(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-10-18
(45)【発行日】2024-10-28
(54)【発明の名称】レーダ装置及び送受信アレーアンテナ
(51)【国際特許分類】
G01S 7/03 20060101AFI20241021BHJP
H01Q 21/06 20060101ALI20241021BHJP
G01S 7/02 20060101ALN20241021BHJP
G01S 13/931 20200101ALN20241021BHJP
【FI】
G01S7/03 230
H01Q21/06
G01S7/02 218
G01S13/931
(21)【出願番号】P 2019053737
(22)【出願日】2019-03-20
【審査請求日】2022-01-11
【審判番号】
【審判請求日】2023-06-20
(73)【特許権者】
【識別番号】322003857
【氏名又は名称】パナソニックオートモーティブシステムズ株式会社
(74)【代理人】
【識別番号】110002952
【氏名又は名称】弁理士法人鷲田国際特許事務所
(72)【発明者】
【氏名】岩佐 健太
(72)【発明者】
【氏名】岸上 高明
(72)【発明者】
【氏名】四方 英邦
【合議体】
【審判長】岡田 吉美
【審判官】濱本 禎広
【審判官】佐々木 祐
(56)【参考文献】
【文献】特表2017-521683(JP,A)
【文献】特開2017-58359(JP,A)
【文献】特開2018-170571(JP,A)
【文献】特開2008-134223(JP,A)
【文献】特開2017-130791(JP,A)
【文献】特開2010-212946(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01S 7/00-7/42
G01S 13/00-13/95
(57)【特許請求の範囲】
【請求項1】
レーダ信号を送信する第1アレーアンテナ及び第2アレーアンテナの一方が接続されたレーダ送信回路と、
前記レーダ信号がターゲットに反射された反射波信号を受信する前記第1アレーアンテナ及び前記第2アレーアンテナの残りの一方が接続されたレーダ受信回路と、
を具備し、
前記第1アレーアンテナが前記レーダ送信回路に接続される場合、前記第2アレーアンテナが前記レーダ受信回路に接続され、
前記第2アレーアンテナが前記レーダ送信回路に接続される場合、前記第1アレーアンテナが前記レーダ受信回路に接続され、
前記第1アレーアンテナ及び前記第2アレーアンテナは第1軸及び第2軸による2次元平面上に配置され、
前記第2アレーアンテナは、複数の第2アンテナ列を含み、
前記複数の第2アンテナ列のそれぞれは第1の個数の第2アンテナを含み、前記第1の個数の第2アンテナのうち、隣り合う第2アンテナは前記第1軸方向に第1の間隔、前記第2軸方向に第2の間隔離れて配置され、
前記第1アレーアンテナは、複数の第1アンテナ列
と少なくとも1つの第3アンテナ列とを含み、
前記複数の第1アンテナ列のそれぞれは
、前記第1軸方向に、前記第1の間隔で配置された複数の第1アンテナ
により構成され、
前記少なくとも1つの第3アンテナ列は、前記第1軸方向に、前記第1の間隔および前記第1の間隔より広い第3の間隔で配置された複数の第3アンテナにより構成され、
前記第1アンテナ列と前記第3アンテナ列とは、前記第2軸方向に、前記第2の間隔の前記第1の個数倍の間隔で、交互に配置され、
前記複数の第1アンテナ列
のそれぞれを構成する前記第1の間隔の全ての合計は、前記少なくとも1つの第3アンテナ列を構成する前記第1の間隔および前記第3の間隔の全ての合計よりも小さく、
前記複数の第1アンテナは、前記第1軸方向にて
、前記複数の第3アンテナとは、異なる位置に配置され
る、
レーダ装置。
【請求項2】
前記第3の間隔は、前記第1の間隔に、前記第1の個数に1を加えた個数倍を乗算した間隔であり、
前記複数の第3アンテナは、前記第3の間隔により分割される2つの領域の少なくとも1つの領域において前記第1の間隔で配置される、
請求項1に記載のレーダ装置。
【請求項3】
前記2つの領域の一方に配置される第1アンテナ数と、前記2つの領域の他方に配置される第1アンテナ数とは同じであるか、あるいは、差分が1である、
請求項
2に記載のレーダ装置。
【請求項4】
前記第2軸方向に配置された前記複数の第1アンテナ列
および前記少なくとも1つの第3アンテナ列は1つの第1アンテナ群を構成し、前記第1アレーアンテナは、前記第1軸方向に配置された複数の前記第1アンテナ群を有する、
請求項1に記載のレーダ装置。
【請求項5】
前記第1軸方向に配置された前記複数の第2アンテナ列は1つの第2アンテナ群を構成し、
前記第2アレーアンテナは、複数の前記第2アンテナ群を有する、
請求項1に記載のレーダ装置。
【請求項6】
前記第1アレーアンテナは、送信アレーアンテナであり、
前記
複数の第1アンテナ列
および前記少なくとも1つの第3アンテナ列のそれぞれは、送信アンテナ列であり、
前記
複数の第1アンテナ
および前記複数の第3アンテナのそれぞれは、送信アンテナであり、
前記レーダ送信回路は、前記送信アレーアンテナを用いて、前記レーダ信号を送信し、
前記第2アレーアンテナは、受信アレーアンテナであり、
前記
複数の第2アンテナ列
のそれぞれは、受信アンテナ列であり、
前記
複数の第2アンテナ
のそれぞれは、受信アンテナであり、
前記レーダ受信回路は、前記受信アレーアンテナを用いて、前記レーダ信号がターゲットにて反射された反射波信号を受信する、
請求項1に記載のレーダ装置。
【請求項7】
前記レーダ送信回路は、前記送信アレーアンテナを用いてビームフォーミングを行う、
請求項
6に記載のレーダ装置。
【請求項8】
前記第1の間隔及び前記第2の間隔は、0.5波長以上、かつ、1波長以下の値である、
請求項1に記載のレーダ装置。
【請求項9】
前記第1アンテナ
、前記第3アンテナ及び前記第2アンテナの少なくとも1つは、複数のサブアレー素子を含む、
請求項1に記載のレーダ装置。
【請求項10】
第1アレーアンテナと、
第2アレーアンテナと、
前記第1アレーアンテナが、レーダ信号を送信する送信アレーアンテナである場合、前記第2アレーアンテナは、前記レーダ信号がターゲットに反射された反射波信号を受信する受信アレーアンテナであり、
前記第2アレーアンテナが、前記レーダ信号を送信する送信アレーアンテナである場合、前記第1アレーアンテナは、前記レーダ信号がターゲットに反射された反射波信号を受信する受信アレーアンテナであり、
前記第1アレーアンテナ及び前記第2アレーアンテナは第1軸及び第2軸による2次元平面上に配置され、
前記第2アレーアンテナは、複数の第2アンテナ列を含み、
前記複数の第2アンテナ列のそれぞれは第1の個数の第2アンテナを含み、前記第1の個数の第2アンテナのうち、隣り合う第2アンテナは前記第1軸方向に第1の間隔、前記第2軸方向に第2の間隔離れて配置され、
前記第1アレーアンテナは、複数の第1アンテナ列
と少なくとも1つの第3アンテナ列とを含み、
前記
複数の第1アンテナ列のそれぞれは
、前記第1軸方向に、前記第1の間隔で配置された複数の第1アンテナ
により構成され、
前記少なくとも1つの第3アンテナ列は、前記第1軸方向に、前記第1の間隔および前記第1の間隔より広い第3の間隔で配置された複数の第3アンテナにより構成され、
前記複数の第1アンテナ列と前記少なくとも1つの第3アンテナ列とは、前記第2軸方向に、前記第2の間隔の前記第1の個数倍の間隔で、交互に配置され、
前記複数の第1アンテナ列の
それぞれを構成する前記第1の間隔の全ての合計は、前記少なくとも1つの第3アンテナ列を構成する前記第1の間隔および前記第3の間隔の全ての合計よりも小さく、
前記複数の第1アンテナは、前記第1軸方向にて
、前記複数の第3アンテナとは、異なる位置に配置され
る、
送受信アレーアンテナ。
【請求項11】
前記第1アレーアンテナは、送信アレーアンテナであり、
前記
複数の第1アンテナ列
および前記少なくとも1つの第3アンテナ列のそれぞれは、送信アンテナ列であり、
前記
複数の第1アンテナ
および前記複数の第3アンテナのそれぞれは、送信アンテナであり、
前記第2アレーアンテナは、受信アレーアンテナであり、
前記
複数の第2アンテナ列
のそれぞれは、受信アンテナ列であり、
前記
複数の第2アンテナ
のそれぞれは、受信アンテナである、
請求項
10に記載の送受信アレーアンテナ。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、レーダ装置及び送受信アレーアンテナに関する。
【背景技術】
【0002】
近年、高分解能が得られるマイクロ波又はミリ波を含む波長の短いレーダ送信信号を用いたレーダ装置の検討が進められている。また、屋外での安全性を向上させるために、車両以外にも、歩行者を含む物体(ターゲット)をより広角な範囲で検知するレーダ装置(以下、「広角レーダ装置」と呼ぶ)の開発が求められている。
【0003】
また、レーダ装置として、受信ブランチに加え、送信ブランチにも複数のアンテナ素子(アレーアンテナ)を備え、送受信アレーアンテナを用いた信号処理によりビーム走査を行う構成(MIMO(Multiple Input Multiple Output)レーダと呼ぶこともある)が提案されている(例えば、非特許文献1を参照)。
【0004】
MIMOレーダでは、送受信アレーアンテナにおけるアンテナ素子の配置を工夫することにより、最大で送信アンテナ素子数と受信アンテナ素子数との積に等しい仮想的な受信アレーアンテナ(以下、仮想受信アレーと呼ぶ)を構成できる。これにより、少ない素子数によってアレーアンテナの実効的な開口長を拡大し、角度分解能を向上できる。
【0005】
また、垂直方向又は水平方向の一次元走査以外にも、垂直方向及び水平方向の2次元におけるビーム走査を行う場合にもMIMOレーダが適用可能である(例えば、特許文献1及び非特許文献1を参照)。
【先行技術文献】
【特許文献】
【0006】
【非特許文献】
【0007】
【文献】P. P. Vaidyanathan, P. Pal,Chun-Yang Chen, "MIMO radar with broadband waveforms: Smearing filter banks and 2D virtual arrays,"IEEE Asilomar Conference on Signals, Systems and Computers, pp.188 - 192, 2008.
【文献】Direction-of-arrival estimation using signal subspace modeling, Cadzow.J.A., Aerospace and Electronic Systems, IEEE Transactions on Volume: 28 , Issue: 1 Publication Year: 1992, Page(s): 64-79
【発明の概要】
【発明が解決しようとする課題】
【0008】
送受信ブランチのアンテナ配置によっては、レーダ装置の検出性能が劣化してしまう場合がある。
【0009】
本開示の非限定的な実施例は、検出性能を向上できるレーダ装置の提供に資する。
【課題を解決するための手段】
【0010】
本開示の一実施例に係るレーダ装置は、第1アレーアンテナが接続された第1レーダ回路と、第2アレーアンテナが接続された第2レーダ回路と、を具備し、前記第1アレーアンテナ及び前記第2アレーアンテナは第1軸及び第2軸による2次元平面上に配置され、前記第2アレーアンテナは、複数の第2アンテナ列を含み、前記複数の第2アンテナ列のそれぞれは複数の第2アンテナを含み、前記複数の第2アンテナのうち、隣り合う第2アンテナは前記第1軸方向に第1の間隔、前記第2軸方向に第2の間隔離れて配置され、前記第1アレーアンテナは、複数の第1アンテナ列を含み、前記複数の第1アンテナ列のそれぞれは複数の第1アンテナを含み、前記複数の第1アンテナのそれぞれは、前記第2軸方向について同じ位置、及び、前記第1軸方向について異なる位置に配置され、前記複数の第1アンテナ列のうち、前記第2軸方向にて連続して配置される2つの第1アンテナ列は、前記第1軸方向にて異なる位置に配置される第1アンテナを少なくとも1つ含む。
【0011】
なお、これらの包括的または具体的な実施例は、システム、装置、方法、集積回路、コンピュータプログラム、または、記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
【発明の効果】
【0012】
本開示の一実施例によれば、レーダ装置の検出性能を向上できる。
【0013】
本開示の一実施例における更なる利点および効果は、明細書および図面から明らかにされる。かかる利点および/または効果は、いくつかの実施形態並びに明細書および図面に記載された特徴によってそれぞれ提供されるが、1つまたはそれ以上の同一の特徴を得るために必ずしも全てが提供される必要はない。
【図面の簡単な説明】
【0014】
【
図1A】実施の形態1に係るレーダ装置の構成例を示すブロック図
【
図1B】実施の形態1に係るレーダ装置の構成例を示すブロック図
【
図2】実施の形態1に係るレーダ送信信号の一例を示す図
【
図3】実施の形態1に係る送信アンテナの切替制御の一例を示す図
【
図4】実施の形態1に係るレーダ送信信号生成部の他の構成例を示すブロック図
【
図5】実施の形態1に係るレーダ送信信号の送信タイミング、及び、測定範囲の一例を示す図
【
図6】実施の形態1に係る方向推定部の動作説明に用いる3次元座標系を示す図
【
図7A】実施の形態1に係る送信アンテナの配置例を示す図
【
図7B】実施の形態1に係る受信アンテナの配置例を示す図
【
図8】実施の形態1に係るサブアレーアンテナ構成の一例を示す図
【
図9A】実施の形態1のバリエーション1に係る送信アンテナの配置例を示す図
【
図9B】実施の形態1のバリエーション1に係る受信アンテナの配置例を示す図
【
図10A】実施の形態1のバリエーション1に係るアンテナ配置例を示す図
【
図10B】実施の形態1のバリエーション1に係るアンテナ配置例を示す図
【
図10C】実施の形態1のバリエーション1に係るアンテナ配置例を示す図
【
図10D】実施の形態1のバリエーション1に係るアンテナ配置例を示す図
【
図11A】実施の形態1のバリエーション1に係るサブアレーアンテナの配置例を示す図
【
図11B】実施の形態1のバリエーション1に係るサブアレーアンテナ及び無給電素子の配置例を示す図
【
図12A】実施の形態1のバリエーション1に係る2次元ビームによる指向性パターンの一例を示す図
【
図12B】実施の形態1のバリエーション1に係る2次元ビームによる指向性パターンを1次元に縮退した一例を示す図
【
図13A】実施の形態1のバリエーション1に係る仮想受信アレーにウェイトをかけた場合の電力分布の一例を示す図
【
図13B】実施の形態1のバリエーション1に係る仮想受信アレーにウェイトをかけた場合の2次元ビームによる指向性パターンの一例を示す図
【
図13C】実施の形態1のバリエーション1に係る仮想受信アレーにウェイトをかけた場合の2次元ビームによる指向性パターンを1次元に縮退した一例を示す図
【
図14】実施の形態1の比較例に係るアンテナ配置の一例を示す図
【
図15A】実施の形態1の比較例に係る2次元ビームによる指向性パターンの一例を示す図
【
図15B】実施の形態1の比較例に係る2次元ビームによる指向性パターンを1次元に縮退した一例を示す図
【
図16A】実施の形態1のバリエーション1と比較例に係る2次元ビームによる指向性パターンの比較を示す図
【
図16B】実施の形態1のバリエーション1と比較例に係る2次元ビームによる指向性パターンの比較を示す図
【
図17】実施の形態1のバリエーション2に係るアンテナ配置例を示す図
【
図18A】実施の形態1のバリエーション2に係るアンテナ配置例を示す図
【
図18B】実施の形態1のバリエーション2に係るアンテナ配置例を示す図
【
図18C】実施の形態1のバリエーション2に係るアンテナ配置例を示す図
【
図19A】実施の形態1のバリエーション3に係るアンテナ配置例を示す図
【
図19B】実施の形態1のバリエーション3に係るアンテナ配置例を示す図
【
図19C】実施の形態1のバリエーション3に係るアンテナ配置例を示す図
【
図19D】実施の形態1のバリエーション3に係るアンテナ配置例を示す図
【
図20A】実施の形態1のバリエーション4に係るアンテナ配置例を示す図
【
図20B】実施の形態1のバリエーション4に係るアンテナ配置例を示す図
【
図21】実施の形態1のバリエーション5に係る送信アンテナ配置例を示す図
【
図22A】実施の形態1のバリエーション5に係るアンテナ配置例を示す図
【
図22B】実施の形態1のバリエーション5に係るアンテナ配置例を示す図
【
図22C】実施の形態1のバリエーション5に係るアンテナ配置例を示す図
【
図22D】実施の形態1のバリエーション5に係るアンテナ配置例を示す図
【
図23A】実施の形態1のバリエーション6に係るアンテナ配置例を示す図
【
図23B】実施の形態1のバリエーション6に係るアンテナ配置例を示す図
【
図23C】実施の形態1のバリエーション6に係るアンテナ配置例を示す図
【
図24A】実施の形態1のバリエーション7に係る送信アンテナの配置例を示す図
【
図24B】実施の形態1のバリエーション7に係る受信アンテナの配置例を示す図
【
図24C】実施の形態1のバリエーション7に係る仮想受信アレーの配置例を示す図
【
図25A】実施の形態1のバリエーション7に係る送信アンテナの配置例を示す図
【
図25B】実施の形態1のバリエーション7に係る受信アンテナの配置例を示す図
【
図25C】実施の形態1のバリエーション7に係る仮想受信アレーの配置例を示す図
【
図26A】実施の形態2に係る送信アンテナ及び仮想受信アレーの配置例を示す図
【
図26B】実施の形態2に係る送信アンテナ及び仮想受信アレーの配置例を示す図
【
図27】実施の形態3に係るレーダ装置の構成例を示すブロック図
【
図28】実施の形態4に係るレーダ装置の構成例を示すブロック図
【
図29】チャープパルスを用いた場合の送信信号及び反射波信号の一例を示す図
【発明を実施するための形態】
【0015】
例えば、レーダ装置として、パルス波を繰り返し発信するパルスレーダ装置が知られている。より広角な範囲において車両/歩行者を検知する広角パルスレーダ装置の受信信号は、近距離に存在するターゲット(例えば車両)と、遠距離に存在するターゲット(例えば歩行者)とからの複数の反射波が混合された信号になりやすい。このため、(1)レーダ送信部では、低いレンジサイドローブとなる自己相関特性(以下、低レンジサイドローブ特性と呼ぶ)を有するパルス波又はパルス変調波を送信する構成が要求され、(2)レーダ受信部では、広い受信ダイナミックレンジを有する構成が要求される。
【0016】
広角レーダ装置の構成として、以下の2つの構成が挙げられる。
【0017】
一つ目は、パルス波又は変調波を狭角(例えば、数度程度のビーム幅)の指向性ビームを用いて、機械的又は電子的に走査してレーダ波を送信し、狭角の指向性ビームを用いて反射波を受信する構成である。この構成では、高分解能を得るためには多くの走査を行うことになるので、例えば、より高速移動するターゲットに対する追従性が劣化しやすくなる。
【0018】
二つ目は、複数のアンテナ(アンテナ素子)で構成されるアレーアンテナによって反射波を受信し、素子間隔(アンテナ間隔)に対する受信位相差に基づく信号処理アルゴリズムによって反射波の到来角を推定する手法(Direction of Arrival (DOA) estimation)を用いる構成である。この構成では、送信ブランチでの送信ビームの走査間隔を間引いたとしても、受信ブランチにおいて到来角を推定できるので、走査時間の短縮化が図れ、1つ目の構成と比較して追従性が向上する。例えば、到来方向推定方法には、行列演算に基づくフーリエ変換、逆行列演算に基づくCapon法及びLP(Linear Prediction)法、又は、固有値演算に基づくMUSIC(Multiple Signal Classification)及びESPRIT(Estimation of Signal Parameters via Rotational Invariance Techniques)が挙げられる。
【0019】
また、MIMOレーダは、時分割、周波数分割又は符号分割を用いて多重した信号を複数の送信アンテナから送信し、周辺物体で反射された信号を複数の受信アンテナで受信し、受信信号の各々から、多重された送信信号を分離して受信する。
【0020】
また、MIMOレーダにおけるアンテナ素子の構成は、1つのアンテナ素子を用いる構成(以下、単体アンテナと呼ぶ)と、複数のアンテナ素子(又はサブアレー素子と呼ぶ)を用いてサブアレー化した構成(以下、サブアレーと呼ぶ)とに大別される。
【0021】
単体アンテナを用いる場合は、サブアレーを用いる場合と比較して、広い指向性を有する特性になる一方、アンテナ利得が相対的に低くなる。そのため、レーダ反射波に対する受信SNR(Signal to Noise Ratio)を向上するには、受信信号処理において、より多くの加算処理を行うか、又は、より多くのアンテナ素子を用いてレーダ反射波を受信する。
【0022】
一方、サブアレーを用いる場合は、単体アンテナを用いる場合と比較して、アンテナの物理的なサイズが大きくなり、メインビーム方向のアンテナ利得を向上できる。例えば、サブアレーの物理的なサイズは、送信信号の無線周波数(キャリア周波数)における波長程度以上となる。
【0023】
上述したように、MIMOレーダは、垂直方向又は水平方向の一次元走査(測角)以外にも、垂直方向及び水平方向の2次元におけるビーム走査を行う場合にも適用可能である。
【0024】
例えば、車両に搭載される長距離用の2次元ビームを走査可能なMIMOレーダでは、水平方向に1次元にビーム走査を行うMIMOレーダと同等の水平方向の高い分解能に加え、垂直方向の角度推定能力が要望される。
【0025】
しかしながら、送信アンテナ素子及び受信アンテナ素子の各々において、アンテナ素子を水平方向及び垂直方向に半波長程度で等間隔に配置する場合、アンテナ素子が隣接しているため、物理的制約からアンテナ素子をサブアレー化してアンテナ利得を高利得化することが困難である。換言すると、送信アンテナ素子又は受信アンテナ素子にサブアレーを用いる場合、サブアレーのサイズ(例えば、1波長以上)よりも狭い間隔にはアンテナ素子の配置が困難である。
【0026】
一方、アンテナを不等間隔に配置し、アンテナ素子間隔を1波長以上に拡げることにより、アンテナ素子をサブアレー化することも可能である(例えば、特許文献1を参照)。しかしながら、仮想受信アレーのアンテナ素子間隔が1波長以上になることによって、角度方向のグレーティングローブ又はサイドローブ成分が発生しやすくなる。このため、レーダ装置は、検知角度範囲内においてグレーティングローブに起因する偽のピークを誤ってターゲット(物標)として検出(誤検出)する確率が増加し、レーダ装置の検出性能が劣化してしまう。
【0027】
本開示に係る一実施例は、仮想受信アレーの開口長を拡大し、不要なグレーティングローブの発生を抑えることにより、誤検出の確率を低減し、所望の指向性パターンを実現可能とする。また、本開示に係る他の実施例は、送信アンテナ素子及び受信アンテナ素子の少なくとも1つを、サブアレーを用いて構成し、アンテナ素子の指向性利得を向上可能とする。
【0028】
以下、本開示の一実施例に係る実施の形態について、図面を参照して詳細に説明する。なお、実施の形態において、同一の構成要素には同一の符号を付し、その説明は重複するので省略する。
【0029】
以下、複数の送信アンテナ(例えば、送信サブアレー)及び複数の受信アンテナ(例えば、受信サブアレー)の配置の説明の前に、レーダ装置の構成例について説明する。
【0030】
例えば、レーダ装置の送信ブランチにおいて、複数の送信アンテナを時分割で切り替えて、時分割多重された異なるレーダ送信信号を送出し、受信ブランチにおいて、各送信信号を分離して受信処理を行うMIMOレーダの構成について説明する。なお、レーダ装置の構成は、これに限定されず、送信ブランチにおいて、複数の送信アンテナから周波数分割多重された異なる送信信号を送出し、受信ブランチにおいて、各送信信号を分離して受信処理を行う構成でもよい。また、同様に、レーダ装置の構成は、送信ブランチで複数の送信アンテナから符号分割多重された送信信号を送出し、受信ブランチで、受信処理を行う構成でもよい。
【0031】
なお、以下に説明する実施の形態は一例であり、本開示は以下の実施の形態により限定されるものではない。
【0032】
[実施の形態1]
[レーダ装置の構成]
図1Aは、本実施の形態に係るレーダ装置10の構成例を示すブロック図である。
【0033】
レーダ装置10は、例えば、レーダ送信部(送信ブランチ)100と、レーダ受信部(受信ブランチ)200と、基準信号生成部300と、を有する。
【0034】
レーダ送信部100は、基準信号生成部300から出力されるリファレンス信号に基づいて高周波(無線周波数:Radio Frequency)のレーダ信号(レーダ送信信号)を生成する。そして、レーダ送信部100は、複数の送信アンテナ108-1~108-Nt(例えば、後述する
図1Bを参照)によって構成される送信アレーアンテナを用いて、レーダ送信信号を所定の送信周期にて送信する。
【0035】
レーダ受信部200は、レーダ送信信号が物標(ターゲット。図示せず)に反射した反射波信号を、複数の受信アンテナ202-1~202-Na(例えば、後述する
図1Bを参照)を含む受信アレーアンテナを用いて受信する。レーダ受信部200は、基準信号生成部300から出力されるリファレンス信号を用いて、下記の処理動作を行うことで、レーダ送信部100と同期した処理を行う。また、レーダ受信部200は、各受信アンテナ202において受信した反射波信号を信号処理し、例えば、物標の有無検出又は反射波信号の到来方向の推定を行う。なお、物標はレーダ装置10が検出する対象の物体であり、例えば、車両(4輪及び2輪を含む)、人、ブロック又は縁石などを含む。
【0036】
基準信号生成部300は、レーダ送信部100及びレーダ受信部200のそれぞれに接続されている。基準信号生成部300は、基準信号としてのリファレンス信号をレーダ送信部100及びレーダ受信部200に供給し、レーダ送信部100及びレーダ受信部200の処理を同期させる。
【0037】
図1Bは、
図1Aに示すレーダ装置10のより詳細な構成例を示すブロック図である。
図1Bを用いて各構成部の詳細を説明する。
【0038】
[レーダ送信部100の構成]
レーダ送信部100は、レーダ送信信号生成部101と、切替制御部105と、送信切替部106と、送信無線部107-1~107-Ntと、送信アンテナ108-1~108-Ntと、を有する。すなわち、レーダ送信部100は、Nt個の送信アンテナ108を有し、各送信アンテナ108は、それぞれ個別の送信無線部107に接続されている。
【0039】
レーダ送信信号生成部101は、基準信号生成部300から出力されるリファレンス信号を所定数倍したタイミングクロックを生成し、生成したタイミングクロックに基づいてレーダ送信信号を生成する。そして、レーダ送信信号生成部101は、所定のレーダ送信周期(Tr)にてレーダ送信信号を繰り返し出力する。レーダ送信信号は、例えば、y(k, M)=I(k, M)+j Q(k, M)で表される。ここで、jは虚数単位を表し、kは離散時刻を表し、Mはレーダ送信周期の序数を表す。また、I(k, M)及びQ(k, M)は、第M番目のレーダ送信周期における離散時刻kにおけるレーダ送信信号(k M)の同相成分(In-Phase成分)、及び、直交成分(Quadrature成分)をそれぞれ表す。
【0040】
レーダ送信信号生成部101は、符号生成部102と、変調部103と、LPF(Low Pass Filter)104とを含む。以下、レーダ送信信号生成部101における各構成部について説明する。
【0041】
符号生成部102は、レーダ送信周期Tr毎に、符号長Lの符号系列の符号an(M)(n=1,…,L)(パルス符号)を生成する。符号生成部102において生成される符号an(M)には、例えば、低レンジサイドローブ特性が得られる符号が用いられる。符号系列としては、例えば、Barker符号、M系列符号、又は、Gold符号などが挙げられる。
【0042】
変調部103は、符号生成部102から出力されるパルス符号系列(例えば、符号an(M))に対してパルス変調(例えば、振幅変調、ASK(Amplitude Shift Keying)、パルスシフトキーイング)又は位相変調(Phase Shift Keying)を行い、変調信号をLPF104へ出力する。
【0043】
LPF104は、変調部103から出力される変調信号のうち、所定の制限帯域以下の信号成分を、ベースバンドのレーダ送信信号として送信切替部106へ出力する。
【0044】
図2は、レーダ送信信号生成部101によって生成されるレーダ送信信号の一例を示す。
図2に示すように、レーダ送信周期Trのうち、符号送信区間Twの間に符号長Lのパルス符号系列が含まれる。各レーダ送信周期Trのうち、符号送信区間Twの間にパルス符号系列が送信され、残りの区間(Tr-Tw)は無信号区間となる。1つの符号には、L個のサブパルスが含まれる。また、1つのサブパルスあたり、No個のサンプルを用いたパルス変調が施されることにより、各符号送信区間Tw内には、Nr(=No×L)個のサンプルの信号が含まれる。また、レーダ送信周期Trにおける無信号区間(Tr-Tw)には、Nu個のサンプルが含まれる。
【0045】
切替制御部105は、レーダ送信部100における送信切替部106、及び、レーダ受信部200における出力切替部211を制御する。なお、切替制御部105における、レーダ受信部200の出力切替部211に対する制御動作についてはレーダ受信部200の動作の説明において後述する。以下では、切替制御部105における、レーダ送信部100の送信切替部106に対する制御動作について説明する。
【0046】
切替制御部105は、例えば、レーダ送信周期Tr毎に、送信アンテナ108(換言すると、送信無線部107)を切り替える制御信号(以下、「切替制御信号」と呼ぶ)を送信切替部106に出力する。
【0047】
送信切替部106は、レーダ送信信号生成部101から出力されるレーダ送信信号を、切替制御部105から出力される切替制御信号によって指示される送信無線部107へ出力する切替動作を行う。例えば、送信切替部106は、切替制御信号に基づいて、複数の送信無線部107-1~107-Ntのうち一つを選択して切り替えて、選択した送信無線部107へレーダ送信信号を出力する。
【0048】
第z(z=1,…,Nt)番目の送信無線部107は、送信切替部106から出力されるベースバンドのレーダ送信信号に対して、周波数変換を行いキャリア周波数(Radio Frequency:RF)帯のレーダ送信信号を生成し、送信増幅器により所定の送信電力P[dB]に増幅して第z番目の送信アンテナ108へ出力する。
【0049】
第z(z=1,…,Nt)番目の送信アンテナ108は、第z番目の送信無線部107から出力されるレーダ送信信号を空間に放射する。
【0050】
図3は、本実施の形態に係る送信アンテナ108の切替動作の一例を示す。なお、本実施の形態に係る送信アンテナ108の切替動作は、
図3に示す例に限定されるものではない。
【0051】
図3では、切替制御部105は、レーダ送信周期Tr毎に、第1の送信アンテナ108(又は送信無線部107-1)から第Ntの送信アンテナ108(又は送信無線部107-Nt)までを順に切り替える指示を示す切替制御信号を、送信切替部106に出力する。よって、第1の送信アンテナ108から第Ntの送信アンテナ108の各々において、レーダ送信信号はNp(=Nt×Tr)周期の送信間隔で送信される。
【0052】
切替制御部105は、アンテナ切替周期Npでの送信無線部107の切替動作をNc回繰り返す制御を行う。
【0053】
なお、各送信無線部107における送信信号の送信開始時刻は、周期Trに同期させなくてもよい。例えば、各送信無線部107では、送信開始時刻に異なる送信遅延Δ1, Δ2,…,ΔNtを設けて、レーダ送信信号の送信を開始してもよい。このような送信遅延Δ1, Δ2,…,ΔNtを設ける場合、後述するレーダ受信部200の処理において、送信遅延Δ1, Δ2,…,ΔNtを考慮した送信位相補正係数を導入することにより、ドップラ周波数によって受信信号において異なる位相回転になる影響を抑制できる。このような送信遅延Δ1, Δ2,…,ΔNtを測定毎に可変することで、他のレーダ装置(図示せず)からの干渉がある場合又は他のレーダ装置に干渉を与える場合に、他レーダ間で干渉の影響を相互にランダマイズ化する効果が得られる。
【0054】
また、レーダ送信部100は、レーダ送信信号生成部101の代わりに、
図4に示すレーダ送信信号生成部101aを備えてもよい。レーダ送信信号生成部101aは、
図1Bに示す符号生成部102、変調部103及びLPF104を有さず、代わりに符号記憶部111及びDA変換部112を備える。符号記憶部111は、符号生成部102(
図1B)において生成される符号系列を予め記憶し、記憶している符号系列を巡回的に順次読み出す。DA変換部112は、符号記憶部111から出力される符号系列(デジタル信号)をアナログ信号(ベースバンド信号)に変換する。
【0055】
[レーダ受信部200の構成]
図1Bにおいて、レーダ受信部200は、Na個の受信アンテナ202を備え、アレーアンテナを構成する。レーダ受信部200は、Na個のアンテナ系統処理部201-1~201-Naと、CFAR(Constant False Alarm Rate)部213と、方向推定部214と、を有する。
【0056】
各受信アンテナ202は、物標(ターゲット)に反射したレーダ送信信号である反射波信号を受信し、受信した反射波信号を、対応するアンテナ系統処理部201へ受信信号として出力する。
【0057】
各アンテナ系統処理部201は、受信無線部203と、信号処理部207とを有する。
【0058】
受信無線部203は、増幅器204と、周波数変換器205と、直交検波器206と、を有する。受信無線部203は、基準信号生成部300から出力されるリファレンス信号を所定数倍したタイミングクロックを生成し、生成したタイミングクロックに基づいて動作する。具体的には、増幅器204は、受信アンテナ202から出力される受信信号を所定レベルに増幅し、周波数変換器205は、高周波帯域の受信信号をベースバンド帯域に周波数変換し、直交検波器206は、直交検波により、ベースバンド帯域の受信信号を、I信号及びQ信号を含むベースバンド帯域の受信信号に変換する。
【0059】
各アンテナ系統処理部201-z(ただし、z=1~Naの何れか)の信号処理部207は、AD変換部208、209と、相関演算部210と、出力切替部211と、ドップラ解析部212-1~212-Ntと、を有する。
【0060】
AD変換部208には、直交検波器206からI信号が入力され、AD変換部209には、直交検波器206からQ信号が入力される。AD変換部208は、I信号を含むベースバンド信号に対して、離散時刻でのサンプリングを行うことにより、I信号をデジタルデータに変換する。AD変換部209は、Q信号を含むベースバンド信号に対して、離散時刻でのサンプリングを行うことにより、Q信号をデジタルデータに変換する。
【0061】
ここで、AD変換部208,209のサンプリングでは、例えば、レーダ送信信号における1つのサブパルスの時間Tp(=Tw/L)あたり、Ns個の離散サンプルが行われる。すなわち、1サブパルスあたりのオーバーサンプル数はNsとなる。
【0062】
以下の説明では、I信号Iz(k, M)及びQ信号Qz(k, M)を用いて、AD変換部208,209の出力としての第M番目のレーダ送信周期Tr[M]の離散時刻kにおけるベースバンドの受信信号を複素数信号xz(k, M)=Iz(k, M)+j Qz(k, M)と表す(ただし、z=1~Naの何れか)。また、以下では、離散時刻kは、レーダ送信周期(Tr)の開始するタイミングを基準(k=1)とし、信号処理部207は、レーダ送信周期Trが終了する前までのサンプル点であるk=(Nr+Nu)Ns/Noまで周期的に動作する。すなわち、k=1,…,(Nr+Nu)Ns/Noとなる。ここで、jは虚数単位である。
【0063】
第z(z=1,…,Na)番目の信号処理部207における相関演算部210は、レーダ送信周期Tr毎に、AD変換部208,209から受け取る離散サンプル値I
z(k, M)及びQ
z(k, M)を含む離散サンプル値x
z(k, M)と、レーダ送信部100において送信される符号長Lのパルス符号a
n(M)(ただし、z=1,…,Na、n=1,…,L)との相関演算を行う。例えば、相関演算部210は、離散サンプル値x
z(k, M)と、パルス符号a
n(M)とのスライディング相関演算を行う。例えば、第M番目のレーダ送信周期Tr[M]における離散時刻kのスライディング相関演算の相関演算値AC
z(k, M)は、次式に基づき算出される。
【数1】
【0064】
式(1)において、アスタリスク(*)は複素共役演算子を表す。
【0065】
相関演算部210は、例えば、式(1)に従って、k=1,…,(Nr+Nu)Ns/Noの期間に渡って相関演算を行う。
【0066】
なお、相関演算部210は、k=1,…,(Nr+Nu)Ns/Noに対して相関演算を行う場合に限定されず、レーダ装置10の測定対象となるターゲットの存在範囲に応じて、測定レンジ(すなわち、kの範囲)を限定してもよい。これにより、レーダ装置10では、相関演算部210の演算処理量の低減が可能となる。例えば、相関演算部210は、k=Ns(L+1),…,(Nr+Nu)Ns /No-NsLに測定レンジを限定してもよい。この場合、
図5に示すように、レーダ装置10は、符号送信区間Twに相当する時間区間では測定を行わなくてもよい。
【0067】
これにより、レーダ装置10は、レーダ送信信号がレーダ受信部200に直接的に回り込むような場合でも、レーダ送信信号が回り込む期間(少なくともτ1未満の期間)では相関演算部210による処理が行われないので、回り込みの影響を排除した測定が可能となる。また、測定レンジ(kの範囲)を限定する場合、以下で説明する出力切替部211、ドップラ解析部212、CFAR部213及び方向推定部214の処理に対しても、同様に測定レンジ(kの範囲)を限定した処理を適用すればよい。これにより、各構成部での処理量を削減でき、レーダ受信部200における消費電力を低減できる。
【0068】
出力切替部211は、切替制御部105から入力される切替制御信号に基づいて、レーダ送信周期Tr毎の相関演算部210の出力を、Nt個のドップラ解析部212のうちの一つに選択的に切り替えて出力する。以下、一例として、第M番目のレーダ送信周期Tr[M]における切替制御信号をNtビットの情報[bit1(M), bit2(M), … ,bitNt(M)]で表す。例えば、第M番目のレーダ送信周期Tr[M]の切替制御信号において、第NDビット(ただし、ND=1~Ntの何れか)が‘1’である場合、出力切替部211は、第ND番目のドップラ解析部212を選択(換言するとON)する。一方、第M番目のレーダ送信周期Tr[M]の切替制御信号において、第NDビットが‘0’である場合、出力切替部211は、第ND番目のドップラ解析部212を非選択(換言するとOFF)とする。出力切替部211は、選択したドップラ解析部212に対して、相関演算部210から入力される相関演算値ACz(k, M)を出力する。
【0069】
例えば、
図3に示す送信無線部107(又は送信アンテナ108)の切替動作に対応するNtビットの切替制御信号を以下に示す。
[bit1(1), bit2(1), … ,bitNt(1)] = [1, 0, …, 0]
[bit1(2), bit2(2), … ,bitNt(2)] = [0, 1, …, 0]
…
[bit1(Nt), bit2(Nt), … ,bitNt(Nt)] = [0, 0, …, 1]
【0070】
上記のように、各ドップラ解析部212は、Np(=Nt×Tr)周期で順次選択される(換言すると、ONとなる)。例えば、切替制御信号は、上記内容をNc回繰り返す。
【0071】
第z(z=1,…,Na)番目の信号処理部207は、Nt個のドップラ解析部212を有する。
【0072】
ドップラ解析部212は、出力切替部211からの出力(例えば、相関演算値ACz(k, M))に対して、離散時刻k毎にドップラ解析を行う。例えば、Ncが2のべき乗値である場合、ドップラ解析において高速フーリエ変換(FFT:Fast Fourier Transform)処理を適用できる。
【0073】
第z番目の信号処理部207の第ND番目のドップラ解析部212における第w番目の出力は、次式に示すように、離散時刻kにおけるドップラ周波数インデックスfsのドップラ周波数応答FT_CI
z
(ND)(k, fs, w) を示す。なお、ND=1~Ntであり、k=1,…, (Nr+Nu)Ns/Noであり、wは1以上の整数である。また、jは虚数単位であり、z=1~Naである。
【数2】
【0074】
なお、FFT処理の際、ドップラ解析部212は、例えば、Han窓又はHamming窓等の窓関数係数を乗算してもよい。窓関数係数を用いることにより、ビート周波数 ピーク周辺に発生するサイドローブを抑圧できる。
【0075】
以上、信号処理部207の各構成部における処理について説明した。
【0076】
CFAR部213は、ドップラ解析部212からの出力を用いて、CFAR処理(換言すると、適応的な閾値判定)を行い、ピーク信号を与える離散時刻のインデックスk_cfar及びドップラ周波数のインデックスfs_cfarを抽出し、方向推定部214に出力する。
【0077】
なお、レーダ装置10は、CFAR処理を行わずに、方向推定部214において方向推定処理を行ってもよい。つまり、CFAR部213を省略してレーダ受信部200を構成してもよい。
【0078】
方向推定部214は、CFAR部213から出力される情報(例えば、時間インデックスk_cfar、及び、ドップラ周波数インデックスfs_cfar)に基づいて、各ドップラ解析部212からの出力を用いてターゲットの方向推定処理を行う。
【0079】
例えば、方向推定部214は、式(3)に示すような仮想受信アレー相関ベクトルh(k, fs, w)を生成し、方向推定処理を行う。
【0080】
以下では、アンテナ系統処理部201-1~201-Naの各信号処理部207で同様な処理を施して得られたドップラ解析部212-1~212-Ntからのw番目の出力をまとめたものを、式(3)(式(4))に示すような送信アンテナ数Ntと受信アンテナ数Naとの積であるNt×Na個の要素を含む、仮想受信アレー相関ベクトルh(k,fs,w)として表記する。仮想受信アレー相関ベクトルh(k,fs,w)は、ターゲットからの反射波信号に対して各受信アンテナ202間の位相差に基づく方向推定を行う処理に用いる。ここで、z=1,…,Naであり、ND=1,…,Ntである。
【数3】
【数4】
【0081】
ここで、CFAR処理を行う場合、仮想受信アレー相関ベクトルh(k,fs,w)はCFAR処理によって抽出したピーク信号のインデックスを用いてh(k_cfar,fs_cfar,w)となる。仮想受信アレー相関ベクトルh(k_cfar, fs_cfar, w)は、Na×Nt個の要素を含む列ベクトルである。
【0082】
また、レーダ装置10では、送信アンテナ108を時分割で切り替えているため、異なるドップラ周波数fsにおいて異なる位相回転が発生する。式(3)及び式(4)において、TxCAL(1)(fs),…,TxCAL(Nt)(fs)は、その位相回転を補正し、基準送信アンテナの位相に一致させるための送信位相補正係数である。
【0083】
例えば、
図3に示す送信無線部107(又は送信アンテナ108)の切替動作に対応する、第1の送信アンテナ108(ND=1)を基準送信アンテナとした場合、送信位相補正係数は、次式で表される。
【数5】
【0084】
なお、各送信無線部107の送信信号の送信開始時刻に異なる送信遅延Δ
1,Δ
2,…,Δ
Ntを設けた場合、式(5)に示す送信位相補正係数TxCAL
(ND)(fs)に式(6)の補正係数Δ
TxCAL
(ND)(f)を乗算し、新たな送信位相補正係数TxCAL
(ND)(fs)としてよい。これにより、ドップラ周波数によって異なる位相回転の影響を除去できる。ここで、Δ
TxCAL
(ND)(fs)のNDは、位相基準とする基準送信アンテナ番号である。
【数6】
【0085】
図1Bにおいて、方向推定部214は、第1の信号処理部207~第Naの信号処理部207から出力されるw番目のドップラ解析部212の仮想受信アレー相関ベクトルh(k,f
s,w)に対して、送信アンテナ間及び受信アレーアンテナ間の移相偏差及び振幅偏差を補正するアレー補正値h
cal[b]を乗算することで、アンテナ間偏差を補正した仮想受信アレー相関ベクトルh
_after_cal(k,f
s,w)を算出する。仮想受信アレー相関ベクトルh
_after_cal(k,f
s,w)は式(7)で表される。なお、b=1,…,(Nt×Na)である。
【数7】
【0086】
アンテナ間偏差を補正した仮想受信アレー相関ベクトルh_after_cal(k,fs,w)は、Na×Nt個の要素からなる列ベクトルである。以下では、仮想受信アレー相関ベクトルh_after_cal(k,fs,w)の各要素をh1(k,fs,w),…,hNa×Nt(k,fs,w)と表記して、方向推定処理の説明に用いる。
【0087】
方向推定部214は、仮想受信アレー相関ベクトルh_after_cal(k,fs,w)を用いて、受信アンテナ202間の反射波信号の位相差に基づいて方向推定処理を行う。
【0088】
方向推定部214は、例えば、方向推定評価関数値PH(θ,k,fs,w)における方位方向θを所定の角度範囲内で可変として空間プロファイルを算出し、算出した空間プロファイルの極大ピークを大きい順に所定数抽出し、極大ピークの方位方向を到来方向推定値とする。
【0089】
なお、評価関数値P
H(θ,k,fs,w)は、到来方向推定アルゴリズムによって各種のものがある。例えば、非特許文献2に開示されているアレーアンテナを用いた推定方法を用いてもよい。例えばビームフォーマ法は式(8)及び式(9)のように表すことができる。他にも、Capon, MUSIC等の手法も同様に適用可能である。
【数8】
【数9】
【0090】
ここで、上付き添え字Hはエルミート転置演算子である。また、aH(θu)は、方位方向θuの到来波に対する仮想受信アレーの方向ベクトルを示す。また、θuは到来方向推定を行う方位範囲内を所定の方位間隔β1で変化させたものである。例えば、θuは以下のように設定される。
θu=θmin + uβ1、u=0,…, NU
NU=floor[(θmax-θmin)/β1]+1
ここでfloor(x)は、実数xを超えない最大の整数値を返す関数である。
【0091】
上述した方向推定部214の処理を
図6に示す3次元座標系に適応し、2次元方向に推定処理を行う場合について説明する。
【0092】
図6は、原点Oを基準とした物標(ターゲット)P
Tの位置ベクトルをr
PTと定義する。また、
図6では、物標P
Tの位置ベクトルr
PTをXZ平面に射影した射影点をP
T’とする。この場合、方位角θは、直線O-P
T’とZ軸とのなす角度と定義される(物標P
TのX座標が正の場合、θ>0)。また、仰角φは、物標P
T、原点O及び射影点P
T’を含む平面内での、物標P
T、原点O及び射影点P
T’を結ぶ線の角度と定義される(物標P
TのY座標が正の場合、φ>0)。なお、以下では、XY平面内に送信アンテナ108及び受信アンテナ202を配置する場合を一例として説明を行う。
【0093】
原点Oを基準とした、仮想受信アレーにおける第nva番目のアンテナ素子の位置ベクトルをSnvaと表記する。ここで、nva=1,…, Nt×Naである。
【0094】
また、仮想受信アレーにおける第1番目(nva=1)のアンテナ素子の位置ベクトルS1は、第1番目の受信アンテナ202の物理的な位置と原点Oとの位置関係に基づいて決定される。仮想受信アレーにおける他のアンテナ素子の位置ベクトルS2,…,Snvaは、第1番目のアンテナ素子の位置ベクトルS1を基準に、XY平面内に存在する送信アンテナ109及び受信アンテナ202の素子間隔から決定される仮想受信アレーの相対的な配置を保持した状態で決定される。なお、原点Oを第1番目の受信アンテナ202の物理的な位置と一致させてもよい。
【0095】
レーダ受信部200が遠方界に存在する物標P
Tからの反射波を受信する場合、仮想受信アレーの第1番目のアンテナ素子での受信信号を基準とした、第2番目のアンテナ素子での受信信号の位相差d(r
PT,2,1)は、式(10)で示される。ここで、<x,y>はベクトルx及びベクトルyの内積演算子である。
【数10】
【0096】
なお、仮想受信アレーの第1番目のアンテナ素子の位置ベクトルを基準とした、第2番目のアンテナ素子の位置ベクトルを、素子間ベクトルD(2,1)として式(11)で表す。
【数11】
【0097】
同様に、レーダ受信部200が遠方界に存在する物標P
Tからの反射波を受信する場合、仮想受信アレーの第n
va
(r)番目のアンテナ素子での受信信号を基準とした、第n
va
(t)番目のアンテナ素子での受信信号の位相差d(r
PT, n
va
(t),n
va
(r))は、式(12)で示される。ここで、n
va
(r)=1,…, Nt×Na、n
va
(t)=1,…, Nt×Naである。
【数12】
【0098】
なお、仮想受信アレーの第n
va
(r)番目のアンテナ素子の位置ベクトルを基準とした、第n
va
(t)番目のアンテナ素子の位置ベクトルを、素子間ベクトルD(n
va
(t),n
va
(r))として式(13)で表す。
【数13】
【0099】
式(12)及び式(13)に示すように、仮想受信アレーの第nva
(r)番目のアンテナ素子での受信信号を基準とした、第nva
(t)番目のアンテナ素子での受信信号の位相差d(rPT,nva
(t), nva
(r))は、遠方界に存在する物標PTの方向を示す単位ベクトル(rPT/|rPT|)及び素子間ベクトルD(nva
(t), nva
(r))に依存する。
【0100】
また、仮想受信アレーが同一平面内に存在する場合、素子間ベクトルD(nva
(t),nva
(r))は同一平面上に存在する。方向推定部214は、このような素子間ベクトルの全て又は一部を用いて、素子間ベクトルが示す位置に仮想的にアンテナ素子が存在するとして、仮想面配置アレーアンテナを構成し、2次元における方向推定処理を行う。すなわち、方向推定部214は、仮想受信アレーを構成するアンテナ素子に対する補間処理によって補間された複数の仮想的なアンテナ素子を用いて到来方向推定処理を行う。
【0101】
なお、方向推定部214は、仮想的なアンテナ素子が重複する場合、重複するアンテナ素子のうちの一つのアンテナ素子を予め固定的に選択してもよい。または、方向推定部214は、重複する全ての仮想的なアンテナ素子での受信信号を用いて加算平均処理を施してもよい。
【0102】
以下、Nq個の素子間ベクトル群を用いて、仮想面配置アレーアンテナを構成した場合における、ビームフォーマ法を用いた2次元における方向推定処理について説明する。
【0103】
ここで、仮想面配置アレーアンテナを構成する第nq番目の素子間ベクトルをD(nva(nq)
(t),nva(nq)
(r))と表す。ここで、nq=1,…,Nqである。
【0104】
例えば、方向推定部214は、仮想受信アレー相関ベクトルh
_after_cal(k, fs, w)の各要素であるh
1(k, fs, w),…,h
Na×N(k, fs, w)を用いて、式(14)に示す仮想面配置アレーアンテナ相関ベクトルh
VA(k, fs, w)を生成する。
【数14】
【0105】
仮想面配置アレー方向ベクトルa
VA(θu, φv)を式(15)に示す。
【数15】
【0106】
仮想受信アレーがXY平面内に存在する場合、物標P
Tの方向を示す単位ベクトル(r
PT/|r
PT|)と、方位角θ及び仰角φとの関係を式(16)に示す。
【数16】
【0107】
方向推定部214は、垂直方向及び水平方向の2次元空間プロファイルを算出する各角度方向θu,φvに対して、式(16)を用いて単位ベクトル(rPT/|rPT|)を算出する。
【0108】
さらに、方向推定部214は、仮想面配置アレーアンテナ相関ベクトルhVA(k,fs,w)、及び、仮想面配置アレー方向ベクトルaVA(θu,φv)を用いて、水平方向及び垂直方向の2次元方向推定処理を行う。
【0109】
ビームフォーマ法を用いた2次元における方向推定処理では、方向推定部214は、仮想面配置アレーアンテナ相関ベクトルh
VA(k,fs,w)及び仮想面配置アレー方向ベクトルa
VA(θu,φv)を用いて、式(17)で示される2次元における方向推定評価関数を用いて垂直方向及び水平方向の2次元空間プロファイルを算出する。方向推定部214は、算出した2次元空間プロファイルの最大値又は極大値となる方位角及び仰角方向を到来方向推定値とする。
【数17】
【0110】
なお、方向推定部214は、ビームフォーマ法以外にも、仮想面配置アレーアンテナ相関ベクトルhVA(k, fs, w)及び仮想面配置アレー方向ベクトルaVA(θu, φv)を用いて、Capon法又はMUSIC法などの高分解能到来方向推定アルゴリズムを適用してもよい。これにより、演算量は増加するが、角度分解能を向上できる。
【0111】
また、方向推定部214では、
図6の3次元座標系に示すように2次元方向に推定処理を行う場合について説明したが、これに限らず、2次元座標系に対応した1次元方向に推定処理を行う場合にも適応可能である。
【0112】
また、ここでは、レーダ送信部100及びレーダ受信部200における複数のアンテナを用いるMIMOレーダの方向推定処理について説明したが、レーダ送信部100及びレーダ受信部200のいずれか一方が複数のアンテナを有する場合についても同様に適応可能である。
【0113】
以上、方向推定部214の動作について説明した。
【0114】
なお、上述した時刻情報kは、距離情報に変換して出力されてもよい。時刻情報kを距離情報R(k)に変換する際には式(18)を用いればよい。ここで、Twは符号送信区間を表し、Lはパルス符号長を表し、C
0は光速度を表す。
【数18】
【0115】
また、ドップラ周波数情報は相対速度成分に変換して出力されてもよい。ドップラ周波数fsΔφを相対速度成分v
d(fs)に変換する際には式(19)が用いられてよい。ここで、λはRF信号のキャリア周波数の波長である。
【数19】
【0116】
[レーダ装置10におけるアンテナ配置例]
以上の構成を有するレーダ装置10におけるNt個の送信アンテナ108及びNa個の受信アンテナ202の配置について説明する。
【0117】
図7A及び
図7Bは、本実施の形態に係る送信アンテナ108及び受信アンテナ202の配置例を示す図である。
【0118】
なお、
図7A及び
図7Bでは、送信アンテナ108及び受信アンテナ202は、第1軸に沿って基本間隔d
Hの整数倍、及び、第2軸に沿って基本間隔d
Vの整数倍の位置に配置される。換言すると、送信アンテナ108(例えば、送信アレーアンテナ)及び受信アンテナ202(例えば、受信アレーアンテナ)は、第1軸及び第2軸による2次元平面上に配置される。ここで、第1軸と第2軸とは直交していることが望ましいが、これに限らない。
【0119】
また、送信アンテナ108の配置(送信アレー配置)及び受信アンテナ202の配置(受信アレー配置)は、
図7A及び
図7Bに示す配置と逆でもよい。換言すると、送信アンテナ108の配置を
図7Bに示す受信アンテナ202の配置とし、受信アンテナ202の配置を
図7Aに示す送信アンテナ108の配置としてもよい。後述する他の実施の形態及びバリエーションにおいても同様である。
【0120】
図7Aに示す送信アンテナ108の配置において、送信アレーアンテナは、第2軸方向について同じ位置、及び、第1軸方向について異なる位置にそれぞれ配置された複数のアンテナを有する「送信アンテナ列」を複数個有する。
【0121】
図7Aに示すように、複数の送信アンテナ列は、第2軸方向にn
s×d
Vの間隔でp
t(p
t≧2)列配置される。例えば、
図7Aにおいて、第1の送信アンテナ列の第2軸方向の座標をy
t0とすると、第n(n=1~p
t)の送信アンテナ列の第2軸方向の座標は、y
t0+(n-1)n
sとなる。
【0122】
また、
図7Aに示すように、第2軸方向において隣り合う送信アンテナ列(例えば、第1の送信アンテナ列と第2の送信アンテナ列)に含まれるアンテナは、第1軸方向にそれぞれずらして配置される。換言すると、第2軸方向に隣り合う送信アンテナ列に含まれるアンテナは、第1軸方向において互いに異なる位置に配置されるアンテナを1つ以上含む(換言すると、第1軸方向において、少なくとも1つのアンテナの配置位置が重複しない)。
【0123】
また、
図7Bに示す受信アンテナ202の配置において、第1軸方向に基本間隔d
H、第2軸方向に基本間隔d
V毎に配置されたn
s個のアンテナを含む「受信アンテナ列」が第1軸方向にp
r(p
r≧2)個繰り返して配置される。換言すると、各受信アンテナ列に含まれるn
s個のアンテナのうち、隣り合うアンテナは、第1軸方向に基本間隔d
H、第2軸方向に基本間隔d
V離れて配置される。
図7Bに示す受信アンテナ202は、鋸歯状に配置される。
【0124】
例えば、
図7A及び
図7Bの第1軸方向を水平方向とし、第2軸方向を垂直方向とする場合について説明する。この場合、送信アンテナ108及び受信アンテナ202のアンテナ1系統は、
図7A及び
図7Bに示す点(白丸、網掛け丸)を位相中心として、第1軸方向(例えば、水平方向)及び第2軸方向(例えば、垂直方向)に開口長を広げて水平方向及び垂直方向のビーム幅を絞り、アンテナ利得を向上できる。例えば、アンテナ1系統は、サブアレーアンテナを用いて構成されてもよい。また、サブアレーアンテナにアレーウェイトをかけてサイドローブを抑制してもよい。
【0125】
【0126】
図8に示すように、サブアレーアンテナにおけるサブアレーアンテナ素子の間隔を半波長(λ/2)程度とする。
図8では、アンテナ1系統が、例えば、(a)第1軸方向に1素子、第2軸方向に4素子のサブアレーアンテナ素子で構成される場合、(b)第1軸方向に1素子、第2軸方向に6素子のサブアレーアンテナ素子で構成される場合、(c)第1軸方向に1素子、第2軸方向に8素子のサブアレーアンテナ素子で構成された場合を示す。
【0127】
なお、サブアレーアンテナの構成は、
図8に示す構成に限らない。アンテナ1系統は、隣り合うアンテナ素子に物理的に干渉しない程度に開口長を拡大したサイズによって構成されてよい。これにより、アンテナ利得を高利得化できる。
【0128】
送信アンテナ108及び受信アンテナ202のアンテナ1系統は、例えば、レーダ装置10の視野角に適したビームパターンを形成するようにサブアレーアンテナで構成されてよい。例えば、レーダ装置10の視野角(FOV:field of view)が垂直方向に狭角である場合、送信アンテナ108及び受信アンテナ202のアンテナ1系統のビームパターンは、水平方向について、より広角とし、垂直方向について、より狭角としてよい。例えば、
図8では、(c)に示すアンテナ構成が最も狭角であり、垂直方向(換言すると、第2軸方向)に並べたサブアレーアンテナ構成が適用されてよい。
【0129】
以下、レーダ装置10におけるNt個の送信アンテナ108及びNa個の受信アンテナ202のアンテナ配置に関するバリエーション1~7についてそれぞれ説明する。
【0130】
<バリエーション1>
図9A及び
図9Bは、バリエーション1に係るアンテナ配置例を示す。
【0131】
図9Aに示す送信アンテナ108の配置において、送信アンテナ列数は3(p
t=3)である。また、各送信アンテナ列は、第1軸方向にn
s個のアンテナ(換言すると同数のアンテナ)をそれぞれ有する。よって、
図9Aに示す送信アンテナ108の総数は3n
s個である。
【0132】
例えば、
図9Aでは、第1の送信アンテナ列及び第3の送信アンテナ列に含まれる各アンテナは、第1軸方向にd
H毎にn
s個配置される。また、
図9Aでは、第1の送信アンテナ列に含まれるアンテナと第3の送信アンテナに含まれるアンテナとの間の第1軸方向の座標は同じである。
【0133】
また、
図9Aでは、第2の送信アンテナ列に含まれるn
s個のアンテナは、第1軸方向に(n
s+1)d
H間隔離れて配置される。換言すると、
図9Aでは、第2の送信アンテナ列に含まれるアンテナは、第1軸方向に、基本間隔d
Hの(n
s+1)倍の間隔で分割される2つの領域に配置される。第2の送信アンテナ列において分割される一方の領域には、例えば、floor(n
s/2)個のアンテナがd
H毎に配置され、他方の領域には、例えば、ceil(n
s/2)個のアンテナがd
H毎に配置される。ここで、関数floor(x)は、xを超えない最大の整数値を返す床(floor)関数を示し、関数ceil(x)は、x以上の最小の整数値を返す天井(ceiling)関数を示す。
【0134】
このように、
図9Aにおいて、3個の送信アンテナ列のうち、第2軸方向において隣り合わない2つの送信アンテナ列に含まれるアンテナは、第1軸方向に間隔d
Hで配置される。
【0135】
また、3個の送信アンテナ列のうち、残りの第2の送信アンテナ列に含まれるアンテナは、第1軸方向において、間隔d
Hの(n
s+1)(例えば、(n
sに1を加えた個数)倍の間隔で分割される2つの領域に配置される。また、第2の送信アンテナ列において、分割された2つの領域の一方に配置されるアンテナ数と、2つの領域の他方に配置されるアンテナ数とはほぼ同じである。例えば、第2の送信アンテナ列において、分割された2つの領域の一方に配置されるアンテナ数(例えば、floor(n
s/2)個)と、2つの領域の他方に配置されるアンテナ数(例えば、ceil(n
s/2)個)とは同じであるか、あるいは、差分が1である。このように、
図9Aに示す第2の送信アンテナ列は、第1軸方向において、基本間隔d
Hの(n
s+1)倍の間隔で対称に近いアンテナ数で分割して配置される。
【0136】
また、
図9Aに示すように、第2の送信アンテナ列は、n
s個の第1の送信アンテナ列及び第3の送信アンテナ列と第1軸方向において重複しない位置(換言すると、異なる位置)に配置される。
【0137】
図9Bに示す受信アンテナ202の配置において、受信アンテナ列数はp
r個である。よって、
図9Bに示す受信アンテナ202の総数はp
rn
s個である。また、各受信アンテナ列に含まれるn
s個のアンテナのうち、隣り合うアンテナは第1軸方向にd
H間隔、第2軸方向にd
H間隔離れて配置される。
【0138】
以下、
図9A及び
図9Bに示すアンテナ配置の例、及び、送信アンテナ108及び受信アンテナ202によって構成される仮想受信アレーの配置例について説明する。
【0139】
図10Aは、n
s=2、p
r=2の場合のアンテナ配置例を示す。
図10Aは、バリエーション1のアンテナ配置における最小構成である。
【0140】
図10Bは、n
s=2、p
r=4の場合のアンテナ配置例を示す。
図10Bは、
図10Aの最小構成から、受信アンテナ202(受信アンテナ列)を第1軸方向に拡張した例である。
【0141】
図10Cは、n
s=3、p
r=2の場合のアンテナ配置例を示す。
図10Cは、n
sの値が奇数であり、第2の送信アンテナ列が、奇数個(1個)のアンテナが配置される領域と、偶数個(2個)のアンテナが配置される領域とに分割して配置される例を示する。換言すると、
図10A、
図10B及び
図10Dのようにn
sの値が偶数の場合、第2の送信アンテナ列は、同数のアンテナが分割して対称的に配置される。
【0142】
図10Dは、n
s=4、p
r=2の場合のアンテナ配置例を示す。
図10Dは、
図10Aの最小構成から、受信アンテナ列に含まれるアンテナ数を増加した例である。
【0143】
【0144】
ここで、
図10A~
図10Dにおいて、例えば、第1の送信アンテナ列及び第3の送信アンテナ列では、第1軸方向にn
s個のアンテナがd
H間隔で密に配置され、p
r個の受信アンテナ列が、第1軸方向にn
s×d
H間隔で配置される。これにより、
図10A~
図10Dに示すアンテナ配置では、仮想受信アレー配置において、第1軸方向にd
H間隔で仮想アンテナ素子を密配置できる。
【0145】
また、
図10A~
図10Dにおいて、例えば、各送信アンテナ列は、第2軸方向にn
s×d
V間隔で配置され、各受信アンテナ列に含まれるn
s個のアンテナが、第2軸方向にd
V間隔で配置される。これにより、
図10A~
図10Dに示すアンテナ配置では、仮想受信アレー配置において、第2軸方向にd
V間隔で仮想アンテナ素子を密配置できる。
【0146】
また、
図10A~
図10Dにおいて、送信アンテナ108の第1の送信アンテナ列及び第3の送信アンテナ列は、第2軸方向に2n
s×d
v間隔離れて配置される。また、第2軸方向において、第1の送信アンテナ列と第3の送信アンテナ列の間には、他のアンテナ(例えば、第2の送信アンテナ列のアンテナ)が配置されない。よって、第1の送信アンテナ列及び第3の送信アンテナ列の各アンテナ系統は、第1軸方向にd
H以下の開口長、及び、第2軸方向に2n
s×d
v以下の開口長で構成可能である。
【0147】
また、
図10A~
図10Dにおいて、送信アンテナ108の第2のアンテナ列は、第1軸方向において他の送信アンテナ列と異なる位置に配置される。換言すると、第2軸方向において、第2の送信アンテナ列が配置される第1軸の座標には、他のアンテナ(例えば、第1の送信アンテナ列および第3の送信アンテナ列)が配置されない。よって、送信アンテナ108の第2のアンテナ列の各アンテナ系統は、第1軸方向にd
H以下の開口長、及び、第2軸方向に任意のサイズで構成可能である。
【0148】
また、
図10A~
図10Dにおいて、受信アンテナ202の受信アンテナ列に含まれるn
s×p
r個のアンテナは、第1軸方向において、d
H間隔で異なる位置にそれぞれ配置される。換言すると、第2軸方向において、受信アンテナ列に含まれる各アンテナが配置される第1軸の座標には、他のアンテナが配置されない。よって、受信アンテナ列の各アンテナ系統は、第1軸方向にd
H以下の開口長、及び、第2軸方向に任意のサイズで構成可能である。
【0149】
例えば、アンテナ1系統は、サブアレーアンテナを用いて構成してもよく、サブアレーアンテナにアレーウェイトをかけてサイドローブを抑制してもよい。
【0150】
一例として、
図11Aは、
図10Bに示す送信アンテナ108及び受信アンテナ202のアンテナ配置例における配置位置(換言すると、各図の白丸、網掛け丸)をアンテナ1系統の位相中心として、サブアレーアンテナ(例えば、
図8の(a)に示す構成)を用いた構成例を示す。
【0151】
図11Aにおいて、送信アンテナ108は、物理的に互いに干渉しないサイズで配置可能である。例えば、Tx1、Tx2、Tx5及びTx6は、第1軸方向にd
H以下、第2軸方向に4d
V以下のサイズで構成されてよい。また、
図11Aでは、Tx3及びTx4は、他のアンテナ(Tx1、Tx2、Tx5及びTx6)と同様のサイズで構成しているが、これに限らず、第2軸方向において任意のサイズ(例えば、5d
V以上のサイズ)で構成されてもよい。
【0152】
また、
図11Aにおいて、受信アンテナ202は、Tx1、Tx2、Tx5及びTx6と同様のサイズ(例えば、4d
V)で構成されるが、これに限らず、物理的に互いに干渉しないサイズで構成されてもよい。
【0153】
他の例として、
図11Bに示すように、
図11Aに示す送信アンテナ108及び受信アンテナ202のアンテナ配置に対して、更に、無給電素子が配置されてもよい。無給電素子は、例えば、
図11Bに示す位置に配置してもよく、これに限らず、各アンテナと物理的に干渉しない位置及びサイズで配置されてもよい。無給電素子が設置されることにより、例えば、アンテナの放射、インピーダンス整合、又は、アイソレーション等の電気的特性の影響を一様化する効果が得られる。
【0154】
次に、
図12A及び
図12Bは、
図10Bに示す第1軸方向及び第2軸方向に延在する二次元的な仮想受信アレーを用いたビームフォーマ法によって形成される指向性パターンの一例を示す。
図12A及び
図12Bは、第1軸方向及び第2軸方向の0度(天頂)方向の指向性パターンの一例であり、到来波が天頂方向から到来した場合と等しい。
【0155】
図12Aは、第1軸(例えば、Azimuth)方向及び第2軸(例えば、Elevation)方向における2次元的な指向性パターンを示す。
図12Bは、第1軸及び第2軸のそれぞれの軸において縮退させた指向性パターンを示す。ここでは、基本間隔d
H=0.5λ、d
V=0.5λの場合について示すが、d
H及びd
Vの値はこれらに限らない。
【0156】
また、レーダ装置10は、仮想受信アレーで受信した信号にウェイトをかけてビーム形成してもよい。例えば、
図13は、
図10Bに示す送信アンテナ108及び受信アンテナ202のアンテナ配置例に対応する仮想受信アレーの受信信号に、テイラー窓に従うウェイトをかけてビームフォーマ法による指向性パターンを構成する例を示す。
図13Bは、
図13Aに示す構成を用いた場合の第1軸(例えば、Azimuth)及び第2軸(例えば、Elevation)の2次元的な指向性パターンを示す。
図13Cは、第1軸及び第2軸のそれぞれの軸において縮退させた指向性パターンを示す。
【0157】
図13B及び
図13Cに示すように、仮想受信アレーで受信した信号にウェイトをかけることにより、例えば、
図12A及び
図12Bと比較して、メインローブ幅は太くなるものの、サイドローブレベルを低減できる。
【0158】
<比較例>
図14は、バリエーション1との比較のためのアンテナ配置として、送信アンテナ、受信アンテナ及び仮想受信アレーの一例を示す。
図14では、例えば、
図10Bに示すアンテナ配置と比較するため、送信アンテナ及び受信アンテナの素子数を、
図10Bに示す送信アンテナ108及び受信アンテナ202の素子数(例えば、Nt=6、Na=8)と同数とする。
図14では、送信アンテナは第2軸方向にd
Vの間隔で等間隔に配置され、受信アンテナは第1軸方向にd
Hの間隔で等間隔に配置される。よって、
図14に示すように、送信アンテナ及び受信アンテナによって構成される仮想受信アレーはd
H、d
Vの間隔で等間隔に配置される。
【0159】
図14では、各送信アンテナは第2軸方向にd
V間隔で配置されるため、送信アンテナの各アンテナ素子は、第2軸方向にd
V以上にサイズを拡げて構成することは困難である。なお、
図14に示す受信アンテナについては、
図10Bと同様に第2軸方向に任意のサイズで構成可能である。
【0160】
図15A及び
図15Bは、
図14に示す第1軸方向及び第2軸方向に延在する二次元的な仮想受信アレーを用いたビームフォーマ法によって形成される指向性パターンの一例を示す。
図15A及び
図15Bは、第1軸方向及び第2軸方向の0度(天頂)方向の指向性パターンの一例であり、到来波が天頂方向から到来した場合と等しい。
【0161】
図15Aは、第1軸(例えば、Azimuth)方向及び第2軸(例えば、Elevation)方向の2次元的な指向性パターンを示し、
図15Bは第1軸及び第2軸のそれぞれの軸において縮退させた指向性パターンを示す。ここでは、基本間隔d
H=0.5λ、d
V=0.5λの場合について示す。
【0162】
また、
図16A及び
図16Bは、
図12Bに示す指向性パターン(
図10Bのアンテナ配置の場合、配置例1)と、
図15Bに示す指向性パターン(比較例)とを重ねて表示した図である。
図16Aは、第1軸(Azimuth)方向における指向性パターンの比較を示し、
図16Bは、第2軸(Elevation)方向における指向性パターンの比較を示す。
【0163】
図16Aに示すように、第1軸方向の指向性パターンにおいて、バリエーション1の場合(配置例1)と比較例とで同等のビーム幅である。また、
図16Aに示すように、バリエーション1では、比較例に比べ、最大サイドローブレベルが1.8dB程度低いことが分かる。また、
図16Bに示すように、第2軸方向の指向性パターンにおいて、バリエーション1の場合と比較例とで同等のビーム幅である。また、
図16Bに示すように、最大サイドローブレベルは、バリエーション1と比較例とでほぼ同じである。
【0164】
バリエーション1によれば、仮想受信アレーによる指向性パターン(換言すると、ビーム性能)を劣化させることなく、送信アンテナ108又は受信アンテナ202のアンテナ1系統のサイズを大きくしてアンテナの指向性利得を向上できる。
【0165】
<バリエーション2>
バリエーション2は、バリエーション1と類似した配置例であり、送信アンテナ108の送信アンテナ列の構成がバリエーション1と異なる。
【0166】
バリエーション2では、例えば、送信アンテナ108の各送信アンテナ列はns個のアンテナを有する。また、バリエーション2では、第2軸方向に隣り合う3つの送信アンテナ列に含まれるアンテナは、第1軸方向にそれぞれずらして配置される。換言すると、隣り合う3つの送信アンテナ列に含まれる各アンテナは、第1軸方向において互いに異なる位置に配置される。
【0167】
図17は、バリエーション2に係る送信アンテナ108の配置例を示す。なお、バリエーション2における受信アンテナ202の配置については、バリエーション1(例えば、
図9Bを参照)と同様である。
【0168】
送信アンテナ108は、第2軸方向にns×dV間隔で配置されるpt個の送信アンテナ列を有する。また、各送信アンテナ列は、第1軸方向に配置されたns個のアンテナを有する。
【0169】
また、第2軸方向において隣り合う3つの送信アンテナ列に含まれるアンテナは、第1軸方向にそれぞれずらして配置される。例えば、各送信アンテナ列は、第1軸方向にptmns+1の間隔で分割して配置される。例えば、各送信アンテナ列が分割して配置される一方の領域にはfloor(ns/2)個のアンテナがdH毎に配置され、他方の領域にはceil(ns/2)個のアンテナがdH毎に配置される。ここで、ptm=0~pr-1の整数である。
【0170】
図18A、
図18B及び
図18Cは、バリエーション2に係る送信アンテナ108、受信アンテナ202、及び、送信アンテナ108及び受信アンテナ202によって構成される仮想受信アレーの配置例を示す。
【0171】
図18Aは、n
s=2、p
r=4、p
t=3であり、第1の送信アンテナ列のp
tm=0、第2の送信アンテナ列のp
tm=2、第3の送信アンテナ列のp
tm=1の場合のアンテナ配置例を示す。
図18Aに示すように、第1の送信アンテナ列(p
tm=0)では、第1軸方向にn
s個のアンテナがd
H間隔で配置される。また、
図18Aに示すように、第3の送信アンテナ列(p
tm=1)は、第1軸方向において、3d
Hの間隔離れて(換言すると、第1の送信アンテナ列の外側に)配置される。また、第2の送信アンテナ列(p
tm=2)は、第1軸方向において、5d
Hの間隔離れて(換言すると、第1の送信アンテナ列及び第3の送信アンテナ列の外側に)配置される。つまり、
図18Aの第2軸方向に隣り合う3つの送信アンテナ列は、第1軸方向において、異なる位置に配置されている。
【0172】
図18Bは、n
s=2、p
r=4、p
t=3であり、各送信アンテナ列のp
tm=1の場合のアンテナ配置例を示す。
図18Bに示すように、第1~第3の送信アンテナ列は、第1軸方向において、互いに異なる位置に配置される。
【0173】
図18Cは、n
s=3、p
r=4、p
t=3であり、第1の送信アンテナ列のp
tm=0、第2の送信アンテナ列のp
tm=2、第3の送信アンテナ列のp
tm=1の場合を示す。
図18Cに示すように、第1の送信アンテナ列(p
tm=0)では、第1軸方向にn
s個のアンテナがd
H間隔で配置される。また、
図18Cに示すように、第3の送信アンテナ列(p
tm=1)は、第1軸方向において、4d
Hの間隔離れて(換言すると、第1の送信アンテナ列の外側に)配置される。また、第2の送信アンテナ列(p
tm=2)は、第1軸方向において、6d
Hの間隔離れて(換言すると、第1の送信アンテナ列及び第3の送信アンテナ列の外側に)配置される。
【0174】
図18A、
図18B及び
図18Cの何れのアンテナ配置においても、仮想受信アレー配置の中央付近において、d
H、d
V間隔で仮想アンテナ素子を密配置できる。
【0175】
また、
図18A、
図18B及び
図18Cでは、送信アンテナ108は、互いに物理的に干渉しないサイズで構成されてよい。例えば、
図18A、
図18B及び
図18Cでは、各送信アンテナ列に含まれるアンテナは、第1軸方向において異なる位置にそれぞれ配置されるので、第1軸方向にd
H以下、第2軸方向に任意の大きさで構成可能である。
【0176】
なお、バリエーション2では、第2軸方向において、隣り合う3つの送信アンテナ列に含まれる各アンテナが第1軸方向において互いに異なる位置に配置される場合について説明した。しかし、第2軸方向において、各アンテナが第1軸方向において互いに異なる位置に配置される、隣り合う送信アンテナ列の数は、3個に限らず、4個以上でもよい。
【0177】
<バリエーション3>
バリエーション3は、バリエーション2と類似した配置例であり、送信アンテナ108のアンテナ列の構成がバリエーション2と異なる。
【0178】
バリエーション3では、例えば、送信アンテナ108の送信アンテナ列のうち、第2軸方向において隣り合う送信アンテナ列に含まれるアンテナは、第1軸上において互いに異なる位置に配置される。
【0179】
図19A、
図19B、
図19C及び
図19Dは、バリエーション3に係る送信アンテナ108、受信アンテナ202の、及び、送信アンテナ108及び受信アンテナ202によって構成される仮想受信アレーの配置例を示す。なお、バリエーション3における受信アンテナ202の配置については、バリエーション1(例えば、
図9Bを参照)と同様である。
【0180】
図19Aは、n
s=2、p
r=4、p
t=3であり、第1及び第3の送信アンテナ列のp
tm=1、第2の送信アンテナ列のp
tm=0であり、第1及び第3の送信アンテナ列に含まれるアンテナが第1軸上に並んで(換言すると同じ位置に)配置される場合のアンテナ配置例を示す。
図19Aに示すように、第1及び第3の送信アンテナ列と、第2の送信アンテナ列とは、第1軸方向において、互いに異なる位置に配置される。
【0181】
図19Bは、n
s=2、p
r=4、p
t=3であり、各送信アンテナ列のp
tm=1であり、第1及び第3の送信アンテナ列に含まれるアンテナが第1軸上に並んで(換言すると同じ位置に)配置される場合のアンテナ配置例を示す。
図19Bに示すように、第1及び第3の送信アンテナ列と、第2の送信アンテナ列とは、第1軸方向において、互いに異なる位置に配置される。
【0182】
図19Cは、n
s=3、p
r=4、p
t=3であり、第1及び第3の送信アンテナ列のp
tm=1、第2の送信アンテナ列のp
tm=0であり、第1及び第3の送信アンテナ列に含まれるアンテナが第1軸上に並んで(換言すると同じ位置に)配置される場合のアンテナ配置例を示す。
図19Cに示すように、第1及び第3の送信アンテナ列と、第2の送信アンテナ列とは、第1軸方向において、互いに異なる位置に配置される。
【0183】
図19Dは、n
s=3、p
r=4、p
t=3であり、第1及び第3の送信アンテナ列のp
tm=1、第2の送信アンテナ列のp
tm=0である場合のアンテナ配置例を示す。
図19Dに示すように、第1の送信アンテナ列と第3の送信アンテナ列とは、第1軸においてアンテナの配置を反転させた構成であり、一部のアンテナが第1軸上に並んで(換言すると同じ位置に)配置される。
図19Dに示すように、第1及び第3の送信アンテナ列と、第2の送信アンテナ列とは、第1軸方向において、互いに異なる位置に配置される。
【0184】
図19A~
図19Dの何れのアンテナ配置においても、仮想受信アレー配置の中央付近において、d
H、d
V間隔で仮想アンテナ素子を密配置できる。
【0185】
また、
図19A、
図19B、
図19C及び
図19Dでは、送信アンテナ108は、互いに物理的に干渉しないサイズで構成されてよい。例えば、
図19A、
図19B、
図19C及び
図19Dでは、第1の送信アンテナ列及び第3の送信アンテナ列に含まれ、第1軸方向の同じ位置に配置されるアンテナは、第1軸方向にd
H以下、第2軸方向に2n
sd
V以下の大きさで構成可能である。また、例えば、
図19A、
図19B、
図19C及び
図19Dでは、第2の送信アンテナ列に含まれるアンテナは、第1軸方向にd
H以下、第2軸方向に任意の大きさで構成可能である。また、例えば、
図19Dでは、第1の送信アンテナ列及び第3の送信アンテナ列に含まれ、第1軸方向において他のアンテナと異なる位置に配置されるアンテナは、第1軸方向にd
H以下、第2軸方向に任意の大きさで構成可能である。
【0186】
<バリエーション4>
バリエーション4は、バリエーション3と類似した配置例であり、送信アンテナ108のアンテナ列の構成がバリエーション3と異なる。
【0187】
バリエーション4では、例えば、各送信アンテナ列において、第1軸上にdH間隔で配置されるアンテナ(換言すると、密配置されるアンテナ)を含まない。換言すると、バリエーション4では、各送信アンテナ列には、第1軸上において2dH間隔以上離れたアンテナが含まれる。
【0188】
また、バリエーション4では、バリエーション3と同様、第2軸方向において隣り合う送信アンテナ列に含まれるアンテナは、第1軸方向において互いに異なる位置に配置される。
【0189】
図20A及び
図20Bは、バリエーション4に係る送信アンテナ108、受信アンテナ202、及び、送信アンテナ108及び受信アンテナ202によって構成される仮想受信アレーの配置例を示す。なお、バリエーション4における受信アンテナ202の配置については、バリエーション1(例えば、
図9Bを参照)と同様である。
【0190】
図20Aは、n
s=3、p
r=4、p
t=3であり、各送信アンテナ列のアンテナは互いに2d
Hの間隔で配置され、第1及び第3のアンテナ列に含まれるアンテナが第1軸上に並んで配置される場合のアンテナ配置例を示す。
図20Aに示すように、第1及び第3の送信アンテナ列と、第2の送信アンテナ列とは、第1軸方向において、互いに異なる位置に配置される。
【0191】
図20Bはn
s=4、p
r=3、p
t=3であり、各送信アンテナ列のアンテナは互いに、例えば、左側から2d
H、3d
H、2d
Hの間隔で配置され、第1及び第3のアンテナ列のアンテナが第1軸上に並んで配置される場合のアンテナ配置例を示す。
図20Bに示すように、第1及び第3の送信アンテナ列と、第2の送信アンテナ列とは、第1軸方向において、互いに異なる位置に配置される。
【0192】
図20A及び
図20Bの何れのアンテナ配置においても、仮想受信アレー配置の中央付近において、d
H、d
V間隔で仮想アンテナ素子を密配置できる。
【0193】
また、
図20A及び
図20Bでは、送信アンテナ108は、互いに物理的に干渉しないサイズで構成されてよい。例えば、
図20A及び
図20Bでは、第1の送信アンテナ列及び第3の送信アンテナ列に含まれるアンテナは、第1軸方向にd
H以下、第2軸方向に2n
sd
V以下の大きさで構成可能である。また、例えば、
図20A及び
図20Bでは、第2の送信アンテナ列に含まれるアンテナは、第1軸方向にd
H以下、第2軸方向に任意の大きさで構成可能である。
【0194】
<バリエーション5>
バリエーション5は、バリエーション2及びバリエーション3と類似した配置例であり、送信アンテナ108のアンテナ列の構成がバリエーション2及びバリエーション3と異なる。
【0195】
バリエーション5では、送信アンテナ108において、各送信アンテナ列を構成するアンテナ数はnsに限定されない。また、バリエーション5では、各送信アンテナ列の構成は、例えば、バリエーション1~4の何れかと同様である。
【0196】
例えば、バリエーション5では、バリエーション2の
図17に示す送信アンテナ列のアンテナ数(n
s個)に限定されない。例えば、
図21に示すように、送信アンテナ列に含まれるアンテナは、第1軸方向にp
tmn
s+1の間隔で離れた領域にそれぞれ配置されてよい。ここで、p
tm=0~p
r-1の整数である。
【0197】
図22A~
図22Dは、バリエーション5に係る送信アンテナ108、受信アンテナ202、及び、送信アンテナ108及び受信アンテナ202によって構成される仮想受信アレーの配置例を示す。なお、バリエーション5における受信アンテナ202の配置については、バリエーション1(例えば、
図9Bを参照)と同様である。
【0198】
図22Aはn
s=2、p
r=3、p
t=3であり、第1及び第3の送信アンテナ列では2個のアンテナが第1軸上にd
H間隔で配置され、第2の送信アンテナ列では4個の送信アンテナが第1軸方向にp
tmn
s+1の間隔で分割して配置されている。ここで、p
tm=2である。また、
図22Aでは、第1の送信アンテナ列と第3の送信アンテナ列とは第1軸上に同じ座標に並んで配置される。
【0199】
図22Bでは、
図22Aの各送信アンテナ列と同数のアンテナを有し、バリエーション2のように、第1軸において、各アンテナがそれぞれ互いに異なる位置に配置される。
【0200】
図22Cはn
s=3、p
r=3、p
t=3であり、第1及び第3の送信アンテナ列では3個のアンテナが第1軸上に2d
H間隔で配置され、第2の送信アンテナ列では、4個の送信アンテナが第1軸方向にp
tmn
s+1の間隔で2個のアンテナずつ分割して配置されている。ここで、p
tm=2である。また、
図22Cでは、第1の送信アンテナ列と第2の送信アンテナ列とは第1軸上に同じ座標に並んで配置される。
【0201】
図22Dでは、
図22Cの各送信アンテナ列と同数のアンテナ列を有し、バリエーション2のように、第1軸において、各アンテナがそれぞれ互いに異なる位置に配置される。
【0202】
図22A~
図22Dの何れのアンテナ配置においても、仮想受信アレー配置の中央付近において、d
H、d
V間隔で仮想アンテナ素子を密配置できる。
【0203】
また、
図22A~
図22Dでは、送信アンテナ108は、互いに物理的に干渉しないサイズで構成されてよい。例えば、
図22A及び
図22Cの第1の送信アンテナ列及び第3の送信アンテナ列に含まれるアンテナは、第1軸方向にd
H以下、第2軸方向に2n
sd
V以下の大きさで構成可能である。また、
図22B及び
図22Dの第1の送信アンテナ列及び第3の送信アンテナ列に含まれるアンテナ、及び、
図22A~
図22Dの第2の送信アンテナ列に含まれるアンテナは、第1軸方向にd
H以下、第2軸方向に任意の大きさで構成可能である。
【0204】
<バリエーション6>
バリエーション6は、バリエーション1~5と類似した配置例であり、送信アンテナ108の送信アンテナ列数が異なる。
【0205】
バリエーション6では、送信アンテナ108において、送信アンテナ列数pt>3の場合について説明する。なお、各送信アンテナ列の構成はバリエーション1~5の何れかと同様である。
【0206】
一例として、
図23A~
図23Cは、
図10Bに示すバリエーション1の構成に基づいて、送信アンテナ列数p
tが異なる場合の送信アンテナ108の配置例、及び、仮想受信アレーの配置例を示す。なお、バリエーション6における受信アンテナ202の配置については、バリエーション1(例えば、
図9Bを参照)と同様である。
【0207】
【0208】
図23A~
図23Cの何れのアンテナ配置においても、仮想受信アレー配置の中央付近において、d
H、d
V間隔で仮想アンテナ素子を密配置できる。
【0209】
また、
図23A~
図23Cでは、第2軸において隣り合う送信アンテナ列に含まれるアンテナが互いに異なる第1軸上に配置される。このため、送信アンテナ108は、第1軸方向にd
H以下、第2軸方向に2n
sd
V以下の大きさで構成可能である。
【0210】
バリエーション6によれば、各アンテナの利得を向上しつつ、中央付近がdH、dV間隔で配置された仮想受信アレーの配置を第2軸方向に拡張でき、第2軸方向の分解能を向上できる。
【0211】
なお、
図23A~
図23Cではバリエーション1に関してp
t>3の場合について一例を示したが、これに限定されず、他のバリエーション(例えば、バリエーション2~5の何れか)においてp
t>3とした場合も同様の効果が得られる。
【0212】
<バリエーション7>
バリエーション7では、バリエーション1~6に係るアンテナ配置の送信アンテナ108を1つの「送信アンテナ群」とし、バリエーション1~6に係るアンテナ配置の受信アンテナ202を1つの「受信アンテナ群」とする。
【0213】
バリエーション7では、例えば、送信アンテナ群及び受信アンテナ群の何れか、又は、その両方を複数備える場合について説明する。
【0214】
バリエーション7によれば、他のバリエーション(例えば、バリエーション1~6の何れか)と同様に、各アンテナを物理的に干渉しないサイズに拡大し、アンテナ利得を向上しつつ、多数の送信アンテナ群又は受信アンテナ群を用いることで、仮想受信アレーの開口長を拡大し、分解能を向上できる。
【0215】
一例として、
図24Aは、
図10Bに示すバリエーション1のアンテナ配置の構成に基づいて、複数の送信アンテナ群が配置される例を示す。また、
図24Bは、
図10Bに示すバリエーション1のアンテナ配置の構成に基づいて、複数の受信アンテナ群が配置される例を示す。また、
図24Cは、
図24Aに示す送信アンテナ108及び
図24Bに示す受信アンテナ202によって構成される仮想受信アレーの配置例を示す。
【0216】
ここで、
図24Aに示す送信アンテナ群の第1軸方向の開口長をD
t1、第2軸方向の開口長をD
t2、
図24Bに示す受信アンテナ群の第1軸方向の開口長をD
r1、第2軸方向の開口長をD
r2とする。
【0217】
また、
図24Aにおいて、第1の送信アンテナ群、及び、第2の送信アンテナ群のある基準点(例えば、各送信アンテナ群内の対応するアンテナの位置)は、第1軸方向にD
r1+1の間隔で配置される。また、
図24Bにおいて、第1の受信アンテナ群、及び、第2の受信アンテナ群のある基準点(例えば、各受信アンテナ群内の対応するアンテナの位置)は、第2軸方向にD
t2+D
r2+1の間隔で配置される。
【0218】
これによって、
図24Cに示す仮想受信アレー配置の中央付近において、d
H、d
V間隔で仮想アンテナ素子を密配置できる。
【0219】
同様に、他の例として、
図25Aは、
図10Aに示すバリエーション1のアンテナ配置の構成に基づいて、複数の送信アンテナ群が配置される例を示す。また、
図25Bは、
図10Aに示すバリエーション1のアンテナ配置の構成に基づいて、複数の受信アンテナ群が配置される例を示す。
図25Bでは、4つの受信アンテナ群を有する。また、
図25Cは、
図25Aに示す送信アンテナ108及び
図25Bに示す受信アンテナ202によって構成される仮想受信アレーの配置例を示す。
【0220】
ここで、
図25Aに示す送信アンテナ群の第1軸方向の開口長をD
t1、第2軸方向の開口長をD
t2、
図25Bに示す受信アンテナ群の第1軸方向の開口長をD
r1、第2軸方向の開口長をD
r2とする。
【0221】
また、
図25Aにおいて、第1の送信アンテナ群、及び、第2の送信アンテナ群のある基準点は、第1軸方向にD
r1+1の間隔で配置される。また、
図25Aにおいて、第1の送信アンテナ群及び第2の送信アンテナ群の全体の開口長をD
tg1とする。
【0222】
また、
図25Bにおいて、第1及び第3の受信アンテナ群、及び、第2及び第4の受信アンテナ群のある基準点は、第2軸方向にD
t2+D
r2+1の間隔で配置される。また、
図25Bにおいて、第1及び第2の受信アンテナ群、及び、第3及び第4の受信アンテナ群のある基準点は、第1軸方向にD
tg1+1の間隔で配置される。
【0223】
これによって、
図25Cに示す仮想受信アレー配置の中央付近において、d
H、d
V間隔で仮想アンテナ素子を密配置できる。
【0224】
なお、ここでは、バリエーション1のアンテナ配置に基づいて、送信アンテナ群又は受信アンテナ群を複数備える場合について説明したが、これに限定されず、他のバリエーション(例えば、バリエーション2~6の何れか)に基づいて、送信アンテナ群又は受信アンテナ群を複数備える場合についても同様の効果が得られる。また、送信アンテナ群及び受信アンテナ群の間隔についても上述した例に限定されない。
【0225】
以上、バリエーション1~7について説明した。
【0226】
このように、本実施の形態では、上述した送信アンテナ108及び受信アンテナ202のアンテナ配置によって、送信アンテナ108及び受信アンテナ202によって構成される仮想受信アレーにおいて、仮想アンテナ素子が密配置される。よって、本実施の形態によれば、仮想受信アレーの開口長を拡大しつつ、不要なグレーティングローブの発生を防止できる。これにより、レーダ装置10は、誤検出の確率を低減し、所望の指向性パターンを形成できる。
【0227】
また、本実施の形態では、上述した送信アンテナ108及び受信アンテナ202のアンテナ配置によって、送信アンテナ素子及び受信アンテナ素子の少なくとも1つを、サブアレー素子を用いて構成できる。これにより、送信アンテナ108又は受信アンテナ202の指向性利得を向上できる。
【0228】
換言すると、本実施の形態によれば、仮想受信アレーにおいてグレーティングローブの発生を防止でき、かつ、送信アンテナ108及び受信アンテナ202においてサブアレー構成を可能とする。よって、本実施の形態によれば、レーダ装置10における検出性能を向上できる。
【0229】
なお、
図22A、
図22Cのように、第1の送信アンテナ列と第3の送信アンテナ列が同じ配置パターンである場合は、第1の送信アンテナ列(第3の送信アンテナ列)、第2の送信アンテナ列、の2列を1つのセットとして繰り返して配置することができる。
【0230】
また、
図22B、
図22Dのように、第1の送信アンテナ列、第2の送信アンテナ列、および、第3の送信アンテナ列の全てが異なる配置パターンである場合、第1の送信アンテナ列、第2の送信アンテナ列、第3の送信アンテナ列、第2の送信アンテナ列、第1の送信アンテナ列、第2の送信アンテナ列、・・、というように、第1の送信アンテナ列、第2の送信アンテナ列、第3の送信アンテナ列、第2の送信アンテナ列、の4列を1つのセットとして繰り返し配置することができる。
【0231】
(実施の形態2)
本実施の形態に係るレーダ装置は、実施の形態1に係るレーダ装置10と基本構成が共通するので、
図1Bを援用して説明する。
【0232】
実施の形態1では、到来方向推定の性能劣化を抑制して、送信アンテナ108及び受信アンテナ202の利得を向上可能なアンテナ配置の構成について例示した。本実施の形態では、レーダ装置10(例えば、レーダ送信部100)が、送信アンテナ108(例えば、送信アンテナ列又は送信アンテナ群)に含まれる複数のアンテナを用いて送信ビーム(例えば、送信ビームの指向性)を制御する場合について説明する。
【0233】
複数の送信アンテナ108によってビームを形成する場合、レーダ装置10は、複数の送信アンテナ108に対して、位相及び電力を制御して給電し、1つの送信アンテナとして使用可能である。これによって、レーダ装置10は、送信ビームの指向性を制御でき、複数の送信アンテナ108を高利得アンテナとして使用できる。
【0234】
したがって、本実施の形態によれば、複数の送信アンテナ108からそれぞれ独立に信号を分割(分離)して送信した場合と比較して、長距離(換言すると、遠距離)の検知に適した構成となる。なお、ここでの分割(分離)とは、MIMOレーダでは複数の送信信号を時分割、符号分割、周波数分割などで分割して複数の信号として扱うことができることを意図している。
【0235】
レーダ装置10におけるNt個の送信アンテナ108及びNa個の受信アンテナ202の配置、及び、制御方法の一例について、以下に説明する。
【0236】
例えば、実施の形態1のバリエーション1の
図10Bに示すアンテナ配置において、
図11に示すようにサブアレーアンテナ素子を含む送信アンテナ108が配置される場合について説明する。
【0237】
例えば、レーダ装置10は、
図11に示す送信アンテナ108のTx1~Tx6に対して、位相及び電力を制御して同時に給電し、
図26Aに示すように、1つの送信アンテナとして取り扱うことができる。
【0238】
例えば、受信アンテナ202が
図10Bと同様のアンテナ配置の場合、
図10Bの仮想受信アレー配置と異なり、
図26Aに示す仮想受信アレー構成となる。なお、
図26Aの受信仮想アレー配置は、アンテナの位相中心を示している。
【0239】
また、送信アンテナ108は、複数のサブアレーが合成されて、
図26Aの上段の送信アンテナ配置に示す位相中心(1点)となる。なお、
図26Aに示す仮想受信アレーの形成において、送信アンテナのサブアレーの大きさではなく、位相中心の配置に依存するので、
図10Bの受信アンテナ配置を広げなくとも、送信アンテナ1個×受信アンテナ8個で
図26Aの下段に示す仮想受信アレーを形成することができる。
【0240】
これによって、レーダ装置10は、送信ビームの指向性を制御でき、第1軸方向及び第2軸方向のビーム幅を狭め、指向性利得を向上できる。
図26Aの例では、送信アンテナ108からそれぞれ独立に信号を分割(分離)して送信される場合と比較して、広角の方向に不要放射を減らせるので、長距離の検知に適した構成である。また、
図26Aに示す仮想受信アレーの開口長は、第1軸方向に広く、第2軸方向に狭いため、第1軸方向に分解能を有するアンテナである。なお、ビーム形成(合成)とは、複数のTxのビームを合成して送信することを意図する。
【0241】
次に、実施の形態1のバリエーション7のように、送信アンテナ群を複数用いる場合について説明する。
【0242】
図26Bは、例えば、
図26Aに示す送信アンテナを1つの送信アンテナ群として、2つの送信アンテナ群を備える例を示す。
図26Bにおいて、送信アンテナ群は第1軸方向にそれぞれの基準点からD
r1+1の間隔で配置される。
【0243】
例えば、レーダ装置10は、送信アンテナ群に含まれる複数のアンテナを用いて、送信アンテナ群毎の送信ビームの指向性を制御し、第1の送信アンテナ群及び第2の送信アンテナ群の各々を2つの送信アンテナとして信号を独立に(換言すると、分割して)扱う。これにより、指向性利得を向上できる。
【0244】
例えば、受信アンテナ202が
図10Bと同様のアンテナ配置である場合、
図26Bに示すような仮想受信アレーの構成となる。
【0245】
また、レーダ装置10は、送信ビームの指向性を走査してもよい。例えば、レーダ装置10は、各送信アンテナ108に対する位相及び電力を制御しつつ給電し、送信ビームを第1軸上に走査し、送信領域毎に信号を送信する。この際、レーダ装置10は、送信領域の異なる送信ビームを、時間又は符号によって分割し、異なる送信領域のアレー方向ベクトルを用いてそれぞれ独立に到来方向推定を行ってもよい。
【0246】
また、ここでは、送信アンテナ群毎に送信ビームの指向性を制御する場合について説明したが、アンテナ配置はこれに限らず、実施の形態1のバリエーション1~7の何れかのアンテナ配置が適用されてよい。
【0247】
また、レーダ装置10は、送信アンテナ108の指向性を制御するビームフォーミング動作(又はモード)と、送信アンテナ108からそれぞれ独立に信号を送信する動作(又はモード)との間で切り替えて制御してもよい。例えば、
図26A又は
図26Bに示すアンテナ配置において、複数の送信アンテナ108から信号を独立に送信する場合は、より短距離(又は近距離)及びより広角な検知に適している。一方、ビームフォーミング動作の場合は、より長距離(又は遠距離)及びより狭角な検知に適している。そのため、レーダ装置10は、レーダを用いるシーンに応じて動作モードを切り替えてよい。または、レーダ動作の1フレーム中に複数の動作モードが含まれてもよい。
【0248】
(実施の形態3)
本開示の一態様に係るレーダ装置の構成は、
図1Bに示す構成に限定されない。例えば、
図27に示すレーダ装置10aの構成を用いてもよい。なお、
図27において、レーダ受信部200の構成は、
図1Bと同様であるので詳細な構成を省略している。
【0249】
図1に示すレーダ装置10では、レーダ送信部100において、送信切替部106によって、レーダ送信信号生成部101からの出力を複数の送信無線部107の何れか一つに選択的に切り替える。これに対して、
図27に示すレーダ装置10aでは、レーダ送信部100aにおいて、レーダ送信信号生成部101からの出力(レーダ送信信号)は、送信無線部107aによって送信無線処理を施され、送信切替部106aによって、送信無線部107aの出力を複数の送信アンテナ108の何れか一つに選択的に切り替える。
【0250】
図27に示すレーダ装置10aの構成でも、実施の形態1及び2と同様の効果が得られる。
【0251】
(実施の形態4)
実施の形態1~3の各々では、レーダ送信部100(又はレーダ送信部100a)において、パルス列を位相変調又は振幅変調して送信するパルス圧縮レーダを用いる場合について説明したが、変調方式はこれに限定されない。例えば、本開示は、チャープ(chirp)パルスのような周波数変調したパルス波を用いたレーダ方式についても適用可能である。
【0252】
図28は、チャープパルス(例えば、fast chirp modulation)を用いたレーダ方式を適用した場合のレーダ装置10bの構成図の一例を示す。なお、
図28において、
図1Bと同様の構成には同一の符号を付し、その説明を省略する。
【0253】
まず、レーダ送信部100bにおける送信処理について説明する。
【0254】
レーダ送信部100bにおいて、レーダ送信信号生成部401は、変調信号発生部402及びVCO(Voltage Controlled Oscillator)403を有する。
【0255】
変調信号発生部402は、例えば、
図29に示すように、のこぎり歯形状の変調信号を周期的に発生させる。ここで、レーダ送信周期をTrとする。
【0256】
VCO403は、変調信号発生部402から出力されるレーダ送信信号に基づいて、周波数変調信号(換言すると、周波数チャープ信号)を送信無線部107へ出力する。周波数変調信号は、送信無線部107において増幅され、送信切替部106において切り替えられた送信アンテナ108から空間に放射される。例えば、第1の送信アンテナ108から第Ntの送信アンテナ108の各々において、レーダ送信信号はNp(=Nt×Tr)周期の送信間隔で送信される。
【0257】
方向性結合部404は、周波数変調信号の一部の信号を取り出して、レーダ受信部200bの各受信無線部501(ミキサ部502)に出力する。
【0258】
次に、レーダ受信部200bにおける受信処理について説明する。
【0259】
レーダ受信部200bの受信無線部501は、ミキサ部502において、受信した反射波信号に対して、送信信号である周波数変調信号(方向性結合部404から入力される信号)をミキシングし、LPF503を通過させる。これにより、反射波信号の遅延時間に応じた周波数となるビート信号が取り出される。例えば、
図29に示すように、送信信号(送信周波数変調波)の周波数と、受信信号(受信周波数変調波)の周波数との差分周波数がビート周波数として得られる。
【0260】
LPF503から出力された信号は、信号処理部207bにおいて、A/D変換部208bによって離散サンプルデータに変換される。
【0261】
R-FFT部504は、送信周期Tr毎に、所定の時間範囲(レンジゲート)において得られたNdata個の離散サンプルデータをFFT処理する。これにより、信号処理部207bでは、反射波信号(レーダ反射波)の遅延時間に応じたビート周波数にピークが現れる周波数スペクトラムが出力される。なお、FFT処理の際、R-FFT部504は、例えば、Han窓又はHamming窓等の窓関数係数を乗算してもよい。窓関数係数を用いることにより、ビート周波数ピーク周辺に発生するサイドローブを抑圧できる。
【0262】
ここで、第M番目のチャープパルス送信によって得られる、第z番目の信号処理部207bのR-FFT部504から出力されるビート周波数スペクトラム応答をAC_RFTz(fb, M)で表す。ここで、fbはFFTのインデックス番号(ビン番号)であり、fb=0,…, Ndata/2である。周波数インデックスfbが小さいほど、反射波信号の遅延時間が小さい(換言すると、物標との距離が近い)ビート周波数を示す。
【0263】
第z番目の信号処理部207bにおける出力切替部211は、例えば、実施の形態1と同様、切替制御部105から入力される切替制御信号に基づいて、レーダ送信周期Tr毎のR-FFT部504の出力を、Nt個のドップラ解析部212のうちの一つに選択的に切り替えて出力する。
【0264】
以下、一例として、第M番目のレーダ送信周期Tr[M]における切替制御信号をNtビットの情報[bit1(M), bit2(M), … ,bitNt(M)]で表す。例えば、第M番目のレーダ送信周期Tr[M]の切替制御信号において、第ND番目のビットbitND(M)(ただし、ND=1~Ntの何れか)が‘1’である場合、出力切替部211は、第ND番目のドップラ解析部212を選択(換言するとON)する。一方、第M番目のレーダ送信周期Tr[M]の切替制御信号において、第ND番目のビットbitND(M)が‘0’である場合、出力切替部211は、第ND番目のドップラ解析部212を非選択(換言するとOFF)とする。出力切替部211は、選択したドップラ解析部212に対して、R-FFT部504から入力される信号を出力する。
【0265】
上記のように、各ドップラ解析部212の選択は、Np(=Nt×Tr)周期で順次ONとなる。切替制御信号は、上記内容をNc回繰り返す。
【0266】
なお、各送信無線部107における送信信号の送信開始時刻は、周期Trに同期させなくてもよい。例えば、各送信無線部107では、送信開始時刻に異なる送信遅延Δ1, Δ2,…,ΔNtを設けて、レーダ送信信号の送信を開始してもよい。
【0267】
第z(z=1,…,Na)番目の信号処理部207bは、Nt個のドップラ解析部212を有する。
【0268】
ドップラ解析部212は、出力切替部211からの出力に対して、ビート周波数インデックスfb毎にドップラ解析を行う。
【0269】
例えば、Ncが2のべき乗値である場合、ドップラ解析において高速フーリエ変換(FFT:Fast Fourier Transform)処理を適用できる。
【0270】
第z番目の信号処理部207bの第ND番目のドップラ解析部212における第w番目の出力は、次式に示すように、ビート周波数インデックスfbにおけるドップラ周波数インデックスf
uのドップラ周波数応答FT_CI
z
(ND)(fb, f
u, w)を示す。なお、ND=1~Ntであり、ND=1~Ntであり、wは1以上の整数である。また、jは虚数単位であり、z=1~Naである。
【数20】
【0271】
信号処理部207b以降の信号補正部213、CFAR部213及び方向推定部214の処理は、例えば、実施の形態1で説明した離散時刻kをビート周波数インデックスfbで置き換えた動作となるので、詳細な説明を省略する。
【0272】
以上の構成及び動作により、本実施の形態でも、実施の形態1~3の各々と同様の効果が得られる。
【0273】
また、上述したビート周波数インデックスfbは、距離情報に変換して出力されてもよい。ビート周波数インデックスfbを距離情報R(fb)に変換するには次式を用いればよい。ここで、Bwは周波数変調して生成される周波数チャープ信号の周波数変調帯域幅を表し、C
0は光速度を表す。
【数21】
【0274】
以上、本開示の一実施例に係る実施の形態について説明した。
【0275】
なお、上記実施の形態、及び、各バリエーションに係る動作を適宜組み合わせて実施してもよい。
【0276】
また、上記実施の形態では、一例として、基本間隔dH=0.5λ、dV=0.5λの場合について説明したが、これらの値に限定されない。例えば、基本間隔dH及びdVは、0.5波長以上、かつ、1波長以下の値でもよい。
【0277】
また、レーダ装置10,10a,10b(例えば、
図1B、
図27、
図28を参照)において、レーダ送信部100及びレーダ受信部200は、物理的に離れた場所に個別に配置されてもよい。また、レーダ受信部200(例えば、
図1B、
図27、
図28を参照)において、方向推定部214と、他の構成部とは、物理的に離れた場所に個別に配置されてもよい。
【0278】
レーダ装置10は、図示しないが、例えば、CPU(Central Processing Unit)、制御プログラムを格納したROM(Read Only Memory)等の記録媒体、およびRAM(Random Access Memory)等の作業用メモリを有する。この場合、上記した各部の機能は、CPUが制御プログラムを実行することにより実現される。但し、レーダ装置10のハードウェア構成は、かかる例に限定されない。例えば、レーダ装置10の各機能部は、集積回路であるIC(Integrated Circuit)として実現されてもよい。各機能部は、個別に1チップ化されてもよいし、その一部または全部を含むように1チップ化されてもよい。
【0279】
以上、図面を参照しながら各種の実施形態について説明したが、本開示はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。また、開示の趣旨を逸脱しない範囲において、上記実施形態における各構成要素を任意に組み合わせてもよい。
【0280】
上記各実施形態では、本開示はハードウェアを用いて構成する例にとって説明したが、本開示はハードウェアとの連携においてソフトウェアでも実現することも可能である。
【0281】
また、上記各実施形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。集積回路は、上記実施の形態の説明に用いた各機能ブロックを制御し、入力端子と出力端子を備えてもよい。これらは個別に1チップ化されてもよいし、一部または全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
【0282】
また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサを用いて実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)、LSI内部の回路セルの接続又は設定を再構成可能なリコンフィギュラブル プロセッサ(Reconfigurable Processor)を利用してもよい。
【0283】
さらには、半導体技術の進歩又は派生する別技術により、LSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックを集積化してもよい。バイオ技術の適用等が可能性としてありえる。
【0284】
以上の説明において、各構成要素に用いる「・・・部」という表記は、「・・・回路(circuitry)」、「・・・デバイス」、「・・・ユニット」、又は、「・・・モジュール」といった他の表記に置換されてもよい。
【0285】
<本開示のまとめ>
本開示の一実施例に係るレーダ装置は、送信アレーアンテナを用いて、レーダ信号を送信するレーダ送信部と、受信アレーアンテナを用いて、前記レーダ信号がターゲットにおいて反射された反射波信号を受信するレーダ受信部と、を具備し、前記送信アレーアンテナ及び前記受信アレーアンテナは第1軸及び第2軸による2次元平面上に配置され、前記受信アレーアンテナは、複数の受信アンテナ列を含み、各受信アンテナ列のそれぞれは第1の個数のアンテナを含み、前記各受信アンテナ列のそれぞれに含まれる前記第1の個数のアンテナのうち、隣り合うアンテナは前記第1軸方向に第1の間隔、前記第2軸方向に第2の間隔離れて配置され、前記送信アレーアンテナは、前記第2軸方向に、前記第2の間隔の前記第1の個数倍の間隔で配置された複数の送信アンテナ列を含み、各送信アンテナ列のそれぞれは複数のアンテナを含み、前記各送信アンテナ列のそれぞれに含まれる前記複数のアンテナは、前記第2軸方向について同じ位置、及び、前記第1軸方向について異なる位置にそれぞれ配置され、前記第2軸方向において隣り合う前記送信アンテナ列に含まれるアンテナは、前記第1軸方向において異なる位置に配置される。
【0286】
本開示の一実施例において、前記送信アレーアンテナにおいて、前記第2軸方向において隣り合う前記送信アンテナ列を含む前記第2軸方向に隣り合う3つの送信アンテナ列に含まれるアンテナは、前記第1軸方向において異なる位置にそれぞれ配置される。
【0287】
本開示の一実施例において、前記複数の送信アンテナ列の各々は、少なくとも、前記第1軸方向に前記第1の間隔で配置される2つ以上のアンテナを含む。
【0288】
本開示の一実施例において、前記送信アレーアンテナは、3つ以上の前記送信アンテナ列を含み、前記3つ以上の送信アンテナ列のうち、前記第2軸方向において隣り合わない2つの送信アンテナ列に含まれるアンテナは、前記第1軸方向に前記第1の間隔で配置され、前記3つ以上の送信アンテナ列のうち、残りの1つの送信アンテナ列に含まれるアンテナは、前記第1軸方向において、前記第1の間隔に、前記第1の個数に1を加えた個数倍を乗算した間隔で分割される2つの領域の少なくとも1つの領域において前記第1の間隔で配置される。
【0289】
本開示の一実施例において、前記2つの領域の一方に配置されるアンテナ数と、前記2つの領域の他方に配置されるアンテナ数とは同じであるか、あるいは、差分が1である。
【0290】
本開示の一実施例において、前記第2軸方向に配置された前記複数の送信アンテナ列は1つの送信アンテナ群を構成し、前記送信アレーアンテナは、前記第1軸方向に配置された複数の前記送信アンテナ群を有する。
【0291】
本開示の一実施例において、前記第1軸方向に配置された前記複数の受信アンテナ列は1つの受信アンテナ群を構成し、前記受信アレーアンテナは、複数の前記受信アンテナ群を有する。
【0292】
本開示の一実施例において、前記レーダ送信部は、前記送信アレーアンテナを用いて送信ビームを制御する。
【0293】
本開示の一実施例において、前記第1の間隔及び前記第2の間隔は、0.5波長以上、かつ、1波長以下の値である。
【0294】
本開示の一実施例において、前記送信アンテナ及び前記受信アンテナの少なくとも1つは、複数のサブアレー素子を含む。
【0295】
本開示の一実施例に係る送受信アレーアンテナは、送信アレーアンテナと、受信アレーアンテナと、を具備し、前記送信アレーアンテナ及び前記受信アレーアンテナは第1軸及び第2軸による2次元平面上に配置され、前記受信アレーアンテナは、複数の受信アンテナ列を含み、各受信アンテナ列のそれぞれは第1の個数のアンテナを含み、前記各受信アンテナ列のそれぞれに含まれる前記第1の個数のアンテナのうち、隣り合うアンテナは前記第1軸方向に第1の間隔、前記第2軸方向に第2の間隔離れて配置され、前記送信アレーアンテナは、前記第2軸方向に、前記第2の間隔の前記第1の個数倍の間隔で配置された複数の送信アンテナ列を含み、各送信アンテナ列のそれぞれは複数のアンテナを含み、前記各送信アンテナ列のそれぞれに含まれる前記複数のアンテナは、前記第2軸方向について同じ位置、及び、前記第1軸方向について異なる位置にそれぞれ配置され、前記第2軸方向において隣り合う前記送信アンテナ列に含まれるアンテナは、前記第1軸方向において異なる位置に配置される。
【産業上の利用可能性】
【0296】
本開示は、広角範囲を検知するレーダ装置として好適である。
【符号の説明】
【0297】
10,10b レーダ装置
100,100a,100b レーダ送信部
200,200b レーダ受信部
300 基準信号生成部
101,101a,401 レーダ送信信号生成部
102 符号生成部
103 変調部
104,503 LPF
105 切替制御部
106,106a 送信切替部
107,107a 送信無線部
108 送信アンテナ
111 符号記憶部
112 DA変換部
201 アンテナ系統処理部
202 受信アンテナ
203,501 受信無線部
204 増幅器
205 周波数変換器
206 直交検波器
207,207b 信号処理部
208,208b,209 AD変換部
210 相関演算部
211 出力切替部
212 ドップラ解析部
213 CFAR部
214 方向推定部
402 変調信号発生部
403 VCO
404 方向性結合部
502 ミキサ部