(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-10-25
(45)【発行日】2024-11-05
(54)【発明の名称】センサアグノスティックなメカニカル機械故障識別
(51)【国際特許分類】
G01M 99/00 20110101AFI20241028BHJP
G06Q 10/20 20230101ALI20241028BHJP
G06Q 50/04 20120101ALI20241028BHJP
【FI】
G01M99/00 Z
G06Q10/20
G06Q50/04
(21)【出願番号】P 2022513229
(86)(22)【出願日】2020-09-03
(86)【国際出願番号】 IL2020050958
(87)【国際公開番号】W WO2021044418
(87)【国際公開日】2021-03-11
【審査請求日】2023-09-01
(32)【優先日】2019-09-03
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】522073283
【氏名又は名称】オギュリー システムズ リミテッド
(74)【代理人】
【識別番号】100114775
【氏名又は名称】高岡 亮一
(74)【代理人】
【識別番号】100121511
【氏名又は名称】小田 直
(74)【代理人】
【識別番号】100202751
【氏名又は名称】岩堀 明代
(74)【代理人】
【識別番号】100208580
【氏名又は名称】三好 玲奈
(74)【代理人】
【識別番号】100191086
【氏名又は名称】高橋 香元
(72)【発明者】
【氏名】ネグリ,オリ
(72)【発明者】
【氏名】ベセル,クリストファー
(72)【発明者】
【氏名】バースキー,ダニエル
(72)【発明者】
【氏名】ベン‐ハイム,ギャル
(72)【発明者】
【氏名】シャウル,ギャル
(72)【発明者】
【氏名】ヨスコビッツ,ザール
【審査官】川野 汐音
(56)【参考文献】
【文献】特開2017-021502(JP,A)
【文献】特開2010-287011(JP,A)
【文献】特開2016-118546(JP,A)
【文献】特開2002-342185(JP,A)
【文献】米国特許第11620518(US,B2)
【文献】米国特許出願公開第2016/350671(US,A1)
【文献】米国特許出願公開第2017/83830(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01M 99/00
G06Q 10/00
G06Q 10/20
G06Q 50/04
(57)【特許請求の範囲】
【請求項1】
少なくとも1つのメカニカル機械の故障を識別するための方法であって、
対応する第1の複数のメカニカル機械に結合された第1の複数のセンサに、前記第1の複数のメカニカル機械から発する第1の複数の信号セットを取得させることであって、前記第1の複数のメカニカル機械は、少なくとも1つの特性を共有
し、共有された特性は、前記共有された特性を有する1つのメカニカル機械の観察された挙動が、前記共有された特性を有する別のメカニカル機械に特有であり得ることを示すことと、
前記第1の複数のメカニカル機械の少なくとも前記第1の複数の信号セットを、第2の複数のメカニカル機械から発し、第2の複数のセンサによって以前に取得された信号に基づいて前記第2の複数のメカニカル機械の故障を自動的に識別するように以前に訓練された既存の故障分類器に供給することであって、前記第2の複数のセンサは、前記第1の複数のセンサとは異なるタイプであり、前記第2の複数のメカニカル機械は、前記少なくとも1つの特性を共有することと、
少なくとも前記第1の複数のメカニカル機械の前記第1の複数の信号セットに基づいて、転移学習を利用することによって前記既存の故障分類器を修正し、それによって修正された故障分類器を提供することと、
前記第1の複数のセンサのうちの少なくとも1つのセンサによって取得され、前記少なくとも1つの特性を共有する少なくとも1つの所与のメカニカル機械から発する少なくとも1つの追加の信号セットに前記修正された故障分類器を適用することであって、前記修正された故障分類器は、前記少なくとも1つの追加の信号セットに基づいて、前記少なくとも1つの所与のメカニカル機械の少なくとも1つの故障を自動的に識別するように構成されていることと、
出力デバイスによって、前記少なくとも1つの所与のメカニカル機械の前記故障の少なくとも識別を含む、人間に感知できる出力を提供することであって、修理または保守作業のうちの少なくとも1つが、前記人間に感知できる出力に基づいて実行されることと、
を含む、方法。
【請求項2】
前記方法は、
前記第1の複数のセンサに、前記第1の複数の信号セットを取得させることの後、かつ前記第1の複数の信号セットを前記既存の故障分類器に供給する前に、
前記第1の複数のメカニカル機械のうちのメカニカル機械の動作状態データの第1の複数のセットを得ることであって、動作状態データの各セットは、前記第1の複数のメカニカル機械のうちの1つのメカニカル機械の動作の状態を示し、動作の各状態は、前記信号セットのうちの少なくとも1つに関連付けられていること
も含み、
少なくとも前記第1の複数の信号セットを前記既存の故障分類器に前記供給することは、前記第1の複数のメカニカル機械の前記動作状態データを前記既存の故障分類器に供給することも含み、
少なくとも前記第1の複数の信号セットに基づいて、転移学習を利用することによって前記既存の故障分類器を前記修正することは、前記第1の複数のメカニカル機械の動作
状態データの前記第1の複数のセットにさらに基づいて、転移学習を利用することによって前記既存の故障分類器を修正することも含む、請求項1に記載の方法。
【請求項3】
前記故障の前記識別は、前記少なくとも1つの所与のメカニカル機械の特定の故障の識別と、前記少なくとも1つの所与のメカニカル機械への提案される保守作業の実行がない場合の前記特定の故障による前記少なくとも1つの所与のメカニカル機械の故障の予測と、を含み、前記少なくとも1つの所与のメカニカル機械は、前記提案される保守作業の実行がない場合、実際に故障することになる、請求項1または請求項2に記載の方法。
【請求項4】
前記既存の故障分類器は、ニューラルネットワークを含み、前記既存の故障分類器を前記修正することは、前記ニューラルネットワークに少なくとも1つのマッピング層を追加することを含み、前記ニューラルネットワークは、そうでなければ、前記少なくとも1つのマッピング層の追加の他は、前記修正によって修正されない、請求項2または請求項3に記載の方法。
【請求項5】
前記既存の故障分類器を含む前記ニューラルネットワークは、データ層と、前記データ層からデータを受信するための入力層とを含み、前記少なくとも1つのマッピング層は、前記データ層と前記入力層との間に追加され、これにより、前記少なくとも1つのマッピング層は、前記修正された故障分類器内の前記データ層から前記データを受信するように構成されている、請求項4に記載の方法。
【請求項6】
前記第1の複数のセンサは、第1の周波数応答分布を有し、前記第2の複数のセンサは、第2の周波数応答分布を有し、前記マッピング層は、前記第1の周波数応答分布と第2の周波数応答分布との間でマッピングするように構成されている、請求項4または請求項5に記載の方法。
【請求項7】
前記第1の複数のセンサは、前記第2の複数のセンサによって感知されるのと同じタイプの信号を感知するように動作可能である、請求項1~6のいずれか一項に記載の方法。
【請求項8】
前記同じタイプの信号は、振動信号、磁束信号、電流、温度、および機械内部圧力信号のうちの1つを含む、請求項7に記載の方法。
【請求項9】
前記第1の複数のセンサおよび前記第2の複数のセンサは、相互に異なるタイプの信号を感知するように動作可能である、請求項1~6のいずれか一項に記載の方法。
【請求項10】
前記相互に異なるタイプの信号は、
振動および磁束信号、
振動および電流信号、
振動および温度信号、
電流および磁束信号、ならびに
振動および機械内部圧力信号、
のうちの少なくとも1つを含む、請求項9に記載の方法。
【請求項11】
前記動作状態データ
の第1の複数のセットによって示されるように、前記第1の複数のメカニカル機械のうちの1つのメカニカル機械の前記動作状態の少なくともいくつかは、故障動作状態である、
請求項2に記載の方法。
【請求項12】
前記第1の複数の信号セットおよび前記第1の複数のメカニカル機械の動作状態データの前記第1の複数のセットは、30未満の前記故障動作状態を含む、請求項11に記載の方法。
【請求項13】
少なくとも1つのメカニカル機械の故障を識別するためのシステムであって、
対応する第1の複数のメカニカル機械に結合され、前記第1の複数のメカニカル機械から発する第1の複数の信号セットを取得するように動作する第1の複数のセンサであって、前記第1の複数のメカニカル機械は、少なくとも1つの特性を共有
し、共有された特性は、前記共有された特性を有する1つのメカニカル機械の観察された挙動が、前記共有された特性を有する別のメカニカル機械に特有であり得ることを示す、第1の複数のセンサと、
データ処理ユニットであって、
前記第1の複数のメカニカル機械の前記第1の複数の信号セットを受信することであって、前記データ処理ユニットは、第2の複数のメカニカル機械から発し第2の複数のセンサによって以前に取得された信号に基づいて前記第2の複数のメカニカル機械の動作状態を自動的に分類するように以前に訓練された既存の故障分類器を備え、前記第2の複数のセンサは、前記第1の複数のセンサとは異なるタイプであり、前記第2の複数のメカニカル機械は、前記少なくとも1つの特性を共有することと、
少なくとも前記第1の複数のメカニカル機械の前記第1の複数の信号セットに基づいて、転移学習を利用することによって前記既存の故障分類器を修正し、それによって修正された故障分類器を提供することと、
前記第1の複数のセンサのうちの少なくとも1つのセンサによって取得され、前記少なくとも1つの特性を共有する少なくとも1つの所与のメカニカル機械から発する少なくとも1つの追加の信号セットに前記修正された故障分類器を適用することであって、前記修正された故障分類器は、前記少なくとも1つの追加の信号セットに基づいて、前記少なくとも1つの所与のメカニカル機械の少なくとも1つの故障を自動的に識別するように構成されていることと、
を行うように動作する、データ処理ユニットと、
前記データ処理ユニットと通信し、前記少なくとも1つの所与のメカニカル機械の前記故障の少なくとも識別を含む、人間に感知できる出力を提供するように動作する出力デバイスであって、修理または保守作業のうちの少なくとも1つが、前記人間に感知できる出力に基づいて実行される、出力デバイスと、
を備える、システム。
【請求項14】
前記システムは、前記第1の複数のメカニカル機械のうちのメカニカル機械の動作状態データの第1の複数のセットを得るように動作するデータ収集ユニットも備え、動作状態データの各セットは、前記第1の複数のメカニカル機械のうちの1つのメカニカル機械の動作の状態を示し、動作の各状態は、前記信号セットのうちの少なくとも1つに関連付けられており、
前記データ処理ユニットは、前記第1の複数のメカニカル機械の前記動作状態データを受信し、前記第1の複数のメカニカル機械の動作状態データの前記第1の複数のセットにさらに基づいて、前記既存の故障分類器を修正するように動作する、請求項13に記載のシステム。
【請求項15】
前記既存の故障分類器は、ニューラルネットワークを含み、前記既存の故障分類器の修正は、前記ニューラルネットワークに少なくとも1つのマッピング層を追加することを含み、前記ニューラルネットワークは、そうでなければ、前記少なくとも1つのマッピング層の追加の他は、前記修正によって修正されない、請求項13または請求項14に記載のシステム。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願
SYSTEMS AND METHODS FOR MULTI-SENSOR MAPPING FOR AUTOMATED MACHINE DIAGNOSTICSと題され、2019年9月3日に出願された米国仮特許出願第62/895,247号が本明細書によって参照され、その開示は参照により本明細書に組み込まれ、37 CFR 1.78(a)(4)および(5)(i)に従って、その優先権を主張する。
【0002】
本発明は、一般に、メカニカル機械の監視に関し、より詳細には、その監視によるメカニカル機械の故障の識別に関するものである。
【背景技術】
【0003】
メカニカル機械の故障識別のための様々なシステムおよび方法が当技術分野で周知である。
【発明の概要】
【0004】
本発明は、監視されたメカニカル機械の故障識別および保守を目的として、メカニカル機械から発せられる信号を監視する異なるタイプのセンサ間で転移学習を使用するための新しいシステムおよび方法を提供しようとする。
【0005】
したがって、本発明の好ましい実施形態によれば、少なくとも1つのメカニカル機械の故障を識別するための方法が提供され、方法は、対応する第1の複数のメカニカル機械に結合された第1の複数のセンサに、第1の複数のメカニカル機械から発する第1の複数の信号セットを取得させることであって、第1の複数のメカニカル機械は、少なくとも1つの特性を共有する、取得させることと、第1の複数のメカニカル機械の少なくとも第1の複数の信号セットを、第2の複数のメカニカル機械から発し、第2の複数のセンサによって以前に取得された信号に基づいて第2の複数のメカニカル機械の故障を自動的に識別するように以前に訓練された既存の故障分類器に供給することであって、第2の複数のセンサは、第1の複数のセンサとは異なるタイプであり、第2の複数のメカニカル機械は、少なくとも1つの特性を共有する、供給することと、少なくとも第1の複数のメカニカル機械の第1の複数の信号セットに基づいて、転移学習を利用することによって既存の故障分類器を修正し、それによって修正された故障分類器を提供することと、第1の複数のセンサのうちの少なくとも1つのセンサによって取得され、少なくとも1つの特性を共有する少なくとも1つの所与のメカニカル機械から発する少なくとも1つの追加の信号セットに修正された故障分類器を適用することであって、修正された故障分類器は、少なくとも1つの追加の信号セットに基づいて、少なくとも1つの所与のメカニカル機械の少なくとも1つの故障を自動的に識別するように構成されている、適用することと、出力デバイスによって、少なくとも1つの所与のメカニカル機械の故障の少なくとも識別を含む、人間に感知できる出力を提供することであって、修理または保守作業のうちの少なくとも1つが、人間に感知できる出力に基づいて実行される、提供することと、を含む。
【0006】
本発明の1つの好ましい実施形態によれば、この方法はまた、第1の複数のセンサに、第1の複数の信号セットを取得させることの後、かつ第1の複数の信号セットを既存の故障分類器に供給する前に、第1の複数のメカニカル機械のうちのメカニカル機械の動作状態データの第1の複数のセットを得ることであって、動作状態データの各セットは、第1の複数のメカニカル機械のうちの1つのメカニカル機械の動作の状態を示し、動作の各状態は、信号セットのうちの少なくとも1つに関連付けられている、得ること、も含み、少なくとも第1の複数の信号セットを既存の故障分類器に供給することは、第1の複数のメカニカル機械の動作状態データを既存の故障分類器に供給することも含み、少なくとも第1の複数の信号セットに基づいて、転移学習を利用することによって既存の故障分類器を修正することは、第1の複数のメカニカル機械の動作条件データの第1の複数のセットにさらに基づいて、転移学習を利用することによって既存の故障分類器を修正することも含む。
【0007】
好ましくは、故障の識別は、少なくとも1つの所与のメカニカル機械の特定の故障の識別と、少なくとも1つの所与のメカニカル機械への提案される保守作業の実行がない場合の特定の故障による少なくとも1つの所与のメカニカル機械の故障の予測と、を含み、少なくとも1つの所与のメカニカル機械は、提案される保守作業の実行がない場合、実際に故障することになる。
【0008】
好ましくは、既存の故障分類器は、ニューラルネットワークを含み、既存の故障分類器を修正することは、ニューラルネットワークに少なくとも1つのマッピング層を追加することを含み、ニューラルネットワークは、そうでなければ、少なくとも1つのマッピング層の追加の他は、修正によって修正されない。
【0009】
好ましくは、既存の故障分類器を含むニューラルネットワークは、データ層と、データ層からデータを受信するための入力層とを含み、少なくとも1つのマッピング層は、データ層と入力層との間に追加され、これにより、少なくとも1つのマッピング層は、修正された故障分類器内のデータ層からデータを受信するように構成されている。
【0010】
好ましくは、第1の複数のセンサは、第1の周波数応答分布を有し、第2の複数のセンサは、第2の周波数応答分布を有し、マッピング層は、第1の周波数応答分布と第2の周波数応答分布との間でマッピングするように構成されている。
【0011】
本発明の方法の1つの好ましい実施形態によれば、第1の複数のセンサは、第2の複数のセンサによって感知されるのと同じタイプの信号を感知するように動作可能である。
【0012】
好ましくは、同じタイプの信号は、振動信号、磁束信号、電流、温度、および機械内部圧力信号のうちの1つを含む。
【0013】
本発明の別の好ましい実施形態によれば、第1の複数のセンサおよび第2の複数のセンサは、相互に異なるタイプの信号を感知するように動作可能である。
【0014】
好ましくは、相互に異なるタイプの信号は、振動および磁束信号、振動および電流信号、振動および温度信号、電流および磁束信号、ならびに振動および機械内部圧力信号、のうちの少なくとも1つを含む。
【0015】
好ましくは、動作状態データの第1の複数のセットによって示されるように、第1の複数のメカニカル機械のうちの1つのメカニカル機械の動作状態の少なくともいくつかは、故障動作状態である。
【0016】
本発明のさらに別の好ましい実施形態によれば、第1の複数の信号セットおよび第1の複数のメカニカル機械の動作状態データの第1の複数のセットは、30未満の故障動作状態を含む。
【0017】
本発明の別の好ましい実施形態によれば、少なくとも1つのメカニカル機械の故障を識別するためのシステムが提供され、システムは、対応する第1の複数のメカニカル機械に結合され、第1の複数のメカニカル機械から発する第1の複数の信号セットを取得するように動作する第1の複数のセンサであって、第1の複数のメカニカル機械は、少なくとも1つの特性を共有する、第1の複数のセンサと、データ処理ユニットであって、第1の複数のメカニカル機械の第1の複数の信号セットを受信することであって、データ処理ユニットは、第2の複数のメカニカル機械から発し第2の複数のセンサによって以前に取得された信号に基づいて第2の複数のメカニカル機械の動作状態を自動的に分類するように以前に訓練された既存の故障分類器を含み、第2の複数のセンサは、第1の複数のセンサとは異なるタイプであり、第2の複数のメカニカル機械は、少なくとも1つの特性を共有する、受信することと、少なくとも第1の複数のメカニカル機械の第1の複数の信号セットに基づいて、転移学習を利用することによって既存の故障分類器を修正し、それによって修正された故障分類器を提供することと、第1の複数のセンサのうちの少なくとも1つのセンサによって取得され、少なくとも1つの特性を共有する少なくとも1つの所与のメカニカル機械から発する少なくとも1つの追加の信号セットに修正された故障分類器を適用することであって、修正された故障分類器は、少なくとも1つの追加の信号セットに基づいて、少なくとも1つの所与のメカニカル機械の少なくとも1つの故障を自動的に識別するように構成されている、適用することと、を行うように動作するデータ処理ユニットと、データ処理ユニットと通信し、少なくとも1つの所与のメカニカル機械の故障の少なくとも識別を含む、人間に感知できる出力を提供するように動作する出力デバイスであって、修理または保守作業のうちの少なくとも1つが、人間に感知できる出力に基づいて実行される、出力デバイスと、を含む。
【0018】
本発明の1つの好ましい実施形態によれば、システムはまた、第1の複数のメカニカル機械のうちのメカニカル機械の動作状態データの第1の複数のセットを得るように動作するデータ収集ユニットであって、動作状態データの各セットは、第1の複数のメカニカル機械のうちの1つのメカニカル機械の動作の状態を示し、動作の各状態は、信号セットのうちの少なくとも1つに関連付けられている、データ収集ユニット、も含み、データ処理ユニットは、第1の複数のメカニカル機械の動作状態データを受信し、第1の複数のメカニカル機械の動作状態データの第1の複数のセットにさらに基づいて、既存の故障分類器を修正するように動作する。
【0019】
好ましくは、故障の識別は、少なくとも1つの所与のメカニカル機械の特定の故障の識別と、少なくとも1つの所与のメカニカル機械への提案される保守作業の実行がない場合の特定の故障による少なくとも1つの所与のメカニカル機械の故障の予測と、を含み、少なくとも1つの所与のメカニカル機械は、提案される保守作業の実行がない場合、実際に故障することになる。
【0020】
好ましくは、既存の故障分類器は、ニューラルネットワークを含み、既存の故障分類器の修正は、ニューラルネットワークに少なくとも1つのマッピング層を追加することを含み、ニューラルネットワークは、そうでなければ、少なくとも1つのマッピング層の追加の他は、修正によって修正されない。
【0021】
好ましくは、既存の故障分類器を含むニューラルネットワークは、データ層と、データ層からデータを受信するための入力層とを含み、少なくとも1つのマッピング層は、データ層と入力層との間に追加され、これにより、少なくとも1つのマッピング層は、修正された故障分類器内のデータ層からデータを受信するように構成されている。
【0022】
好ましくは、第1の複数のセンサは、第1の周波数応答分布を有し、第2の複数のセンサは、第2の周波数応答分布を有し、マッピング層は、第1の周波数応答分布と第2の周波数応答分布との間でマッピングするように構成されている。
【0023】
本発明のシステムの1つの好ましい実施形態によれば、第1の複数のセンサは、第2の複数のセンサによって感知されるのと同じタイプの信号を感知するように動作可能である。
【0024】
好ましくは、同じタイプの信号は、振動信号、磁束信号、電流、温度、および機械内部圧力信号のうちの1つを含む。
【0025】
本発明のシステムの別の好ましい実施形態によれば、第1の複数のセンサおよび第2の複数のセンサは、相互に異なるタイプの信号を感知するように動作可能である。
【0026】
好ましくは、相互に異なるタイプの信号は、振動および磁束信号、振動および電流信号、振動および温度信号、電流および磁束信号、ならびに振動および機械内部圧力信号、のうちの少なくとも1つを含む。
【0027】
好ましくは、動作状態データの第1の複数のセットによって示されるように、第1の複数のメカニカル機械のうちの1つのメカニカル機械の動作状態の少なくともいくつかは、故障動作状態である。
【0028】
本発明のシステムのさらに別の好ましい実施形態によれば、第1の複数の信号セットおよび第1の複数のメカニカル機械の動作状態データの第1の複数のセットは、30未満の故障動作状態を含む。
【図面の簡単な説明】
【0029】
本発明は、以下の詳細な説明を図面と併せることでより完全に理解され、認識されるであろう。
【0030】
【
図1】本発明の好ましい実施形態に従って構築され動作する、メカニカル機械故障識別のためのシステムを示す簡略化された高レベルのブロック図である。
【
図2】本発明の別の好ましい実施形態に従って構築され動作する、メカニカル機械故障識別のためのシステムを示す簡略化された高レベルのブロック図である。
【
図3】
図1または
図2に示すタイプのシステムによって実行される、故障分類器の修正の簡略図である。
【
図4A-4B】
図1または
図2のシステムで利用され、修正された故障分類器の訓練のための、それぞれのシステムの構成要素の簡略化されたそれぞれのブロック図である。
【
図5A-5D】メカニカル機械の故障識別のための
図1または
図2に示すタイプのシステムの性能を示すグラフである。
【
図6】本発明の好ましい実施形態による、メカニカル機械故障識別のための方法に含まれるステップを示す簡略化されたフローチャートである。
【発明を実施するための形態】
【0031】
次に、本発明の好ましい実施形態に従って構築され動作する、メカニカル機械故障識別のためのシステムの簡略化された高レベルのブロック図である
図1を参照する。
【0032】
図1に見られるように、メカニカル機械故障識別のためのシステム100が提供される。システム100は、好ましくは、ここではセンサタイプS1として示される、第1のタイプの第1の複数のセンサ102を含む。センサ102のすべては、ここに示されるように、例えばセンサタイプS1など、同じタイプのものであり得る。代替的に、第1の複数のセンサ102は、以下でより詳細に説明される、
図2に示されるように、例えば、センサタイプS1、S11~S1Nなど、複数のタイプのセンサを含むことができる。センサ102は、好ましくは、対応する第1の複数のメカニカル機械104に結合される。ここで、例として、第1の複数のメカニカル機械104は、メカニカル機械1、2~Nを含むように示され、ここで、Nは、2つ以上のメカニカル機械など任意の数のメカニカル機械であり得る。典型的には、センサ102は、1対1の対応する配置でメカニカル機械104に結合され、センサ102の1つが機械104の対応する1つに結合される。しかしながら、他の配置も可能であり、単一のセンサが、複数のメカニカル機械104からの信号を感知するように配置され得る。センサ102は、機械104に直接または間接的に取り付けられているなど、機械104に物理的に接触していてもよい。代替的に、センサ102は、例えば、センサ102が光学センサである場合に、機械104から所与の距離に位置するなど、機械104から物理的に分離され得る。
【0033】
センサ102は、メカニカル機械104から発する信号を感知するように動作する任意のタイプの感知デバイスとして具体化され得る。ベアリング、ローターまたはシャフト、またはモータ、エンジン、コンプレッサ、ポンプ、ファン、ギアボックス、チラーなどを含む機械などの可動部品を備えた機械およびメカニカルシステムは、その動作中に信号を生成する場合がある。メカニカル機械104は、前述のタイプのメカニカルシステムのいずれか、またはその動作中に信号を生成する他のタイプのメカニカルシステムのものであり得る。センサ102は、好ましくは、そのような信号を感知するように動作する。感知された信号の分析は、感知された信号が発せられた機械の状態を確認するために、および場合によっては、信号が発せられた機械の故障を確認するために使用され得る。非限定的な例としてのみ、センサ102は、機械104から発する振動を感知するために、すべてが単軸加速度計であるか、またはすべてが多軸加速度計であるなど、すべて同じタイプの振動センサであってもよく、センサ102はすべて、機械104から発する磁束を感知する同じタイプの磁束センサであってもよく、センサ102はすべて、機械104によって生成される電流の変動を感知する同じタイプの電流センサであってもよく、センサ102はすべて、機械104によって生成された熱を感知する同じタイプの温度センサであってもよい。代替的に、センサ102は、トルク、変位、入力ライン周波数などの機械操作に関連付けられた信号を含む、機械104から発し、機械104によって生成される信号を感知することができる、他の種類の感知デバイスと同じタイプのものであってもよいことが理解される。代替的に、センサ102は、一例としてのみ、磁束センサおよび振動センサなどの2つ以上のタイプのセンサを含み得る。
【0034】
第1の複数のメカニカル機械104の部材であるメカニカル機械1~Nは、好ましくは、1つ以上の共有特性によって特徴付けられる。メカニカル機械1~Nは、共通して少なくとも1つの共有特性を有していれば、同じ機械であってもそうでなくてもよい。例えば、共有特性は、タイプ、モデル番号、製造業者、物理的特性もしくは寸法、動作特性もしくはパラメータ、または複数のメカニカル機械のうちのメカニカル機械のうちの1つの観察された挙動が、複数のメカニカル機械のうちの別のメカニカル機械に特有であり得ることを示す他の共有特性を指し得る。
【0035】
第1の複数のセンサ102は、好ましくは、第1の複数のメカニカル機械104から発する第1の複数の信号セットを取得するように動作する。信号のセットは、短期間にセンサ102のうちの適切な1つによって感知される「信号スナップショット」であり得る。例えば、信号は、1~4秒などの数秒間の期間の間感知され得る。代替的に、信号の各セットは、例えば、数時間、数日、または数ヶ月の期間にわたって毎時測定される4秒の「信号スナップショット」など、時間の経過に伴う複数の「信号スナップショット」を含み得る。代替的に、信号の各セットは、より長い期間または複数の期間にわたって継続的に監視される信号を含み得る。例えば、信号はミリ秒ごとに継続的に監視され得る。
【0036】
センサ102によって取得された信号は、例えば、センサ102自体のアナログまたはデジタル処理能力によって、または他のハードウェアおよび/またはソフトウェア信号処理コンポーネント108によって前処理され得る。信号プロセッサ108は、センサ102とは別の要素として
図1に示されているが、信号処理機能は、1つ以上のセンサ102内に組み込まれ得ることが理解される。信号の前処理には、時間または周波数領域でのデジタル化、圧縮、特徴抽出、および信号の表現の少なくとも1つが含まれる場合がある。
【0037】
本発明の一実施形態では、第1の複数のセンサ102によって取得された信号のセットは、クラウド内のサーバなどのリモートサーバにアップロードされ得る。信号処理機能108は、リモートサーバで実行され得る。好ましくは、第1の複数のセンサ102によって取得された信号のセットは、それらが第1の複数の機械104から取得されるときに蓄積される。例えば、信号のセットはクラウド内のサーバに蓄積され得る。
【0038】
システム100は、任意選択で、データ収集ユニット110を含み得る。データ収集ユニット110は、複数のメカニカル機械104のメカニカル機械の動作状態データの第1の複数のセットを受信するように動作し得、動作状態データの各セットは、第1の複数のメカニカル機械104のうちの1つのメカニカル機械の動作の状態を示し、動作の各状態は、第1の複数のセンサ102によって取得された信号セットのうちの少なくとも1つに関連付けられている。
【0039】
データ収集ユニット110で収集される動作状態データは、好ましくは、エンジニアなどの人間の専門家によって供給される機械状態診断の形式である。第1の複数のセンサ102によって取得された信号のセットは、任意選択で、信号プロセッサ108によって、および/またはセンサ102によって直接的または間接的に、データ収集ユニット110に提供され得る。人間の専門家は、任意選択で、第1の複数のセンサ102によって取得された信号のセットを分析し、信号のセットの信号の各セットに、信号が発せられた対応するメカニカル機械104の特定の動作状態を表すものとしてラベルを付けることができる。人間の専門家は、例えば、データ収集ユニット110または人間の専門家とデータ収集ユニット110との間の通信を可能にする別のデバイスのユーザインターフェースと相互作用して、動作状態データを入力することができる。信号およびそれに適用されるラベルは、データ収集ユニット110内のデータベースに蓄積および格納され得る。本発明の一実施形態では、データ収集ユニット110は、クラウド内のサーバなどのリモートサーバに位置し得る。
【0040】
人間の専門家による故障の識別は、監視対象の機械104の1つ以上の特定の故障の識別を含み得る。監視されている特定の機械104に応じて、識別された特定の故障には、回転機械のベアリング摩耗、機械的緩み、不整合、不均衡、電気的故障または他の故障が含まれ得る。代替的に、故障の識別は、特定の故障を識別せずに、故障状態、すなわち、その正常で健全な動作状態に関して異常な状態にある機械104の識別を含み得る。この場合、人間の専門家による故障の識別は、機械が正常に動作していないことを識別するが、不健全な動作の具体的な原因は識別しない。
【0041】
信号によって表される特定の動作状態が人間の専門家によってラベル付けされているかどうかに関係なく、センサ102によって取得された信号のセットは、機械104の健全で故障のない動作状態に対応する信号のセットと、機械104の不健全な故障した状態に対応する信号のセットの両方を含み得る。
【0042】
代替的に、センサ102によって取得された信号のセットは、機械104の動作の不健全な故障状態に対応する信号のセットを必ずしも含まない。本発明のこの実施形態によれば、センサ102によって監視されている機械104はすべて、健全な動作状態にある可能性がある。したがって、信号のセット、および任意選択で関連付けられた機械動作の状態はすべて、機械動作の健全な状態に対応し得る。
【0043】
第1の複数の機械104から蓄積された信号のセットは、好ましくは、システム100に含まれる既存の故障分類器114に供給される。システム100がデータ収集ユニット110も含み、信号がラベル付けされている場合、ラベル付けされた信号は、好ましくは、信号プリプロセッサ108およびデータ収集ユニット110によって、既存の故障分類器114に組み合わせて提供される。
【0044】
既存の故障分類器114は、アルゴリズム分類器であり得る。例えば、既存の故障分類器114は、リモートサーバに格納され得る。システム100は、プロセッサによって、既存の故障分類器114の機能を実行するためのコンピュータ実行可能命令をその上に格納した、非一時的なコンピュータ可読記憶媒体を含み得る。既存の故障分類器114を実行する1つ以上のプロセッサは、例えばクラウドに位置するリモートプロセッサであり得るか、またはローカルプロセッサであり得る。
【0045】
既存の故障分類器114は、好ましくは、第2の複数のメカニカル機械から発し第2の複数のセンサによって以前に取得された信号に基づいて第2の複数のメカニカル機械の故障を自動的に識別するように以前に訓練された故障分類器であり、第2の複数のセンサは、第1の複数のセンサ102とは異なるタイプのものである。第2の複数のセンサは、すべて互いに同じタイプであり得、そのタイプは、第1の複数のセンサ102のうちのセンサのタイプとは異なり得る。代替的に、第2の複数のセンサは、すべて互いに同じタイプであり得、そのタイプは、第1の複数のセンサ102のうちのセンサのタイプの少なくとも1つとは異なり得る。代替的に、第2の複数のセンサは、複数のタイプのセンサを含み得、そのタイプはすべて、第1の複数のセンサの1つ以上のセンサとは異なるタイプであり得る。第2の複数のセンサは、代替的に、複数のタイプのセンサを含み得、そのタイプは、第1の複数のセンサ102のうちのセンサのタイプの少なくとも1つとは異なるタイプであり得る。第2の複数のメカニカル機械は、好ましくは、第1の複数のメカニカル機械104によって共有される少なくとも1つの機械的特性を共有する。
【0046】
故障分類器114は、機械104からセンサ102によって取得された信号のセットおよびオプションの動作状態データに関して既存である可能性があるため、ここでは「既存」と呼ばれることが理解される。故障分類器114は、信号のセットおよび機械104のオプションの動作状態データを含むデータセットを生成する前のより早い時点で以前に生成されていた可能性がある。
【0047】
好ましくは、故障分類器114は、第2の複数のセンサによって取得された信号に基づいて、少なくとも1つの共通の特性を共有するメカニカル機械の故障を正確に識別するように構成された正確な分類器である。故障分類器114は、機械学習を使用して、信号および場合によっては多数の機械から取得された関連する動作状態データを含む大きなデータセットに対して以前に訓練されているため、そのような正確な分類器であり得る。当業者によく周知されているように、その訓練の目的で機械学習故障分類器に供給されるデータの量が多いほど、分類器は、所与の限界まで、より正確に実行することができる。例えば、故障分類器114は、モータ、ポンプ、ファン、チラー、コンプレッサ、およびギアボックスを含む40,000を超える個々の回転機械から感知されたデータを使用して訓練された可能性がある。このような機械によって共有される共通の特性は、そこにベアリングが含まれていることであり得る。故障分類器114がどのように以前に訓練されたかの例は、以下に説明される
図3~4Bに示されている。
【0048】
したがって、既存の故障分類器114は、その故障を識別するために、故障分類器114が訓練されたデータに基づいて、メカニカル機械との共有特性を有するメカニカル機械から発する信号に正常に適用され得る。しかしながら、故障分類器114は、特定のタイプのセンサ、すなわち、第1の複数のセンサ102とは異なるタイプの第2の複数のセンサによって取得された信号に基づいて以前に訓練されたことに留意されたい。結果として、故障分類器114は、故障分類器114が訓練された特定のセンサによって取得された信号に適用されるときに、故障を最もうまく分類および識別することができる。しかしながら、故障分類器114に供給される信号が、故障分類器114が訓練された第2の複数のセンサとは異なるタイプのセンサによって取得される場合、故障分類器114は、これらの信号に基づいて故障を正確に分類および識別することができない。これは、センサ、すなわち、故障分類器114が訓練された第2の複数のセンサと、センサ、例えば、分類を必要とする現在の信号を取得した第1の複数のセンサS1または第1の複数のセンサS1~S1N(
図2)との間でセンサ特性が異なるからである。
【0049】
故障分類器114が、第2の複数のセンサによって取得された信号に基づいて故障を識別するための非常に正確な分類器であるとしても、故障分類器は、異なるタイプのセンサ、例えば第1の複数のセンサS1またはS1~S1N(
図2)によって取得された故障を識別するために使用することは、あったとしても、限定的である。故障分類器114が第1の複数のセンサによって取得された信号に適用される場合、結果は正確ではないことになる。
【0050】
これは、メカニカル機械によって生成された振動信号を感知する、3軸加速度計および単軸加速度計などの2種類の振動センサの場合を参照することで例示され得る。2種類の振動センサは、形状、質量、内部材料などの様々なパラメータが互いに異なり、それぞれのセンサの慣性モーメントおよび共振周波数に違いが生じる。その結果、センサの周波数応答は相互に異なる。監視対象のメカニカル機械によって生成された特定の信号は、センサ間の固有の違いにより、2つのセンサによって異なる方法で感知され、記録される。さらに、2つのセンサが監視対象の機械の異なる位置に取り付けられている場合、センサが相互に異なる測定軸に沿って測定され、位置の違いによって測定される振動レベルが異なるため、この違いはさらに悪化する。
【0051】
例えば、3軸加速度計および単軸加速度計が円筒形の機械に取り付けられている場合、3軸加速度計は1つの軸に沿って半径方向の振動および2つの軸に沿って接線の振動を測定する一方で、単軸加速度計は半径方向または直接の振動を測定するので、2種類の加速度計は相互に異なる振動レベルを測定する。
【0052】
したがって、例えば、3軸加速度計によって取得された振動信号など、1つのタイプのセンサから取得された信号で訓練された故障検出分類器を使用すると、例えば、単軸加速度計によって取得された振動信号など、異なるタイプのセンサによって取得した同じタイプの信号に適用すると、不適切な分類結果を招くことになる。
【0053】
これは、特定のメカニカル機械から発する振動および磁束信号をそれぞれ感知する、振動センサおよび磁束センサなど、異なるタイプの信号を感知する2つのタイプのセンサのより極端な場合を参照することによってさらに例示され得る。例えば、振動センサによって取得された振動信号など、センサのタイプの1つによって取得されたデータを使用して訓練された故障検出分類器は、振動信号の分類に限定され、例えば、同じ機械によって生成された磁束信号などの故障を識別するために適用された場合、関連性がほとんどない結果が得られることになる。
【0054】
故障分類器が以前に訓練されたものと異なるタイプのセンサによって取得された信号を正確に分類できる故障分類器を提供するために、まったく新しい故障分類器を、例えば、第1の複数のセンサS1またはS1、S11からS1N(
図2)など、異なるタイプのセンサによって取得された信号に基づいて訓練することができる。この場合、機械104などのメカニカル機械の故障を識別するために、既存の故障分類器114は利用されず、新しい故障分類器が開発される。しかしながら、この新しい分類器が正確な故障識別を提供するためには、異なるタイプのセンサ、例えば、第1の複数のセンサS1または第1の複数のセンサS1~S1N(
図2)によって取得された大量の新しいデータを提供する必要があり、これに基づいて故障分類器を訓練する必要がある。そのようなプロセスは時間がかかる可能性があり、そのような大量のデータは利用できない可能性がある。さらに、このようなプロセスは、センサの取り付け位置、向き、取り付けタイプなど、機械信号の周波数依存性を制御する多くのパラメータのために、性能と適用範囲が大幅に制限される。さらに、このアプローチでは、元の既存の故障分類器114の機能は、以前の故障分類器114がまったく適用されていないため、利用されるのではなく、単に無駄になる。
【0055】
本発明は、有利には、特定のタイプまたは複数のタイプのセンサから取得されたデータで訓練された故障分類器が、センサ特性の違いに起因して、異なるタイプのセンサから取得された信号を分類する際に使用することは、あったとしても、限定的であるという問題の解決策を提供する。有利なことに、本発明は、異なるタイプのセンサからの信号に基づいて、新しい分類器を「ゼロから」訓練する必要がない。むしろ、本発明は、既存の分類器が訓練された元のセンサタイプと、分類を必要とする新しいデータが得られる新しい異なるセンサタイプとの間のマッピングのための転移学習アプローチを利用する。
【0056】
本発明は、それぞれの異なるセンサタイプの異なるセンサ周波数応答分布間のマッピングに基づいて、既存の分類器114を修正することによって既存の分類器114を利用することができ、そのようなマッピングおよび修正を実行するために、例えば、第1の複数のセンサ102など、異なるタイプのセンサからの小さなデータセットのみを必要とする。したがって、本発明の好ましい実施形態では、元の既存の分類器114と、既存の分類器114が基づいていたセンサのタイプとは異なるタイプのセンサから取得された小さな新しいデータセットとに基づいて、修正された分類器を生成することができる。この修正された分類器は、それに供給される小さなデータセットにもかかわらず、異なるタイプのセンサ、例えば第1の複数のセンサ102によって取得された信号の故障を正確に識別することができ得る。修正された分類器は、元の既存の分類器114を利用し、それを異なるタイプのセンサ、例えば第1の複数のセンサ102にマッピングして、異なるタイプのセンサによって取得された信号に正確に適用できるようにする。
【0057】
しかしながら、本発明は、異なるタイプのセンサ、例えば第1の複数のセンサ102からの大規模で高品質のデータセットが利用可能である場合であっても、有用である可能性があることに留意されたい。この場合、大規模で高品質のデータセットが利用可能であるため、適切な結果を提供するために新しい専用の分類器を訓練できるが、既存の分類器を修正するための転移学習の使用は、元の既存の分類器の機能を利用するために、依然として有利な場合がある。したがって、本発明は、新しい分類器を訓練するために量および/または質の点で十分なデータが利用できない場合に最も有用であると予想されるが、本発明はまた、大規模で高品質のデータセットが利用可能な場合にも有用であり得る。
【0058】
したがって、特定のタイプまたは複数のタイプのセンサによって取得された信号を使用して訓練された既存の正確な故障分類器の場合、本発明は、故障分類器が訓練された特定のタイプまたは複数のタイプのセンサとは異なるセンサの任意の他のタイプまたは複数のタイプのセンサによって取得された信号を正確に分類できるように分類器を修正するための解決策を提供し、これらの信号は、分類器が以前に訓練された機械との少なくとも1つの共有特性を有する。これは、センサアグノスティックなアプローチと呼ばれることがあり、センサによって収集されたソースデータのタイプおよび/または構造に関係なく、任意のセンサによって取得されたデータに適用できるように分類器を較正することができる。
【0059】
本発明のアプローチは、異なるタイプの振動センサによって取得された例えば振動信号など同じタイプの信号の場合に適用可能であり得る。この結果を
図5A~5Cに示す。本発明のアプローチは、例えば、振動センサおよび磁束センサなど、異なるタイプのセンサによって取得された、例えば振動および磁気信号など、異なるタイプの信号の場合にも適用可能であり得る。この結果を
図5Dに示す。
【0060】
どちらの場合も、既存の分類器が訓練されたものとは異なるタイプのセンサによって取得された信号の故障を識別することができる修正された分類器を作成するために、元の既存の分類器は、センサの周波数応答分布間のマッピングに基づいて修正され得る。どちらの場合も、既存の分類器を、元の修正されていない形状で適用することによって達成されたよりも高い精度で、既存の分類器が訓練されたものとは異なるタイプのセンサによって取得された信号に、修正された分類器が適用され得る。さらに、どちらの場合も、異なるタイプのセンサによって取得された信号のみを使用して訓練された新しい分類器を適用することによって達成されるよりも高い精度で、既存の分類器が訓練されたものとは異なるタイプのセンサによって取得された信号に、修正された分類器が適用され得る。
【0061】
異なるタイプのセンサ、例えば第1の複数のセンサ102からの小さな新しいデータセットの取得は、機械104から信号およびオプションの関連する動作状態データを取得するセンサ102に関して、上記で説明されてきた。
図1のシステムによる小さなデータセットの取得は、好ましくは、破線のボックス115で囲まれた要素によって実行される。
【0062】
図1に示される本発明の実施形態では、第1の複数のセンサ102は、好ましくは、すべて同じタイプのセンサ、すなわち、センサタイプS1である。しかしながら、前述のように、第1の複数のセンサ102は、代替的に、複数のタイプのセンサを含み得る。
図2は、システム100の代替の実施形態を示し、ここではシステム100Aとして示され、複数のタイプのセンサの第1の複数のセンサ102に含まれることを示している。ここで
図2に目を向けると、第1の複数のセンサ102は、複数の機械104の機械1~Nの各々にセンサS1、S11~S1Nを含み得る。第1の複数のセンサ102は、2つ以上のセンサなど、任意の数のセンサS1~S1Nを含み得ることが理解される。これらのセンサは、例えば、振動センサ、磁束センサ、電流センサ、温度センサ、またはトルク、変位、入力ライン周波数などの機械104の動作に関連付けられた他のパラメータを感知するためのセンサの組み合わせであり得る。センサS1、S11~S1Nは、互いに異なるタイプであり得るが、好ましくは、機械104の各々に結合されたセンサのセットに関して同じタイプであり得る。しかしながら、システム100Aは、例えば、多変量統計を使用することによって、欠落データが帰属され得る、センサ102の1つからのいくつかの欠落データの場合を許容し得ることが理解される。
【0063】
システム100Aは、システム110Aの第1の複数のセンサ102に含まれる複数のタイプのセンサを除いて、一般に、システム100に類似し得、システム100の説明は、一般に、システム100Aにも適用される。
【0064】
図1および2を引き続き参照すると、修正された分類器を提供するために学習をマッピングすることによって既存の分類器114が修正され得る小さな新しいデータセットは、既存の分類器114が最初に訓練されたデータの量よりもはるかに少ないデータを含み得る。例えば、小さな新しいデータセットは、第1の複数の信号セットの各々の400未満、300未満、200未満、100未満、50未満、または30セット未満、および任意選択で第1の複数のメカニカル機械104の第1の複数の動作状態データのセットを含み得る。さらに、小さな新しいデータセット内には、第1の複数のメカニカル機械104のうちの1つのメカニカル機械の故障動作の状態に対応する、例えば100未満、90未満、80未満、70未満、60未満、50未満、30未満、または20セット未満の信号のセットなど、第1の複数のメカニカル機械104のうちの1つのメカニカル機械の故障動作の状態に対応するさらに少数の信号セットがあり得る。上記のように、場合によっては、小さな新しいデータセットは、第1の複数のメカニカル機械104のうちの1つのメカニカル機械の故障動作の状態に対応する信号さえ含まない場合がある。これは、数千のサンプルなど、既存の分類器114が訓練された可能性のあるはるかに大きなデータセットとは対照的である。
【0065】
第1の複数のセンサ102は、既存の分類器114が訓練された第2の複数のセンサとは異なるが、機械104は、好ましくは、互いに、および既存の分類器114が訓練された機械との両方で共通の特性を共有することが理解される。機械104は、既存の分類器114が以前に訓練されたそれらの機械と同じであっても同じではなくてもよい。
【0066】
第1の複数のセンサ102によって取得された第1の複数の信号セット、および任意選択で、第1の複数のメカニカル機械104のデータ収集ユニット110で収集された第1の複数の動作状態データのセットは、既存の故障分類器114に供給され得る。第1の複数の信号セットは、既存の故障分類器114に提供される前に、信号プロセッサ108によって前処理され得る。
【0067】
次に、既存の故障分類器114は、好ましくは、複数の信号セット、および任意選択で、第1の複数のメカニカル機械104の複数の動作状態データのセットに基づいて修正され、それによって、修正された分類器116を生成する。
【0068】
修正された分類器116は、1つ以上のプロセッサによって実行可能なアルゴリズム分類器であり得、これは、既存の分類器114を実行するものと同じまたは異なるプロセッサであり得る。例えば、既存の分類器114および修正された分類器116は、データ処理ユニット内で具体化され得る。既存の故障分類器116を実行する1つ以上のプロセッサは、例えばクラウドに位置するリモートプロセッサであり得るか、またはローカルプロセッサであり得る。例えば、修正された分類器116を実行する1つ以上のプロセッサは、センサ102の1つ内に位置し得る。
【0069】
既存の故障分類器114は、センサ102によって取得された複数の信号セット、および任意選択で、第1の複数のメカニカル機械104の複数の動作状態データのセットを含む新しいデータセットに分類器を調整することによって修正される。例えば、
図1に見られるように、第1の複数のセンサ102がセンサタイプS1のみを含む場合、修正された分類器116は、センサタイプS1に適合され得る。さらに例として、
図2に見られるように、第1の複数のセンサが複数のセンサタイプS1、S11などを含む場合、修正された分類器116は、それらの複数のセンサタイプに適合され得る。既存の分類器114を調整して修正された分類器116を生成することにより、分類器は、分類器が最初に訓練されたデータセットとは異なるデータセットに適用できるように較正される。調整は、分類器114が以前に訓練された元のセンサ特性と第1の複数のセンサ102のセンサ特性との間のマッピングを含む。
【0070】
本発明の一実施形態では、調整は、分類器114が以前に訓練された元の複数のセンサのセンサ周波数応答分布と、第1の複数のセンサ102のセンサ周波数応答分布との間のマッピングを含む。分類器114が以前に訓練されたセンサと第1の複数のセンサ102の両方の周波数応答が分布され得るので、マッピングは、単にセンサ周波数応答ではなく、センサ周波数応答分布の間にあり得る。この分布は、機械の特性の変化、センサの位置の変化、センサの取り付け、センサの取り付けの正確なタイプなど、各複数内のセンサ間の実際の変化によって発生する可能性がある。
【0071】
マッピングは、監視された方法で実行され得る。この実施形態では、データ収集ユニット110は、システム100に含まれ得、ラベル付けされた信号は、既存の故障分類器114に供給される。監視された方法でセンサ間のマッピングによって既存の故障分類器114がどのように修正されるかに関するさらなる詳細は、
図3を参照して今後提供される。
【0072】
代替的に、マッピングは教師なしの方法で実行されてもよい。この場合、データ収集ユニット110は、システム100に含まれる必要はなく、関連する動作状態のない信号は、既存の故障分類器114に供給される。既存の故障分類器114は、分類器114が以前に訓練されたセンサのセンサ周波数応答分布と、新しいセンサ、例えば第1の複数のセンサ102との間の差異をマッピングするために、教師なし学習によって修正されてもよい。
【0073】
代替的に、マッピングは、半教師ありの方法で実行され得、ラベル付けされた信号は、既存の故障分類器114に供給され、修正された分類器116を生成するためのセンサ間のマッピングは、教師なしの方法で実行される。教師なしマッピングに関するさらなる詳細は、
図3~4Bを参照して今後提供される。
【0074】
第1の複数のセンサ102からのデータに適用できるようにマッピングによって適合された修正分類器116は、第1の複数のセンサ102と同じタイプのセンサによって取得された信号を分類するために使用する準備ができている。
【0075】
第1の複数のセンサ102と同じタイプのセンサによって取得された信号の故障を識別するための修正された分類器116の利用の例が、
図1および2にさらに示されている。
図1および2に見られるように、少なくとも1つのセンサ122、例えば、
図1のセンサS1および
図2のセンサS1~S1Nは、参照番号124で示される、ここではメカニカル機械Xとして示される少なくとも1つの所与のメカニカル機械から発する信号の少なくとも1つのセットを取得することができる。メカニカル機械124は、第1の複数のメカニカル機械104、ならびに既存の故障分類器114が訓練された信号に基づく複数のメカニカル機械と少なくとも1つの特性を共有し得る。メカニカル機械124は、第1の複数のメカニカル機械104の部材であってもなくてもよい。メカニカル機械124は、ここでは単一の機械として具体化されるように示されているが、これは、単純化のためにすぎず、システム100は、機械124が上記のように少なくとも1つの特性を共有するという条件で、互いに同じであってもなくてもよい1つ、2つ、またはそれ以上のメカニカル機械124などの任意の数のメカニカル機械124を含み得ることが理解される。
【0076】
少なくとも1つのセンサ122は、第1の複数のセンサ102のうちの1つであり、これは、センサ122が第1の複数のセンサ102と同じタイプのものであることを意味する。
図1に示すように、第1の複数のセンサ102が単一のタイプのセンサ、すなわちセンサS1を含む場合、センサ122もセンサタイプS1のものである。
図2に示すように、第1の複数のセンサ102が複数のタイプのセンサ、すなわちセンサS1~S1Nを含む場合、少なくとも1つのセンサ122はまた、同じ複数のタイプのセンサ、すなわちセンサS1~S1Nを含む。少なくとも1つのセンサ122は、好ましくは、所与のメカニカル機械124から発する信号の少なくとも1つのセットを取得するように動作する。信号のセットは、短期間に少なくとも1つのセンサ122によって感知される「信号スナップショット」であり得る。例えば、信号は、1~4秒などの数秒間の期間の間感知され得る。代替的に、信号のセットは、例えば、数時間、数日、または数ヶ月の期間にわたって毎時測定される4秒の「信号スナップショット」など、時間の経過に伴う複数の「信号スナップショット」を含み得る。代替的に、信号のセットは、より長い期間または複数の期間にわたって継続的に監視される信号を含み得る。例えば、信号はミリ秒ごとに継続的に監視され得る。
【0077】
少なくとも1つのセンサ122によって取得された信号は、例えば、センサ122自体のアナログまたはデジタル処理能力によって、または他のハードウェアおよび/またはソフトウェア信号処理コンポーネント128によって前処理され得る。信号プロセッサ128は、少なくとも1つのセンサ122とは別の要素として
図1および2に示されているが、信号処理機能は、1つ以上のセンサ122内に組み込まれ得ることが理解される。信号の前処理には、時間または周波数領域でのデジタル化、圧縮、特徴抽出、および信号表現の少なくとも1つが含まれる場合がある。
【0078】
本発明の一実施形態では、少なくとも1つのセンサ122によって取得された信号は、クラウド内のサーバなどのリモートサーバにアップロードされ得る。信号処理機能128は、リモートサーバで実行され得る。
【0079】
ここでは例としてセンサ122として具体化され、ここでは例としてメカニカル機械Xとして具体化された少なくとも1つの所与のメカニカル機械から発する少なくとも1つのセンサによって取得された信号のセットは、修正された分類器116に提供され得る。修正された分類器116は、そこから発する信号のセットに基づいて、メカニカル機械Xの少なくとも1つの故障を自動的に識別するように構成され得る。修正された分類器116は、第1の複数のセンサ102のタイプのセンサによって取得された信号を分類するように適合されているため、修正された分類器116は、少なくとも1つのセンサ122によって取得された信号に正確に適用され得ることが理解される。
【0080】
修正された分類器116による故障の識別は、監視された機械104の1つ以上の特定の故障の識別を含み得る。監視されている特定の機械104に応じて、識別された特定の故障には、回転機械のベアリング摩耗、機械的緩み、不整合、不均衡、電気的故障または他の故障が含まれ得る。
【0081】
代替的に、故障の識別は、特定の故障を識別せずに、故障状態、すなわち、その正常で健全な動作状態に関して異常な状態にある機械Xの識別を含み得る。この場合、故障の識別は、機械が正常に動作していないことを識別するが、不健全な動作の具体的な原因は識別しない。
【0082】
システム100および100Aは、出力デバイス130をさらに含むことができる。出力デバイス130は、修正された分類器116によって故障識別出力を受信し、少なくとも1つの所与のメカニカル機械124の故障の少なくとも識別を含む人間の知覚可能な出力を提供するように動作し得る。人間の知覚可能な出力には、視覚的、触覚的、または聴覚的出力のうちの少なくとも1つが含まれ得る。好ましくは、修理または保守作業のうちの少なくとも1つが、該人間の知覚可能な出力に基づいて実行される。
【0083】
例えば、修正された分類器116がリモートプロセッサによって実行可能である場合、修正された分類器116によって出力された故障識別は、出力デバイス130に通信され得る。
【0084】
出力デバイス130はまた、少なくとも1つの所与のメカニカル機械への提案される保守作業の実行がない場合の修正された分類器116によって識別された故障による少なくとも1つの所与のメカニカル機械124の故障の予測を提供するように動作可能であり、少なくとも1つの所与のメカニカル機械124は、提案される保守作業の実行がない場合、実際に失敗することになる。
【0085】
場合によっては、メンテナンス132は、出力デバイス130によって提供される人間の知覚可能な出力に応答して、所与の機械124に対して実行され得る。出力デバイス130は、任意選択で、機械124のコントローラに動作可能に結合され得、機械124の動作は、故障識別に応答して調整され得る。例えば、機械124は、スイッチを切るか、低電力で操作するか、または他の方法で調整することができる。そのような調整は、自動であり得るか、または出力デバイス130によって提供される人間の知覚可能な出力に応答して人間の専門家によって指示され得る。
【0086】
既存の分類器114自体、および修正された分類器116を生成するために既存の分類器114をどのように適合または較正することができるかのさらなる詳細について、
図3~4Bを参照して提供し、
図3~4Bはそれぞれ、
図1および2に示されているタイプのシステムのいずれかによって実行される分類器の修正の簡略図、および
図1または2のシステムで利用される分類器の訓練のための2つの可能なシステムのコンポーネントの簡略化されたそれぞれのブロック図の図である。本発明の一実施形態では、システム100および100Aは、1つ以上のプロセッサによって、
図4Aおよび4Bに関して以下に詳述するように、分類器の修正の方法を実行するためのコンピュータ実行可能命令を格納した非一時的なコンピュータ可読記憶媒体を含み得る。このようなプロセッサは、リモートプロセッサまたはローカルプロセッサの場合がある。
【0087】
図3に見られるように、既存の故障分類器114は、監視された故障および異常検出のための人工ニューラルネットワーク(ANN)分類器300であり得る。例えば、ANN300は、回転コンポーネントを有する機械の特定の故障または性能の異常を識別するように構成され得る。一般性を失うことなく、多層パーセプトロンアーキテクチャを有する故障分類器114を
図3に示す。しかしながら、本発明のシステムおよび方法は、その構造に関係なく、任意のタイプの故障分類器に適用され得ることが理解される。より具体的には、
図3に示される数層およびニューロンは、本発明の原理を説明する目的で、非常に単純化された例にすぎない。さらに、既存の故障分類器114は、上記で説明したように、オートエンコーダ、深層信念ネットワーク、クラスタリング、K平均法もしくは隠れマルコフモデルに基づく分類器、または教師なし学習を実行できる任意の他のタイプのモデルであってもよい。
【0088】
図3の上部パネル302は、本発明による、センサタイプ間のマッピングを目的として、その訓練後、およびその修正前の、元の未修正の形態の既存の分類器114の例を示している。
【0089】
既存の分類器114は、多層アーキテクチャを有し得る。データ層308は、センサ信号のセットの形態で、入力データを含む層であり得る。入力層310は、センサ信号セットがネットワーク300に入力される初期層であり得る。後続の多数の隠れ層312の各々において、信号セットは、隠れ層312の次の層に転送する前に、それぞれの重み付けおよび結合層出力に適用される活性化関数と融合される。このプロセスは、出力層314に到達するまで、隠れ層312の各層に対してそれ自体を繰り返す。出力層314は、故障スコアを生成する。このスコアは、故障の識別を表す。故障の識別には、現在の特定の故障または異常の識別、または将来の差し迫った特定の故障の予測が含まれ得る。故障には、あらゆるタイプの機械の異常が含まれ得る。
【0090】
ネットワーク層内の
図3のパネル302に示されているANNアーキテクチャの一般的な数式は次のとおりである。
【数1】
式中、sはニューロン入力であり、第1層310の場合はセンサ信号、σは活性化関数、ωは重み、bはバイアス項、iおよびjはそれぞれ層の入力データポイントおよびニューロンで実行されるインデックスである。
【0091】
既存の分類器114を生成するためのネットワーク300の訓練は、
図4Aおよび4Bをさらに参照することでよりよく理解され得る。
【0092】
最初に
図4Aに目を向けると、既存の分類器114を訓練するためのシステム400は、第2の複数のセンサ402を含み得る。センサ402は、好ましくは、対応する第2の複数のメカニカル機械404に結合される。第2の複数のセンサ402は、すべて同じ第2のタイプであり得、ここではセンサタイプS2として示されている。代替的に、センサ402は、第2の複数のメカニカル機械404の各々対応する1つに結合された複数のタイプのセンサを含み得る。複数のタイプのセンサを含む第2の複数のセンサ402の場合が、
図4Bのシステム400Aに示されている。システム400Aは、複数のタイプのセンサ402が含まれていることを除いて、一般にシステム400に類似している。ここで
図4Bに目を向けると、
図4Bに示される第2の複数のセンサ402は、2つ以上のセンサなど、任意の数のセンサS2~S2Nを含み得ることが理解される。これらのセンサは、例えば、振動センサ、磁束センサ、電流センサ、温度センサ、またはトルク、変位、入力ライン周波数などの機械404の動作に関連付けられた他のパラメータを感知するためのセンサの組み合わせであり得る。センサS2~S2Nは、互いに異なるタイプであり得るが、好ましくは、機械404の各々に結合されたセンサのセットの各々に関して同じタイプであり得る。
【0093】
センサ402、例えば、センサS2またはセンサS2~S2Nは、
図1の第1の複数のセンサ102とは異なる場合があり、または
図2の第1の複数のセンサ102のセンサタイプS1~S1Nとは異なる場合がある。
図1および2ならびに4Aおよび4Bに示される実施形態の任意の組み合わせが可能であり、すなわち、第1の複数のセンサ102は、1つのタイプのセンサS1のみを含み得、第2の複数のセンサ402は、S1とは異なる1つのタイプのセンサS2のみを含み得(
図1および
図4Aの実施形態)、第1の複数のセンサ102は、1つのタイプのセンサS1のみを含み得、第2の複数のセンサ402は、少なくとも一部がS1とは異なる複数のタイプのセンサS2~S2Nを含み得(
図1および
図4Bの実施形態)、第1の複数のセンサ102は、複数のタイプのセンサS1~S1Nを含み得、第2の複数のセンサ402は、S1~S1Nの少なくとも一部とは異なる1つのタイプのセンサS2のみを含み得(
図2および
図4Aの実施形態)、第1の複数のセンサ102は、複数のタイプのセンサS1~S1Nを含み得、第2の複数のセンサ402は、少なくとも一部がS1~S1Nとは異なる複数のタイプのセンサS2~S2Nを含み得る(
図2および
図4Bの実施形態)。
【0094】
いくつかの実施形態では、第1および第2の複数のセンサ102および402は、共通のいくつかのセンサを含み得、例えば、第1の複数のセンサ102は、振動および磁気センサを含み得、第2の複数のセンサ402は、磁気センサのみを含み得る。
【0095】
ここで、例として、第2の複数のメカニカル機械404は、メカニカル機械1、2~Nを含むように示され、ここで、Nは、2つ以上のメカニカル機械など任意の数のメカニカル機械であり得る。典型的には、センサ402は、1対1の対応する配置でメカニカル機械404に結合され、センサ402の1つが機械404の対応する1つに結合される。しかしながら、他の配置も可能であり、単一のセンサが、複数のメカニカル機械404からの信号を感知するように配置され得る。センサ402は、機械404に直接または間接的に取り付けられているなど、機械404に物理的に接触していてもよい。代替的に、センサ402は、例えば、センサ402が光学センサである場合に、機械404から所与の距離に位置するなど、機械404から物理的に分離され得る。
【0096】
本発明の一実施形態では、第2の複数のセンサ402のうちのセンサは、一般に、互いに同じ周波数応答を有し得る。第2の複数のセンサ402の周波数応答は、センサ402の周波数応答分布と呼ばれ得る。第1の複数のセンサ102はまた、一般に、互いに同じ周波数応答を有し得る。第1の複数のセンサ102の周波数応答は、センサ102の周波数応答分布と呼ばれ得る。センサ402はセンサ102とは異なるタイプのものであるため、第1の複数のセンサ102の周波数応答分布は、第2の複数のセンサ402の周波数応答分布とは異なる。例えば、第1の複数のセンサ102は、単軸振動センサであり得、第2の複数のセンサ402は、多軸振動センサであり得、もしくはその逆でもよく、または第1の複数のセンサは、単軸振動センサであり得、第2の複数のセンサは、磁束センサであり得る。センサ102および402またはセンサ402および102はそれぞれ、単に例として、振動および磁束信号、振動および電流信号、振動および温度信号、電流および磁束信号、ならびに振動および機械内部圧力信号を測定することができる。
【0097】
センサ402は、好ましくは、メカニカル機械404から発する信号を感知するように動作する。第2の複数のメカニカル機械404の部材であるメカニカル機械1~Nは、好ましくは、互いにおよびメカニカル機械104との1つ以上の共有特性によって特徴付けられる。メカニカル機械1~Nは、共通して少なくとも1つの共有特性を有していれば、同じ機械であってもそうでなくてもよい。例えば、共有特性は、タイプ、モデル番号、製造業者、物理的特性もしくは寸法、動作特性もしくはパラメータ、または複数のメカニカル機械のうちのメカニカル機械のうちの1つの観察された挙動が、複数のうちの別のメカニカル機械に特有であり得ることを示す他の共有特性を指し得る。
【0098】
第2の複数のセンサ402は、好ましくは、第2の複数のメカニカル機械404から発する第2の複数の信号のセットを取得するように動作する。信号のセットは、短期間にセンサ402のうちの適切な1つによって感知される「信号スナップショット」であり得る。例えば、信号は、1~4秒などの数秒間の期間の間感知され得る。代替的に、信号の各セットは、例えば、数時間、数日、または数ヶ月の期間にわたって毎時測定される4秒の「信号スナップショット」など、時間の経過に伴う複数の「信号スナップショット」を含み得る。代替的に、信号の各セットは、より長い期間または複数の期間にわたって継続的に監視される信号を含み得る。例えば、信号はミリ秒ごとに継続的に監視され得る。
【0099】
センサ402によって取得された信号は、例えば、センサ402自体のアナログまたはデジタル処理能力によって、または他のハードウェアおよび/またはソフトウェア処理コンポーネント408によって前処理され得る。例えば、信号は、デジタル化、圧縮化のうちの少なくとも1つであり得、特徴は、信号から抽出され得、信号は、時間または周波数領域で表され得る。
【0100】
システム400および400Aは、任意選択で、データ収集ユニット410を含み得る。データ収集ユニット410は、好ましくは、第2の複数のメカニカル機械のメカニカル機械の動作状態データの第2の複数のセットを受信するように動作し得、動作状態データの各セットは、該第2の複数のメカニカル機械404のうちの1つのメカニカル機械の動作の状態を示し、動作の各状態は、第2の複数のセンサ402によって取得された信号セットのうちの少なくとも1つに関連付けられている。
【0101】
データ収集ユニット410で収集される動作状態データは、好ましくは、エンジニアなどの人間の専門家によって供給される機械状態診断の形式である。第1の複数のセンサ402によって取得された信号のセットは、任意選択で、信号プロセッサ408によって、および/またはセンサ402によって直接的または間接的に、データ収集ユニット410に提供され得る。
【0102】
これらの人間の専門家は、第2の複数のセンサ402によって取得された信号のセットを分析し、信号のセットの信号の各セットに、信号が発せられた対応するメカニカル機械404の特定の動作状態を表すものとしてラベルを付けることができる。人間の専門家は、例えば、データ収集ユニット410または人間の専門家とデータ収集ユニットとの間の通信を可能にする別のデバイスのユーザインターフェースと相互作用して、動作状態データを入力することができる。信号およびそれに適用されるラベルは、データ収集ユニット410内のデータベースに蓄積および格納され得る。本発明の一実施形態では、データ収集ユニット410は、クラウド内のサーバなどのリモートサーバに位置し得る。
【0103】
人間の専門家による故障の識別は、監視対象の機械404の1つ以上の特定の故障の識別を含み得る。監視されている特定の機械404に応じて、識別された特定の故障には、回転機械のベアリング摩耗、機械的緩み、不整合、不均衡、電気的故障または他の故障が含まれ得る。代替的に、故障の識別は、特定の故障を識別せずに、故障状態、すなわち、その正常で健全な動作状態に関して異常な状態にある機械404の識別を含み得る。この場合、人間の専門家による故障の識別は、機械が正常に動作していないことを識別するが、不健全な動作の具体的な原因は識別しない。
【0104】
この例では、システム400/400Aは、好ましくはデータコレクタ410を含み、信号は、監視された方法で故障分類器300を訓練するために、好ましくは人間の専門家によってラベル付けされることを理解されたい。しかしながら、本発明の他の実施形態では、データコレクタ410は省略されてもよく、信号は人間の専門家によってラベル付けされる必要はない。この場合、既存の故障分類器114は、最初に教師なし学習を使用することによって訓練され得る。
【0105】
ここで
図3のパネル302に戻ると、ネットワーク300は、層308において、第2の複数のセンサ402によって取得された信号のセットを入力データとして供給し、出力層314において、人間の専門家によってラベル付けされた関連する動作状態データを必要な対応する出力として供給することによって訓練され得る。ネットワーク300の訓練は、事前定義されたデータラベリングに関して、バックプロパゲーションおよび勾配降下アルゴリズムを使用して実行され得る。損失関数、学習率、オプティマイザタイプなどの訓練パラメータは、出力スコアに関して選択することが好ましい。例えば、バイナリ故障検出の場合、クロスエントロピー損失関数、AdamオプティマイザおよびL2正則化項が選択され得る。訓練プロセスは、最初に、すべてのセンサ402がデータセット全体内で一貫しているデータセットに適用され、これは、データポイントにおける各ベクトルについてセンサ402間で混合がないことが好ましいことを意味する。
【0106】
訓練が完了すると、訓練に基づいて確立されたネットワーク300のパラメータは、好ましくは固定される。これらのパラメータには、活性化関数と重みが含まれる。ネットワーク300は、現在、第2の複数のセンサ402によって取得されたセンサ信号セットに基づいて、既存の分類器114などの既存の分類器を構成する。パネル302に示される訓練されたネットワーク300の形態の既存の分類器114は、現在、同じまたは類似の構造を有し、既存の分類器114が訓練されたデータと同じまたは類似のソースから取得された新しい入力データを正確に分類するように構成される。この場合、訓練されたネットワーク300の形態の既存の分類器114は、機械404(
図4Aおよび
図4B)と共有される特性を有し、第2の複数のセンサ402(
図4Aおよび
図4B)と同じタイプのセンサによって感知される機械から発する新しい入力信号を正確に分類するように構成される。しかしながら、上記で詳述したように、訓練されたネットワーク300の形態の既存の分類器114は、これらの新しい入力信号が第1の複数の機械104などの機械404と共有される特性を有する機械から発するにもかかわらず、第1の複数のセンサ102(
図1および
図2)などの第2の複数のセンサ402とは異なるタイプのセンサによって感知された新しい入力信号を正確に分類することができない。この場合、分類器の精度は、様々なタイプのセンサの周波数応答の違いにより大幅に低下する。
【0107】
既存の分類器114を、例えば第2の複数のセンサ402など、分類器が以前に訓練されたものとは異なるタイプのセンサ、例えば第1の複数のセンサ102からの信号セットを正確に分類できるようにするために、既存の分類器114は、修正され得る。本発明の好ましい実施形態による、ネットワーク300の形態の既存の分類器114の修正は、
図3の下側のパネル440に示されている。
【0108】
図3の下側のパネル440に見られるように、ネットワーク300は、修正されたネットワーク442を生成するように修正され得る。ネットワーク300は、好ましくは、ネットワーク300に少なくとも1つの追加の層450を追加することによって修正される。少なくとも1つの追加の層450は「マッピング層」と呼ばれ得、ネットワーク300の形態の分類器114が訓練された、元のセンサタイプ、すなわち第2の複数のセンサ402と、新しいデータが収集された、新しいセンサタイプ、すなわち、第1の複数のセンサ102との間の周波数応答差を学習するように構成される。
【0109】
マッピング層450の構成は、ネットワーク300のすべての層の構造およびパラメータを凍結し、
図1および2に関して上記で説明した破線のボックス115で囲まれた要素によって提供されるように、第1の複数のセンサ102から取得された新しいデータセットで分類器を再訓練することによって達成され得る。このようにして、ネットワーク442は、ネットワーク442の他のすべての層のパラメータがすでに構成されて凍結されており、変更できないため、2つのセンサの周波数応答差に関してマッピング層450の重み値を最適化することを余儀なくされる。結果として、マッピング層450は、センサ402によって提供される元のセンサ信号セット(
図4Aおよび4B)とセンサ102によって提供される新しいセンサ信号セット(
図1および2)との間のマッピングを学習することを余儀なくされる。
【0110】
代替的に、ネットワーク300のすべての層の構造およびパラメータは、必ずしも凍結される必要はなく、むしろ、第1の複数のセンサ102から取得された新しいデータセットを用いた分類器の再訓練中に調整され得る。この場合、ネットワーク300のパラメータは、修正された分類器442の調整されたパラメータの開始点として機能する。
【0111】
マッピング層450の構成は、好ましくは、異なるタイプのセンサ間の周波数応答差の性質、例えば、第1および第2の複数のセンサ102および402に関して選択される。
【0112】
同じタイプの異なるセンサ間のマッピングの場合、例えば、第1および第2の複数のセンサ102および402は両方とも振動センサであるが、異なる周波数応答を有する異なるタイプの場合、周波数応答の差は一般に信号周波数の線形関数である。
【0113】
異なるタイプの異なるセンサ間のマッピングの場合、例えば、第1および第2の複数のセンサ102および402は、それぞれ、異なる周波数応答を有する振動および磁気センサであり、周波数応答の差は、一般に非線形関数であり、したがって、非線形マッピングが必要である。それに対応して、活性化関数は、必ずしもそうではないが、非線形の形をとることができる。
【0114】
場合によっては、マッピング層450のマッピングは、マッピング層450に、新しいセンサデータのより複雑な形態、例えば、第1の複数のセンサ102によって取得された信号のより複雑な形態を提供することによって支援され得る。例えば、逆データ、対数データ、または他の形式のデータが提供され得る。入力信号を修正するプロセスは、分類器の精度に関して最適化することができ、それにより、新しいセンサデータは、分類器精度性能フィードバックごとに修正され、マッピング層450は、次に、修正されたデータで再訓練される。
【0115】
マッピング層450は、好ましくは、データ層308の後の第1の層としてネットワーク442に組み込まれ、新しいデータセットの形で入力データを受信するように構成される。マッピング層450は、元の入力層310の上流にあり、入力データに関して元の入力層310に先行している。マッピング層450がセンサタイプ間のマッピングを学習し、着信する新しいデータを、ネットワーク442の下流にある他の隠れ層312に続くための適切な形式に適応させることができるネットワークの初期層としてのマッピング層450の位置であるため、ネットワーク442におけるマッピング層450の位置は重要である。
【0116】
本発明の代替の実施形態では、分類器が、機械の動作状態に関連するセンサデータの異常を識別する方法を学習するために、大量のセンサデータを提供することによって、既存の故障分類器は、教師なしの方法で最初に訓練され得る。例えば、オートエンコーダNNを使用して、センサデータの低次元表現を学習し、次に、クラスタリングベースの分類を使用して外れ値(異常)を特定することができる。次に、そのような既存の教師なし故障分類器114は、既存の故障分類器114が最初に訓練されたものとは異なるタイプのセンサによって取得されたセンサデータの異常を識別するように適合された修正故障分類器116を生成するために、本発明の好ましい実施形態に従って、教師なし方法で修正され得る。修正された故障分類器116は、例えば、初期マッピング層をオートエンコーダNNに追加し、マッピング層以外のネットワークのすべての層のパラメータを凍結し、マッピング層を訓練して元のセンサタイプと新しいセンサタイプとの間のマッピングを学習することによって生成され得る。マッピング層の訓練中に、逆マッピング層などの別のマッピング層が、訓練プロセスのために、デコーダの後のNN出力に追加で追加される場合がある。次に、外れ値(異常)を識別するために、クラスタリングベースの分類を使用して出力が分類され得る。
【0117】
本発明のマッピング学習の結果としての分類器性能の改善は、以下の例示的なグラフに示されている。
図5Aには、本発明の修正された分類器の精度再現率曲線の形での性能の例が示されている。この例では、故障分類器は最初に、100,000を超えるラベル付き信号セットを含むデータセットで訓練および検証され、そのうち7000の信号セットは、ベアリングを含む回転機械から単軸振動センサによって取得された機械の故障を示している。訓練に続いて、故障分類器は20,000の信号セットを含むデータセットでテストされ、そのうちの1,400は機械の故障に対応していた。このように訓練された故障分類器は、既存の故障分類器と呼ばれることがある。
【0118】
次に、既存の分類器は、ベアリングを含む回転機械からの3軸振動センサによって取得された信号に基づいて故障を分類できるようにするために、本発明の好ましい実施形態に従って修正された。3軸振動センサによって取得され、既存の故障分類器を修正するために使用される信号の新しいデータセットは、256個の信号セットの訓練および検証データセットで構成され、そのうち20セットの信号のみが故障のある機械状態、すなわち、ベアリングの摩耗に関連付けられていた。この非常に小さな信号セットに基づいて、上記のように、既存の故障分類器が修正された。
【0119】
次に、修正された故障分類器が、7,149の信号セットのテストセットに適用され、その性能をテストするために、そのうちの486の信号セットが、故障検出用のベアリングを含む回転機械から3軸振動センサによって取得された信号の、故障した機械の状態に関連付けられた(線502)。比較のために、まったく新しい分類器が同じ256の信号セットで「ゼロから」訓練され、7,149個の信号セットの同じテストセットに適用された(線504)。比較を完全にするために、修正されていない形式の元の既存の分類器も、7149の例示的なデータセットに適用された(線506)。
図5Aの考察から明らかなように、供給されたデータセットが非常に小さいにもかかわらず、故障識別における修正された分類器の性能は最高である。
図5Aにリストされているスコアは平均精度スコアであるが、他の例示的なスコアが使用されてもよい。
【0120】
図5Bには、本発明の修正された分類器の精度再現率曲線の形での性能の例が示されている。この例では、故障分類器は元々、100,000を超えるラベル付き信号セットを含むデータセットで訓練および検証され、そのうち7000の信号セットは、ベアリングを含む回転機械から単軸振動センサによって取得された機械の故障を示している。訓練に続いて、故障分類器は20,000の信号セットを含むデータセットでテストされ、そのうちの1,400は機械の故障に対応していた。このように訓練された故障分類器は、既存の故障分類器と呼ばれることがある。
【0121】
次に、既存の分類器は、ベアリングを含む回転機械からの3軸振動センサによって取得された信号に基づいて故障を分類できるようにするために、本発明の好ましい実施形態に従って修正された。3軸振動センサによって取得され、既存の故障分類器を修正するために使用される信号の新しいデータセットは、924個の信号セットで構成され、そのうち70セットの信号のみが故障のある機械状態、すなわち、ベアリングの摩耗に関連付けられていた。この非常に小さな信号セットに基づいて、上記のように、既存の故障分類器が修正された。次に、その性能をテストするために、故障検出用のベアリングを含む回転機械から3軸振動センサによって取得された、機械故障に対応する436の信号セットを含む、6841の信号セットのセットに、修正された故障分類器が適用された(線510)。比較のために、まったく新しい分類器が同じ924の信号セットで「ゼロから」訓練され、6841個の例示的なデータセットにも適用された(線512)。比較を完全にするために、修正されていない形式の元の既存の分類器も、6841の例示的なデータセットに適用された(線514)。
図5Bの考察から明らかなように、供給されたデータセットが小さいにもかかわらず、故障識別における修正された分類器の性能は最高である。
図5Bにリストされているスコアは平均精度スコアであるが、他の例示的なスコアが使用されてもよい。
【0122】
図5Cには、本発明の修正された分類器の精度再現率曲線の形での性能の例が示されている。この例では、故障分類器は元々、100,000を超えるラベル付き信号セットを含むデータセットで訓練および検証され、そのうち7000の信号セットは、ベアリングを含む回転機械から単軸振動センサによって取得された機械の故障を示している。訓練に続いて、故障分類器は20,000の信号セットを含むデータセットでテストされ、そのうちの1,400は機械の故障に対応していた。このように訓練された故障分類器は、既存の故障分類器と呼ばれることがある。
【0123】
次に、ベアリングを含む回転機械からの3軸振動センサによって取得された信号に基づいて故障を分類できるように、既存の分類器が修正された。3軸振動センサによって取得され、既存の故障分類器を修正するために使用される信号の新しいデータセットは、5924個の信号セットで構成され、そのうち350セットの信号のみが故障のある機械状態、すなわち、ベアリングの摩耗に関連付けられていた。この小さな信号セットに基づいて、上記のように、既存の故障分類器が修正された。次に、その性能をテストするために、故障検出用のベアリングを含む回転機械から3軸振動センサによって取得された、機械故障に対応する156の信号セットを含む、1481の例示的な信号セットのセットに、修正された故障分類器が適用された(線520)。比較のために、まったく新しい分類器を同じ5924の信号セットで訓練し、1481個の例示的なデータセットにも適用した(線522)。比較を完全にするために、修正されていない形式の元の既存の分類器も、1481の例示的なデータセットに適用された(線524)。
図5Cの考察から明らかなように、故障識別における修正された分類器の性能は最高である。
図5Cにリストされているスコアは平均精度スコアであるが、他の例示的なスコアが使用されてもよい。
【0124】
図5Dには、本発明の修正された分類器の精度再現率曲線の形での性能の例が示されている。この例では、故障分類器は最初に、100,000を超えるラベル付き信号セットを含むデータセットで訓練および検証され、そのうち7,000の信号セットは、ベアリングを含む電気モータから単軸振動センサによって取得された機械の故障を示している。訓練に続いて、故障分類器は20,000の信号セットを含むデータセットでテストされ、そのうちの1,400は機械の故障に対応していた。このように訓練された故障分類器は、既存の故障分類器と呼ばれることがある。
【0125】
ベアリングを含む電気モータから磁気センサによって取得された磁束信号に基づいて故障を分類できるように、既存の分類器が修正された。磁気センサによって取得され、既存の故障分類器を修正するために使用される信号の新しいデータセットは、3411個の信号セットで構成され、そのうち222セットの信号のみが故障のある機械状態、すなわち、ベアリングの摩耗に関連付けられていた。この小さな信号セットに基づいて、上記のように、既存の故障分類器が修正された。次に、その性能をテストするために、故障検出用のベアリングを含む電気モータから磁気センサによって取得された、機械故障に対応する50の例示的な信号セットのみを含む、754の信号のテスト信号セットに、既存の故障分類器が適用された(線530)。比較のために、まったく新しい分類器が同じ3411セットの磁気信号で訓練され、同じ754の例示的な磁気データセットにも適用された(線532)。比較を完全にするために、修正されていない形式の元の既存の分類器も、同じ754の例示的な磁気データセットに適用された(線534)。
図5Dの考察から明らかなように、故障識別における修正された分類器の性能は最高である。
図5Dにリストされているスコアは平均精度スコアであるが、他の例示的なスコアが使用されてもよい。
【0126】
上記の
図5A~5Dの例では、分類器114が最初に訓練されたデータセットは、主にモータ、ポンプ、ファン、ギアボックス、チラー、コンプレッサを含む、40,000台を超える個々の回転機から感知されたデータで構成されていた。ベアリングの記録は、その一部は複数回測定され、3年の期間にわたって記録された。各ベアリングは、単軸圧電振動センサによって3つの軸に沿って測定された。新しいデータセットが3軸振動センサからのデータで構成されている場合、これはMEMS3軸振動センサであった。
【0127】
上記のデータから明らかなように、データセットの故障率は約7%であった。分類器は、単一のベアリングの故障を検出するように設計されており、故障していない追加の機械ベアリングがベアリングの摩耗の兆候を示す信号を発生させた場合でも、故障していないベアリングが故障しているベアリングに近接しているために、およびベアリング間の音波伝搬により、分類器は故障していないベアリングを正しく分類することができた。データのラベル付けは、10人を超える人間の専門家によって実行された。
【0128】
ここで、本発明の好ましい実施形態による、転移学習に基づくメカニカル機械故障識別の方法に含まれるステップを示す簡略化されたフローチャートである
図6を参照する。
【0129】
図6に示すのは、機械故障を識別するための方法600である。第1のステップ602に見られるように、複数のメカニカル機械から発する第1の信号セットは、第1の複数のセンサによって取得され得る。第1の複数のセンサのうちのセンサは、好ましくは、第1の、相互に同じタイプのものである。代替的に、第1の複数のセンサのうちのセンサは、複数のタイプのものであり得る。第1の複数のセンサのうちのセンサは、一般に同じセンサ周波数応答を有し得、これは、第1のセンサ周波数応答分布と呼ばれ得る。
【0130】
第2のステップ604に見られるように、ステップ602で取得された第1の信号セットに対応して、機械の動作状態データの第1のセットが任意選択で取得され得る。機械の動作状態データは、第1の信号セットのうちの信号の各セットに関連付けられた動作状態の識別を含み得る。動作状態は、故障状態または非故障状態である可能性がある。
【0131】
第3のステップ606に見られるように、信号セットおよび任意選択の対応する動作状態データは、機械から発し、第2の複数のセンサによって取得された信号に基づいて機械の故障を識別するように以前に訓練された既存の故障分類器に供給される。既存の故障分類器が訓練された、第2の複数のセンサは、互いに相互に同じタイプのものであるが、第1の複数のセンサのタイプとは異なる場合がある。既存の故障分類器が訓練された、第2の複数のセンサは、代替的に、複数のタイプのものであり得、少なくとも一部は、第1の複数のセンサとは異なる。第2の複数のセンサのうちのセンサは、一般に同じセンサ周波数応答を有し得、これは、第2のセンサ周波数応答分布と呼ばれ得る。第2のセンサ周波数応答分布は、第1の複数のセンサの第1のセンサ周波数応答分布とは異なり得る。
【0132】
第4のステップ608に見られるように、既存の故障分類器は、好ましくは、転移学習アプローチを使用して、供給された新しいデータに基づいて修正される。修正は、既存の故障分類器への少なくとも1つのマッピング層の追加を含み得、そのマッピング層は、第1のセンサ周波数応答分布と第2のセンサ周波数応答分布との間の周波数応答差を学習し得る。
【0133】
第5のステップ610に見られるように、追加の信号セットは、その後、第1の複数のセンサと同じセンサタイプによって少なくとも1つの機械から取得され得る。
【0134】
第6のステップ612に見られるように、ステップ608で生成された修正された分類器は、追加の信号セットが生成された機械の故障を識別するために、追加の信号セットに適用され得る。
【0135】
第7のステップ614に見られるように、識別された故障に基づいて、機械の保守または修理が実行され得る。
【0136】
ステップ602、606、および610で信号を生成するものとして説明される様々な機械のすべては、上記で説明されるように、同じ機械または共有特性を有する異なる機械であり得ることが理解される。
【0137】
本発明が、上記で特に示され、説明されたものに限定されないことが当業者には理解されよう。本発明の範囲は、上記の様々な特徴の組み合わせおよび副組み合わせの両方、ならびにその修正を含み、これらはすべて従来技術にはないものである。