(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-10-23
(45)【発行日】2024-10-31
(54)【発明の名称】電池管理回路および蓄電装置
(51)【国際特許分類】
H02J 7/02 20160101AFI20241024BHJP
【FI】
H02J7/02 H
(21)【出願番号】P 2021533074
(86)(22)【出願日】2020-07-14
(86)【国際出願番号】 JP2020027345
(87)【国際公開番号】W WO2021010388
(87)【国際公開日】2021-01-21
【審査請求日】2023-06-13
(31)【優先権主張番号】P 2019133098
(32)【優先日】2019-07-18
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】520133916
【氏名又は名称】ヌヴォトンテクノロジージャパン株式会社
(74)【代理人】
【識別番号】100109210
【氏名又は名称】新居 広守
(74)【代理人】
【識別番号】100137235
【氏名又は名称】寺谷 英作
(74)【代理人】
【識別番号】100131417
【氏名又は名称】道坂 伸一
(72)【発明者】
【氏名】龍 隆
【審査官】辻丸 詔
(56)【参考文献】
【文献】特開2000-270483(JP,A)
【文献】国際公開第2015/045661(WO,A1)
【文献】特開2012-029382(JP,A)
【文献】特開2015-033237(JP,A)
【文献】国際公開第2014/156564(WO,A1)
【文献】米国特許出願公開第2020/0059106(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H02J 7/02
(57)【特許請求の範囲】
【請求項1】
複数の蓄電池および複数のキャパシタを有する蓄電装置を管理する電池管理回路であって、
前記複数のキャパシタのうちの第1キャパシタと、前記複数の蓄電池のうちの第1蓄電池とを並列に接続する第1スイッチ回路と、
前記第1キャパシタと、前記第1蓄電池以外の2以上の直列の蓄電池とを並列に接続する第2スイッチ回路と、
前記第1スイッチ回路による接続と前記第2スイッチ回路による接続とを繰り返し切り替える第1の制御を行う制御回路と、を備え
、
前記第1スイッチ回路は、複数の蓄電池と複数のキャパシタとの間で、各キャパシタに蓄電池を1対1で並列に接続する第1の接続状態と、前記第1の接続状態とは異なる組み合わせで各キャパシタに蓄電池を1対1で並列に接続する第2の接続状態と、を有し、
前記制御回路は、さらに、前記第1の接続状態と前記第2の接続状態とを繰り返し切り替える第2の制御を行う
電池管理回路。
【請求項2】
前記第1蓄電池は、前記複数の蓄電池のうちの所定値より低い出力電圧を有する蓄電池である
請求項1に記載の電池管理回路。
【請求項3】
前記制御回路は、前記第1の制御において、前記第1の接続状態、前記第2の接続状態、および、前記第2スイッチ回路による接続を順に切り替える
請求項
1に記載の電池管理回路。
【請求項4】
前記制御回路は、前記第1の制御において、前記第1の接続状態、前記第2スイッチ回路による接続、前記第2の接続状態、および、前記第2スイッチ回路による接続の順に切り替える
請求項
1に記載の電池管理回路。
【請求項5】
前記制御回路は、前記第1の制御として、前記第1スイッチ回路による前記第1の接続状態または前記第2の接続状態と、前記第2スイッチ回路による接続とを繰り返し切り替える
請求項
1に記載の電池管理回路。
【請求項6】
前記第1の接続状態は、前記第1キャパシタと前記第1蓄電池との並列接続を含み、
前記第2の接続状態は、前記複数のキャパシタのうちの第2キャパシタと前記第1蓄電池との並列接続を含み、
前記第2スイッチ回路は、
前記第1キャパシタと前記第1蓄電池以外の2以上の直列の蓄電池とを並列に接続する第3の接続状態と、
前記第2キャパシタと前記第1蓄電池以外の2以上の直列の蓄電池とを並列に接続する第4の接続状態と、を有し、
前記制御回路は、前記第1の制御として、前記第1の接続状態、前記第3の接続状態、前記第2の接続状態、および、前記第4の接続状態を順次切り替える
請求項
1に記載の電池管理回路。
【請求項7】
前記第1蓄電池以外の2以上の直列の蓄電池は、前記第1蓄電池に直列接続された隣の蓄電池を含む
請求項1~
6のいずれか1項に記載の電池管理回路。
【請求項8】
前記第2スイッチ回路は、スイッチ素子を有し、
前記スイッチ素子は、前記第1キャパシタと前記第1蓄電池以外の2以上の直列の蓄電池とを並列接続するための回路ループを構成する
請求項1~
7のいずれか1項に記載の電池管理回路。
【請求項9】
前記回路ループは、前記回路ループを流れる電流を規制するための抵抗素子を有する
請求項
8に記載の電池管理回路。
【請求項10】
前記第2スイッチ回路は、前記複数の蓄電池と前記複数のキャパシタとの間で、各キャパシタに2以上の直列の蓄電池を並列に接続する1対多接続をするための複数のスイッチ素子を有し、
前記複数のスイッチ素子は、キャパシタと2以上の直列の蓄電池とを並列接続するための複数の回路ループを構成する
請求項1~
7のいずれか1項に記載の電池管理回路。
【請求項11】
前記
複数のスイッチ素子
の各々は、回路ループを流れる電流を規制するためのオン抵抗を有するトランジスタであり、
前記複数の回路ループのうちの第1の回路ループ内のスイッチ素子のオン抵抗の値は、他の回路ループ内のスイッチ素子のオン抵抗の値と異なる
請求項
10に記載の電池管理回路。
【請求項12】
複数の蓄電池および複数のキャパシタを有する蓄電装置を管理する電池管理回路であって、
前記複数の蓄電池と前記複数のキャパシタとの間で、キャパシタに蓄電池を1対1で並列に接続する1対1接続を行う第1スイッチ回路と、
前記複数の蓄電池と前記複数のキャパシタとの間で、キャパシタに2以上の直列の蓄電池を並列に接続する1対多接続を行う第2スイッチ回路と、
前記第1スイッチ回路による接続と前記第2スイッチ回路による接続とを繰り返し切り替える第1の制御と、前記1対1接続がなされる第1接続状態と前記第1接続状態におけるキャパシタと蓄電池との組み合わせと異なる組み合わせの1対1接続がなされる第2接続状態とを繰り返し切り替える第2の制御とを選択的に行う制御回路と、を備える
電池管理回路。
【請求項13】
前記制御回路は、前記複数の蓄電池のうち所定値より低い出力電圧を有する蓄電池を第1蓄電池として選択し、
前記1対1接続は、前記複数のキャパシタ中の第1キャパシタと、前記第1蓄電池との並列接続を含み、
前記1対多接続は、前記第1キャパシタと、前記複数の蓄電池中の第1蓄電池以外の2以上の直列の蓄電池との並列接続を含む
請求項
12に記載の電池管理回路。
【請求項14】
前記制御回路は、前記第1の制御において、前記第1接続状態と前記第2接続状態との間に、前記第2スイッチ回路による1対多接続をする状態を挿入するように前記第1スイッチ回路および前記第2スイッチ回路を制御する
請求項
12に記載の電池管理回路。
【請求項15】
前記第2スイッチ回路は、
前記第1キャパシタと前記複数の蓄電池中の第1蓄電池以外の2以上の直列の蓄電池との並列接続を含む第3接続状態と、
前記複数のキャパシタ中の第2キャパシタと、前記複数の蓄電池中の前記第1蓄電池以外の2以上の直列の蓄電池との並列接続を含む第4接続状態と、を含み、
前記制御回路は、第2の電圧均等化制御として、前記第1接続状態、前記第3接続状態、前記第2接続状態および前記第4接続状態を順次繰り返し切り替える
請求項
13に記載の電池管理回路。
【請求項16】
請求項1~
15のいずれか1項に記載の電池管理回路と、
前記複数の蓄電池と、
前記複数のキャパシタと、を有する
蓄電装置。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、複数の蓄電池を有する蓄電装置を管理する電池管理回路および蓄電装置に関する。
【背景技術】
【0002】
特許文献1は、直列接続された複数の蓄電池における個々の蓄電池の電圧を均等化する電圧均等化処理を開示している。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、上記先行技術によれば、蓄電装置を構成する個々の蓄電池の電圧を均等化するのに要する時間が長くかかってしまう場合があるという問題がある。
【0005】
そこで、本開示は、電圧均等化処理において電池電圧の均等化に要する時間を短縮する電池管理回路および蓄電装置を提供する。
【課題を解決するための手段】
【0006】
上記課題を解決するために本開示の一態様に係る電池管理回路は、複数の蓄電池および複数のキャパシタを有する蓄電装置を管理する電池管理回路であって、前記複数のキャパシタのうちの第1キャパシタと、前記複数の蓄電池のうちの第1蓄電池とを並列に接続することができる第1スイッチ回路と、前記第1キャパシタと、前記第1蓄電池以外の2以上の直列の蓄電池とを並列に接続することができる第2スイッチ回路と、前記第1スイッチ回路による接続と前記第2スイッチ回路による接続とを繰り返し切り替える第1の制御を行う制御回路と、を備える。
【0007】
また、一態様に係る蓄電装置は、前記電池管理回路と、前記複数の蓄電池と、前記複数のキャパシタと、を有する。
【発明の効果】
【0008】
本開示に係る電池管理回路および蓄電装置によれば、電圧均等化処理において電池電圧の均等化に要する時間を短縮することができる。
【図面の簡単な説明】
【0009】
【
図1】
図1は、実施の形態に係る蓄電装置の構成例を示す回路図である。
【
図2A】
図2Aは、電池管理回路における第2の制御つまり電圧均等化処理を示すタイムチャートである。
【
図3】
図3は、
図2Aにおける第1の接続状態(状態S1)を示す回路図である。
【
図4】
図4は、
図2Aにおける第2の接続状態(状態S2)を示す回路図である。
【
図5】
図5は、m個の直列接続された蓄電池の正極端子側からn番目の蓄電池を第1蓄電池として充電電流を加増する動作を示すタイムチャートである。
【
図6A】
図6Aは、第1スイッチ回路において7個の直列接続された蓄電池の正極端子側から4番目の蓄電池を第1蓄電池として充電電流を加増する動作を示すタイムチャートである。
【
図11A】
図11Aは、電池管理回路における第1の制御により蓄電池の充電電流を加増する場合のスイッチ回路の動作状態の変化を示すタイムチャートと充電電流を加増したキャパシタの電圧波形を示すグラフである。
【
図16A】
図16Aは、電池管理回路における第1の制御により蓄電池の充電電流を加増する動作を示すタイムチャートである。
【
図19】
図19は、実施の形態の変形例に係る蓄電装置の回路図の例を示す図である。
【
図20】
図20は、特許文献1に開示された蓄電装置の構成を示す回路図である。
【発明を実施するための形態】
【0010】
(本発明の基礎となった知見)
本発明者は、「背景技術」の欄において記載した蓄電装置に関し、以下の問題が生じることを見出した。
【0011】
図20は、特許文献1に開示された蓄電装置の構成を示す回路図である。
【0012】
同図において、複数のスイッチ16は第1の状態と第2の状態をと交互に複数回切り替える。例えばキャパシタ14aは、第1状態では蓄電池Baに並列接続され、第2状態では蓄電池Bbに並列接続される。キャパシタ14bは、第1状態では蓄電池Bbに並列接続され、第2状態では蓄電池Bcに並列接続される。他のキャパシタも同様である。
【0013】
これにより、隣り合う蓄電池のうち電圧が高い方の蓄電池は、電圧が低い方の蓄電池にキャパシタを介して充電する。このように、
図20の蓄電装置は、複数のキャパシタと複数の蓄電池とをそれぞれ並列に接続する第1および第2の状態を周期的に切り換えることによって電圧を均等化する。
【0014】
しかしながら、直列接続された複数の蓄電池の中に他よりも自己リーク電流が多いなどの原因で特に電圧の低い蓄電池があると、その蓄電池の充電に時間が掛かる。その結果、全ての蓄電池の電圧均等化に要する時間が長くなってしまうという問題がある。
【0015】
このような問題を解決するために、本開示の一態様に係る電池管理回路は、複数の蓄電池および複数のキャパシタを有する蓄電装置を管理する電池管理回路であって、前記複数のキャパシタのうちの第1キャパシタと、前記複数の蓄電池のうちの第1蓄電池とを並列に接続することができる第1スイッチ回路と、前記第1キャパシタと、前記第1蓄電池以外の2以上の直列の蓄電池とを並列に接続することができる第2スイッチ回路と、前記第1スイッチ回路による接続と前記第2スイッチ回路による接続とを繰り返し切り替える第1の制御を行う制御回路と、を備える。
【0016】
また、一態様に係る蓄電装置は、前記電池管理回路と、前記複数の蓄電池と、前記複数のキャパシタと、を有する。
【0017】
これにより、電池管理回路および蓄電装置は、第1キャパシタから第1蓄電池に対して蓄電池1個分の電圧よりも高い電圧が印加されるので、特に第1蓄電池に対する充電電流を加増することができ、電圧均等化に要する時間を短縮することができる。
【0018】
以下、実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも本開示の一具体例を示すものである。以下の実施の形態で示される構成要素、構成要素の配置位置及び接続形態、駆動タイミング等は、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうちの、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、各図は、必ずしも厳密に図示したものではない。各図において、実質的に同一の構成について、重複する説明は省略又は簡略化する。
【0019】
[1.構成]
まず、蓄電装置100の構成について説明する。
【0020】
図1は、実施の形態に係る蓄電装置100の構成例を示す回路図である。
【0021】
図1において、蓄電装置100は、組蓄電池1、容量素子群6および電池管理回路10を備える。
【0022】
組蓄電池1は、直列に接続された複数(m個)の蓄電手段(代表として蓄電池B1~B7)を備える。
図1ではm=7の場合を示しているが、組蓄電池1内の蓄電池の個数は7つに限らない。各蓄電池は、例えばリチウムイオン電池であるが、ニッケル水素電池などその他の二次電池であってもよい。また、リチウムイオンキャパシタのような直列接続された蓄電セルも含まれる。組蓄電池1は、負荷および充電回路に接続される。負荷は、例えば、HEVまたはEVのモータであるが、これに限定されない。
【0023】
容量素子群6は、複数のキャパシタC1~C6を有する。容量素子群6は、組蓄電池1内の蓄電池の数よりも1個少ない6個のキャパシタが直列に接続されて構成されている。
【0024】
電池管理回路10は、複数の蓄電池B1~B7および複数のキャパシタC1~C6を有する蓄電装置100を管理する。そのため、電池管理回路10は、第1スイッチ回路2、第2スイッチ回路3、制御回路4および電圧検出回路5を備える。なお、第1スイッチ回路2、第2スイッチ回路3は、
図1では第1SW回路、第2SW回路と表記されている。
【0025】
第1スイッチ回路2は、複数のキャパシタのうちの第1キャパシタと、複数の蓄電池のうちの第1蓄電池とを並列に接続することができ、また、複数のキャパシタのうちの第2キャパシタと、第1蓄電池とを並列に接続することができる。ここで、第1蓄電池は、例えば、複数の蓄電池B1~B7のうち所定値よりも低い出力電圧を有する電池であってもよいし、複数の蓄電池B1~B7のうち選択された蓄電池であってもよい。第1キャパシタおよび第2キャパシタそれぞれは、第1スイッチ回路2によって第1蓄電池と並列接続される相手方のキャパシタをいう。
図1において第1蓄電池が蓄電池B4である場合には、第1キャパシタおよび第2キャパシタはキャパシタC3およびキャパシタC4である。
【0026】
より具体的な接続例として、第1スイッチ回路2は、複数の蓄電池B1~B7と複数のキャパシタC1~C6との間で、キャパシタに蓄電池を1対1で並列に接続する1対1接続を実施可能である。この1対1接続には、第1接続状態と第2接続状態の少なくとも2種類を含む。第1接続状態と第2接続状態とは,キャパシタと蓄電池との組み合わせが異なる。
【0027】
図1の構成例では、第1スイッチ回路2は、スイッチ素子Sa1~Sa7、スイッチ素子Sb1~Sb7を備える。つまり、第1スイッチ回路2は、組蓄電池1の蓄電池B1~B7の端子とキャパシタC1~C6の端子を選択的に接続するスイッチ素子Sa1~Sa7およびSb1~Sb7で構成されており、各スイッチ素子は制御回路4からの信号でそれぞれ独立に開閉できる機能を持つ。第1スイッチ回路2は、第1接続状態では、キャパシタC1~C6に蓄電池B1~B6をそれぞれ接続する。このとき、スイッチ素子Sa1~Sa7はオン状態であり、かつ、スイッチ素子Sb1~Sb7はオフ状態である。また、第1スイッチ回路2は、第2接続状態では、キャパシタC1~C6に蓄電池B2~B7をそれぞれ接続する。このとき、スイッチ素子Sa1~Sa7はオフ状態であり、かつ、スイッチ素子Sb1~Sb7はオン状態である。
【0028】
ここで、第1接続状態は、第1キャパシタと第1蓄電池との並列接続を含む。第2接続状態は、第2キャパシタと第1蓄電池との接続状態を含む。
【0029】
第2スイッチ回路3は、第1キャパシタと、第1蓄電池以外の2以上の直列の蓄電池とを並列接続することが可能である。この並列接続により、第1キャパシタは、1つの蓄電池の出力電圧よりも高い電圧(例えば、2以上の蓄電池の出力電圧のほぼ合計)に充電される。
【0030】
また、第2スイッチ回路3は、第2キャパシタと、第1蓄電池以外の2以上の直列の蓄電池とを並列接続することが可能である。この並列接続により、第2キャパシタは、1つの蓄電池の出力電圧よりも高い電圧(例えば、2以上の蓄電池の出力電圧のほぼ合計)に充電される。つまり、第2スイッチ回路3は、容量素子群6のうち第1キャパシタまたは第2キャパシタへの充電電圧を加増する動作を行う。そのため、
図1の第2スイッチ回路3の回路構成例は、スイッチ素子Sp2~Sp6とSq1~Sq5、および、これらのスイッチ素子にそれぞれ直列接続された抵抗Rp2~Rp6とRq1~Rq5を備える。各スイッチ素子は制御回路4からの信号で独立に開閉できるものとする。なお、第1スイッチ回路2および第2スイッチ回路3による「並列接続」の用語は、
図1のように電流を規制するための抵抗素子を含む場合も、スイッチ素子を含む場合も広く含むものとする。
【0031】
制御回路4は、第1スイッチ回路2による接続と第2スイッチ回路3による接続とを繰り返し切り替えるよう第1スイッチ回路2および第2スイッチ回路3を制御する。以下では、この制御を第1の制御と呼ぶ。第1の制御では、第1キャパシタまたは第2キャパシタから第1蓄電池に対して蓄電池1個分の電圧よりも高い電圧が印加されるので、特に第1蓄電池に対する充電電流を加増することができ、均等化に要する時間を短縮することができる。
【0032】
また、制御回路4は、上記の第1の接続状態と第2の接続状態とを繰り返し切り替える第2の制御を行う。第2の制御は、組蓄電池1の蓄電池B1~B7の電圧を均等化するための制御である。
【0033】
さらに、制御回路4は、電圧検出回路5によって検出された蓄電池B1~B7の出力電圧に基づいて、例えば、所定の値よりも小さい出力電圧をもつ蓄電池を第1蓄電池としても選択する。第1蓄電池は、電圧均等化処理において充電電流を加増する対象として選択される。
【0034】
電圧検出回路5は、組蓄電池1内の個々の蓄電池B1~B7の出力電圧を検出する回路である。なお、電圧検出回路5は、必ずしも電池管理回路10内に備える必要はなく、電池管理回路10または蓄電装置100の外部に備えていてもよい。
【0035】
なお、
図1における電池管理回路10は、IC(半導体集積回路)として構成してもよい。また、電池管理回路10および容量素子群6は、1つの印刷回路基板(Printed Circuit Board:PCB)として構成してもよい。
【0036】
また、電池管理回路10は、組蓄電池1の温度を測定する温度測定回路を備え、電圧検出回路5で検出された電圧値を温度に応じて補正してもよい。
【0037】
[2.1 電圧均等化処理(第2の制御)]
第1の制御の説明の前に、第2の制御、つまり、いずれの蓄電池も充電電流の加増を行わない電圧均等化処理の動作を説明する。
【0038】
図2Aに、電池管理回路10における第2の制御つまり電圧均等化処理を示すタイムチャートを示す。
図2Aの横軸は時間を、縦軸は各スイッチ素子の制御信号とキャパシタC3、C4の電圧VC3とVC4の変化を模式的に示す。各スイッチ素子の制御信号は、ハイレベルでオン状態、ローレベルでオフ状態に対応する。状態S1、S2は、上記の第1の接続状態、第2接続状態に対応する。
図2Bは、
図2Aにおける2つの状態を模式的に示す説明図である。
図2Bにおける二重線は、1対1接続される蓄電池とキャパシタのペアを示している。
【0039】
第2の制御は、電圧を均等化する通常動作モードであり、第2スイッチ回路3のスイッチ素子Sp2~Sp6とSq1~Sq5は全てオフ状態である。
【0040】
図2Aの時間軸における状態S1の期間の各スイッチ素子の状態を
図3に示す。状態S1は、スイッチ素子Sa1~Sa7がオン状態で他のスイッチ素子が全てオフ状態であり、蓄電池B1~B6とキャパシタC1~C6がそれぞれ一つずつ並列に接続された状態つまり第1の接続状態である。
図3中の太い矢線は、キャパシタC1と蓄電池B1の並列接続を特に強調表示している。
【0041】
図2Aの時間軸における状態S2の期間の各スイッチ素子の状態を
図4に示す。状態S2は、スイッチ素子Sb1~Sb7がオン状態で他のスイッチ素子が全てオフ状態であって蓄電池B2~B7とキャパシタC1~C6がそれぞれ一つずつ並列に接続された状態つまり第2の接続状態である。
図4中の太い矢線は、キャパシタC1と蓄電池B2の並列接続を特に強調表示している。
【0042】
図2Aにおいて、一例として、蓄電池B4の電圧が蓄電池B3および蓄電池B5の電圧よりも低い場合の電圧均等化処理の動作原理を説明する。第1の接続状態で、キャパシタC3は蓄電池B3から電荷を供給されてその電圧VC3は上昇し、次に第2の接続状態で、キャパシタC3は蓄電池B4に電荷を供給してその電圧VC3は下降する。同時に第2の接続状態でキャパシタC4は蓄電池B5から電荷を供給されてその電圧VC4は上昇し、次に第1の接続状態で、キャパシタC4は蓄電池B4に電荷を供給してその電圧VC4は下降する。
【0043】
このように、所要の周期で前記第1の接続状態と前記第2の接続状態の切り換えを繰り返し行うことによって、キャパシタを介して電圧の高い蓄電池から電圧の低い蓄電池へ電荷の移動が繰り返し行われ、全ての蓄電池の電圧が等しくなるまで電荷の移動が行われることによって蓄電池の電圧均等化ができる。
【0044】
[2.2 加増を伴う電圧均等化処理(第1の制御)]
次に、前記複数の蓄電池のうち所定値よりも低い出力電圧を有する蓄電池が存在する場合に電圧均等化処理を短縮するための第1の制御つまり充電電流を加増する制御について説明する。
【0045】
上記の第2の制御つまり電圧均等化処理では、直列接続された複数の蓄電池の中に特に電圧の低いものがあると、前記第1の接続状態と前記第2の接続状態の切り換えを繰り返し行う操作だけでは該当の電圧の低い蓄電池の充電に時間が掛かり、全ての蓄電池の電圧均等化に時間が掛かる問題が生じる。
【0046】
この問題を解決するため、本開示の蓄電装置は、複数のキャパシタと、蓄電装置の各蓄電池の端子とキャパシタの端子を選択的に接続する第1スイッチ回路2と、複数のキャパシタのうち選択したキャパシタの充電電流を加増する第2スイッチ回路3と、第1スイッチ回路2と第2スイッチ回路3の動作を制御する制御回路を備え、キャパシタを蓄電池にそれぞれ接続する第1の接続状態と、キャパシタを第1の接続状態の対応先とは別の蓄電池にそれぞれ接続する第2の接続状態との切り換えを繰り返して行うことによる蓄電池の電圧均等化の機能と、複数のキャパシタのうち選択したキャパシタの充電電流を加増することによって蓄電池のうち選択した第1蓄電池の充電電流を加増できる機能を備える。
【0047】
制御回路4は、第1電池の充電電流を加増する機能として、第1スイッチ回路による接続と第2スイッチ回路による接続とを繰り返し切り替える第1の制御を行う。
【0048】
例えば、制御回路4の制御系列において、第2スイッチ回路3による接続をする工程期間を、第1の接続状態と第2の接続状態の工程期間の両方の前あるいは片方の前に設ける。
【0049】
例えば、制御回路4は、第1の制御において、第1の接続状態、第2の接続状態、および、前記第2スイッチ回路3による接続の順に切り替えてもよい。
【0050】
例えば、制御回路4は、第1の制御において、第1の接続状態、第2スイッチ回路3による接続、第2の接続状態、および、第2スイッチ回路3による接続の順に切り替えてもよい。
【0051】
例えば、制御回路4は、第1の制御として、第1スイッチ回路2による第1の接続状態または第2の接続状態と、第2スイッチ回路3による接続とを繰り返し切り替えてもよい。
【0052】
また、第2スイッチ回路3は、選択した第1蓄電池以外の複数の蓄電池と選択したキャパシタを選択的に接続した回路ループを構成する。
【0053】
また、第2スイッチ回路3は、選択した第1蓄電池に隣接する複数個の直列接続の蓄電池からスイッチ素子とスイッチ素子のオン抵抗を含む抵抗を介して電流を供給される。
【0054】
更に、本開示の蓄電装置について、その特徴である、選択した第1蓄電池の充電を加速する機能(以下、選択電池充電加速モードと表す)が稼働するときの動作について、
図1から
図5を用いて説明する。
【0055】
図1に第2スイッチ回路3の一実施の形態の内部構成を示している。第2スイッチ回路3は、蓄電池B1の正極端子とキャパシタC1とC2の接続点との間に抵抗Rp2とスイッチ素子Sp2の直列接続を具備する。更に、第2スイッチ回路3は、蓄電池B2の正極端子とキャパシタC2とC3の接続点との間に抵抗Rp3とスイッチ素子Sp3の直列接続を具備する。更に、第2スイッチ回路3は、蓄電池B3の正極端子とキャパシタC3とC4の接続点との間に抵抗Rp4とスイッチ素子Sp4の直列接続を具備する。更に、第2スイッチ回路3は、蓄電池B4の正極端子とキャパシタC4とC5の接続点との間に抵抗Rp5とスイッチ素子Sp5の直列接続を具備する。更に、第2スイッチ回路3は、蓄電池B5の正極端子とキャパシタC5とC6の接続点との間に抵抗Rp6とスイッチ素子Sp6の直列接続を具備する。更に、第2スイッチ回路3は、蓄電池B3の負極端子とキャパシタC1とC2の接続点との間に抵抗Rq1とスイッチ素子Sq1の直列接続を具備する。更に、第2スイッチ回路3は、蓄電池B4の負極端子とキャパシタC2とC3の接続点との間に抵抗Rq2とスイッチ素子Sq2の直列接続を具備する。更に、第2スイッチ回路3は、蓄電池B5の負極端子とキャパシタC3とC4の接続点との間に抵抗Rq3とスイッチ素子Sq3の直列接続を具備する。更に、第2スイッチ回路3は、蓄電池B6の負極端子とキャパシタC4とC5の接続点との間に抵抗Rq4とスイッチ素子Sq4の直列接続を具備する。更に、第2スイッチ回路3は、蓄電池B7の負極端子とキャパシタC5とC6の接続点との間に抵抗Rq5とスイッチ素子Sq5の直列接続を具備する。
【0056】
図5にm個の直列接続された蓄電池の正極端子側からn番目の蓄電池を第1蓄電池として充電電流を加増する動作(つまり第1の制御による動作)を示すタイムチャートを示す。
図5において、仮にn=4、m=7の場合、Sa(n)はスイッチ素子Sa4の状態を表す。Sa1~Sa(n-1)及びSa(n+1)~Sa(m)はスイッチ素子Sa1~Sa3及びSa5~Sa7の状態を表す。Sp(n-1)はスイッチ素子Sp3の状態を表す。Sb(n)はスイッチ素子Sb4の状態を表し、Sb1~Sb(n-1)及びSb(n+1)~Sb(m)はスイッチ素子Sb1~Sb3及びSb5~Sb7の状態を表す。Sq(n)はスイッチ素子Sq4の状態を表している。nが3からm-3までの自然数の場合、上記と同様に記号の数字を変換して考えて良い。なお、nが1、2、m-1、mのように充電電流を加増する蓄電池が組蓄電池の端の方にある場合については後で述べる。同図では状態S11~S14をこの順に繰り返すように制御される。状態S11~S14のうち状態S11および状態S13は、
図2Aおよび
図2Bに示した第2の制御(電圧均等化処理)における状態S1およびS2とそれぞれ同じである。
図5の第1の制御は、
図2Aの第2の制御における状態S1、S2それぞれの次に状態S12、S14を追加した動作に相当する。
【0057】
状態S12は、第2スイッチ回路3による接続を示し、第1キャパシタと第1蓄電池以外の2以上の直列の蓄電池とが並列に接続される。
図5の例では第1キャパシタは、キャパシタC(n-1)である。これにより第1キャパシタの電圧VC(n-1)が蓄電池1個の出力電圧よりも高い電圧に加増される。状態S12の次の状態S13では、第1キャパシタと第1蓄電池とが接続される。これにより、第1キャパシタから第1蓄電池への充電電流が加増される。
【0058】
また、状態S14は、第2スイッチ回路3による接続を示し、第2キャパシタと第1蓄電池以外の2以上の直列の蓄電池とが並列に接続される。
図5では第2キャパシタは、キャパシタC(n)である。これにより第2キャパシタの電圧VC(n)が蓄電池1個の出力電圧よりも高い電圧に加増される。状態S14の次の状態S11では、第2キャパシタと第1蓄電池とが接続される。これにより、第2キャパシタから第1蓄電池への充電電流が加増される。
【0059】
このように、状態S12および状態S14を設けることによって、状態S13および状態S11では、加増された電圧を保持する第1キャパシタおよび第2キャパシタから第1蓄電池に加増された充電電流をそれぞれ供給する。これにより、第1蓄電池に対する充電電流を加増することができ、均等化に要する時間を短縮することができる。
【0060】
続いて、
図5にはmとnの数値を特定しないで電池管理回路10の動作状態の変化を示したが、より具体的な例を
図6A~
図10を用いて説明する。
【0061】
図6Aにm=7、n=4の場合の第1スイッチ回路2の動作を示すタイムチャートを示す。また、
図6Bに、
図6Aにおける4つの状態を模式的に示す説明図である。
図6B中の二重線は、1対1接続される蓄電池とキャパシタのペアを示している。点線矩形枠は、第1蓄電池を示す。太線矩形枠は、第1蓄電池以外の2以上の直列の蓄電池を示す。
図6Aおよび
図6Bでは、蓄電池B4が第1蓄電池に該当し、キャパシタC3、C4は、第1キャパシタ、第2キャパシタにそれぞれ該当する。
【0062】
図6Aの時間軸における状態S11の期間のスイッチ素子の状態を
図7に示す。スイッチ素子Sa1~Sa7がオン状態で、他のスイッチ素子が全てオフ状態であり、蓄電池B1~B6とキャパシタC1~C6がそれぞれ一つずつ並列に接続された状態を第1の接続状態とする。この接続状態は、前述の第2の制御における第1の接続状態と同じである。
図7に書き込まれた矢印付き太線は、選択した蓄電池B4の充電に関わる電流のループを示しており、繰り返し行われる一連の工程における前工程の終止電圧との関係によって、キャパシタC3は蓄電池B3から電荷を供給され、同時に、キャパシタC4は蓄電池B4に電荷を供給する。
図6Aの電圧VC3と電圧VC4の波形は、キャパシタC3の電圧とキャパシタC4の電圧の変化を示しており、時間軸における状態S11の期間において、電圧VC3は上昇し、電圧VC4は下降する。
【0063】
次に
図6Aの時間軸における状態S12の期間のスイッチ素子の状態を
図8に示す。この工程では選択されたキャパシタC3のみを前工程の終止電圧よりも高い電圧に充電する。スイッチ素子Sa4とSp3がオン状態で、他のスイッチ素子が全てオフ状態であり、蓄電池B2とB3の直列接続の電圧が抵抗Rp3とスイッチ素子Sp3とキャパシタC3の直列接続部に印加された状態を第2の接続状態とする。この第2の接続状態では、蓄電池B2とB3の直列接続の電圧が、前工程の第1の状態で蓄えられたキャパシタC3の電圧値よりも高いので、
図8に書き込まれた矢印付き太線の向きに電流が流れてキャパシタC3の電圧VC3は上昇する。一方、キャパシタC3以外のキャパシタの電圧は、電流経路が無いので電圧が保持される。
図6Aの電圧VC3と電圧VC4の波形で示したように、時間軸における状態S12の期間において、電圧VC3は状態S11の期間よりも高い傾きで上昇し、電圧VC4は保持される。
【0064】
次に
図6Aの時間軸における状態S13の期間のスイッチ素子の状態を
図9に示す。スイッチ素子Sb1~Sb7がオン状態で、他のスイッチ素子が全てオフ状態であり、蓄電池B2~B7とキャパシタC1~C6がそれぞれ一つずつ並列に接続された状態を第3の接続状態とする。この接続状態は、前述の第2の制御における第2の接続状態と同じである。
図9に書き込まれた矢印付き太線は、選択した蓄電池B4の充電に関わる電流のループを示しており、前工程の終止電圧との関係によって、キャパシタC4は蓄電池B5から電荷を供給され、同時に、キャパシタC3は蓄電池B4に電荷を供給する。
図6Aの電圧VC3と電圧VC4の波形で示したように、時間軸における状態S13の期間において、電圧VC4は上昇し、電圧VC3は下降する。前工程の第2の接続状態で、キャパシタC3は高い電圧に充電されているので、蓄電池B4に流れる充電電流は、第2の接続状態が無いときよりも加増される。
【0065】
次に
図6Aの時間軸における状態S14の期間のスイッチ素子の状態を
図10に示す。この工程では選択されたキャパシタC4のみを前工程の終止電圧よりも高い電圧に充電する。スイッチ素子Sb4とSq4がオン状態で、他のスイッチ素子が全てオフ状態であり、蓄電池B5とB6の直列接続の電圧がキャパシタC4と抵抗Rq4とスイッチ素子Sq4の直列接続部に印加された状態を第4の接続状態とする。この第4の接続状態では、蓄電池B5とB6の直列接続の電圧が、前工程の第3の状態で蓄えられたキャパシタC4の電圧値よりも高いので、
図10に書き込まれた矢印付き太線の向きに電流が流れてキャパシタC4の電圧VC4は上昇する。一方、キャパシタC4以外のキャパシタの電圧は、電流経路が無いので電圧が保持される。
図6Aの電圧VC3と電圧VC4の波形で示したように、時間軸における状態S14の期間において、電圧VC4は状態S13の期間よりも高い傾きで上昇し、電圧VC3は保持される。
【0066】
図6Aに示したように、第4の接続状態の次の工程は前述した第1の接続状態に戻る。前工程の第4の接続状態で、キャパシタC4は高い電圧に充電されているので、蓄電池B4に流れる充電電流は第4の接続状態が無いときよりも加増される。こうした一連の工程を繰り返すことで、選択した第1蓄電池の充電電流を加増できる。
【0067】
図1に示した蓄電装置100の回路例では、選択電池充電加速モードで、選択した第1蓄電池の両側2つ目までの隣接した蓄電池は、選択した第1蓄電池に電荷を供給するので電圧は下がる。しかし、選択した第1蓄電池の両側3つ目以上離れた蓄電池から電荷の供給を受けるので電圧低下は緩やかになる。また、選択した第1蓄電池の両側3つ目以上離れた蓄電池は、4つ目以上離れた蓄電池との間で電圧均等化が行われる。従って、選択電池充電加速モードは、選択した第1蓄電池の充電電流を加増する機能と、他の蓄電池の電圧を均等化する機能を並行して同時に行うことができる。しかしながら、選択電池充電加速モードを続けると、選択した第1蓄電池の電圧は、上昇し続け、過充電の状態になるので、選択した第1蓄電池の電圧が他の蓄電池の電圧に近づいた後は、通常動作モード(つまり第2の制御)に切り換えることが望ましい。本開示の蓄電装置は、第2スイッチ回路3の動作を止めるだけで、何ら悪影響を及ぼすことなく、容易に通常動作モードに切り換えることができる。
【0068】
[2.3 加増を伴う他の電圧均等化処理(第1の制御)]
続いて、第1の制御で充電電流を加増する第1蓄電池が組蓄電池の端にある場合の動作について、
図11A~
図15を用いて説明する。
【0069】
図11Aは、第1スイッチ回路2において組蓄電池1の最上部にある蓄電池B1を第1蓄電池として充電電流を加増する動作を示すフローチャートである。すなわち、
図5においてm=7、n=1の場合を表す。
図11Bは、
図11Aにおける4つの状態を模式的に示す説明図である。
【0070】
図11Aの時間軸における状態S21の期間のスイッチ素子の状態を
図12に示す。スイッチ素子Sa1~Sa7がオン状態で、他のスイッチ素子が全てオフ状態であり、蓄電池B1~B6とキャパシタC1~C6がそれぞれ一つずつ並列に接続された第1の接続状態である。
図12に書き込まれた矢印付き太線は、選択した蓄電池B1の充電に関わる電流のループを示しており、繰り返し行われる一連の工程における前工程の終止電圧との関係によって、キャパシタC1は蓄電池B1に電荷を供給する。
図11Aの電圧VC1の波形は、キャパシタC1の電圧の変化を示しており、時間軸における状態S21の期間において、電圧VC1は下降する。
【0071】
次に
図11Aの時間軸における状態S22の期間のスイッチ素子の状態を
図13に示す。全てのスイッチ素子がオフ状態となった第2の接続状態である。この工程では全てのスイッチ素子がオフ状態であるためどこにも電流が流れず、全てのキャパシタの電圧は保持される。
【0072】
次に
図11Aの時間軸における状態S23の期間のスイッチ素子の状態を
図14に示す。スイッチ素子Sb1~Sb7がオン状態で、他のスイッチ素子が全てオフ状態であり、蓄電池B2~B7とキャパシタC1~C6がそれぞれ一つずつ並列に接続された第3の接続状態である。
図14に書き込まれた矢印付き太線は、選択した蓄電池B1の充電に関わる電流のループを示しており、前工程の終止電圧との関係によって、キャパシタC1は蓄電池B2から電荷を供給される。
図11Aの電圧VC1の波形で示したように、時間軸における状態S23の期間において、電圧VC1は上昇する。
【0073】
次に
図11Aの時間軸における状態S24の期間のスイッチ素子の状態を
図15に示す。この工程では選択されたキャパシタC1のみを前工程の終止電圧よりも高い電圧に充電する。スイッチ素子Sb1とSq1がオン状態で、他のスイッチ素子が全てオフ状態であり、蓄電池B2とB3の直列接続の電圧がキャパシタC1と抵抗Rq1とスイッチ素子Sq1の直列接続部に印加された第4の接続状態である。この第4の接続状態では、蓄電池B2とB3の直列接続の電圧が、前工程の第3の状態で蓄えられたキャパシタC1の電圧値よりも高いので、
図15に書き込まれた矢印付き太線の向きに電流が流れてキャパシタC1の電圧VC1は上昇する。一方、C1以外のキャパシタの電圧は、電流経路が無いので電圧が保持される。
図11Aの電圧VC1の波形で示したように、時間軸における状態S24の期間において、電圧VC1は状態S23の期間よりも高い傾きで上昇する。
【0074】
図11Aに示したように、第4の接続状態の次の工程は前述した第1の接続状態に戻る。前工程の第4の接続状態で、キャパシタC1は高い電圧に充電されているので、蓄電池B1に流れる充電電流は第4の接続状態が無いときよりも加増される。
【0075】
こうした一連の工程を繰り返すことで、選択した蓄電池の充電電流を加増でき、充電時間を短縮することができる。
【0076】
ただし、前述した蓄電池B4の充電電流を加増する場合は両側2つ合計4つの蓄電池B2、B3、B5、B6から第2及び第4の接続状態の時間を使って電荷を供給することがきたが、組蓄電池の端にある蓄電池B1の充電電流を加増する場合は片方の2つの蓄電池B2とB3から第4の接続状態の時間だけを使って電荷を供給することになるので、もし選択したキャパシタに流す電流を同じ条件にすると選択した蓄電池の充電電流の加増分は半分となる。そこで、この対策として、選択した第1蓄電池の組蓄電池1における接続順位によって第2スイッチ回路3で加増する電流量を変える方法がある。具体例として、蓄電池B1の充電電流を加増する場合は
図15における抵抗Rq1の抵抗値を抵抗Rp3や抵抗Rq3の抵抗値の二分の一にする。こうすることで、第4の接続状態でキャパシタC1の電圧上昇分が増え、蓄電池B1の充電電流の加増分を増やすことができ、蓄電池B4の場合と同じ量の充電電流を加増ができる。
【0077】
図1に示した蓄電装置100の回路例では、蓄電池B1、B2、B6、B7の充電電流を加増する場合に備えて、抵抗Rq1、Rq2、Rp5、Rp6の抵抗値をRp2、Rp3、Rq3、Rq4よりも下げた値に設定することで蓄電池B3、B4、B5の場合と同じ充電電流加増分が得られる。
【0078】
このように、選択した第1蓄電池の組蓄電池1おける接続順位によって第2スイッチ回路3で加増する電流量を変えることで第1蓄電池への充電電流加増分が均等化できる。
【0079】
[2.4 加増を伴うさらに他の電圧均等化処理(第1の制御)]
上記の第1の制御つまり第1蓄電池への充電電流を加増する制御において、第1蓄電池の近くに配置された蓄電池が加増分の電流を提供することにより消耗することが起こり得る。ここでは、第1蓄電池の隣の蓄電池の消耗を抑制可能な動作例について説明する。
【0080】
図16Aにm=7、n=4の場合の第1スイッチ回路2の動作を示すタイムチャートを示す。また、
図16Bは、
図16Aにおける4つの状態を模式的に示す説明図である。
図16B中の二重線は、1対1接続される蓄電池とキャパシタのペアを示している。点線矩形枠は、第1蓄電池を示す。太線矩形枠は、第1蓄電池以外の2直列の蓄電池を示す。実線矩形枠は、第1蓄電池以外の3直列の蓄電池を示す。破線枠は、印加される電圧が加増される2直列のキャパシタを示す。
図16Aおよび
図16Bでは、蓄電池B4は第1蓄電池に該当し、キャパシタC3、C4は、第1キャパシタ、第2キャパシタにそれぞれ該当する。
【0081】
図16Aの時間軸における状態S31の期間のスイッチ素子の状態は既に説明した
図7と同様である。スイッチ素子Sa1~Sa7がオン状態で、他のスイッチ素子が全てオフ状態であり、蓄電池B1~B6とキャパシタC1~C6がそれぞれ一つずつ並列に接続された状態を第1の接続状態とする。この接続状態は、前述の第2の制御における第1の接続状態と同じである。
図7に書き込まれた矢印付き太線は、選択した蓄電池B4の充電に関わる電流のループを示しており、繰り返し行われる一連の工程における前工程の終止電圧との関係によって、キャパシタC3は蓄電池B3から電荷を供給され、同時に、キャパシタC4は蓄電池B4に電荷を供給する。
図16Aの電圧VC2および電圧VC3の波形、電圧VC4および電圧VC5の波形は、キャパシタC2およびC3の電圧、キャパシタC4およびC5の電圧の変化を示しており、時間軸における状態S31の期間において、電圧VC2および電圧VC3は上昇し、電圧VC4および電圧VC5は下降する。このように状態S31では、出力電圧が低下した第1蓄電池である蓄電池B4だけでなく、隣の蓄電池B5にも加増された充電電流が供給される。
【0082】
次に
図16Aの時間軸における状態S32の期間のスイッチ素子の状態を
図17に示す。この工程では選択されたキャパシタC3を前工程の終止電圧よりも高い電圧に充電し、キャパシタC2も高い電圧に充電する。スイッチ素子Sa4とSp2とSp3とがオン状態で、他のスイッチ素子が全てオフ状態であり、蓄電池B2とB3の直列接続の電圧が抵抗Rp3とスイッチ素子Sp3とキャパシタC3の直列接続部に印加された状態であり、かつ、蓄電池B1とB2とB3との直列接続の電圧が抵抗Rp2とスイッチ素子Sp2とキャパシタC2とキャパシタC3との直列接続部に印加された状態を第2の接続状態とする。この第2の接続状態では、蓄電池B2とB3の直列接続の電圧が、前工程の第1の状態で蓄えられたキャパシタC3の電圧値よりも高いので、
図17に書き込まれた矢印付き太線の向きに電流が流れてキャパシタC3の電圧VC3は上昇する。かつ、蓄電池B1とB2とB3との直列接続の電圧が、前工程の第1の状態で蓄えられたキャパシタC2とC3の合計電圧よりも高いので、
図17に書き込まれた矢印付き太線の向きに電流が流れてキャパシタC2の電圧VC2は上昇する。一方、キャパシタC2およびC3以外のキャパシタの電圧は、電流経路が無いので電圧が保持される。
図16Aの電圧VC2および電圧VC3の波形で示したように、時間軸における状態S32の期間において、電圧VC2および電圧VC3は状態S31の期間よりも高い傾きで上昇する。
【0083】
次に
図6Aの時間軸における状態S33の期間のスイッチ素子の状態は、既に説明した
図9と同様である。スイッチ素子Sb1~Sb7がオン状態で、他のスイッチ素子が全てオフ状態であり、蓄電池B2~B7とキャパシタC1~C6がそれぞれ一つずつ並列に接続された状態を第3の接続状態とする。この接続状態は、前述の第2の制御における第2の接続状態と同じである。
図9に書き込まれた矢印付き太線は、選択した蓄電池B4の充電に関わる電流のループを示しており、キャパシタC3は蓄電池B4に加増された充電電流を供給する。かつ、キャパシタC2は蓄電池B3に加増された充電電流を供給する。
図16Aの電圧VC2および電圧VC3の波形で示したように、時間軸における状態S33の期間において、電圧VC2および電圧VC3は下降する。前工程の第2の接続状態で、キャパシタC2およびキャパシタC3は高い電圧に充電されているので、蓄電池B3および蓄電池B4に流れる充電電流は、第2の接続状態が無いときよりも加増される。このように状態S33では、出力電圧が低下した第1蓄電池である蓄電池B4だけでなく、隣の蓄電池B3にも加増された充電電流が供給される。
【0084】
次に
図6Aの時間軸における状態S34の期間のスイッチ素子の状態を
図18に示す。この工程では選択されたキャパシタC4を前工程の終止電圧よりも高い電圧に充電し、かつ、キャパシタC5を前工程の終止電圧よりも高い電圧に充電する。スイッチ素子Sb4とSq4とSq5とがオン状態で、他のスイッチ素子が全てオフ状態であり、蓄電池B5と蓄電池B6の直列接続の電圧がキャパシタC4と抵抗Rq4とスイッチ素子Sq4の直列接続部に印加された状態であって、かつ、蓄電池B5と蓄電池B6と蓄電池B7の直列接続の電圧がキャパシタC4およびキャパシタC5と抵抗Rq6とスイッチ素子Sq5の直列接続部に印加された状態を第4の接続状態とする。この第4の接続状態では、蓄電池B5とB6の直列接続の電圧が、前工程の第3の状態で蓄えられたキャパシタC4の電圧値よりも高いので、
図18に書き込まれた矢印付き太線の向きに電流が流れてキャパシタC4の電圧VC4は上昇する。かつ、第4の接続状態では、蓄電池B5とB6とB7の直列接続の電圧が、前工程の第3の状態で蓄えられたキャパシタC4とC5の合計電圧よりも高いので、
図18に書き込まれた矢印付き太線の向きに電流が流れてキャパシタC5の電圧VC5は上昇する。一方、キャパシタC4、C5以外のキャパシタの電圧は、電流経路が無いので電圧が保持される。
図16Aの電圧VC4および電圧VC5の波形で示したように、時間軸における状態S34の期間において、状態S33の期間よりも高い傾きで上昇する。
【0085】
図16A、
図16Bに示したように、第4の接続状態の次の工程は前述した第1の接続状態に戻る。前工程の第4の接続状態で、キャパシタC4、C5は高い電圧に充電されているので、第1の接続状態で蓄電池B4、B5に流れる充電電流は第4の接続状態が無いときよりも加増される。このように状態S31では、出力電圧が低下した第1蓄電池である蓄電池B4だけでなく、隣の蓄電池B5にも加増された充電電流が供給される。
【0086】
こうした一連の工程を繰り返すことで、選択した第1蓄電池の充電電流を加増できる。さらに、
図16Aおよび
図16Bに示した第1蓄電池の充電電流加増手法(第1の制御)は、第1蓄電池の近くに配置された蓄電池への充電電流も加増するので、
図6Aおよび
図6Bで示した手法と比べて、第1蓄電池の近くに配置された蓄電池の消耗を抑制することができ、蓄電池間の電圧バランスをより良好に保つことができる。
【0087】
(変形例)
図19に実施の形態の変形例に係る蓄電装置100の回路図の例を示す図である。同図において全てのスイッチ素子は、それぞれ単独のMOS型電界効果トランジスタ(MOSFET)で構成できる。また、
図1において第2スイッチ回路3のそれぞれのスイッチ素子と直列に接続された抵抗は、
図19ではMOSFETのオン抵抗で代用している。前述の選択した第1蓄電池の組蓄電池1おける接続順位によって第2スイッチ回路3で加増する電流量を変える設定についても、
図19では、MOSFETのオン抵抗を変えることで最適化できる。なお、IC(半導体集積回路)の場合、内蔵するMOSFETのオン抵抗はゲート長とゲート幅の設定で自由に定めることができる。
【0088】
以上説明してきたように、本開示の一形態における電池管理回路10は、複数の蓄電池B1~B7および複数のキャパシタC1~C6を有する蓄電装置100を管理する電池管理回路10であって、複数のキャパシタC1~C6のうちの第1キャパシタと、複数の蓄電池B1~B7のうちの第1蓄電池とを並列に接続する第1スイッチ回路2と、第1キャパシタと、第1蓄電池以外の2以上の直列の蓄電池とを並列に接続する第2スイッチ回路3と、第1スイッチ回路2による接続と第2スイッチ回路3による接続とを繰り返し切り替える第1の制御を行う制御回路4と、を備える。
【0089】
これにより、第1キャパシタから第1蓄電池に対して蓄電池1個分の電圧よりも高い電圧が印加されるので、特に第1蓄電池に対する充電電流を加増することができ、均等化に要する時間を短縮することができる。
【0090】
ここで、第1蓄電池は、複数の蓄電池のうちの所定値より低い出力電圧を有する蓄電池であってもよい。
【0091】
これによれば、所定値より低い出力電圧を有する蓄電池に対して、電圧回復に要する時間を短縮することができる。
【0092】
また、制御回路4は、前記複数の蓄電池のうち所定値より低い出力電圧を有する蓄電池を、前記第1蓄電池として選択してもよいし、最も低い出力電圧を有する蓄電池を、第1蓄電池として選択してもよい。また、制御回路4は、第1蓄電池として、複数の蓄電池から1つの蓄電池を順番に選択してもよい。
【0093】
ここで、第1スイッチ回路2は、複数の蓄電池と複数のキャパシタとの間で、各キャパシタに蓄電池を1対1で並列に接続する第1の接続状態と、第1の接続状態とは異なる組み合わせで各キャパシタに蓄電池を1対1で並列に接続する第2の接続状態と、を有し、制御回路4は、さらに、第1の接続状態と第2の接続状態とを繰り返し切り替える第2の制御を行ってもよい。
【0094】
ここで、制御回路4は、第1の制御において、第1の接続状態、第2の接続状態、および、第2スイッチ回路3による接続を順に切り替える。
【0095】
これによれば、第1の制御において、複数の蓄電池の電圧を均等化する動作と並行して、第1蓄電池への充電電流を加増することができる。
【0096】
ここで、制御回路4は、第1の制御において、第1の接続状態、第2スイッチ回路3による接続、第2の接続状態、および、第2スイッチ回路3による接続の順に切り替えてもよい。
【0097】
これによれば、第1の制御において、複数の蓄電池の電圧を均等化する動作と並行して、第1蓄電池への充電電流を加増することができる。
【0098】
ここで、制御回路4は、第1の制御として、第1スイッチ回路2による第1の接続状態または第2の接続状態と、第2スイッチ回路3による接続とを繰り返し切り替えてもよい。
【0099】
ここで、第1の接続状態は、第1キャパシタと第1蓄電池との並列接続を含み、第2の接続状態は、複数のキャパシタのうちの第2キャパシタと第1蓄電池との並列接続を含み、第2スイッチ回路3は、第1キャパシタと第1蓄電池以外の2以上の直列の蓄電池とを並列に接続する第3の接続状態と、第2キャパシタと第1蓄電池以外の2以上の直列の蓄電池とを並列に接続する第4の接続状態と、を有し、制御回路4は、第1の制御として、第1の接続状態、第3の接続状態、第2の接続状態、および、第4の接続状態を順次切り替えてもよい。
【0100】
これによれば、第1の制御において、電圧均等化と、第1蓄電池への充電電流の加増とを並行して行い、かつ、複数の蓄電池間の電圧均等化をバランス良くすることができる。
【0101】
ここで、第1蓄電池以外の2以上の直列の蓄電池は、第1蓄電池に直列接続された隣の蓄電池を含んでもよい。
【0102】
ここで、第2スイッチ回路3は、スイッチ素子を有し、スイッチ素子は、第1キャパシタと第1蓄電池以外の2以上の直列の蓄電池とを並列接続するための回路ループを構成してもよい。
【0103】
ここで、回路ループは、回路ループを流れる電流を規制するための抵抗素子を有してもよい。
【0104】
これによれば、充電電流の加増による過充電を抑制することができる。
【0105】
ここで、第2スイッチ回路3は、複数の蓄電池B1~B7と複数のキャパシタC1~C6との間で、各キャパシタに2以上の直列の蓄電池を並列に接続する1対多接続をするための複数のスイッチ素子を有し、複数のスイッチ素子は、キャパシタと2以上の直列の蓄電池とを並列接続するための複数の回路ループを構成してもよい。
【0106】
ここで、各スイッチ素子は、回路ループを流れる電流を規制するためのオン抵抗を有するトランジスタであり、複数の回路ループのうちの第1の回路ループ内のスイッチ素子のオン抵抗の値は、他の回路ループ内のスイッチ素子のオン抵抗の値と異なっていてもよい。
【0107】
これによれば、例えば、直列接続された複数の蓄電池の配置位置に応じて、加増する充電電流の大きさを適切に設計することできる。
【0108】
また本開示の一形態における電池管理回路10は、複数の蓄電池および複数のキャパシタを有する蓄電装置を管理する電池管理回路であって、複数の蓄電池と複数のキャパシタとの間で、キャパシタに蓄電池を1対1で並列に接続する1対1接続を行う第1スイッチ回路2と、複数の蓄電池と複数のキャパシタとの間で、キャパシタに2以上の直列の蓄電池を並列に接続する1対多接続を行う第2スイッチ回路3と、第1スイッチ回路2による接続と第2スイッチ回路3による接続とを繰り返し切り替える第1の制御と、1対1接続がなされる第1接続状態と第1接続状態におけるキャパシタと蓄電池との組み合わせと異なる組み合わせの1対1接続がなされる第2接続状態とを繰り返し切り替える第2の制御とを選択的に行う制御回路4と、を備える。
【0109】
これにより、蓄電池1個分の電圧よりも高い電圧が印加される第1の制御と、複数の蓄電池の電圧を均等化する第2の制御とを選択的に行う。第1の制御では、特に充電電流を加増することができ、均等化に要する時間を短縮することができる。
【0110】
ここで、制御回路4は、複数の蓄電池のうち所定値より低い出力電圧を有する蓄電池を第1蓄電池として選択し、第1対1接続は、複数のキャパシタ中の第1キャパシタと、第1蓄電池との並列接続を含み、1対多接続は、第1キャパシタと、複数の蓄電池中の第1蓄電池以外の2以上の直列の蓄電池との並列接続を含んでいてもよい。
【0111】
ここで、制御回路4は、第1の制御において、第1接続状態と第2接続状態との間に、第2スイッチ回路3による1対多接続をする状態を挿入するように第1スイッチ回路2および第2スイッチ回路3を制御してもよい。
【0112】
ここで、第2スイッチ回路3は、第1キャパシタと複数の蓄電池中の第1蓄電池以外の2以上の直列の蓄電池との並列接続を含む第3接続状態と、複数のキャパシタ中の第2キャパシタと、複数の蓄電池中の第1蓄電池以外の2以上の直列の蓄電池との並列接続を含む第4接続状態と、を含み、制御回路4は、第2の電圧均等化制御として、第1接続状態、第3接続状態、第2接続状態および第4接続状態を順次繰り返し切り替えてもよい。
【0113】
ここで、蓄電装置100は、上記の電池管理回路10と複数の蓄電池と複数のキャパシタとを有する。
【0114】
これによれば、第1キャパシタから第1蓄電池に対して蓄電池1個分の電圧よりも高い電圧が印加されるので、特に第1蓄電池に対する充電電流を加増することができ、均等化に要する時間を短縮することができる。
【0115】
以上、一つまたは複数の態様に係る電池管理回路10および蓄電装置100について、実施の形態に基づいて説明したが、本開示は、この実施の形態に限定されるものではない。本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、一つまたは複数の態様の範囲内に含まれてもよい。
【符号の説明】
【0116】
1 組蓄電池
2 第1スイッチ回路
3 第2スイッチ回路
4 制御回路
5 電圧検出回路
6 容量素子群
10 電池管理回路
100 蓄電装置
B1~B7 蓄電池
C1~C6 キャパシタ
Sa1~Sa7,Sb1~Sb7,Sp2~Sp6,Sq1~Sq5 スイッチ素子
Rp2~Rp6,Rq1~Rq5 抵抗