(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-10-18
(45)【発行日】2024-10-28
(54)【発明の名称】工業作物かんがい用の水素ナノバブル注入水
(51)【国際特許分類】
A01G 7/00 20060101AFI20241021BHJP
A01P 21/00 20060101ALI20241021BHJP
A01N 59/00 20060101ALI20241021BHJP
A01G 22/50 20180101ALI20241021BHJP
A01G 22/00 20180101ALI20241021BHJP
A01G 31/00 20180101ALI20241021BHJP
【FI】
A01G7/00 601Z
A01P21/00
A01N59/00
A01G22/50
A01G22/00
A01G31/00 601B
(21)【出願番号】P 2023514938
(86)(22)【出願日】2021-09-13
(86)【国際出願番号】 US2021050131
(87)【国際公開番号】W WO2022056419
(87)【国際公開日】2022-03-17
【審査請求日】2023-03-30
(32)【優先日】2020-09-14
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】591036572
【氏名又は名称】レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード
(74)【代理人】
【識別番号】100090398
【氏名又は名称】大渕 美千栄
(74)【代理人】
【識別番号】100090387
【氏名又は名称】布施 行夫
(72)【発明者】
【氏名】マハムドフ、ロブシャン
(72)【発明者】
【氏名】ファン、シュー
(72)【発明者】
【氏名】ツォン、イェン
【審査官】大澤 元成
(56)【参考文献】
【文献】国際公開第2019/028542(WO,A2)
【文献】特開2012-034649(JP,A)
【文献】特表2020-530488(JP,A)
【文献】特開2014-230506(JP,A)
【文献】特開2017-023076(JP,A)
【文献】特開2017-127807(JP,A)
【文献】特表2018-528320(JP,A)
【文献】特表2023-540233(JP,A)
【文献】米国特許出願公開第2018/0116131(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
A01G 7/00
A01G 31/00-31/06
A01G 22/00-22/67
A01N 59/00
A01P 21/00
(57)【特許請求の範囲】
【請求項1】
カンナビジオール(CBD)を産生することができる作物のかんがい方法であって、前記方法が、
給水をナノバブル発生器にポンプ送出すること;
前記ナノバブル発生器に水素ガスを注入して水中に水素ナノバブルを発生させ、ナノバブル水素リッチ水(HRW-ナノ)を形成し、前記HRW-ナノ中の溶解水素ガスの濃度が0.6mg/L~1.00mg/Lの範囲であること;
前記HRW-ナ
ノで前記作物をかんがいすること
;
を含み、
それにより、水素の添加なしを除いて同じ組成を有するかんがい用水でのかんがい(対照かんがい)と比較して、HRW-ナノでかんがいする結果として作物中のCBDの濃度が増加した
方法。
【請求項2】
前記水素ガスの流量及び前記給水の流量
を、一貫性のある平均水素ナノバブルサイズを達成するために制御
するステップを更に含む、
請求項1に記載の方法。
【請求項3】
前記一貫性のある平均水素ナノバブルサイズは、線形クロス長距離の最大直径に関して
、20
~1000n
mの範囲である、請求項2に記載の方法。
【請求項4】
前記HRW-ナノ中の溶解水素ガスの濃度は
、0.8mg/L(すなわち0.8ppm
)である、請求項1に記載の方法。
【請求項5】
前記作物は、科アサ(Cannabaceae)の植物である、請求項1~4のいずれか一項に記載の方法。
【請求項6】
前記作物は、属アサL(Cannabis L)の植物である、請求項1~4のいずれか一項に記載の方法。
【請求項7】
カンナビジオール(CBD)の濃度は、対照かんがいと比較して前記HRW-ナノでかんがいすることによって20~40%だけ上がる、請求項5又は6に記載の方法。
【請求項8】
前記ナノバブル発生器は
、20
~1000n
mの平均水素ナノバブルサイズで前記水素ナノバブルを水中に生み出すことができるデバイスである、請求項
2に記載の方法。
【請求項9】
前記ナノバブル発生器は、200nm未満の平均水素ナノバブルサイズで前記水素ナノバブルを水中に生み出すことができるデバイスである、請求項2に記載の方法。
【請求項10】
前記一貫性のある平均水素ナノバブルサイズは、線形クロス長距離の最大直径に関して、200nm未満の範囲である、請求項2に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は、あらゆる目的のためにその全体を参照により本明細書に援用される、2020年9月14日出願の米国仮特許出願第63,077,762号の権利を主張するものである。
【0002】
本発明は、水素リッチ水(HRW)の製造方法及びプロセス並びに工業作物のかんがいのための、特に麻、トウモロコシ、エッセンシャルオイルの製造のために使用される作物(例えば、ラベンダー、菜種、亜麻仁)及び繊維の製造のために使用される作物(例えば、コイア、綿、亜麻)などの工業作物のかんがいのためのその使用方法に関する。
【背景技術】
【0003】
諸研究は、分子水素が農業生産に役立つユニークな特性を有することを示している。例えば、Lim et al,「Genetic engineering in agriculture:hydrogen uptake(hup)genes」、Trends in biochemical sciences,5(6),167-170,1980;Zeng et al,「Progress in the study of biological effects of hydrogen on higher plants and its promising application in agriculture」,Medical Gas Research,4(1),15,2014;Hu et al,「Hydrogen-rich water delays postharvest ripening and senescence of kiwifruit」,Food chemistry,156,100-109,2014;Zhang et al,「Protective effects of hydrogen-rich water on the photosynthetic apparatus of maize seedlings(Zea mays L.)as a result of an increase in antioxidant enzyme activities under high light stress」,Plant growth regulation,77(1),43-56,2015;Wang et al,「Linking hydrogen-mediated boron toxicity tolerance with improvement of root elongation,water status and reactive oxygen species balance:a case study for rice」,Annals of botany,118(7),1279-1291,2016。水素ガスを農業かんがいプロセスに使用する大きい可能性があり、それは、農業収穫高を向上させ、成長期間を変化させて、病気への抵抗力を高め、農薬の使用を減らし得る。しかしながら、水への水素の制限される溶解性のために、従来のガス注入法は修正される必要がある。ナノバブルは、大きい表面積対体積比を持った極めて小さい気泡である。より大きい表面積は、増加した物質移動を可能にする。これ故に、H2の低い溶解性及び水中の溶解H2の速いデグラデーションの懸念は、ナノバブルを適用することによって解消され得る。
【0004】
水素は、強い還元剤である。Zhang et al,「Hydrogen-rich water alleviates the toxicities of different stresses to mycelial growth in Hypsizygus marmoreus」,AMB Express,7(1),107,2017は、水素が抗酸化活性を高め、菌糸における反応性酸素種(ROS)レベルを下げることを開示している。Liu et al,「Antioxidant activity of hydrogen nanobubbles in water with different reactive oxygen species both in vivo and in vitro」,Langmuir,34(39),11878-11885,2018は、ナノバブルが水素水の抗酸化能を高め、ナノバブル水素水がROS(・OH、ClO-、ONOO-及びO2
・-)を水から除去できることを開示した。Zeng et al,「Molecular hydrogen is involved in phytohormone signaling and stress responses in plants」,PLoS ONE,8(8),2013は、水素がまた抗酸化酵素遺伝子発現を誘導し得ることを開示している。Zengらは、水素が、植物成長及びストレス適応に関与する植物ホルモンシグナル伝達経路の調整に参加し得る、重要なシグナル伝達分子であり得ることを示唆した。Jin et al,「Hydrogen gas acts as a novel bioactive molecule in enhancing plant tolerance to paraquat-induced oxidative stress via the modulation of heme oxygenase‐1 signaling system」,Plant,Cell&Environment,36(5),956-969,2013は、水素が、ヘム・オキシゲナーゼ-1(HO-1)シグナル伝達の調節によりパラコート誘導酸化的ストレスを軽減することを示唆した。Ohsawa et al,「Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals」,Nature medicine,13(6),688-694,2007は、水素がまた、細胞毒性酸素ラジカルを選択的に還元することによって治療的酸化防止剤として機能することを開示している。
【0005】
Scribnerらへの国際公開第01/08493A1号パンフレットは、土壌を水素ガス(5%~100%)に暴露することによる植物成長又は収穫高(10~30%だけ増加した乾燥重量)を高めるための方法を開示している。水素は、水の電気分解、電流、又は水素を土壌中に直接発生させる、H2発生微生物によって発生させられ得る。
【0006】
Laurenziらへの米国特許出願公開第2017/0135295A1号明細書は、かんがいのために構造化マイクロ水を使用することによる植物の成長速度、植物の健康、及び植物収穫高を向上させるための方法を開示している。溶解水素は、0.01~10ppmの範囲である。マイクロ水は、電気分解/イオン化又は化学薬品の添加によって発生させられ、植物が、植物のアクアポリンを通して吸収するのがより容易である。
【0007】
Ishikawaらへの欧州特許出願公開第3190091A1号明細書は、水を電気分解することによる農業使用用の水素富化水を発生させるための装置を開示している。この発明は、強化された水素結合で正に帯電した水が植物根の細胞壁の酸化を減らし、これ故に、根を強化し得ると主張している。
【0008】
Liらへの中国特許第108901763A号明細書は、農業かんがい用の調節可能な水素濃度の特徴を持った水素ナノバブル発生器のデバイスを開示している。水素は、電気分解によって発生させられた。調節可能な水素濃度は、直列に並んだ多数の電解槽によって制御された。
【0009】
Sunらへの韓国特許第101989021B1号明細書は、農業、畜産及び海産物分野用の水素富化水を発生させるためのデバイスを開示している。高い水素濃度水は、前処理水への水素溶解速度を上げることによって製造された。
【0010】
Liuらへの中国特許第110367426A号明細書は、超音波及び電極を用いる水素ナノバブル発生装置の発明を開示している。発生したナノバブルは、20~1000nmの範囲であり得る。予期される溶解水素濃度は、3~6ppmに達し得る。装置は、抗酸化及び抗菌特性を持った水素富化飲料を生み出すために使用された。
【0011】
Shenらへの中国特許第102657221B号明細書は、0.1~100%の範囲のHRWが水の電気分解、化学反応、発酵又はガスシリンダーによって調製される、HRWを調製するための及びHRWを適用して植物成長を調整するための方法を開示している。適用分野には、植物、花序、果実又は単子葉植物、双子葉植物若しくは種子裸子植物の植物組織などの植物のための植物かんがい、噴霧、浸漬又は浸種が含まれる。
【0012】
Shenらへの中国特許第206494303U号明細書は、日常生活において野菜及び花の水分を維持する並びに野菜及び花の貯蔵寿命を延ばすための水素リッチ水を製造することができる携帯用ケトルのデザインを開示している。水素リッチ水は、ケトルの底部での電気分解デバイスによって製造された。
【0013】
Shenらへの中国特許第206612119U号明細書は、製造された水素リッチ水を果実及び野菜に噴霧して貯蔵寿命を延ばすことができるリザベーションボックスのデザインを開示している。水素リッチ水は、リザベーションボックス内の電気分解デバイスによって発生させられ、濃度は、監視し、調整することができる。
【発明の概要】
【課題を解決するための手段】
【0014】
カンナビジオール(CBD)を産生することができる作物のかんがい方法であって、本方法が、
ナノバブル水素リッチ水(HRW-ナノ)で作物をかんがいすることを含み、
それにより、水素の添加なしを除いて同じ組成を有するかんがい用水でのかんがい(対照かんがい)と比較して、HRW-ナノでかんがいする結果として作物中のCBDの濃度が増加した
方法が開示される。
【0015】
いくつかの実施形態では、本方法は、
給水をナノバブル発生器にポンプ送出するステップと;
水素ガスをナノバブル発生器に注入してその中で水素ナノバブルを水中に形成するステップと
を更に含み、
ここで、ナノバブル発生器に供給される水素ガスの流量及び給水の流量は、一貫性のある水素ナノバブルサイズを達成するために制御される。
【0016】
いくつかの実施形態では、一貫性のある平均水素ナノバブルサイズは、線形クロス長距離の最大直径に関して、およそ20~およそ1000nm、好ましくはおよそ200nm未満の範囲である。
【0017】
いくつかの実施形態では、本開示のHRW中の溶解水素の濃度は、およそ0.1~1.6mg/Lの範囲である。
【0018】
いくつかの実施形態では、HRW中の溶解水素の濃度は、およそ0.6mg/L~およそ1.00mg/Lである。
【0019】
いくつかの実施形態では、HRW中の溶解水素の濃度は、およそ0.8mg/Lである。
【0020】
いくつかの実施形態では、作物は、科アサ(Cannabaceae)の植物である。
【0021】
いくつかの実施形態では、作物は、属アサL(Cannabis L)の植物である。
【0022】
いくつかの実施形態では、作物には、以下:麻、トウモロコシ、エッセンシャルオイルの製造のために使用される作物(例えば、ラベンダー、菜種、亜麻仁)及び繊維の製造のために使用される作物(例えば、コイア、綿、亜麻)の1つ以上が含まれる。
【0023】
いくつかの実施形態では、作物は麻である。
【0024】
いくつかの実施形態では、カンナビジオール(CBD)の濃度は、対照かんがいと比較してHRW-ナノでかんがいすることによって20~40重量%だけ上がる。
【0025】
いくつかの実施形態では、ナノバブル発生器は、およそ20~およそ1000nm、好ましくはおよそ200nm未満の平均水素ナノバブルサイズで水素ナノバブルを水中に生み出すことができるデバイスである。
【0026】
いくつかの実施形態では、ナノバブル発生器は、遠心若しくはタービンポンプ送出ガス混合デバイス又は適切な表面コーティング付きセラミック拡散器である。
【0027】
いくつかの実施形態では、作物が栽培され、結果として生じた栽培作物は、HRWでかんがいされなかった栽培作物と比較して平均サイズ又は重量が増加する。
【0028】
いくつかの実施形態では、作物が栽培され、結果として生じた栽培作物は、HRW-ナノでかんがいされなかった栽培作物と比較して平均サイズ又は重量が増加する。
【0029】
表記法及び命名法
以下の詳細な説明及び特許請求の範囲は、当技術分野において一般に周知である、多数の略語、記号、及び用語を利用し、以下を含む:
【0030】
本明細書で用いるところでは、不定冠詞「1つの(a)」又は「1つの(an)」は、特に明記しない限り、又は単数形を対象にすることが文脈から明らかでない限り、「1つ以上」を意味すると一般に解釈されるべきである。
【0031】
本明細書で用いるところでは、本文での又は特許請求の範囲での「約(about)」又は「約(around)」又は「およそ(approximately)」は、述べられた値の±10%を意味する。
【0032】
本明細書で用いるところでは、本文での特許請求の範囲での「に近い」又は「ほぼ」は、述べられた用語の10%以内を意味する。例えば、「飽和濃度に近い」は、飽和濃度の10%以内を指す。
【0033】
用語「HRW-ナノ」は、水素ナノバブル注入によって製造された水素を含有する水を指す。HRW-ナノは、およそ0.1ppm~およそ1.6ppmの範囲の溶解水素の濃度を有する。HRW-ナノ中の溶解水素は、数時間、例えば最大で8時間まで溶液中にターゲット濃度でとどまるであろう。
【0034】
用語「HRW-レギュラー」は、例えば、拡散器及びベンチュリ注入システムを使用する、従来の水素ガス注入によって製造された水素を含有する水を指す。HRW-レギュラーは、およそ0.1ppm~およそ1.6ppmの範囲の溶解水素の濃度を有する。HRW-レギュラー中の溶解水素は、最大で4時間まで溶液中にターゲット濃度でとどまるであろう。
【0035】
用語「給水」は、フレッシュ地表水、水道水、地下水、流出水、かんがい要件(例えば、カリフォルニアは、2未満/100mLの大腸菌基準を満たすために先端的物理化学的処理及び長時間消毒を要求している)を満たすために三次処理プロセスによって既に処理された廃水等などの、一般的なかんがい用水及び/又は栄養媒体を指す。
【0036】
用語「バイオマス収穫高」又は「収穫高」は、茎、葉、及びつぼみを含む全体植物の乾燥重量を指す。
【0037】
用語「花の質量」は、つぼみ及び葉の乾燥重量を指す。
【0038】
用語「本葉」は、5~7の端点を有する葉を指す。
【0039】
用語「最適な又は一貫性のある」は、大気条件で安定している、及び短期間、すなわち、2、3時間~最大で1日若しくは2日以内に脱ガスしないであろう、液体中の溶解ガスの一定の濃度を指す。
【0040】
「いくつかの実施形態」又は「ある実施形態」への本明細書での言及は、本発明の実施形態と併せて記載される特定の特徴、構造、又は特性が、本発明の少なくともいくつかの実施形態に包含され得ることを意味する。本明細書の様々な場所での語句「いくつかの実施形態では」の出現は、同じ実施形態に必ずしも全て言及しないし、他の実施形態を必然的に相互排他的な別個の若しくは代わりの実施形態でもない。同じことは用語「実施」に当てはまる。
【0041】
本出願に用いるところでは、語「例示的な」は、例、場合、又は例示として役立つことを意味するために本明細書では用いられる。「例示的な」として本明細書で記載される任意の態様又はデザインは、必ずしも、他の態様又はデザインよりも好ましい又は有利なと解釈されるべきではない。むしろ、語例示的なの使用は、具体的な方法でコンセプトを示すことを意図している。
【0042】
その上、用語「又は」は、排他的な「又は」よりもむしろ包括的な「又は」を意味することを意図する。すなわち、特に明記しない限り、又は文脈から明らかでない限り、「XはA又はBを用いる」は、自然な包括的な置換のいずれかを意味することを意図する。すなわち、XがAを用いる場合;XはBを用いる;又はXはA及びBの両方を用い、そのとき「XはA又はBを用いる」は、前述の場合のいずれかの下で満たされる。加えて、冠詞「a」及び「an」は、本出願及び添付の特許請求の範囲で用いるところでは、特に明記しない限り又は単数形を対象にすることが文脈から明らかでない限り、「1つ以上」を意味すると一般に解釈されるべきである。
【0043】
特許請求の範囲における「含む(comprising)」は、その後に特定されるクレーム要素が包括的リストであること、すなわち他のいずれも、「含む」の範囲内に更に含められ、とどまり得ることを意味する、オープン移行用語(transitional term)である。「含む」は、より限定された移行用語「から本質的になる」及び「からなる」を必然的に包含すると本明細書では定義され;「含む」は、それ故、「から本質的になる」又は「からなる」によって置き換えられ得、「含む」の定義された範囲内にとどまる。
【0044】
特許請求の範囲での「提供する」は、あるものを備え付ける、供給する、利用可能にする、又は調製することを意味すると定義される。ステップは、それとは反対に特許請求の範囲において明確な言語の不在下で任意の関係者によって行われ得る。
【0045】
範囲は、約1つの特定の値から及び/又は約別の特定の値までとして本明細書では表現され得る。そのような範囲が表現される場合、別の実施形態は、前記範囲内の全ての組合せと一緒に、1つの特定の値から及び/又は他の特定の値までであることが理解されるべきである。本明細書で列挙される任意の及び全ての範囲は、それらの端点を含める、すなわち、用語「包括的に」が用いられるかどうかに関係なく、x=1~4又は1~4のx範囲は、x=1、x=4、及びx=その間の任意の数を含む。
【0046】
本発明の本質及び目的の更なる理解のために、似た要素に同じ又は類似の参照番号を与える、添付の図面と併用される、以下の詳細な説明に言及されるべきである。
【図面の簡単な説明】
【0047】
【
図1】水素リッチ水(HRW)又は水素リッチかんがい用水の発生のための例示的実施形態のブロック図である。
【
図2】HRW又は水素リッチかんがい用水の発生のための代わりの例示的実施形態のブロック図である。
【
図3】水素ナノバブル発生の例示的実施形態のブロック図である。
【
図4】水素ナノバブル発生の代わりの例示的実施形態のブロック図である。
【
図5】本発明の実施形態による田畑上の植物に適用されるHRW発生システムのブロック図である。
【
図6】大麻のインチ単位での毎週平均高さの結果である。
【
図7】大麻の平均毎週クロロフィル含有量の結果である。
【
図8】大麻の処理による毎週本葉カウントの結果である。
【
図9】大麻の処理によるつぼみカウントの結果である。
【
図11】大麻の処理による全平均%CBDの結果である。
【発明を実施するための形態】
【0048】
水素ナノバブル注入を用いる水素リッチかんがい用水すなわちかんがい用の水素リッチ水(HRW)を製造する方法、並びにそれを使用して工業作物及び/又は食用作物などの、作物又は植物をかんがいする方法が開示される。本開示のHRWは、水素ナノバブル注入によって製造された溶解水素を含有する水又は水素リッチ水を指す「HRW-ナノ」である。対照的に、「HRW-レギュラー」は、従来の水素ガス注入、すなわち、拡散器及びベンチュリ注入システムによって発生するHRWを示すためにここでは用いられる。本開示のHRW-ナノは、一般に、およそ0.1ppm~最大で1.6ppmの範囲の溶解水素の濃度を有する。HRW-ナノ中の溶解水素は、少なくとも8時間HRW中にとどまることが予期される。HRW-レギュラー中の溶解水素は、およそ4時間HRW中にとどまることが予期される。
【0049】
ここで、工業作物には、麻(Cannabis)(例えば、大麻)、トウモロコシなどの、科アサ(Cannabaceae)の植物及び属アサL(Cannabis L)の植物、エッセンシャルオイルの製造のために使用される作物(例えば、ラベンダー、菜種、及び亜麻仁)、繊維の製造のために使用される作物(例えば、コイア、綿、及び亜麻)等が含まれる。麻(Cannabis)は、例示的な工業作物として本明細書では使用される。
【0050】
工業作物は、田畑などの、屋外で、又は温室などの、屋内で成長させられ得る。
【0051】
栽培が屋外か又は屋内、例えば、温室かのどちらか行われる状態で、麻(Cannabis)を成長させるためのかなりの数の異なる方法がある。所望の麻(Cannabis)種族の種子又はクローンを選択した後に、次の、基本的な麻栽培方法の1つが選択され得る。
【0052】
土壌栽培は、屋外又は屋内で行われ得る(例えば、温室中で鉢植え植物)。屋外土壌、すなわち、田畑での麻(Cannabis)の栽培は、最も容易な、且つ最も安価な方法である。屋内植え付けは、水耕栽培及び気耕栽培によって行われ得る。水耕栽培は、無機栄養素溶液を使用することによって土壌なしで植物を成長させることを含む。そのようなシステムでは、植物の根は、栄養のある液体に曝されるか、又は、加えて、根は、パーライト、砂利、若しくは他の基材などの不活性媒体によって物理的に支えられ得る。水耕システムにおいて使用される栄養物は、魚副産物、アヒル肥やし、購入化学肥料、又は人造栄養物溶液などの、多くの異なるソーズに由来することができる。気耕栽培は、植物の根を、土壌、砂利、又は任意の他の媒体よりもむしろ空気中で成長させることを含む。典型的には、植物は、メッシュバスケットに心地よく落ち着かせられ、水及び肥料の連続ミストが、ぶら下がっている根一面に噴霧される。
【0053】
水耕栽培は、伝統的な土壌方法よりも費用がかかる。栽培者は、プロジェクトが始まる前にポンプ、容器、タンク、及び砂利を購入する必要があろう。この方法はまた、栄養物のレベル、並びにpHバランスが着実に管理される必要があるため、栽培者に対してより多くの仕事を要求する。
【0054】
いくつかの実施形態では、本開示のHRWは、作物生産を向上させる及び工業作物中の主要化合物の濃度を上げる水素ナノバブル(HRW-ナノ)含有水である。例えば、HRW-ナノは、大麻栽培を高め、大麻中の化合物カンナビジオール(CBD)の濃度を上げる。
【0055】
本開示のHRWは、およそ0.1mg/L~およそ1.6mg/Lの水中の溶解水素の濃度を有し得る。純水中の水素の飽和濃度は、P=1バール並びに、それぞれ、T=273.1K及びT=298.1Kで1.95及び1.60mg/Lである(Yong,C.L,1981.Solubility Data Series,Volume 5/6,Hydrogen and Deuterium)。好ましくは、本開示のHRW中の溶解水素の濃度は、およそ0.1~1.6mg/Lの範囲である。より好ましくは、本HRW中の溶解水素の濃度は、およそ0.6~1.00mg/Lである。更にいっそう好ましくは、本開示のHRW中の溶解水素の濃度は、およそ0.8mg/Lすなわち0.8ppmである。ガス状水素が、ナノバブル発生器からナノバブル形態で水中へ注入され得る。ナノバブル発生器に供給される水素ガスの流量及び水の流量は、線形クロス長距離の最大直径に関して、20~1000nm、好ましくはおよそ200nm未満の最適な及び一貫性のあるナノバブルサイズを達成するために制御され得る。273Kで水素についてのKH
o=7.8×10-4mol/kg-バールのヘンリー則定数(NIST Chemistry WebBook)で水への水素の低い溶解度を考えると水中へ水素ガスを注入することは困難であることが知られている。
【0056】
本明細書で開示されるように大気条件下で水素ナノバブルをかんがい用水に注入することによって、水素脱ガスは、著しく減少する。水素ナノバブルは、非常に安定しており、長期間水中にとどまり得る。例えば、一旦ターゲット濃度が達成されると、水素ナノバブルは、少なくとも8時間水中にとどまり得る。水中で安定したままであるというこの質は、水素ガスが、水素注入及びかんがいプロセス中のその低い溶解度問題及び高い逸散能問題を排除するのに役立ち得る。20~1000nm、好ましくは200nm未満の平均サイズを有するバブルに作用する、バブル(すなわち、ナノバブル)をもたらす小さい浮力及び小さいブラウン運動力は、水中での安定性を増大させた。
【0057】
本開示方法は、水中の溶解水素の寿命を延ばす、及び溶解水素の要求されるレベルを達成するために高圧デバイスを使用する必要性を排除する、かんがい用水中に水素ナノバブルを生み出すためのナノバブル発生器を好ましくは使用する。本開示の方法では、製造されたかんがい用水中の溶解水素の濃度は、作物の最適成長増大のために好ましくは少なくとも0.8mg/Lである。
【0058】
図1は、HRW又は水素リッチかんがい用水の発生のための例示的実施形態のブロック図である。示されるように、給水ポンプ102によってポンプ送出される、給水、及び水素ガスがナノバブル発生器104に供給され、そこで水中の水素ナノバブルが発生させられる。ナノバブル発生器104の下流の水タンク106は、水中の水素ナノバブルを受け取り、その中で水素ナノバブル注入かんがい用水、すなわち、作物又は植物のかんがい用のHRW-ナノを生み出す。本明細書で使用される給水には、フレッシュ地表水、水道水、地下水、流出水、かんがい要件(例えば、カリフォルニアは、2未満/100mLの大腸菌基準を満たすために先端的物理化学的処理及び長時間消毒を要求している)を満たすために三次処理プロセスによって既に処理された廃水等などの、一般的なかんがい用水及び/又は栄養媒体が含まれる。給水ポンプ102は、遠心ポンプであり得る。水タンク106は、大気条件で使用することができる任意の市販の水タンクであり得る。
【0059】
図2は、水素リッチ水又は水素リッチかんがい用水の発生のための代わりの例示的実施形態のブロック図である。給水は、水タンク206に供給され、次いで給水ポンプ202によってナノバブル発生器204にポンプ送出される。水素ガスは、ナノバブル発生器204中へ注入され、そこで水素ナノバブルが水中に発生させられる。水素ナノバブル注入水は、次いで水タンク206に戻されて水素ナノバブル注入かんがい用水、すなわち、HRW-ナノかんがい用水を形成する。この実施形態では、HRW-ナノは、i)作物又は植物かんがいのために水タンク206から排出されてもよい及び/又はii)水中の水素ナノバブルの濃度がそれから上げられるように給水をナノバブル発生器204に提供するためにナノバブル発生器204に再循環して戻されてもよい。
【0060】
水中の水素ナノバブルは、様々な方法で発生させられ得る。いくつかの実施形態では、
図3に示されるように、水素ガスは、デバイス302を通って給水中へ注入されて気液混合物を形成し、それはポンプ304の吸引ポートに入る。デバイス302は、ベンチュリノズルであり得る。ポンプ304の排出ポートを出た気液混合物は、次いでナノバブル発生器306の混合室において混合され、水中の水素ナノバブルを生み出す。水中の水素ナノバブルは、次いでそこから排出される。ナノバブル発生器306は、20~1000nm、好ましくはおよそ200nm未満の平均サイズの水中の水素ナノバブルを発生させることができるデバイスであり得る。本明細書では、水素ガスの流量及び水の流量は、ナノバブル発生器306から最適の及び一貫性のあるナノバブルサイズを達成するために制御され得る。生み出された水素ナノバブルの平均サイズは、20~1000nm、好ましくはおよそ200nm未満である。
【0061】
或いは、
図4に示されるように、水素ナノバブルは、適切な表面コーティング付きの酸化アルミニウム又は酸化アルミニウムと、酸化チタンと酸化ケイ素との混合物でできたセラミック拡散器によって発生させられ得る。セラミック拡散器404は、100~1000nmの細孔サイズを有し、好適な表面化学を生み出すために様々な有機化合物でコートされ得る。水及び水素ガスは、セラミック拡散器404に供給され、ここで、水中の水素ナノバブルはそこから排出される。本明細書では、水素ガスの流量及び水の流量は、ナノバブル発生器404から最適の及び一貫性のあるナノバブルサイズを達成するために制御され得る。生み出された水素ナノバブルの平均サイズは、20~1000nm、好ましくはおよそ200nm未満である。
【0062】
図5は、本発明の実施形態による田畑上の植物に適用されるHRW発生システムのブロック図である。
図5に示される本開示のHRW発生システムはまた、温室中でなどの、屋内で栽培される植物にも適用される。示されるように、シリンダーからの水素ガス502は、それぞれ、ナノバブル発生器504及び気液ミキサー又は拡散器506に注入される。水素ナノバブルは、ナノバブル発生器504によって水中に発生させられ、次いで水タンク508に戻され、そこで、水素ナノバブル注入かんがい用水、すなわち、HRW-ナノが
図1又は
図2に記載されたように生み出される。水-水素ガス混合物は、液体-ガスミキサー又は拡散器506によって形成され、次いで水タンク510に戻され、そこで、水素化水が生み出される(HRW-レギュラー)。ここで、ミキサー506は、静的ミキサーであり得る。当業者は、ミキサー506が当技術分野において使用される及び市販されている任意のミキサーであり得ることを認めるであろう。ナノバブル発生器504は、20~1000nm、好ましくは、平均サイズで水中に水素ナノバブルを発生させることができるデバイスである。タンク508からのHRW-ナノ及びタンク510からのHRW-レギュラーの両方とも、田畑での、大麻などの、作物又は植物のかんがいのために使用される。大麻収穫高及び大麻中の主要化合物CBDの濃度が、収穫時に測定された。この実施形態では、プログラマブル論理制御装置(PLC)512が、水素注入、水素ナノバブル発生、水-水素ガス混合物、給水、HRW-ナノ及びHRW-レギュラーの両方の排出等を含む全体プロセスを制御するために用いられる。
図5における破線は、システム操作のために必要とされる構成要素とPLC512との間の必要とされる接続を示す。給水は、それぞれ、タンク508及びタンク510に供給され、それはまた、PLC512(示されていない)によって制御される。ナノバブル発生器504及びミキサー又は拡散器506に供給される水は、それぞれ、タンク508及びタンク510から循環される水流514及び516である。HRWによってかんがいされる大麻とは異なった、タンク508から田畑上の大麻へと排出されるHRW-ナノを使用するかんがい及びタンク510から田畑上の大麻へと排出されるHRW-レギュラーを使用するかんがいはまた、PLC512(示されていない)によって制御される。本明細書で使用される給水には、フレッシュ地表水、水道水、地下水、流出水、かんがい要件(例えば、カリフォルニアは、2未満/100mLの大腸菌基準を満たすために先端的物理化学的処理及び長時間消毒を要求している)を満たすために三次処理プロセスによって既に処理された廃水等などの、一般的なかんがい用水及び/又は栄養媒体が含まれる。タンク508及びタンク510に供給される給水は、同じ水源からであっても、異なる水源からであってもよい。
【実施例】
【0063】
以下の非限定的な実施例は、本発明の実施形態を更に例示するために提供される。しかしながら、実施例は、全て包括的であることを意図しないし、且つ本明細書に記載される本発明の範囲を限定することを意図しない。
【0064】
3つのグループの大麻植物の比較を、異なるかんがい用水を使って田畑上で行った。3つのグループの大麻植物は、それぞれ、(i)本公文書においてHRW-ナノと特定される、水素ナノバブルありの本明細書で発生させられたHRW;(ii)本公文書においてHRW-レギュラーと特定される大気条件下で静的ミキサー又はベンチュリ注入などの、従来法によって製造されたHRW水;及び(iii)対照水、すなわち、溶解水素なしの水(本明細書では以下「対照」)でかんがいされる大麻植物である。
【0065】
各グループは、4列、各列当たり並びに植物間に48インチの植物間隔で及び60インチの列間隔で50植物からなった。実験は、合計で、12列及び600植物を含んだ。
【0066】
土壌サンプルを収穫前に全ての区画から集めて施肥が結果に影響を及ぼし得るかどうかを評価した。土壌サンプルを、アンモニウム、硝酸塩、リン、カリウム、カルシウム、ナトリウム、及び有機含有量に関して分析した。全ての区画が同じ特性を有することを確実にするために微調整を行った。
【0067】
田畑場所に関して、推奨は、かんがいが8時間/日流れる状態で1時間当たり、1大麻植物当たり0.7ガロンの水であった。大雨の期間中、土壌水分レベルを評価し、土壌が乾燥した後で大麻植物をかんがいした。
【0068】
点滴かんがいシステムを設置した。かんがいシステムを白色プラスチックマルチで覆って雑草成長を減少させた。
【0069】
大麻植物種子を温室中で播き、苗木が一連の本葉を成長させるまで(およそ3週間)栽培した。苗木を次いで田畑にハンド移植した。
【0070】
成長期中に、ランダムに選択される植物を評価のために選んだ。各条件(HRW-ナノ、HRW-レギュラー、及び対照)に関して、1条件当たり合計n=40の植物のために、(乱数発生器を利用して)10のランダムに選択される植物を1列当たり選択した。これを、処理による平均毎週高さ、処理による平均毎週クロロフィル含有量、本葉カウント、及び処理による平均つぼみカウントの評価のために行った。
【0071】
全植物高さは、インチ単位でヤード尺によって測定した。
【0072】
クロロフィルレベルは、SPAD-502型メーターを用いて測定した。測定ヘッドを葉上に固定することによって測定値を採取した。この手順は、植物中の窒素含有量を測定し、植物の健康を評価するのに役立った。成長段階の表示のために、植物が本葉、第2葉等を獲得する日数を測定した。
【0073】
成長段階分析は、植物が本葉、第2葉等を獲得する日数によって決定した。
【0074】
96日後に、植物を収穫し、引き続き、植物が完全に乾燥することを確実にするために植物を1日に3回反転させながら3日間温室中で乾燥させた。全植物質量を、各グループからのランダムに選択されたサンプルを乾燥させることによって測定し、全植物成長を比較した。各植物を較正済みスケールで秤量した。
【0075】
(つぼみ及び葉を含む)乾燥した花のマスを次いで集め、すり潰した。乾燥した、すり潰した花のマスを次いで、CBC測定のために認定研究所に送った。CBDは、方法Storm,C.et al.Dedicated Cannabinoid Potency Testing for Cannabis or Hemp Products Using the Agilent 1220 Infinity II LC System.Agilent Technologies Application Note,Publication number 5991-9285,2018に従って分析された。
【0076】
結果を、標準統計分析法を用いて評価した。一元配置分散分析(ANOVA)及びT検定を用いて異なる大麻かんがい選択肢:対照(普通のかんがい用水)、HRW-ナノ、及びHRW-レギュラーからのデータの差が有意であるかどうかを決定した。帰無仮設は、この確率が有意レベル(α=0.05)以下である場合、認められない。ANOVA検定は、処理選択肢の全ての3つ内に差があるかどうかを検定することを可能にする。T検定を用いて対照対HRW-レギュラー、対照対HRW-ナノ、及びHRW-ナノ対HRW-レギュラーの手段を比較した。
【0077】
実施例1:インチ単位での毎週平均高さ
表1及び
図6は、3つのグループについて高さパラメータに関する結果を示す。高さパラメータに関するANOVA検定の結果は、小さいエフェクトサイズ(η2_高さ=0.026)、p-値=1.08817E-07(α≦0.05)で統計的に有意であった。事後分析は、対照との両方の処理に関して統計的に有意な結果を証明した。T検定は、2つの処理内に統計的な有意性があることを示した。対照対ナノ:p=2.32E-08、対照対レギュラー:p=1.89E-05。HRW-ナノ対HRW-レギュラー間に有意な差があった:p=0.22。
【0078】
【0079】
実施例2:クロロフィル含有量(n=40)
表2及び
図7は、毎週平均クロロフィル含有量パラメータを示す(n=40)。表3は、処理による平均クロロフィルを示す(n=40)。クロロフィル含有量に関するANOVAの結果は、小さいエフェクトサイズ(η2=0.021)及びp-値=0.000462861(α≦0.05)で統計的に有意であった。事後分析は、対照との両方の処理に関して統計的に有意な結果を証明した。T検定は、2つの処理内に統計的な有意性があることを示した:対照対ナノ:p=0.0036及び対照対レギュラー:p=0.0002。しかしながら、HRW-ナノ対HRW-レギュラーは有意ではなかった:p=0.385。
【0080】
【0081】
【0082】
実施例3:本葉
表4及び
図8は、毎週平均本葉カウントを示す(n=40)。表5は、平均本葉である(n=40)。収穫の時点での本葉パラメータに関するANOVAの結果は、エフェクトサイズ(η2=0.3881)で、p-値=5.34E-8(α≦0.05)で統計的に有意であった。事後分析は、対照との両方の処理に関して統計的に有意な結果を証明した。T検定は、2つの処理内に統計的な有意性があることを示した:対照対ナノ:p=7.49E-15、対照対レギュラー:p=4.61E-11。HRW-ナノ対HRW-レギュラーに関するT検定は、統計的な有意性がないことを示した:p=0.396。
【0083】
【0084】
【0085】
実施例4:つぼみ
表6及び
図9は、処理による全体つぼみカウントパラメータを示す(n=40)。つぼみカウントパラメータに関するANOVAの結果は、p-値=0.0723(α>0.05)で統計的に有意ではなかった。事後分析は、対照との1つの処理に関して統計的に有意な結果を証明した。T検定は、2つの処理内に統計的な有意性がないことを示した:ナノ対レギュラー:p=0.173及び対照対レギュラー:p=0.33。統計的な有意性は、対照対ナノに関してであった:p=0.027。
【0086】
【0087】
実施例5:収穫高(重量)
表7及び
図10は、キログラム単位での処理による収穫高パラメータの全体の結果を示す(n=40)。収穫高パラメータに関するANOVAの結果は、統計的に有意であった、p=6.53E-22(α<0.05)。事後分析は、対照との両方の処理に関して統計的に有意な結果を証明した。T検定は、全てのグループ内に統計的な有意性があることを示した:対照対ナノ:p=1.50E-16、対照対レギュラー:p=4.79E-19、及びナノ対レギュラー:p=0.012。レギュラー及びナノHRWでかんがいされた植物は、対照よりも2倍大きいバイオマス収穫高を有した。注目すべきにも、HRW-ナノは、対照よりも依然としてはるかに多いけれども、HRW-レギュラーよりも低い収穫高を生み出した。HRW-ナノについてのこのわずかに劣る結果は、次に記載されるCBD含有量への予期されない影響と対比される。
【0088】
【0089】
実施例6:%CBD
表8及び
図11は、処理による%CBDパラメータを示す(n=40)。レギュラーHRW処理は、9.01で最低の%CBDを有した。対照処理は、9.20で最低の%CBDを有した。HRW-ナノ処理は、対照及びレギュラーHRWのそれらと比較しておよそ30%の増加である、最高のパーセント平均CBD、11.64を有した。したがって、HRW-ナノ処理で、%CBDは、およそ20%~40%増加し得る。その上、レギュラー処理は、9.01で最低のCBD百分率を有した。%CBDパラメータに関するANOVAの結果は、統計的に有意であった、p=1.25E-08(α<0.05)。事後分析は、対照との1つの処理に関して統計的に有意な結果を証明した。T検定は、2つの処理内に統計的な有意性があることを示した:HWR-ナノ対対照:p=2.51E-06及びHRW-ナノ対HRW-レギュラー:p=3.69E-06。対照対レギュラー間に統計的な有意性はなかった:p=0.18。CBD含有量へのこのHRW-ナノの特異的な影響は、HRW-レギュラーとの予期されない差であり、収穫高重量への影響を考えると更により意外である。
【0090】
【0091】
本明細書に記載される主題は、ユーザー対話型構成要素を有する計算アプリケーション用の1つ以上の計算アプリケーション機能/操作を処理するための例示的実装との関連で記載され得るけれども、主題は、これらの特定の実施形態に限定されない。むしろ、本明細書に記載される技法は、ユーザー対話型構成要素施工管理方法、システム、プラットフォーム、及び/又は装置の任意の好適なタイプに適用することができる。
【0092】
本発明の本質を説明するために本明細書に記載され、例示されてきた、詳細、材料、ステップ、及び部品の配置における多くの追加の変更が、添付の特許請求の範囲に表されるような本発明の原理及び範囲内で当業者によって行われ得ることが理解されるであろう。
したがって、本発明は、上で与えられた実施例及び/又は添付の図面における具体的な実施形態に限定されることを意図しない。
【0093】
本発明の実施形態が示され、記載されてきたが、その修正は、本発明の主旨又は教示から逸脱することなく当業者によって行われ得る。本明細書に記載された実施形態は、例示的であるにすぎず、限定的ではない。組成及び方法の多くの変形及び修正は、可能であり、本発明の範囲内である。したがって、保護の範囲は、本明細書に記載された実施形態に限定されず、その範囲がクレームの主題の全ての同等物を包含するものとする、次に来るクレームによって限定されるにすぎない。