(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-10-18
(45)【発行日】2024-10-28
(54)【発明の名称】画像位置合わせ装置、方法およびプログラム
(51)【国際特許分類】
G06T 7/33 20170101AFI20241021BHJP
A61B 6/03 20060101ALI20241021BHJP
A61B 5/055 20060101ALI20241021BHJP
【FI】
G06T7/33
A61B6/03 560B
A61B5/055 380
(21)【出願番号】P 2021050707
(22)【出願日】2021-03-24
【審査請求日】2023-10-05
(73)【特許権者】
【識別番号】512052971
【氏名又は名称】富士フイルム医療ソリューションズ株式会社
(74)【代理人】
【識別番号】110001519
【氏名又は名称】弁理士法人太陽国際特許事務所
(72)【発明者】
【氏名】吉田 研一
【審査官】松浦 功
(56)【参考文献】
【文献】特開2017-127474(JP,A)
【文献】特開2012-084114(JP,A)
【文献】特開平05-015525(JP,A)
【文献】特表2013-522712(JP,A)
【文献】特開2011-254959(JP,A)
【文献】特開2008-259622(JP,A)
【文献】特表2017-502772(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G06T 7/00 - 7/90
A61B 6/03
A61B 5/055
(57)【特許請求の範囲】
【請求項1】
少なくとも1つのプロセッサを備え、
前記プロセッサは、
少なくとも1つのスライス画像からなる第1の3次元画像および複数のスライス画像からなる第2の3次元画像を取得し、
前記第1の3次元画像に含まれる1つの比較元スライス画像と前記第2の3次元画像に含まれる複数のスライス画像のうちの2以上の比較先スライス画像のそれぞれとの間で、スライス画像面内の被写体領域の重心および慣性主軸の傾きの少なくとも一方を一致させ、
前記被写体領域の重心および慣性主軸の少なくとも一方を一致させた後の、前記比較元スライス画像と前記2以上の比較先スライス画像のそれぞれとの類似度を表す評価値を導出し、
前記評価値に基づいて前記比較先スライス画像のうちの前記比較元スライス画像に対応する比較対象スライス画像を決定
し、
前記比較元スライス画像と前記比較対象スライス画像との間において、前記被写体領域の重心および慣性主軸の傾きの少なくとも一方を一致させるための前記比較元スライス画像と前記比較対象スライス画像との位置合わせ量を保存し、
前記比較元スライス画像が切り替えられた場合、前記保存された位置合わせ量を用いて、切り替えられた比較元スライス画像と前記2以上の比較先スライス画像のそれぞれとの間で、前記被写体領域の重心および慣性主軸の傾きの少なくとも一方を一致させる画像位置合わせ装置。
【請求項2】
少なくとも1つのプロセッサを備え、
前記プロセッサは、
少なくとも1つのスライス画像からなる第1の3次元画像および複数のスライス画像からなる第2の3次元画像を取得し、
前記第1の3次元画像に含まれる1つの比較元スライス画像と前記第2の3次元画像に含まれる複数のスライス画像のうちの2以上の比較先スライス画像のそれぞれとの間で、スライス画像面内の被写体領域の重心および慣性主軸の傾きの少なくとも一方を一致させ、
前記被写体領域の重心および慣性主軸の少なくとも一方を一致させた後の、前記比較元スライス画像と前記2以上の比較先スライス画像のそれぞれとの類似度を表す評価値を導出し、
前記評価値に基づいて前記比較先スライス画像のうちの前記比較元スライス画像に対応する比較対象スライス画像を決定
し、
前記比較元スライス画像と前記比較対象スライス画像との間において、前記被写体領域の重心および慣性主軸の傾きの少なくとも一方を一致させるための前記比較元スライス画像と前記比較対象スライス画像との位置合わせ量を保存し、
前記比較元スライス画像が切り替えられた場合、前記切り替えられた比較元スライス画像があらかじめ定められた条件を満足するか否かを判定し、前記判定が否定された場合、前記保存された位置合わせ量を用いて、前記切り替えられた比較元スライス画像と前記2以上の比較先スライス画像のそれぞれとの間で、前記被写体領域の重心および慣性主軸の傾きの少なくとも一方を一致させ、
前記判定が肯定された場合、切り替えられた比較元スライス画像と前記2以上の比較先スライス画像のそれぞれとの間で、新たに位置合わせ量を導出して前記被写体領域の重心および慣性主軸の傾きの少なくとも一方を一致させる画像位置合わせ装置。
【請求項3】
前記プロセッサは、前記比較元スライス画像と前記2以上の比較先スライス画像のそれぞれとの間で、前記評価値を1回のみ導出する請求項1
または2に記載の画像位置合わせ装置。
【請求項4】
前記プロセッサは、前記比較元スライス画像における被写体領域の重心および慣性主軸の傾きの少なくとも一方を導出し、
前記2以上の比較先スライス画像のそれぞれにおける被写体領域の重心および慣性主軸の傾きの少なくとも一方を導出する請求項1
から3のいずれか1項に記載の画像位置合わせ装置。
【請求項5】
前記プロセッサは、前記比較元スライス画像および前記比較先スライス画像の濃度を、その面密度に持つ剛体と見なすことにより、前記比較元スライス画像における前記被写体領域の重心および慣性主軸の傾き、並びに前記比較先スライス画像における前記被写体領域の重心および慣性主軸の傾きを導出する請求項
4に記載の画像位置合わせ装置。
【請求項6】
前記プロセッサは、前記比較元スライス画像および前記比較先スライス画像を前記被写体領域と背景領域とに二値化処理し、
前記被写体領域を一定の面密度を持つ剛体と見なすことにより、前記比較元スライス画像における前記被写体領域の重心および慣性主軸の傾き、並びに前記比較先スライス画像における前記被写体領域の重心および慣性主軸の傾きを導出する請求項
4に記載の画像位置合わせ装置。
【請求項7】
前記二値化処理は、二値化された
前記比較元スライス画像および前記比較先スライス画像に対する膨張および収縮の組み合わせによるフィルタ処理を含む請求項
6に記載の画像位置合わせ装置。
【請求項8】
前記評価値は、前記比較元スライス画像と前記2以上の比較先スライス画像のそれぞれとの相互情報量、差の絶対値の総和、差の二乗和および正規化相互相関係数のいずれかである請求項1から
7のいずれか1項に記載の画像位置合わせ装置。
【請求項9】
前記プロセッサは、前記比較元スライス画像および前記2以上の比較先スライス画像の双方における前記被写体領域の重心および慣性主軸の傾きの少なくとも一方を、基準となる位置および軸の少なくとも一方に一致させることにより、前記被写体領域の重心および慣性主軸の傾きの少なくとも一方を、前記比較元スライス画像と前記2以上の比較先スライス画像との間で一致させる請求項1から
8のいずれか1項に記載の画像位置合わせ装置。
【請求項10】
前記プロセッサは、前記比較元スライス画像および前記比較対象スライス画像をディスプレイに表示する請求項1から
9のいずれか1項に記載の画像位置合わせ装置。
【請求項11】
少なくとも1つのスライス画像からなる第1の3次元画像および複数のスライス画像からなる第2の3次元画像を取得し、
前記第1の3次元画像に含まれる1つの比較元スライス画像と前記第2の3次元画像に含まれる複数のスライス画像のうちの2以上の比較先スライス画像のそれぞれとの間で、スライス画像面内の被写体領域の重心および慣性主軸の傾きの少なくとも一方を一致させ、
前記被写体領域の重心および慣性主軸の少なくとも一方を一致させた後の、前記比較元スライス画像と前記2以上の比較先スライス画像のそれぞれとの類似度を表す評価値を導出し、
前記評価値に基づいて前記比較先スライス画像のうちの前記比較元スライス画像に対応する比較対象スライス画像を決定
し、
前記比較元スライス画像と前記比較対象スライス画像との間において、前記被写体領域の重心および慣性主軸の傾きの少なくとも一方を一致させるための前記比較元スライス画像と前記比較対象スライス画像との位置合わせ量を保存し、
前記比較元スライス画像が切り替えられた場合、前記保存された位置合わせ量を用いて、切り替えられた比較元スライス画像と前記2以上の比較先スライス画像のそれぞれとの間で、前記被写体領域の重心および慣性主軸の傾きの少なくとも一方を一致させる画像位置合わせ方法。
【請求項12】
少なくとも1つのスライス画像からなる第1の3次元画像および複数のスライス画像からなる第2の3次元画像を取得し、
前記第1の3次元画像に含まれる1つの比較元スライス画像と前記第2の3次元画像に含まれる複数のスライス画像のうちの2以上の比較先スライス画像のそれぞれとの間で、スライス画像面内の被写体領域の重心および慣性主軸の傾きの少なくとも一方を一致させ、
前記被写体領域の重心および慣性主軸の少なくとも一方を一致させた後の、前記比較元スライス画像と前記2以上の比較先スライス画像のそれぞれとの類似度を表す評価値を導出し、
前記評価値に基づいて前記比較先スライス画像のうちの前記比較元スライス画像に対応する比較対象スライス画像を決定
し、
前記比較元スライス画像と前記比較対象スライス画像との間において、前記被写体領域の重心および慣性主軸の傾きの少なくとも一方を一致させるための前記比較元スライス画像と前記比較対象スライス画像との位置合わせ量を保存し、
前記比較元スライス画像が切り替えられた場合、前記切り替えられた比較元スライス画像があらかじめ定められた条件を満足するか否かを判定し、前記判定が否定された場合、前記保存された位置合わせ量を用いて、前記切り替えられた比較元スライス画像と前記2以上の比較先スライス画像のそれぞれとの間で、前記被写体領域の重心および慣性主軸の傾きの少なくとも一方を一致させ、
前記判定が肯定された場合、切り替えられた比較元スライス画像と前記2以上の比較先スライス画像のそれぞれとの間で、新たに位置合わせ量を導出して前記被写体領域の重心および慣性主軸の傾きの少なくとも一方を一致させる画像位置合わせ方法。
【請求項13】
少なくとも1つのスライス画像からなる第1の3次元画像および複数のスライス画像からなる第2の3次元画像を取得する手順と、
前記第1の3次元画像に含まれる1つの比較元スライス画像と前記第2の3次元画像に含まれる複数のスライス画像のうちの2以上の比較先スライス画像のそれぞれとの間で、スライス画像面内の被写体領域の重心および慣性主軸の傾きの少なくとも一方を一致させる手順と、
前記被写体領域の重心および慣性主軸の少なくとも一方を一致させた後の、前記比較元スライス画像と前記2以上の比較先スライス画像のそれぞれとの類似度を表す評価値を導出する手順と、
前記評価値に基づいて前記比較先スライス画像のうちの前記比較元スライス画像に対応する比較対象スライス画像を決定する手順
と、
前記比較元スライス画像と前記比較対象スライス画像との間において、前記被写体領域の重心および慣性主軸の傾きの少なくとも一方を一致させるための前記比較元スライス画像と前記比較対象スライス画像との位置合わせ量を保存する手順と、
前記比較元スライス画像が切り替えられた場合、前記保存された位置合わせ量を用いて、切り替えられた比較元スライス画像と前記2以上の比較先スライス画像のそれぞれとの間で、前記被写体領域の重心および慣性主軸の傾きの少なくとも一方を一致させる手順とをコンピュータに実行させる画像位置合わせプログラム。
【請求項14】
少なくとも1つのスライス画像からなる第1の3次元画像および複数のスライス画像からなる第2の3次元画像を取得する手順と、
前記第1の3次元画像に含まれる1つの比較元スライス画像と前記第2の3次元画像に含まれる複数のスライス画像のうちの2以上の比較先スライス画像のそれぞれとの間で、スライス画像面内の被写体領域の重心および慣性主軸の傾きの少なくとも一方を一致させる手順と、
前記被写体領域の重心および慣性主軸の少なくとも一方を一致させた後の、前記比較元スライス画像と前記2以上の比較先スライス画像のそれぞれとの類似度を表す評価値を導出する手順と、
前記評価値に基づいて前記比較先スライス画像のうちの前記比較元スライス画像に対応する比較対象スライス画像を決定する手順
と、
前記比較元スライス画像と前記比較対象スライス画像との間において、前記被写体領域の重心および慣性主軸の傾きの少なくとも一方を一致させるための前記比較元スライス画像と前記比較対象スライス画像との位置合わせ量を保存する手順と、
前記比較元スライス画像が切り替えられた場合、前記切り替えられた比較元スライス画像があらかじめ定められた条件を満足するか否かを判定し、前記判定が否定された場合、前記保存された位置合わせ量を用いて、前記切り替えられた比較元スライス画像と前記2以上の比較先スライス画像のそれぞれとの間で、前記被写体領域の重心および慣性主軸の傾きの少なくとも一方を一致させる手順と、
前記判定が肯定された場合、切り替えられた比較元スライス画像と前記2以上の比較先スライス画像のそれぞれとの間で、新たに位置合わせ量を導出して前記被写体領域の重心および慣性主軸の傾きの少なくとも一方を一致させる手順とをコンピュータに実行させる画像位置合わせプログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、画像位置合わせ装置、方法およびプログラムに関する。
【背景技術】
【0002】
近年、CT(Computed Tomography)装置およびMRI(Magnetic Resonance Imaging)装置等の医療機器の進歩により、より質の高い高解像度の医用画像を用いての画像診断が可能となってきている。とくに、CT画像およびMRI画像等の3次元画像を用いた画像診断により、病変の領域を精度よく特定することができるため、特定した結果に基づいて適切な治療が行われるようになってきている。
【0003】
また、同一の患者について、撮影時期が異なる複数の3次元画像を同時に表示して経過観察を行う場合がある。このような場合、複数の3次元画像について対応する解剖学的位置のスライス画像を表示することにより、複数の3次元画像の比較読影を容易に行うことができる。
【0004】
このため、複数の3次元画像間において位置合わせを行うための各種手法が提案されている。例えば特許文献1および非特許文献1,2には、比較元の画像および比較先の画像についての結合ヒストグラムを導出し、結合ヒストグラムから相互情報量と称される評価値を算出することにより位置合わせを行う手法が提案されている。相互情報量は、比較元の画素の濃度が決まったときに、対応する比較先の画素の濃度が高い確率で予測できる場合に高くなるような評価指標であり、CT画像とMRI画像とのように異なるモダリティ間の画像であっても位置合わせを行うことができる。
【0005】
また、同一部位を撮影した複数の画像間において、各画像の重心および慣性主軸を求め、画像間で重心および慣性主軸を一致させることにより、画像間の位置合わせを行う手法も提案されている(特許文献2参照)。
【先行技術文献】
【特許文献】
【0006】
【文献】特開2011-239812号公報
【文献】特開平05-015525号公報
【非特許文献】
【0007】
【文献】“Alignment by maximization of mutual information”, P. Viola & W.M. Wells, Proceedings of IEEE International Conference on Computer Vision, 1995, DOI: 10.1109/ICCV.1995.466930
【文献】“Multimodality image registration by maximization of mutual information”, F. Maes et al., IEEE Transactions on Medical Imaging, Volume: 16, Issue: 2, April 1997, P.187-198, DOI: 10.1109/42.563664
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかしながら、相互情報量を用いた位置合わせは、最適解が得られるまでに相互情報量を繰り返し複数回評価する必要がある。このため、複数のスライス画像からなる3次元画像間で同一の解剖学的位置となるスライス画像の位置合わせを行う場合、比較対象となる画像が特定されるまでの演算量が多くなる。したがって、相互情報量を用いた位置合わせを行う場合、比較読影の際にリアルタイムで演算することは不向きである。また、特許文献2に記載された手法は、画像間の重心および慣性主軸を一致させる処理を行うのみであるため、位置合わせの精度がそれほど高くない。
【0009】
本開示は上記事情に鑑みなされたものであり、3次元画像間におけるスライス画像の位置合わせを比較的少ない演算量にて精度よく行うことができるようにすることを目的とする。
【課題を解決するための手段】
【0010】
本開示による画像位置合わせ装置は、少なくとも1つのプロセッサを備え、
プロセッサは、少なくとも1つのスライス画像からなる第1の3次元画像および複数のスライス画像からなる第2の3次元画像を取得し、
第1の3次元画像に含まれる1つの比較元スライス画像と第2の3次元画像に含まれる複数のスライス画像のうちの2以上の比較先スライス画像のそれぞれとの間で、スライス画像面内の被写体領域の重心および慣性主軸の傾きの少なくとも一方を一致させ、
被写体領域の重心および慣性主軸の少なくとも一方を一致させた後の、比較元スライス画像と2以上の比較先スライス画像のそれぞれとの類似度を表す評価値を導出し、
評価値に基づいて比較先スライス画像のうちの比較元スライス画像に対応する比較対象スライス画像を決定する。
【0011】
なお、本開示による画像位置合わせ装置においては、プロセッサは、比較元スライス画像と2以上の比較先スライス画像のそれぞれとの間で、評価値を1回のみ導出するものであってもよい。
【0012】
また、本開示による画像位置合わせ装置においては、プロセッサは、比較元スライス画像における被写体領域の重心および慣性主軸の傾きの少なくとも一方を導出し、
2以上の比較先スライス画像のそれぞれにおける被写体領域の重心および慣性主軸の傾きの少なくとも一方を導出するものであってもよい。
【0013】
また、本開示による画像位置合わせ装置においては、プロセッサは、比較元スライス画像および比較先スライス画像の濃度を、その面密度に持つ剛体と見なすことにより、比較元スライス画像における被写体領域の重心および慣性主軸の傾き、並びに比較先スライス画像における被写体領域の重心および慣性主軸の傾きを導出するものであってもよい。
【0014】
また、本開示による画像位置合わせ装置においては、プロセッサは、比較元スライス画像および比較先スライス画像を被写体領域と背景領域とに二値化処理し、
被写体領域を一定の面密度を持つ剛体と見なすことにより、比較元スライス画像における被写体領域の重心および慣性主軸の傾き、並びに比較先スライス画像における被写体領域の重心および慣性主軸の傾きを導出するものであってもよい。
【0015】
また、本開示による画像位置合わせ装置においては、二値化処理は、二値化された画像に対する膨張および収縮の組み合わせによるフィルタ処理を含むものであってもよい。
【0016】
また、本開示による画像位置合わせ装置においては、評価値は、比較元スライス画像と2以上の比較先スライス画像のそれぞれとの相互情報量、差の絶対値の総和、差の二乗和および正規化相互相関係数のいずれかであってもよい。
【0017】
また、本開示による画像位置合わせ装置においては、プロセッサは、比較元スライス画像および2以上の比較先スライス画像の双方における被写体領域の重心および慣性主軸の傾きの少なくとも一方を、基準となる位置および軸の少なくとも一方に一致させることにより、被写体領域の重心および慣性主軸の傾きの少なくとも一方を、比較元スライス画像と2以上の比較先スライス画像との間で一致させるものであってもよい。
【0018】
また、本開示による画像位置合わせ装置においては、プロセッサは、比較元スライス画像および比較対象スライス画像をディスプレイに表示するものであってもよい。
【0019】
また、本開示による画像位置合わせ装置においては、プロセッサは、比較元スライス画像と比較対象スライス画像との間において、被写体領域の重心および慣性主軸の傾きの少なくとも一方を一致させるための比較元スライス画像と比較対象スライス画像との位置合わせ量を保存するものであってもよい。
【0020】
また、本開示による画像位置合わせ装置においては、プロセッサは、比較元スライス画像が切り替えられた場合、保存された位置合わせ量を用いて、切り替えられた比較元スライス画像と2以上の比較先スライス画像のそれぞれとの間で、被写体領域の重心および慣性主軸の傾きの少なくとも一方を一致させるものであってもよい。
【0021】
また、本開示による画像位置合わせ装置においては、プロセッサは、比較元スライス画像が切り替えられた場合、切り替えられた比較元スライス画像があらかじめ定められた条件を満足するか否かを判定し、判定が否定された場合、保存された位置合わせ量を用いて、切り替えられた比較元スライス画像と2以上の比較先スライス画像のそれぞれとの間で、被写体領域の重心および慣性主軸の傾きの少なくとも一方を一致させ、
判定が肯定された場合、切り替えられた比較元スライス画像と2以上の比較先スライス画像のそれぞれとの間で、新たに位置合わせ量を導出して被写体領域の重心および慣性主軸の傾きの少なくとも一方を一致させるものであってもよい。
【0022】
本開示による画像位置合わせ方法は、少なくとも1つのスライス画像からなる第1の3次元画像および複数のスライス画像からなる第2の3次元画像を取得し、
第1の3次元画像に含まれる1つの比較元スライス画像と第2の3次元画像に含まれる複数のスライス画像のうちの2以上の比較先スライス画像のそれぞれとの間で、スライス画像面内の被写体領域の重心および慣性主軸の傾きの少なくとも一方を一致させ、
被写体領域の重心および慣性主軸の少なくとも一方を一致させた後の、比較元スライス画像と2以上の比較先スライス画像のそれぞれとの類似度を表す評価値を導出し、
評価値に基づいて比較先スライス画像のうちの比較元スライス画像に対応する比較対象スライス画像を決定する。
【0023】
なお、本開示による画像位置合わせ方法をコンピュータに実行させるためのプログラムとして提供してもよい。
【発明の効果】
【0024】
本開示によれば、3次元画像間におけるスライス画像の位置合わせを比較的少ない演算量にて精度よく行うことができる。
【図面の簡単な説明】
【0025】
【
図1】本開示の第1の実施形態による画像位置合わせ装置を適用した医療情報システムの概略構成を示す図
【
図2】第1の実施形態による画像位置合わせ装置の概略構成を示す図
【
図3】第1の実施形態による画像位置合わせ装置の機能構成図
【
図4】被写体領域を特定する処理を説明するための図
【
図7】比較対象スライス画像の決定を説明するための図
【
図9】第1の実施形態において行われる処理を示すフローチャート
【
図10】第2の実施形態において行われる処理を示すフローチャート
【
図11】第2の実施形態において行われる処理を示すフローチャート
【
図12】第3の実施形態において行われる処理を示すフローチャート
【
図13】第3の実施形態において行われる処理を示すフローチャート
【発明を実施するための形態】
【0026】
以下、図面を参照して本開示の実施形態について説明する。まず、第1の実施形態による画像位置合わせ装置を適用した医療情報システム1の構成について説明する。
図1は、医療情報システム1の概略構成を示す図である。
図1に示す医療情報システム1は、公知のオーダリングシステムを用いた診療科の医師からの検査オーダに基づいて、被写体の検査対象部位の撮影、撮影により取得された3次元画像等の医用画像の保管、読影医による医用画像の読影と読影レポートの作成、および依頼元の診療科の医師による読影レポートの閲覧と読影対象の医用画像の詳細観察とを行うためのシステムである。
【0027】
図1に示すように、医療情報システム1は、複数の撮影装置2、読影端末である複数の読影WS(WorkStation)3、診療WS4、画像サーバ5、画像データベース(以下、画像DB(DataBase)とする)6、レポートサーバ7およびレポートデータベース(以下レポートDBとする)8が、有線または無線のネットワーク10を介して互いに通信可能な状態で接続されて構成されている。なお、医療情報システム1の具体例としては、PACS(Picture Archiving and Communication Systems)が挙げられる。
【0028】
各機器は、医療情報システム1の構成要素として機能させるためのアプリケーションプログラムがインストールされたコンピュータである。アプリケーションプログラムは、ネットワーク10に接続されたサーバコンピュータの記憶装置、若しくはネットワークストレージに、外部からアクセス可能な状態で記憶され、要求に応じてコンピュータにダウンロードされ、インストールされる。または、DVD(Digital Versatile Disc)およびCD-ROM(Compact Disc Read Only Memory)等の記録媒体に記録されて配布され、その記録媒体からコンピュータにインストールされる。
【0029】
撮影装置2は、被写体の診断対象となる部位を撮影することにより、診断対象部位を表す医用画像を生成する装置(モダリティ)である。具体的には、単純X線撮影装置、CT装置、MRI装置、およびPET(Positron Emission Tomography)装置等である。本実施形態においては、撮影装置2において、複数のスライス画像からなる3次元画像を医用画像として取得するものとする。撮影装置2により生成された医用画像は画像サーバ5に送信され、画像DB6に保存される。
【0030】
読影WS3は、例えば放射線科の読影医が、医用画像の読影および読影レポートの作成等に利用するコンピュータであり、第1の実施形態による画像位置合わせ装置を内包する。読影WS3では、画像サーバ5に対する医用画像の閲覧要求、画像サーバ5から受信した医用画像に対する各種画像処理、医用画像の表示、医用画像の読影、読影結果に基づく読影レポートの作成、レポートサーバ7に対する読影レポートの登録要求と閲覧要求、およびレポートサーバ7から受信した読影レポートの表示が行われる。これらの処理は、読影WS3が各処理のためのソフトウェアプログラムを実行することにより行われる。
【0031】
診療WS4は、診療科の医師が、画像の詳細観察、読影レポートの閲覧、および電子カルテの作成等に利用するコンピュータであり、処理装置、ディスプレイ等の表示装置、並びにキーボードおよびマウス等の入力装置により構成される。診療WS4では、画像サーバ5に対する画像の閲覧要求、画像サーバ5から受信した画像の表示、レポートサーバ7に対する読影レポートの閲覧要求、およびレポートサーバ7から受信した読影レポートの表示が行われる。これらの処理は、診療WS4が各処理のためのソフトウェアプログラムを実行することにより行われる。
【0032】
画像サーバ5は、汎用のコンピュータにデータベース管理システム(DataBase Management System: DBMS)の機能を提供するソフトウェアプログラムがインストールされたものである。また、画像サーバ5は画像DB6が構成されるストレージを備えている。ストレージは、画像サーバ5とデータバスとによって接続されたハードディスク装置であってもよいし、ネットワーク10に接続されているNAS(Network Attached Storage)およびSAN(Storage Area Network)に接続されたディスク装置であってもよい。また、画像サーバ5は、撮影装置2からの医用画像の登録要求を受け付けると、その医用画像をデータベース用のフォーマットに整えて画像DB6に登録する。
【0033】
画像DB6には、撮影装置2において取得された医用画像の画像データと付帯情報とが登録される。付帯情報には、例えば、個々の医用画像を識別するための画像ID(identification)、被写体を識別するための患者ID、検査を識別するための検査ID、医用画像毎に割り振られるユニークなID(UID:unique identification)、医用画像が生成された検査日、検査時刻、医用画像を取得するための検査で使用された撮影装置の種類、患者氏名、年齢、性別等の患者情報、検査部位(撮影部位)、撮影情報(撮影プロトコル、撮影シーケンス、撮像手法、撮影条件、造影剤の使用等)、1回の検査で複数の医用画像を取得した場合のシリーズ番号あるいは採取番号等の情報が含まれる。また、本実施形態においては、画像DB6は、複数の患者についての複数の医用画像を保管して管理している。複数の医用画像は、同一患者についての撮影日時が異なる医用画像、または同一患者についての撮影装置(すなわちモダリティ)が異なる複数の医用画像も含む。例えば、画像DB6は、同一患者について撮影時期が異なるCT画像、並びに同一患者についてCT装置およびMRI装置により同時期に取得されたCT画像およびMRI画像を保管して管理している。
【0034】
また、画像サーバ5は、読影WS3および診療WS4からの閲覧要求をネットワーク10経由で受信すると、画像DB6に登録されている医用画像を検索し、検索された医用画像を要求元の読影WS3および診療WS4に送信する。
【0035】
レポートサーバ7には、汎用のコンピュータにデータベース管理システムの機能を提供するソフトウェアプログラムが組み込まれる。レポートサーバ7は、読影WS3からの読影レポートの登録要求を受け付けると、その読影レポートをデータベース用のフォーマットに整えてレポートDB8に登録する。
【0036】
レポートDB8には、読影医が読影WS3を用いて作成した読影レポートが登録される。読影レポートは、例えば、読影対象の医用画像、医用画像を識別する画像ID、読影を行った読影医を識別するための読影医ID、病変名、および病変の位置情報等を含んでいてもよい。
【0037】
また、レポートサーバ7は、読影WS3および診療WS4からの読影レポートの閲覧要求をネットワーク10経由で受信すると、レポートDB8に登録されている読影レポートを検索し、検索された読影レポートを要求元の読影WS3および診療WS4に送信する。
【0038】
ネットワーク10は、病院内の各種機器を接続する有線または無線のローカルエリアネットワークである。ネットワーク10に接続される各種機器は、同一の施設内にあるものには限定されない。他の病院および診療所等の地理的に遠隔地にある施設にあってもよい。この場合、ネットワーク10は、各施設のローカルエリアネットワーク同士をインターネットまたは専用回線で接続した構成とすればよい。
【0039】
次いで、本開示の第1の実施形態による画像位置合わせ装置について説明する。
図2は、第1の実施形態による画像位置合わせ装置のハードウェア構成を説明する。
図2に示すように、画像位置合わせ装置20は、CPU(Central Processing Unit)11、不揮発性のストレージ13、および一時記憶領域としてのメモリ16を含む。また、画像位置合わせ装置20は、液晶ディスプレイ等のディスプレイ14、キーボードとマウス等の入力デバイス15、およびネットワーク10に接続されるネットワークI/F(InterFace)17を含む。CPU11、ストレージ13、ディスプレイ14、入力デバイス15、メモリ16およびネットワークI/F17は、バス18に接続される。CPU11は、本開示におけるプロセッサの一例である。
【0040】
ストレージ13は、HDD(Hard Disk Drive)、SSD(Solid State Drive)、およびフラッシュメモリ等によって実現される。記憶媒体としてのストレージ13には、画像位置合わせプログラム12が記憶される。CPU11は、ストレージ13から画像位置合わせプログラム12を読み出してからメモリ16に展開し、展開した画像位置合わせプログラム12を実行する。
【0041】
次いで、第1の実施形態による画像位置合わせ装置の機能的な構成を説明する。
図3は、第1の実施形態による画像位置合わせ装置の機能的な構成を示す図である。
図3に示すように画像位置合わせ装置20は、画像取得部21、第1導出部22、第1位置合わせ部23、第2導出部24、第2位置合わせ部25および表示制御部26を備える。そしてCPU11が画像位置合わせプログラム12を実行することにより、CPU11は、画像取得部21、第1導出部22、第1位置合わせ部23、第2導出部24、第2位置合わせ部25および表示制御部26として機能する。
【0042】
ここで、本実施形態による画像位置合わせ装置20は、同一患者について撮影時期が異なる2つの3次元画像の比較読影を行う場合の画像位置合わせを行うものである。なお、本実施形態においては、3次元画像は複数のアキシャル断面のスライス画像からなるCT画像であるものとする。以下、2つの3次元画像のうち撮影時期が新しい3次元画像を第1の3次元画像G1、撮影時期が古い3次元画像を第2の3次元画像G2とする。
【0043】
比較読影を行うために、後述するように表示制御部26は第1の3次元画像G1と第2の3次元画像G2とを並べてディスプレイ14に表示する。この際、第1の3次元画像G1について所望とされる解剖学的位置のスライス画像が表示される。表示されたスライス画像が比較元スライス画像となる。本実施形態においては、表示された1つの比較元スライス画像と解剖学的位置が対応する比較対象スライス画像を、第2の3次元画像G2に含まれる複数のスライス画像のうちの2以上の比較先スライス画像から決定することにより、第1の3次元画像G1と第2の3次元画像G2との位置合わせを行う。したがって、本実施形態における画像位置合わせとは、第1および第2の3次元画像G1,G2における対応する解剖学的位置のスライス画像を一致させる処理となる。
【0044】
画像取得部21は、操作者である読影医による入力デバイス15からの指示により、画像サーバ5から読影レポートを作成するための第1の3次元画像G1および第2の3次元画像G2を取得する。
【0045】
第1および第2の3次元画像G1,G2は、ディスプレイ14に表示して観察が可能なようにウィンドウレベルおよびウィンドウ幅が設定されている。ウィンドウレベルとは、CT画像のような信号値の幅が広い3次元画像をディスプレイ14に表示する際に、ディスプレイ14が表示可能な階調における、観察したい部位の中心となるCT値である。ウィンドウ幅とは、観察したい部位のCT値の下限値と上限値との幅である。また、第1および第2の3次元画像G1,G2の座標系は被写体の足から頭に向かう方向をz方向、スライス面において被写体の左に向かう方向をx方向、スライス面において被写体の後に向かう方向をy方向とする。
【0046】
第1導出部22は、第1の3次元画像G1に含まれる1つの比較元スライス画像における被写体領域の重心および慣性主軸の傾きを導出する。なお、比較元スライス画像は、表示制御部26によりディスプレイ14に表示されている1つのスライス画像である。また、第1導出部22は、第2の3次元画像G2に含まれる複数のスライス画像のうちの2以上の比較先スライス画像における被写体領域の重心および慣性主軸の傾きを導出する。なお、2以上の比較先スライス画像とは、第2の3次元画像G2に含まれるすべてのスライス画像であってもよく、一部のスライス画像であってもよい。一部のスライス画像は、第2の3次元画像G2に含まれるすべてのスライス画像のうちの、あらかじめ定められた間隔で間引かれたスライス画像であってもよい。また、一部のスライス画像は、第2の3次元画像G2に含まれるすべてのスライス画像のうちの、比較元スライス画像と対応すると予測されるスライス画像およびこれに隣接する1以上のスライス画像であってもよい。
【0047】
以下、比較元スライス画像における被写体領域の重心および慣性主軸の傾きの導出について説明する。第1導出部22は、比較元スライス画像における被写体領域の重心および慣性主軸の傾きの導出に際して、比較元スライス画像における被写体領域を特定する。
図4は被写体領域を特定する処理を説明するための図である。
図4において左右方向がx方向、上下方向がy方向となる。まず、第1導出部22は比較元スライス画像SL1を被写体領域と背景領域とに二値化処理する。二値化処理のしきい値は、比較元スライス画像SL1に含まれる被写体領域と背景領域とを分けるために適切な値に設定される。
図4においては、二値化された比較元スライス画像SL1-1の背景領域を白、被写体領域を黒で示している。
【0048】
ここで、
図4に示すように二値化された比較元スライス画像SL1-1には、ノイズ等の影響により、被写体領域内に値が0となる小領域(以下、穴とする)が存在する。第1導出部22は、穴40を被写体領域に含めるために、二値化された比較元スライス画像SL1-1に対する膨張および収縮の組み合わせによるフィルタ処理を行う。フィルタ処理は、例えば、モフォロジーフィルタを用いたオープニング処理またはクロージング処理を用いることができる。これにより、
図4に示すように、被写体領域に含まれる穴40が除去された、二値化された比較元スライス画像SL1-2を導出する。なお、オープニング処理またはクロージング処理に代えて、被写体領域に含まれる、任意のフィルタを用いてあらかじめ定められたしきい値以下の面積となる背景領域を被写体領域と同じ色に修正するフィルタ処理を行うようにしてもよい。
【0049】
第1導出部22は、二値化され、かつフィルタ処理された比較元スライス画像SL1-2の被写体領域を一定の面密度を持つ2次元的な平板状の剛体と見なすことにより、比較元スライス画像SL1における被写体領域の重心および画像面内における慣性主軸の傾きを導出する。具体的には、まず以下の式(1)により、重心(x0,y0)を導出する。なお、式(1)においてρ(i,j)は二値化された比較元スライス画像SL1-2の画素位置(i,j)における濃度に対応する面密度である。
【数1】
【0050】
一方、第1導出部22は慣性主軸の傾きの導出に際して、まず慣性テンソルIを下記の式(2)により導出する。
【数2】
【0051】
画像面内における慣性主軸の傾きは、慣性テンソルIの非対角成分(慣性乗積)が0になるような座標変換に対応する。このため、非対角成分が0になるという条件から、2次方程式の解の公式を利用して、慣性主軸の傾きθは下記の式(3)により求められる。
【数3】
【0052】
ここで、3次元画像のアキシャル断面のスライス画像に含まれる被写体領域は、一般に頭部は縦長、胴体は横長になる。このため、慣性主軸は縦になったり横になったりする。本実施形態において、第1導出部22が慣性主軸の傾きθを求める目的は、比較元スライス画像SL1と比較先スライス画像SL2との相対的な傾きの相違を求めるためである。したがって、第1導出部22は、式(3)により算出される2つの解のうち、絶対値が小さい方の解(x軸となす角度を0度とした場合の±90度に近くない方の解)を被写体の傾きと解釈し、慣性主軸の傾きθとして導出する。
【0053】
なお、第1導出部22は、第2の3次元画像G2に含まれる2以上の比較先スライス画像SL2の被写体領域の重心および慣性主軸の傾きも上記と同様に導出する。
【0054】
第1位置合わせ部23は、被写体領域の重心および慣性主軸の傾きの少なくとも一方を、比較元スライス画像SL1と2以上の比較先スライス画像SL2との間で一致させる第1の位置合わせを行う。
図5は第1の位置合わせの概念を示す図である。本実施形態においては、
図5に示すように、1つの比較元スライス画像SL1と、2以上の比較先スライス画像SL2との間で第1の位置合わせを行う。
【0055】
なお、本実施形態においては、被写体領域の重心および慣性主軸の傾きの双方を比較元スライス画像SL1と2以上の比較先スライス画像SL2との間で一致させるものとするが、これに限定されるものではない。被写体領域の重心および慣性主軸の傾きのいずれか一方のみを、比較元スライス画像SL1と2以上の比較先スライス画像SL2との間で一致させるものとしてもよい。
【0056】
図6は第1の位置合わせを説明するための図である。
図6に示すように比較元スライス画像SL1と比較先スライス画像SL2とでは、重心g1と重心g2とが異なる位置にある。また、慣性主軸41の傾きθ1と慣性主軸42の傾きθ2とが異なる。なお、
図6に示した重心g1,g2の位置の相違および慣性主軸41,42の傾きθ1,θ2の相違は例示に過ぎないものであり、実際には
図6に示す相違よりも小さいものである。
【0057】
第1位置合わせ部23は、重心g1と重心g2とを一致させるための、比較元スライス画像SL1と比較先スライス画像SL2との相対的な平行移動量を導出する。そして、比較元スライス画像SL1と比較先スライス画像SL2とを、導出した平行移動量に基づいて相対的に平行移動することにより、重心g1と重心g2とを一致させる。さらに、第1位置合わせ部23は、比較元スライス画像SL1の慣性主軸41の傾きθ1と比較先スライス画像SL2の慣性主軸42の傾きθ2とを一致させるための、一致後の重心g1,g2を中心とした相対的な回転量を導出する。そして、第1位置合わせ部23は、導出した回転量に基づいて、比較元スライス画像SL1と比較先スライス画像SL2とを、一致させた重心g1,g2の周りに相対的に回転することにより慣性主軸41,42の傾きを一致させる。導出された平行移動量および回転量が位置合わせ量の一例である。
【0058】
この際、比較元スライス画像SL1を比較先スライス画像SL2に一致させるように第1の位置合わせを行ってもよく、比較先スライス画像SL2を比較元スライス画像SL1に一致させるように第1の位置合わせを行ってもよい。さらに、重心g1および重心g2が基準位置と一致し、慣性主軸の傾きθ1および慣性主軸の傾きθ2が基準角度と一致するように比較元スライス画像SL1および比較先スライス画像SL2の双方を移動および回転させることにより、第1の位置合わせを行ってもよい。なお、基準位置としては比較元スライス画像SL1および比較先スライス画像SL2の画像の中心位置を用いることができる。基準角度としては0度を用いることができる。0度は慣性主軸が比較元スライス画像SL1および比較先スライス画像SL2におけるx軸と一致する角度である。
【0059】
第2導出部24は、第1の位置合わせ後の比較元スライス画像SL1と2以上の比較先スライス画像SL2のそれぞれとの類似度を表す評価値を導出する。類似度を表す評価値としては、例えば相互情報量を用いることができる。相互情報量の導出に際して、第2導出部24は、第1の位置合わせ後の比較元スライス画像SL1と2以上の比較先スライス画像SL2のそれぞれとの結合ヒストグラムを導出する。
【0060】
結合ヒストグラムは、比較元スライス画像SL1の画素値と1つの比較先スライス画像SL2の画素値との2次元の度数分布を表したものである。本実施形態においては、比較元スライス画像SL1および比較先スライス画像SL2の階調を256段階とすると、結合ヒストグラムは256画素×256画素のサイズを有し、各画素の画素値が度数となる2次元画像で表すことが可能である。
【0061】
第2導出部24は、結合ヒストグラムを用いて相互情報量を導出する。相互情報量は例えば上記特許文献1および非特許文献1,2に記載された手法等、任意の手法を用いることができる。ここで、相互情報量とは、2つの事象AとBについて、事象Aが有している事象Bに関する情報量を定量化した尺度である。画像の位置合わせにおいて用いられる相互情報量は正規化相互情報量と称される。正規化相互情報量NMI(A,B)は、事象Aと事象Bとの2次元の結合ヒストグラムHist(a,b)から下式(4)によって求められる。
【数4】
【0062】
式(4)において、H(A)は事象Aのエントロピー、H(B)は事象Bのエントロピー、H(A,B)は事象A,Bの結合エントロピーである。p(a)はaの確率密度分布、p(b)はbの確率密度分布、p(a,b)はa,bの同時確率分布であり、式(4)に示すように、Hist(a,b)から求められる。すなわち、同時確率分布p(a,b)は結合ヒストグラムH(a,b)を結合ヒストグラムH(a,b)の総度数で除算したものである。確率分布p(a)は同時確率分布p(a,b)をb方向に加算したものである。確率分布p(b)は同時確率分布p(a,b)をa方向に加算したものである。
【0063】
第2導出部24は、式(4)において、事象Aおよびaに比較元スライス画像SL1、事象Bおよびbに比較先スライス画像SL2を当てはめることにより、比較元スライス画像SL1と2以上の比較先スライス画像SL2のそれぞれとの相互情報量NMIj(jは比較先スライス画像SL2の順序を示す番号)を導出する。なお、第2導出部24は、比較元スライス画像SL1と2以上の比較先スライス画像SL2のそれぞれとの相互情報量を1回のみ導出する。
【0064】
第2位置合わせ部25は、評価値に基づいて2以上の比較先スライス画像SL2のうちの比較元スライス画像SL1に対応する比較対象スライス画像SLT2を決定する。具体的には、相互情報量が最大となる比較先スライス画像を比較対象スライス画像SLT2に決定する。
図7は比較対象スライス画像の決定を説明するための図である。なお、
図7においては説明のために、比較先スライス画像は5つであるものとする。
図7に示すように、5つの比較先スライス画像SL2-1~SL2-5のそれぞれについての比較元スライス画像SL1との相互情報量が、1.1、1.2、1.9、1.5、1.4であったとする。この場合、第2位置合わせ部25は、5つの比較先スライス画像SL2-1~SL2-5のうち、相互情報量が最大の1.9となる比較先スライス画像SL2-3を比較対象スライス画像SLT2に決定する。
【0065】
表示制御部26は、第1および第2の3次元画像G1,G2をディスプレイ14に表示する。
図8は3次元画像の表示画面を示す図である。
図8に示すように3次元画像の表示画面50は、画像表示領域51および文章表示領域52を含む。画像表示領域51には、第1の3次元画像G1および第2の3次元画像G2に含まれるスライス画像が表示される。表示されるスライス画像は、入力デバイス15を用いて比較元となる第1の3次元画像G1を選択し、入力デバイス15のマウスが備えるスクロールホイール等を用いて切り替え表示することができる。なお、第2の3次元画像G2を選択して切り替え表示した場合は、第2の3次元画像G2が比較元となる。また、画像表示領域51に表示される第1の3次元画像G1と第2の3次元画像G2とのxy方向の位置合わせは、第1導出部22が導出した、比較元スライス画像SL1の重心と比較先スライス画像SL2の重心とを、それぞれの画像の表示領域の中心と一致させ、さらに比較元スライス画像SL1の慣性主軸の傾きと比較先スライス画像SL2の慣性主軸の傾きとを一致させることにより行えばよい。
【0066】
文章表示領域52には、読影医による第1の3次元画像G1および第2の3次元画像G2の読影結果を表す所見文が、入力デバイス15を用いて入力される。
【0067】
なお、読影の仕方によっては、第1の3次元画像G1と第2の3次元画像G2とで表示されるスライス画像の解剖学的位置を一致させたい場合もあれば、一致させたくない場合もある。このため、本実施形態においては、画像表示領域51の下方に表示された同期ボタン56により、表示されるスライス画像の位置の同期および非同期を切り替え可能としている。読影医は、同期ボタン56を選択することにより、表示される第1の3次元画像G1と第2の3次元画像G2との、表示されるスライス面の同期および非同期を切り替えるようにしている。
【0068】
スライス面すなわち解剖学的位置の一致は、第1の3次元画像G1に含まれる表示された比較元スライス画像SL1について、上述したように第1導出部22、第1位置合わせ部23、第2導出部24および第2位置合わせ部25により行われる。この場合、第1の3次元画像G1について画像表示領域51に表示されるスライス画像が比較元スライス画像となる。本実施形態においては表示される比較元スライス画像が切り替えられる毎に、上述したように第1導出部22、第1位置合わせ部23、第2導出部24および第2位置合わせ部25によりスライス画像の位置合わせが行われ、表示制御部26が、第2位置合わせ部25により決定された比較対象スライス画像SLT2を画像表示領域52に表示する。
【0069】
これにより、画像表示領域51には、第1の3次元画像G1および第2の3次元画像G2のそれぞれに関して同一の解剖学的位置のスライス画像が表示される。したがって、第1の3次元画像G1の表示されるスライス画像を切り替えることによって、第2の3次元画像G2のスライス画像も第1の3次元画像G1と同一の解剖学的位置を表すものとなるように同期して切り替えることができる。なお、同期ボタン56が再度選択されると、同期が解除される。これにより、第1の3次元画像G1と第2の3次元画像G2とで別々のスライス面のスライス画像を表示することが可能となる。
【0070】
文章表示領域52の下方には確定ボタン57が表示されている。読影医は、所見文の入力後、入力デバイス15を用いて確定ボタン57を選択することにより、所見文の入力内容を確定することができる。
【0071】
次いで、第1の実施形態において行われる処理について説明する。
図9は第1の実施形態において行われる処理を示すフローチャートである。なお、位置合わせの対象となる第1および第2の3次元画像G1,G2は画像サーバ5から取得されてストレージ13に記憶されているものとする。また、同期ボタン56はスライス画像を同期させるように選択されているものとする。第1および第2の3次元画像G1,G2を表示する指示がなされることにより処理が開始され、表示制御部26が第1および第2の3次元画像G1,G2を表示画面50の画像表示領域51に表示する(ステップST1)。なお、最初に表示されるスライス画像は第1および第2の3次元画像G1,G2ともに、例えばスライス番号が先頭のスライス画像とすればよい。
【0072】
次いで、表示されるスライス画像の切り替えの指示がなされたか否かが判定され(ステップST2)、ステップST2が肯定されると、第1導出部22が第1の3次元画像G1において現在表示されている比較元スライス画像SL1を特定する(ステップST3)。なお、ステップST2が否定されると後述するステップST10の処理に進む。
【0073】
次いで、第1導出部22が比較元スライス画像SL1における被写体領域の重心および慣性主軸の傾きを導出する(ステップST4)。また、第1導出部22は、第2の3次元画像G2に含まれる複数のスライス画像のうちの2以上の比較先スライス画像SL2のそれぞれにおける被写体領域の重心および慣性主軸の傾きを導出する(ステップST5)。
【0074】
そして、第1位置合わせ部23が、被写体領域の重心および慣性主軸の傾きの少なくとも一方を、比較元スライス画像SL1と2以上の比較先スライス画像SL2との間で一致させる第1の位置合わせを行う(ステップST6)。
【0075】
続いて、第2導出部24が、第1の位置合わせ後の比較元スライス画像SL1と2以上の比較先スライス画像SL2のそれぞれとの類似度を表す評価値を導出する(ステップST7)。さらに、第2位置合わせ部25が、評価値に基づいて2以上の比較先スライス画像SL2のうちの比較元スライス画像SL1に対応する比較対象スライス画像SLT2を決定する(ステップST8)。表示制御部26は、決定された比較対象スライス画像SLT2を画像表示領域51に表示する(ステップST9)。
【0076】
続いて、確定ボタン57が選択されたか否かが判定され(ステップST10)、ステップST10が否定されるとステップST2に戻り、ステップST2以降の処理を繰り返す。なお、ステップST2以降の処理が繰り返される間に、第1の3次元画像G1において表示された比較元スライス画像SL1以外のスライス画像については、ステップST2以降の処理と並列に、比較元の重心および慣性主軸の傾きの導出、および類似度を表す評価値を導出するために必要な演算を行うことが好ましい。
【0077】
読影医はこのようにして第1および第2の3次元画像G1,G2の比較読影を行い、読影レポートを文字表示領域52に入力する。ステップST10が肯定されると、処理を終了する。なお、作成された読影レポートは読影レポートサーバ6に送信されて保存される。
【0078】
このように、本実施形態においては、被写体領域の重心および慣性主軸の傾きの少なくとも一方を、比較元スライス画像SL1と2以上の比較先スライス画像SL2のそれぞれとの間で一致させる第1の位置合わせを行った後に、比較元スライス画像SL1と2以上の比較先スライス画像SL2のそれぞれとの類似度を表す評価値を導出し、評価値に基づいて2以上の比較先スライス画像SL2のうちの比較元スライス画像SL1に対応する比較対象スライス画像SLT2を決定するようにした。
【0079】
このため、第1の位置合わせを行うことなく、類似度を表す評価値を導出する場合と比較して、比較対象スライス画像SLT2を決定するための演算量を低減することができ、その結果、高速に処理を行うことができる。これにより、第1の3次元画像G1においてスライス画像を切り替えても、体感的に遅滞なく第2の3次元画像G2において比較対象スライス画像SLT2を表示することができる。また、被写体領域の重心および慣性主軸の傾きの少なくとも一方を一致させる処理のみを行う場合よりも、精度よく比較対象スライス画像SLT2を決定することができる。したがって、本実施形態によれば高速かつ精度よく比較対象スライス画像SLT2を決定することができる。
【0080】
また、上記実施形態においては、比較先スライス画像SL2のそれぞれについての相互情報量を1回のみしか導出していない。このため、相互情報量が収束するまで相互情報量の導出を繰り返す場合と比較して、大幅に演算時間を短縮することができる。
【0081】
ここで、本願発明者による実装例について説明する。本願発明者は、CPUとしてIntel Xeon E-2124G 3.40GHzを使用し、256階調の512×512画素のサイズを有する第1および第2の3次元画像間で位置合わせを行った。比較先スライス画像1枚に対する相互情報量の演算時間は、重心位置の平行移動のみで慣性主軸の回転を考慮しない場合で2ms程度、回転も考慮する場合で3ms程度であった。なお、演算時間とは、比較元スライス画像SL1に対する比較先スライス画像SL2のそれぞれについての重心および慣性主軸の傾きの導出、第1の位置合わせおよび相互情報量を導出するための演算時間である。
【0082】
したがって、本実施形態によれば、第1の3次元画像G1についてスライス画像を切り替えても、体感的に遅滞なく第2の3次元画像G2のスライス画像を第1の3次元画像G1のスライス画像と同期させることができることが分かった。
【0083】
なお、上記第1の実施形態においては、表示される比較元スライス画像SL1が切り替えられる毎に、2以上の比較先スライス画像SL2のそれぞれについて重心および慣性主軸の傾きを導出しているが、これに限定されるものではない。例えば、比較対象スライス画像SLT2を決定した後、比較対象スライス画像SLT2に関しての第1の位置合わせを行った際の重心の平行移動量および慣性主軸の回転量を用いて、他の比較元スライス画像SL1と2以上の比較先スライス画像SL2との第1の位置合わせを行うようにしてもよい。これにより、演算時間を一層低減してより高速に処理を行うことができる。以下、この処理を第2の実施形態として説明する。
【0084】
図10および
図11は第2の実施形態による画像位置合わせ装置において行われる処理を示すフローチャートである。なお、
図10におけるステップST11~ステップST16の処理は
図9に示すステップST1~ステップST6の処理と同一であるため、ここでは詳細な説明は省略する。第2の実施形態においては、第1の位置合わせが行われると、第1位置合わせ部23は、第1の位置合わせの際に導出した重心位置の平行移動量および慣性主軸の回転量を、位置合わせ量として保存する(ステップST17)。
【0085】
続いて、第2導出部24が、第1の位置合わせ後の比較元スライス画像SL1と2以上の比較先スライス画像SL2のそれぞれとの類似度を表す評価値を導出する(ステップST18)。さらに、第2位置合わせ部25が、評価値に基づいて比較対象スライス画像SLT2を決定する(ステップST19)。表示制御部26は、決定された比較対象スライス画像SLT2を画像表示領域51に表示する(ステップST20)。
【0086】
続いて、確定ボタン57が選択されたか否かが判定され(ステップST21)、ステップST21が否定されると、表示されるスライス画像の切り替えの指示がなされたか否かが判定される(ステップST22)。ステップST22が否定されると、ステップST21へ戻る。ステップST22が肯定されると、第1導出部22が、第1の3次元画像G1において切り替えられた比較元スライス画像SL1を特定する(ステップST23)。さらに、第1位置合わせ部23が、保存された位置合わせ量を読み出し(ステップST24)、読み出した位置合わせ量を用いて第1の位置合わせを行う(ステップST25)。
【0087】
続いて、第2導出部24が、第1の位置合わせ後の比較元スライス画像SL1と2以上の比較先スライス画像SL2のそれぞれとの類似度を表す評価値を導出する(ステップST26)。ステップST26の処理後、ステップST19の処理に戻り、第2位置合わせ部25が、評価値が最大となる比較先スライス画像SL2を比較対象スライス画像SLT2に決定する。
【0088】
このように、第2の実施形態においては、位置合わせ量は一度のみ導出される。これにより、演算量をより低減することができるため、より高速に比較対象スライス画像SLT2を決定することができる。
【0089】
一方、第2の実施形態のように、一度のみ位置合わせ量を導出することに代えて、切り替えられた比較元スライス画像があらかじめ定められた条件を満足する場合に、比較元スライス画像SL1および2以上の比較先スライス画像SL2の重心および慣性主軸の傾きを導出し、重心位置の平行移動量および慣性主軸の回転量を導出して位置合わせ量を導出するようにしてもよい。以下、これを第3の実施形態として説明する。なお、あらかじめ定められた条件としては、前回位置合わせ量を保存してから、比較元スライス画像があらかじめ定められた枚数切り替えられたこと(例えば10枚等)、あるいはアキシャル方向においてあらかじめ定められた距離分スライス画像が切り替えられたこと(例えばスライス間隔が0.5mmである場合、5mm)等とすることができる。
【0090】
図12および
図13は第3の実施形態による画像位置合わせ装置において行われる処理を示すフローチャートである。なお、
図12に示すステップST31~ステップST41の処理は、
図11に示す第2の実施形態におけるステップST11~ステップST21の処理と同一であるため、ここでは詳細な説明は省略する。
【0091】
第3の実施形態においては、ステップST41が否定されると、表示されるスライス画像の切り替えの指示がなされたか否かが判定される(ステップST42)。ステップST42が否定されるとステップST41へ戻る。ステップST42が肯定されると、第1導出部22が第1の3次元画像G1において切り替えられた比較元スライス画像SL1を特定する(ステップST43)。続いて、第1導出部22は、特定された比較元スライス画像SL1が、あらかじめ定められた条件を満足するか否かを判定する(ステップST44)。
【0092】
ステップST44が肯定されると、ステップST34に戻る。これにより、切り替えられた比較元スライス画像SL1の重心および慣性主軸の傾き、並びに2以上の比較先スライス画像SL2のそれぞれの重心および慣性主軸の傾きが導出されて、第1の位置合わせおよび第2の位置合わせが行われる。また、導出された新たな位置合わせ量が保存される。
【0093】
ステップST44が否定されると、第1位置合わせ部23が、保存された位置合わせ量を読み出し(ステップST45)、読み出した位置合わせ量を用いて第1の位置合わせを行う(ステップST46)。
【0094】
続いて、第2導出部24が、第1の位置合わせ後の比較元スライス画像SL1と2以上の比較先スライス画像SL2のそれぞれとの類似度を表す評価値を導出する(ステップST47)。ステップST47の処理後、ステップST39の処理に戻り、第2位置合わせ部25が、評価値が最大となる比較先スライス画像SL2を比較対象スライス画像SLT2に決定する。
【0095】
なお、第3の実施形態においては、重心の平行移動量および慣性主軸の回転量が導出されていない比較先スライス画像SL2と比較元スライス画像SL1との間においては、導出された平行移動量および回転量を用いた補間演算により、重心の平行移動量および慣性主軸の回転量を導出するようにしてもよい。
【0096】
また、上記各実施形態においては、比較元スライス画像SL1と2以上の比較先スライス画像SL2のそれぞれとの相互情報量を1回のみ導出しているが、これに限定されるものではない。導出した相互情報量が収束するまで、相互情報量の導出と位置合わせとを繰り返すようにしてもよい。本実施形態においては、比較元スライス画像SL1と2以上の比較先スライス画像SL2のそれぞれとは第1の位置合わせがなされている。このため、相互情報量が収束するまで相互情報量を導出する演算を行っても、第1の位置合わせを行わない場合と比較して演算量を低減することができ、その結果、第1の3次元画像G1と第2の3次元画像との同期を高速に行うことができる。
【0097】
また、上記各実施形態においては、第2導出部24は、比較元スライス画像SL1と2以上の比較先スライス画像SL2のそれぞれとの相互情報量を類似度を表す評価値として導出しているが、これに限定されるものではない。相互情報量に代えて、比較元スライス画像SL1と2以上の比較先スライス画像SL2のそれぞれとの対応する画素位置における画素値の差の絶対値の総和、差の二乗和、あるいは正規化相互相関係数を類似度を表す評価値として導出してもよい。この場合、評価値の種類に応じて、評価値が最大となるあるいは最小となる比較先スライス画像を比較対象スライス画像SLT2に決定するようにすればよい。なお、これらを類似度を表す評価値として用いる場合においても、評価値は1回のみ導出するようにしてもよく、評価値が収束するまで導出するようにしてもよい。
【0098】
また、上記実施形態においては、第1の3次元画像G1が複数のスライス画像を含むものとしているが、これに限定されるものではない。第1の3次元画像G1は1つのスライス画像のみを含むものであってもよい。
【0099】
また、上記各実施形態においては、第1および第2の3次元画像G1,G2ともにCT画像を用いているがこれに限定されるものではない。第1の3次元画像G1としてCT画像を使用し、第2の3次元画像G2としてMRI画像あるいはPET画像を使用してもよい。この場合、同一の解剖学的位置となるようにCT画像のスライス面とPET画像のスライス面とを位置合わせできるため、CT画像とPET画像とのフュージョン画像を容易に導出することが可能となる。また、超音波画像からなる3次元画像間、あるいは超音波画像からなる3次元画像と他のモダリティにより取得された3次元画像との間においてスライス画像の位置合わせを行う場合にも、上記各実施形態と同様に位置合わせを行うことができる。なお、比較元スライス画像と比較先スライス画像とにおいて画素間隔(画素ピッチ)が異なるものとなる場合がある。この場合、あらかじめ一方または双方のスライス画像を拡大または縮小して画素間隔を合わせてから上記各実施形態の処理を行えばよい。
【0100】
また、上記各実施形態においては、第1および第2の3次元画像G1,G2の比較読影のためにスライス画像の位置合わせを行っているが、これに限定されるものではない。同一被写体についての撮影時期が異なる第1の3次元画像G1と第2の3次元画像G2とを用いて差分画像を導出する場合にも、本実施形態の技術を適用できる。すなわち、比較元スライス画像SL1と、本実施形態の処理により決定された比較対象スライス画像SLT2との差分画像を導出することにより、同一スライス面についての疾患の経時変化を容易に確認することができる。
【0101】
また、上記各実施形態においては、同一被写体についての第1の3次元画像G1と第2の3次元画像G2とを用いてスライス画像の位置合わせを行っているが、これに限定されるものではない。異なる被写体について同一部位を撮影することにより取得された第1の3次元画像G1のスライス画像と第2の3次元画像G2のスライス画像との位置合わせを行う場合にも本実施形態の技術を適用することが可能である。この場合、異なる被写体についての同一モダリティの3次元画像であっても、異なる被写体についての異なるモダリティの3次元画像であっても、上記と同様にスライス画像の位置合わせを行うことが可能である。この場合においても、比較元スライス画像と比較先スライス画像とにおいて画素間隔が異なる場合には、あらかじめ一方または双方のスライス画像を拡大または縮小して画素間隔を合わせてから上記各実施形態の処理を行えばよい。
【0102】
また、上記各実施形態においては、アキシャル方向にスライス面が並ぶアキシャル断面のスライス画像について画像の位置合わせを行っているが、これに限定されるものではない。コロナル断面、サジタル断面またはこれら以外の任意方向の断面についてのスライス画像の位置合わせを行うようにしてもよい。さらにはMPR(Multi Planar Reconstruction、任意断面再構成)のスライス画像についても上記各実施形態と同様に画像の位置合わせを行うようにしてもよい。これにより、第1および第2の3次元画像G1,G2について、所望とされるスライス面のスライス画像の位置合わせを行うことができる。
【0103】
また、上記各実施形態においては、第1導出部22において、比較元スライス画像SL1および比較先スライス画像SL2のそれぞれについて、二値化処理に際してフィルタ処理を行ってから重心および慣性主軸の傾きを導出しているが、これに限定されるものではない。フィルタ処理を行うことなく重心および慣性主軸の傾きを導出してもよい。また、二値化処理を行うことなく、比較元スライス画像および比較先スライス画像の濃度を、その面密度に持つ剛体と見なすことにより、重心および慣性主軸の傾きを導出してもよい。
【0104】
また、上記各実施形態においては、第1および第2の3次元画像G1,G2を表示する際に、最初に表示されるスライス画像をスライス番号が先頭のスライス画像としているが、これに限定されるものではない。最初に表示されるスライス画像について、上記各実施形態と同様に比較元スライス画像SL1と2以上の比較先スライス画像SL2のそれぞれとで位置合わせを行うことにより比較対象スライス画像SLT2を特定し、特定された比較対象スライス画像SLT2を表示するようにしてもよい。
【0105】
また、上記各実施形態においては、比較読影を行う際に表示される比較元スライス画像と比較先スライス画像との位置合わせを行っているが、これに限定されるものではない。例えば比較読影を行う前に比較元スライス画像を特定し、比較先スライス画像との位置合わせをあらかじめ行っておく場合にも、本実施形態による画像位置合わせ装置により位置合わせを行うことが可能である。
【0106】
また、上記各実施形態においては、比較元スライス画像と比較対象スライス画像との位置合わせ量を、スライス画像と関連付けてストレージ13あるいは画像サーバ5等に保存するようにしてもよい。位置合わせ量としては、比較元スライス画像SL1と比較先スライス画像SL2との相対的な平行移動量および慣性主軸の傾きを一致させるための相対的な回転量に限定されるものではない。第1および第2の3次元画像G1,G2において、スライス画像毎に導出した重心および慣性主軸の傾きを位置合わせ量として、各スライス画像と関連付けて保存するようにしてもよい。この場合、比較元スライス画像SL1と比較先スライス画像SL2のそれぞれとの平行移動量および回転量は、保存された重心および慣性主軸の傾きを用いて導出すればよい。
【0107】
このように、スライス画像毎に導出した重心および慣性主軸の傾きを保存することにより、平行移動量および回転量をスライス画像間のすべての組み合わせについて導出する場合と比較して、保存するデータ量を少なくすることができる。また、比較の対象となる双方の3次元画像が異なるものとなった場合に、保存された重心および慣性主軸の傾きを利用してスライス画像間の位置合わせを行うことが可能となる。
【0108】
また、上記各実施形態において、例えば、画像取得部21、第1導出部22、第1位置合わせ部23、第2導出部24、第2位置合わせ部25および表示制御部26といった各種の処理を実行する処理部(Processing Unit)のハードウェア的な構造としては、次に示す各種のプロセッサ(Processor)を用いることができる。上記各種のプロセッサには、上述したように、ソフトウェア(プログラム)を実行して各種の処理部として機能する汎用的なプロセッサであるCPUに加えて、GPU(Graphics Processing Unit)、FPGA(Field Programmable Gate Array)等の製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device :PLD)、ASIC(Application Specific Integrated Circuit)等の特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路等が含まれる。
【0109】
1つの処理部は、これらの各種のプロセッサのうちの1つで構成されてもよいし、同種または異種の2つ以上のプロセッサの組み合わせ(例えば、複数のFPGAの組み合わせまたはCPUとFPGAとの組み合わせ)で構成されてもよい。また、複数の処理部を1つのプロセッサで構成してもよい。
【0110】
複数の処理部を1つのプロセッサで構成する例としては、第1に、クライアントおよびサーバ等のコンピュータに代表されるように、1つ以上のCPUとソフトウェアとの組み合わせで1つのプロセッサを構成し、このプロセッサが複数の処理部として機能する形態がある。第2に、システムオンチップ(System On Chip: SoC)等に代表されるように、複数の処理部を含むシステム全体の機能を1つのIC(Integrated Circuit)チップで実現するプロセッサを使用する形態がある。このように、各種の処理部は、ハードウェア的な構造として、上記各種のプロセッサの1つ以上を用いて構成される。
【0111】
さらに、これらの各種のプロセッサのハードウェア的な構造としては、より具体的には、半導体素子等の回路素子を組み合わせた電気回路(Circuitry)を用いることができる。
【符号の説明】
【0112】
1 医療情報システム
2 撮影装置
3 読影WS
4 診療科WS
5 画像サーバ
6 画像DB
7 レポートサーバ
8 レポートDB
10 ネットワーク
11 CPU
12 画像位置合わせプログラム
13 ストレージ
14 ディスプレイ
15 入力デバイス
16 メモリ
17 ネットワークI/F
18 バス
20 画像位置合わせ装置
21 画像取得部
22 第1導出部
23 第1位置合わせ部
24 第2導出部
25 第2位置合わせ部
26 表示制御部
40 穴
41,42 慣性主軸
50 表示画面
51 画像表示領域
52 文章表示領域
56 同期ボタン
57 確定ボタン
g1,g2 重心
G1 第1の3次元画像
G2 第2の3次元画像
SL1、SL1-1、SL1-2 比較元スライス画像
SL2、SL2-1、SL2-2、SL2-3、SL2-4、SL2-5 比較先スライス画像
θ1,θ2 慣性主軸の傾き