(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-10-21
(45)【発行日】2024-10-29
(54)【発明の名称】車両および車両の充電方法
(51)【国際特許分類】
B60L 53/14 20190101AFI20241022BHJP
B60L 50/60 20190101ALI20241022BHJP
B60L 53/30 20190101ALI20241022BHJP
H02J 7/00 20060101ALI20241022BHJP
H02J 7/04 20060101ALI20241022BHJP
【FI】
B60L53/14
B60L50/60
B60L53/30
H02J7/00 P
H02J7/00 S
H02J7/04 H
(21)【出願番号】P 2023097617
(22)【出願日】2023-06-14
(62)【分割の表示】P 2022030837の分割
【原出願日】2018-04-06
【審査請求日】2023-06-14
(73)【特許権者】
【識別番号】000003207
【氏名又は名称】トヨタ自動車株式会社
(74)【代理人】
【識別番号】110001195
【氏名又は名称】弁理士法人深見特許事務所
(72)【発明者】
【氏名】塚本 翔太
【審査官】佐々木 淳
(56)【参考文献】
【文献】特開平07-007860(JP,A)
【文献】米国特許出願公開第2013/0267115(US,A1)
【文献】国際公開第2011/064856(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B60L 1/00-58/40
B60W 10/00-20/50
H02J 7/00ー 7/04
(57)【特許請求の範囲】
【請求項1】
車両外部の充電設備から充電ケーブルを介して供給される電力により車載の蓄電装置を充電するプラグイン充電が可能に構成された車両であって、
前記充電ケーブルのコネクタが挿入されるように構成されたインレットと、
前記充電設備からの供給電流を制御する制御装置とを備え、
前記制御装置は、前記コネクタおよび前記インレットを冷却する冷却機構が前記充電設備に設けられている場合には、前記冷却機構が前記充電設備に設けられていない場合と比べて、前記供給電流を大きくする、車両。
【請求項2】
前記制御装置は、前記冷却機構が前記充電設備に設けられている否かに関する情報を取得し、取得された情報に基づいて前記供給電流を大きくする、請求項1に記載の車両。
【請求項3】
前記制御装置は、前記冷却機構が前記充電設備に設けられている場合には、前記冷却機構が前記充電設備に設けられていない場合と比べて、前記供給電流の最大値を大きくする、請求項2に記載の車両。
【請求項4】
前記制御装置は、
前記充電設備の位置情報に基づいて、前記冷却機構が前記充電設備に設けられている否かを判定し、
前記充電設備の位置情報からは前記冷却機構が前記充電設備に設けられている否かを判定できない場合には、前記充電設備の位置情報をサーバに送信することによって、前記冷却機構が前記充電設備に設けられている否かを示す情報を前記サーバから取得する、請求項1~3のいずれか1項に記載の車両。
【請求項5】
車両外部の充電設備から充電ケーブルを介して供給される電力により車載の蓄電装置のプラグイン充電を行なう、車両の充電方法であって、
前記車両は、前記充電ケーブルのコネクタが挿入されるように構成されたインレットを備え、
前記車両の充電方法は、前記コネクタおよび前記インレットを冷却する冷却機構が前記充電設備に設けられている場合には、前記冷却機構が前記充電設備に設けられていない場合と比べて、前記充電設備から前記車両への供給電流を前記車両による制御によって大きくするステップを含む、車両の充電方法。
【請求項6】
前記供給電流を大きくするステップは、前記冷却機構が前記充電設備に設けられている否かに関する情報を前記車両が取得し、取得された情報に基づいて前記車両が前記供給電流を大きくするステップを含む、請求項
5に記載の車両の充電方法。
【請求項7】
前記供給電流を大きくするステップは、前記冷却機構が前記充電設備に設けられている場合には、前記冷却機構が前記充電設備に設けられていない場合と比べて、前記供給電流の最大値を大きくするステップを含む、請求項
6に記載の車両の充電方法。
【請求項8】
前記充電設備の位置情報に基づいて、前記冷却機構が前記充電設備に設けられている否かを前記車両が判定するステップと、
前記充電設備の位置情報からは前記冷却機構が前記充電設備に設けられている否かを判定できない場合に、前記充電設備の位置情報を前記車両からサーバに送信することによって、前記冷却機構が前記充電設備に設けられている否かを示す情報を前記車両が前記サーバから取得するステップとを含む、請求項5~7のいずれか1項に記載の車両の充電方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、車両および車両の充電方法に関し、より特定的には、車両外部の充電設備から充電ケーブルを介して供給される電力により、車載の蓄電装置を充電するための技術に関する。
【背景技術】
【0002】
近年、車両外部の充電設備(充電スタンドなど)から充電ケーブルを介して供給される電力により車載の蓄電装置を充電する「プラグイン充電」が可能に構成された電動車両の開発が進められている。プラグイン充電では、一般に、充電設備、充電ケーブル、および、車両の充電インレットにおいて熱損失が発生する。そのため、これらの構成要素を過度の温度上昇から保護するための技術が提案されている。
【0003】
たとえば特開2015-233366号公報(特許文献1)に開示された車両の電源装置は、車両外部の充電設備(特許文献1では電源供給装置)または充電ケーブルの温度が耐熱温度を超えるおそれがあるか否かを示す情報を車両外部から受信する。そして、電源装置は、電源供給装置または充電ケーブルの温度が耐熱温度を超えるおそれがある場合には、車載の充電器の充電電力を制限する。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
プラグイン充電においては、充電ケーブルの先端に設けられたコネクタと車両側のインレットとの接触部分(以下、「接触部分」と略す)において熱損失(ジュール熱)が生じ、接触部分の温度が過度に上昇することが特に懸念される。その一方で、ユーザの利便性向上のため、充電時間を短縮することも望まれている。充電時間の短縮は、充電電力の大電力化により実現される。しかし、充電電力(より詳細には充電設備からの供給電流)を大きくすると、その分だけ接触部分における熱損失も増大するため、接触部分の過熱が一層懸念されることとなる。したがって、充電ケーブルおよびインレットを適切に保護しつつ、できるだけ充電時間を短縮することが求められる。
【0006】
このような観点から、充電設備と充電ケーブルとが一体的に構成されている場合に、充電設備および充電ケーブル(以下、包括的に「充電設備」とも記載する)に冷却機構を設けることが考えられる。より詳細には、充電設備と充電ケーブルのコネクタとの間を冷却液が循環する冷却機構(いわゆる水冷式の冷却機構)により充電ケーブルのコネクタおよびインレットを冷却することができる。その結果、接触部分の過熱を抑制し、充電ケーブルおよびインレットを適切に保護することが可能になる。
【0007】
このように冷却機構を設置した場合に以下のような課題が生じ得る点に本発明者は着目した。すなわち、市場には、冷却機構が設けられた充電設備と、冷却機構が設けられていない充電設備とが混在することとなる。仮に、充電設備に冷却機構が設けられているか否かに拘らず蓄電装置の充電態様を一律とした場合、冷却機構が設けられていない充電設備を基準に充電態様を定めると、冷却機構が設けられた充電設備による充電電力が相対的に小さくなり、充電時間を十分に短縮することができない可能性がある。一方、冷却機構が設けられた充電設備を基準に充電態様を定めると、冷却機構が設けられていない充電設備の充電電力が過度に大きくなり、充電設備を十分に保護できない可能性がある。よって、充電設備に冷却機構が設けられているか否かに応じて、蓄電装置の充電態様を変化させることが望ましい。
【0008】
本開示は上記課題を解決するためになされたものであって、その目的は、プラグイン充電において、充電ケーブルおよびインレットを適切に保護しつつ、できるだけ充電時間を短縮することである。
【課題を解決するための手段】
【0009】
(1)本開示のある局面に従う車両は、車両外部の充電設備から充電ケーブルを介して供給される電力により車載の蓄電装置を充電するプラグイン充電が可能に構成される。車両は、充電ケーブルのコネクタが挿入されるように構成されたインレットと、充電設備からの供給電流が最大許容電流を上回らないように供給電流を制御する制御装置とを備える。制御装置は、コネクタおよびインレットを冷却するための冷却機構が充電設備に設けられているか否かに関連する情報(以下、「関連情報」とも記載する)を取得する。制御装置は、冷却機構が充電設備に設けられている場合には、冷却機構が充電設備に設けられていない場合と比べて、コネクタおよびインレットが許容できる電流の最大値である最大許容電流を大きくする。
【0010】
(2)好ましくは、関連情報は、充電設備を特定するための情報と、特定された充電設備に冷却機構が設けられているか否かを示す情報とが対応付けられた情報である。
【0011】
上記(1),(2)の構成によれば、冷却機構が充電設備に設けられている場合には、冷却機構が充電設備に設けられていない場合と比べて、最大許容電流が大きく設定される。これにより、冷却機構が設けられており充電設備では、比較的大きな最大許容電流を設定して充電時間を短縮することができる。一方、充電スタンドに冷却機構が設けられていない充電設備では、最大許容電流を比較的小さな値に制限することで、充電ケーブルおよびインレットを確実に保護することができる。したがって、充電ケーブルおよびインレットを適切に保護しつつ、できるだけ充電時間を短縮することができる。
【0012】
(3)好ましくは、車両は、関連情報が格納されたメモリをさらに備える。制御装置は、メモリを参照することによって関連情報を取得する。
【0013】
上記(3)の構成によれば、メモリを参照することによって関連情報を取得することができるので、たとえば、関連情報を取得するための車両外部との通信を不要とすることができる。
【0014】
(4)好ましくは、車両は、他の車両および車両の外部に設けられたサーバのうちの少なくとも一方との通信が可能に構成された通信装置をさらに備える。制御装置は、通信装置を用いた通信により関連情報を取得する。
【0015】
上記(4)の構成によれば、メモリに格納された関連情報に充電設備の情報が含まれていなくとも、外部の他の車両またはサーバから関連情報を取得することができる。
【0016】
(5)好ましくは、車両は、車両の位置情報を取得するように構成された位置情報取得装置をさらに備える。制御装置は、車両と充電設備とが充電ケーブルにより接続された状態における車両の位置情報を取得することによって、充電設備を特定する。
【0017】
(6)好ましくは、制御装置は、充電ケーブルを介した充電設備との通信により充電設備の識別情報および充電設備の機種を示す情報のうちの少なくとも一方を取得することによって、充電設備を特定する。
【0018】
上記(5)の構成によれば、車両と充電設備とが充電ケーブルにより接続された状態では、車両の位置と充電設備の位置情報とがほぼ等しいので、車両の位置情報により充電設備を特定することができる。あるいは、上記(6)の構成のように、充電設備の識別情報および充電設備の機種を示す情報のうちの少なくとも一方により充電設備を特定することも可能である。
【0019】
(7)本開示のある局面に従う車両の充電方法は、車両外部の充電設備から充電ケーブルを介して供給される電力により車載の蓄電装置のプラグイン充電を行なう。車両は、充電ケーブルのコネクタが挿入されるように構成されたインレットを備える。車両の充電方法は、第1~第3のステップを含む。第1のステップは、コネクタおよびインレットを冷却する冷却機構が充電設備に設けられているか否かに関連する情報(関連情報)を取得するステップである。第2のステップは、関連情報に基づいて充電設備に冷却機構が設けられているか否かを判定するステップである。第3のステップは、充電設備に冷却機構が設けられている場合には、充電設備に冷却機構が設けられていない場合と比べて、コネクタおよびインレットが許容できる電流の最大値を大きく設定するステップである。
【0020】
上記(7)の方法によれば、上記(1)の構成と同様に、充電ケーブルおよびインレットを適切に保護しつつ、できるだけ充電時間を短縮することができる。
【発明の効果】
【0021】
本開示によれば、プラグイン充電において、充電ケーブルおよびインレットを適切に保護しつつ、できるだけ充電時間を短縮することができる。
【図面の簡単な説明】
【0022】
【
図1】本開示の実施の形態1に係る充電システムの全体構成を概略的に示す図である。
【
図2】実施の形態1に係る車両、充電スタンドおよび充電ケーブルの構成を概略的に示すブロック図である。
【
図3】実施の形態1におけるプラグイン充電制御を示すフローチャートである。
【
図4】実施の形態1における充電テーブルの一例を示す図である。
【
図5】サーバの充電器情報データベースに格納された充電器情報の一例を示す図である。
【
図7】実施の形態2におけるプラグイン充電制御を示すフローチャートである。
【
図8】実施の形態2における充電テーブルの一例を示す図である。
【発明を実施するための形態】
【0023】
以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
【0024】
[実施の形態1]
<充電システムの全体構成>
図1は、本開示の実施の形態1に係る充電システムの全体構成を概略的に示す図である。
図1を参照して、充電システム10は、車両1と、充電スタンド2と、充電ケーブル3と、サーバ9とを備える。
【0025】
車両1と充電スタンド2とは、充電ケーブル3により電気的に接続可能に構成されている。車両1は、あるユーザ(図示せず)の車両であり、たとえばプラグインハイブリッド車である。ただし、車両1は、プラグイン充電が可能に構成されていればよく、電気自動車であってもよい。
【0026】
図1には、充電スタンド2によるプラグイン充電が車両1に対して実施される状況が図示されている。充電スタンド2は、たとえば公共の充電スタンド(あるいは充電ステーション)である。そのため、充電スタンド2によるプラグイン充電は、車両1以外の車両(図示せず)に対して実施される場合もある。また、車両1に対するプラグイン充電は、
図1に示した充電スタンド2以外の充電スタンド(図示せず)により実施される場合もある。
【0027】
車両1とサーバ9とは、互いに無線通信(双方向通信)が可能に構成されている。図示しないが、他の車両(図示せず)とサーバ9との間の無線通信も可能である。
【0028】
サーバ9は、いずれも図示しないが、CPU(Central Processing Unit)と、メモリと、入出力ポートとを含む。サーバ9の一部または全部は、ソフトウェアにより演算処理を実行するように構成されてもよいし、電子回路等のハードウェアにより演算処理を実行するように構成されてもよい。サーバ9は、
図1に示す充電スタンド2を含む多数の充電スタンドに関する情報(充電器情報INFO)が格納された充電器情報データベース91を含む。充電器情報INFOの詳細については後述する(
図5参照)。
【0029】
図2は、実施の形態1に係る車両1、充電スタンド2および充電ケーブル3の構成を概略的に示すブロック図である。
図2を参照して、充電スタンド2は、たとえば直流(DC:Direct Current)充電用の充電器であって、系統電源500からの交流電力を、車両1に搭載されたバッテリ150を充電するための直流電力に変換して供給する。充電スタンド2は、電力線ACLと、AC/DC変換器210と、電圧センサ220と、給電線PL0,NL0と、冷却機構230と、制御回路200とを含む。冷却機構230は、流通経路231と、ウォーターポンプ232と、熱交換器233とを含む。
【0030】
電力線ACLは、系統電源500に電気的に接続されている。電力線ACLは、系統電源500からの交流電力をAC/DC変換器210へ伝達する。
【0031】
AC/DC変換器210は、電力線ACL上の交流電力を、車両1に搭載されたバッテリ150を充電するための直流電力に変換する。AC/DC変換器210による電力変換は、力率改善のためのAC/DC変換と、電圧レベル調整のためのDC/DC変換との組み合わせによって実行されてもよい。AC/DC変換器210から出力された直流電力は、正極側の給電線PL0および負極側の給電線NL0によって供給される。
【0032】
電圧センサ220は、給電線PL0,NL0の間に設けられている。電圧センサ220は、給電線PL0,NL0間の電圧を検出し、その検出結果を制御回路200に出力する。
【0033】
ウォーターポンプ232は、制御回路200からの指令に従って、熱交換器233と、充電ケーブル3のコネクタ310との間を循環するように、流通経路231内に封入された冷却液(冷却水)を流通させる。これにより、コネクタ310とインレット110との接触部分(端子同士が接触する領域)を冷却することができる。
【0034】
熱交換器233は、たとえば伝熱管および放熱フィン(図示せず)を含んで構成されている。熱交換器233において、流通経路内231内の冷却液の熱が周囲の外気に放熱される。
【0035】
なお、冷却機構230の構成は、上記の水冷式の構成に限定されるものではなく、たとえば空冷式であってもよい。あるいは、冷却機構として、ヒートポンプシステムを採用してもよいし、ペルチェ素子を含む熱電冷却システムを採用してもよい。
【0036】
制御回路200は、CPUと、メモリと、入出力ポート(いずれも図示せず)とを含んで構成されている。制御回路200は、電圧センサ220により検出された電圧、各種スイッチ、車両1からの信号、ならびに、メモリに記憶されたマップおよびプログラムに基づいて、AC/DC変換器210による電力変換動作を制御する。また、制御回路200は、各種信号ならびにメモリに記憶されたプログラムに基づいてウォーターポンプ232による冷却動作を制御する。
【0037】
さらに、充電ケーブル3のコネクタ310には、コネクタ310の温度T2を検出する温度センサ319が設けられている。制御回路200は、温度センサ319から温度T2を示す信号を受けることで、コネクタ310における異常(より具体的には、コネクタ310とインレット110との接触部分の過熱)の有無を診断することが可能である。
【0038】
車両1は、インレット110と、充電線PL1,NL1と、電圧センサ121と、電流センサ122と、車両コンタクタ131,132と、システムメインリレー141,142と、バッテリ150と、電力線PL2,NL2と、PCU(Power Control Unit)160と、エンジン170と、モータジェネレータ171,172と、動力分割装置173と、駆動輪174と、通信モジュール180と、ECU(Electronic Control Unit)100とを備える。
【0039】
インレット(充電ポートとも称される)110は、充電ケーブル3のコネクタ310が電気的に接続可能に構成されている。より詳細には、コネクタ310が嵌合等の機械的な連結を伴ってインレット110に挿入されることにより、給電線PL0とインレット110の正極側の接点との間の電気的な接続が確保されるとともに、給電線NL0とインレット110の負極側の接点との間の電気的な接続が確保される。また、インレット110とコネクタ310とが充電ケーブルにより接続されることで、車両1のECU100と充電スタンド2の制御回路200とがCAN(Controller Area Network)等の所定の通信規格に従う通信またはアナログ制御線を介したアナログ信号による通信により、各種信号、指令および情報(データ)を相互に送受信することが可能になる。
【0040】
また、インレット110には、充電ケーブル3のコネクタ310と同様に、インレット110の温度T1を検出するための温度センサ119が設けられている。ECU100は、温度センサ119から温度T1を示す信号を受けることで、インレット110における過熱等の異常の有無を診断することが可能である。
【0041】
電圧センサ121は、車両コンタクタ131,132よりもインレット110側において、充電線PL1と充電線NL1との間に設けられている。電圧センサ121は、充電線PL1,NL1間の直流電圧を検出し、その検出結果をECU100に出力する。電流センサ122は、充電線PL1に設けられている。電流センサ122は、充電線PL1を流れる電流を検出し、その検出結果をECU100に出力する。ECU100は、電圧センサ121および電流センサ122による検出結果に基づき、充電スタンド2からの供給電力を算出することができる。
【0042】
車両コンタクタ131は充電線PL1に接続され、車両コンタクタ132は充電線NL1に接続されている。車両コンタクタ131,132の閉成/開放は、ECU100からの指令に応じて制御される。車両コンタクタ131,132が閉成され、かつシステムメインリレー141,142が閉成されると、インレット110とバッテリ150との間での電力伝送が可能な状態となる。
【0043】
バッテリ150は、車両1の駆動力を発生させるための電力を供給する。また、バッテリ150は、モータジェネレータ171,172で発電された電力を蓄電する。バッテリ150は、複数のセル(図示せず)を含んで構成された組電池であり、各セルはリチウムイオン二次電池もしくはニッケル水素二次電池等の二次電池である。本実施の形態では組電池の内部構成は特に限定されないので、以下ではセルについては特に言及せず、単にバッテリ150と記載する。なお、バッテリ150は、電気二重層キャパシタなどのキャパシタであってもよい。バッテリ150は、本開示に係る「蓄電装置」に相当する。
【0044】
バッテリ150の正極は、システムメインリレー141を経由してノードND1に電気的に接続されている。ノードND1は、充電線PL1および電力線PL2に電気的に接続されている。同様に、バッテリ150の負極は、システムメインリレー142を経由してノードND2に電気的に接続されている。ノードND2は、充電線NL1および電力線NL2に電気的に接続されている。システムメインリレー141,142の閉成/開放は、ECU100からの指令に応じて制御される。
【0045】
バッテリ150には、電圧センサ151と、電流センサ152と、温度センサ153とが設けられている。電圧センサ151は、バッテリ150の電圧VBを検出する。電流センサ152は、バッテリ150に入出力される電流IBを検出する。温度センサ153は、バッテリ150の温度TBを検出する。各センサは、その検出結果をECU100に出力する。ECU100は、各センサによる検出結果に基づいて、たとえばバッテリ150のSOC(State Of Charge)を推定することができる。
【0046】
PCU160は、電力線PL2,NL2とモータジェネレータ171,172との間に電気的に接続されている。PCU160は、図示しないコンバータおよびインバータを含んで構成され、システムメインリレー141,142の閉成時にバッテリ150とモータジェネレータ171,172との間で双方向の電力変換を実行する。
【0047】
エンジン170は、ガソリンエンジン等の内燃機関であり、ECU300からの制御信号に応じて車両1が走行するための駆動力を発生する。
【0048】
モータジェネレータ171,172の各々は、たとえば三相交流回転電機である。モータジェネレータ171は、動力分割装置173を介してエンジン170のクランク軸に連結される。モータジェネレータ171は、エンジン170を始動させる際にはバッテリ150の電力を用いてエンジン170のクランク軸を回転させる。また、モータジェネレータ171はエンジン170の動力を用いて発電することも可能である。モータジェネレータ171によって発電された交流電力は、PCU160により直流電力に変換されてバッテリ150に充電される。また、モータジェネレータ171によって発電された交流電力は、モータジェネレータ172に供給される場合もある。
【0049】
モータジェネレータ172は、バッテリ150からの電力およびモータジェネレータ171により発電された電力のうちの少なくとも一方を用いて駆動軸を回転させる。また、モータジェネレータ172は回生制動によって発電することも可能である。モータジェネレータ172によって発電された交流電力は、PCU160により直流電力に変換されてバッテリ150に充電される。
【0050】
動力分割装置173は、たとえば遊星歯車機構であり、エンジン170のクランク軸、モータジェネレータ171の回転軸、および駆動軸の三要素を機械的に連結する。
【0051】
通信モジュール180は、サーバ9との無線通信が可能に構成されたDCM(Digital Communication Module)である。通信モジュール180は、本開示に係る「通信装置」に相当する。
【0052】
ナビゲーション装置190は、人工衛星(図示せず)からの電波に基づいて車両1の位置を特定する全地球測位システム(GPS:Global Positioning System)受信機191を含む。ナビゲーション装置190は、GPS受信機191により特定された車両1の位置情報(GPS情報)を用いて車両1の各種ナビゲーション処理を実行する。より具体的には、ナビゲーション装置190は、車両1のGPS情報とメモリ(図示せず)に格納された道路地図データとに基づいて、車両1の現在地から目的地までの推奨ルート算出し、算出された推奨ルートの情報をECU100に出力する。
【0053】
ECU100は、制御回路200と同様に、CPU101と、ROM(Read Only Memory)およびRAM(Random Access Memory)などのメモリ102と、入出力ポート(図示せず)とを含んで構成されている。ECU100は、各センサ等からの信号に応じて、車両1が所望の状態となるように機器類を制御する。
【0054】
ECU100により実行される主要な制御として、充電スタンド2から供給される電力により車載のバッテリ150を充電するプラグイン充電制御が挙げられる。プラグイン充電制御は、車両1のECU100と充電スタンド2の制御回路200との間で充電ケーブル3を介して相互に信号、指令および情報を送受信することにより進められる。プラグイン充電制御では、充電スタンド2から充電ケーブル3を介して車両1に供給される電流が、当該電流の最大許容値である「最大許容電流」を上回らないように、AC/DC変換器210による電力変換動作が制御される。
【0055】
また、ECU100のメモリ102には、プラグイン充電制御に用いられる充電テーブルTBL1が格納されている。充電テーブルTBL1については後に説明する(
図4参照)。
【0056】
<充電機器の保護と充電時間の短縮>
プラグイン充電においては、ユーザの利便性向上のため、充電時間を短縮することが望まれている。充電時間の短縮は、充電スタンドから供給される充電電力を大電力化することで実現される。しかし、プラグイン充電中には、充電ケーブルのコネクタと車両側のインレットとの接触部分(コネクタ端子とインレット端子との接点)において、接触部分の抵抗値に電流値の2乗を乗算した大きさのジュール熱が熱損失として生じる。そのため、充電電力の大電力化を実現すべく、充電スタンドからの供給電流を増加させると、その分だけ熱損失も増大し、接触部分の過熱が一層懸念されることとなる。したがって、充電ケーブルのコネクタおよびインレットを適切に保護しつつ、できるだけ充電時間を短縮することが求められる。
【0057】
市場には、
図2に示すように冷却機構230(流通経路231、ウォーターポンプ232および熱交換器233)が設けられた充電スタンドが存在する一方で、冷却機構230が設けられていない充電スタンド(図示せず)も存在する。このように、様々な充電スタンドが混在する市場環境下において、仮に、冷却機構230が充電スタンドに設けられているか否かに拘らずバッテリ150の充電態様を一律とした場合、冷却機構230が設けられていない充電スタンドを基準に充電態様を定めると、冷却機構230が設けられた充電スタンドによる充電電力が相対的に小さくなり、充電時間を十分に短縮することができない可能性がある。一方、冷却機構230が設けられた充電スタンドを基準に充電態様を定めると、冷却機構230が設けられていない充電スタンドの充電電力が過度に大きくなり、充電ケーブルのコネクタおよびインレットを十分に保護できない可能性がある。
【0058】
そこで、本実施の形態においては、充電スタンドに冷却機構230が設けられているか否かに応じてバッテリ150の充電態様を変化させる。より具体的には、冷却機構230が充電スタンドに設けられている場合には、冷却機構230が充電スタンドに設けられていない場合と比べて、最大許容電流(後述する最大許容電流I,J)を大きく設定する。これにより、冷却機構230が設けられており冷却性能が高い充電スタンドでは、比較的大きな最大許容電流を設定して充電時間を短縮することができる。一方、充電スタンドに冷却機構230が設けられておらず冷却性能が相対的に低い充電スタンドでは、最大許容電流を比較的小さな値に制限することで、充電ケーブルおよびインレットを確実に保護することができる。以下、実施の形態1におけるプラグイン充電制御について詳細に説明する。
【0059】
<プラグイン充電フロー>
図3は、実施の形態1におけるプラグイン充電制御を示すフローチャートである。
図3および後述する
図7に示すフローチャートは、充電ケーブル3のコネクタ310がインレット110に挿入された場合に実行される。
図4に示すフローチャートに含まれる各ステップ(以下「S」と略す)は、基本的にはECU100によるソフトウェア処理によって実現されるが、ECU100内に作製された専用のハードウェア(電気回路)によって実現されてもよい。
【0060】
図3を参照して、S110において、ECU100は、温度センサ153からバッテリ150の温度TBを取得するとともに、バッテリ150のSOCを推定する。SOCの推定手法としては、予め取得されたSOC-OCV(Open Circuit Voltage)カーブを参照する手法または電流積算法など、各種公知の手法を採用することができる。
【0061】
S120において、ECU100は、ナビゲーション装置190により車両1のGPS情報を取得する。なお、車両1と充電スタンド(
図2に示す例では充電スタンド2)とは充電ケーブル3により互いに接続された状態で隣接しているため、車両1の位置と充電スタンドの位置とは、ほぼ等しいとみなすことができる。
【0062】
S130において、ECU100は、メモリ102に格納された充電テーブルTBL1を参照することによって、充電スタンドの位置情報(=車両1のGPS情報)が充電テーブルTBL1に含まれているか否かを判定する。
【0063】
図4は、実施の形態1における充電テーブルTBL1の一例を示す図である。
図4に示すように、充電テーブルTBL1では、過去に車両1のプラグイン充電が行なわれた様々な充電スタンドの設置場所に関する位置情報と、その充電スタンドが冷却機構230を有していたか否かに関する情報とが対応付けられている。そのため、充電テーブルTBL1を参照することによって、充電ケーブルを介して車両1に接続された充電スタンド(以下、「対象充電スタンド」とも記載する)の位置情報から当該対象充電スタンドにおける冷却機構230の有無を判定することができる。なお、充電テーブルTBL1は、本開示に係る「関連する情報」に相当する。
【0064】
図3に戻り、対象充電スタンドの位置情報が充電テーブルTBL1に含まれている場合(S130においてYES)、ECU100は、処理をS140に進める。これに対し、対象充電スタンドの位置情報が充電テーブルTBL1に含まれていない場合(S130においてNO)には、ECU100は、対象充電スタンドの位置情報をサーバ9に送信することによって、対象充電スタンドが冷却機構230を含んでいるか否かに関する情報をサーバ9から取得する(S135)。
【0065】
図5は、サーバ9の充電器情報データベース91に格納された充電器情報INFOの一例を示す図である。
図5を参照して、充電器情報INFOにおいては、たとえば、充電スタンドの識別情報である充電器IDと、その充電スタンドの設置場所に関する情報(位置情報)と、その充電スタンドが対応している充電規格に関する情報と、その充電スタンドの充電料金に関する情報と、その充電スタンドが冷却機構230を有しているか否かに関する情報とが対応付けられている。サーバ9は、車両1のECU100からの問い合わせとともに対象充電スタンドの位置情報を受けると、充電器情報INFOを参照することによって、対象充電スタンドが冷却機構230を有しているか否かをECU100に回答する。
【0066】
図3を再び参照して、S140において、ECU100は、対象充電スタンドが冷却機構230を有している否かを判定する。より具体的には、S130にてYES判定の場合には、ECU100は、充電テーブルTBL1を参照し、対象充電スタンドでの過去の充電履歴に基づき、対象充電スタンドが冷却機構230を有している否かを判定する。一方、S130にてNO判定の場合には、ECU100は、サーバ9からの回答に基づき、対象充電スタンドが冷却機構230を有している否かを判定する。
【0067】
対象充電スタンドが冷却機構230を有している場合(S140においてYES)、ECU100は、後述するマップMP1を参照することによって、バッテリ150の最大許容電流Iを算出する(S150)。これに対し、対象充電スタンドが冷却機構230を有していない場合(S140においてNO)、ECU100は、マップMP2を参照することによって、バッテリ150の最大許容電流Jを算出する(S155)。
【0068】
なお、サーバ9の充電器情報INFOが全ての充電ステーションに関する情報を網羅しているとは必ずしも限らないため、対象充電ステーションに関する情報が充電器情報INFOに含まれていない可能性もある。このような場合には、サーバ9からECU100に対して、対象充電ステーションに関する情報がない旨の回答が送られる。そうすると、ECU100は、インレット110等の保護を重視し、対象充電スタンドは冷却機構230を有していないものとして処理をS155に進め、マップMP2を参照する。
【0069】
図6は、マップMP1,MP2の一例を示す図である。
図6に示すように、マップMP1は、たとえば、バッテリ150の温度TB、バッテリ150のSOCおよび最大許容電流Iの3つのパラメータを含む3次元マップである。より具体的に説明すると、バッテリ150の温度TBは、各々が所定幅の複数の温度領域(T1,T2,・・・で示す)に区分されている。バッテリ150のSOCについても同様に、各々が所定幅の複数のSOC領域(S1,S2,・・・で示す)に区分されている。最大許容電流Iは、区分された温度領域とSOC領域との組合せ毎に定められている。
図6では、温度領域TmとSOC領域Snとの組合せに対応する最大許容電流I(m,n)が示されている。詳細な説明は繰り返さないが、マップMP2においてもマップMP1と同様に、温度領域とSOC領域との組合せ毎に最大許容電流Jが定められている。
【0070】
同一の温度条件およびSOC条件(同一の温度領域TmとSOC領域Snとの組合せ)で比較した場合に、マップMP1における最大許容電流I(m,n)の絶対値は、マップMP2における最大許容電流J(m,n)の絶対値よりも大きい(|I(m,n)|>|J(m,n)|)。
【0071】
なお、各マップMP1,MP2にバッテリ150の温度TBおよびSOCが含まれているのは、典型的な二次電池と同様に、バッテリ150の充電能力(バッテリ150が受け入れ可能な電流量)が温度依存性およびSOC依存性を有するためである。ただし、マップMP1,MP2が温度TBおよびSOCを含む3次元マップであることは必須ではなく、マップMP1,MP2は、温度TBおよびSOCのうちのどちらか一方と最大許容電流とを含む2次元マップであってもよい。あるいは、バッテリ150の充電能力を特に考慮せず、マップMP1,MP2に代えて、最大許容電流の予め定められた値のみをメモリ102に格納させておいてもよい。
【0072】
図3に戻り、その後、ECU100は、バッテリ150のプラグイン充電を開始するように充電スタンド2を制御する(S160)。詳細には、ECU100は、充電ケーブル3を介してプラグイン充電の開始指令を対象充電スタンドの制御回路200に送信することで、電力供給を開始するように制御回路200にAC/DC変換器210を制御させる。
【0073】
ECU100は、プラグイン充電の完了条件が成立するまで電力供給を続けさせ(S170においてNO)、プラグイン充電の完了条件が成立すると(S170においてYES)、電力供給を停止させる(S180)。なお、プラグイン充電の完了条件の成立とは、バッテリ150のSOCが規定値に達し、バッテリ150が満充電状態に至ったことでもよいし、いわゆるタイマー充電において所定の充電終了時刻が到来したことでもよい。
【0074】
ECU100は、たとえば電力供給の停止後に、充電テーブルTBL1を更新する(S190)。詳細には、ECU100は、サーバ9からの回答に基づき対象充電スタンドの冷却機構230の有無を判定した場合(S135)には、当該充電スタンドの情報を充電テーブルTBL1に追加する。図示しないが、対象充電スタンドの情報が充電テーブルTBL1に既に含まれていた場合(S130においてYES判定の場合)には、S190の処理はスキップされる。なお、S190の処理の実行タイミングは特に限定されず、S140の処理以降の任意のタイミングでよい。
【0075】
以上のように、実施の形態1によれば、冷却機構230が対象充電スタンドに設けられている場合には、最大許容電流Iが設定される(S150)。これに対し、冷却機構230が対象充電スタンドに設けられていない場合には、最大許容電流Jが設定される(S155)。同一の温度条件および同一のSOC条件下では、最大許容電流I(の絶対値)の方が最大許容電流J(の絶対値)よりも大きい。これにより、冷却機構230が設けられている充電スタンド(
図2参照)では、相対的に大きな最大許容電流Iが設定されるので、充電時間を短縮することができる。一方、冷却機構230が設けられていない充電スタンド(図示せず)では、相対的に小さな最大許容電流Jを設定して供給電流を制限することで、充電ケーブル3のコネクタ310と車両1のインレット110との接続部分における熱損失が小さくなり、より確実に当該接続部分を保護することができる。したがって、実施の形態1によれば、充電時間の短縮と、充電ケーブル3および車両1の保護とに関し、対象充電スタンドにおける冷却機構230の有無に応じて適切な対応を取ることができる。
【0076】
なお、
図3に示したフローチャートでは、S135の処理にて対象充電スタンドの冷却機構230の有無をサーバ9に問い合わせると説明したが、この問合せを車両1の周囲の車両(図示せず)に対して、いわゆる車車間通信により行なってもよい。たとえば、対象充電スタンドでのプラグイン充電を済ませた他の車両から上記問合せに対する回答を取得することができる。
【0077】
[実施の形態2]
実施の形態1では、車両1のGPS情報を用いて対象充電スタンドの位置を特定し、充電スタンドの位置情報に基づいて最大許容電流を切り替える構成を例に説明した。しかし、対象充電スタンドの特定に対象充電スタンドの位置情報を用いることは必須ではない。実施の形態2においては、車両1と対象充電スタンドとの通信により最大許容電流を設定する構成について説明する。実施の形態2では、充電テーブルTBL1とは異なる充電テーブルTBL2がECU100のメモリ102に格納されている。実施の形態2における対象充電スタンドおよび車両の上記以外の構成は、
図2に示した構成と基本的に同等であるため、説明は繰り返さない。
【0078】
図7は、実施の形態2におけるプラグイン充電制御を示すフローチャートである。
図7を参照して、このフローチャートは、S120~S135の処理に代えてS220~S235の処理を含む点において、実施の形態1におけるフローチャート(
図3参照)と異なる。
【0079】
図7を参照して、ECU100は、温度センサ153からバッテリ150の温度TBを取得するとともにバッテリ150のSOCを推定する(S210)。その後、ECU100は、対象充電スタンドとの充電ケーブル3を介した通信により、対象充電スタンドの充電器IDを取得する(S220)。そして、ECU100は、対象充電スタンドの充電器IDが充電テーブルTBL2に含まれているか否かを判定する(S230)。
【0080】
図8は、実施の形態2における充電テーブルTBL2の一例を示す図である。
図8に示すように、充電テーブルTBL2は、車両1のプラグイン充電に使用されたことがある様々な充電スタンドについて、充電器IDと、その充電スタンドの機種と、冷却機構230の有無とに関する情報を含む。そのため、ECU100は、充電器IDから冷却機構230の有無を判定することができる。
【0081】
なお、冷却機構230が設けられているか否かは、充電スタンドの機種(型番)によって定まる。そのため、ECU100は、対象充電スタンドの充電器IDに代えて、または加えて、対象充電スタンドの機種に関する情報を通信により取得し、取得した情報から冷却機構230の有無を判定してもよい。
【0082】
図7を再び参照して、S230において、ECU100は、メモリ102に格納された充電テーブルTBL2を参照し、充電器ID(または対象充電スタンドの機種)に関する情報が充電テーブルTBL2に含まれているか否かを判定する。
【0083】
対象充電スタンドの充電器IDに関する情報が充電テーブルTBL2に含まれていない場合(S230においてNO)には、ECU100は、
図5に示した充電器情報INFOを利用するためにサーバ9に充電器IDを送信し、対象充電スタンドが冷却機構230を含んでいるか否かの回答をサーバ9から取得する(S235)。対象充電スタンドの充電器IDに関する情報が充電テーブルTBL2に含まれている場合(S230においてYES)には、S235の処理はスキップされ、処理がS240に進められる。S240以降の各処理は、実施の形態1におけるフローチャート(
図3参照)の対応する処理といずれも同等であるため、詳細な説明は繰り返さない。
【0084】
以上のように、実施の形態2によれば、対象充電スタンドの充電器ID(または機種に関する情報)に基づき、対象充電スタンドに冷却機構230が設けられているか否かが判定される。冷却機構230が設けられている場合には最大許容電流Iが設定される一方で(S250)、対象充電スタンドに冷却機構230が設けられていない場合には最大許容電流Jが設定される(S255)。このように、充電器ID(または機種に関する情報)を用いることによっても実施の形態1と同様に、充電ケーブル3のコネクタ310およびインレット110を適切に保護しつつ、できるだけ充電時間を短縮することができる。
【0085】
今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【符号の説明】
【0086】
10 充電システム、1 車両、2 充電スタンド、3 充電ケーブル、9 サーバ、91 充電器情報データベース、100 ECU、101 CPU、102 メモリ、110 インレット、119,153,319 温度センサ、121,151,220 電圧センサ、122,152 電流センサ、131,132 車両コンタクタ、141,142 SMR、150 バッテリ、160 PCU、170 エンジン、171,172 モータジェネレータ、173 動力分割装置、174 駆動輪、180 通信モジュール、190 ナビゲーション装置、191 GPS受信機、200 制御回路、210 AC/DC変換器、230 冷却機構、231 流通経路、232 ウォーターポンプ、233 熱交換器、310 コネクタ、500 系統電源。