IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ レスメド・リミテッドの特許一覧

特許7576977呼吸障害を治療する装置および装置の制御器における動作方法
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-10-24
(45)【発行日】2024-11-01
(54)【発明の名称】呼吸障害を治療する装置および装置の制御器における動作方法
(51)【国際特許分類】
   A61M 16/00 20060101AFI20241025BHJP
【FI】
A61M16/00 345
A61M16/00 305A
A61M16/00 315
【請求項の数】 11
【外国語出願】
(21)【出願番号】P 2020216607
(22)【出願日】2020-12-25
(62)【分割の表示】P 2017549200の分割
【原出願日】2016-03-17
(65)【公開番号】P2021062230
(43)【公開日】2021-04-22
【審査請求日】2021-01-21
【審判番号】
【審判請求日】2022-11-22
(31)【優先権主張番号】2015901014
(32)【優先日】2015-03-20
(33)【優先権主張国・地域又は機関】AU
(73)【特許権者】
【識別番号】500046450
【氏名又は名称】レスメド・プロプライエタリー・リミテッド
(74)【代理人】
【識別番号】100099623
【弁理士】
【氏名又は名称】奥山 尚一
(74)【代理人】
【識別番号】100125380
【弁理士】
【氏名又は名称】中村 綾子
(74)【代理人】
【識別番号】100142996
【弁理士】
【氏名又は名称】森本 聡二
(72)【発明者】
【氏名】バシン,デイヴィッド・ジョン
【合議体】
【審判長】平瀬 知明
【審判官】安井 寿儀
【審判官】近藤 利充
(56)【参考文献】
【文献】国際公開第2013/152403(WO,A1)
【文献】特表2001-522662(JP,A)
【文献】特開2005-103311(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61M 16/00
(57)【特許請求の範囲】
【請求項1】
患者における呼吸障害を治療する装置であって、
空気流れを正の圧力で患者インターフェースを介して前記患者の気道へ供給するように構成された圧力生成器と、
前記患者の呼吸流量を示す信号を生成するように構成されたセンサーと、
換気治療を前記患者インターフェースへ提供するように前記圧力生成器を制御することであって、該換気治療は少なくともベース圧力を達成するある圧力での前記空気流れを供給することを含むものであることと、前記呼吸流量を示す信号から無呼吸を検出することと、前記無呼吸時の漏洩流量を推測することと、前記無呼吸に応答して前記換気治療のベース圧力の設定点の値を調整することであって、ここで前記無呼吸に応答しての前記ベース圧力の設定点の値への変化は前記無呼吸時の推測された漏洩流量の関数によって低減されることとを行うように構成された制御器と
を含む装置。
【請求項2】
記無呼吸に応答して前記ベース圧力の前記設定点の値は増大するが、前記推測された漏洩流量が増加するにつれて、前記設定点の値の増大はより小さくなる、請求項1に記載の装置。
【請求項3】
前記無呼吸に応答して前記換気治療のベース圧力の前記設定点の値を調整するために、前記制御器は、
前記無呼吸の有効持続期間を前記無呼吸時の前記推測された漏洩流量に応じて計算することと、
前記無呼吸の前記有効持続期間に基づいて前記ベース圧力の前記設定点の値を調整することと
を含み、
前記推測された漏洩流量が増加するにつれて、前記無呼吸の前記有効持続期間は前記無呼吸についての絶対持続期間よりさらに短くなる、請求項1又は2に記載の装置。
【請求項4】
記無呼吸に応答して前記ベース圧力の前記設定点の値は増大するが、前記無呼吸の前記有効持続期間が短くなるのにつれて、前記設定点の値の増大はより小さくなる、請求項3に記載の装置。
【請求項5】
前記無呼吸の前記有効持続期間を計算するために、前記制御器は、各無呼吸の検出の間隔について、
前記無呼吸検出の間隔の時に前記推測された漏洩流量に基づいて重み付け低減係数を計算し、
前記重み付け低減係数を用いて前記無呼吸の前記有効持続期間を増加させ、ここで前記無呼吸の検出の間隔は、前記制御器が前記無呼吸の検出を行う際の間隔である
ように構成される、請求項3又は4に記載の装置。
【請求項6】
前記無呼吸検出の間隔は、前記制御器が前記無呼吸の検出を実行する際の周波数の逆数であり、
前記重み付け低減係数は、前記推測された漏洩流量の増加につれて減少する、請求項5に記載の装置。
【請求項7】
前記重み付け低減係数は、前記推測された漏洩流量の増加と共に1から0へ減少する、請求項5又は6に記載の装置。
【請求項8】
患者インターフェースを通じて患者に換気治療を生成するように構成された装置の制御器の動作方法であって、ここで前記換気治療は少なくともベース圧力を達成するある圧力での前記空気流れを供給することを含み、
前記装置の前記制御器が、前記患者の呼吸流量を示すセンサー信号から無呼吸を検出することと、
前記制御器が、前記無呼吸時の漏洩流量を推測することと、
前記制御器が、前記無呼吸に応答して前記換気治療のベース圧力の設定点の値を調整することであって、ここで前記無呼吸に応答しての前記ベース圧力の設定点の値への変化は前記無呼吸時の推測された漏洩流量の関数によって低減されることと
を含む方法。
【請求項9】
前記無呼吸に応答して前記換気治療のベース圧力の前記設定点の値を調整することは、
前記制御器が、前記無呼吸の有効持続期間を前記無呼吸時の前記推測された漏洩流量に応じて計算することと、
前記制御器が、前記無呼吸の前記有効持続期間に基づいて前記ベース圧力の前記設定点の値を調整することと
を含み、
記無呼吸に応答して前記ベース圧力の前記設定点の値は増大するが前記推測された漏洩流量が増加するにつれて、前記設定点の値の増大はより小さくなり、前記推測された漏洩流量が増加するにつれて、前記無呼吸の前記有効持続期間は前記無呼吸についての絶対持続期間よりさらに短くなる、請求項8に記載の方法。
【請求項10】
前記有効持続期間を計算することは、各無呼吸検出間隔について、
前記制御器が、前記無呼吸検出の間隔時の前記推測された漏洩流量に基づいて重み付け低減係数を計算することと、
前記制御器が、前記重み付け低減係数を用いて前記無呼吸の現在の有効持続期間を増加させ、ここで前記無呼吸検出間隔は、前記制御器が前記無呼吸の検出を行う際の間隔であることと
を含む、請求項9に記載の方法。
【請求項11】
前記制御器が、前記制御器で計算された前記重み付け低減係数を、前記推測された漏洩流量の増加と共に1から0へ減少させる、請求項10に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
1 関連出願への相互参照
本出願は、2015年3月20日に出願されたオーストラリア仮出願第2015901014号の恩恵を主張する。本明細書中、同文献の開示内容全体を参考のため援用する。
【0002】
2 連邦支援による研究または開発に関する声明
適用無し
【0003】
3 共同研究開発に対するは団体名
適用無し
【0004】
4 配列表
適用無し
【0005】
5.1 発明の分野
本技術は、呼吸関連疾患の検出、診断、治療、回避および改善のうち1つ以上に関する。本技術はまた、医療デバイスまたは装置あるいはその用途に関する。
【背景技術】
【0006】
5.2.1 ヒトの呼吸系およびその疾患
身体の呼吸系は、ガス交換を促進させる。鼻および口腔は、患者の気道への入口を形成する。
【0007】
これらの気道は、一連の分岐する管を含み、これらの管は、肺の奥深くに進むほど狭く、短くかつ多数になる。肺の主要な機能はガス交換であり、空気から酸素を静脈血中へ取り入れさせ、二酸化炭素を退出させる。気管は、右および左の主気管支に分かれ、これらの主気管支はさらに分かれて、最終的に終末細気管支となる。気管支は、伝導のための気道を構成するものであり、ガス交換には関与しない。気道がさらに分割されると呼吸細気管支となり、最終的には肺胞となる。肺の肺胞領域においてガス交換が行われ、この領域を呼吸ゾーンと呼ぶ。以下を参照されたい:「Respiratory Physiology」, by John B. West, Lippincott Williams & Wilkins, 9th edition published 2011。
【0008】
一定範囲の呼吸疾患が存在している。特定の疾患は、特定の発症(例えば、無呼吸、呼吸低下および過呼吸)によって特徴付けられ得る。
【0009】
閉塞性睡眠時無呼吸(OSA)は、睡眠呼吸障害(SDB)の1つの形態であり、睡眠時の上通気道の閉鎖または妨害などの発症によって特徴付けられる。睡眠時の異常に小さな上側気道および舌領域における筋緊張の正常欠損、軟口蓋および後中咽頭壁の組み合わせに起因する。このような状態に起因して、患者の呼吸停止が典型的には30~120秒にわたり、ときには一晩に200~300回も呼吸が停止する。その結果、日中の眠気が過度になり、心血管疾患および脳損傷の原因になり得る。この症候は一般的な疾患であり、特に中年の過体重の男性に多いが、患者に自覚症状は無い。米国特許第4,944,310号(Sullivan)を参照されたい。
【0010】
チェーンストークス呼吸(CSR)は、別の形態の睡眠呼吸障害である。CSRは、患者の呼吸調節器の疾患であり、CSRサイクルとして知られる換気の漸増および漸減が交互に周期的に続く。CSRは、動脈血の脱酸素および再曝気の繰り返しによって特徴付けられる。CSRは、低酸素の繰り返しに起因して有害になる可能性がある。患者によっては、CSRに関連して睡眠から何度も目覚める者もおり、不眠が深刻化し、交感神経作用が増加し、後負荷が増加する。米国特許第6,532,959号(Berthon-Jones)を参照されたい。
【0011】
呼吸不全とは呼吸障害の総称であり、患者の代謝活性が安静時を大幅に上回ると、換気不可能になり、患者血液中のCOのバランスがとれなくなる。呼吸不全は、以下の状態全てを包含する。
【0012】
肥満過換気症候群(OHS)は、低換気の原因が他に明確に無い状態における、深刻な肥満および覚醒慢性高炭酸ガス血症の組み合わせとして定義される。症状を挙げると、呼吸困難、起床時の頭痛および日中の過度の眠気がある。
【0013】
慢性閉塞性肺疾患(COPD)は、特定の共通する特性を有する下部気道疾患のグループのうちのいずれも包含する。そのような特性を挙げると気動に対する抵抗増加、呼吸の呼気相の増加、および肺の通常の弾性の喪失がある。COPDの例として、気腫および慢性気管支炎がある。COPDの原因としては、慢性喫煙(第一危険因子)、職業被ばく、空気汚染および遺伝因子がある。症状を挙げると、労作時の呼吸困難、慢性咳および痰生成がある。
【0014】
神経筋疾患(NMD)は、内在筋病理を直接介してまたは神経病理を間接的に介して筋肉機能を損なう多数の疾病および病気を包含する広範な用語である。NMD患者の中には、進行性の筋肉障害によって特徴付けられる者もあり、結果的に歩行不可能、車椅子への束縛、嚥下困難、呼吸筋肉の弱体化に繋がり、最終的には呼吸不全による死亡に繋がる。神経筋肉障害は、以下の速く進行するものとゆっくり進行するものとに区分され得る:(i)速く進行する障害:数ヶ月かけて悪化する筋肉障害によって特徴付けられ、数年内に死亡に繋がる(例えば、ティーンエージャーにおける筋萎縮性側索硬化症(ALS)およびデュシェンヌ筋ジストロフィー(DMD));(ii)不定のまたはゆっくり進行する障害:数年かけて悪化する筋肉障害によって特徴付けられ、平均余命が若干低減するだけである(例えば、肢帯、顔面肩甲上腕型および筋緊張性筋ジストロフィー)。NMDにおける呼吸不全症状を以下に挙げる:全般的衰弱の増加、嚥下障害、労作および安静時の呼吸困難、疲労、眠気、起床時の頭痛、および集中および気分の変化の困難。
【0015】
胸壁障害は、胸郭変形の1つのグループであり、呼吸筋肉と胸郭との間の連結の無効性の原因となる。これらの障害は、拘束性障害によって主に特徴付けられ、長期の炭酸過剰性呼吸不全の可能性を共有する。脊柱側湾症および/または脊柱後側弯症は、深刻な呼吸不全を引き起こし得る。呼吸不全の症状を以下に挙げる:労作時の呼吸困難、末梢浮腫、起座呼吸、胸部感染症の再発、起床時の頭痛、疲労、睡眠の質の低下、および食欲不振。
【0016】
このような状態を治療または改善するために、一定範囲の治療が用いられている。さらに、その他の点では健康な個人も、呼吸疾患の予防治療を有利に利用することができる。しかし、これらにおいては、複数の欠陥がある。
【0017】
5.2.2 治療
経鼻的持続陽圧呼吸(CPAP)療法が、閉塞性睡眠時無呼吸(OSA)の治療において用いられている。その作用機構としては、例えば軟口蓋および舌を押して後中咽頭壁へ前進または後退させることにより、経鼻的持続陽圧呼吸療法が空気スプリントとして機能し、これにより上側気道の閉鎖を回避する。CPAP治療によるOSAの治療は自発的なものであり得るため、このような患者が治療の提供に用いられるデバイスについて以下のうち1つ以上に気づいた場合、患者が治療を遵守しないことを選択する可能性がある:不快、使用困難、高価、美観的な魅力の無さ。
【0018】
非侵襲的換気(NIV)は、換気支援を上気道を通じて患者へ提供して、呼吸機能の一部または全体を行うことにより患者の呼吸の支援および/または身体中の適切な酸素レベルの維持を提供する。換気支援が、非侵襲的患者インターフェースを介して提供される。NIVは、OHS、COPD、NMD、および胸壁障害などの形態のCSRおよび呼吸不全の治療に用いられている。いくつかの形態において、これらの治療の快適性および有効性が向上し得る。
【0019】
患者に対し、特に睡眠状態および/または鎮静下において非侵襲的換気が施された場合、OSAなどのように上気道の不安定性および崩壊に繋がる場合が多い。このような不安定性および崩壊が有る場合、換気装置から肺に実際に到達する圧力が低下またはさらには無効になるため、換気治療の有効性に妥協が生じる可能性がある。
【0020】
上気道は、正の圧力(本明細書中EPAPと呼ぶ)を維持することによって安定化され得、その結果換気支援が重畳される。EPAPが無効になった場合、上気道崩壊に繋がり、EPAPが過度になった場合、上気道が完全に安定化し得るものの、快適性に悪影響が生じ得、マスク漏洩が促進され得、あるいは心臓血管合併症に繋がり得る。悪い副作用を回避しつつ、睡眠状態、姿勢、鎮静レベルおよび疾病進行において上気道の安定性を全般的に維持するのに充分なEPAPを選択するタスク(EPAPタイトレーションとして知られるタスク)は、睡眠ポリグラフ(PSG)全体を研究した経験豊富な臨床医にとっても大きな困難である。適切にタイトレーションが行われたEPAPは、極値間のバランスであり、閉塞イベントを全て回避するものでは必ずしもない。NIVは世界的に使用が普及し続けているものの、EPAPタイトレーションについてのPSG研究の恩恵を利用しつつNIVを受けている患者はごく僅かである。より急性の環境においては、非侵襲的換気の有効性に対する睡眠および鎮静の効果の認識は、歴史的に限られている。
【0021】
そのため、NIV患者の上気道の状態変化に対して動的に応答してEPAPの自動調整(すなわち、「EPAP自動タイトレーション」の実行)を行うことが可能なNIV治療が、切実に必要とされている。
【0022】
5.2.3 治療システム
これらの治療は、治療システムまたはデバイスによって提供され得る。このようなシステムおよびデバイスは、症状を治療することなく診断するためにも、用いられ得る。
【0023】
治療システムは、呼吸圧力療法デバイス(RPTデバイス)、空気回路、加湿器、患者インターフェイス、およびデータ管理を含み得る。
【0024】
5.2.3.1 患者インターフェイス
患者インターフェイスは、例えば気道入口への空気流れを提供することにより呼吸装具へのインターフェイスを装着者へ提供するために、用いられ得る。空気流れは、鼻および/または口腔へのマスク、口腔への管、または患者気管への気管切開管を介して提供され得る。適用される療法に応じて、患者インターフェイスは、例えば患者の顔の領域との密閉部を形成し得、これにより、療法実行のための雰囲気圧力と共に充分な分散の圧力において(例えば、例えば雰囲気圧力に対して約10cmHOの正の圧力において)ガス送達を促進する。酸素送達などの他の治療形態において、患者インターフェースは、約10cmHOの正の圧力において気道へのガス供給の送達を促進するのに充分な密閉を含まない場合がある。
【0025】
5.2.3.2 呼吸圧力療法(RPT)デバイス
空気圧力生成器は、一定範囲の用途(産業規模の換気システム)において公知である。しかし、医療用途の空気圧生成器の場合、より一般的な空気圧生成器では満たせない特定の要求がある(例えば、医療デバイスの信頼性、サイズおよび重量要求)。加えて、医療用途向けに設計されたデバイスであっても、以下のうち1つ以上に関する欠点がある場合がある:快適性、ノイズ、使い易さ、有効性、サイズ、重量、製造可能性、コストおよび信頼性。
【0026】
睡眠呼吸障害の治療に用いられる1つの公知のRPTデバイスとして、ResMed Limitedによって製造されるS9睡眠療法システムがある。RPTデバイスの別の例として換気装置がある。成人および小児用の換気装置のResMed Stellar(登録商標)シリーズなどの換気装置は、複数の状態(例を非限定的に挙げると、NMD、OHSおよびCOPD)の治療のために一定範囲の患者のために侵襲的および非侵襲的な非依存的換気の支援を提供し得る。
【0027】
ResMedElisee(登録商標)150の換気装置およびResMedVSIII(登録商標)換気装置は、複数の症状を治療するために成人患者または小児患者の侵襲的かつ非侵襲的な依存的換気に適した支援を提供し得る。これらの換気装置は、シングルまたはダブルリムの回路を用いて、容積および気圧換気モードを提供する。RPTデバイスは典型的には、圧力生成器(例えば、電動送風器または加圧ガス貯蔵器)を含み、患者の気道へ空気流れを供給するように構成される。いくつかの場合において、空気流れは、正の圧力で患者気道へ供給され得る。RPTデバイスの出口は、空気回路を介して上記したような患者インターフェースへ接続される。
【0028】
5.2.3.3 加湿器
空気流れの送達を加湿無しで行った場合、気道の乾燥を引き起こし得る。加湿器をRPTデバイスおよび患者インターフェイスと共に使用すると、加湿ガスが生成されるため、鼻粘膜の乾燥が最小化され、患者気道の快適性が増す。加えて、より冷たい天候においては、患者インターフェイスおよびその周囲において顔面に温風を当てると、冷風よりも快適性が得られる場合が多い。一定範囲の人工加湿デバイスおよびシステムが公知であるものの、医療加湿器の特殊な要求を満たせていない。
【発明の概要】
【課題を解決するための手段】
【0029】
本技術は、呼吸疾患の診断、改善、治療または回避において用いられる医療デバイスの提供に関連し、これらの医療デバイスは、向上した快適性、コスト、有効性、使い易さおよび製造可能性のうち1つ以上を有する。
【0030】
本技術の第1の様態は、呼吸障害の診断、改良、治療または回避に用いられる装置に関連する。
【0031】
本技術の別の様態は、呼吸障害の診断、改良、治療または回避において用いられる方法に関連する。
【0032】
本技術は、適用された換気支援が患者の肺に到達できるように、上気道安定性を維持するために換気のベース圧力の自動的タイトレーションを行う、呼吸障害のための換気治療の方法および装置を含む。自動タイトレーションにより、検出された無呼吸の重症度および/または流れ制限のエピソードに一般的に比例する量だけベース圧力が増加し、このようなエピソードが無い場合、ベース圧力が最小値へ低下する。
【0033】
本技術の1つの形態において、流れ制限に起因するベース圧力の増加量は、現在の換気の測定値に依存する。現在の換気が期待される正常換気を超えた場合、この増加量は割り引かれ得る。代替的にまたは追加的に、現在の換気が期待される正常換気を下回った場合、この増加量は増幅され得る。詳細には、この増幅量は、流れが制限された有意な低換気の最近検出された持続性に依存し得る。
【0034】
本技術の1つの形態において、検出された無呼吸に起因するベース圧力の増加量は、無呼吸時の漏洩流の推測量によって重み付けされる。あるいは、増加量は、無呼吸時において期待される正常換気を超える換気量によって重み付けしてもよい。
【0035】
本技術の1つの形態において、無呼吸を終了させるために満たすことが必要な無呼吸開始の基準と異なるさらなる基準が用いられるよう、無呼吸がヒステリシスと共に検出される。
【0036】
本技術の1つの形態において、エピソードにおいて、無呼吸として検出および治療された患者呼吸流量の誤った推測によって同時発生する無呼吸がマスクされたために、漏洩流量が誤モデル化(mismodel)される。
【0037】
本技術の1つの形態において、複数の典型的な流れが制限された吸気波形それぞれに対する吸気波形の類似性の度合いを計算し、最大度合いの類似性をとることにより、吸気波形の流れ制限の測定値が検出される。類似性の度合いは、吸気波形の中央部分から抽出された特徴から計算され得る。
【0038】
本技術の1つの形態は、患者における呼吸障害を治療する装置を含む。この装置は、空気流れを正の圧力で患者インターフェースを介して患者の気道へ供給するように構成された圧力生成器を含み得る。装置は、患者の呼吸流量を示す信号を生成するように構成されたセンサーを含み得る。装置は、制御器を含み得る。制御器は、患者インターフェースへベース圧力を有する換気治療を提供するように圧力生成器を制御するように、構成され得る。制御器は、患者の換気の測定値を呼吸流量を示す信号から計算するように、構成され得る。制御器は、流れ制限の測定値を呼吸流量信号の吸気部分から計算するように、構成され得る。制御器は、換気の測定値と期待される正常換気との比を計算するように、構成され得る。制御器は、換気治療のベース圧力の設定点を流れ制限の測定値に基づいて調整するように、構成され得る。調整は、比と、流れ制限の測定値の増加と共に増加する相対的な換気閾値との間の比較にさらに依存し得る。
【0039】
本技術の1つの形態は、患者における呼吸障害を治療する装置を含む。装置は、空気流れを正の圧力で患者インターフェースを介して患者の気道へ供給するように構成された圧力生成器を含み得る。装置は、患者の呼吸流量を示す信号を生成するように構成されたセンサーを含み得る。装置は、制御器を含み得る。制御器は、ベース圧力を有する換気治療を患者インターフェースへ提供するように圧力生成器を制御するように、構成され得る。制御器は、呼吸流量を示す信号から無呼吸を検出するように、構成され得る。制御器は、無呼吸時に漏洩流量を推測するように、構成され得る。制御器は、無呼吸時に推測された漏洩流量に基づいて無呼吸に応答して換気治療のベース圧力の設定点を調整するように、構成され得る。
【0040】
本技術の1つの形態は、患者における呼吸障害を治療する方法を含む。この方法は、換気装置を用いて患者インターフェースを通じて患者への換気治療をベース圧力を有する換気治療を制御することを含み得る。この方法は、換気装置の制御器において患者の呼吸流量を示すセンサー信号から無呼吸を検出することを含み得る。方法は、無呼吸時の漏洩流量を推測することを含み得る。方法は、制御器において無呼吸に応答して無呼吸時の漏洩流量の推測に基づいて換気治療のベース圧力の設定点を調整することを含み得る。
【0041】
本技術の1つの形態は、患者における呼吸障害を治療する装置を含む。装置は、空気流れを正の圧力で患者インターフェースを介して患者の気道へ供給するように構成された圧力生成器を含み得る。装置は、患者の呼吸流量を示す信号を生成するように構成されたセンサーを含み得る。装置は、制御器を含み得る。制御器は、換気治療をベース圧力を有する換気治療を患者へ提供するように圧力生成器を制御するように、構成され得る。制御器は、呼吸流量を示す信号から無呼吸を検出するように、構成され得る。制御器は、患者の換気の測定値を呼吸流量を示す信号から計算するように、構成され得る。制御器は、無呼吸に応答して無呼吸時の換気の測定値に基づいて換気治療のベース圧力の設定点を調整するように、構成され得る。
【0042】
本技術の1つの形態は、患者における呼吸障害を治療する方法を含む。方法は、換気装置を用いて患者インターフェースを通じて患者への換気治療をベース圧力を有する換気治療を制御することを含み得る。方法は、換気装置の制御器において患者の呼吸流量を示すセンサー信号から無呼吸を検出することを含み得る。方法は、呼吸流量を示す信号から無呼吸時の患者の換気の測定値を計算することを含み得る。方法は、換気装置の制御器において無呼吸に応答して無呼吸時の換気の測定値に基づいて換気治療のベース圧力の設定点を調整することを含み得る。
【0043】
本技術の1つの形態は、患者における呼吸障害を治療する装置を含む。装置は、空気流れを正の圧力で患者インターフェースを介して患者の気道へ供給するように構成された圧力生成器を含み得る。装置は、患者の呼吸流量を示す信号を生成するように構成されたセンサーを含み得る。装置は、制御器を含み得る。制御器は、換気治療を患者インターフェースへベース圧力を有する換気治療を提供するように圧力生成器を制御するように、構成され得る。制御器は、呼吸流量を示す信号から無呼吸を検出するように構成され得、検出することは、ヒステリシスを含む。制御器は、検出された無呼吸に応答して換気治療のベース圧力の設定点を調整するように、構成され得る。
【0044】
本技術の1つの形態は、患者における呼吸障害を治療する方法を含む。方法は、換気装置を用いて患者インターフェースを通じて患者への換気治療をベース圧力を有する換気治療を制御することを含み得る。方法は、換気装置の制御器において患者の呼吸流量を示すセンサー信号から無呼吸を検出することを含み得る。検出することは、ヒステリシスを含む。方法は、制御器において検出された無呼吸に応答して換気治療のベース圧力の設定点を調整することを含み得る。
【0045】
本技術の1つの形態は、患者における呼吸障害を治療する装置を含む。装置は、空気流れを正の圧力で患者インターフェースを介して患者の気道へ供給するように構成された圧力生成器を含み得る。装置は、患者の呼吸流量を示す信号を生成するように構成されたセンサーを含み得る。装置は、制御器を含み得る。制御器は、換気治療を患者へベース圧力を有する換気治療を提供するように圧力生成器を制御するように、構成され得る。制御器は、患者インターフェースにおける漏洩流量を推測するように、構成され得る。制御器は、誤モデル化された漏洩無呼吸を呼吸流量を示す信号から検出するように構成され得、誤モデル化された漏洩無呼吸は、無呼吸が真の漏洩流量の推測された漏洩流量からの逸脱によってマスクされたときに発生する。制御器は、検出された誤モデル化された漏洩無呼吸に応答して換気治療のベース圧力の設定点を調整するように、構成され得る。
【0046】
本技術の1つの形態は、患者における呼吸障害を治療する方法を含む。方法は、換気装置を用いて患者インターフェースを通じて患者への換気治療をベース圧力を有する換気治療を制御することを含み得る。方法は、患者インターフェースにおける漏洩流量を推測することを含み得る。方法は、誤モデル化された漏洩無呼吸を患者の呼吸流量を示す信号から換気装置の制御器において検出することを含み得る。誤モデル化された漏洩無呼吸は、真の漏洩流量の推測された漏洩流量からの逸脱によって無呼吸がマスクされた際に発生する。方法は、検出された誤モデル化された漏洩無呼吸に応答して換気治療のベース圧力の設定点を制御器において調整することを含み得る。
【0047】
本技術の1つの形態は、患者における呼吸障害を治療する装置を含む。装置は、空気流れを正の圧力で患者インターフェースを介して患者の気道へ供給するように構成された圧力生成器を含み得る。装置は、患者の呼吸流量を示す信号を生成するように構成されたセンサーを含み得る。装置は、制御器を含み得る。制御器は、換気治療を患者へベース圧力を有する換気治療を提供するように圧力生成器を制御するように、構成され得る。制御器は、呼吸流量を示す信号から吸気流れ制限の測定値を計算するように、構成され得る。制御器は、吸気流れ制限の測定値に応じて換気治療のベース圧力の設定点を調整するように、構成され得る。吸気流れ制限の測定値を計算するために、制御器は、呼吸流量信号の吸気部分の中央部分の複数の特徴を計算し得る。吸気流れ制限の測定値を計算するために、制御器は、中央部分特徴から複数の流れ制限変数を計算し得、各流れ制限変数は、呼吸流量信号の吸気部分と典型的な流れが制限された吸気波形との間の類似性の度合いを示す。吸気流れ制限の測定値を計算するために、制御器は、吸気流れ制限の測定値を複数の流れ制限変数の最大値として計算し得る。
【0048】
本技術の1つの形態は、患者における呼吸障害を治療する方法を含む。方法は、換気装置を用いて患者インターフェースを通じて患者への換気治療をベース圧力を有する換気治療を制御することを含み得る。方法は、患者の呼吸流量を示す信号から吸気流れ制限の測定値を計算することを含み得る。方法は、換気治療のベース圧力の設定点を吸気流れ制限の測定値に応じて制御器において調整することを含み得る。計算することは:呼吸流量を示す信号の吸気部分の中央部分の複数の特徴を計算することと;中央部分特徴から複数の流れ制限変数を計算することであって、各流れ制限変数は、呼吸流量を示す信号の吸気部分と典型的な流れが制限された吸気波形との間の類似性の度合いを示す;ことと、吸気流れ制限の測定値を複数の流れ制限変数の最大値として計算することとを含み得る。
【0049】
本技術の1つの形態は、患者における呼吸障害を治療する装置を含む。装置は、空気流れを正の圧力で患者インターフェースを介して患者の気道へ供給するように構成された圧力生成器を含み得る。装置は、患者の呼吸流量を示す信号を生成するように構成されたセンサーを含み得る。装置は、制御器を含み得る。制御器は、換気治療を患者へベース圧力を有する換気治療を提供するように圧力生成器を制御するように、構成され得る。制御器は、患者の換気の測定値を呼吸流量を示す信号から計算するように、構成され得る。制御器は、呼吸流量信号の吸気部分から流れ制限の測定値を計算するように、構成され得る。制御器は、流れ制限の測定値と、複数の呼吸にわたる最近長引いている流れが制限された有意な低換気の測定値とに基づいて換気治療のベース圧力の設定点を調整するように、構成され得る。
【0050】
本技術の1つの形態は、患者における呼吸障害を治療する方法を含む。方法は、換気装置を用いて患者インターフェースを通じて患者への換気治療をベース圧力を有する換気治療を制御することを含み得る。方法は、患者の呼吸流量を示すセンサー信号から患者の換気の測定値を計算することを含み得る。方法は、換気装置の制御器において呼吸流量を示す信号の吸気部分から流れ制限の測定値を計算することを含み得る。方法は、流れ制限の測定値と、複数の呼吸にわたる最近長引いている流れが制限された有意な低換気の測定値とに基づいて換気治療のベース圧力の設定点を制御器において調整することを含み得る。
【0051】
もちろん、上記様態の一部は、本技術の下位様態を形成し得る。また、下位様態および/または様態のうち多様な1つを多様に組み合わせることができ、本技術のさらなる様態または下位様態も構成し得る。
【0052】
本技術の他の特徴は、以下の詳細な説明、図面および特許請求の範囲中に含まれる情報を鑑みれば明らかになる。
【図面の簡単な説明】
【0053】
本技術を、添付図面中に非限定的に一例として例示する。図面中、類似の参照符号は、以下の類似の要素を含む。
図1】[7.1 治療システム]図1は、患者インターフェイス3000を装着している患者1000を含むシステムを含む。患者インターフェイス3000は、 全面式マスクをとり、正の圧力の空気供給をRPTデバイス4000から受容する。RPTデバイスからの空気は、加湿器5000中において加湿され、空気回路4170に沿って患者1000へと移動する。
図2】[7.2 呼吸系および顔の解剖学的構造]図2は、鼻および口腔、喉頭、声帯ひだ、食道、気管、気管支、肺、肺胞嚢、心臓および横隔膜を含むヒト呼吸系の概要を示す。
図3】[7.3 患者インターフェース]図3は、本技術の1つの形態による鼻マスクの形態の患者インターフェースを示す。
図4a】[7.4 デバイス]図4aは、本技術の一形態によるRPTデバイス4000を示す。
図4b図4bは、本技術の一形態によるRPTデバイスの空気圧経路の模式図である。上流および下流の方向が図示されている。
図4c図4cは、本技術の一形態によるRPTデバイスの電気構成要素の模式図である。
図4d図4dは、本技術の1つの形態によるRPTデバイスにおいて実行されるアルゴリズムの模式図である。
図5a】[7.5 加湿器]図5aは、本技術の1つの形態による加湿器の等角図を示す。
図5b図5bは、本技術の1つの形態による加湿器の等角図を示し、加湿器リザーバ5110が加湿器リザーバドック5130から取り外された様子を示す。
図6a】[7.6 呼吸波形]図6aは、睡眠時の人のモデルの典型的な呼吸流量波形を示す。水平軸は時間であり、垂直軸は呼吸流量である。パラメータ値は異なり得るものの、典型的な呼吸は、以下の近似値を持ち得る:一回換気量Vt(0.5L)、吸気時間Ti(1.6s)、ピーク吸気流量Qpeak(0.4L/s)、呼気時間Te(2.4s)、ピーク呼気流量Qpeak(-0.5L/s)。呼吸の合計持続時間Ttotは約4sである。この人は典型的には、約15呼吸/分(BPM)の速度で呼吸し、換気Vent,は約7.5L/分である。典型的なデューティサイクルであるTi/Ttotの比は約40%である。
図6b図6bは、呼吸流量波形のスケーリングされた吸気部分を示す。ここで、患者は、「古典的な平坦性」の吸気流れ制限の一例を経験している。
図6c図6cは、呼吸流量波形のスケーリングされた吸気部分を示す。ここで、患者は、「椅子形の」(late flatness)吸気流れ制限の例を経験している。
図6d図6dは、呼吸流量波形のスケーリングされた吸気部分を示す。ここで、患者は、「逆椅子形の」(早期の平坦性の)吸気流れ制限の例を経験している。
図6e図6eは、呼吸流量波形のスケーリングされた吸気部分を示す。ここで、患者は、「M字型の」吸気流れ制限の例を経験している。
図6f図6fは、呼吸流量波形のスケーリングされた吸気部分を示す。ここで、患者は、大きく「M字型の」吸気流れ制限の例を経験している。
図7a】[7.7 EPAPの自動タイトレーション]図7aは、図4dの吸気流れ制限決定アルゴリズムの実行に用いられ得る方法を示すフローチャートである。
図7b図7bは、図7aの中央部分特徴計算ステップの実行に用いられ得る方法を示すフローチャートである。
図7c図7cは、図7aの流れ制限ファジィ真理変数計算ステップの実行に用いられ得る方法を示すフローチャートである。
図7d図7dは、図7cの流れ制限ファジィ真理変数計算ステップの実行に用いられ得る方法を示すフローチャートである。
図7e図7eは、図7aのlate flatnessファジィ真理変数計算ステップの実行に用いられ得る方法を示すフローチャートである。
図7f図7fは、図4dのM字検出アルゴリズムの実行に用いられ得る方法を示すフローチャートである。
図7g図7gは、図4dの無呼吸検出アルゴリズムの実行に用いられ得る方法を示すフローチャートである。
図7h図7hは、図4dの誤モデル化された漏洩無呼吸検出アルゴリズムの実行に用いられ得る方法を示すフローチャートである。
図8a図8aは、図4dの治療パラメータ決定アルゴリズムの実行に用いられ得るEPAP値の自動タイトレーションの方法を示すフローチャートである。
図8b図8bは、図8aのEPAP自動タイトレーション方法の「形状ドクター」ステップの実行に用いられ得る方法を示すフローチャートである。
図8c図8cは、図8bの方法の1つのステップの実行に用いられ得る方法を示すフローチャートである。
図8d図8dは、図8bの方法の別のステップの実行に用いられ得る方法を示すフローチャートである。
図8e図8eは、図8aのEPAP自動タイトレーション方法の「無呼吸ドクター」ステップの実行に用いられ得る方法を示すフローチャートである。
図8f図8fは、図8eの方法の無呼吸処理ステップの実行に用いられ得る方法を示すフローチャートである。
図8g図8gは、図8aのEPAP自動タイトレーション方法のステップの実行に用いられ得る方法を示すフローチャートである。
図9図9は、図8aのEPAP自動タイトレーション方法の挙動の一例を示すグラフを含む。
【発明を実施するための形態】
【0054】
本技術についてさらに詳細に説明する前に、本技術は、本明細書中に記載される異なり得る特定の例に限定されるのではないことが理解されるべきである。本開示中に用いられる用語は、本明細書中に記載される特定の例を説明する目的のためのものであり、限定的なものではないことも理解されるべきである。
【0055】
以下の記載は、1つ以上の共通の特性および/または特徴を共有し得る多様な例に関連して提供される。任意の1つの例の1つ以上の特徴は、別の例または他の例の1つ以上の特徴と組み合わせることが可能であることが理解されるべきである。加えて、これらの例のうちのいずれかにおける任意の単一の特徴または特徴の組み合わせは、さらなる例を構成し得る。
【0056】
8.1 治療
1つの形態において、本技術は、呼吸障害を治療する方法を含む。この方法は、患者1000の気道の入口へ正の圧力を付加するステップを含む。
【0057】
本技術の特定の例において、正の圧力における空気供給が、片方または両方の鼻孔を介して患者の鼻通路へ提供される。
【0058】
8.2 治療システム
1つの形態において、本技術は、呼吸障害の治療のための装置またはデバイスを含む。装置またはデバイスは、圧縮空気を患者インターフェース3000への空気回路4170を介して患者1000へ供給するRPTデバイス4000を含み得る。
【0059】
8.3 患者インターフェース
本技術の一様態による非侵襲的患者インターフェース3000は、以下の機能様態を含む:密閉形成構造3100、プレナムチャンバ3200、位置決めおよび安定化構造3300、通気孔3400、空気回路4170への接続のための1つの形態の接続ポート3600、および前額支持部3700。いくつかの形態において、機能様態が、1つ以上の物理的コンポーネントによって提供され得る。いくつかの形態において、1つの物理的コンポーネントは、1つ以上の機能様態を提供し得る。使用時において、密閉形成構造3100は、気道への正の圧力での空気供給を促進するように、患者の気道の入口を包囲するように配置される。
【0060】
8.4. RPTデバイス
本技術の一様態によるRPTデバイス4000は、機械的および空気圧構成要素4100、電気構成要素4200を含み、1つ以上のアルゴリズム4300を実行するように構成される。RPTデバイスは、外部ハウジング4010を持ち得る。外部ハウジング4010は、上側部位4012および下側部位4014の2つの部分として形成される。さらに、外部ハウジング4010は、1つ以上のパネル(単数または複数)4015を含み得る。RPTデバイス4000は、RPTデバイス4000の1つ以上の内部構成要素を支持するシャシー4016を含む。RPTデバイス4000は、ハンドル4018を含み得る。
【0061】
RPTデバイス4000の空気圧経路は、1つ以上の空気経路アイテム(例えば、入口空気フィルタ4112)、入口マフラー4122、正圧における空気供給が可能な圧力生成器4140(例えば、送風器4142)、出口マフラー4124および1つ以上のトランスデューサ4270(例えば、圧力センサー4272および流量センサー4274)を含み得る。
【0062】
空気経路アイテムのうち1つ以上は、空気圧ブロック4020と呼ばれる可動一体構造内に配置され得る。空気圧ブロック4020は、外部ハウジング4010内に配置され得る。一形態において、空気圧ブロック4020は、シャシー4016によって支持されるかまたはシャシー4016の一部として形成される。
【0063】
RPTデバイス4000は、電源4210、1つ以上の入力デバイス4220、中心調節器4230、療法デバイス調節器4240、圧力生成器4140、1つ以上の保護回路4250、メモリ4260、トランスデューサ4270、データ通信インターフェイス4280および1つ以上の出力デバイス4290を持ち得る。電気構成要素4200は、単一プリント回路板アセンブリ(PCBA)4202上に取り付けられ得る。別の形態において、RPTデバイス4000は、1つよりも多くのPCBA4202を含み得る。
【0064】
8.4.1 RPTデバイス機械的及び空気圧構成要素
RPTデバイスは、以下の構成要素のうち1つ以上を一体ユニットとして含み得る。別の形態において、以下の構成要素のうち1つ以上は、各別個のユニットとして配置され得る。
【0065】
8.4.1.1 空気フィルタ(単数または複数)
本技術の一形態によるRPTデバイスは、空気フィルタ4110または複数の空気フィルタ4110を含み得る。
【0066】
一形態において、入口空気フィルタ4112は、圧力生成器4140の上流にある空気圧経路の開始部分に配置される。
【0067】
一形態において、抗菌性フィルタなどの出口空気フィルタ4114は、空気圧ブロック4020の出口と患者インターフェイス3000との間に配置される。
【0068】
8.4.1.2 マフラー(単数または複数)
本技術の一形態において、入口マフラー4122は、圧力生成器4140の上流にある空気圧経路内に配置される。
【0069】
本技術の一形態において、出口マフラー4124は、圧力生成器4140と患者インターフェイス3000との間の空気圧経路内に配置される。
【0070】
8.4.1.3 圧力生成器
本技術の1つの形態において、正の圧力における空気の流れまたは供給を生成する圧力生成器4140は、制御可能な送風器4142である。例えば、送風器4142は、ボリュート中に収容された1つ以上のインペラを備えたブラシレスDCモータ4144を含み得る。送風器は、空気供給を例えば約120リットル/分までの速度で、約4cmHO~約20cmHOの範囲のまたは他の形態において約30cmHOまでの正の圧力で行うことができ得る。送風器は、以下の特許または特許出願のうちいずれか1つに記載のものようなものであり得、同文献全体を参考のため援用する:米国特許第7,866,944号、米国特許第8,638,014号、米国特許第8,636,479号およびPCT特許出願公開WO2013/020167号。
【0071】
圧力生成器4140は、療法デバイス調節器4240の制御下にある。
【0072】
他の形態において、圧力生成器4140は、ピストン駆動ポンプ、高圧力源(例えば、圧縮空気リザーバ)へ接続された圧力調節器、またはベローズであり得る。
【0073】
8.4.1.4 トランスデューサ(単数または複数)
トランスデューサは、RPTデバイスの内部にあってもよいし、あるいはRPTデバイスの外部にあってもよい。外部トランスデューサは、空気回路上に配置してもよいし、あるいはその一部(例えば、患者インターフェイス)を形成してもよい。外部トランスデューサは、非接触センサーの形態をとり得る(例えば、RPTデバイスへのデータ送信または転送を行うドップラーレーダー移動センサー)。
【0074】
本技術の一形態において、1つ以上のトランスデューサ4270は、圧力生成器4140の上流および/または下流に配置される。1つ以上のトランスデューサ4270は、特性(例えば、空気圧経路中のポイントにおける流量、圧力、または、温度)を測定するように構築および配置され得る。
【0075】
本技術の一形態において、1つ以上のトランスデューサ4270は、患者インターフェイス3000の近隣に配置され得る。
【0076】
一形態において、トランスデューサ4270からの信号は、(例えば、ローパス、ハイパスまたはバンドパスフィルタリングによって)フィルタリングされ得る。
【0077】
8.4.1.4.1 流量センサー
本技術による流量センサー4274は、差圧トランスデューサ(例えば、SENSIRIONからのSDP600シリーズ差圧トランスデューサ)に基づき得る。
【0078】
1つの形態において、流量(例えば、流量センサー4274からの合計流量Qt)を示す信号が、中央制御器4230によって受信される。
【0079】
8.4.1.4.2 圧力センサー
本技術による圧力センサー4272は、空気圧経路と流体連通して配置される。適切な圧力トランスデューサの一例として、HONEYWELL ASDXシリーズからのセンサーがある。別の適切な圧力トランスデューサとして、GENERAL ELECTRICからのNPAシリーズからのセンサーがある。
【0080】
1つの形態において、圧力センサー4272からの信号は、中央制御器4230によって受信される。
【0081】
8.4.1.4.3 モータ速度トランスデューサ
本技術の一形態において、モータ速度トランスデューサ4276は、モータ4144および/または送風器4142の回転速度の決定に用いられ得る。モータ速度トランスデューサ4276からのモータ速度信号は、療法デバイス調節器4240へ提供され得る。モータ速度トランスデューサ4276は、例えばホール効果センサーなどの速度センサーであり得る。
【0082】
8.4.1.5 スピルバック防止弁
本技術の一形態において、スピルバック防止弁は、加湿器5000と空気圧ブロック4020との間に配置される。スピルバック防止弁は、水が加湿器5000の上流から例えばモータ4144へ流れる危険性を低減するように、構築および配置される。
【0083】
8.4.1.6 空気回路
本技術の様態による空気回路4170は、2つの構成要素(例えば、空気圧ブロック4020および患者インターフェイス3000)間の空気流れの移動を可能にするよう使用時に構築および配置された導管または管である。
【0084】
詳細には、空気回路4170は、空気圧ブロックの出口および患者インターフェイスと流体接続し得る。この空気回路は、空気送達管と呼ばれ得る。場合によっては、吸入および呼気のための回路の別個の突出部があり得る。他の場合において、単一の突出部が用いられる。
【0085】
いくつかの形態において、空気回路4170は、空気回路中の空気を加熱する(例えば、空気温度を維持または上昇させる)ように構成された1つ以上の加熱要素を含み得る。加熱要素は、加熱ワイヤ回路の形態をとり得、1つ以上のトランスデューサ(例えば、温度センサー)を含み得る。一形態において、加熱ワイヤ回路は、空気回路4170の軸周囲にらせん状に巻かれ得る。加熱要素は、調節器(例えば、中心調節器4230または加湿器調節器5250)と通信し得る。加熱ワイヤ回路を含む空気回路4170の一例について、米国特許第出願第US/2011/0023874号に記載がある。本明細書中、同文献全体を参考のため援用する。
【0086】
8.4.1.7 酸素送達
本技術の一形態において、追加酸素4180が、空気圧経路中の1つ以上のポイント(例えば、空気圧ブロック4020の上流)、空気回路4170および/または患者インターフェイス3000へ送達される。
【0087】
8.4.2 RPTデバイス電気構成要素
8.4.2.1 電源
電源4210は、RPTデバイス4000の外部ハウジング4010の内部または外部に配置され得る。
【0088】
本技術の一形態において、電源4210は、RPTデバイス4000のみへ電力を提供する。本技術の別の形態において、電源4210は、RPTデバイス4000および加湿器5000双方へ電力を提供する。
【0089】
8.4.2.2 入力デバイス
本技術の一形態において、RPTデバイス4000は、人とデバイスとの相互作用を可能にするためのボタン、スイッチまたはダイヤルの形態をとる1つ以上の入力デバイス4220を含む。ボタン、スイッチまたはダイヤルは、物理的デバイスであってもよいし、あるいは、タッチスクリーンを介してアクセス可能なソフトウェアデバイスであってもよい。ボタン、スイッチまたはダイヤルは、一形態において、外部ハウジング4010に物理的に接続させてもよいし、あるいは、別の形態において中心調節器4230へ電気接続された受信器と無線通信してもよい。
【0090】
一形態において、入力デバイス4220は、人が値および/またはメニューオプションを選択することを可能にするように、構築および配置され得る。
【0091】
8.4.2.3 中心調節器
本技術の一形態において、中心調節器4230は、RPTデバイス4000の制御に適した1つまたは複数のプロセッサである。
【0092】
適切なプロセッサは、ARM HoldingsからのARM(登録商標))Cortex(登録商標)-Mプロセッサ(例えば、ST MICROELECTRONICからのSTM32シリーズマイクロ調節器)に基づいたプロセッサであるx86 INTELプロセッサを含み得る。本技術の特定の別の形態において、32ビットRISC CPU(例えば、ST MICROELECTRONICSからのSTR9シリーズマイクロ調節器またはTEXAS INSTRUMENTSによって製造されたマイクロ調節器のMSP430ファミリーからのプロセッサなどの16ビットRISC CPU)も適切であり得る。
【0093】
本技術の一形態において、中心調節器4230は、専用の電子回路である。
【0094】
一形態において、中心調節器4230は、特定用途向け集積回路である。別の形態において、中心調節器4230は、個別電子構成要素である。
【0095】
中心調節器4230は、1つ以上のトランスデューサ4270および1つ以上の入力デバイス4220から入力信号(単数または複数)を受信するように構成され得る。
【0096】
中心調節器4230は、出力デバイス4290、療法デバイス調節器4240、データ通信インターフェイス4280および加湿器調節器5250のうち1つ以上へ出力信号(単数または複数)を提供するように、構成され得る。
【0097】
本技術のいくつかの形態において、中心調節器4230は、本明細書中に記載の1つ以上の方法(例えば、非一時的なコンピュータ読み出し可能な記憶媒体(例えば、メモリ4260)中に記憶されたコンピュータプログラムとして表現される1つ以上のアルゴリズム4300)を実行するように、構成される。本技術のいくつかの形態において、中心調節器4230は、RPTデバイス4000と一体化され得る。しかし、本技術のいくつかの形態において、いくつかの方法が、遠隔配置されたデバイスによって行われ得る。例えば、遠隔配置されたデバイスは、記憶されたデータ(例えば、本明細書中に記載のセンサーのうちいずれかからのもの)の分析により、換気装置の制御設定を決定するか、または、呼吸関連発症を検出し得る。
【0098】
8.4.2.4 時計
RPTデバイス4000は、中心調節器4230へ接続された時計4232を含み得る。
【0099】
8.4.2.5 療法デバイス調節器
本技術の一形態において、療法デバイス調節器4240は、中心調節器4230によって実行されるアルゴリズム4300の一部を形成する治療制御モジュール4330である。
【0100】
本技術の一形態において、療法デバイス調節器4240は、専用のモータ制御集積回路である。例えば、一形態において、ONSEMIによって製造されたMC33035ブラシレスDCモータ調節器が用いられる。
【0101】
8.4.2.6 保護回路
本技術による1つ以上の保護回路4250は、電気保護回路、温度および/または圧力安全回路を含み得る。
【0102】
8.4.2.7 メモリ
本技術の一形態によれば、RPTデバイス4000は、メモリ4260(例えば、不揮発性メモリ)を含む。いくつかの形態において、メモリ4260は、電池式の静的RAMを含み得る。いくつかの形態において、メモリ4260は、揮発性RAMを含み得る。
【0103】
メモリ4260は、PCBA4202上に配置され得る。メモリ4260は、EEPROMまたはNANDフラッシュの形態をとり得る。
【0104】
追加的にまたは代替的に、RPTデバイス4000は、取り外し可能な形態のメモリ4260を含む(例えば、セキュアデジタル(SD)スタンダードに基づいて作製されたメモリカード)。
【0105】
本技術の一形態において、メモリ4260は、本明細書中に記載の1つ以上の方法(例えば、1つ以上のアルゴリズム4300)を表現する記憶されたコンピュータプログラム命令が載置された非一時的コンピュータ読み出し可能な記憶媒体として機能する。
【0106】
8.4.2.8 データ通信システム
本技術の一形態において、データ通信インターフェイス4280が提供され、中心調節器4230へ接続される。データ通信インターフェイス4280は、遠隔外部通信ネットワーク4282および/またはローカル外部通信ネットワーク4284へ接続可能であり得る。遠隔外部通信ネットワーク4282は、遠隔外部デバイス4286へ接続可能であり得る。ローカル外部通信ネットワーク4284は、ローカル外部デバイス4288へ接続可能であり得る。
【0107】
一形態において、データ通信インターフェイス4280は、中心調節器4230の一部である。別の形態において、データ通信インターフェイス4280は、中心調節器4230から別個であり、集積回路またはaプロセッサを含み得る。
【0108】
一形態において、遠隔外部通信ネットワーク4282はインターネットである。データ通信インターフェイス4280は、インターネットへ接続するために、(例えば、イーサネットまたは光ファイバを介して)有線通信を用い得るか、または、無線プロトコル(例えば、CDMA、GSM、LTE)を用い得る。
【0109】
一形態において、ローカル外部通信ネットワーク4284は、1つ以上の通信標準(例えば、Bluetoothまたは消費者赤外線プロトコル )を用いる。
【0110】
一形態において、遠隔外部デバイス4286は、1つ以上のコンピュータである(例えば、ネットワークコンピュータのクラスタ)。一形態において、遠隔外部デバイス4286は、物理的コンピュータではなく仮想コンピュータであり得る。いずれの場合も、このような遠隔外部デバイス4286は、臨床医などの適切に承認された人にとってアクセス可能であり得る。
【0111】
ローカル外部デバイス4288は、パーソナルコンピュータ、携帯電話、タブレットまたは遠隔制御であり得る。
【0112】
8.4.2.9 選択的ディスプレイ、警告を含む出力デバイス
本技術による出力デバイス4290は、視覚、音声および触覚ユニットのうち1つ以上の形態をとり得る。視覚ディスプレイは、液晶ディスプレイ(LCD)または発光ダイオード(LED)ディスプレイであり得る。
【0113】
8.4.2.9.1 ディスプレイドライバ
ディスプレイドライバ4292は、ディスプレイ4294上に表示されるべき文字、記号、または画像を入力として受信し、これらをコマンドへ変換する。これらのコマンドにより、ディスプレイ4294は、これらの文字、記号または画像を表示する。
【0114】
8.4.2.9.2 ディスプレイ
ディスプレイ4294は、ディスプレイドライバ4292から受信されたコマンドに応答して、文字、記号または画像を視覚的に表示するように構成される。例えば、ディスプレイ4294は8セグメントディスプレイであり得、この場合、ディスプレイドライバ4292は、各文字または記号(例えば、数字「0」)を、特定の文字または記号を表示するように8個のそれぞれのセグメント活性化させるかを示す8個の論理信号へと変換する。
【0115】
8.4.3. RPTデバイスアルゴリズム
8.4.3.1 前処理モジュール
本技術の1つの形態による前処理モジュール4310は、トランスデューサ4270(例えば、流量センサー4274または圧力センサー4272)からの信号を入力として受信し、1つ以上の出力値を計算する1つ以上のプロセスステップを行う。これら1つ以上の出力値は、別のモジュール(例えば、治療エンジンモジュール4320)への入力として用いられる。
【0116】
本技術の1つの形態において、出力値は、インターフェースまたはマスク圧力Pm、呼吸流量Qr、および漏洩流量Qlを含む。
【0117】
本技術の多様な形態において、前処理モジュール4310は、以下のアルゴリズムのうち1つ以上を含む:圧力補償4312、通気孔流量推測4314、漏洩流量推測4316、および呼吸流量推測4318。
【0118】
8.4.3.1.1 圧力補償
本技術の1つの形態において、圧力補償アルゴリズム4312は、空気圧ブロックの出口の近隣の空気圧経路中の圧力を示す信号を入力として受信する。圧力補償アルゴリズム4312は、圧力降下を空気回路4170を通じて推測し、患者インターフェース3000において推測された圧力Pmを出力として提供する。
【0119】
8.4.3.1.2 通気孔流量の推測
本技術の1つの形態において、通気孔流量推測アルゴリズム4314は、患者インターフェース3000において推測された圧力Pmを入力として受信し、通気孔3400からの空気の通気孔流量Qvを患者インターフェース3000において推測する。
【0120】
8.4.3.1.3 漏洩流量の推測
本技術の1つの形態において、漏洩流量推測アルゴリズム4316を合計流量Qtおよび通気孔流量Qvを入力として受信し、漏洩流量Qlの推測を出力として提供する。1つの形態において、漏洩流量推測アルゴリズム4316は、いくつかの呼吸サイクル(例えば、約10秒)を含むくらい充分に長い一定期間にわたって合計流量Qtと通気孔流量Qvとの間の差の平均を計算することにより、漏洩流量Qlを推測する。
【0121】
1つの形態において、漏洩流量推測アルゴリズム4316は、合計流量Qt、通気孔流量Qvおよび推測された圧力Pmを患者インターフェース3000において入力として受信し、漏洩コンダクタンスを計算し、漏洩流量Qlを漏洩コンダクタンスおよび圧力Pmの関数になるように決定することにより、漏洩流量Qlを出力として提供する。漏洩コンダクタンスは、合計流量Qtおよび通気孔流量Qvと、圧力Pmのローパスフィルタリングされた平方根との間の差に等しいローパスフィルタリングされた非通気孔流量の商として計算される。ここで、ローパスフィルタ時定数は、いくつかの呼吸サイクル(例えば、約10秒)を含むように充分に長い値を有する。漏洩流量Qlは、漏洩コンダクタンスおよび圧力Pmの関数の積として推測され得る。
【0122】
8.4.3.1.4 呼吸流量の推測
本技術の1つの形態において、呼吸流量推測アルゴリズム4318は、合計流量Qt、通気孔流量Qv、および漏洩流量Qlを入力として受信し、通気孔流量Qvおよび推測された漏洩流量Qlを合計流量Qtから減算することにより、患者に対する空気の呼吸流量Qrを推測する。
【0123】
8.4.3.2 治療エンジンモジュール
本技術の1つの形態において、治療エンジンモジュール4320は、患者インターフェース3000における圧力Pm、患者に対する空気の呼吸流量Qrのうち1つ以上を入力として受信し、1つ以上の治療パラメータを出力として提供する。
【0124】
本技術の1つの形態において、治療パラメータは、治療圧力Ptである。
【0125】
多様な形態において、治療エンジンモジュール4320は、以下のアルゴリズムのうち1つ以上を含む:位相決定4321、波形決定4322、換気決定4323、吸気流れ制限検出4324、無呼吸検出4325、吸気M字検出4326、誤モデル化された漏洩無呼吸検出4327、典型的な最近の換気決定4328、および治療パラメータ決定4329。
【0126】
8.4.3.2.1 位相決定
本技術の1つの形態において、RPTデバイス4000は、位相を決定しない。
【0127】
本技術の1つの形態において、位相決定アルゴリズム4321は、呼吸流量Qrを示す信号を入力として受信し、患者1000の現在の呼吸サイクルの位相Φを出力として提供する。
【0128】
個別の位相決定として知られるいくつかの形態において、位相出力Φは計数値である。自発的な吸入および呼気それぞれの開始が検出されると、個別の位相決定の1つの実行により、二値の位相出力Φが吸入または呼気の値と共に提供される、吸入または呼気の値は、例えば0および0.5回転の値としてそれぞれ表される。トリガ点およびサイクル点は、位相が呼気から吸入へおよび吸入から呼気へそれぞれ変化する瞬間であるため、「トリガ」および「サイクル」を行うRPTデバイス4000は、個別の位相決定を有効に行う。二値の位相決定の1つの実行において、呼吸流量Qrが正の閾値を超える値を有する場合、位相出力Φは、個別の値0(これにより、RPTデバイス4000が「トリガ」される)を持つように決定され、呼吸流量Qrが負の閾値よりも負方向にある値を有する場合、個別の値である0.5回転(これにより、RPTデバイス4000が「サイクル」される)を持つように決定される。いくつかの実行において、閾値は、閾値関数に従った呼吸時において、時間と共に変化し得る。このような実行について、特許協力条約特許出願第PCT/AU2005/000895号(ResMed LimitedへWO2006/000017として公開)中に記載がある。
【0129】
個別の位相決定の別の実行により、3値の位相出力Φが、吸入、吸気途中の一次停止および呼気のうちの1つの値と共に提供される。
【0130】
連続位相決定として知られる他の形態において、位相出力Φは連続変数であり、例えば0~1回転または0~2πラジアンの範囲で変化する。連続位相決定を行うRPTデバイス4000は、連続位相が0回転および0.5回転それぞれに到達したときに、トリガおよびサイクルし得る。連続位相決定の1つの実行において、吸気時間Tiおよび呼気時間Teが先ず呼吸流量Qrから推測される。次に、位相Φは、前回のトリガ瞬間から経過した吸気時間Tiの割合の半分または0.5回転および前回のサイクル瞬間から経過した呼気時間Teの割合を加算した値(これらのうちより最近のものどちらか)として決定される。
【0131】
8.4.3.2.2 波形決定
本技術の1つの形態において、治療パラメータ決定アルゴリズム4329は、患者の呼吸サイクル全体においてほぼ一定の治療圧力を提供する。
【0132】
本技術の他の形態において、治療パラメータ決定アルゴリズム4329は、患者の呼吸サイクル全体において波形テンプレートに従って変化する治療圧力Ptを提供するように、圧力生成器4140を制御する。
【0133】
本技術の1つの形態において、波形決定アルゴリズム4322は、波形テンプレートΠ(Φ)を提供する。この波形テンプレートΠ(Φ)は、治療パラメータ決定アルゴリズム4329によって用いられる位相決定アルゴリズム4321によって提供される位相値Φの変域上において範囲[0,1]内に有る値を含む。
【0134】
個別のまたは連続的に値をとる位相に適している1つの形態において、波形テンプレートΠ(Φ)は方形波テンプレートであり、0.5回転までを含む位相の値に対して1の値を有し、0.5回転を超える位相の値に対して0の値を有する。連続的に値をとる位相に適した1つの形態において、波形テンプレートΠ(Φ)は、2つの平滑に曲線状の部分を含む(すなわち、0.5回転までの位相の値に対して0から1へ上昇する平滑に曲線状の部分(例えば、上昇余弦)と、0.5回転を超える位相に対して0から1へ減衰する平滑に曲線状の(例えば、指数状の)減衰とを含む)。連続的に値をとる位相に適した1つの形態において、波形テンプレートΠ(Φ)は方形波に基づくが、実質的に0.5回転未満である「上昇時間」までの位相に対して0~1の値の平滑な上昇と、0.5回転後の「下降時間」内の位相に対して1~0の値の平滑な下降とを有する。
【0135】
本技術のいくつかの形態において、波形決定アルゴリズム4322は、RPTデバイス4000の設定に応じて、波形テンプレートのライブラリから波形テンプレートΠ(Φ)を選択する。ライブラリ中の各波形テンプレートΠ(Φ)は、位相値Φに対する値Πのルックアップテーブルとして提供され得る。他の形態において、波形決定アルゴリズム4322は、恐らくは1つ以上のパラメータ(例えば、上昇時間および下降時間)によってパラメータ化された所定の機能形態を用いて波形テンプレートΠ(Φ)を「オンザフライ」で計算する。機能形態のパラメータは、所定のものであってもよいし、あるいは患者1000の現在の状態に基づいてもよい。
【0136】
吸入(Φ=0回転)または呼気(Φ=0.5回転)の個別の二値の位相に適した本技術のいくつかの形態において、波形決定アルゴリズム4322は、波形テンプレートΠを個別の位相Φおよび最も最近のトリガ瞬間以降に測定された時間t双方の関数として「オンザフライ」で計算する。1つのこのような形態において、波形決定アルゴリズム4322は、2つの部分(吸気および呼気)における波形テンプレートΠ(Φ、t)を以下のようにして計算する。
【数1】
ここで、Π(t)およびΠ(t)は、波形テンプレートΠ(Φ、t)の吸気部分および呼気部分である。1つのこのような形態において、波形テンプレートの吸気部分Π(t)は、上昇時間によってパラメータ化された0から1への平滑な上昇であり、波形テンプレートの呼気部分Π(t)は、下降時間によってパラメータ化された1から0への平滑な下降である。
【0137】
8.4.3.2.3 換気決定
本技術の1つの形態において、換気決定アルゴリズム4323は、呼吸流量Qrを入力として受信し、現在の患者換気を示す測定値Ventを決定する。
【0138】
いくつかの実行において、換気決定アルゴリズム4323は、Ventを呼吸流量信号Qrの絶対値の半分である「瞬間的換気」Vintとして計算する。
【0139】
いくつかの実行において、換気決定アルゴリズム4323は、瞬間的換気Vintをコーナ周波数がおよそ0.10Hzであるローパスフィルタ(例えば、4次ベッセルローパスフィルタ)によってフィルタリングすることにより、Ventを「超高速換気」VveryFastとして計算する。これは、およそ10秒の時定数に相当する。
【0140】
いくつかの実行において、換気決定アルゴリズム4323は、瞬間的換気Vintをコーナ周波数がおよそ0.05Hzであるローパスフィルタ(例えば、4次ベッセルローパスフィルタ)によってフィルタリングすることにより、Ventを「高速換気」V高速として計算する。これは、およそ20秒の時定数に相当する。
【0141】
本技術のいくつかの実行において、換気決定アルゴリズム4323は、Ventを肺胞換気の測定値として決定する。肺胞換気は、所与の時間における呼吸系のガス交換表面に実際に到達する実際の空気の量の測定値である。患者の呼吸系は、有意な「解剖学的死腔」(すなわち、ガス交換が発生しない容量)を含むため、肺胞換気は、呼吸流量Qr上に直接動作する上記計算によって生成される「グロス」換気値未満でありかつ患者の呼吸能力のより正確な測定値である。
【0142】
このような実行において、換気決定アルゴリズム4323は、瞬間的肺胞換気が呼吸流量Qrの絶対値のゼロまたは半分であると決定し得る。瞬間的肺胞換気がゼロとなる条件を以下に示す:
・ 呼吸流量が非負から負へ変化したとき、または、
・ 呼吸流量が負から非負へ変化したとき、および
・ 呼吸流量Qrの整数の絶対値が患者の解剖学的死腔容量を下回る期間にわたって呼吸流量の符号が変化した後。
【0143】
患者の解剖学的死腔容量は、RPTデバイス4000の設定であり得、例えばRPTデバイス4000の構成時のハードコーディングによりまたは入力デバイス4220を通じた手入力により設定される。
【0144】
いくつかのこのような実行において、換気決定アルゴリズム4323は、上記の各ローパスフィルタを用いて瞬間的肺胞換気をローパスフィルタリングすることにより、Ventを「超高速肺胞換気」および/または「高速肺胞換気」として計算し得る。
【0145】
以下の記載において、「肺胞」という単語が省略されるが、治療エンジンモジュール4320のいくつかの実行中に存在しているものと仮定される。すなわち、下記の記載において「換気」および「一回換気量」について言及が有る場合、当該言及は、肺胞換気および肺胞一回換気量ならびに「グロスの」換気および一回換気量に適用され得る。
【0146】
8.4.3.2.4 吸気流れ制限の決定
本技術の1つの形態において、治療エンジンモジュール4320は、流れ制限の範囲(呼吸流量波形の吸気部分の部分的な上気道閉塞とも呼ばれる(本明細書中、「吸気波形」という略称で呼ぶ))を決定する1つ以上のアルゴリズムを実行する。1つの形態において、流れ制限決定アルゴリズム4324は、呼吸流量信号Qrを入力として受信し、各吸気波形が流れ制限を示す範囲の測定値を出力として提供する。
【0147】
通常の吸気波形は、形状が正弦波に類似するように丸み付けされる(図6aを参照)。充分な上気道筋緊張(またはEPAP)が有れば、気道は、本質的に硬質管として機能し、内部において、呼吸努力(または外部換気支援)の増加に応答して流れが増加する。いくつかの状況(例えば、睡眠、鎮静)において、上気道は、例えば呼吸努力からまたはさらには付加された換気からの内部での低大気圧圧力に応答して座屈可能であり得る。その結果、完全閉塞(無呼吸)または「流れ制限」として知られる現象に繋がり得る。「流れ制限」という用語は、呼吸努力が増加すると、気道が狭くなるだけであり、その結果、努力から独立して吸気流れが一定の値において制限される挙動(「スターリングレジスタ挙動」)を含む。そのため、吸気流量曲線は、平坦な形状になる(図6bを参照)。
【0148】
実際は、上気道挙動はもっと複雑であり、上気道に関連する吸気流れ制限およびさらにはより広範な外部換気支援の存在を示す多様な流れ形状が存在する(図6c~図6fを参照)。そのため、流れ制限決定アルゴリズム4324は、以下の種類の吸気流れ制限のうち1つ以上に応答し得る:「古典的な平坦性」(図6bを参照)、「椅子状」(図6cを参照)、および「逆椅子形」(図6dを参照)。(「M字形状」(図6eおよび図6fを参照)は、M字検出アルゴリズム4326を用いて別個に取り扱われる。)
【0149】
図7aは、本技術の1つの形態において呼吸流量波形の吸気部分の流れ制限の測定値を吸気流れ制限決定アルゴリズム4324の一部として計算するために用いられ得る方法7000を示すフローチャートである。
【0150】
方法7000は、ステップ7010から開始する。ステップ7010は、吸気波形の中央部分(例えば、centralSlope、centralDeviation、centralConcavity、波形が大きな初期部分および大きな最終部分を有する範囲(おおよそ中央部分の前後))に基づいて、複数の「中央部分特徴」CF1~CF8を計算する。ステップ7010について、図7bを参照して以下に詳述する。
【0151】
次のステップ7020において、ステップ7010においてファジィ論理を用いて計算された中央部分特徴CF1~CF8を組み合わせて、吸気波形と各典型的流れが制限された(部分的に閉塞した)吸気波形との間の類似性の度合いを示す複数の流れ制限ファジィ真理変数FL1~FL6を計算する。これらの典型は、以下を含み得る:恐らくは凹状である緩やかな平坦状、吸気抵抗が高いことを示す若干負の傾き、極めて平坦状、初期ピークが大きな平坦状またはM字型形状、中央後部分にピークを有する、恐らくは少し負の傾きを有する平坦形状、凹状および平坦状の形状。ステップ7020について、図7cを参照して以下に詳述する。
【0152】
次に、方法7000は、ステップ7030において、吸気波形の「椅子形状」の度合い(すなわち、(図6cに示すような)早期のピーク、後期の線形性および緩やかな後期の傾きの組み合わせ)を示すファジィ真理変数fuzzyLateFlatnessを計算する。ステップ7030について、図7eを参照して以下に詳述する。
【0153】
最後にステップ7040において、計算された流れ制限ファジィ真理変数FL1~FL6(ステップ7020から)およびファジィ真理変数fuzzyLateFlatness(ステップ7030から)を全て「ファジィOR」演算を用いて組み合わせて、吸気流れ制限の範囲を示すファジィ真理変数flowLimitationを計算する。ファジィ「OR」は、ファジィ真理変数の最大値をとるため、ファジィ真理変数flowLimitationは、吸気波形が最も類似する典型的な流れが制限された吸気波形のうちの1つに対する類似性の度合いを示す。
【0154】
吸気波形の中央部分から抽出された特徴に主に基づいて流れ制限の検出に基づくことにより、方法7000は、他の吸気流れ制限検出方法よりも、誤モデル化された漏洩(下記を参照)に対してよりロバストになる。なぜならば、誤モデル化された漏洩の場合、(通常は排他的ではないにしろ)(吸気波形の中央および後方部分において(例えば、上昇時間が経過した後に)一般的に一定になる傾向にある)マスク圧力Pmの関数である呼吸流量信号Qrに対して正のオフセットを発生させる傾向があるからである。そのため、誤モデル化された漏洩に起因する呼吸流量信号Qrに対するオフセットも、中央および吸気波形の後方部分において一定になる傾向になる。
【0155】
図7bは、本技術の1つの形態において方法7000のステップ7010を実行するために用いられ得る方法7100を示すフローチャートである。方法7100は、吸気波形の持続期間の「小部分」および「大部分」をパラメータとして受信する。方法7100によって用いられる吸気波形の「中央部分」は、吸気波形の持続期間によって乗算された小部分から吸気波形の持続期間によって乗算された大部分へ延びる。ステップ7010の1つの実行において、方法7100へ送られるこの「小部分」は0.3であり、「大部分」は0.85である。
【0156】
方法7100は、ステップ7110から開始する。ステップ7110は、概念的な「傾斜」を中央部分の前の吸気波形の部分(すなわち、「中央前」部分)上に構築する。この傾斜は、吸気波形の開始点から中央部分の開始点へ延びる。
【0157】
次に、ステップ7120は、吸気波形と中央前部分上の傾斜との間の差を合計することにより、傾斜上方の呼吸流れの量を計算する。この量は、flowAboveRampToStartOfCentralPartと呼ばれる。
【0158】
次のステップ7130は、flowAboveRampToStartOfCentralPartを全吸気波形値の合計によって除算することにより、第1の中央部分特徴(CF1)であるpropnAboveRampToStartOfCentralPartを計算する。propnAboveRampToStartOfCentralPartが顕著に正の値である場合、吸気流れ波形の早期ピークと主に関連付けられる。負の値は、中央部分までの極めて緩やかな上昇を示し、流れ制限または高吸気抵抗と関連付けられる可能性が低い。
【0159】
次に、ステップ7140において、方法7100は、秒中央部分特徴(CF2)であるcentralSlopeを中央部分にわたって計算する。CentralSlopeは、吸気波形の正規化中央部分に対する線形近似の傾きを示し、正規化中央部分の線形回帰によって計算され得る。正規化係数は、完全吸気波形および最小正規化流れの平均値の最大であり、1つの実行において24リットル/分として定義される。
【0160】
次に、ステップ7150は、吸気波形の正規化中央部分の平均であるcentralFlowsMeanを計算する。次に、ステップ7150は、centralFlowsMeanを中央部分の持続期間で乗算して、第3の中央部分特徴(CF3)であるcentralPartDurationByFlowsMeanProductを得る。
【0161】
方法7100はステップ7160に進み、ここで、中央部分後の吸気波形の部分(中央後部分)中の流量が中央部分への線形近似を上回る量の測定値である第4の中央部分特徴(CF4)であるpostCentralActualAbovePredictedを計算する。ステップ7160は、正規化吸気波形値と中央後部分にわたって延びる線形近似との間の差を合計し、この合計を中央後部分の持続期間およびcentralFlowsMeanの値によって除算することにより、postCentralActualAbovePredictedを計算する。(1つの実行において、centralFlowsMeanが正ではない場合、postCentralActualAbovePredictedはゼロに設定される。)postCentralActualAbovePredictedが負の値である場合、一般的に通常の呼吸を示す。なぜならば、部分的な上気道閉塞においては、流量は一般的に時間における中央部分の突出以上である一方、通常の呼吸においては、中央部分後の流量は、中央部分の場合よりも常にずっと高速で低下する。換言すると、通常の呼吸において、中央部分および中央後部分において流量をとると、概して凸状となる一方、流れが制限された呼吸においては、中央部分における流量が中央後部分の大部分と共にとられると、非凸状になる。
【0162】
次のステップ7170において、中央部分にわたる変化に対する線形近似からの実際の吸気波形値の変化の測定値である第5の中央部分特徴(CF5)centralDeviationを計算する。ステップ7170の1つの実行において、centralDeviationは、正規化流量とその線形近似(centralFlowsMeanおよびcentralSlopeから計算)との間の差の2乗の合計の平方根として中央部分にわたって計算される。centralDeviationが顕著に正の値である場合、中央部分における有意な非線形性を示す。
【0163】
最後に、ステップ7180において、方法7100は、中央部分の凹部の測定値である第6の中央部分特徴(CF6)であるcentralConcavityを計算する。centralConcavityが正の値である場合、中央部分is概略的に上方に凹状であることを示す。ステップ7180の1つの実行において、centralConcavityは、正規化された平均減算された吸気波形と中央部分にわたるV字型関数との間の類似性の測定値として計算される。ステップ7180の1つの実行において、類似性の測定値は、正規化された平均減算された吸気波形およびV字型関数の積の中央部分にわたる合計をV字型関数の自己相関で除算した値として計算される。凹部の他の測定値をステップ7180において用いて、centralConcavity(例えば、中央部分への放物近似の曲率)を計算してもよい。凹部の別の測定値として、中央部分と、ガウス関数の第2の導関数とのスカラー積を適切な倍率で適切な範囲(例えば、+/-2の標準偏差に対応するもの)にわたって計算する。これは、ローパスフィルタリングされた中央部分の中心における流れの第2の導関数をとることによって実行してもよく、ここで、ローパスフィルタリングは、恐らくは適切なウィンドーイングによりガウス関数での畳み込みにより行われている。他のローパスフィルタが用いられ得、その後、フィルタリングされた波形に対して第2の導関数を計算する標準的な数値方法によって用いられる。
【0164】
第7および第8の中央部分特徴を計算するために、ステップ7010は、方法7100を異なる定義の中央部分(すなわち、異なる値のパラメータである「小部分」および「大部分」)と共に反復し得る。1つのこのような実行において、方法7100の第2の反復の「小部分」は0.2であり、「大部分」は0.8であり、これらはどちらとも、中央部分特徴CF1~CF6の計算対象となったために吸気波形の早期部分を定義する中央部分を定義する対応する部分よりも低い。第7の中央部分特徴(CF7)であるConcaveAndFlattishCentralSlopeは、方法7100の第2の反復のステップ7140から返送されたcentralSlopeの値である。ConcaveAndFlattishCentralSlopeの値は、吸気波形の早期部分にわたって計算されたcentralSlope(CF2)の値と若干異なる。
【0165】
第8の中央部分特徴(CF8)であるConcaveAndFlattishCentralConcavityは、方法7100の第2の反復のステップ7180から返送されたcentralConcavityの値である。ConcaveAndFlattishCentralConcavityの値は、吸気波形の早期部分にわたって計算されたcentralConcavity(CF6)の値と若干異なる。
【0166】
中央部分特徴CF1~CF8の計算を主に正規化量に基づくことにより、方法7100自体が、誤モデル化された漏洩に起因する吸気波形のオフセットに対してよりロバストになる。
【0167】
図7cは、本技術の1つの形態において方法7000のステップ7020を実行するために用いられる方法7200を示すフローチャートである。上記したように、ステップ7020は、例えばファジィ論理を用いることにより、ステップ7010において計算された中央部分特徴CF1~CF8を組み合わせて、吸気波形の典型的な流れが制限された吸気波形それぞれに対する類似性を示す複数の流れ制限ファジィ真理変数FL1~FL6を計算する。
【0168】
各ステップ7210~7260は、8個の中央部分特徴CF1~CF8の一定の部分集合に基づいて動作して、6個の流れ制限ファジィ真理変数FL1~FL6のうちの1つを計算する。この理由のため、ステップ7210~7260は、並列に行ってもよいし、あるいは任意の簡便な順序で行ってもよい。
【0169】
ステップ7210は、流れ制限ファジィ真理変数FL1、flattishMaybeConcaveを中央部分特徴centralSlope(CF2)、centralDeviation(CF5)およびcentralConcavity(CF6)それぞれから得られた3つのファジィ真理変数centralSlopeflattishMaybeConcave、centralDeviationflattishMaybeConcaveおよびcentralConcavityflattishMaybeConcaveのファジィANDとして計算する。flattishMaybeConcaveに貢献する3つのファジィ真理変数はそれぞれ、吸気波形の中央部分が緩やかに平坦(なおかつ水平かつ合理的に線形であり)また若干上方に凹状であることを示す。1つの実行において、ステップ7210は、centralSlopeflattishMaybeConcave、centralDeviationflattishMaybeConcave、およびcentralConcavityflattishMaybeConcaveを以下のように計算する:
【数2】
【0170】
ステップ7220は、流れ制限ファジィ真理変数FL2、mildNegSlopeHighInspResistanceを6個の中央部分特徴CF1~CF6から計算する。流れ制限ファジィ真理変数mildNegSlopeHighInspResistanceは、吸気波形が中央部分において若干の負の傾きを持つことを示し、吸気抵抗が高いことを示す。
【0171】
図7dは、本技術の1つの形態において。方法7200のステップ7220の実行に用いられ得る方法7300を示すフローチャートである。
【0172】
方法7300は、ステップ7310から開始する。ステップ7310は、中央部分特徴であるcentralPartDurationByFlowsMeanProduct(CF3)が0を超えるかまたは中央部分特徴centralSlope(CF2)が[-0.6,-0.1]間にあるかを確認する。そうではない場合(「N」)、方法7300はステップ7320に進む。ステップ7320は、centralSlopeが若干負ではないかまたは中央部分が使用するには小さすぎるため、mildNegSlopeHighInspResistanceを偽に設定する。
【0173】
そうである場合(「Y」)、方法7300は、4つのファジィ真理変数の計算を開始する。これら4つのファジィ真理変数をファジィAND演算を用いて組み合わせて、mildNegSlopeHighInspResistanceを得る。
【0174】
この計算は、ステップ7330から開始する。ステップ7330は、中央前部分が「ピークになる」につれてpairIsHighが真になるように、中央部分特徴であるpropnAboveRampToStartOfCentralPart(CF1)から中間ファジィ真理変数pairIsHighを計算する。1つの実行において、ステップ7330は、pairIsHighを以下のようにして計算する:
【数3】
【0175】
次に、ステップ7340は、pairIsHighおよびcentralSlopeから傾きに依存する逸脱閾値を計算する。1つの実行において、ステップ7340は、slopeDependentDeviationThresholdを以下のようにして計算する:
【数4】
【0176】
次のステップ7350において、方法7300は、中央部分特徴centralDeviation(CF5)から先ほど計算されたslopeDependentDeviationThresholdを減算した値を用いて、mildNegSlopeHighInspResistanceに貢献する4つのファジィ真理変数のうち第1のもの(すなわち、centralDeviationLow)を計算する。この差が増加するため、centralDeviationLowの値は偽になる。1つの実行において、ステップ7350は、centralDeviationLowを以下のように計算する:
【数5】
【0177】
次に、ステップ7360は、中央部分の凹部が緩やかに正である場合にcentralConcavityModPositiveが真になるように、中央部分特徴centralConcavity(CF6)からmildNegSlopeHighInspResistanceに貢献する4つのファジィ真理変数のうち第2のもの(すなわち、centralConcavityModPositive)を計算する。1つの実行において、ステップ7360は、centralConcavityModPositiveを以下のように計算する:
【数6】
【0178】
次のステップ7370は、postCentralActualAbovePredictedの増加と共にpostCentralActualAbovePredMildNegSlopeが真になるように、mildNegSlopeHighInspResistanceに貢献する4つのファジィ真理変数のうち第3のもの(すなわち、postCentralActualAbovePredMildNegSlope)を中央部分特徴postCentralActualAbovePredicted(CF4)から計算する。1つの実行において、ステップ7370は、postCentralActualAbovePredMildNegSlopeを以下のように計算する:
【数7】
【0179】
次のステップ7375において、方法7300は、指数的崩壊定数exponentialDecayConstantを中央部分特徴centralSlope(CF2)およびcentralPartDurationByFlowsMeanProduct(CF3)から計算する。1つの実行において、ステップ7375は、exponentialDecayConstantを以下のようにして計算する。
【数8】
【0180】
次のステップ7380において、mildNegSlopeHighInspResistanceに貢献する4つのファジィ真理変数のうち第4のもの(すなわち、expDecayConstMildNegSlope)をexponentialDecayConstantから計算する。1つの実行において、ステップ7380は、expDecayConstMildNegSlopeを以下のようにして計算する:
【数9】
【0181】
方法7300の最終ステップ7390は、4つのファジィ真理変数centralDeviationLow、mildNegSlopeHighInspResistance、postCentralActualAbovePredMildNegSlopeおよびexpDecayConstMildNegSlopeのファジィANDとしてmildNegSlopeHighInspResistanceを計算する。
【0182】
ステップ7230は、流れ制限ファジィ真理変数FL3(すなわち、veryFlat)を3つのファジィ真理変数centralSlopeVeryFlat、centralConcavityVeryFlatおよびpropnAboveRampToStartOfCentralPartのファジィANDとして計算する。VeryFlatは、中央部分特徴centralSlope(CF2)、centralConcavity(CF6)およびpropnAboveRampToStartOfCentralPart(CF1)それぞれから得られる。veryFlatに貢献する3つのファジィ真理変数は、吸気波形がほぼ水平であること、中央部分において上方に凸状ではないこと、および中央前部分において上方に凹状ではないことをそれぞれ示す。1つの実行において、ステップ7230は、centralSlopeVeryFlat、centralConcavityVeryFlat、およびpropnAboveRampToStartOfCentralPartVeryFlatを以下のように計算する:
【数10】
【0183】
ステップ7240は、中央部分特徴centralSlope(CF2)、centralConcavity(CF6)およびpropnAboveRampToStartOfCentralPart(CF1)それぞれから得られた3つのファジィ真理変数centralSlopeflatAndLargeInitialPeakMShapes、centralConcavityflatAndLargeInitialPeakMShapes、およびpropnAboveRampToStartOfCentralPartFlatAndLargeInitialPeakMShapesのファジィANDとして流れ制限ファジィ真理変数FL4(すなわち、flatAndLargeInitialPeakMShape)を計算する。flatAndLargeInitialPeakMShapeに貢献する3つのファジィ真理変数は、吸気波形がほぼ水平であらうことまたは中央部分においてM字型であることをそれぞれ示し、大きな初期ピークを有する。1つの実行において、ステップ7240は、centralSlopeflatAndLargeInitialPeakMShape、centralConcavityflatAndLargeInitialPeakMShape、およびpropnAboveRampToStartOfCentralPart,flatAndLargeInitialPeakMShapeを以下のように計算する:
【数11】
【0184】
ステップ7250は、以下のファジィ論理演算を3つの中間ファジィ真理変数に対して用いて、流れ制限ファジィ真理変数FL5(すなわち、flatMNegSlopePostCentralHigh)を計算する:
【数12】
【0185】
ファジィ真理変数centralDeviationflatMNegSlopePostCentralHighは、中央部分特徴centralDeviation(CF5)から得られ、吸気波形の中央部分が合理的に線形であることを示す。1つの実行において、ステップ7250は、centralDeviationflatMNegSlopePostCentralHighを以下のように計算する:
【数13】
【0186】
ステップ7250は、中央部分特徴centralSlope(CF2)およびpostCentralActualAbovePredicted(CF4)それぞれから得られた2つのファジィ真理変数centralSlopeflatNegSlopeおよびpostCentralActualAbovePredFlatNegSlopeのファジィANDとしてファジィ真理変数flatNegSlopeを計算する。flatNegSlopeに貢献する2つのファジィ真理変数は、吸気波形が中央部分において若干負の傾きを有することおよび中央後部分において上方に凹状であることをそれぞれ示す。1つの実行において、ステップ7250は、centralSlopeflatNegSlopeおよびpostCentralActualAbovePredFlatNegSlopeを以下のように計算する:
【数14】
【0187】
ステップ7250は、中央部分特徴centralSlope(CF2)およびpostCentralActualAbovePredicted(CF4)それぞれから得られた2つのファジィ真理変数centralSlopeflatMoreNegSlopeHighPostCentralおよびpostCentralActualAbovePredFlatMoreNegSlopeHighPostCentralのファジィANDとしてファジィ真理変数flatMoreNegSlopeHighPostCentralを計算する。flatMoreNegSlopeHighPostCentralに貢献する2つのファジィ真理変数は、吸気波形がflatNegSlopeよりも中央部分において若干負の傾きを有することおよび中央後部分においてピークを有することをそれぞれ示す。1つの実行において、ステップ7250は、centralSlopeflatMoreNegSlopeHighPostCentralおよびpostCentralActualAbovePredFlatMoreNegSlopeHighPostCentralを以下のように計算する:
【数15】
【0188】
ステップ7250によって計算されたファジィ真理変数flatMNegSlopePostCentralHigh(FL5)は、吸気波形が中央部分において合理的に線形であり、中央部分において若干負の傾きを有しかつ中央後部分において上方に凹状であるかまたは中央部分においてより大きな負の傾きを有しかつ中央後部分においてピークを有することを示す。
【0189】
ステップ7260は、中央部分特徴centralSlopeconcaveAndFlattish(CF7)およびcentralConcavityconcaveAndFlattish(CF8)それぞれから得られた2つのファジィ真理変数centralSlopeConcaveAndFlattishFuzzyおよびcentralConcavityConcaveAndFlattishFuzzyのファジィANDとして流れ制限ファジィ真理変数FL6(すなわち、concaveAndFlattish)を計算する。concaveAndFlattishに貢献する2つのファジィ真理変数は、吸気波形の中央部分がほぼ水平であることおよび上方に凹状であることをそれぞれ示す。流れ制限ファジィ真理変数concaveAndFlattish(FL6)は、flattishMaybeConcaveに貢献するCF2およびCF6よりも中央部分の若干早期の定義にわたって計算された中央部分特徴CF7およびCF8に依存するため、第1の流れ制限ファジィ真理変数flattishMaybeConcave(FL1)と若干異なる。すなわち、concaveAndFlattishは、flattishMaybeConcaveよりも若干早期の外観of水平性および凹性を示す。
【0190】
1つの実行において、ステップ7260は、centralSlopeConcaveAndFlattishFuzzyおよびcentralConcavityConcaveAndFlattishFuzzyを以下のように計算する:
【数16】
【0191】
図7eは、本技術の1つの形態において方法7000のステップ7030の実行に用いられる方法7400を示すフローチャートである。上記したように、ステップ7030は、吸気波形の「椅子状」の度合いを示すファジィ真理変数fuzzyLateFlatnessを計算する。
【0192】
方法7400は、ステップ7410から開始する。ステップ7410は、吸気時間Tiが吸気時間閾値よりも高く、典型的な最近の換気Vtyp(以下に述べる典型的な最近の換気決定アルゴリズム4328から返送される)がゼロよりも大きいかを確認する。1つの実行において、吸気時間閾値は0.5である。そうではない場合(「N」)、ステップ7440は、fuzzyLateFlatnessを「ファジィ偽」に設定し、方法7400は終了する。そうである場合(「Y」)、ステップ7420は、吸気波形の「後部分」の開始位置および終了位置を計算する。ステップ7420の目的は、吸気波形中の早期ピーク全てを排除するように後部分を定義することである。1つの実行において、後部分は、波形決定アルゴリズム4322によって決定された圧力波形テンプレートの上昇時間および下降時間パラメータを用いて定義される。1つのこのような実行において、後部分の開始位置は、上昇時間で1.25倍され、終了位置は、吸気波形の終了から戻った下降時間の1/4である。「後部分」を定義するステップ7420の他の実行が企図され得る。例えば、ステップ7420は、上記定義された「後部分」よりも若干遅い部分をゼロ勾配に近い直線への合理的な近似として試験し得、これが発見された場合、逆方向サーチを行って、例えば接合点における大きな正の平滑な第2の導関数にほぼ相当する基準を用いてこの近似の初期ピークからの急速降下との接合点を発見して、この接合点を位置特定した後、この接合点からほぼ開始する後部分を検討する。このアプローチは、上記したアプローチよりも集中的な計算を必要とする。
【0193】
次に、方法7400は、ステップ7420において定義された後部分の持続期間が吸気時間Tiの最小の割合を超えるかを確認する。1つの実行において、最小の割合は0.25である。そうではない場合(「N」)、後部分は、信頼できる分析を得るには短すぎるとみなされ、方法7400はステップ7440へ進み、fuzzyLateFlatnessを「ファジィ偽」に設定し、方法7400が終了する。そうである場合(「Y」)、次のステップ7450は、Vtypの増加と共にnormFactorTyptVentが概して増加するように、正規化係数normFactorTypVentを典型的な最近の換気Vtypから計算する。Vtypが肺胞換気である際に適した1つの実行において、ステップ7450は、normFactorTypVentをVtyp/4.5として計算する。
【0194】
次に、ステップ7455は、吸気波形に対する線形近似を後部分について計算する。ステップ7455は、平均流量flowMean、傾きflowSlopeおよび平均二乗予測誤差rootMeanSqFlowPredErrによって特徴付けられる線形近似を計算する際に線形回帰を用い得る。次に、ステップ7455は、それぞれを正規化係数normFactorTypVentによって除算することにより、これらの3つのパラメータの正規化を計算する:
【数17】
【0195】
ここで、「平坦性」とは、後部分が直線に類似している範囲を指し、その勾配については何も意味せず、後部分が実際に直線であるとき、lateFlatnessの値はゼロになる。
【0196】
次のステップ7460において、方法7400は、量flowAboveLateBeforeLateを計算する。量flowAboveLateBeforeLateは、後部分の前方の吸気波形がステップ7455において計算された吸気波形の後部分に対する線形近似の後方突出を超える量を示す(すなわち、吸気波形中の早期ピークのサイズを示す)。flowAboveLateBeforeLateを計算するには、呼吸流量Qrが後部分に対する線形近似の後方突出を超える、後部分の前方における最も早期の位置を発見する。次に、呼吸流量Qrと、線形近似との間の差をこの位置と後部分の開始位置との間において平均化する。次に、この平均正規化係数normFactorTypVentによって正規化して、flowAboveLateBeforeLateを得る。次に、ステップ7460は、flowAboveLateBeforeLateが(ステップ7455において計算された)後部分の平均流量lateFlowMeanと共に概して増加する閾値を超えるまでflowAboveLateBeforeLateAdequateがファジィ偽となるように、ファジィ真理変数flowAboveLateBeforeLateAdequateをflowAboveLateBeforeLateの値から計算する。flowAboveLateBeforeLateAdequateはlateFlowMeanに依存しているため、後部分の平均流量の増加と共にfuzzyLateFlatnessがファジィ真になるためには、より大きな早期ピークが必要になる。
【0197】
1つの実行において、ステップ7460は、flowAboveLateBeforeLateAdequateを以下のように計算する:
【数18】
【0198】
ここで、LOWER_THRESHおよびUPPER_THRESHは、1つの実行においてそれぞれ0.5*lateFlowMeanおよびlateFlowMeanに等しい一定の閾値である。1つの実行において、これらの閾値の最小値は、lateFlowMeanの値に関係無く、それぞれ2.25および4.5リットル/分である。
【0199】
方法7400がステップ7465に進み、ファジィ真理変数lateSlopeFuzzyCompを計算する。ファジィ真理変数lateSlopeFuzzyCompは、lateFlatnessが増加すると(すなわち、後部分の線形性が低くなると)、真から偽へ変化する。1つの実行において、ステップ7465は、lateSlopeFuzzyCompを以下のように計算する:
【数19】
ここで、LOWER_FLATNESS_THRESHおよびUPPER_FLATNESS_THRESHは、それぞれ0.6および0.9に等しい一定の閾値である。
【0200】
次のステップ7470は、lateSlopeが「緩やか」であるとき(すなわち、特定の範囲内にあるとき)にのみ真であるファジィ真理変数lateSlopeFuzzyCompを計算する。すなわち、lateSlopeが大きな正のまたは負の値になった場合、lateSlopeFuzzyCompは偽になり得る。1つの実行において、ステップ7470は、lateSlopeFuzzyCompを以下のように計算する:
【数20】
ここで、LOWER_SLOPE_THRESHおよびUPPER_SLOPE_THRESHは閾値である。1つの実行において、これらの閾値は、lateFlowMeanの増加と共に概してより負になる。すなわち、後部分の平均流量の増加と共に「緩やかな」定義内において、より大きな負の傾きが許される。1つの実行において、ステップ7470は、LOWER_SLOPE_THRESHおよびUPPER_SLOPE_THRESHを以下のように計算する:
【数21】
ここで、slopeThresholdExtensionは、lateFlowMeanの増加と共に1から0へ減少する実数である。1つの実行において、ステップ7470は、slopeThresholdExtensionを以下のように計算する:
【数22】
【0201】
方法7400の最終ステップ7475は、ステップ7460、7465および7470においてそれぞれ計算されたファジィ真理変数flowAboveLateBeforeLateAdequate、lateFlatnessCompおよびlateSlopeFuzzyCompのファジィANDとしてfuzzyLateFlatnessを計算する。
【0202】
8.4.3.2.5 M字検出
本技術の1つの形態において、治療エンジン4320モジュールは、吸気波形中の「M字形状」を検出するために1つ以上のアルゴリズムを実行する。1つの形態において、M字検出アルゴリズム4326は、呼吸流量信号Qrを入力として受信し、各吸気波形がM字形状を示す範囲を示す測定値を出力として提供する。
【0203】
一回換気量または他の呼吸方向の換気値のM字型の吸気波形のうち、典型的な最近の値をそれほど超えていないものは、流れ制限を示す。このような吸気波形は、相対的に急速な上昇および下降ならびに一時的下落または「ノッチ」を流れおよび中央において有し、一時的下落は流れ制限に起因する(図6eおよび図6fを参照)。一回換気量または呼吸方向の換気値が増加すると、このような波形は概して挙動的(すなわち、睡眠時の微小覚醒または吐息)になり、流れ制限を示さない。
【0204】
M字型の波形を検出するために、M字検出アルゴリズム4326は、広範にM字型である波形に対する吸気波形の類似性を決定する。
【0205】
図7fは、本技術の1つの形態においてM字検出アルゴリズム4326の実行に用いられ得る方法7500を示すフローチャートである。
【0206】
ノッチは吸気波形の中心では無い場合があるため、方法7500は、ノッチの位置を発見しようとした後、ノッチが波形中心に来るように、波形の直線時間歪みを発生させる。ノッチを発見するために、第1のステップ7510は、ゼロ上にセンタリングされた長さTi/2のV字型カーネルV(t)を用いて、正規化吸気波形f(t)の変形畳み込みを行う(ここで、正規化は平均による除算である)ここで、Tiは吸入時間である:
【数23】
【0207】
変形畳み込みは、カーネルV(t)の左半分および右半分の別個の畳み込みに基づく。左半分の畳み込みは、以下のように計算される。
【数24】
右半分畳み込みは、以下のように計算される。
【数25】
【0208】
変形畳み込みI(τ)は、左半分および右半分の畳み込みのいずれかがゼロになった場合にその他の量に関わらず結果がゼロになり、両者が1である場合に結果が1になるように、左半分および右半分の畳み込みI(τ)およびI(τ)の組み合わせとして計算される。このような制約を受けることにより、左半分および右半分の畳み込みの組み合わせは、論理「and」関数にある意味において類似するため、「V-anded畳み込み」と命名される。1つの実行において、この組み合わせは、左半分および右半分の畳み込みの変形された幾何平均である:
【数26】
【0209】
上記の制約により、仮定ノッチの左側に対する吸気波形は概して左方向に増加し、ノッチの右側に対する吸気波形は概して右方向に増加するという条件が得られる。その結果、左側および右側の整数を単に合計した場合よりも特異性が得られる。方程式(1)中に示す実行において、各半分Vの時間シフトした正規化吸気波形の積の整数は厳密に正でなくではならず、そうではない場合、V-anded畳み込みはゼロになる。その結果、例えばVの中心の左側への吸気流れの部分が実際に左方向に増加させないが、V波形の右半分の整数が実際に低減する左半分を凌駕するほど大きくなると、多様な病態が回避される。
【0210】
このV-anded畳み込みは、Ti/4~3Ti/4の範囲におけるカーネルV(t)の中心の位置と共に行われ、これにより、吸気波形の中央半分について結果が得られる。
【0211】
ステップ7520において、変形畳み込みI(τ)がピークになる位置が発見され、このピークの高さが閾値を上回る場合、このピークが位置しているカーネルV(t)の中心の位置tnotchにノッチが存在するとみなされる。1つの実行において、閾値は、0.15に設定される。
【0212】
ステップ7520において位置tnotchにおいてノッチが発見された(「Y」)場合、波形の半分が位置tnotchの左側になりかつ半分が右側になるように、吸気波形f(t)がステップ7530において時間歪みが施されたかまたは「対称化」される。この演算の結果、吸気波形f(t)の時間歪みが施されたかまたは「対称化」されたバージョンG(t)が得られる:
【数27】
【0213】
ステップ7520においてノッチが発見された(「N」)場合、検出可能なノッチが未だM字型の流れ制限を持ち得ることを示さない波形がいくつか存在するため、ステップ7535は、G(t)を吸気波形f(t)に設定する。
【0214】
対称化波形G(t)においてM字型の流れ制限を発見するために、先ず、半分-幅Tiの第1および第3の正弦波の調和関数が以下のように定義される。
【数28】
および
【数29】
【0215】
これら2つの調和関数は、[0,Ti]上において直交する。tが[0,Ti]に有る場合、F(t)は、M字型の吸気波形におおむね類似し、F(t)は、通常の吸気波形におおむね類似する。そのため、対称化波形G(t)がF(t)に類似する範囲は、波形がMに類似する度合いを示すインジケータになる。ステップ7540は、この範囲を計算する。1つの実行において、ステップ7540は、対称化波形G(t)の第1の調波における累乗を第1の調和関数Fのスカラー積と対称化波形G(t)との2乗として計算し、対称化波形G(t)の第3の調波における累乗を第3の調和関数Fの対称化波形G(t)とのスカラー積の2乗として計算する。両方のスカラー積は、吸気間隔[0,Ti]にわたって計算される。次に、ステップ7540は、対称化波形G(t)がF(t)に類似する範囲を、対称化波形G(t)の第3の調波の累乗の対称化波形G(t)の第1および第3の調波の累乗の合計に対するM3Ratioとして計算する:
【数30】
【0216】
M3Ratioが大きい場合、吸気波形は典型的には、Mに類似する。しかし、M3Ratioは、波形が極めて非対称である場合にも大きくなり得、波形の第1のまたは第2の半分における平均流量が他方の半分よりもずっと大きくなる。この可能性を排除するため、ステップ7540は、ノッチ位置周囲における吸気波形f(t)の対称性の測定値Symmも計算する。1つの実行において、ステップ7540は、対称化波形G(t)のf第1のおよび第2の半分の第3の調波コンポーネントを計算する:
【数31】
【0217】
次に、ステップ7540は、これらのコンポーネントのうちより小数のものの絶対値の合計に対する比として測定値Symmを計算する:
【数32】
【0218】
次に、ステップ7550は、測定値Symmが1つの実行において0.3に設定された低閾値を下回るかを試験する。そうである(「Y」)場合、吸気波形は、対称にM字型ではないとみなされ、吸気波形が対称にM字型である範囲の測定値である量M3SymmetryRatioが、ステップ7560においてゼロに等しく設定される。そうではない(「N」)場合、M3SymmetryRatioは、ステップ7570においてM3Ratioに等しく設定される。
【0219】
最終ステップ7580において、変数RxProportionがM3SymmetryRatioの増加と共に0から1へ徐々に増加するように、M3SymmetryRatioから変数RxProportionを計算する。1つの実行において、ステップ7580は、RxProportionを以下のように計算する:
【数33】
ここで、LOWER_M3SYMMETRYRATIO_THRESHおよびUPPER_M3SYMMETRYRATIO_THRESHは、1つの実行においてそれぞれ0.17および0.3に等しい定数である。変数RxProportionは、呼吸流量波形の吸気部分のM字形状の度合いの範囲[0,1]におけるインジケータである。
【0220】
8.4.3.2.6 無呼吸検出
本技術の1つの形態において、治療エンジンモジュール4320は、低換気無呼吸を検出する無呼吸検出アルゴリズム4325を実行する。
【0221】
1つの形態において、無呼吸検出アルゴリズム4325は、呼吸流量信号Qrを入力として受信し、検出された無呼吸の開始および終了を示す一連のイベントを出力として提供する。
【0222】
図7gは、本技術の1つの形態において無呼吸検出アルゴリズム4325を実行するために用いられ得る無呼吸検出方法7600を示すフローチャートである。
【0223】
方法7600は、期待される正常換気Vnormに関連して低換気を主に探索する。ターゲット換気Vtgtが存在する実行において、期待される正常換気Vnormは、ターゲット換気Vtgtであり得る。例えばターゲット換気Vtgtが存在しない他の実行において、期待される正常換気Vnormは、以下に述べる典型的な最近の換気決定アルゴリズム4328から返送された典型的な最近の換気Vtypであり得る。
【0224】
換気測定を、2つの異なる時間スケールにおいて行う。これら2つの異なる時間スケールのうち1つは、呼吸およびいくつかの呼吸の持続期間のうちの1つに相当し、いずれかの時間スケールにおける期待される正常換気Vnormに関連する低換気は、無呼吸が進行中であることを示す。方法7600は、無呼吸が前回進行中であることが決定されたが、これら2つの基準のうちいずれも進行中の無呼吸が真である旨を示さない場合、無呼吸を終了させるためには、期待される正常換気Vnormに相対する換気から導出されたさらなる基準が真になる必要があるという点において、ヒステリシスを含む。方法7600のヒステリシスにより、方法7600における呼吸流量の一過性上昇に対するロバスト性を、前回の無呼吸検出方法の場合よりも高くすることができる。
【0225】
方法7600は、治療目的のために無呼吸の有効持続期間も返送する。無呼吸の有効持続期間は、デフォルトでは絶対持続期間(すなわち、無呼吸の開始から終了までの経過時間)である。しかし、無呼吸の有効持続期間を、2つの別個の重み付け低減係数のうち一方または双方によって絶対持続期間から低減することができる。これら重み付け低減係数のうち、1つは期待される正常換気Vnormに相対する換気から導出され、1つは無呼吸時の推測された漏洩流量Qlから導出される。この重み付け低減の効果としては、漏洩が大きい範囲および/または無呼吸時に換気が期待される正常換気Vnormに近づく範囲まで、無呼吸の有効持続期間が絶対持続期間よりも短くなり、規定されたEPAP増加が低減する点がある。
【0226】
方法7600は、ステップ7610から開始する。ステップ7610において、換気決定アルゴリズム4323から返送された瞬間的換気Vintの最も最近の「短間隔」にわたる平均として短時間換気Vshortが計算される。1つの実行において、短間隔は2秒である。ステップ7610において、換気決定アルゴリズム4323から得られた「超高速換気」VveryFastと期待される正常換気Vnormとの間の相対的な差として、「超高速」の相対的な換気誤差veryFastRelVentErrorも計算される。ステップ7610において、超高速相対的な換気誤差veryFastRelVentErrorは、以下のように計算される:
【数34】
【0227】
次に、方法7600は、ステップ7615において、短時間換気Vshortが期待される正常換気Vnormの小部分以下であるかを確認する。1つの実行において、小部分は、0.2に設定される。そうである(「Y」)場合、無呼吸が検出される。そうである(「N」)、次のステップ7620において、veryFastRelVentErrorが(1つの実行において-0.95に等しい)無呼吸閾値以下であるかを確認する。ステップ7620における確認は、超高速換気VveryFastが期待される正常換気Vnormのごく一部未満であるかを決定することに相当する。この場合、ごく一部は、0.05である。そうである(「Y」)場合、無呼吸が検出される。
【0228】
方法7600は、(治療開始時において偽に初期化されている)BooleanインジケータinApneaとして無呼吸の現在の状態を維持する。(ステップ7615および7620において試験された)いずれかの無呼吸開始基準が満足された(「Y」)場合、方法7600は、ステップ7630において、inApneaが真であるかを確認することにより、無呼吸が既に進行中であったかを確認する。そうではない(「N」)場合、次のステップ7635において、無呼吸開始イベントを発行し、inApneaを真に設定して、患者1000が無呼吸状態に入ったばかりであることを示す。次に、ステップ7645において、無呼吸の有効持続期間をゼロに設定する。無呼吸の有効持続期間は、無呼吸が続く限り蓄積される、変数effectiveApneaDuration中に保存される。
【0229】
次のステップ7670において、intVentErrAboveThreshという変数をゼロに設定する。この変数は、ステップ7610において計算された超高速相対的な換気誤差veryFastRelVentErrorが無呼吸閾値を超える量の今までの合計を保持し、7615および7620において試験されたこれら2つの無呼吸開始基準のうちいずれも満足されない場合、無呼吸が実際に終了したことを確認するために用いられる。
【0230】
ステップ7630における確認において、患者1000が既に無呼吸状態になっていることが判明した(「Y」)場合、方法7600は直接ステップ7670に進んで、上記したように今までの合計intVentErrAboveThreshをゼロに設定する。次に、方法7600は、以下に述べるステップ7680に進む。
【0231】
無呼吸開始基準のうちいずれも満たされない場合(ステップ7615および7620において「N」)、方法7600において、ステップ7640においてinApneaが真であるかを確認することにより、無呼吸が既に進行中であるかを確認する。そうではない(「N」)場合、方法7600はステップ7655において終了する。そうではない(「Y」)場合、現在の無呼吸が終了した可能性がある。しかし、上記したように、方法7600は、ステップ7650に進むことにより、これを確認する。ステップ7650において、veryFastRelVentErrorと無呼吸閾値との間の現在の差が付加されることにより、今までの合計intVentErrAboveThreshが更新される(ただし、この差がゼロを超える場合)。
【0232】
次に、ステップ7660は、無呼吸終了基準(すなわち、今までの合計intVentErrAboveThreshが閾値を超えるか)を確認する。1つの実行において、この閾値は、0.15に設定される。無呼吸終了基準が満たされる(「Y」)場合、無呼吸は終了するため、ステップ7665は、無呼吸終了イベントを発行し、inApneaを偽に設定する。次に、方法7600は終了する。
【0233】
無呼吸終了基準が満たされない場合(すなわち、今までの合計intVentErrAboveThreshが閾値を超えない)(ステップ7660において「N」)場合、無呼吸は未だ進行中であり、方法7600は、以下に述べるステップ7680に進む。
【0234】
ステップ7680において、veryFastRelVentErrorが無呼吸閾値を超えて上昇するとapneaTimeWeightingが1から0へ低減するように、変数apneaTimeWeightingをveryFastRelVentErrorから計算する。1つの実行において、ステップ7680は、apneaTimeWeightingを以下のように計算する:
【数35】
ここで、APNEA_THRESHOLDは、ステップ7620の無呼吸閾値であり、APNEA_THRESHOLD_PLUS_A_BITは、APNEA_THRESHOLDよりも若干高く設定された閾値であり、1つの実行においてAPNEA_THRESHOLD+0.05に等しい。変数apneaTimeWeightingは、無呼吸の最終有効持続期間に対する現在の時間瞬間の貢献を割り引く重み付け低減係数として用いられる。
【0235】
次に、ステップ7685は、漏洩流量推測アルゴリズム4316からの漏洩流量推測Qlに基づいて、第2の重み付け低減係数deweightingFactorを計算する。1つの実行において、ステップ7685は、推測された漏洩流量の増加と共にdeweightingFactorが1から0へ減少するように、deweightingFactorを計算する:
【数36】
ここでLOWER_LEAK_THRESHおよびUPPER_LEAK_THRESHは定数であり、1つの実行においてそれぞれ48リットル/分および60リットル/分に等しい。
【0236】
最後に、ステップ7690において、方法7600は、有効無呼吸持続期間effectiveApneaDurationを2つの重み付け低減係数apneaTimeWeightingおよびdeweightingFactorの積により増加させることにより、有効無呼吸持続期間effectiveApneaDurationを更新する。無呼吸完了について無呼吸検出アルゴリズム4325から返送されたeffectiveApneaDurationreturnedの最終は、無呼吸検出間隔に等しい持続期間の単位である。無呼吸検出間隔は、無呼吸検出アルゴリズム4325が治療エンジンモジュール4320によって実行される周波数の逆数である。
【0237】
8.4.3.2.7 誤モデル化された漏洩無呼吸検出
本技術の1つの形態において、治療エンジンモジュール4320は、誤モデル化された漏洩無呼吸検出アルゴリズム4327を実行して、誤モデル化された漏洩を検出する。1つの形態において、誤モデル化された漏洩無呼吸検出アルゴリズム4327は、入力呼吸流量Qrを入力として受信し、誤モデル化された漏洩の存在のインジケータを出力として提供する。
【0238】
誤モデル化された漏洩とは、真の漏洩流量が漏洩流量推測アルゴリズム4316によって計算された漏洩流量推測Qlから逸脱している状態を指す。誤モデル化された漏洩が存在する場合、推測された呼吸流量信号Qrがマスク圧力Pmに主に依存する量だけ真の呼吸流量から有意に逸脱する。その結果、同時発生する無呼吸時に推測された呼吸流量波形が発生し得、無呼吸検出アルゴリズム4325がトリガされなくなる。その結果、無呼吸が誤モデル化された漏洩によって「マスク」され、無呼吸検出アルゴリズム4325が無呼吸を検出しなくなる。そのため、誤モデル化された漏洩無呼吸検出アルゴリズム4327の目的は、誤モデル化された漏洩が無呼吸をマスクするときを検出しようとすることである。
【0239】
無呼吸をマスクしている誤モデル化された漏洩が存在するかを決定するため、誤モデル化された漏洩無呼吸検出アルゴリズム4327の1つの実行は、呼吸流量波形の吸気および呼気部分の平均および標準偏差を計算する。呼気部分の早期部分における全体的平均からの標準偏差も計算される。この量が呼気部分全体の標準偏差よりも有意に大きい場合、恐らくは流れにおける早期の呼気増加の後に減衰が発生する。これは、推測された呼吸流量信号全体が補償されていない漏洩に起因するべきではなく、そのため誤モデル化された漏洩が存在しないとみなされる。一方、呼気部分の早期部分の標準偏差が呼気部分全体の標準偏差に相当する場合、これは、誤モデル化された漏洩が無呼吸をマスクしていることに起因する可能性が高い。付加される圧力波形テンプレートΠ(Φ)が吸気部分および呼気部分の大部分においてほぼ一定であると仮定すると、真の呼吸流れが無い状態(無呼吸)時の誤モデル化された漏洩は、方形波に類似する呼吸流量波形Qrを発生させる傾向があるため、この検出は、呼気部分および吸気部分双方における低い標準偏差によって確認される。
【0240】
図7hは、本技術の1つの形態において誤モデル化された漏洩無呼吸検出アルゴリズム4327を実行するために用いられ得る誤モデル化された漏洩を検出する方法7700を示すフローチャートである。
【0241】
方法7700は、ステップ7705から開始する。ステップ7705において、吸気時間Tiが吸気時間閾値を超えるかと、呼気時間Teが呼気時間閾値を超えるかを確認する。吸気時間閾値および呼気時間閾値は、かなり小さい値に設定され、1つの実行において0.8秒および1秒にそれぞれ設定される。そうではない(「N」)場合、方法7700は、誤モデル化された漏洩に起因して呼吸が短かすぎるために偽値を返送する(すなわち、誤モデル化された漏洩無呼吸を信号送信しない)ことにより、ステップ7710において終了する。
【0242】
そうではない(「Y」)場合、次のステップ7715において、ローパスフィルタ(1つの実行においてガウスフィルタ)を用いて呼吸流量信号Qrをフィルタリングする。次に、ステップ7720は、フィルタリングされた呼吸流量信号の吸気および呼気部分の平均値を計算する。次にステップ7730に入り続き、ここで、方法7700は、ステップ7730において平均値を用いて、吸気部分および呼気部分の標準偏差を計算する。ステップ7720および7730は、吸気部分の最初および最後の0.1秒ならびにフィルタリングされた呼吸流量信号の呼気部分の最初の0.15秒および最後の0.1秒を任意選択的に無視し得る。
【0243】
次に、ステップ7740は、フィルタリングされた呼吸流量信号の呼気部分の「早期部分」の標準偏差を計算する。1つの実行において、早期部分は、Te/4および2秒の最小値に等しい持続期間として定義される。ステップ7740は、フィルタリングされた呼吸流量信号の呼気部分の最初の0.15秒を任意選択的に無視し得る。
【0244】
最終ステップ7750は、1組の誤モデル化された漏洩無呼吸検出規則をステップ7730および7740において計算された標準偏差、換気決定アルゴリズム4323から返送された超高速換気VveryFast、吸気部分Ti/Ttotのいずれかまたは全てに適用する。誤モデル化された漏洩無呼吸検出規則全てが満たされた場合、ステップ7750から真の値が返送され、これにより、誤モデル化された漏洩無呼吸が検出される。誤モデル化された漏洩無呼吸検出規則全てが満たされた場合、および偽他の。1つの実行において、誤モデル化された漏洩無呼吸検出規則は、以下のようなものである:
・ 吸気部分の標準偏差≦0.04リットル/秒
・ 呼気部分の標準偏差≦0.03リットル/秒
・ 呼気部分の早期部分の標準偏差≦0.04リットル/秒
・ 超高速換気VveryFastが閾値換気Vthr未満
・ 吸気部分Ti/Ttotが[0.25,0.5]の範囲内。
【0245】
ターゲット換気Vtgtが存在する実行において、閾値換気Vthrはターゲット換気Vtgtであり得る。例えばターゲット換気Vtgtが存在しない他の実行において、閾値換気Vthrは、以下に述べる典型的な最近の換気決定アルゴリズム4328から返送された典型的な最近の換気Vtypであり得る。
【0246】
8.4.3.2.8 典型的な最近の換気の決定
本技術の1つの形態において、中央制御器4230は、現在の換気Ventの測定値を入力としてとり、典型的な最近の換気の測定値Vtypの決定のために、典型的な最近の換気決定アルゴリズム4328を実行する。
【0247】
典型的な最近の換気Vtypは、一定の所定の時間スケールにわたる現在の換気Ventの測定値の最近の分布が周囲に密集し易い値である(すなわち、最近の履歴にわたる現在の換気の測定値の中央傾向の測定値)。典型的な最近の換気決定アルゴリズム4328の1つの実行において、最近の履歴は、数分のオーダーである。典型的な最近の換気決定アルゴリズム4328は、中央傾向の多様な周知の測定値のうちいずれかを用いて、換気決定アルゴリズム4323から返送された現在の換気Ventの測定値からの典型的な最近の換気Vtypを決定し得る。1つのこのような測定値として、現在の換気Ventの測定値についてのローパスフィルタの出力があり、この場合の時定数は100秒に等しい。
【0248】
8.4.3.2.9 治療パラメータの決定
本技術のいくつかの形態において、中央制御器4230は、治療エンジンモジュール4320中のその他のアルゴリズムのうち1つ以上から返送された値を用いて、1つ以上の治療パラメータの決定のために1つ以上の治療パラメータ決定アルゴリズム4329を実行する。
【0249】
本技術の1つの形態において、治療パラメータは、瞬間的治療圧力Ptである。この形態の1つの実行において、治療パラメータ決定アルゴリズム4329は、治療圧力Ptを以下のように決定する:
【数37】
ここで、Aは「圧力支援」の量であり、Π(Φ,t)は、位相の現在の値Φおよび時間のtにおける波形テンプレート値(範囲0~1の範囲)であり、Pはベース圧力である。
【0250】
方程式(2)を用いて治療圧力Ptを決定し、治療圧力PtをRPTデバイス4000の制御器4230中の設定点として適用することにより、治療パラメータ決定アルゴリズム4329は、患者1000の自発呼吸努力と同期して治療圧力Ptを振動させる。すなわち、上記した典型的な波形テンプレートΠ(Φ)に基づいて、治療パラメータ決定アルゴリズム4329は、吸気の開始または最中において治療圧力Ptを増加させ、呼気の開始または最中において治療圧力Ptを低減させる。(非負)圧力支援Aは、振動の振幅である。
【0251】
波形決定アルゴリズム4322が波形テンプレートΠ(Φ)をルックアップテーブルとして提供する場合、治療パラメータ決定アルゴリズム4329は、位相決定アルゴリズム4321から返送された位相の現在の値Φに対する最も近いルックアップテーブル入力をロケートすることまたは位相の現在の値Φを包含する2つの入力間を補間することにより、方程式(2)を適用する。
【0252】
圧力支援Aおよびベース圧力Pの値は、治療パラメータ決定アルゴリズム4329により、選択された呼吸圧力治療モードに応じて以下に述べるような方法で決定され得る。
【0253】
8.4.3.3 治療制御モジュール
本技術の一様態による治療制御モジュール4330は、治療エンジンモジュール4320の治療パラメータ決定アルゴリズム4329からの治療パラメータを入力として受信し、治療パラメータに従って空気流れを送達するように圧力生成器4140を制御する。
【0254】
本技術の1つの形態において、治療パラメータは治療圧力Ptであり、治療制御モジュール4330は、患者インターフェース3000におけるマスク圧力Pmが治療圧力Ptに等しい空気流れを送達するように圧力生成器4140を制御する。
【0255】
8.4.3.4 不具合状態の検出
本技術の1つの形態において、中央制御器4230は、不具合状態の検出のための1つ以上の方法を実行する。これら1つ以上の方法によって検出された不具合状態は、以下のうち1つ以上を含み得る:
・ 停電(電力無しまたはまたは電力不足)
・ トランスデューサ不具合検出
・ コンポーネントの存在の検出の失敗
・ 動作パラメータが推奨範囲外(例えば、圧力、流量、温度、PaO
・ 検出可能な警告信号を生成する試験警告の失敗。
【0256】
不具合状態が検出された場合、対応するアルゴリズムが、以下のうち1つ以上により、不具合の存在を信号送信する:
・ 可聴式、視覚的および/または動力学的(例えば、振動式の)警告の開始
・ 外部デバイスへのメッセージ送信
・ 事象の記録
【0257】
8.5 加湿器
本技術の一形態において、患者への送達のための空気またはガスの大気に相対する絶対湿度を変化させるために、(例えば、図5aに示すような)加湿器5000が提供される。典型的には、加湿器5000を用いて、絶対湿度を増加させかつ空気流れの(大気に相対する)温度を増加させた後、患者の気道への送達が行われる。
【0258】
加湿器5000は、加湿器リザーバ5110、空気流れを受容する加湿器入口5002、および加湿された空気流れを送達するための加湿器出口5004を含み得る。いくつかの形態において、図5aおよび図5bに示すように、加湿器リザーバ5110の入口および出口は、それぞれ加湿器入口5002および加湿器出口5004であり得る。加湿器5000は、加湿器ベース5006をさらに含み得る。加湿器ベース5006は、加湿器リザーバ5110を受容しかつ加熱要素5240を含むように、するように適合され得る。
【0259】
8.6 呼吸圧力治療モード
多様な呼吸圧力治療モードが、本技術の1つの形態において治療パラメータ決定アルゴリズム4329によって用いられる治療圧力方程式(2)におけるパラメータAおよびPの値に応じて、RPTデバイス4000によって実行され得る。
【0260】
8.6.1 CPAP治療
いくつかの実行において、圧力支援Aは等しくゼロであるため、治療圧力Ptも呼吸サイクル全体においてベース圧力Pに等しい。このような実行は一般的には、CPAP治療の見出し下においてグループ分けされる。このような実行において、治療エンジンモジュール4320が位相Φまたは波形テンプレートΠ(Φ)を決定する必要は無い。
【0261】
8.6.2 換気治療
他の実行において、方程式(2)における圧力支援Aの値は、正であり得る。このような実行は、換気治療として公知である。固定圧力支援換気治療として知られる換気治療のいくつかの形態において、圧力支援Aは所定の値(例えば、10cmHO)に固定される。所定の圧力支援Aは、RPTデバイス4000の設定であり、RPTデバイス4000の構成時にまたは入力デバイス4220を通じた手入力により、例えばハードコーディングによって設定され得る。
【0262】
サーボ換気として知られる換気治療のいくつかの形態において、治療パラメータ決定アルゴリズム4329は、換気の現在の測定値Ventおよび換気のターゲット値Vtgtを入力としてとり、換気の現在の測定値Ventを換気のターゲット値Vtgtに近づけるように、方程式(2)のパラメータを繰り返し調整する。ターゲット値Vtgtは、RPTデバイス4000の設定であり得、RPTデバイス4000の構成時または入力デバイス4220を通じた手入力を通じて例えばハードコーディングによって設定される。適応型サーボ換気として知られる形態のサーボ換気において、ターゲット換気Vtgtは、典型的な最近の換気決定アルゴリズム4328によって決定された典型的な最近の換気Vtypの関数(例えば、1に近い複数)であり得る。換気決定アルゴリズム4323が換気Ventの測定値を肺胞換気の測定値として決定した場合、ターゲット換気Vtgtもターゲット肺胞換気として取り扱われる。
【0263】
サーボ換気のいくつかの形態において、治療パラメータ決定アルゴリズム4329は、換気の現在の測定値Ventをターゲット換気Vtgtに近づけるように、圧力支援Aを繰り返し計算する制御方法を適用する。1つのこのような制御方法として、比例積分(PI)制御がある。PI制御の1つの実行において、圧力支援Aは、以下のように計算される:
【数38】
ここで、Gは、PI制御の利得である。いくつかの実行において、利得Gは、所定の値に固定される(例えば、-0.4 cmHO/(L/分)/秒)。他の実行において、利得Gは、ターゲット換気Vtgtに向かう換気の現在の測定値Ventの差に応じて異なり得る。このような実行について、特許協力条約特許出願番号第PCT/AU2004/001651号(WO2005/051469としてResMed Limitedへ公開)に記載がある。治療パラメータ決定アルゴリズム4329によって適用され得る他のサーボ換気制御方法を挙げると、割合(P)、割合差(PD)、および比例積分差(PID)がある。
【0264】
方程式(3)を介して計算される圧力支援Aの値は、[Amin,Amax]として定義される範囲へクリップされ得る。このような実行において、圧力支援Aは、現在の換気Ventの測定値がターゲット換気Vtgtを下回るまでデフォルトで最小圧力支援Aminに保持され得る。現在の換気Ventの測定値がターゲット換気Vtgtを下回ると、Aが増加し始め、Ventが再度Vtgtを超えたときにのみAminに再度低下する。
【0265】
圧力支援制限AminおよびAmaxは、RPTデバイス4000の設定であり、RPTデバイス4000の構成時にまたは入力デバイス4220を通じた手入力により、例えばハードコーディングによって設定される。最小圧力支援Aminである3cmHOは、定常状態の典型的な患者の呼吸動作全体を行うのに必要な圧力支援の50%のオーダーである。最大圧力支援Amaxである12cmHOは、典型的な患者の呼吸動作全体に必要な圧力支援のおよそ2倍であるため、患者が任意の努力を止めた場合に患者の呼吸を支援するのに充分であるが、不快または危険となる値を下回る。
【0266】
8.6.2.1 EPAPの自動タイトレーション
換気治療モードにおいて、ベース圧力PをEPAPと呼ぶ場合がある。EPAPは一定の値であり、タイトレーションとして知られるプロセスを介して規定または決定される。このような一定のEPAPは、RPTデバイス4000の構成時にまたは入力デバイス4220を通じて手入力によって例えばハードコーディングによって設定され得る。この代替例は、固定EPAP換気治療と呼ばれる場合もある。所与の患者に対する一定EPAPのタイトレーションは、タイトレーションセッション時に実行されるPSG研究による支援と共に、臨床医によって実行され得る。
【0267】
あるいは、治療パラメータ決定アルゴリズム4329は、換気治療時にEPAPを繰り返し計算し得る。このような実行において、治療パラメータ決定アルゴリズム4329は、治療エンジンモジュール4320中の各アルゴリズム(例えば、吸気流れ制限および無呼吸のうち1つ以上)から返送された上気道不安定性のインデックスまたは測定値の関数として、EPAPを繰り返し計算する。EPAPの計算反復は、EPAPのタイトレーション時における臨床医によるEPAPの手動調整に類似しているため、このプロセスは、EPAPの自動タイトレーションとも呼ばれ、治療全体は、EPAP換気治療の自動タイトレーションまたは自動EPAP換気治療として知られる。
【0268】
図8aは、非侵襲的換気治療との併用に適したEPAPの自動タイトレーションを行う方法8000を示すフローチャートである。方法8000は、治療パラメータ決定アルゴリズム4329の一部として繰り返し実行され得る。
【0269】
方法8000は、「所望の」EPAP値を維持および更新することにより、EPAPを自動タイトレーションする。この「所望の」EPAP値は、実際のEPAPを繰り返し調整する際の基準となるターゲット値または設定点である。この所望のEPAPは、吸気流れ制限決定アルゴリズム4324によって決定された吸気流れ制限の範囲、M字検出アルゴリズム4326によって決定されたM字、無呼吸検出アルゴリズム4325によって決定された最近の無呼吸、および現在のEPAPに応じて更新される。
【0270】
方法8000は、EPAPを範囲[EPAPmin,EPAPmax]の範囲内において自動タイトレートする。EPAPの下限および上限であるEPAPminおよびEPAPmaxは、RPTデバイス4000の設定であり、RPTデバイス4000の構成時にまたは入力デバイス4220を通じて手入力によって例えばハードコーディングによって設定される。
【0271】
圧力支援限度AmaxおよびAmin、EPAP限度EPAPminおよびEPAPmaxおよびPlimit間には相互依存関係があり、Plimitは、RPTデバイス4000から送達可能な全体的最大圧力である。これらの相互依存関係は、以下のよに表され得る。
【数39】
【0272】
自動EPAP換気治療時において、上気道の安定化のために、圧力支援Aを(Aminを超えない値まで)低減させて、EPAPを増加させることができる。換言すれば、第1の優先事項は、適切なEPAPにより安定した上気道を維持することであり、次なる優先事項は換気治療の提供である。その結果、EPAPが高くなりすぎたために圧力支援がターゲット換気Vtgtを維持できるだけの余裕が無くなったために、自動EPAPを用いたサーボ換気がターゲット換気Vtgtを維持できない場合がある。
【0273】
方法8000は、ステップ8010から開始する。ステップ8010は、異常な吸気波形形状(詳細には、吸気流れ制限決定アルゴリズム4324によって決定された吸気流れ制限の範囲およびM字検出アルゴリズム4326によって決定されたM字形状)に基づいて、EPAPへの増加ShapeRxIncreaseを計算する。ステップ8010の出力ShapeRxIncreaseは呼吸流量波形の吸気部分の形状に基づいた「処方」であるため、ステップ8010は「形状ドクター」と呼ばれる。ステップ8010について、図8bを参照して以下により詳細に説明する。
【0274】
次のステップ8020において、無呼吸検出アルゴリズム4325によって検出された1つ以上の最近の無呼吸に基づいて、EPAPへのApneaRxIncreaseの増加を計算する。ステップ8020の出力ApneaRxIncreaseは1つ以上の最近の無呼吸の重症度に基づいた「処方」であるため、ステップ8020は「無呼吸ドクター」と呼ばれる。ステップ8020について、図8eを参照して以下により詳細に説明する。
【0275】
次に、ステップ8030において、EPAP自動タイトレーション方法8000は、現在のEPAP値ならびに形状ドクターによって規定された増加ShapeRxIncreaseおよびApneaRxIncrease(ステップ8010)および無呼吸ドクター(ステップ8020)を用いて、所望のEPAPを更新する。ステップ8030について、図8gを参照して以下により詳細に説明する。
【0276】
最終ステップ8040は、(現在のEPAPの増加のための)1 cmHO/秒または(現在のEPAPの低減のための)-1 cmHOのスルーレートにおいて、現在のEPAPを所望のEPAPへスルーする。1つの実行において、現在のEPAPは、吸気時(すなわち、位相が0~0.5の間にある場合)に増加されないが、吸気時に低減してもよい。
【0277】
8.6.2.1.1 形状ドクター
図8bは、方法8000のステップ8010(「形状ドクター」)を実行する際に用いられ得る方法8100を示すフローチャートである。
【0278】
方法8100は、ステップ8105から開始する。ステップ8105において、期待される正常換気Vnormが1つの実行において1リットル/分に設定された閾値未満であるかを確認する。上記したように、例えばサーボ換気などのターゲット換気Vtgtを用いた自動EPAPの実行において、期待される正常換気Vnormは、ターゲット換気Vtgtであり得る。ターゲット換気Vtgtを用いない例えば固定圧力支援換気を用いた自動EPAPの他の実行において、期待される正常換気Vnormは、典型的な最近の換気決定アルゴリズム4328から返送された典型的な最近の換気Vtypであり得る。そうである(「Y」)場合、ステップ8110はShapeRxIncreaseをゼロに設定する。なぜならば、このような小さな値は何らかの誤差状態を示し、EPAP増加の計算を続けることは賢明ではないからである。
【0279】
そうではない(「N」)場合、ステップ8115は、呼吸流量信号Qrから現在の吸気および呼気一回換気量ViおよびVeを計算する。ステップ8120は、2つの一回換気量ViおよびVeを平均化して、平均一回換気量Vtを得る。次のステップ8125において、平均一回換気量Vtを60秒で乗算し、現在の呼吸の持続期間Ttotで除算することにより、「呼吸方向の換気」(単位:リットル/分)を計算する。次に、ステップ8130において、呼吸方向の換気を期待される正常換気Vnormで除算して、相対的な換気(relativeVentilation)の(単位無しの)値を得る。relativeVentilationが1よりも有意に小さい場合、現在の呼吸は期待される正常換気Vnormに相対して小さいため、有意な呼吸方向の低換気を示す。ステップ8135において、relativeVentilationincreasesが低換気閾値を超えると共に1から0へ減少する変数significantBreathHypoventilationを計算することにより、この関係を形式化する。1つの実行において、ステップ8135は、significantBreathHypoventilationを以下のように計算する:
【数40】
ここで、LOWER_HYPOVENT_THRESHおよびUPPER_HYPOVENT_THRESHは一定の閾値であり、1つの実行においてそれぞれ0.2および0.8に等しい。
【0280】
逆に、relativeVentilationが1よりも有意に大きい場合、現在の呼吸は期待される正常換気Vnormに相対して大きいため、有意な呼吸方向の過換気が示される。
【0281】
次のステップ8140において、方法8100は、significantBreathHypoventilationの現在の値および最近の値から変数recentBreathFlowLimitedHypoventを計算する。ステップ8140の一般的効果として、有意な呼吸方向の低換気の最近の持続性が流れが制限されたかまたはM字型の吸気波形と共に単一回の呼吸例ではなく複数の呼吸にわたって発生した場合、recentBreathFlowLimitedHypoventがより高くなる点がある。ステップ8140について、図8cを参照して以下により詳細に説明する。
【0282】
方法8000はステップ8145に進み、M字検出アルゴリズム4326から返送された(実数値化された)M字形状インジケータ変数RxProportionを反映するファジィ真理変数MShapeRxProportionを計算する。1つの実行において、ステップ8145は、RxProportionの最大値および0をとり、換言すれば、RxProportionの値の下の0の下限(a floor of 0)をとる。次に、ステップ8150は、ファジィ真理変数flowLimitedValueを(M字形状の度合いを示す)ファジィ真理変数MShapeRxProportionおよび(流れ制限の度合いを示す)流れ制限の「ファジィOR」として計算する。
【0283】
次のステップ8155において、flowLimitedValueの比較相手となる流れ制限閾値flowLimitedThresholdを計算する。EPAPの現在値の増加と共に流れ制限閾値flowLimitedThresholdも増加するように、流れ制限閾値flowLimitedThresholdを現在のEPAP値から計算する。これにより、形状ドクターがEPAPの増加を規定するために必要な吸気波形形状の異常性の度合いが、EPAPそのものの増加と共に増加する。1つの実行において、ステップ8155は、flowLimitedThresholdを以下のように計算する。
【数41】
ここで、LOWER_EPAP_THRESH、MIDDLE_EPAP_THRESHおよび上側_EPAP_THRESHは一定の閾値であり、1つの実行においてそれぞれ14cmHO、18cmHO、および20cmHOに等しい。
【0284】
形状ドクターの規定されたEPAPの増加であるShapeRxIncreaseは、flowLimitedValue間がflowLimitedThresholdを超える量に比例するように設定される(ただし、そのような量が少しでもある場合)。この増加は、1つ以上の乗数(例えば、動的に計算された乗数)の関数として設定され得る。そのため、方法8100において、先ず、以下の3つの乗数のうちの任意の1つ以上が一定の比率で計算され得、集合的に乗数としてみなされ得る。例えば、ステップ8160において、現在のEPAPの増加と共にflowLimitedRxMultiplierおよびよって最終処方ShapeRxIncreaseが概して低減するように、ベース圧力関連乗数flowLimitedRxMultiplierが計算される。1つの実行において、flowLimitedRxMultiplierは以下のように計算される:
【数42】
ここで、LOWER_MULT1_THRESH、MIDDLE_MULT1_THRESH、MIDDLE2_MULT1_THRESH、およびUPPER_MULT1_THRESHは一定の閾値であり、1つの実行においてそれぞれ10cmHO、15cmHO、19cmHO、および20cmHOに等しい。
【0285】
ステップ8165において、(漏洩流量推測アルゴリズム4316からの)漏洩流量推測Qlの増加と共にleakRxMultiplierおよびよって処方ShapeRxIncreaseが概して低減するように、漏洩関連乗数leakRxMultiplierが計算される。1つの実行において、leakRxMultiplierは以下のように計算される。
【数43】
ここで、LOWER_LEAK_THRESHおよびUPPER_LEAK_THRESHは一定の閾値であり、1つの実行においてそれぞれ30リットル/分および60リットル/分に設定される。
【0286】
次に、ステップ8170において、期待される正常換気Vnormに相対する現在の呼吸方向の換気(relativeVentilationとして表され、ステップ8130において計算される)、流れ制限またはM字形状の量(flowLimitedValueで表され、ステップ8150において計算される)および/または最近長引いている流れが制限された有意な呼吸方向の低換気の量(recentBreathFlowLimitedHypoventで表され、ステップ8140において計算される)に基づいて、換気関連乗数flowLimRxPropRelVentが計算される。ステップ8170について、図8dを参照して以下により詳細に説明する。
【0287】
最終ステップ8175において、先ずflowLimitedValueがflowLimitedThresholdを超えるかを確認することにより、形状ドクターの処方ShapeRxIncreaseが計算される。そうではない場合、ShapeRxIncreaseはゼロに設定される。そうである場合、ステップ8175において、ShapeRxIncreaseが以下のように計算される:
【数44】
ここで、EPAP_GAINは定数である。1つの実行において、EPAP_GAINは0.2cmHOに設定される。
【0288】
図8cは、方法8100のステップ8140の実行に用いられ得る方法8200を示すフローチャートである。ステップ8140において、変数recentBreathFlowLimitedHypoventが計算される。上記したように、ステップ8140の一般的効果として、流れが制限されたまたはM字型の有意な呼吸方向の低換気が単一回の呼吸例ではなく複数の呼吸にわたって発生した場合、recentBreathFlowLimitedHypoventがより高くなる。
【0289】
方法8200は、ステップ8210から開始する。ステップ8210において、M字形状インジケータRxProportionおよび流れ制限インジケータflowLimitationの最大値をステップ8135において計算されたsignificantBreathHypoventilationで乗算することにより、変数OHVが計算される。OHVとは、閉塞した(すなわち、流れが制限された)低換気を示し、OHVの値は、現在の呼吸を示す値を示す。ステップ8210において、やや少数の最近の呼吸を示す円形バッファ中の現在の位置におけるOHV値を保存する。1つの実行において、円形バッファは、8個の入力を含む。次に、ステップ8220は、円形バッファが満杯であるかを確認する。そうではない(「N」)場合、方法8200は、流れが制限されたかまたはM字型の有意な呼吸方向の低換気の最近の持続性を示す保存された情報が充分に無いため、ステップ8230においてrecentBreathFlowLimitedHypoventをゼロに設定する。そうである(「Y」)場合、ステップ8240は、円形バッファ中の各入力へ隣接重み付けを適用する。隣接重み付けは、双方の入力が1に等しくかつ1に近い場合に隣接重み付けされる入力が最高になるような、円形バッファ中の入力およびその先行処理入力の関数である。1つの実行において、ステップ8240は、adjacencyWeightedOHVを以下のように計算する。
【数45】
ここで、OHVPrevは、円形バッファ中の現在の入力OHVの先行処理入力である。他の実行において、OHVおよびOHVPrevの他の関数がステップ8240において用いられ得る(例えば、単純または幾何平均)。
【0290】
方法8200の次のステップ8250において、adjacencyWeightedOHVの2乗値を円形バッファにわたって合計する。1つの実行において、現在の入力に対して最高になりかつ入力が古くなるにつれてゼロへ低減する重みにより、各2乗値が重み付けされる。1つの実行において、(円形バッファを通じて逆方向に作用する)重み付けは、{1,0.95,0.9,0.8,0.7,0.55,0.4,0.25}である。
【0291】
最後に、ステップ8260において、(重み付けされる)2乗値の合計の平方根をステップ8250において用いられる重みの合計で除算した値として(ただし、用いられる場合。用いられない場合、2乗値の数で除算した値として)recentBreathFlowLimitedHypoventを計算する。換言すれば、recentBreathFlowLimitedHypoventは、流れが制限された有意な低換気インジケータの最近の隣接重み付けされる値の平均二乗値である(恐らくは、最近の値に対して最高の重みが付加される)。
【0292】
図8dは、方法8100のステップ8170の実行に用いられ得る方法8300を示すフローチャートである。上記したように、ステップ8170において、現在の呼吸の相対的なサイズのインジケータrelativeVentilation、流れ制限またはM字形状の量(flowLimitedValueで表される)、および最近長引いている流れが制限された呼吸方向の低換気の量のインジケータrecentBreathFlowLimitedHypoventに基づいて、形状ドクターの最終処方についての換気関連乗数flowLimRxPropRelVentを計算する。
【0293】
ステップ8170の一般的効果として、相対的な換気が流れ制限またはM字形状の量と共に増加する流れ制限閾値を超えると、flowLimRxPropRelVentが概して中立値1を有するが1を下回る傾向がある点がある。すなわち、相対的な過換気が発生している場合、形状ドクターの処方が割り引かれる傾向になる。しかし、形状ドクターの処方を割り引くのに必要な相対的な過換気の量は、流れ制限またはM字形状の重症度の増加と共に増加する。相対的な換気が有意に1未満になった場合、flowLimRxPropRelVentが増加し、恐らくは1を超え、その結果、流れが制限されたまたはM字型の有意な呼吸方向の低換気の最近の持続性のインジケータrecentBreathFlowLimitedHypoventに比例して形状ドクターの処方が増加する。
【0294】
方法8300は、ステップ8310から開始する。ステップ8310において、(ステップ8130において計算された)relativeVentilationの値が1以下であるか(すなわち、呼吸方向の換気が期待される正常換気Vnorm以上であるか)を確認する。そうである場合(「Y」)、方法8300はステップ8320に進み、変数flowLimitedValueで表される流れ制限またはM字形状の量の増加と共に変数severeFlowLimitationが概して0から1へ変化するように、変数severeFlowLimitationを計算する。1つの実行において、ステップ8320は、severeFlowLimitationを以下のように計算する:
【数46】
ここで、LOWER_FL_THRESHおよびUPPER_FL_THRESHは一定の閾値であり、1つの実行においてそれぞれ0.7および0.9に等しい。
【0295】
次のステップ8330において、ステップ8320において計算されたsevereFlowLimitationの値からの相対的な換気についての相対的な換気の下の閾値および上の閾値であるlowerRelVentThresholdおよびUpperRelVentThresholdを計算する。これらの相対的な換気の下の閾値および上の閾値lowerRelVentThresholdおよびUpperRelVentThresholdは、少なくとも1.0であり、severeFlowLimitationに比例して概して増加する。1つの実行において、ステップ8330は、相対的な換気の下の閾値および上の閾値lowerRelVentThresholdおよびUpperRelVentThresholdを以下のようにsevereFlowLimitationから計算する:
【数47】
【0296】
最後に、ステップ8340において、ステップ8330において計算された相対的な換気の下の閾値および上の閾値lowerRelVentThresholdおよびUpperRelVentThresholdに関連してrelativeVentilationが増加するのと共にflowLimRxPropRelVentが1から0へ概して低下するように、flowLimRxPropRelVentを計算する。1つの実行において、ステップ8340は、flowLimRxPropRelVentを以下のように計算する:
【数48】
【0297】
ステップ8310に戻って、ステップ8310においてrelativeVentilationが1未満であると(「N」)判明した場合、ステップ8350において、ステップ8135において計算された変数significantBreathHypoventilationが0を超えるかを確認することにより、現在の呼吸が有意な低換気であるかを確認する。(上記した実行において、relativeVentilationがUPPER_HYPOVENT_THRESHを下回る場合にのみ、significantBreathHypoventilationがゼロを上回る)。そうではない(「N」)場合、ステップ8370は、flowLimRxPropRelVentを中立値である1.0に設定する。そうである(「Y」)場合、ステップ8360は、flowLimRxPropRelVentを流れが制限されたまたはM字型の有意な呼吸方向の低換気の最近の持続性のインジケータrecentBreathFlowLimitedHypoventに比例して概して増加するように、flowLimRxPropRelVentを計算する。1つの実行において、ステップ8360は、flowLimRxPropRelVentを以下のように計算する:
【数49】
【0298】
次に、方法8300が終了する。
【0299】
8.6.2.1.2 無呼吸ドクター
図8eは、方法8000のステップ8020(「無呼吸ドクター」)の実行に用いられ得る方法8400を示すフローチャートである。
【0300】
上記したように、無呼吸ドクターの目的は、規定されたEPAP増加ApneaRxIncreaseを検出された無呼吸に基づいて計算することである。2種類の無呼吸が検出された:低換気(無呼吸検出アルゴリズム4325により検出)、および誤モデル化された漏洩(誤モデル化された漏洩無呼吸検出アルゴリズム4327により検出)。
【0301】
1つの実行において、無呼吸検出アルゴリズム4325および誤モデル化された漏洩無呼吸検出アルゴリズム4327は、それぞれが検出した無呼吸(それぞれを開始時間、終了時間、および有効持続期間によって特徴付けられる)が終了次第、これらの無呼吸を未解決の無呼吸の単一のリスト中に配置する。無呼吸検出アルゴリズム4325によって検出された低換気無呼吸は、時間的に重複していないものの、誤モデル化された漏洩無呼吸検出アルゴリズム4327によって検出された誤モデル化された漏洩無呼吸は、低換気無呼吸のうち1つ以上と重複し得る。
【0302】
そのため、方法8400は、(低換気のまたは誤モデル化された漏洩無呼吸であり得る)未解決の無呼吸のリストをその開始時間の昇順に従ってソートすることにより、ステップ8410から開始する。次のステップ8420において、ソートされた未解決の無呼吸のリストから全ての重複(すなわち、開始時間および終了の時間が同じ無呼吸)を除去する。次に、ステップ8430において、無呼吸ドクターによって既に処理された無呼吸全てをソートされたリストから除去する。
【0303】
次のステップ8440において、方法8400は、ソートされたリスト中の(恐らくは重複する)無呼吸を非重複無呼吸に分解する。次に、ステップ8450は、ソートされた非重複リスト中の無呼吸完了を開始時間の昇順で処理する。ステップ8450における無呼吸の処理について、図8fを参照して以下により詳細に説明する。ステップ8450におけるリスト中の無呼吸の処理の結果、無呼吸に起因して処方されたEPAP、prescribedEPAPが得られる。次に、ステップ8460は、無呼吸に起因して処方されたEPAPの増加ApneaRxIncreaseがprescribedEPAPおよび現在のEPAP値から計算される。1つの実行において、ステップ8460は、ApneaRxIncreaseを以下のように計算する:
【数50】
【0304】
1つの実行において、ステップ8460は、ApneaRxIncreaseが負にならないように、ApneaRxIncreaseをゼロ未満にクリップする。別の実行において、ステップ8460は、ApneaRxIncreaseを以下のように計算する:
【数51】
【0305】
ステップ8460がApneaRxIncreaseの計算のために方程式(4)を用いた場合において、ステップ8030が以下に述べるように所望のEPAPを計算する場合、所望のEPAPがApneaRxIncreaseおよびShapeRxIncreaseのうち大きい方だけ増加させる。ステップ8460がApneaRxIncreaseの計算のために方程式(5)を用いた場合において、ステップ8030が所望のEPAPを計算する場合、ApneaRxIncreaseおよびShapeRxIncreaseの合計だけ所望のEPAPを増加させる。
【0306】
ステップ8460において、方程式(4)および(5)中の現在のEPAPではなく所望のEPAPを用いてもよい。
【0307】
次に、方法8400が終了する。
【0308】
図8fは、方法8400のステップ8450の実行に用いられ得る、無呼吸を処理する方法8500の処理を示すフローチャートである。方法8500の出力は、無呼吸について規定されたEPAP増加単一のApneaIncreaseであり、無呼吸の有効持続期間を広範に増加させる。
【0309】
方法8400のステップ8450の1つの実行は、リスト中の各無呼吸について、方法8500を1回実行する。この実行において、リスト中の第1の無呼吸を処理する方法8500の第1の繰り返しの前に、ステップ8450において、無呼吸に起因する規定されたEPAP、prescribedEPAPがゼロに設定される(ステップ8450の出力)。方法8500の各繰り返しの後、ステップ8450は、prescribedEPAPを当該繰り返しから返送された単一のApneaIncreaseの値だけ増加させる。
【0310】
方法8500は、ステップ8510から開始する。ステップ8510において、無呼吸の有効持続期間が1つの実行において9秒に等しい持続期間閾値以上であるかを決定する。そうではない(「N」)場合、方法8500は、ステップ8590において終了する。ステップ8590において、無呼吸についての規定されたEPAP増加単一のApneaIncreaseが0に設定される。そうである(「Y」)場合、方法8500はステップ8520に進み、変数HighApneaRolloffPressureを計算する。変数HighApneaRolloffPressureは、無呼吸が有効持続期間において無限である場合に方法8500において現在のEPAPを増加させる際の目標値となる値である。1つの実行において、ステップ8520は、HighApneaRolloffPressureをEPAPmax + 2cmHOの最大値および1つの実行において12cmHOに設定される定数であるHighApneaRolloffPressureの最小値として計算する。そのため、HighApneaRolloffPressureは、EPAPmaxの値よりも大きくなり得る。
【0311】
次のステップ8530において、HighApneaRolloffPressureの増加と共に徐々に低下するように、EPAPをHighApneaRolloffPressureに近づけるための速度定数を計算する。ステップ8530の1つの実行において、速度定数k(単位:s-1)は以下のように計算される:
【数52】
【0312】
次に、ステップ8540において、方法8500は、無呼吸の有効持続期間と共に0から漸近的に1へ徐々に増加するように、変数EPAPIncreaseWeightingFactorを計算する。1つの実行において、ステップ8540は、EPAPIncreaseWeightingFactorを速度定数kを用いて以下のように計算する:
【数53】
【0313】
方法8500は、ステップ8550と共に終了する。ステップ8550において、EPAPIncreaseWeightingFactorと、HighApneaRolloffPressureおよびprescribedEPAPの現在値の間の差との積として単一のApneaIncreaseを計算する:
【数54】
【0314】
図8gは、方法8000のステップ8030の実行に用いられ得る方法8600を示すフローチャートである。上記したように、ステップ8030は、現在のEPAPと、形状ドクター(ステップ8010)および無呼吸ドクター(ステップ8020)によってそれぞれ規定されたEPAP増加ShapeRxIncreaseおよびApneaRxIncreaseとを用いて所望のEPAPを更新する。
【0315】
方法8600は、ステップ8610から開始する。ステップ8610において、ShapeRxIncreaseまたはApneaRxIncreaseがゼロよりも大きいかを確認する。そうである(「Y」)場合、ステップ8620において、ShapeRxIncreaseおよびApneaRxIncreaseの合計だけ所望のEPAPを増加させる。次のステップ8630において、増加した所望のEPAPを範囲[EPAPmin,EPAPmax]へクリップする。すなわち、ステップ8630において、ステップ8620およびEPAPmaxから増加された値の最小値と、ステップ8620およびEPAPminから増加された値の最大値とに所望のEPAPを設定する。
【0316】
ステップ8610において、形状ドクターまたは無呼吸ドクターがEPAPにおける正の増加(「N」)を規定しなかったことが判明した場合、方法8600は、所望のEPAPをEPAPminに向かって指数状に減衰させる。先ず、指数状の減衰をスケールするための減衰因子decayFactorが計算される。この計算は、現在のEPAP値がEPAPminを4cmHO以下だけ超えるか(ステップ8640において確認)について条件付けされた2つの分岐のうちの1つにおいて行われる。そうである(「Y」)場合、ステップ8650は、decayFactorを現在のEPAPとEPAPminとの間の差に設定する。そうではない(「N」)場合、ステップ8660は、現在のEPAPとEPAPminとの間の差の増加と共にdecayFactorがよりゆっくり増加するように、decayFactorを計算する。ステップ8660の1つの実行において、decayFactorの値は、以下のように計算される。ここで、圧力の単にはcmHOである:
【数55】
【0317】
最後に、ステップ8660またはステップ8650の後のステップ8670において、方法8600は、ステップ8650またはステップ8660において計算されたdecayFactorの値に比例する量だけ所望のEPAPを低減する:
【数56】
ここで、timeDiffは、所望のEPAPの最終更新から経過した時間(単位:秒)であり、timeConstantは、減衰の時定数(単位:秒)である。1つの実行において、timeConstantは20分*60。
【0318】
図9は、図8aのEPAP自動タイトレーション方法8000の挙動の例を示すグラフ9000を含む。グラフ9000は、呼吸流量Qrの上部掃引線9010およびマスク圧力Pmの下部掃引線9020を含む。流量掃引線9010は、流れ制限のエピソード9030を示す。エピソード9030に応答して、EPAPにおいて増加9040がある。大きな呼吸によって示される覚醒9050は、流量掃引線9010におけるエピソード9030に続く。流量掃引線9010における覚醒9050の後、流れ制限の第2のエピソード9060が続く。エピソード9060の結果、EPAPにおいて第2の増加9070が発生する。この第2の増加9070により、上気道閉塞が解消されて、流量掃引線9010中の通常の吸気波形のエピソード9080が発生する。
【0319】
8.7 用語集
本技術の開示目的のため、本技術の特定の形態において、以下の定義のうち1つ以上が適用され得る。本技術の他の形態において、別の定義も適用され得る。
【0320】
8.7.1 一般
空気:本技術の特定の形態において、空気は大気を意味し得、本技術の他の形態において、空気は、他の呼吸可能なガスの組み合わせ(例えば、酸素を豊富に含む大気)を意味し得る。
【0321】
雰囲気:本技術の特定の形態において、「雰囲気」という用語は、(i)治療システムまたは患者の外部、および(ii)治療システムまたは患者を直接包囲するものを意味するものとしてとられるべきである。
【0322】
例えば、加湿器に対する雰囲気湿度とは、加湿器を直接包囲する空気の湿度であり得る(例えば、患者が睡眠をとっている部屋の内部の湿度)。このような雰囲気湿度は、患者が睡眠をとっている部屋の外部の湿度と異なる場合がある。
【0323】
別の例において、雰囲気圧力は、身体の直接周囲または外部の圧力であり得る。
【0324】
特定の形態において、雰囲気(例えば、音響)ノイズは、例えばRPTデバイスから発生するかまたはマスクまたは患者インターフェースから発生するノイズ以外の、患者の居る部屋の中のバックグラウンドノイズレベルとみなすことができる。雰囲気ノイズは、部屋の外のソースから発生し得る。
【0325】
呼吸圧力治療(RPT):雰囲気に対して典型的には正である治療圧力における空気供給の気道入口への付加。
【0326】
経鼻的持続陽圧呼吸療法(CPAP)療法:治療圧力が患者の呼吸サイクルを通じてほぼ一定である呼吸圧療法。いくつかの形態において、気道への入口における圧力は、呼気時において若干上昇し、吸入時において若干低下する。いくつかの形態において、圧力は、患者の異なる呼吸サイクル間において変動する(例えば、部分的な上側気道妨害の通知の検出に応答して増加され、部分的な上側気道妨害の通知の不在時において低減される)。
【0327】
患者:呼吸疾患に罹患しているかまたはしていない人。
【0328】
自動的な正の気道圧力(APAP)療法:SDB発症の通知の存在または不在に応じて、例えば、呼吸間に最小限界と最大限界との間で治療圧力を自動的に調節することが可能なCPAP療法。
【0329】
8.7.2 呼吸サイクルの様態
窒息:いくつかの定義によれば、窒息とは、所定の閾値を下回った流れが例えば10秒間の継続期間にわたって継続した場合に発生したと言われる。妨害的窒息とは、患者が努力したのにもかかわらず、気道が妨害されて空気が流れなくなっている状態を指すと言われている。中心窒息とは、気道が開通しているにも関わらず呼吸努力の低下または呼吸努力の不在に起因して窒息が検出された状態を指すと言われる。混合窒息とは、呼吸努力の低下または不在が気道妨害と同時発生した状態を指すと言われる。
【0330】
呼吸速度:患者の自発呼吸速度。通常は毎分あたりの呼吸回数で測定される。
【0331】
デューティサイクル、または吸気部分:吸気時間、Tiの合計呼吸時間、Ttotに対する比。
【0332】
努力(呼吸):呼吸努力は、呼吸しようとしている人の自発呼吸によって行われる動きを指すと言われる。
【0333】
呼吸サイクルの呼気部分:呼気流れの開始から吸気流れの開始までの期間。
【0334】
流れ制限:流れ制限は、患者が努力を増しても対応して流れが増えない場合の患者の呼吸の状況を意味する。呼吸サイクルの吸気部分において流れ制限が発生した場合、当該流れ制限は吸気流れ制限として記述され得る。呼吸サイクルの呼気部分において流れ制限が発生した場合、当該流れ制限は呼気流れ制限として記述され得る。
【0335】
流れが制限された吸気波形の種類:
(i)(古典的な)平坦形状:隆起の後に相対的に平坦な部分が続き、その次に下降が続く。
(ii)M字型:2つの局所的ピークが1つは早期部分に、1つが後部分にあり、これら2つのピーク間に相対的に平坦な部分が来る。
(iii)椅子形:単一の局所的なピークがあり、このピークは早期部分にあり、次に相対的に平坦な部分が続く。
(iv)逆椅子形:相対的に平坦な部分の次に単一の局所的なピークが続き、ピークは後部分に設けられる。
【0336】
呼吸低下:好適には、呼吸低下は、流れの中断ではなく、流れの低下を意味する。一形態において、閾値速度を下回った流れ低下が継続期間にわたって続いた場合、呼吸低下が発生したと言われる。呼吸努力の低下に起因して呼吸低下が検出された場合、中心呼吸低下が発生したと言われる。成人の一形態において以下のうちいずれかが発生した場合、呼吸低下と見なされ得る:
(i)患者呼吸の30%の低下が少なくとも10秒+関連する4%の脱飽和;または;
(ii)患者呼吸の(50%未満の)低下が少なくとも10秒間継続し、関連して脱飽和が少なくとも3%であるかまたは覚醒が発生する。
【0337】
過呼吸:流れが通常の流量よりも高いレベルまで増加すること。
【0338】
低換気:低換気は、一定の時間スケールにわたって発生するガス交換の量が患者の現在の要求を下回った場合に発生すると言われている。
【0339】
過換気:過換気は、定の時間スケールにわたって発生するガス交換の量が患者の現在の要求を上回った場合に発生すると言われている。
【0340】
呼吸サイクルの吸気部分:吸気流れの開始から吸気流れの開始までの期間が、呼吸サイクルの吸気部分としてとられる。
【0341】
開通性(気道):気道が開いている度合いまたは気道が開いている範囲。開通気道は開いている。気道開通性は、以下の値のうち1つによって定量化され得る(1)開通している、ゼロ(0)の値、閉じているとき(妨害されているとき)。
【0342】
正の呼気終了時圧力(PEEP):肺中の雰囲気を越える圧力であり、呼気終了時に存在する。
【0343】
ピーク流量(Qpeak):呼吸流量波形の吸気部分における流量最大値。
【0344】
呼吸流量、空気流量、患者空気流量、呼吸空気流量(Qr):これらの同義の用語は、RPTデバイスの呼吸空気流量の推測を指すものとして理解され得、毎分あたりのリットルで通常表される患者の実際の呼吸流量である「真の呼吸流れ」または「真の呼吸気流」と対照的に用いられる。
【0345】
一回換気量(Vt):通常の呼吸時の呼吸毎に余分な努力無しに吸気または呼気される空気の容量。この量は、より具体的には吸気一回換気量(Vi)または呼気一回換気量(Ve)として定義される。
【0346】
吸入時間(Ti):呼吸流量波形の吸気部分の継続期間。
【0347】
呼気時間(Te):呼吸流量波形の呼気部分の継続期間。
【0348】
合計(呼吸)時間(Ttot):1つの呼吸流量波形の吸気部分の開始と次の呼吸流量波形の吸気部分の開始との間の合計継続期間。
【0349】
典型的な直近換気:所定の時間スケールにわたる直近値が密集する傾向となる換気値(すなわち、換気の直近値の中心の傾向の度合い)。
【0350】
上側気道妨害(UAO):部分的な上側気道妨害および合計上側気道妨害双方を含む。上側気道上の圧力差の増加(スターリングレジスタ挙動)と共に流れレベルがわずかに増加するか、または低下し得る流れ制限の状態と関連し得る。
【0351】
換気(通気孔):患者の呼吸系によって交換されるガスの合計量の度合い。換気の度合いは、単位時間あたりの吸気および呼気流れのうち1つまたは双方を含み得る。毎分あたりの量として表される場合、この数量は、「毎分換気量」と呼ばれることが多い。毎分換気量は単に量として付与される場合もあるが、毎分あたりの量として理解される。
【0352】
8.7.3 RPTデバイスパラメータ
流量:単位時間あたりに送達される空気の瞬時の量(または質量流量および換気は、単位時間あたりに同じ寸法の量または質量を持つが、流量は、ずっと短時間で測定される。場合によっては、流量について言及した場合、スカラー量(すなわち、大きさのみを有する量)を指す。他の場合において、流量について言及した場合、ベクトル量を指す(すなわち、大きさおよび方向双方を持つ量)。符号付きの量として言及された場合、流量は、患者の呼吸サイクルの吸気部分に対してノミナルに正であり得るため、患者の呼吸サイクルの呼気部分に対して負であり得る。 流量には、記号Qが付与される。「流量」は、単に「流れ」と略称する場合がある。合計流量Qtは、RPTデバイスから退出する空気の流量である。通気孔流量Qvは、吐き出されたガスの流出を可能にするために通気孔から退出する空気の流量である。漏洩流量Qlは、患者インターフェースシステムからの漏洩の流量である。呼吸流量Qrは、患者の呼吸系中に受容される空気の流量である。
【0353】
漏洩:「漏洩」という用語は、意図しない空気流れとしてとられるべきである。一例において、漏洩は、マスクと患者の顔との間の密閉が不完全であることに起因して発生し得る。別の例において、漏洩は、雰囲気に対する回りエルボーにおいて発生し得る。
【0354】
圧力:単位面積あたりの力。圧力は、HO、g-f/cm、ヘクトパスカル(hPa)などの単位の範囲において測定され得る。1cmHOは1g-f/cmに等しく、およそ0.98hPaである。本明細書において、他に明記無き限り、圧力は、cmHOの単位で付与される。患者インターフェースにおける圧力には記号Pmが付与され、現在の瞬間においてマスク圧力Pmによって達成されるべきターゲット値を表す治療圧力には記号Ptが付与よされる。
【0355】
8.7.4 換気装置についての用語
バックアップレート:自発呼吸努力によってトリガされない場合に換気装置から患者へ送達される最低呼吸速度(典型的には、毎分毎の呼吸数)を確立させる換気装置のパラメータ。
【0356】
サイクリング:換気装置の吸気位相の終了。自発呼吸している患者へ換気装置から呼吸を送達する場合、呼吸サイクルの吸気部分の終わりにおいて、換気装置は、呼吸の送達を停止するようにサイクルされると言われる。
【0357】
呼気の正の気道圧力(EPAP):換気装置が所与の時間において達成しようとする所望のマスク圧力を生成するために、呼吸内において変動する圧力が付加されるベース圧力。
【0358】
呼気終了圧力(EEP):呼吸の呼気部分の終了時において換気装置が達成しようとする所望のマスク圧力。呼気終了時において圧力波形テンプレートΠ(Φ)がゼロの値になった場合(すなわち、Φ=1のときにΠ(Φ)=0の場合)、EEPはEPAPに等しい。
【0359】
吸気の正の気道圧力(IPAP):呼吸の吸気部分時において換気装置が達成しようとする所望の最大マスク圧力。
【0360】
圧力支援:換気装置呼気時における換気装置吸気時の圧力増加を示す数であり、吸気時の最大値とベース圧力との間の差を主に示す(例えば、PS=IPAP-EPAP)。いくつかの文脈にいて、圧力支援は、換気装置が実際に達成する差ではなく、換気装置が達成しようとする差を意味する。
【0361】
サーボ換気装置:患者換気を測定する換気装置であり、ターゲット換気を有し、患者換気をターゲット換気に近づけるように、圧力支援レベルを調整する。
【0362】
自発/時間指定(S/T):自発呼吸患者の呼吸の開始を検出しようとする換気装置または他のデバイスのモード。しかし、当該デバイスが所定の期間において呼吸を検出できない場合、当該デバイスは、呼吸の送達を自動的に開始する。
【0363】
スイング:圧力支援に相当する用語。
【0364】
トリガ:換気装置が空気呼吸を自発呼吸患者へ送達する際、患者の努力により呼吸サイクルの呼吸部分が開始されたときに、このような送達がトリガされたという。
【0365】
換気装置:呼吸動作の一部または全てを行うために患者への圧力支援を提供する機械的デバイス。
【0366】
8.7.5 呼吸系の解剖学的構造
横隔膜:シート状の筋肉であり、胸郭下部上に延びる。横隔膜は、心臓、肺および肋骨を含む胸腔を腹腔から分離させる。横隔膜が収縮すると、胸腔の容量が増加し、肺中に空気が引き込まれる。
【0367】
喉頭:声帯ひだを収容する喉頭または発声器であり、咽頭の下部(下咽頭)を気管へ接続させる。
【0368】
肺:ヒトにおける呼吸臓器。肺の伝導性ゾーンは、気管、気管支、気管支、および終末細気管支を含む。呼吸ゾーンは、呼吸気管支、肺胞管および肺胞を含む。
【0369】
鼻腔:鼻腔(または鼻窩)は、顔の中央の鼻の上方および後方の空気が充填された大きな空間である。鼻腔は、鼻中隔と呼ばれる垂直フィンによって2つに分割される。鼻腔の側部には、鼻甲介(単数形は「甲介」)または鼻甲介と呼ばれる3つの水平伸長物がある。鼻腔の前方には鼻があり、後方は後鼻孔を介して鼻咽頭内に繋がる。
【0370】
咽頭:鼻腔の直接下側(下方)に配置されかつ食道および喉頭の上方に配置された咽喉の部分。咽頭は、従来から以下の3つの部分へ区分される:鼻咽頭(上咽頭)(咽頭の鼻部分)、中咽頭(中咽頭)(咽頭の口部分)、および咽喉(下咽頭)。
【0371】
8.7.6 数学用語
ファジィ論理は、本開示において複数回用いられている。以下は、Fuzzy Membership関数を示すために用いられる。Fuzzy Membership関数は、「ファジィ真理変数」を範囲[0,1]の範囲において出力し、0は「ファジィ偽」を示し、1は「ファジィ真の」を示す。
【数57】
【0372】
Fuzzy Membership関数は、以下のように定義される。
【数58】
ここで、
【数59】
はファジィ真理変数であり、xおよびxは実数である。
【0373】
関数「FuzzyDeweight」は、値fがファジィ真理変数ではなく実数として解釈されかつ出力も実数である点を除いて、「FuzzyMember」と同様に定義される。
【0374】
ファジィ真理変数の「ファジィOR」は、以下の値の最大値である;ファジィ真理変数の「ファジィAND」は、これらの値の最小値である。2つ以上のファジィ真理変数に対するこれらの演算sは、FuzzyOrおよびFuzzyAndという名称によって示される。これらのファジィ演算の他の典型的な定義も、本技術において同様に機能することが理解されるべきである。
【0375】
時間t=Tから開始する減衰の任意の期間の間、減衰量Vの値が以下によって付与される、ゼロへの指数状の減衰。
【数60】
【0376】
指数状の減衰は、時定数τではなく速度定数kによってパラメータ化された一定の時間である。k=1/τである場合、速度定数kは、時定数τと同じ減衰関数を付与する。
【0377】
一定間隔Iについての2つの関数fおよびgのスカラー積は、以下のように定義される。
【数61】
【0378】
8.8 他の注意事項
本特許文書の開示の一部は、著作権保護が与えられる内容を含む。著作権所有者は、何者かが本特許文書または本特許開示をファックスにより再生しても、特許庁の特許ファイルまたは記録に記載されるものであれば目的のものであれば異論は無いが、その他の目的については全ての著作権を保持する。
【0379】
他に文脈から明確に分かる場合および一定の範囲の値が提供されていない限り、下限の単位の1/10、当該範囲の上限と下限の間、および記載の範囲の他の任意の記載の値または介入値に対する各介入値は本技術に包含されることが理解される。介入範囲中に独立的に含まれるこれらの介入範囲の上限および下限が記載の範囲における制限を特に超えた場合も、本技術に包含される。記載の範囲がこれらの制限のうち1つまたは双方を含む場合、これらの記載の制限のいずれかまたは双方を超える範囲も、本技術に包含される。
【0380】
さらに、本明細書中に値(単数または複数)が本技術の一部として実行される場合、他に明記無き限り、このような値が近似され得、実際的な技術的実行が許容または要求する範囲まで任意の適切な有効桁までこのような値を用いることが可能であると理解される。
【0381】
他に明記無き限り、本明細書中の全ての技術用語および科学用語は、本技術が属する分野の当業者が一般的に理解するような意味と同じ意味を持つ。本明細書中に記載の方法および材料に類似するかまたは等しい任意の方法および材料を本技術の実践または試験において用いることが可能であるが、限られた数の例示的方法および材料が本明細書中に記載される。
【0382】
特定の材料が構成要素の構築に好適に用いられるものとして記載されているが、特性が類似する明白な代替的材料が代替物として用いられる。さらに、それとは反対に記載無き限り、本明細書中に記載される任意および全ての構成要素は、製造可能なものとして理解されるため、集合的にまたは別個に製造され得る。
【0383】
本明細書中に用いられるように、添付の特許請求の範囲において、単数形である「a」、「an」および「the」は、文脈から明らかにならない限り、その複数の均等物を含む点に留意されたい。
【0384】
本明細書中に記載される公開文献は全て、これらの公開文献の対象である方法および/または材料の開示および記載、参考のために援用される。本明細書中に記載の公開文献は、本出願の出願日前のその開示内容のみのために提供するものである。本明細書中のいずれの内容も、本技術が先行特許のためにこのような公開文献に先行していない、認めるものと解釈されるべきではない。さらに、記載の公開文献の日付は、実際の公開文献の日付と異なる場合があり、個別に確認が必要であり得る。
【0385】
さらに、本開示の解釈において、全ての用語は、文脈に基づいた最大範囲の合理的な様式で解釈されるべきである。詳細には、「comprises」および「comprising」という用語は、要素、構成要素またはステップを排他的な意味合いで指すものとして解釈されるべきであり、記載の要素、構成要素たはステップが明記されていない他の要素、構成要素またはステップと共に存在、利用または結合され得ることを示す。
【0386】
詳細な説明において用いられる見出しは、読者の便宜のためのものであり、本開示または特許請求の範囲全体において見受けられる内容を制限するために用いられるべきではない。これらの見出しは、特許請求の範囲または特許請求の範囲の制限の範囲の解釈において用いられるべきではない。
【0387】
本明細書中の技術について、特定の実施形態を参照して述べてきたが、これらの実施形態は本技術の原理および用途を例示したものに過ぎないことが理解されるべきである。いくつかの場合において、用語および記号は、本技術の実施に不要な特定の詳細を示し得る。例えば、「第1の」および「第2の」(など)という用語が用いられるが、他に明記無き限り、これらの用語は任意の順序を示すことを意図しておらず、別個の要素を区別するために用いられる。さらに、本方法におけるプロセスステップについての記載または例示を順序付けて述べる場合があるが、このような順序は不要である。当業者であれば、このような順序が変更可能でありかつ/またはその様態を同時にまたはさらに同期的に行うことが可能であることを認識する。
【0388】
よって、本技術の意図および範囲から逸脱することなく、例示的な例において多数の変更例が可能であり、また、他の配置構成が考案され得ることが理解されるべきである。
なお、本願の原出願(特願2017-549200号)の出願当初の特許請求の範囲の記載は以下の通りである。
請求項1:
患者における呼吸障害を治療する装置であって、
空気流れを正の圧力で患者インターフェースを介して前記患者の気道へ供給するように構成された圧力生成器と、
前記患者の呼吸流量を示す信号を生成するように構成されたセンサーと、
制御器であって、
前記患者インターフェースへベース圧力を有する換気治療を提供するように前記圧力生成器を制御することと、
前記呼吸流量を示す信号から前記患者の換気の測定値を計算することと、
前記呼吸流量信号の吸気部分から流れ制限の測定値を計算することと、
前記換気の測定値と期待される正常換気との比を計算することと、
前記流れ制限の測定値に基づいて前記換気治療のベース圧力の設定点を調整することと、
を行うように構成される、制御器と、を含み、
前記調整は、前記比と、前記流れ制限の測定値の増加と共に増加する相対的な換気閾値との間の比較にさらに依存する、装置。
請求項2:
前記制御器は、前記換気治療のベース圧力の前記設定点を前記流れ制限の測定値に基づいて調整するように構成され、前記調整は、
換気関連乗数を前記比および前記相対的な換気閾値の関数として計算することと、
前記ベース圧力の前記設定点への規定された増加を前記乗数および前記流れ制限の測定値と流れ制限閾値との間の差の積から計算することと、によって行われる、
請求項1に記載の装置。
請求項3:
前記換気関連乗数は、前記比が前記相対的な換気閾値を超えた場合に1から0へ減少する、請求項2に記載の装置。
請求項4:
前記換気関連乗数は、前記比が前記相対的な換気閾値を下回ると共に増加する、請求項2~3のいずれか1つに記載の装置。
請求項5:
前記流れ制限閾値は、現在のベース圧力の増加と共に増加する、請求項2~4のいずれか1つに記載の装置。
請求項6:
前記換気関連乗数は、複数の呼吸にわたる最近長引いている流れが制限された有意な低換気の測定値に比例して増加する、請求項2~5のいずれか1つに記載の装置。
請求項7:
前記制御器は、流れが制限された有意な低換気の複数の呼吸にわたる測定値をフィルタリングすることにより、最近長引いている流れが制限された有意な低換気の測定値を計算するように、構成される、請求項6に記載の装置。
請求項8:
前記ベース圧力設定点の調整は、前記ベース圧力の現在の値にさらに依存する、請求項1~7のいずれか1つに記載の装置。
請求項9:
前記ベース圧力設定点の調整は、
前記ベース圧力の現在の値の増加と共に1から0へ減少するベース圧力関連乗数を計算することと、
前記ベース圧力関連乗数および前記流れ制限の測定値と流れ制限閾値との間の差の積から前記ベース圧力の前記設定点への規定された増加を計算することと、を含む、請求項8に記載の装置。
請求項10:
前記制御器は、漏洩流量の現在の値を推測するようにさらに構成され、前記ベース圧力設定点の調整は、前記漏洩流量の現在の値にさらに依存する、請求項1~9のいずれか1つに記載の装置。
請求項11:
前記調整は、
推測された漏洩流量の増加と共に1から0へ減少する漏洩関連乗数を計算することと、
前記ベース圧力の前記設定点への規定された増加を前記漏洩関連乗数および前記流れ制限の測定値と流れ制限閾値との間の差の積から計算することと、を含む、請求項10に記載の装置。
請求項12:
前記流れ制限閾値は、現在のベース圧力の増加と共に増加する、請求項11に記載の装置。
請求項13:
前記換気治療はサーボ換気治療であり、前記期待される正常換気は、前記サーボ換気治療のターゲット換気である、請求項1~12のいずれか1つに記載の装置。
請求項14:
前記換気の測定値は、呼吸方向の換気である、請求項1~13のいずれか1つに記載の装置。
請求項15:
前記流れ制限の測定値は、前記吸気部分のM字形状の測定値を含む、請求項1~14のいずれか1つに記載の装置。
請求項16:
患者における呼吸障害を治療する方法であって、
換気装置を用いて患者インターフェースを通じて前記患者への換気治療を前記ベース圧力を有する換気治療を制御することと、
前記患者の呼吸流量を示す信号を生成するセンサーから前記患者の換気の測定値を計算することと、
前記呼吸流量信号の吸気部分から流れ制限の測定値を計算することと、
前記換気の測定値と期待される正常換気との比を計算することと、
前記換気装置の制御器において前記換気治療のベース圧力の設定点を前記流れ制限の測定値に基づいて調整することと、を含み、
前記調整することは、前記制御器における、前記比と、前記流れ制限の測定値の増加と共に増加する相対的な換気閾値との間の比較にさらに依存する、方法。
請求項17:
患者における呼吸障害を治療する装置であって、
空気流れを正の圧力で患者インターフェースを介して前記患者の気道へ供給するように構成された圧力生成器と、
前記患者の呼吸流量を示す信号を生成するように構成されたセンサーと、
制御器であって、
ベース圧力を有する換気治療を前記患者インターフェースへ提供するように前記圧力生成器を制御することと、
前記呼吸流量を示す信号から無呼吸を検出することと、
前記無呼吸時の漏洩流量を推測することと、
前記無呼吸に応答して前記無呼吸時に前記推測された漏洩流量に基づいて前記換気治療のベース圧力の設定点を調整することと、を行うように構成された制御器と、を含む、装置。
請求項18:
患者における呼吸障害を治療する方法であって、
換気装置を用いて患者インターフェースを通じて前記患者への換気治療を前記ベース圧力を有する換気治療を制御することと、
前記換気装置の制御器において前記患者の呼吸流量を示すセンサー信号から無呼吸を検出することと、
前記無呼吸時の漏洩流量を推測することと、
前記制御器において前記無呼吸に応答して前記無呼吸時の前記漏洩流量の推測に基づいて前記換気治療のベース圧力の設定点を調整することと、を含む、方法。
請求項19:
前記無呼吸に応答して前記換気治療のベース圧力の前記設定点を調整することは、
前記無呼吸の有効持続期間を前記無呼吸時の前記漏洩流量の推測に応じて計算することと、
前記無呼吸の前記有効持続期間に基づいて前記ベース圧力の前記設定点を調整することと、
を含む、請求項18に記載の方法。
請求項20:
前記有効持続期間を計算することは、各無呼吸検出間隔について、
前記無呼吸時に前記推測された漏洩流量検出間隔に基づいて重み付け低減係数を計算することと、
前記重み付け低減係数を用いて前記無呼吸の現在の有効持続期間をインクリメントすることと、
を含む、請求項19に記載の方法。
請求項21:
前記重み付け低減係数は、前記推測された漏洩流量の増加と共に1から0へ減少する、請求項20に記載の方法。
請求項22:
患者における呼吸障害を治療する装置であって、
空気流れを正の圧力で患者インターフェースを介して前記患者の気道へ供給するように構成された圧力生成器と、
前記患者の呼吸流量を示す信号を生成するように構成されたセンサーと、
制御器であって、
換気治療を前記患者へ前記ベース圧力を有する換気治療を提供するように前記圧力生成器を制御することと、
前記呼吸流量を示す信号から無呼吸を検出することと、
前記呼吸流量を示す信号から前記患者の換気の測定値を計算することと、
前記無呼吸に応答して前記無呼吸時の前記換気の測定値に基づいて前記換気治療のベース圧力の設定点を調整することと、
を行うように構成された制御器と、を含む、装置。
請求項23:
患者における呼吸障害を治療する方法であって、
換気装置を用いて患者インターフェースを通じて前記患者への換気治療を前記ベース圧力を有する換気治療を制御することと、
前記換気装置の制御器において前記患者の呼吸流量を示すセンサー信号から無呼吸を検出することと、
前記呼吸流量を示す信号から前記無呼吸時の前記患者の換気の測定値を計算することと、
前記換気装置の前記制御器において、前記無呼吸に応答して前記無呼吸時の前記換気の測定値に基づいて前記換気治療のベース圧力の設定点を調整することと、を含む、方法。
請求項24:
前記無呼吸に応答して前記換気治療のベース圧力の前記設定点を調整することは、
前記無呼吸の有効持続期間を前記無呼吸時の前記換気の測定値に応じて計算することと、
前記ベース圧力の前記設定点を前記無呼吸の前記有効持続期間に基づいて調整することと、を含む、請求項23に記載の方法。
請求項25:
前記有効持続期間を計算することは、各無呼吸検出間隔について、
前記無呼吸時の前記換気の測定値検出間隔に基づいて重み付け低減係数を計算することと、
前記重み付け低減係数を用いて前記無呼吸の現在の有効持続期間をインクリメントすることと、を含む、請求項24に記載の方法。
請求項26:
前記重み付け低減係数は、前記換気の測定値が閾値を超えると1から0へ減少する、請求項25に記載の方法。
請求項27:
前記閾値は、期待される正常換気のごく一部である、請求項26に記載の方法。
請求項28:
患者における呼吸障害を治療する装置であって、
空気流れを正の圧力で患者インターフェースを介して前記患者の気道へ供給するように構成された圧力生成器と、
前記患者の呼吸流量を示す信号を生成するように構成されたセンサーと、
制御器であって、
換気治療を前記患者インターフェースへ前記ベース圧力を有する換気治療を提供するように前記圧力生成器を制御することと、
前記呼吸流量を示す信号から無呼吸を検出することであって、前記検出することはヒステリシスを含む、ことと、
前記検出された無呼吸に応答して前記換気治療のベース圧力の設定点を調整することと、を行うように構成される制御器と、
を含む、装置。
請求項29:
患者における呼吸障害を治療する方法であって、
換気装置を用いて患者インターフェースを通じて前記患者への換気治療を前記ベース圧力を有する換気治療を制御することと、
前記換気装置の制御器において前記患者の呼吸流量を示すセンサー信号から無呼吸を検出することであって、前記検出することはヒステリシスを含む、ことと、
前記制御器において、前記検出された無呼吸に応答して前記換気治療のベース圧力の設定点を調整することと、を含む、方法。
請求項30:
前記無呼吸を検出することは、
1つ以上の現在の換気測定値が各無呼吸開始基準を満たすかを決定することと、
前記1つ以上の現在の換気測定値のうち1つが前記対応する無呼吸開始基準を満たすことと、無呼吸が既に進行していないこととが決定された場合、無呼吸を検出することと、
前記1つ以上の現在の換気測定値のうちいずれも前記対応する無呼吸開始基準を満たさないことと、無呼吸が既に進行していることとが決定された場合、無呼吸終了基準が満たされるかを決定することと、
前記無呼吸終了基準が満たされたことが決定された場合、前記無呼吸の終了を検出することと、を含む、請求項29に記載の方法。
請求項31:
無呼吸開始基準は、対応する現在の換気測定値が期待される正常換気の一部未満であるかである、請求項30に記載の方法。
請求項32:
前記対応する現在の換気測定値は、前回の2秒にわたる瞬間的換気の測定値の平均である、請求項31~32のうちいずれか1つに記載の方法。
請求項33:
前記対応する現在の換気測定値は、時定数を10秒で瞬間的換気をローパスフィルタリングした測定値である、請求項31に記載の方法。
請求項34:
前記無呼吸が進行中であるときに、
前記1つ以上の現在の換気測定値のうちの1つから期待される正常換気を減算し、前記期待される正常換気によって除算することにより、相対的な換気誤差を計算することと、
前記相対的な換気誤差が無呼吸閾値を超える量の今までの合計を更新することと、
をさらに含み、
前記無呼吸終了基準は、前記更新された今までの合計が閾値を上回るかである、
請求項30~33のうちいずれか1つに記載の方法。
請求項35:
前記閾値は0.15である、請求項34に記載の方法。
請求項36:
前記換気治療はサーボ換気であり、前記期待される正常換気は、前記サーボ換気のターゲット換気である、請求項31~35のうちいずれか1つに記載の方法。
請求項37:
患者における呼吸障害を治療する装置であって、
空気流れを正の圧力で患者インターフェースを介して前記患者の気道へ供給するように構成された圧力生成器と、
前記患者の呼吸流量を示す信号を生成するように構成されたセンサーと、
制御器であって、
換気治療を前記患者へ前記ベース圧力を有する換気治療を提供するように前記圧力生成器を制御することと、
前記患者インターフェースにおける漏洩流量を推測することと、
誤モデル化された漏洩無呼吸を前記呼吸流量を示す信号から検出することであって、前記誤モデル化された漏洩無呼吸は、無呼吸が真の漏洩流量の前記推測された漏洩流量からの逸脱によってマスクされた際に発生する、ことと、
前記検出された誤モデル化された漏洩無呼吸に応答して前記換気治療のベース圧力の設定点を調整することと、
を行うように構成された制御器と、を含む、装置。
請求項38:
患者における呼吸障害を治療する方法であって、
換気装置を用いて患者インターフェースを通じて前記患者への換気治療を前記ベース圧力を有する換気治療を制御することと、
前記患者インターフェースにおける漏洩流量を推測することと、
誤モデル化された漏洩無呼吸を前記患者の呼吸流量を示す信号から前記換気装置の制御器において検出することであって、前記誤モデル化された漏洩無呼吸は、無呼吸が真の漏洩流量の前記推測された漏洩流量からの逸脱によってマスクされた際に発生する、ことと、
前記検出された誤モデル化された漏洩無呼吸に応答して前記換気治療のベース圧力の設定点を前記制御器において調整することと、を含む、方法。
請求項39:
前記誤モデル化された漏洩無呼吸を検出することは、
前記呼吸流量信号の吸気部分の標準偏差を計算することと、
前記呼吸流量信号の呼気部分の標準偏差を計算することと、
前記呼吸流量信号の前記呼気部分の早期部分の標準偏差を計算することと、
前記呼気部分の前記早期部分の前記標準偏差が前記呼気部分の前記標準偏差に相当する場合、誤モデル化された漏洩無呼吸を検出することと、を含む、請求項38に記載の方法。
請求項40:
前記誤モデル化された漏洩無呼吸を検出することは、前記吸気部分の前記標準偏差および前記呼気部分の前記標準偏差が閾値を下回るかを決定することをさらに含む、請求項39に記載の方法。
請求項41:
前記誤モデル化された漏洩無呼吸を検出することは、現在の換気測定値が閾値換気を下回るかを決定することをさらに含む、請求項39~40のうちいずれか1つに記載の方法。
請求項42:
前記換気治療はサーボ換気であり、前記閾値換気は、前記サーボ換気のターゲット換気である、請求項41に記載の方法。
請求項43:
前記誤モデル化された漏洩無呼吸を検出することは、吸気部分が所定の範囲内にあるかを決定することをさらに含む、請求項39~42のうちいずれか1つに記載の方法。
請求項44:
患者における呼吸障害を治療する装置であって、
空気流れを正の圧力で患者インターフェースを介して前記患者の気道へ供給するように構成された圧力生成器と、
前記患者の呼吸流量を示す信号を生成するように構成されたセンサーと、
制御器であって、
換気治療を前記患者へ前記ベース圧力を有する換気治療を提供するように前記圧力生成器を制御することと、
前記呼吸流量を示す信号から吸気流れ制限の測定値を計算することと、
前記吸気流れ制限の測定値に応じて前記換気治療のベース圧力の設定点を調整することと、
を行うように構成された制御器と、を含み、
前記吸気流れ制限の測定値を計算するために、前記制御器は、
前記呼吸流量信号の吸気部分の中央部分の複数の特徴を計算することと、
複数の流れ制限変数を前記中央部分特徴から計算することであって、各流れ制限変数は、前記呼吸流量信号の吸気部分と典型的な流れが制限された吸気波形との間の類似性の度合いを示す、ことと、
前記吸気流れ制限の測定値を前記複数の流れ制限変数の最大値として計算することと、
を行う、装置。
請求項45:
患者における呼吸障害を治療する方法であって、
換気装置を用いて患者インターフェースを通じて前記患者への換気治療を前記ベース圧力を有する換気治療を制御することと、
前記患者の呼吸流量を示す信号から吸気流れ制限の測定値を計算することと、
前記換気治療のベース圧力の設定点を前記吸気流れ制限の測定値に応じて前記制御器において調整することと、を含み、
前記計算することは、
前記呼吸流量を示す信号の吸気部分の中央部分の複数の特徴を計算することと、
前記中央部分特徴から複数の流れ制限変数を計算することであって、各流れ制限変数は、前記呼吸流量を示す信号の吸気部分と典型的な流れが制限された吸気波形との間の類似性の度合いを示す、ことと、
前記吸気流れ制限の測定値を前記複数の流れ制限変数の最大値として計算することと、
を含む、方法。
請求項46:
患者における呼吸障害を治療する装置であって、
空気流れを正の圧力で患者インターフェースを介して前記患者の気道へ供給するように構成された圧力生成器と、
前記患者の呼吸流量を示す信号を生成するように構成されたセンサーと、
制御器であって、
換気治療を前記患者へ前記ベース圧力を有する換気治療を提供するように前記圧力生成器を制御すること、
前記呼吸流量を示す信号から前記患者の換気の測定値を計算することと、
前記呼吸流量信号の吸気部分から流れ制限の測定値を計算することと、
前記流れ制限の測定値と、複数の呼吸にわたる最近長引いている流れが制限された有意な低換気の測定値とに基づいて、前記換気治療のベース圧力の設定点を調整することと、を行うように構成された制御器と、を含む、装置。
請求項47:
患者における呼吸障害を治療する方法であって、
換気装置を用いて患者インターフェースを通じて前記患者への換気治療を前記ベース圧力を有する換気治療を制御することと、
前記患者の呼吸流量を示すセンサー信号から前記患者の換気の測定値を計算することと、
前記換気装置の制御器において前記呼吸流量を示す信号の吸気部分から流れ制限の測定値を計算することと、
前記制御器において、前記流れ制限の測定値と、複数の呼吸にわたる最近長引いている流れが制限された有意な低換気の測定値とに基づいて、前記換気治療のベース圧力の設定点を調整することと、を含む、方法。
請求項48:
前記ベース圧力の設定点を調整することは、
最近長引いている流れが制限された有意な低換気の測定値に比例して増加する換気関連乗数を計算することと、
前記換気関連乗数および前記流れ制限の測定値と流れ制限閾値との間の差の積から前記ベース圧力の前記設定点への規定された増加を計算することと、請求項47に記載の方法。
請求項49:
前記流れ制限閾値は、現在のベース圧力の増加と共に増加する、請求項48に記載の方法。
請求項50:
流れが制限された有意な低換気の複数の呼吸にわたる測定値をフィルタリングすることにより、最近長引いている流れが制限された有意な低換気の測定値を計算することをさらに含む、請求項48~49のうちいずれか1つに記載の方法。
請求項51:
前記流れ制限の測定値を有意な低換気のインジケータで乗算することにより、流れが制限された有意な低換気の測定値を計算することをさらに含む、請求項50に記載の方法。
請求項52:
現在の換気測定値が所定の閾値を下回った場合に0から1へ増加するように前記有意な低換気のインジケータを計算することをさらに含む、請求項51に記載の方法。
請求項53:
前記現在の換気測定値は、現在の呼吸方向の換気の測定値と、期待される正常換気との間の比である、請求項52に記載の方法。
請求項54:
前記換気治療はサーボ換気であり、前記期待される正常換気は、前記サーボ換気のターゲット換気である、請求項53に記載の方法。
請求項55:
前記フィルタリングすることは、
流れが制限された有意な低換気の各測定値へ隣接重み付けを適用することと、
前記隣接重み付けされる測定値の平均二乗値を計算することと、を含む、請求項50~54のうちいずれか1つに記載の方法。
請求項56:
隣接重み付けされる測定値は、流れが制限された有意な低換気測定値およびその先行処理測定値がほぼ等しくかつ1に近い場合に最高になる、請求項55に記載の方法。
請求項57:
前記平均二乗値における各2乗された値は、現在の測定値において最高になりかつ前記測定値が古くなるにつれて減少する重みによって重み付けされる、請求項55に記載の方法。
請求項58:
前記流れ制限の測定値は、前記吸気部分のM字形状の測定値を含む、請求項47~57のうちいずれか1つに記載の方法。
【符号の説明】
【0389】
患者 1000
非侵襲的患者インターフェース 3000
密閉形成構造 3100
プレナムチャンバ 3200
構造 3300
通気孔 3400
接続ポート 3600
前額支持部 3700
RPTデバイス 4000
外部ハウジング 4010
上側部分 4012
部分 4014
パネル 4015
シャーシ 4016
ハンドル 4018
空気圧ブロック 4020
空気圧コンポーネント 4100
空気フィルタ 4110
入口空気フィルタ 4112
出口空気フィルタ 4114
入口マフラー 4122
出口マフラー 4124
圧力生成器 4140
制御可能な送風器 4142
モータ 4144
空気回路 4170
補充酸素 4180
電気コンポーネント 4200
プリント回路板組立 4202
電源 4210
入力デバイス 4220
中央制御器 4230
時計 4232
治療デバイス制御器 4240
保護回路 4250
メモリ 4260
トランスデューサ 4270
圧力センサー 4272
流量センサー 4274
モータ速度トランスデューサ 4276
データ通信インターフェース 4280
リモート外部通信ネットワーク 4282
局所的な外部通信ネットワーク 4284
リモート外部デバイス 4286
局所的な外部デバイス 4288
出力デバイス 4290
ディスプレイドライバ 4292
ディスプレイ 4294
アルゴリズム 4300
前処理モジュール 4310
圧力補償アルゴリズム 4312
通気孔流量推測アルゴリズム 4314
漏洩流量推測アルゴリズム 4316
呼吸流量推測アルゴリズム 4318
治療エンジンモジュール 4320
位相決定アルゴリズム 4321
波形決定アルゴリズム 4322
換気決定アルゴリズム 4323
流れ制限決定アルゴリズム 4324
無呼吸検出アルゴリズム 4325
M字検出アルゴリズム 4326
漏洩無呼吸検出アルゴリズム 4327
典型的な最近の換気決定アルゴリズム 4328
治療パラメータ決定アルゴリズム 4329
治療制御モジュール 4330
加湿器 5000
加湿器入口 5002
加湿器出口 5004
加湿器ベース 5006
加湿器リザーバ 5110
加湿器リザーバドック 5130
加熱要素 5240
加湿器制御器 5250
方法 7000
ステップ 7010
ステップ 7020
ステップ 7030
ステップ 7040
方法 7100
ステップ 7110
ステップ 7120
ステップ 7130
ステップ 7140
ステップ 7150
ステップ 7160
ステップ 7170
ステップ 7180
方法 7200
ステップ 7210
ステップ 7220
ステップ 7230
ステップ 7240
ステップ 7250
ステップ 7260
方法 7300
ステップ 7310
ステップ 7320
ステップ 7330
ステップ 7340
ステップ 7350
ステップ 7360
ステップ 7370
ステップ 7375
ステップ 7380
ステップ 7390
方法 7400
ステップ 7410
ステップ 7420
ステップ 7440
ステップ 7450
ステップ 7455
ステップ 7460
ステップ 7465
ステップ 7470
ステップ 7475
方法 7500
ステップ 7510
ステップ 7520
ステップ 7530
ステップ 7535
ステップ 7540
ステップ 7550
ステップ 7560
ステップ 7570
ステップ 7580
方法 7600
ステップ 7610
ステップ 7615
ステップ 7620
ステップ 7630
ステップ 7635
ステップ 7640
ステップ 7645
ステップ 7650
ステップ 7655
ステップ 7660
ステップ 7665
ステップ 7670
ステップ 7680
ステップ 7685
ステップ 7690
方法 7700
ステップ 7705
ステップ 7710
ステップ 7715
ステップ 7720
ステップ 7730
ステップ 7740
ステップ 7750
方法 8000
ステップ 8010
ステップ 8020
ステップ 8030
ステップ 8040
方法 8100
ステップ 8105
ステップ 8110
ステップ 8115
ステップ 8120
ステップ 8125
ステップ 8130
ステップ 8135
ステップ 8140
ステップ 8145
ステップ 8150
ステップ 8155
ステップ 8160
ステップ 8165
ステップ 8170
ステップ 8175
方法 8200
ステップ 8210
ステップ 8220
ステップ 8230
ステップ 8240
ステップ 8250
ステップ 8260
方法 8300
ステップ 8310
ステップ 8320
ステップ 8330
ステップ 8340
ステップ 8350
ステップ 8360
ステップ 8370
方法 8400
ステップ 8410
ステップ 8420
ステップ 8430
ステップ 8440
ステップ 8450
ステップ 8460
方法 8500
ステップ 8510
ステップ 8520
ステップ 8530
ステップ 8540
ステップ 8550
ステップ 8590
方法 8600
ステップ 8610
ステップ 8620
ステップ 8630
ステップ 8640
ステップ 8650
ステップ 8660
ステップ 8670
グラフ 9000
流量掃引線 9010
掃引線 9020
エピソード 9030
増加 9040
覚醒 9050
エピソード 9060
増加 9070
エピソード 9080
図1
図2
図3
図4a
図4b
図4c
図4d
図5a
図5b
図6a
図6b
図6c
図6d
図6e
図6f
図7a
図7b
図7c
図7d
図7e
図7f
図7g
図7h
図8a
図8b
図8c
図8d
図8e
図8f
図8g
図9