアセチレン水素化ユニット50を操作することをさらに含み得る。いくつかの実施形態では、この方法は、分解ガス28中のCO量を増加させることに応答して水素化供給物42の温度を上昇させて、水素化された流出物52中のアセチレン濃度を目標アセチレン濃度よりも低く維持することを含み得る。いくつかの実施形態では、水素化された流出物52中のアセチレンの濃度が2ppmv以下またはさらには1ppmv以下であるように、目標アセチレン濃度は2ppmvであり得る。
【0100】
いくつかの実施形態では、アセチレン水素化ユニット50は、少なくとも第1の水素化反応器150と、第1の水素化反応器150の下流の第2の水素化反応器160と、を含み得る。水素化供給物42中の総COの少なくとも20質量%の水素化供給物42中の分解器CO量は、アセチレン変換ユニット50における総エチレン選択率の損失を、分離システム40へのFCDh流出物34の流れの減少に応答して80%以下に維持することができる。いくつかの実施形態では、分離システム40へのFCDh流出物34の少なくとも一部の流れの減少に応答して、アセチレン水素化ユニット50の第1の水素化反応器150のデルタTの変化の絶対値は、10℃未満であり得て、第1の水素化反応器150のデルタTは、第1の水素化反応器150の入口温度と出口温度との間の差である。
【実施例】
【0101】
本開示の実施形態は、以下の実施例によってさらに明確にされ、これは、現在記載されている開示および/または特許請求された実施形態を限定するものとして解釈されるべきではない。
【0102】
実施例1:FCDh流出物の生成および分析
実施例1では、FCDh流出物を生成し、C3+化合物およびC3-化合物に関する組成について分析した。プロパンの脱水素化は、修正されたDavison Circulating Riser(DCR)パイロットユニットで実行した。このパイロットユニットでは、再生区画でインサイチュ燃料燃焼を実行する。約4100グラムの担持Ga-Pt触媒を循環システムに充填し、約90gの触媒が、任意の所与の時点で反応器内にあると計算された。ライザー(反応器)への入口温度を630℃に制御し、圧力を90キロパスカル(kPa)のゲージ圧に設定した(13psigまたは絶対圧191kPa/27.7psia)。高純度プロパンをシステムに注入して、1時間当たり約3.5のプロパンの重量時空間速度(WHSV)を達成した。窒素(N2)を、主に触媒のキャリアガスとしてシステムに同時供給した。プロパンの分圧は、約30kPa(4.3psig)のゲージ圧であった。触媒再生の温度は、700℃~750℃の範囲にあった。実施例1では、高純度メタン(CH4)を再生器への燃料ガスとして使用し、1時間当たり50標準リットルの速度で注入した。
【0103】
反応器システムを、定常状態の操作を達成するのに十分な時間にわたって操作し、その時点で、反応器システムからのFCDh流出物のサンプルを収集し、当技術分野で知られている技術を使用して組成について分析した。特に、FCDh流出物を、CO、二酸化炭素(CO
2)、C
2およびC
2化合物(水素を含む)、ならびにC
3化合物の濃度を決定するために分析した。これらの結果は、以下の表1に示されている。
【表1】
【0104】
このデータは、FCDh流出物中のCO濃度が、アセチレン水素化ユニットへの典型的な水素化供給物中のCO濃度よりもはるかに高くなる可能性があることを示しており、この水素化供給物は、蒸気分解システムからの分解ガスのみを含む。分解ガスのみが分離器に導入される場合の水素化供給物中のCOの典型的な濃度は、フロントエンド脱エタン塔(FEDE)構成およびフロントエンド脱プロパン塔(FEDP)構成について表2に示されている。さらに、FCDh流出物中のアセチレンの濃度は、50ppmv未満である。その結果、アセチレンのこの濃度は、FCDhシステムを統合していない蒸気分解システム内の、アセチレン変換器への供給物流中のアセチレン濃度より何桁も少ないことが見出された。以下の表2は、分解ガスのみが分離器に導入される場合の水素化供給物中のアセチレンの典型的な濃度を示す。表2には、フロントエンド脱エタン塔(FEDE)およびフロントエンド脱プロパン塔(FEDP)構成のデータが示されている。
【表2】
【0105】
実施例2:FCDhおよび蒸気分解を統合するためのアセチレン水素化ユニットのモデリング
アセチレン水素化ユニットにおいて良好に実践されている経験モデルを使用して、FCDhと蒸気分解との統合システムからのFCDh流の突然の喪失時に生じる第1の水素化反応器のデルタTの変化およびアセチレン水素化ユニットの総エチレン選択率の変化を評価し、このシステムでは、分解ガスの一部およびFCDh流出物の一部が組み合わされ、分離されて、水素化供給物画分が、アセチレン水素化ユニット50に供給される。FCDh/蒸気分解の統合システムへのFCDh流の突然の喪失は、組み合わされる水素化供給物(例えば、FCDhのC3/C3部分および分解ガスのC3/C3部分)についての水素化ユニットの第1の水素化反応器のデルタTおよび総エチレン選択率と、分解ガス(例えば、分解ガスのC3/C3部分)からの一部のみを含む水素化供給物についての水素化ユニットの第1の水素化反応器のデルタTおよび総エチレン選択率とを比較することによってシミュレートすることができる。実施例2では、分離システムおよびアセチレン水素化ユニットは、FEDP構成を有する。FEDP構成では、水素化供給物は、分解ガスおよびFCDh流出物のC3/C3部分を含む。分解ガスのC3/C3部分は、分離システムおよびアセチレン水素化ユニットがFEDP構成を有する場合に最終的に水素化供給物になる分解ガスの部分を表す。分解ガスのC3/C3部分に対するFCDh流出物の比率の変動、分解ガスのC3/C3部分のCOレベル、アセチレン水素化ユニットの個々のアセチレン水素化反応器間の変換スプリット、および分離システム構成に関して調査を実行する。経験モデルでは、便宜上、FCDh流出物中のCO濃度は、1200ppmvに設定されている。分解ガスからのアセチレンと比較して濃度が低く、その結果、モデリングにおけるFCDh流出物からのアセチレンの影響が少ないため、FCDh流出物中のアセチレンの濃度は含まれていない。
【0106】
モデルで使用されるアセチレン水素化ユニットは、直列の3つの水素化反応器(A、B、C)の構成を有し、水素化反応器の各々は、フロントエンド脱プロパン塔(FEDP)プロセス構成に典型的な同等の反応器寸法を有する。反応器A(第1の水素化反応器)がアセチレン変換の大部分を実行し、反応器Bが残りの変換を完了する。反応器Cは、一般に、水素化された流出物がアセチレン濃度について規格外になることを防止するための研磨床である。水素化された流出物中の閾値アセチレン濃度は、1ppmv未満に設定されている。反応器A、B、C間のアセチレン変換スプリットは、目標値に設定されている。実施例2~4のモデルで使用された蒸気分解器システムからの分解ガスのC3/C3部分の組成は、以下の表3に示されている。
【表3】
【0107】
アセチレン水素化ユニットの総GHSVは、FCDh流出物なしで5000時間-1である。実施例1のFCDh流出物の組成は、モデル予測におけるFCDh流出物の組成として使用される。
【0108】
モデリングは、最初に、表3の分解ガスのC3/C3部分および表1のFCDh流出物の両方を含む水素化供給物を用いて実行する。実施例2では、分解ガス中のCO濃度は、50ppmv~330ppmvで変化する。反応器Aの入口温度は、反応器Aにおける目標アセチレン変換率に達するように計算される。反応器Bおよび反応器Cの入口温度は、反応器Aの入口温度よりも2℃低く設定される。反応器A、B、およびCの各々のデルタT、ならびにアセチレン水素化ユニットのエチレンに対する総選択率は、定常状態条件で計算される。アセチレン水素化ユニットが定常状態で操作している際に、アセチレン水素化ユニットはFCDhシステムトリップに供されるが、これは、FCDh流出物の流量をゼロに低減させることによってシミュレートする。FCDhトリップの後およびFCDh流出物の流れをゼロに低減させた後に、反応器A、B、およびCの入口温度は、組み合わされた水素化供給物(分解ガスおよびFCDh流出物)を用いる定常状態操作で得られる温度と同じままである。次いで、反応器A、B、およびCの各々のデルタT、ならびにアセチレン水素化ユニットのエチレンに対する総選択率を、FCDhシステムのユニットトリップ後に計算する。
【0109】
実施例2では、反応器A、B、およびCの間のアセチレン変換スプリットは、90:10:0に設定されている(反応器Aについては90%のアセチレン変換率、反応器Bについては10%のアセチレン変換率、反応器Cは研磨床として使用される)。分解ガスの流量は一定に保たれ、流量比は、1/1から、1/2、1/4、1/12に減少する。流量比は、FCDh流出物の質量流量を分解ガスのC3/C3部分(すなわち、最終的に水素化供給物になる分解ガスの部分)の質量流量で割ったものである。実施例2についての、流量比、分解ガスのC3/C3部分の流量、分解ガスのC3/C3部分のCO濃度、FCDh流出物の流量、水素化供給物の流量、水素化供給物中の総CO濃度、ユニットトリップに起因する反応器A(第1の水素化反応器)のデルタTの変化、ユニットトリップに起因する総エチレン選択率の変化、および水素化供給物中の総COのパーセンテージとしての分解ガスによって寄与されるCOの量は、以下の表4に示される。
【表4】
【0110】
表4では、ΔTは、反応器AのデルタTを指し、このデルタTは、反応器A(第1の水素化反応器)の出口と入口との間の温度の差である。デルタTが約10℃を上回ると、アセチレン水素化ユニットが熱暴走する可能性が高くなる。表4に示されるように、分解ガスからのCOの量が水素化供給物中の総COの約20%未満である場合、例えば、流量比が1/2超である場合、FCDhシステムは、蒸気分解ユニットと比較して大きくなり過ぎる場合があり、それによって、水素化ユニットの熱暴走を回避するためにFCDh流出物の喪失を補償することが困難になり得る。したがって、流量比が約1/2超である場合、FCDhシステムを統合システムから分離し、自立型システムとして操作して、水素化ユニットの熱暴走を低減または防止することができる。
【0111】
流量比が1/2以下である場合、表4は、分解ガスのC3およびC3部分中のCO濃度を、分解ガスのC3およびC3部分の総体積に基づいて、100ppmv以上、150ppmv以上、または200ppmv以上に維持すること、および分解ガスからのCOの量を、水素化供給物中の総COの20%超に維持することによって、FCDh流出物の流量がゼロに低減した場合にアセチレン水素化ユニットの熱暴走を低減または防止する、統合システムの安全な操作が提供され得る。
【0112】
実施例3:FCDhおよび蒸気分解を統合するためのアセチレン水素化ユニットのモデリング-アセチレン変換スプリット95:5:0
実施例3では、アセチレン水素化ユニットの操作は、FEDP構成と、反応器A、反応器B、および反応器Cの間で95:5:0のアセチレン変換スプリットと、を有する分離システムおよびアセチレン水素化ユニットに基づいてモデル化され、これは、水素化された流出物中のアセチレン濃度が閾値アセチレン濃度よりも高い規格外の生成物流を生成する可能性を低減するための、比較的保守的な操作アプローチであり得る。モデリングは、反応器A、反応器B、および反応器Cの間のアセチレン変換スプリットが95:5:0に設定されていることを除いて、実施例2の方法に従って実施する。他のすべての変数および仮定は、実施例2と同じである。実施例3のモデリング結果は、以下の表5に示されている。
【表5】
【0113】
表5を表4と比較したところ、アセチレン変換スプリットを実施例2の90:10:0から実施例3の95:5:0に増加させることによって、反応器AのデルタTの変化および水素化ユニットのエチレン選択率の変化の程度が増加し得る。アセチレン変換スプリットが増加すると、FCDh流出物の流量がゼロに減少した場合に、分解ガス中に生成されるCOの量をさらに増加させるように蒸気分解ユニットを操作して、FCDh流出物中のCOをさらに補償する必要がある。表5に示されるように、アセチレン変換スプリットが95:5:0に増加すると、1/2の流量比で、分解ガスのC3およびC3部分中のCO濃度を150以上に維持して、アセチレン水素化ユニットの安全な操作を維持することができる。
【0114】
実施例4:FCDhおよび蒸気分解を統合するためのアセチレン水素化ユニットのモデリング-アセチレン変換スプリット99:1:0
実施例4では、アセチレン水素化ユニットの操作は、FEDP構成と、反応器A、反応器B、および反応器Cの間で99:1:0のアセチレン変換スプリットと、を有する分離システムおよびアセチレン水素化ユニットに基づいてモデル化される。モデリングは、反応器A、反応器B、および反応器Cの間のアセチレン変換スプリットが99:1:0に設定されていることを除いて、実施例2の方法に従って実施する。他のすべての変数および仮定は、実施例2と同じである。実施例4のモデリング結果は、以下の表6に示されている。
【表6】
【0115】
表6に示されるように、アセチレン変換スプリットが実施例3の95:5:0から実施例4の99:1:0にさらに増加すると、反応器AのデルタTおよびエチレン選択率の変化の程度がさらに増加し得る。したがって、アセチレン変換スプリットが99:1:0に増加すると、流量比1/2は、FCDh流出物の流量がゼロに低減した場合に熱暴走の可能性を上昇させ得て、蒸気分解ユニット内で生成されたCOの増加が、FCDhシステムの喪失を補償するのに十分ではなくなり得る。実施例3および4は、水素化供給物中のアセチレン濃度が閾値アセチレン濃度よりも低いことを確実にするために反応器A(第1の水素化反応器)におけるアセチレン変換率を増加させると、熱暴走の可能性が増加し得ることを示す。しかしながら、この熱暴走の可能性は、分解ガス中のCO量を増加させることによって低減させることができる。
【0116】
実施例5:FEDE構成を有するFCDhおよび蒸気分解を統合するためのアセチレン水素化ユニットのモデリング
実施例5では、分離システムおよびアセチレン水素化ユニットは、FEDE構成を有する。FEDE構成では、水素化供給物は、分解ガスのC2/C2部分およびFCDh流出物のC2/C2部分を含む。分解ガスのC2/C2部分およびFCDh流出物のC2/C2部分は、分離システムおよびアセチレン水素化ユニットがFEDE構成を有する場合に最終的に水素化供給物になる分解ガスおよびFCDh流出物の部分をそれぞれ表す。分解ガスのC2/C2部分に対するFCDh流出物の比率(流量比)の変動、分解ガスのC2/C2部分のCOレベル、およびアセチレン水素化ユニットの個々のアセチレン水素化反応器間の変換スプリットに関して調査を行う。実施例5の経験モデルでは、便宜上、FCDh流出物中のCO濃度は、1200ppmvに設定されている。分解ガスからのアセチレンと比較して濃度が低いため、FCDh流出物中のアセチレンの濃度は含まれていない。
【0117】
モデルで使用されるアセチレン水素化ユニットは、直列の2つの水素化反応器(AおよびB)の構成を有し、2つの水素化反応器の各々は、FEDEプロセス構成に典型的な同等の反応器寸法を有する。反応器A(第1の水素化反応器)がアセチレン変換の大部分を実行し、反応器Bが残りの変換を完了する。実施例5の反応器Aと反応器Bとの間の変換スプリットは、99:1である。水素化された流出物中の閾値アセチレン濃度は、1ppmv未満に設定されている。実施例5のモデルで使用された蒸気分解器システムからの分解ガスのC2/C2部分の組成は、以下の表7に示されている。
【表7】
【0118】
アセチレン水素化ユニットの総GHSVは、FCDh流出物なしで7000時間-1である。C3化合物を含まない実施例1のFCDh流出物の組成(CO、CO2、C2、C2-、およびH2成分のみ)は、実施例5のモデル予測におけるFCDh流出物の組成として使用される。
【0119】
モデリングは、最初に、表7の分解ガスのC2/C2部分および表1のFCDh流出物のC2/C2部分の両方を含む水素化供給物を用いて実行する。実施例5では、分解ガス中のCO濃度は、50ppmv~330ppmvで変化する。反応器Aの入口温度は、反応器Aにおける目標アセチレン変換率に達するように計算される。反応器Bの入口温度は、反応器Aの入口温度よりも2℃低く設定される。反応器AおよびBの各々のデルタT、ならびにアセチレン水素化ユニットのエチレンに対する総選択率は、定常状態条件で計算される。アセチレン水素化ユニットが定常状態で操作している際に、アセチレン水素化ユニットはFCDhシステムトリップに供されるが、これは、FCDh流出物の流量をゼロに低減させることによってシミュレートする。FCDhトリップの後およびFCDh流出物の流れをゼロに低減させた後に、反応器AおよびBの入口温度は、組み合わされた水素化供給物(分解ガスおよびFCDh流出物)を用いる定常状態操作で得られる温度で一定に保たれる。次いで、反応器AおよびBの各々のデルタT、ならびにアセチレン水素化ユニットのエチレンに対する総選択率を、FCDhシステムのユニットトリップ後に計算する。
【0120】
実施例5では、アセチレン水素化ユニット内のアセチレンの十分な変換を確実にするために、反応器AとBとの間のアセチレン変換スプリットを99:1に設定して(反応器Aについては99%のアセチレン変換率、反応器Bについては1%のアセチレン変換率)、閾値アセチレン濃度よりも低い、水素化供給物中のアセチレン濃度を提供する。分解ガスの流量は一定に保たれ、流量比は、1/1から、1/3、1/6、1/12に減少する。流量比は、FCDh流出物の質量流量(C2/C2部分だけでなく、すべてのFCDh流出物)を分解ガスのC2/C2部分(すなわち、最終的に水素化供給物になる分解ガスの部分)の質量流量で割ったものである。実施例5のモデリングの結果は、以下の表8に示されている。
【表8】
【0121】
表8に示されるように、二反応器FEDEアセチレン水素化ユニット構成の場合、流量比が1/1のとき、水素化供給物中の分解ガスからのCOの濃度が少なくとも20%になるように分解ガス中のCO量を増加させることは、アセチレン水素化ユニットの熱暴走を回避するには不十分な場合がある。したがって、流量比が1/1である場合、FCDhシステムは、FCDh流出物を分離システム40に統合することなく、自立型システムとして操作され得る。再び表8を参照すると、流量比が1/3である場合、FCDh流出物の流量がゼロであるときに水素化供給物中のCO濃度が少なくとも100ppmv(すなわち、分解ガスのC3/C3部分中のCO濃度)であるように分解ガス中のCO量を増加させることによって、デルタTの変化を6未満に低減することができ、それによって、アセチレン水素化ユニットの熱暴走を低減または防止することで、アセチレン水素化ユニットのより安全な操作を提供することができる。
【0122】
以下の特許請求の範囲のうちの1つ以上は、用語「ここで」を移行句として利用していることに留意されたい。本発明を定義する目的で、この用語は、構造の一連の特徴の列挙を導入するために使用される制限のない移行句として特許請求の範囲に導入され、より一般的に使用される制限のないプリアンブル用語「を含む」と同様に解釈されるべきであることに留意されたい。
【0123】
一般に、本明細書に記載のプロセス10の任意のシステムユニットの「入口ポート」および「出口ポート」は、システムユニットにおける開口部、穴、チャネル、開き口、ギャップ、または他の同様の機械的特徴を指す。例えば、入口ポートによって、特定のシステムユニットへの材料の入口が可能になり、出口ポートによって、特定のシステムユニットからの材料の出口が可能になる。一般に、出口ポートまたは入口ポートは、管、導管、チューブ、ホース、材料輸送ライン、または同様の機械的特徴が取り付けられるプロセス10のシステムユニットの領域、または別のシステムユニットが直接接続されるシステムユニットの一部を定義するであろう。入口ポートおよび出口ポートは、操作において機能的に本明細書で説明される場合があるが、これらは、類似または同一の物理的特性を有し得て、操作システムにおけるそれらのそれぞれの機能は、それらの物理的構造を制限するものとして解釈されるべきではない。
【0124】
本発明の趣旨および範囲から逸脱することなく、本発明に様々な修正および変更を加え得ることが当業者には明らかであろう。本発明の趣旨および実体を組み込んでいる開示された実施形態の変更の組み合わせ、副組み合わせ、および変形は、当業者に思い付き得るため、本発明は、添付の特許請求の範囲およびそれらの同等物の範囲内の全てを含むと解釈されるべきである。
以下に、本願の当初の特許請求の範囲に記載された発明を付記する。
[1] 蒸気分解と流動接触脱水素化(FCDh)との統合システムにおいてアセチレン水素化ユニットを操作するための方法であって、
蒸気分解システム内で第1の炭化水素供給物の少なくとも一部を分解して、少なくとも水素、一酸化炭素(CO)、およびアセチレンを含む分解ガスを生成することと、
FCDhシステム内で第2の炭化水素供給物の少なくとも一部を脱水素化して、少なくとも水素およびCOを含むFCDh流出物を生成することと、
前記分解ガスと前記FCDh流出物の少なくとも一部とを水素化供給物およびアセチレン低減流に分離することであって、前記水素化供給物が、少なくとも水素、CO、およびアセチレンを含み、前記水素化供給物が、前記分解ガスおよび前記FCDh流出物からのCOの少なくとも95%を含み、通常の操作条件中に、前記水素化供給物中のCOの少なくとも20%が前記分解ガスからのものである、分離することと、
アセチレン水素化ユニット内で前記水素化供給物をアセチレン水素化触媒と接触させることであって、前記接触によって、前記水素化供給物中の前記アセチレンの少なくとも一部が水素化されて、水素化された流出物が生成される、接触させることと、を含み、
前記蒸気分解システムが、前記FCDh流出物の流量がゼロであるときに前記水素化供給物中のCO濃度が少なくとも100ppmvになるほど前記分解ガス中のCO濃度が十分に高くなるようにCO生成を増加させる条件下で操作される、方法。
[2] 前記FCDh流出物の前記流量がゼロであるときに前記水素化供給物中の前記CO濃度が少なくとも100ppmvになるほど前記分解ガス中の前記CO濃度が十分に高くなるようにCO生成を増加させる条件下で前記蒸気分解システムを操作することによって、前記アセチレン水素化ユニットへの前記FCDh流出物の流れの中断に応答した前記アセチレン水素化ユニットの熱暴走を低減または防止する、[1]に記載の方法。
[3] 前記FCDh流出物の前記流量がゼロであるときに前記水素化供給物中の前記CO濃度が100ppmv~450ppmvになるほど前記分解ガス中の前記CO濃度が十分に高くなる、[1]または[2]に記載の方法。
[4] 前記水素化供給物中の前記分解ガスからの前記COの量を前記水素化供給物中のCO総量の20質量%以上に維持することによって、前記アセチレン水素化ユニットへの前記FCDh流出物の流れの中断に応答した前記アセチレン水素化ユニットの熱暴走を低減または防止する、[1]~[3]のいずれかに記載の方法。
[5] 前記蒸気分解システムが、前記蒸気分解システムに導入される硫黄含有化合物、メタノール、またはそれらの両方の量を変更することによってCO生成を増加させる条件下で操作される、[1]~[4]のいずれかに記載の方法。
[6] 前記硫黄含有化合物が、ジメチルジスルフィド(DMDS)、ジメチルスルフィド(DMS)、ジエチルジスルフィド(DEDS)、メチルメルカプタン(MM)、またはそれらの組み合わせのうちの少なくとも1つを含む、[6]に記載の方法。
[7] 前記分解ガス中のCO量を増加させることに応答して前記水素化供給物の温度を上昇させて、前記水素化された流出物中のアセチレン濃度を目標アセチレン濃度よりも低く維持することをさらに含む、[1]~[6]のいずれかに記載の方法。
[8] 前記アセチレン水素化ユニットが、少なくとも第1の水素化反応器と、前記第1の水素化反応器の下流の第2の水素化反応器と、を含み、前記水素化供給物中の前記分解ガスからのCOの量を前記水素化供給物中のCO総量の20%以上に維持することによって、前記アセチレン水素化ユニットへの前記FCDh流出物の流れの減少に応答した総エチレン選択率の損失を80%以下に維持する、[1]~[7]のいずれかに記載の方法。
[9] 分離器への前記FCDh流出物の少なくとも一部の流れの減少に応答して、前記アセチレン水素化ユニットの第1の水素化反応器のデルタTの変化の絶対値が、10℃未満であり、前記第1の水素化反応器の前記デルタTが、前記第1の水素化反応器の入口温度と出口温度との間の差である、[1]~[8]のいずれかに記載の方法。
[10] 流量比が、1/2以下であり、前記流量比が、分離システムに送られる前記FCDh流出物の前記一部の質量流量を、前記水素化供給物中の前記分解ガスの前記一部の質量流量で割ったものである、[1]~[9]のいずれかに記載の方法。
[11] 前記水素化供給物が、メチルアセチレン、プロパジエン、および少なくとも1つの分解器生成物を含み、前記少なくとも1つの分解器生成物が、エチレン、プロピレン、メタン、エタン、プロパン、またはこれらの組み合わせのうちの1つ以上を含む、[1]~[10]のいずれかに記載の方法。
[12] 前記水素化された流出物が、2体積ppm以下のアセチレン濃度を有する、[1]~[11]のいずれかに記載の方法。
[13] 前記FCDh流出物が、少なくとも1つのFCDh生成物を含み、前記少なくとも1つのFCDh生成物が、エチレン、プロピレン、またはそれらの両方を含む、[1]~[12]のいずれかに記載の方法。