(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-10-25
(45)【発行日】2024-11-05
(54)【発明の名称】エアロゾル生成装置、制御方法及びコンピュータプログラム
(51)【国際特許分類】
A24F 40/57 20200101AFI20241028BHJP
A24F 40/20 20200101ALI20241028BHJP
【FI】
A24F40/57
A24F40/20
(21)【出願番号】P 2023517084
(86)(22)【出願日】2022-02-21
(86)【国際出願番号】 JP2022006894
(87)【国際公開番号】W WO2022230321
(87)【国際公開日】2022-11-03
【審査請求日】2023-09-22
(31)【優先権主張番号】P 2021076017
(32)【優先日】2021-04-28
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000004569
【氏名又は名称】日本たばこ産業株式会社
(74)【代理人】
【識別番号】110003281
【氏名又は名称】弁理士法人大塚国際特許事務所
(72)【発明者】
【氏名】山田 健太郎
(72)【発明者】
【氏名】青山 達也
(72)【発明者】
【氏名】川中子 拓嗣
(72)【発明者】
【氏名】長浜 徹
(72)【発明者】
【氏名】藤木 貴司
(72)【発明者】
【氏名】吉田 亮
【審査官】小島 哲次
(56)【参考文献】
【文献】国際公開第2020/101205(WO,A1)
【文献】国際公開第2020/084773(WO,A1)
【文献】国際公開第2020/084756(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
A24F 40/00-40/95
(57)【特許請求の範囲】
【請求項1】
エアロゾル源を加熱してエアロゾルを発生させる加熱部と、
前記加熱部へ電力を供給する電源と、
前記電源から前記加熱部への電力の供給を、
前記加熱部の温度を第1温度から第2温度へ向けて変化させるための第1区間、及び
前記第1区間に後続する、前記加熱部の温度を維持するための第2区間、
を含む複数の区間からなる制御シーケンスに従って制御する制御部と、
を備え、
前記制御シーケンスは、前記第1区間について第1時間長、前記第2区間について第2時間長を指定し、
前記制御部は、前記加熱部の温度が前記第2温度に到達した場合に、前記第1区間を終了させ、
前記制御部は、前記第1区間の開始から前記第1時間長が経過する第1時刻よりも早く前記第1区間を終了させる場合に、前記第1時刻までの残余時間と前記第2時間長との合計時間にわたって前記第2区間を継続させる、
エアロゾル生成装置。
【請求項2】
前記第2温度は、前記第1温度よりも低く、
前記制御部は、前記第1区間において、前記加熱部の温度が前記第2温度へ向けて下降するように前記電源から前記加熱部への電力の供給を停止させる、
請求項1に記載のエアロゾル生成装置。
【請求項3】
前記制御部は、前記第1時刻よりも遅く前記第1区間を終了させる場合に、前記第1時刻からの超過時間を前記第2時間長から控除して得た時間にわたって前記第2区間を継続させる、請求項1又は2に記載のエアロゾル生成装置。
【請求項4】
前記制御シーケンスは、前記第2区間に後続する、前記加熱部の温度を第3温度へ変化させるための第3区間、をさらに含み、
前記制御部は、前記第1時刻よりも遅く前記第1区間を終了させる場合であって、前記第1時刻からの超過時間が前記第2時間長を上回るときに、前記第1区間の終了後に前記第2区間をスキップして前記第3区間へ遷移する、
請求項3に記載のエアロゾル生成装置。
【請求項5】
前記制御シーケンスは、前記第3区間について第3時間長を指定し、
前記制御部は、前記第1区間の開始から前記第1時間長及び前記第2時間長が経過する第2時刻よりも遅く前記第1区間を終了させる場合に、前記第2時刻からの超過時間を前記第3時間長から控除して得た時間にわたって前記第3区間を継続させる、
請求項4に記載のエアロゾル生成装置。
【請求項6】
前記第3温度は、前記第2温度よりも高く、
前記制御部は、前記第3区間において、前記加熱部の温度が前記第3温度へ向けて上昇するように前記電源から前記加熱部への電力の供給を制御する、
請求項4又は5に記載のエアロゾル生成装置。
【請求項7】
前記制御部は、
前記第1区間の開始から前記第1時間長が経過した場合に、前記第1区間を終了させ、
前記第2区間における前記加熱部の温度制御の目標値を、前記第1区間を終了させた時点の前記加熱部の温度に基づいて設定する、
請求項1又は2に記載のエアロゾル生成装置。
【請求項8】
前記制御部は、
前記第1区間を終了させた時点の前記加熱部の前記温度が前記第2温度よりも高い第4温度である場合には、前記第2区間における前記加熱部の温度制御の前記目標値を、前記第4温度に対応する値に設定し、
前記第1区間を終了させた時点の前記加熱部の前記温度が前記第2温度以下の第5温度である場合には、前記第2区間における前記加熱部の温度制御の前記目標値を、前記第2温度に対応する値に設定する、
請求項7に記載のエアロゾル生成装置。
【請求項9】
前記制御シーケンスは、前記第1区間に先行する1つ以上の先行区間をさらに含み、
前記1つ以上の先行区間の少なくとも1つの時間長は可変的である、
請求項1~8のいずれか1項に記載のエアロゾル生成装置。
【請求項10】
エアロゾル生成装置におけるエアロゾルの生成を制御するための制御方法であって、
前記エアロゾル生成装置は、エアロゾル源を加熱してエアロゾルを発生させる加熱部と、前記加熱部へ電力を供給する電源とを備え、
前記制御方法は、
複数の区間からなる制御シーケンスであって、第1区間について第1時間長、前記第1区間に後続する第2区間について第2時間長を指定する当該制御シーケンスを取得することと、
前記第1区間において、前記加熱部の温度を第1温度から第2温度へ向けて変化させることと、
前記加熱部の温度が前記第2温度に到達した場合に、前記第1区間を終了させることと、
前記第1区間の開始から前記第1時間長が経過する第1時刻よりも早く前記第1区間を終了させる場合に、前記第1時刻までの残余時間と前記第2時間長との合計時間にわたって前記第2区間を継続させながら、前記第2区間において、前記加熱部の温度を維持することと、
を含む、制御方法。
【請求項11】
エアロゾル生成装置におけるエアロゾルの生成を制御するためのコンピュータプログラムであって、
前記エアロゾル生成装置は、エアロゾル源を加熱してエアロゾルを発生させる加熱部と、前記加熱部へ電力を供給する電源とを備え、
前記コンピュータプログラムは、前記エアロゾル生成装置のプロセッサにより実行された場合に、前記プロセッサに、
複数の区間からなる制御シーケンスであって、第1区間について第1時間長、前記第1区間に後続する第2区間について第2時間長を指定する当該制御シーケンスを取得することと、
前記第1区間において、前記加熱部の温度を第1温度から第2温度へ向けて変化させることと、
前記加熱部の温度が前記第2温度に到達した場合に、前記第1区間を終了させることと、
前記第1区間の開始から前記第1時間長が経過する第1時刻よりも早く前記第1区間を終了させる場合に、前記第1時刻までの残余時間と前記第2時間長との合計時間にわたって前記第2区間を継続させながら、前記第2区間において、前記加熱部の温度を維持することと、
を行わせる、コンピュータプログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、エアロゾル生成装置、制御方法及びコンピュータプログラムに関する。
【背景技術】
【0002】
エアロゾル源を加熱することによりエアロゾルを生成し、生成したエアロゾルをユーザへ送達する電気加熱式のエアロゾル生成装置が知られている。例えば、電子タバコは、そうしたエアロゾル生成装置の一種であり、生成されるエアロゾルに香味成分を付与してユーザに吸引させる。
【0003】
エアロゾル源から発生する単位時間当たりのエアロゾルの量は、エアロゾル源を含有する基体の性質及び形状に加えて、基体を加熱する際の温度に依存して変動する。そのため、エアロゾル生成装置は、ユーザへ送達されるエアロゾルの量が所望の量となるように加熱温度を制御する。概して、温度の時間的変化を表現したものを温度プロファイルといい、所望の温度プロファイルを実現するための温度制御の仕様を時系列で定義したものを加熱プロファイルという。
【0004】
例えば、特許文献1は、第1段階で加熱要素の温度をある高い値まで上昇させ、続く第2段階で加熱要素の温度をより低い値へ下降させ、続く第3段階で加熱要素の温度を徐々に上昇させる、という温度プロファイルを開示している。この温度プロファイルによって、エアロゾルの発生量が時間的にある程度平坦化される。特許文献1は、この温度プロファイルを実現するために、典型的なフィードバック制御であるPID制御によって加熱要素の温度を目標温度へ導くことも開示している。特許文献2は、一旦上昇させた加熱要素の温度を下降させる際に、加熱要素への電力の給電を一時的に停止する方式を開示している。
【先行技術文献】
【特許文献】
【0005】
【文献】特開2020-74797号公報
【文献】特表2019-531049号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、既存のエアロゾル生成装置には、加熱期間にわたって加熱温度をどのように制御するかに関し、未だ改善の余地が残されている。例えば、加熱プロファイルの進行を目標温度の達成によって制御しようとすると、条件に依存して進行のタイミングが前後し、セッションの早期終了、あるいは逆に長期化に起因するエアロゾル発生量の低下が、ユーザ体験の毀損につながる虞がある。
【0007】
本開示に係る技術は、上述した点に鑑み、エアロゾル生成のためのセッションの適正な長さを維持することのできる改善された温度制御を実現しようとするものである。
【課題を解決するための手段】
【0008】
ある観点によれば、エアロゾル源を加熱してエアロゾルを発生させる加熱部と、前記加熱部へ電力を供給する電源と、前記電源から前記加熱部への電力の供給を、前記加熱部の温度を第1温度から第2温度へ向けて変化させるための第1区間、及び前記第1区間に後続する、前記加熱部の温度を維持するための第2区間、を含む複数の区間からなる制御シーケンスに従って制御する制御部と、を備え、前記制御シーケンスは、前記第1区間について第1時間長、前記第2区間について第2時間長を指定し、前記制御部は、前記加熱部の温度が前記第2温度に到達した場合に、前記第1区間を終了させ、前記制御部は、前記第1区間の開始から前記第1時間長が経過する第1時刻よりも早く前記第1区間を終了させる場合に、前記第1時刻までの残余時間と前記第2時間長との合計時間にわたって前記第2区間を継続させる、エアロゾル生成装置が提供される。
【0009】
前記第2温度は、前記第1温度よりも低く、前記制御部は、前記第1区間において、前記加熱部の温度が前記第2温度へ向けて下降するように前記電源から前記加熱部への電力の供給を停止させてもよい。
【0010】
前記制御部は、前記第1時刻よりも遅く前記第1区間を終了させる場合に、前記第1時刻からの超過時間を前記第2時間長から控除して得た時間にわたって前記第2区間を継続させてもよい。
【0011】
前記制御シーケンスは、前記第2区間に後続する、前記加熱部の温度を第3温度へ変化させるための第3区間、をさらに含み、前記制御部は、前記第1時刻よりも遅く前記第1区間を終了させる場合であって、前記第1時刻からの超過時間が前記第2時間長を上回るときに、前記第1区間の終了後に前記第2区間をスキップして前記第3区間へ遷移してもよい。
【0012】
前記制御シーケンスは、前記第3区間について第3時間長を指定し、前記制御部は、前記第1区間の開始から前記第1時間長及び前記第2時間長が経過する第2時刻よりも遅く前記第1区間を終了させる場合に、前記第2時刻からの超過時間を前記第3時間長から控除して得た時間にわたって前記第3区間を継続させてもよい。
【0013】
前記第3温度は、前記第2温度よりも高く、前記制御部は、前記第3区間において、前記加熱部の温度が前記第3温度へ向けて上昇するように前記電源から前記加熱部への電力の供給を制御してもよい。
【0014】
前記制御部は、前記第1区間の開始から前記第1時間長が経過した場合に、前記第1区間を終了させ、前記第2区間における前記加熱部の温度制御の目標値を、前記第1区間を終了させた時点の前記加熱部の温度に基づいて設定してもよい。
【0015】
前記制御部は、前記第1区間を終了させた時点の前記加熱部の前記温度が前記第2温度よりも高い第4温度である場合には、前記第2区間における前記加熱部の温度制御の前記目標値を、前記第4温度に対応する値に設定し、前記第1区間を終了させた時点の前記加熱部の前記温度が前記第2温度以下の第5温度である場合には、前記第2区間における前記加熱部の温度制御の前記目標値を、前記第2温度に対応する値に設定してもよい。
【0016】
前記制御シーケンスは、前記第1区間に先行する1つ以上の先行区間をさらに含み、前記1つ以上の先行区間の少なくとも1つの時間長は可変的であってもよい。
【0017】
他の観点によれば、エアロゾル生成装置におけるエアロゾルの生成を制御するための制御方法が提供される。当該制御方法は、エアロゾル生成装置の上述した特徴のうちの任意の組合せに対応する処理ステップを含んでよい。
【0018】
他の観点によれば、エアロゾル生成装置におけるエアロゾルの生成を制御するためのコンピュータプログラムが提供される。当該コンピュータプログラムは、エアロゾル生成装置の上述した特徴のうちの任意の組合せに対応する構成を含んでよい。
【発明の効果】
【0019】
本開示に係る技術によれば、エアロゾル生成のためのセッションの適正な長さを維持することができる。
【図面の簡単な説明】
【0020】
【
図1】一実施形態に係るエアロゾル生成装置の外観を示す斜視図。
【
図2】
図1のエアロゾル生成装置へのたばこスティックの挿入について説明するための説明図。
【
図3】
図1のエアロゾル生成装置の概略的な回路構成の一例を示すブロック図。
【
図4】加熱部の温度の測定に使用される測定回路の構成の一例を示すブロック図。
【
図5】加熱期間中の測定期間及びPWM制御期間について説明するための説明図。
【
図6】加熱部とサーミスタとの間の位置関係の一例について説明するための説明図。
【
図7】一実施形態に係る温度プロファイル及び加熱プロファイルについて説明するための説明図。
【
図8】降温区間の終了が所定時刻よりも早いために後続区間の時間長に残余時間が追加される場合の温度プロファイルの一例を示す説明図。
【
図9】第1温度指標と第2温度指標との間の関係性について説明するための説明図。
【
図10】降温区間の終了時点の温度に後続区間の目標温度を再設定する場合の温度プロファイルの2つの例を示す説明図。
【
図11】第1の変形例において降温区間の終了が所定時刻よりも遅いために後続区間が短縮される場合の温度プロファイルの一例を示す説明図。
【
図12】第2の変形例において降温区間の終了が所定時刻よりも遅いために後続区間が短縮される場合の温度プロファイルの一例を示す説明図。
【
図13】第1の変形例において降温区間の終了が所定時刻よりも大きく遅れるために後続区間がスキップされ且つさらなる後続区間が短縮される場合の温度プロファイルの一例を示す説明図。
【
図14】第2の変形例において降温区間の終了が所定時刻よりも大きく遅れるために後続区間がスキップされ且つさらなる後続区間が短縮される場合の温度プロファイルの一例を示す説明図。
【
図15】終了前の温度維持区間の目標温度を基準時点の温度に再設定する場合の温度プロファイルの一例を示す説明図。
【
図16】第3の変形例に係る回復区間を含む温度プロファイルの一例を示す説明図。
【
図17A】加熱プロファイルを記述するプロファイルデータの構成の第1の例を示す説明図。
【
図17B】加熱プロファイルを記述するプロファイルデータの構成の第2の例を示す説明図。
【
図18】一実施形態に係るエアロゾル生成処理の全体的な流れの一例を示すフローチャート。
【
図19】
図18のPID制御区間のための温度制御処理の流れの一例を示すフローチャート。
【
図20A】
図18のオフ区間のための温度制御処理の流れの第1の例を示すフローチャート。
【
図20B】
図18のオフ区間のための温度制御処理の流れの第2の例を示すフローチャート。
【
図20C】
図18のオフ区間のための温度制御処理の流れの第3の例を示すフローチャート。
【
図21】予熱昇温区間の終了判定処理の流れの一例を示すフローチャート。
【
図22】降温区間の終了判定処理の流れの一例を示すフローチャート。
【
図23】降温区間の終了後の制御パラメータ選択処理の流れの一例を示すフローチャート。
【発明を実施するための形態】
【0021】
以下、添付図面を参照して実施形態を詳しく説明する。なお、以下の実施形態は特許請求の範囲に係る発明を限定するものではなく、また実施形態で説明されている特徴の組み合わせの全てが発明に必須のものとは限らない。実施形態で説明されている複数の特徴のうち二つ以上の特徴は任意に組み合わされてもよい。また、同一若しくは同様の構成には同一の参照番号を付し、重複した説明は省略する。
【0022】
<<1.装置の構成例>>
本明細書では、本開示に係る技術が、燃焼を伴うことなくエアロゾル源を加熱することにより霧化させてエアロゾルを生成する非燃焼型の装置に適用される例を主に説明する。そうした装置は、リスク低減製品(RRP)、又は単に電子タバコとも呼ばれ得る。なお、かかる例に限定されず、本開示に係る技術は、例えば燃焼型の装置又は医療用のネブライザなど、いかなる種類のエアロゾル生成装置に適用されてもよい。
【0023】
<1-1.外観>
図1は、一実施形態に係るエアロゾル生成装置10の外観を示す斜視図である。
図2は、
図1に示したエアロゾル生成装置10へのたばこスティックの挿入について説明するための説明図である。
図1を参照すると、エアロゾル生成装置10は、本体101、前面パネル102、表示窓103、及びスライダ104を備える。
【0024】
本体101は、エアロゾル生成装置10の1つ以上の回路基板を内部に支持する筐体である。本実施形態において、本体101は、図中の上下方向に長い、丸みを帯びた略直方体の形状を有する。本体101のサイズは、例えばユーザが片手で把持できる程度のサイズであってよい。前面パネル102は、本体101の前面を覆う可撓性のパネル部材である。前面パネル102は、本体101から取外し可能であってもよい。前面パネル102は、ユーザ入力を受け付ける入力部としても機能する。例えば、ユーザが前面パネル102の中央を押し込むと、本体101と前面パネル102との間に配設されるボタン(図示せず)が押下され、ユーザ入力が検知され得る。表示窓103は、前面パネル102の略中央で長手方向に沿って延在する帯状の窓である。表示窓103は、本体101と前面パネル102との間に配設される1つ以上のLED(Light-Emitting Diode)が発する光を外部へ透過させる。
【0025】
スライダ104は、本体101の上面に方向104aに沿ってスライド可能に配設されるカバー部材である。
図2に示したように、スライダ104を図中手前へスライドさせる(即ち、スライダ104を開ける)と、本体101の上面の開口106が露出する。ユーザは、エアロゾル生成装置10を使用してエアロゾルを吸引する際、スライダ104を開けて露出させた開口106から、方向106aに沿って管状の挿入孔107へ、たばこスティック15を挿入する。挿入孔107の軸方向に直交する断面は、例えば円形、楕円形又は多角形であってよく、その断面積は底面に近付くにつれて徐々に減少する。それにより、挿入孔107へ挿入されたたばこスティック15の外側面が挿入孔107の内側面から押圧され、たばこスティック15の脱落が摩擦力によって防止されると共に、後述する加熱部130からたばこスティック15への熱伝達の伝達効率が高められる。ユーザは、エアロゾルの吸引を終了すると、たばこスティック15を挿入孔107から引抜き、スライダ104を閉じる。
【0026】
たばこスティック15は、筒状の巻紙の内側に充填物を保持するたばこ物品である。たばこスティック15の充填物は、例えば、エアロゾル生成基体とたばこ刻みとの混合物であってよい。エアロゾル生成基体として、例えばグリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、又はこれらの混合物といった、いかなる種類のエアロゾル源を含有する基体が使用されてもよい。たばこ刻みは、いわゆる香味源である。たばこ刻みの材料は、例えばラミナ又は中骨などであってよい。なお、たばこ刻みの代わりに、非たばこ由来の香味源が使用されてもよい。
【0027】
<1-2.回路構成>
図3は、エアロゾル生成装置10の概略的な回路構成の一例を示すブロック図である。
図3を参照すると、エアロゾル生成装置10は、制御部120、記憶部121、入力検知部122、状態検知部123、吸引検知部124、発光部125、振動部126、通信インタフェース(I/F)127、接続I/F128、加熱部130、第1スイッチ131、第2スイッチ132、バッテリ140、昇圧回路141、残量計142、測定回路150、及びサーミスタ155を備える。
【0028】
制御部120は、例えばCPU(Central Processing Unit)又はマイクロコントローラといったプロセッサであってよい。制御部120は、記憶部121に記憶されるコンピュータプログラム(ソフトウェア又はファームウェアともいう)を実行することにより、エアロゾル生成装置10の機能全般を制御する。記憶部121は、例えば半導体メモリであってよい。記憶部121は、1つ以上のコンピュータプログラムと、後述する加熱制御のために利用される様々なデータ(例えば、加熱プロファイル50を記述するプロファイルデータ51)とを記憶する。
【0029】
入力検知部122は、ユーザ入力を検知するための検知回路である。入力検知部122は、例えば、ユーザによる前面パネル102の押し込み(即ち、ボタンの押下)を検知し、検知した状態を示す入力信号を制御部120へ出力する。なお、エアロゾル生成装置10は、前面パネル102の代わりに(又はそれに加えて)、例えばボタン、スイッチ又はタッチ感応面など、いかなる種類の入力デバイスを備えていてもよい。状態検知部123は、スライダ104の開閉状態を検知するための検知回路である。状態検知部123は、スライダ104が開かれているか又は閉じられているかを示す状態検知信号を制御部120へ出力する。吸引検知部124は、ユーザによるたばこスティック15の吸引(パフ)を検知するための検知回路である。一例として、吸引検知部124は、開口106の近傍に配設されるサーミスタ(図示せず)を含んでもよい。この場合、吸引検知部124は、ユーザによる吸引に起因する温度変化がもたらすサーミスタの抵抗値の変化に基づいて吸引を検知し得る。他の例として、吸引検知部124は、挿入孔107の底部に配設される圧力センサ(図示せず)を含んでもよい。この場合、吸引検知部124は、吸引により引き起こされる気流がもたらす気圧の減少に基づいて吸引を検知し得る。吸引検知部124は、例えば、吸引が行われているか否かを示す吸引検知信号を制御部120へ出力する。
【0030】
発光部125は、1つ以上のLEDと、LEDを駆動するためのドライバとを含む。発光部125は、制御部120から入力される指示信号に従ってLEDの各々を発光させる。振動部126は、バイブレータ(例えば、偏心モータ)と、バイブレータを駆動するためのドライバとを含む。振動部126は、制御部120から入力される指示信号に従ってバイブレータを振動させる。制御部120は、例えば、エアロゾル生成装置10の何らかのステータス(例えば、セッションの進行状況)をユーザに報知するために、発光部125及び振動部126の一方又は双方を任意のパターンで使用してよい。例えば、発光部125の発光パターンは、各LEDの発光状態(常時発光/点滅/非発光)、点滅周期、及び発光色といった要素で区別され得る。振動部126の振動パターンは、バイブレータの振動状態(振動/停止)及び振動の強さといった要素で区別され得る。
【0031】
無線I/F127は、エアロゾル生成装置10が他の装置(例えば、ユーザが所持するPC(Personal Computer)又はスマートフォン)と無線で通信するための通信インタフェースである。無線I/F127は、例えばBluetooth(登録商標)、NFC(Near Field Communication)、又は無線LAN(Local Area Network)といった任意の無線通信プロトコルに準拠するインタフェースであってよい。接続I/F128は、エアロゾル生成装置10を他の装置へ接続するための端子を有する有線インタフェースである。接続I/F128は、例えばUSB(Universal Serial Bus)インタフェースであってよい。接続I/F128は、外部電源から(図示しない給電線を介して)バッテリ140を充電するために利用されてもよい。
【0032】
加熱部130は、たばこスティック15のエアロゾル生成基体に含まれるエアロゾル源を加熱してエアロゾルを発生させる抵抗発熱性の部品である。加熱部130の抵抗発熱材料として、例えば、銅、ニッケル合金、クロム合金、ステンレス、及び白金ロジウムのうちの1つ、又は2つ以上の混合物が使用されてよい。加熱部130の一端は第1スイッチ131及び昇圧回路141を介してバッテリ140の正極へ接続され、加熱部130の他端は第2スイッチ132を介してバッテリ140の負極へ接続される。第1スイッチ131は、加熱部130と昇圧回路141との間の給電線に設けられるスイッチング素子である。第2スイッチ132は、加熱部130とバッテリ140との間の接地線に設けられるスイッチング素子である。第1スイッチ131及び第2スイッチ132は、例えばFET(Field Effect Transistor)であってよい。
【0033】
バッテリ140は、加熱部130及びエアロゾル生成装置10の他の構成要素へ電力を供給するための電源である。
図3では、バッテリ140から加熱部130以外の構成要素への給電線は省略されている。バッテリ140は、例えばリチウムイオンバッテリであってよい。昇圧回路(DC/DCコンバータ)141は、加熱部130への給電のためにバッテリ140の電圧を増幅する電圧変換回路である。残量計142は、バッテリ140の電力の残量その他のステータスを監視するためのICチップである。残量計142は、例えば、充電率(SOC:State Of Charge)、劣化度(SOH:State Of Health)、相対充電率(RSOC)及び電源電圧といったバッテリ140のステータス値を周期的に計測し、計測結果を制御部120へ出力し得る。
【0034】
制御部120は、加熱の開始を求めるユーザ入力が検知された場合に、バッテリ140から加熱部130への電力の供給を開始させる。ここでのユーザ入力は、例えば、入力検知部122により検知されるボタンの長押しであってよい。制御部120は、第1スイッチ131及び第2スイッチ132へ制御信号を出力して両スイッチをオンすることにより、昇圧回路141で増幅された電圧で、バッテリ140から加熱部130へ電力を供給させることができる。第1スイッチ131及び第2スイッチ132がFETである場合には、制御部120から両スイッチへ出力される制御信号は、それぞれのゲートへ印加される制御パルスである。制御部120は、後述する温度制御において、この制御パルスのデューティ比をパルス幅変調(PWM)によって調整する。なお、制御部120は、PWMの代わりにパルス周波数変調(PFM)を利用してもよい。
【0035】
<1-3.ヒータ温度の測定>
本実施形態において、制御部120は、バッテリ140から加熱部130への電力の供給を、予熱期間及び吸引可能期間を含む加熱期間の全体を通じて、良好なユーザ体験を提供するための所望の温度プロファイルを実現するように制御する。その制御は、主として、加熱部130の温度との相関を有する温度指標を制御量、PWMのデューティ比を操作量とするフィードバック制御であってよい。ここでは、フィードバック制御としてPID制御が採用されるものとする。本実施形態において、エアロゾル生成装置10は、加熱部130の温度指標を測定するための2種類の測定部を有する。
図3に示した測定回路150は、それら2種類の測定部のうちの1つであり、加熱部130の電気抵抗値に基づく第1温度指標を測定する。他の測定部は、後に説明するサーミスタ155である。
【0036】
図4は、
図3に示した測定回路150の構成の一例を示すブロック図である。
図4を参照すると、測定回路150は、分圧抵抗151、152、153及びオペアンプ154を含む。分圧抵抗151の一端は電源電圧V
TEMPへ接続され、他端は分圧抵抗152の一端へ接続される。分圧抵抗152の他端は接地される。分圧抵抗151と分圧抵抗152との間の接点は、制御部120の端子ADC_VTEMPへ接続される。端子ADC_VTEMPへの入力は、抵抗値測定のための基準値を示す。分圧抵抗153の一端は電源電圧V
TEMPへ接続され、他端は加熱部130の給電線へ接続される。分圧抵抗153と加熱部130の給電線との間の接点は、オペアンプ154の第1入力端子へ接続される。オペアンプ154の第2入力端子は、接地される。オペアンプ154の出力端子は、制御部120の端子ADC_HEAT_TEMPへ接続される。端子ADC_HEAT_TEMPへの入力は、加熱部130の温度に依存する電気抵抗値Rhによって変化する値を示す。制御部120は、端子ADC_VTEMPへの入力値(基準値)に対する端子ADC_HEAT_TEMPへの入力値の比に基づいて、加熱部130の電気抵抗値Rhを算出することができる。
【0037】
ここで、加熱部130の電気抵抗値は、例えば温度が上昇するにつれて単調に増加する(即ち、温度との相関を有する)という特性を有する。そのため、本実施形態では、制御部120は、測定回路150を用いて算出される加熱部130の電気抵抗値を、PID制御の制御量としての温度指標(第1温度指標)として利用する。なお、当然ながら、制御部120は、算出した電気抵抗値を抵抗温度係数を用いてさらに温度へ換算し、それにより導出される測定温度をPID制御の制御量として用いてもよい。
【0038】
<1-4.温度制御>
上述したように、本実施形態において、加熱部130の温度制御は、主として加熱部130へ提供される電力のPWMのデューティ比をPID制御によって決定する方式で行われる。PID制御の目標値(目標温度に対応する抵抗値)をR
TGT[Ω]、現在の制御サイクルn(nは整数)における第1温度指標の指標値(測定抵抗値)をR(n)[Ω]とすると、制御サイクルnのデューティ比D(n)を、例えば次の式(1)に従って導出することができる:
【数1】
【0039】
式(1)において、Kp、Ki及びKdはそれぞれ比例ゲイン、積分ゲイン及び微分ゲインを表す。なお、積分項である右辺第2項において、目標値に対する指標値の偏差の累積値には飽和制御が適用されてもよい。この場合、累積値が所定の上限値を上回る場合には累積値が上限値に置換され、累積値が所定の下限値を下回る場合には累積値が下限値に置換される。
【0040】
加熱期間中のフィードバック制御を可能にするために、本実施形態において、制御部120は、反復される制御サイクルの一部を第1温度指標を測定するための測定期間とし、制御サイクルの残りをPWM制御を行うためのPWM制御期間とする。
図5は、加熱期間中の測定期間及びPWM制御期間について説明するための説明図である。図中の横軸は時間を表し、縦軸は加熱部130へ印加される電圧を表す。加熱期間中の1回の制御サイクルは、冒頭の測定期間20及び残りのPWM制御期間30からなる。
図5の例では、t0からt1までの期間が1つの制御サイクルの測定期間20、t1からt2までの期間が当該制御サイクルのPWM制御期間30である。同様に、t2からt3までの期間が次の1つの制御サイクルの測定期間20、t3からt4までの期間が当該制御サイクルのPWM制御期間30である。1つの制御サイクルの長さは、第1温度指標の測定の周期に相当し、例えば数十ミリ秒であってよい。
【0041】
制御部120は、制御サイクルnにおいて、測定期間20の間にごく短いパルス21(例えば2msのパルス幅)を複数回(例えば、8回)加熱部130へ印加させ、1つの測定期間20内に測定回路150を用いて複数回算出した抵抗値の平均値を第1温度指標の測定値R(n)とする。制御部120は、測定値R(n)を用いて、上の制御式に従って制御サイクルnのPWMのデューティ比D(n)を算出する。そして、制御部120は、PWM制御期間30において、当該期間の長さW0とデューティ比D(n)との積に相当するパルス幅W1を有するパルス31を加熱部130へ印加させる(同じパルス幅W1を有する制御パルスを第1スイッチ131及び第2スイッチ132へ出力する)。このようなフィードバック制御の反復を通じて、加熱部130の温度は目標値に近付くように制御される。
【0042】
<1-5.補助的なサーミスタの導入>
加熱期間の全体を通じて測定期間20を周期的に設定すれば上述した制御サイクルを反復し続けることができる。しかし、測定期間20中に加熱部130へパルスを印加する手法は、パルス幅は短いとしても、それ自体が加熱部130の温度を上昇させ、バッテリ残量を消費する。一方で、加熱部130の所望の温度プロファイルは、一旦高い値まで上昇させた加熱部130の温度をより低い値へ下降させる期間を含み得る。この期間中には、加熱部130へパルスを全く印加しない方が、加熱部130の温度を効率的に下降させるために有利である。しかし、加熱部130へパルスを全く印加しなければ測定回路150を用いて第1温度指標を測定することができない。そこで、本実施形態に係るエアロゾル生成装置10は、
図3に概略的に示したように、サーミスタ155をさらに備える。サーミスタ155は、加熱部130の近傍に配設され、加熱部130の温度に依存する値を制御部120へ出力する。制御部120は、加熱部130の温度を下降させる区間では、サーミスタ155からの出力値に基づく第2温度指標を用いて(例えば、指標値を目標値と比較することにより)、当該区間を終了させるタイミングを判定する。一方、制御部120は、それ以外の区間では、上述したように、加熱部130の電気抵抗値に基づく第1温度指標を用いて、バッテリ140から加熱部130への電力の供給を制御する。第2温度指標の測定の周期は、例えば数十~数百ミリ秒であってよい。
【0043】
図6は、
図2の方向106a(挿入孔107の軸方向)から見た、加熱部130とサーミスタ155との間の位置関係の一例を示している。
図6の例において、筒状部材130aは、たばこスティック15を受け入れるための挿入孔107の空間を規定する部材である。筒状部材130aは、例えばステンレス鋼(SUS)又はアルミニウムなど、熱伝導率の高い材料で形成される。フィルムヒータ130bは、筒状部材130aの外周を囲むように巻回される。フィルムヒータ130bは、耐熱性及び絶縁性の高い一対のフィルム、及びそれらフィルムの間に挟まれる抵抗発熱材料からなる。加熱部130は、これら筒状部材130a及びフィルムヒータ130bから構成され、フィルムヒータ130bに流れる電流によって発生するジュール熱が、挿入孔107に挿入されたたばこスティック15を、筒状部材130aを介して加熱する。さらに、フィルムヒータ130bの外周を囲むように断熱部材108が巻回される。断熱部材108は、例えばガラスウールで構成され、加熱部130の熱からエアロゾル生成装置10の他の構成要素を保護する。サーミスタ155は、断熱部材108の外側に配設される。フィルムヒータ130bの表面は通常滑らかであり、フィルムヒータ130bの外側面にサーミスタ155を配設すると位置決めが困難になりがちであるが、ガラスウールで構成される断熱部材108の外側面にサーミスタ155を配設すれば、サーミスタ155の位置決めが容易となり、サーミスタ155と接続される制御回路の良好な保護も達成される。しかし、加熱部130とサーミスタ155との間に断熱部材108が配設されるという位置関係に起因して、サーミスタ155からの出力値に基づく第2温度指標は、いくらかの遅延をもって加熱部130の温度の変化に追従することになる。
【0044】
<1-6.温度プロファイル及び加熱プロファイル>
制御部120は、所望の温度プロファイルを実現するための制御条件の時間的な推移を定義した制御シーケンスである加熱プロファイルに従って、加熱部130の温度制御を実行する。本実施形態において、加熱プロファイルは、加熱期間を時間的に区分する複数の区間からなり、各区間の温度制御の仕様を目標値その他の制御パラメータで指定する。
【0045】
図7は、本実施形態において採用され得る温度プロファイル及び加熱プロファイルについて説明するための説明図である。図中の横軸は、加熱部130への給電開始からの経過時間を表し、縦軸は加熱部130の温度を表す。太い折れ線は、一例としての温度プロファイル40を表す。温度プロファイル40は、冒頭の予熱期間(T0~T2)、及び予熱期間に後続する吸引可能期間(T2~T8)からなる。一例として、吸引可能期間全体の長さは5分程度であってよく、吸引可能期間の間にユーザは十数回の吸引を行うことができる。
【0046】
予熱期間は、加熱部130の温度を環境温度H0から第1温度H1へ急速に上昇させる昇温区間(T0~T1)、及び加熱部130の温度を第1温度H1に維持する維持区間(T1~T2)を含む。このように、最初に加熱部130を急速に第1温度H1まで加熱することで、たばこスティック15のエアロゾル生成基体の全体に早期に十分に熱を行き渡らせて、良好な品質のエアロゾルをより早くユーザに提供開始することができる。
【0047】
吸引可能期間は、加熱部130の温度を第1温度H1に維持する維持区間(T2~T3)、加熱部130の温度を第2温度H2へ向けて下降させる降温区間(T3~T4)、及び加熱部130の温度を第2温度H2に維持する維持区間(T4~T5)を含む。このように、一旦第1温度H1まで上昇した加熱部130の温度を第2温度H2まで下降させることで、程よい喫味での吸引をより長く安定的にユーザに提供することができる。吸引可能期間は、さらに、加熱部130の温度を第2温度H2から第3温度H3へ徐々に昇温させる昇温区間(T5~T6)、加熱部130の温度を第3温度H3に維持する維持区間(T6~T7)、及び加熱部130の温度を環境温度H0へ向けて下降させる降温区間(T7~T8)を含む。このように、吸引可能期間の後半で加熱部130の温度を再度上昇させることで、たばこスティック15に含まれるエアロゾル源の量が低下していく状況において喫味の低下を抑制して、吸引可能期間の最後まで満足度の高い体験をユーザに提供することができる。
【0048】
一例として、第1温度H1は295℃、第2温度H2は230℃、第3温度H3は260℃であってよい。しかしながら、例えば製造者の設計指針、ユーザの好み、又はたばこ物品の種別ごとの特性に応じて、異なる温度プロファイルが設計されてもよい。
【0049】
加熱プロファイル50は、T1~T7を境界とする8個の区間S0~S7からなる。但し、後に説明するように、2つの区間の間の遷移のタイミングは、必ずしも図示した時点T1~T7のうちの1つに一致せず、むしろ各区間について指定される終了条件に従う。加熱プロファイル50は、区間S0~S7の各々について、以下に列挙する制御パラメータのうちの1つ以上を定義する:
・「区間タイプ」
・「目標温度」
・「目標温度抵抗値」
・「PID制御タイプ」
・「ゲイン」
・「時間長」
・「終了条件」
【0050】
「区間タイプ」は、当該区間がPID制御区間であるか又はオフ区間であるかを指定するパラメータである。ここで、PID制御区間とは、制御部120が測定回路150を用いて算出する第1温度指標に基づいてPID制御を行う区間である。オフ区間とは、制御部120がPID制御を行わずに加熱部130への給電を停止する区間である。
【0051】
「目標温度」は、当該区間の最後に到達しているべき加熱部130の温度を指定するパラメータである。「目標温度抵抗値」は、「目標温度」の値を抵抗値に変換した値を指定するパラメータである。例えば、次の式(2)に従って、目標温度H
TGT[℃]を目標温度抵抗値R
TGT[Ω]へ変換することができる:
【数2】
【0052】
式(2)において、HENVは基準環境温度、αは加熱部130の抵抗発熱材料の温度抵抗係数、RENVは基準環境温度における電気抵抗値を表す。HENV、α及びRENVの値は、いずれも事前の評価試験において測定され又は導出され、予め記憶部121に記憶される。
【0053】
「PID制御タイプ」は、PID制御区間について、目標値を当該区間にわたって「目標温度抵抗値」の値に一定に維持するか、又は目標値を線形補間によって線形的に変化させるかを指定するパラメータである。「PID制御タイプ」が「一定」であれば、制御部120は、当該区間において温度制御の目標値を一定に保ちながらフィードバック制御を行う。「PID制御タイプ」が「線形補間」であれば、制御部120は、当該区間において温度制御の目標値を段階的に変化させながらフィードバック制御を行う。「線形補間」における制御目標値は、区間の最初に特定の開始値(例えば、現在の測定値、又は直前の区間の目標値)に設定され、区間の最後に「目標温度抵抗値」となるように実質的に線形的に(実際には制御サイクルごとに段階的に)引き上げられ又は引き下げられ得る。「PID制御タイプ」は、「区間タイプ」と共に、各区間の温度制御に適用すべき制御方式を指定するパラメータであると見なされてもよい。
【0054】
「ゲイン」は、PID制御区間について、比例ゲインKp、積分ゲインKi、及び微分ゲインKdの値を指定するパラメータの集合である。なお、あるPID制御区間について先行区間で指定されたゲイン値とは異なるゲイン値が指定される場合、フィードバック制御の積分項(式(1)の右辺第2項)の累積偏差はリセットされてよい。
【0055】
「時間長」は、各区間について予め定義される時間的な長さを指定するパラメータである。「終了条件」は、各区間について当該区間の温度制御を終了させるための条件(即ち、次の区間へ温度制御を遷移させるための条件)を指定するパラメータである。「終了条件」は、例えば、次のC1、C2及びC3のいずれかであってよい:
C1:「時間長」で指定される時間の経過
C2:「目標温度抵抗値」で指定される抵抗値への温度指標の到達
C3:C1及びC2のいずれか早い方
制御部120は、終了条件C1及びC3の判定のために、内部にタイマ回路を有してよい。
【0056】
本実施形態において、制御部120は、昇温区間における条件C2及びC3の判定の際に、温度指標が目標値RTGTと許容偏差を表す係数β(βは1より僅かに小さい正の数。例えばβ=0.9975)との積に等しい制御閾値RTGT´(=β・RTGT)を上回った場合に、温度指標が目標値へ到達したと見なしてもよい。このように、目標値そのものに代えて目標値のある割合への到達を区間の終了条件とすることで、目標値に対する残留偏差が完全にはゼロとならない状況でも温度制御を適切に次の区間へ進行させることができる。また、制御部120は、温度指標が目標値RTGT又は制御閾値RTGT´を上回った測定期間20の数(NCOUNT)を計数し、カウンタNCOUNTが判定閾値M(Mは1より大きい整数。例えば、M=3)に等しくなった場合に、温度指標が目標値へ到達したと見なしてもよい。このように、温度指標が閾値へ複数回到達したことを区間の終了条件とすることで、抵抗値測定の誤差に起因する誤判定の結果として温度制御が早過ぎるタイミングで次の区間へ進行してしまう可能性を低減することができる。これは、測定回路150がノイズの影響(例えば、瞬間的な電流値の変動)を受ける虞のある状況においてロバストな条件判定を実現するために有益である。
【0057】
次節において、加熱プロファイル50のより具体的な構成の例を区間ごとに順に説明する。
【0058】
<<2.加熱プロファイルの構成例>>
<2-1.初期昇温(S0)>
区間S0は、加熱プロファイル50の冒頭の区間である。区間S0の「区間タイプ」は"PID制御区間"であり、「目標温度」は第1温度H1である。「目標温度抵抗値」は第1温度H1に対応する抵抗値(以下、R1とする)である。区間S0の「PID制御タイプ」は"一定"であってよく、「ゲイン」において比例ゲインKpを他の区間と比較してより高い値に設定することで昇温に要する時間が可能な限り短縮される。区間S0の「終了条件」は、条件C2であり、具体的には第1温度指標の抵抗値R1への到達である。
【0059】
制御部120は、区間S0をさらに前半区間及び後半区間に再区分し、前半区間においては、ゲイン値及び温度指標値に関わらず、設定可能な最大のデューティ比でバッテリ140から加熱部130へ電力を供給させてもよい。それにより、予熱期間を効率的に短縮して、ユーザへのエアロゾルの送達を迅速に開始することができる。
【0060】
<2-2.予熱中の温度維持(S1)>
区間S1の「区間タイプ」は"PID制御区間"であり、「目標温度」は第1温度H1である。「目標温度抵抗値」は第1温度H1に対応する抵抗値R1である。区間S1の「PID制御タイプ」は"一定"であってよい。区間S1の「ゲイン」は、区間S0における急速な昇温の場合とは異なり、加熱部130の温度を第1温度H1の近傍で安定化させるような値へ設定され得る(例えば、区間S0について指定される比例ゲインよりも値の小さい比例ゲインが区間S1について指定され得る)。区間S1の「時間長」は、例えば数秒の範囲内の値に設定され得る。区間S1の「終了条件」は、条件C1であり、具体的には「時間長」により示される時間の経過である。制御部120は、区間S1の開始時にタイマを起動し、「時間長」により示される時間が経過したと判定すると、ユーザに予熱期間の終了を報知する。ここでの報知は、所定の発光パターンでの発光部125の発光及び所定の振動パターンでの振動部126の振動の一方又は双方により行われてよい。ユーザは、この報知を感知することで、吸引の準備が整い吸引を開始できることを認識する。
【0061】
<2-3.セッション開始(S2)>
区間S2の「区間タイプ」は"PID制御区間"であり、「目標温度」は第1温度H1である。「目標温度抵抗値」は第1温度H1に対応する抵抗値R1である。区間S2の「PID制御タイプ」は"一定"であってよい。区間S2の「ゲイン」は、区間S1と同一であってよい。区間S2の「時間長」は、例えば数秒~十数秒の範囲内の値に設定され得る。区間S2の「終了条件」は、条件C1であり、具体的には「時間長」により示される時間の経過である。制御部120は、「時間長」により示される時間が経過したと判定すると、区間S2を終了させ、温度制御を区間S3へ遷移させる。
【0062】
ユーザは、通常、区間S2から、エアロゾル生成装置10により生成されるエアロゾルの吸引を開始する。制御部120は、吸引検知部124から入力される吸引検知信号に基づいて、吸引の回数、吸引の頻度、吸引ごとの吸引時間、及び累積吸引時間のうちの1つ以上を計測し、計測結果を記憶部121に記憶させてもよい。この計測は、区間S3以降も継続して行われ得る。
【0063】
<2-4.降温(S3)>
区間S3の「区間タイプ」は"オフ区間"であり、「目標温度」は第2温度H2である。「目標温度抵抗値」は第2温度H2に対応する抵抗値(以下、R2とする)である。即ち、制御部120は、区間S3において、加熱部130の温度が第1温度H1よりも低い第2温度H2へ向けて下降するように、バッテリ140から加熱部130への電力の供給を停止させる。区間S3はオフ区間であるため、「PID制御タイプ」及び「ゲイン」は設定されない。区間S3の「時間長」は、例えば数十秒の範囲内の値に設定され得る。区間S3の「終了条件」は、条件C3である。具体的には、制御部120は、加熱部130の温度が第2温度H2に到達したとサーミスタ155からの出力値に基づく第2温度指標から判定される場合に、区間S3を終了させる。但し、制御部120は、加熱部130の温度が第2温度H2に到達する前であっても、区間S3の開始から「時間長」により示される時間が経過した場合に、区間S3を終了させる。換言すると、制御部120は、第2温度指標の目標値への到達及び区間の開始からの所定の時間の経過のうちの早い方で、区間S3を終了させ、温度制御を区間S4へ遷移させる。
【0064】
なお、区間S3の開始から「時間長」により示される時間が経過する時刻(例えば、
図7のT
4)よりも早く、第2温度指標の目標値への到達によって区間S3が終了する場合、後続の区間の時間長が変わらなければセッションの合計時間が短くなってしまう。セッションの早期終了は、それ自体がユーザに不満を感じさせ、あるいはエアロゾル生成基体に含まれるエアロゾル源が十分に使い尽くされないという不都合をもたらしかねない。そこで、制御部120は、区間S3の「時間長」により示される時間が経過する時刻よりも早く区間S3を終了させる場合に、当該時刻までの残余時間を、後続の区間(例えば、区間S4)について指定される「時間長」に追加する。
図8は、区間S3の終了が所定時刻よりも早いために後続する区間S4の時間長に残余時間が追加される場合の温度プロファイル40aを、
図7の温度プロファイル40と対比する形で示している。温度プロファイル40aでは、T4に先立つT3aにおいて加熱部130の温度が第2温度H2へ到達する。その結果、区間S4の時間長は残余時間(T4-T3a)の分だけ追加されている。とりわけ、区間S3のようなオフ区間においては、環境条件に依存して加熱部130の温度の下降の速さが相違することから、セッションの時間長を補償するこうした手法を採用することが、エアロゾル源の効果的な消費及びユーザの満足度の向上のために有益である。
【0065】
<2-5.第2温度指標の補正>
上述したように、サーミスタ155からの出力値に基づく第2温度指標は、いくらかの遅延をもって加熱部130の温度の変化に追従する。そのため、制御部120が第2温度指標をそのまま区間S3の終了判定のために目標値と比較するとすれば、区間S3の終了時には加熱部130の温度は目標温度からさらに下降してしまっている虞がある。加熱部130の温度が低過ぎると、エアロゾル生成基体から生成されるエアロゾルの量が少なくなり、喫味が低下する。そこで、本実施形態において、制御部120は、区間S3において、第2温度指標の変化の遅延を補償するように第2温度指標を補正して、補正後の指標値を目標値と比較することにより、加熱部130の温度が第2温度H2に到達したか否かを判定する。第2温度指標の補正のために、制御部120は、第1温度指標と第2温度指標との間の事前に判定される関係性を用いる。例えば、制御部120は、区間S3に先行する区間(例えば、区間S0)において、加熱部130の電気抵抗値に基づく第1温度指標に加えて、サーミスタ155からの出力値に基づく第2温度指標をも取得する。そして、制御部120は、区間S3の開始に先立って、取得した第1温度指標と取得した第2温度指標との間の関係性を判定する。
【0066】
図9は、第1温度指標と第2温度指標との間の関係性について説明するための説明図である。実線のグラフ61は、
図7を用いて説明した加熱プロファイル50に従ってT4まで温度制御を行った場合の、第1温度指標の値の時間的な変化の一例を表す。一点鎖線のグラフ62は、同じ加熱プロファイル50に従ってT4まで温度制御を行った場合の、第2温度指標の値の時間的な変化の一例を表す。2つのグラフ61、62の比較から理解されるように、特に予熱期間の当初(例えば、区間S0)において、第1温度指標及び第2温度指標は略線形の軌跡を描くが、第1温度指標が示す温度変化率(図中の傾きg
1)に対して、第2温度指標が示す温度変化率(図中の傾きg
2)は相対的に小さく、T1において第1温度指標が目標値に到達しても第2温度指標は目標値に到達しない。第2温度指標の目標値との差は区間S1から区間S2にかけて(加熱部130の熱が断熱部材108を介してサーミスタ155へ伝わることで)徐々に小さくなるが、T3においても目標値との差d
1が残されたままである。T3において区間S3、即ちオフ区間が始まると、第1温度指標及び第2温度指標は下降しながら再び略線形のグラフを描く。
【0067】
ここで、単純なモデルとして、加熱部130の降温時の2つの温度指標の間の傾きの差は、昇温時の2つの温度指標の間の傾きの差(g
1-g
2)に等しいものとする(但し、符号は反転する)。すると、制御部120は、区間S3の開始時点の2つの指標が示す温度差d
1と、区間S0で取得した温度変化率の差(g
1-g
2)に基づいて、区間S3において第2温度指標に適用すべき補正値を算出することができる。説明の簡明さのために、抵抗値の代わりに温度の値が区間S3の終了条件の判定のために用いられるものとすると、区間S3の開始から時間tが経過した時点で第2温度指標の値に加算すべき補正値Δh(t)は、次式のように算出され得る:
【数3】
【0068】
なお、制御部120は、第1温度指標の傾きg
1及び第2温度指標の傾きg
2を個別に取得する代わりに、例えば第2温度指標の値が第2温度H2に対応する値に到達した時点の指標値の差(
図9におけるd
2)を当該時点までの経過時間で除算することにより、2つの傾きの差(g
1-g
2)を取得してもよい。
【0069】
第1温度指標と第2温度指標との間の上述した関係性は、区間S3の直前の区間S0~区間S2ではなく、加熱が開始される以前に取得され、記憶部121に記憶されていてもよい。第1の例として、第1温度指標と第2温度指標との間の関係性は、エアロゾル生成装置10の出荷前の評価試験において取得されてもよい。第2の例として、制御部120は、各セッションにおいて、区間S3の開始時及び終了時に、第1温度指標の値及び第2温度指標の値を取得して記録してもよい。この場合、制御部120は、新たなセッションの区間S3の終了条件の判定のために、過去に記録済みの2つの温度指標の値の変化率の差に基づいて上述した第2温度指標の補正値Δh(t)を算出して、その算出結果を利用することができる。第2の例の派生として、2つの温度指標の値は、温度センサにより測定される環境温度に関連付けて記録されてもよく、制御部120は、新たなセッションの時点の環境温度に対応する記録に基づいて第2温度指標の補正値を算出してもよい。エアロゾル生成装置10は、環境温度を測定するための温度センサを有していてもよく、又は、他の装置から無線I/F127若しくは接続I/F128を介して環境温度データを受信してもよい。
【0070】
上述したように、制御部120が終了条件の判定のために第2温度指標の変化の遅延を補償するように補正された指標値を使用することで、区間S3において加熱部130の温度が第2温度H2を超えて過度に低下することを回避して、喫味の低下を防ぐことができる。
【0071】
<2-6.降温後の温度維持(S4)>
区間S4の「区間タイプ」は"PID制御区間"である。即ち、制御部120は、温度制御が区間S3から区間S4へ遷移したことに応じて、バッテリ140から加熱部130への電力の供給を再開させる。区間S4の「目標温度」は第2温度H2である。「目標温度抵抗値」は第2温度H2に対応する抵抗値R2である。区間S4の「PID制御タイプ」は"一定"であってよい。区間S4の「ゲイン」は、区間S1及び区間S2で設定されるものと同一であってよい。区間S4の「時間長」は、例えば数十秒~数分に設定され得る。区間S4の「終了条件」は、条件C1であり、具体的には「時間長」により示される時間の経過である。制御部120は、「時間長」により示される時間が経過したと判定すると、区間S4を終了させ、温度制御を区間S5へ遷移させる。
【0072】
ここで、区間S3が区間S3の「時間長」により示される時間が経過したことにより終了する場合、その終了時点の加熱部130の温度が第2温度H2よりも有意に高い可能性がある。一方で、区間S4の「ゲイン」は温度を一定に維持する目的でチューニングされた値を有する。そのため、区間S4において目標温度を第2温度H2に設定してPID制御を再開すると、区間S4の開始時の温度の第2温度H2からの乖離に起因して、加熱部130の温度が不安定な挙動を示すことがあり得る。そこで、制御部120は、区間S3の終了時点の加熱部130の温度が第2温度H2よりも高い場合に、その時点の温度を区間S4の目標温度として扱ってもよい。即ち、制御部120は、区間S3の終了時点の温度に対応する目標温度抵抗値を区間S4におけるPID制御の目標値として再設定してもよい。それにより、区間S4における加熱部130の温度を安定化することができる。
図10は、区間S3の終了時点の温度に対応する目標温度抵抗値が区間S4におけるPID制御の目標値として再設定される場合の温度プロファイルの2つの例(温度プロファイル41a、41b)を、
図7の温度プロファイル40と対比する形で示している。温度プロファイル41aは、区間S3の終了時点の温度H2aが第3温度H3よりも低い場合の例である。温度プロファイル41bは、区間S3の終了時点の温度H2bが第3温度H3よりも高い場合の例である。
【0073】
上では区間S3の「終了条件」が条件C3である例を説明したが、第1の変形例として、区間S3の「終了条件」は条件C2であってもよい。この場合、制御部120は、区間S3の開始からの経過時間に関わらず、第2温度指標により示される温度が第2温度H2に到達するまで、区間S3の温度制御を維持する。それにより、区間S4の開始時に加熱部130の温度が第2温度H2から乖離している事態を回避することができる。この変形例において、制御部120は、区間S3の開始から区間S3の「時間長」が経過する時刻(例えば、
図7のT4)よりも遅く加熱部130の温度が目標温度H2に到達した場合に、当該時刻からの超過時間を区間S4の「時間長」から控除(即ち、区間S4を短縮)してもよい。それにより、加熱期間全体の時間長が過度に長くなることを回避して、エアロゾル源の枯渇に起因する喫味の低下を防止することができる。
図11は、第1の変形例において区間S4が区間S3の長期化の結果として短縮される場合の温度プロファイル42を、
図7の温度プロファイル40と対比する形で示している。温度プロファイル42では、T4を過ぎてT4aにおいて加熱部130の温度が第2温度H2へ到達する。その結果、区間S4の時間長は超過時間(T4a-T4)の分だけ控除されている。
【0074】
第2の変形例として、区間S3の「終了条件」は条件C2であって、但し、制御部120は、区間S3の「時間長」により示される時間が経過した時点で区間S3の目標温度を第2温度H2から第3温度H3へ再設定してもよい。この変形例においても、制御部120は、区間S3の「時間長」が経過する時刻(例えば、
図7のT4)よりも遅く加熱部130の温度が目標温度H3に到達した場合に、当該時刻からの超過時間を区間S4の「時間長」から控除(即ち、区間S4を短縮)してもよい。それにより、加熱期間全体の時間長が過度に長くなることを回避することができる。
図12は、第2の変形例において区間S4が区間S3の長期化の結果として短縮される場合の温度プロファイル43を、
図7の温度プロファイル40と対比する形で示している。温度プロファイル43では、T4において目標温度が第3温度H3へ再設定され、T4bにおいて加熱部130の温度が第3温度H3へ到達する。その結果、区間S4の時間長は超過時間(T4b-T4)の分だけ控除されている。
【0075】
<2-7.再昇温(S5)>
区間S5の「区間タイプ」は"PID制御区間"である。区間S5の「目標温度」は第3温度H3である。「目標温度抵抗値」は第3温度H3に対応する抵抗値(以下、R3とする)である。区間S5の「PID制御タイプ」は"線形補間"である。即ち、制御部120は、PID制御の目標値を、当該区間の開始から終了まで、区間S4の目標値(例えば、抵抗値R2)から抵抗値R3まで段階的に引き上げる。区間S5の「ゲイン」は、区間S4で設定されるものとは同一であってよく又は異なってもよい。区間S5の「時間長」は、例えば数十秒~数分に設定され得る。区間S5の「終了条件」は、条件C1である。具体的には、制御部120は、区間S5の開始から「時間長」により示される時間が経過した場合に、区間S5を終了させ、温度制御を区間S6へ遷移させる。
【0076】
なお、区間S4に関連して説明した第1の変形例のように、区間S3の「終了条件」が条件C2である場合、区間S3の終了が大きく遅れる結果として、区間S4について予め定義される「時間長」よりも控除されるべき超過時間が大きくなる可能性がある。そこで、当該変形例において、制御部120は、区間S3の開始から区間S3の「時間長」と区間S4の「時間長」との合計時間が経過する時刻(例えば、
図7のT5)よりも遅く加熱部130の温度が目標温度H2に到達した場合に、当該時刻からの超過時間を区間S5の「時間長」から控除(即ち、区間S5を短縮)してもよい。このとき、区間S4はスキップされる。
図13は、第1の変形例において、区間S3の長期化の結果として区間S4がスキップされ区間S5が短縮される場合の温度プロファイル44を、
図7の温度プロファイル40と対比する形で示している。温度プロファイル44では、T5を過ぎてT5aにおいて加熱部130の温度が第2温度H2へ到達する。その結果、区間S5の時間長は超過時間(T5a-T5)の分だけ控除されている。
【0077】
図13に示した区間S5の短縮の手法は、区間S4に関連して説明した第2の変形例と組合せられてもよい。
図14は、第2の変形例において、区間S3の長期化の結果として区間S4がスキップされ区間S5が短縮される場合の温度プロファイル45を、
図7の温度プロファイル40と対比する形で示している。温度プロファイル45では、T5を過ぎてT5bにおいて加熱部130の温度が(再設定された目標温度である)第3温度H3へ到達する。その結果、区間S5の時間長は超過時間(T5b-T5)の分だけ控除されている。
【0078】
<2-8.再昇温後の温度維持(S6)>
区間S6の「区間タイプ」は"PID制御区間"である。区間S6の「目標温度」は第3温度H3である。「目標温度抵抗値」は第3温度H3に対応する抵抗値R3である。区間S6の「PID制御タイプ」は"一定"であってよい。区間S6の「ゲイン」は、区間S1、区間S2及び区間S4で設定されるものと同一であってよい。区間S6の「時間長」は、例えば数十秒の範囲内の値に設定され得る。区間S6の「終了条件」は、条件C1であり、具体的には「時間長」により示される時間の経過である。制御部120は、「時間長」により示される時間が経過したと判定すると、区間S6を終了させ、温度制御を区間S7へ遷移させる。
【0079】
区間S4と同様に、区間S6の「ゲイン」は温度を一定に維持する目的でチューニングされた値を有する。区間S6の目標温度は第3温度H3であるものの、区間S6の開始時の温度が第3温度H3から有意に乖離している場合には、区間S6の目標値を抵抗値R3に設定してPID制御を再開すると、加熱部130の温度が不安定な挙動を示すことがあり得る。そこで、制御部120は、ある基準時点(例えば、区間S6の開始時点)の加熱部130の温度が第3温度H3から有意に乖離している(例えば、第3温度H3よりも高い)場合に、その時点の温度を区間S6の目標温度として扱ってもよい。即ち、制御部120は、基準時点の現在温度に対応する目標温度抵抗値を区間S6におけるPID制御の目標値として再設定してもよい。それにより、区間S6における加熱部130の温度を安定化することができる。
図15は、区間S6の開始時点の現在温度に対応する目標温度抵抗値が区間S6におけるPID制御の目標値として再設定される場合の温度プロファイル46を、
図7の温度プロファイル40と対比する形で示している。温度プロファイル46では、T6において目標温度が第3温度よりも高い現在温度H3aに再設定され、区間S6を通じて加熱部130の温度が温度H3aに維持されている。
【0080】
<2-9.終了(S7)>
区間S7の「区間タイプ」は"オフ区間"である。区間S7では、加熱部130の温度は環境温度H0へ向けて下降する。区間S7の「目標温度」、「目標温度抵抗値」及び「ゲイン」は設定されなくてよい。区間S7の「時間長」は、例えば数秒~数十秒の範囲内の値に設定され得る。区間S7の「終了条件」は、条件C1であり、具体的には「時間長」により示される時間の経過である。制御部120は、「時間長」により示される時間が経過したと判定すると、加熱期間を終了する。制御部120は、区間S7の開始時にユーザに吸引可能期間の終了が近付いていることを発光部125の発光又は振動部126の振動で報知してもよい。また、制御部120は、区間S7の終了時にユーザに吸引可能期間が終了したことを発光部125の発光又は振動部126の振動で報知してもよい。
【0081】
<2-10.過剰降温後の回復(S4a)/維持(S4b)>
上で、第2温度指標が第2温度H2に対応する抵抗値R2へ到達した場合に区間S3を終了して温度制御を区間S4へ遷移させる例を説明した。この場合、第2温度指標の補正が高い精度で行われていれば、区間S4への遷移時の加熱部130の温度は第2温度H2に略等しいはずである。しかし、実際には補正後の第2温度指標もある程度の誤差を含んでおり、区間S4への遷移時に加熱部130の温度が第2温度H2から有意に乖離している(例えば、より低い温度まで下降している)可能性がある。そこで、第3の変形例として、制御部120は、区間S4を開始する際に第1温度指標を取得し、区間S4において、取得した第1温度指標が示す加熱部130の温度に依存して異なる制御パラメータ集合を用いて、バッテリ140から加熱部130への電力の供給を制御してもよい。
【0082】
ここで、区間S4を開始する際に第1温度指標が示す加熱部130の温度をH2Cとする。第3の変形例において、制御部120は、温度H2Cが第2温度H2よりも低い場合(H2C<H2)には、加熱部130の温度を第2温度H2に回復(上昇)させるための第1の制御パラメータ集合を使用する。一方、制御部120は、温度H2Cが第2温度H2以上である場合(H2C≧H2)には、加熱部130の温度を温度H2Cに維持するための第2の制御パラメータ集合を使用する。例えば、第1の制御パラメータ集合はフィードバック制御の比例ゲインの値Kp1を含み、第2の制御パラメータ集合はフィードバック制御の比例ゲインの値Kp2を含み、Kp1はKp2よりも大きい。これに加えて、第1の制御パラメータ集合と第2の制御パラメータ集合との間で積分ゲイン及び微分ゲインの一方又は双方の値が相違してもよい。このように、区間S4の開始時に加熱部130の温度に依存してフィードバック制御の制御パラメータ集合を切替えることで、セッションの中盤で加熱部130の温度が所望の温度(例えば、第2温度H2)から逸脱することを抑制して、喫味の低下を軽減することができる。
【0083】
制御部120は、第1の制御パラメータ集合を用いた温度制御によって加熱部130の温度が第2温度H2に回復したと判定される場合に、制御パラメータ集合を第1の制御パラメータ集合から第2の制御パラメータ集合へ切替えてもよい。典型的には、補正後の第2温度指標の誤差に起因する加熱部130の過剰な降温は、発生してもその程度は小さいと想定される。そのため、短時間で加熱部130の温度を回復させた後に制御パラメータ集合を第2の制御パラメータ集合に切替えることで、区間S4における加熱部130の温度の安定性を高めることができる。
【0084】
図16は、第3の変形例において区間S4が回復区間を含む場合の温度プロファイルの一例を示している。
図16の例では、区間S4の開始時の温度H2
cは、第2温度H2よりも低い。そのため、制御部120は、区間S4の冒頭に回復区間S4aを設定し、より大きい比例ゲインの値K
p1を含む第1の制御パラメータ集合を使用してPID制御を行う。PID制御の目標値は、第2温度H2に対応する抵抗値R2であってよい。このPID制御によって、加熱部130の温度は、T4cにおいて第2温度H2に回復する。すると、制御部120は、温度制御を回復区間S4aから維持区間S4bへ遷移させ、PID制御のための制御パラメータ集合を比例ゲインの値K
p2を含む第2の制御パラメータ集合へ切替える。それにより、加熱部130の温度は、T5に至るまで第2温度H2の近傍に維持される。
【0085】
なお、制御部120は、回復区間S4aにおいて第1温度指標の目標値R2への到達を判定する際にも、上述した許容偏差を表す係数βを考慮した閾値判定を行ってもよい。また、第1温度指標が閾値へM回到達したことを、回復区間S4aの終了(維持区間S4bへの遷移)の条件としてもよい。
【0086】
回復区間S4aにおいて使用される第1の制御パラメータ集合は、区間S0における加熱部130の初期昇温の際に使用される制御パラメータ集合と同一であってもよい。例えば、第1の制御パラメータ集合の比例ゲインの値Kp1が初期昇温の際に使用される比例ゲインの値に等しくてもよい。このように、制御目的(例えば、急速な昇温、緩慢な昇温、又は温度維持など)の類似する区間の間で制御パラメータ集合を再利用することで、加熱プロファイルを記述するプロファイルデータの大規模化を回避し、データを記憶するためのメモリリソース(及び、データを通信する場合の通信リソース)を節約することができる。
【0087】
<2-11.プロファイルデータの構成例>
ここまでに説明した加熱プロファイル50の各区間の動作仕様を記述できる構造化された定型的なデータフォーマットを定義しておくことが有益である。定型的なデータフォーマットは、動作仕様のバージョンアップ、たばこ物品の種別の変更、及びユーザの嗜好に合わせた温度プロファイルの選択といった様々な場面で、加熱プロファイル50を切替えて温度制御の内容を変更することを容易にする。ここでは、そうした加熱プロファイル50を記述するプロファイルデータ51の構成のいくつかの例を説明する。
【0088】
図17Aは、プロファイルデータ51の構成の第1の例を示す説明図である。
図17Aを参照すると、プロファイルデータ51は、区間番号52、制御方式53、目標温度54、目標温度抵抗値55、ゲイン56、時間長57及び終了条件58という、7個の情報要素を含む。
【0089】
区間番号52は、各区間を識別するための番号(識別子)である。制御方式53は、複数の制御方式のうち各区間の温度制御に適用すべき制御方式を指定する情報要素である。ここでは、制御方式53は、上述した制御パラメータ「区間タイプ」及び「PID制御タイプ」の組合せに相当し、「0」、「1」及び「2」のうちのいずれかの値をとることができる。
図17Aの例では、区間S
nの制御方式53は値「1」を示し、これは、当該区間に適用すべき制御方式がPID制御であって、当該区間において制御目標値を一定に維持すべきことを表す。区間S
n+1の制御方式53は値「0」を示し、これは、当該区間に適用すべき制御方式が加熱部130への給電の停止であることを表す。即ち、この例における区間S
n+1はオフ区間となる。区間S
n+2の制御方式53は値「2」を示し、これは、当該区間に適用すべき制御方式がPID制御であって、当該区間において制御目標値を線形的に変化させるべきことを表す。
【0090】
目標温度54及び目標温度抵抗値55は、それぞれ上述した制御パラメータ「目標温度」及び「目標温度抵抗値」を指定する情報要素である。なお、温度制御が温度そのものを制御量として行われる場合には、プロファイルデータ51において目標温度抵抗値55は省略されてもよい。ゲイン56は、上述した制御パラメータ集合「ゲイン」を指定する情報要素である。オフ区間については、ゲイン56は空欄であってよい。時間長57及び終了条件58は、それぞれ上述した制御パラメータ「時間長」及び「終了条件」を指定する情報要素である。
【0091】
図17Bは、プロファイルデータ51の構成の第2の例を示す説明図である。
図17Bを参照すると、プロファイルデータ51は、共通領域51a及び区間別領域51bを含む。
【0092】
共通領域51aは、複数の区間にわたって共通的な情報が記述されるデータ領域である。
図17Bの例では、共通領域51aは、3つの情報要素59a、59b及び59cを含む。情報要素59aは、当該プロファイルデータにより記述される制御プロファイルを一意に識別するための番号(識別子)を指定する。情報要素59bは第1のゲイン集合K
1を指定し、情報要素59cは第2のゲイン集合K
2を指定する。ゲイン集合K
1は、比例ゲイン値K
p1、積分ゲイン値K
i1及び微分ゲイン値K
d1を含み、ゲイン集合K
2は、比例ゲイン値K
p2、積分ゲイン値K
i2及び微分ゲイン値K
d2を含む。
【0093】
区間別領域51bは、個々の区間に固有の情報が記述されるデータ領域である。
図17Bの例では、区間別領域51bは、区間番号52、目標温度54、目標温度抵抗値55、ゲイン56、時間長57及び終了条件58という、6個の情報要素を含む。ここでは、
図17Aに示した制御方式53は省略されている。その代わりに、目標温度54の値がゼロより大きい値を示すことがその区間にPID制御方式が適用されるべきことを表す。また、目標温度54の値がゼロを示すことがその区間がオフ区間であることを表す。
図17Bの例では、区間S
n+1について目標温度54はゼロを示しているため、区間S
n+1はオフ区間である。このように、プロファイルデータ51において1つの情報要素に2つ以上の制御パラメータの意味を持たせることにより、プロファイルデータ51の情報要素の数を削減することができる。さらに、ゲイン56は、
図17Aの例のように3種類のゲインの具体値ではなく、ゲイン集合K
1及びゲイン集合K
2のいずれかを指定する。例えば、区間S
nについてはゲイン集合K
1が指定されており、区間S
n+2及び区間S
n+3についてはゲイン集合K
2が指定されている。このように、共通領域51aにおいて定義される限られた数の選択肢のうちの1つを区間別領域51bにおいて指定可能とすることで、冗長な値の定義の反復を回避してプロファイルデータ51のデータサイズを削減することができる。ゲインだけでなく、温度又は抵抗値といった他の制御パラメータも、共通領域51aを利用するこの手法で指定されてよい。
【0094】
上述したプロファイルデータ51のように構造化された定型的なデータフォーマットを記憶部121の所定のデータ領域に割当て、当該データ領域内のデータが書換え可能とされてもよい。それにより、制御プログラムの変更を要することなく、プロファイルデータ51を書換えるだけで、制御部120により実行される温度制御の内容を変更することが可能となる。このとき、制御部120は、記憶部121の同じデータ領域から最新の内容を読出して使用するだけよい。
【0095】
プロファイルデータ51の構成は、
図17A及び
図17Bに示した例に限定されない。プロファイルデータ51は、追加的な情報要素を含んでもよく、又は図示した情報要素のうちの一部が省略されてもよい。例えば、プロファイルデータ51は、複数の区間にわたって共通的な情報として、次のうちの1つ以上を含んでもよい:
・加熱プロファイルの名称
・加熱プロファイルのバージョン番号
・加熱プロファイルを構成する区間の数
・製品ごとの加熱部の抵抗温度特性の製造公差を吸収するために、温度又は抵抗値に加算されるべき校正値(製品出荷前に試験の結果に基づき書き込まれ得る)
【0096】
また、プロファイルデータ51は、区間別に指定され得る情報として、次のうちの1つ以上を追加的に含んでもよい:
・加熱部への給電のデューティ比をPID制御で決定するか、又は最大のデューティ比を使用するか
・区間開始時にPID制御の積分項の累積偏差をリセットするか否か
・検知すべき異常の種別
【0097】
本明細書では、オフ区間において、加熱部130への給電が停止され、温度又は抵抗値を測定するためのパルスも加熱部130へ印加されない例を主に説明している。しかしながら、プロファイルデータ51により指定可能な制御方式は、加熱部130への(加熱のための)給電は停止されものの温度又は抵抗値を測定するためのパルスは加熱部130へ印加され得る方式を含んでもよい。このような制御方式が指定される区間が「オフ区間」と称されてもよい。また、プロファイルデータ51は、各区間について上述した条件C1~C3以外の終了条件を指定可能であってもよい。例えば、指定可能な終了条件は、検知された吸引の回数又は吸引の合計時間に基づく条件を含んでもよい。
【0098】
本節で説明した加熱プロファイル50の制御パラメータの一部は、プロファイルデータ51に記述される代わりに、別個の記憶領域に記述されてもよく、又は制御プログラムのプログラムコードで記述されてもよい。
【0099】
<<3.異常検知>>
制御部120は、プロファイルデータ51に記述された加熱プロファイル50に従って温度制御を行っている間、エアロゾル生成装置10の動作に異常がないかを監視する。制御部120は、異常を検知すると、バッテリ140から加熱部130への電力の供給を停止し、検知した異常の種類を示すエラーコードを記憶部121に記憶させ、異常の発生をユーザに報知する。ここでは、加熱部130の温度制御に関連して制御部120により検知され得るいくつかの種類の異常について説明する。
【0100】
<3-1.測定回路の不具合>
測定回路150に不具合が発生して正確な温度指標を取得できない場合、加熱部130が過剰に高温になったとしても制御部120がその状態を認識しないことになる。こうした事態を防止するために、制御部120は、区間S0において、加熱部130に電力を供給している間、所定の時間間隔当たりの第1温度指標の変化量を監視する。そして、制御部120は、第1温度指標の変化量が閾値を下回る場合に、測定回路150に不具合が発生した可能性があると判定して、バッテリ140から加熱部130への給電を停止する。ここでの閾値は、例えば、3秒の時間間隔の間に10℃の温度変化(10℃に相当する抵抗値の変化)であってよい。
【0101】
<3-2.予熱失敗>
予熱期間において加熱部130に十分な時間にわたり電力を供給しても加熱部130の温度が目標値(例えば、第1温度H1)に到達しない場合、バッテリ140から加熱部130への給電の経路に不具合があるか、環境温度が異常に低いなど環境に異常がある可能性がある。こうした事態を検知して電力の浪費を防ぐために、制御部120は、区間S0において、加熱開始からの所定の時間が経過した時点で加熱部130の温度が目標温度に到達していないと第1温度指標から判定される場合に、バッテリ140から加熱部130への給電を停止する。ここでの所定の時間は、区間S0について加熱プロファイル50により指定される時間長と等しくてよく(又は加熱プロファイル50とは別個に定義されてもよく)、例えば60秒であってよい。
【0102】
<3-3.過熱(加熱再開時)>
上述したように、サーミスタ155からの出力値に基づく第2温度指標は、遅延又はある程度の誤差を有する。そのため、オフ区間である区間S3が終了した時点で加熱部130が過剰に高温になっていないかを第1温度指標から判定することで、装置の安全性を一層向上させることができる。具体的には、制御部120は、区間S3の開始から加熱プロファイル50により指定される時間長が経過した場合(区間S4へ遷移する際)に、第1温度指標により示される加熱部130の温度を第1温度H1と比較する。そして、制御部120は、加熱部130の温度が第1温度H1よりも高いと判定されるときに、加熱部130が過熱状態に陥っていると判定して、加熱プロファイル50に従った温度制御を終了する。なお、第1温度指標に基づく過熱の検知は、加熱再開時だけでなく、オフ区間以外の区間において周期的に行われてもよい。
【0103】
<3-4.過熱(オフ区間)>
制御部120は、オフ区間においても加熱部130の過熱状態を検知できるように、区間S3において、第2温度指標により示される加熱部130の温度を第1温度H1と比較してもよい。この場合にも、制御部120は、加熱部130の温度が第1温度H1よりも高いと判定されるときに、加熱部130が過熱状態に陥っていると判定して、加熱プロファイル50に従った温度制御を終了する。それにより、オフ区間中の何らかの不具合に起因する過熱状態を早期に検知できる可能性を高めることができる。
【0104】
<<4.処理の流れ>>
本節では、上述したエアロゾル生成装置10の制御部120により実行される制御処理の主要な部分の流れを、いくつかのフローチャートを用いて説明する。以下の説明では、処理ステップをS(ステップ)と略記する。
【0105】
なお、説明の簡明さのために、各フローチャートにおいて、前節で説明した異常検知のための処理ステップは図示しない。異常検知は、制御部120の通常の制御ルーチンの一部で周期的に行われてもよく、又は加熱開始若しくは区間の遷移といった特定のタイミングで行われてもよい。制御部120とは別個の検知回路が、異常を検知して、検知した異常を(例えば、割込み信号によって)制御部120へ通知してもよい。
【0106】
<4-1.エアロゾル生成処理>
図18は、一実施形態に係るエアロゾル生成処理の全体的な流れの一例を示すフローチャートである。
【0107】
まず、S101で、制御部120は、入力検知部122からの入力信号を監視し、加熱の開始を求めるユーザ入力(例えば、ボタンの長押し)を待ち受ける。加熱の開始を求めるユーザ入力が検知されると、処理はS103へ進む。
【0108】
S103で、制御部120は、加熱を開始するためのエアロゾル生成装置10の状態のチェックを行う。ここでの状態のチェックは、例えばバッテリ140の電力の残量が十分であるか、及び前面パネル102が脱落していないかなど、任意のチェック条件を含んでよい。1つ以上のチェック条件が満たされない場合、加熱は開始されず、処理はS101へ戻る。全てのチェック条件が満たされる場合、処理はS105へ進む。
【0109】
S105で、制御部120は、記憶部121の所定の記憶領域からプロファイルデータ51を読出す。その後のS107~S133は、プロファイルデータ51に記述された加熱プロファイル50に含まれる複数の区間の各々について繰り返される。
【0110】
S107で、制御部120は、現在区間に適用すべき制御方式を指定する「区間タイプ」に基づいて、現在区間がPID制御区間であるか又はオフ区間であるかを判定する。現在区間がPID制御区間である場合には、処理はS110へ進む。一方、現在区間がオフ区間である場合には、処理はS120へ進む。
【0111】
S110で、制御部120は、加熱部130の温度が現在区間について指定された温度となるように、PID制御区間のための温度制御処理を実行する。ここで実行される温度制御処理のより具体的な流れについて、後にさらに説明する。
【0112】
S120で、制御部120は、加熱部130の温度が現在区間について指定された温度へ向けて下降するように、オフ区間のための温度制御処理を実行する。ここで実行される温度制御処理のより具体的な流れについて、後にさらに説明する。
【0113】
終了条件の充足によってS110又はS120の温度制御処理が終了すると、S131で、制御部120は、加熱プロファイル50に次の区間があるかを判定する。加熱プロファイル50に次の区間がある場合、S131で、温度制御は次の区間へ遷移し、次の区間を現在区間として上述したS107~S133が繰り返される。次の区間が無い場合、
図18のエアロゾル生成処理は終了する。
【0114】
<4-2.PID制御区間の温度制御処理>
図19は、
図18のS110で実行されるPID制御区間のための温度制御処理の流れの一例を示すフローチャートである。
【0115】
まず、S111で、制御部120は、現在区間について加熱プロファイル50で指定されている目標温度及び時間長を取得して、現在区間の終了条件を設定する。例えば、制御部120は、終了条件が条件C1又はC3である場合には、指定された時間長をタイマに設定してタイマを起動する。終了条件が条件C2又はC3である場合には、制御部120は、指定された目標温度に基づいて、第1温度指標と比較すべき制御閾値(例えば、許容偏差を考慮した閾値)を設定する。
【0116】
次いで、S112で、制御部120は、現在区間のPID制御パラメータを設定する。例えば、制御部120は、PID制御の目標値としての目標温度抵抗値、比例ゲイン、積分ゲイン及び微分ゲインの値を、現在区間について加熱プロファイル50で指定されている値に設定する。
【0117】
その後のS113~S118は、制御サイクルごとに繰り返される。まず、S113で、制御部120は、PID制御の目標値を線形補間するか否かを判定する。現在区間について加熱プロファイル50の「PID制御タイプ」として「線形補間」が指定されている場合、制御部120は、S114で、PID制御の目標値を、制御サイクルごとに段階的に変化するように線形補間によって再設定する。現在区間について「PID制御タイプ」として「一定」が指定されている場合、S114はスキップされる。
【0118】
次いで、S115で、制御部120は、測定回路150を用いて、加熱部130の電気抵抗値に基づく第1温度指標を取得する。ここで取得される指標値は、例えば、
図5を用いて説明したように、複数回の抵抗値測定の結果の平均値であってよい。
【0119】
次いで、S116で、制御部120は、S111で設定した現在区間の終了条件が満たされたか否かを判定する。現在区間の終了条件が満たされていないと判定される場合、処理はS117へ進む。
【0120】
S117で、制御部120は、式(1)を用いて説明したPID制御式に従って、最新の制御サイクルのためのPWMのデューティ比を算出する。次いで、S118で、制御部120は、算出したデューティ比に基づくパルス幅を有する制御パルスを第1スイッチ131及び第2スイッチ132へ出力することにより、バッテリ140から加熱部130へ電力を供給させる。
【0121】
このようにして1つの制御サイクルが終了すると、処理は次の制御サイクルへ進行し、上述したS113~S118が繰り返される。S116で、現在区間の終了条件が満たされたと判定される場合、
図19の温度制御処理は終了する。
【0122】
<4-3.オフ区間の温度制御処理>
(1)第1の例
図20Aは、
図18のS120で実行されるオフ区間のための温度制御処理の流れの第1の例を示すフローチャートである。
【0123】
まず、S121で、制御部120は、現在区間について加熱プロファイル50で指定されている目標温度及び時間長を取得して、現在区間の終了条件を設定する。ここでの終了条件ごとの設定の例は、
図19のS111に関連して説明したものと同様であってよい。
【0124】
次いで、S122で、制御部120は、サーミスタ155からの出力値に基づく第2温度指標を取得する。次いで、S123で、制御部120は、S122で取得した第2温度指標の値を、値の変化の遅延を補償するように、第1温度指標と第2温度指標との間の事前に判定された関係性を用いて補正する。
【0125】
次いで、S124で、制御部120は、S123で補正した第2温度指標の値に基づき、S121で設定した現在区間の終了条件が満たされたか否かを判定する。現在区間の終了条件が満たされていないと判定される場合、処理はS122へ戻り、上述したS122~S124が繰り返される。現在区間の終了条件が満たされたと判定される場合、
図20Aの温度制御処理は終了する。
【0126】
(2)第2の例
図20Bは、
図18のS120で実行されるオフ区間のための温度制御処理の流れの第2の例を示すフローチャートである。
【0127】
図20BのS121~S124は
図20AのS121~S124と同じ処理ステップであってよいため、ここではそれらの説明を省略する。
【0128】
S124で現在区間の終了条件が満たされたと判定される場合、制御部120は、S125で、現在区間が所定時刻よりも早く終了するか否かを判定する。ここでの所定時刻とは、現在区間の開始時刻からS121で取得された時間長が経過する時刻である。現在区間が上記所定時刻よりも早く終了する場合、制御部120は、S126で、上記所定時刻までの残余時間を、現在区間の後続区間について加熱プロファイル50により指定される時間長に追加する。
【0129】
S125で現在区間が所定時刻よりも早く終了しない(所定時刻に終了する)と判定される場合、後続区間の時間長は変更されず、
図20Bの温度制御処理は終了する。
【0130】
(3)第3の例
図20Cは、
図18のS120で実行されるオフ区間のための温度制御処理の流れの第3の例を示すフローチャートである。
【0131】
図20CのS121~S126は、S125で現在区間が所定時刻よりも早く終了しないと判定される場合に処理がS127へ進むことを除いて、
図20BのS121~S126と同じ処理ステップであってよいため、ここではそれらの説明を省略する。
【0132】
S127で、制御部120は、現在区間が所定時刻よりも遅く終了するか否かを判定する。現在区間が上記所定時刻よりも遅く終了する場合、制御部120は、S128で、上記所定時刻からの超過時間を、現在区間の後続区間について加熱プロファイル50により指定される時間長から控除する。
【0133】
S127で現在区間が所定時刻よりも遅く終了しない(所定時刻に終了する)と判定される場合、後続区間の時間長は変更されず、
図20Cの温度制御処理は終了する。
【0134】
なお、S128で、後続区間について加熱プロファイル50により指定される時間長が上記所定時刻からの超過時間よりも短い場合、制御部120は、当該後続区間の温度制御をスキップし、その次の区間について指定される時間長からの時間の控除を行ってよい。
【0135】
<4-4.終了判定処理(区間S0)>
図21は、区間S0に適用され得る、
図19のS116に対応する終了判定処理の流れの一例を示すフローチャートである。なお、上述した第3の変形例においては、
図21に示した終了判定処理は、回復区間S4aに適用されてもよい。
【0136】
まず、S141で、制御部120は、現在区間の温度制御の目標値と許容偏差を表す係数との積に等しい制御閾値を取得する。なお、この処理ステップは、各区間の冒頭で一度だけ行われればよい。
【0137】
次いで、S142で、制御部120は、第1温度指標の指標値がS141で取得した制御閾値を上回るか否かを判定する。ここで、第1温度指標の指標値が判定閾値を上回る場合には、処理はS143へ進む。一方、第1温度指標の指標値が判定閾値を上回らない場合には、処理はS145へ進む。
【0138】
S143で、制御部120は、閾値充足回数を計数するためのカウンタNCOUNTに1を加算(インクリメント)する。なお、カウンタNCOUNTは、各区間の冒頭でゼロへ初期化されるものとする。次いで、S144で、制御部120は、カウンタNCOUNTが判定閾値Mに到達したか否かを判定する。ここで、カウンタNCOUNTが判定閾値Mに到達した場合には、処理はS146へ進む。一方、カウンタNCOUNTが判定閾値Mに到達していない場合には、処理はS145へ進む。
【0139】
S145で、制御部120は、現在区間について終了条件は未だ満たされていないと判定する。一方、S146で、制御部120は、現在区間について終了条件は満たされたと判定する。そして、
図21の終了判定処理は終了する。
【0140】
<4-5.終了判定処理(区間S3)>
図22は、区間S3に適用され得る、
図20A又は
図20BのS124に対応する終了判定処理の流れの一例を示すフローチャートである。
【0141】
まず、S151で、制御部120は、現在区間の開始時に起動したタイマが現在示している値を取得する。次いで、S152で、制御部120は、取得したタイマの値に基づいて、現在区間の開始から所定時間が経過したか否かを判定する。ここでの所定時間の長さは、現在区間について加熱プロファイル50により指定された時間長であってよい。所定時間が経過したと判定される場合には、処理はS157へ進む。一方、所定時間が経過していないと判定される場合には、処理はS153へ進む。
【0142】
S153で、制御部120は、補正後の第2温度指標の指標値が目標値に到達したか否かを判定する。ここで、補正後の指標値が目標値に到達した場合には、処理はS154へ進む。一方、補正後の指標値が目標値に到達していない場合には、処理はS156へ進む。
【0143】
S154で、制御部120は、カウンタNCOUNTに1を加算(インクリメント)する。次いで、S155で、制御部120は、カウンタNCOUNTが判定閾値Mに到達したか否かを判定する。ここで、カウンタNCOUNTが判定閾値Mに到達した場合には、処理はS157へ進む。一方、カウンタNCOUNTが判定閾値Mに到達していない場合には、処理はS156へ進む。
【0144】
S156で、制御部120は、現在区間について終了条件は未だ満たされていないと判定する。一方、S157で、制御部120は、現在区間について終了条件は満たされたと判定する。そして、
図22の終了判定処理は終了する。
【0145】
<4-6.制御パラメータ選択処理(区間S4)>
図23は、上述した第3の変形例において区間S4の冒頭(例えば、
図19のS112)で実行され得る制御パラメータ選択処理の流れの一例を示すフローチャートである。
【0146】
まず、S161で、制御部120は、測定回路150を用いて、加熱部130の電気抵抗値に基づく第1温度指標を取得する。次いで、S162で、制御部120は、現在区間の温度制御の目標値と許容偏差を表す係数との積に等しい制御閾値を取得する。
【0147】
次いで、S163で、制御部120は、第1温度指標の指標値が制御閾値以上であるか否かを判定する。第1温度指標の指標値が制御閾値を下回る場合、S164で、制御部120は、現在区間のPID制御のための制御パラメータを、加熱部130の温度を回復するための第1の制御パラメータ集合に基づいて設定する。一方、第1温度指標の指標値が制御閾値以上である場合、S165で、制御部120は、現在区間のPID制御のための制御パラメータを、加熱部130の温度を維持するための第2の制御パラメータ集合に基づいて設定する。このとき、制御部120は、現在区間の温度制御の目標値を加熱部130の現在温度に再設定してもよい。
【0148】
<<5.まとめ>>
ここまで、
図1~
図23を用いて、本開示の様々な実施形態及び変形例について説明した。本開示の一実施形態に係るエアロゾル生成装置は、
・エアロゾル源を加熱してエアロゾルを発生させる加熱部と、
・前記加熱部へ電力を供給する電源と、
・前記加熱部の温度に依存する値を出力するサーミスタと、
・前記電源から前記加熱部への電力の供給を、
-前記加熱部の温度制御の目標値を第1温度に対応する値に設定して前記電源から前記加熱部へ電力を供給させる第1区間、
-前記第1区間に後続する、前記加熱部の温度が前記第1温度よりも低い第2温度へ向けて下降するように前記電源から前記加熱部への電力の供給を停止させる第2区間、及び、
-前記第2区間に後続する、前記電源から前記加熱部へ電力を供給させる第3区間、
を少なくとも含む制御シーケンスに従って制御する制御部と、
を備え、
・前記制御部は、
前記第1区間及び前記第3区間において、前記加熱部の電気抵抗値に基づく第1温度指標を用いて、前記電源からの電力の供給を制御し、
前記制御部は、前記第2区間を終了させるタイミングを前記サーミスタからの出力値に基づく第2温度指標を用いて判定する。
【0149】
かかる構成によれば、加熱部の温度を第2温度へ向けて下降させる第2区間において、温度の測定のために加熱部へパルスを印加することが不要となり、電源から加熱部への電力の供給を完全に停止して、効率的に加熱部の温度を第2温度へ到達させることができる。第2区間における目標温度への到達はサーミスタからの出力値に基づいて判定されるため、加熱部へパルスを印加せずとも第2区間から第3区間への遷移のタイミングを逸することはない。また、加熱を停止しない区間においては、加熱部の電気抵抗値に基づく温度指標を用いて電力の供給が制御されるため、温度制御のために、実温度に対する測定温度の追従性を良好に保つことができる。
【0150】
本開示の他の実施形態に係るエアロゾル生成装置は、
・エアロゾル源を加熱してエアロゾルを発生させる加熱部と、
・前記加熱部へ電力を供給する電源と、
・複数の区間からなる制御シーケンスに従って、前記加熱部の温度に関連する温度指標を用いて前記電源から前記加熱部への電力の供給を制御する制御部と、
を備え、
・前記制御シーケンスは、複数の制御方式のうち各区間の温度制御に適用すべき制御方式を指定する第1の情報要素を含む構造化されたデータにより記述され、
・前記複数の制御方式は、前記温度指標を用いたフィードバック制御を行う第1方式、及び、前記電源から前記加熱部への電力の供給を停止させる第2方式を含む。
【0151】
かかる構成によれば、温度制御の制御内容が一旦チューニングされた後でも、制御シーケンスの内容を書換えて、それぞれの制御方式をいつ温度制御に適用するかを柔軟に変更することが可能となる。それにより、制御シーケンスの設計時の試行錯誤に起因するコストの増大を抑制できると共に、環境の変化やたばこ物品の種別の変更といった場面で温度制御の内容を最適なものに切替えることも容易となる。
【0152】
本開示のまた別の実施形態に係るエアロゾル生成装置は、
・エアロゾル源を加熱してエアロゾルを発生させる加熱部と、
・前記加熱部へ電力を供給する電源と、
・前記電源から前記加熱部への電力の供給を、
-前記加熱部の温度を第1温度から第2温度へ向けて変化させるための第1区間、及び
-前記第1区間に後続する、前記加熱部の温度を維持するための第2区間、
を含む複数の区間からなる制御シーケンスに従って制御する制御部と、
を備え、
・前記制御シーケンスは、前記第1区間について第1時間長、前記第2区間について第2時間長を指定し、
・前記制御部は、前記加熱部の温度が前記第2温度に到達した場合に、前記第1区間を終了させ、
・前記制御部は、前記第1区間の開始から前記第1時間長が経過する第1時刻よりも早く前記第1区間を終了させる場合に、前記第1時刻までの残余時間と前記第2時間長との合計時間にわたって前記第2区間を継続させる。
【0153】
かかる構成によれば、第1区間において加熱部の温度を第2温度へ変化させるために第1時間長よりも短い時間しか要しなかったとしても、ユーザが吸引を楽しむことのできる時間が第1区間の残余時間の分だけ補償される。そのため、適正な温度制御を維持しつつ、セッションの早期終了に起因してユーザ体験が損なわれる事態を回避することができる。
【0154】
発明は上記の実施形態に制限されるものではなく、発明の要旨の範囲内で、種々の変形・変更が可能である。
【0155】
本願は、2021年4月28日提出の日本国特許出願特願2021-076017を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。