IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ニプロ株式会社の特許一覧

<>
  • 特許-圧力測定用チャンバ 図1
  • 特許-圧力測定用チャンバ 図2
  • 特許-圧力測定用チャンバ 図3
  • 特許-圧力測定用チャンバ 図4
  • 特許-圧力測定用チャンバ 図5
  • 特許-圧力測定用チャンバ 図6
  • 特許-圧力測定用チャンバ 図7
  • 特許-圧力測定用チャンバ 図8
  • 特許-圧力測定用チャンバ 図9
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-10-28
(45)【発行日】2024-11-06
(54)【発明の名称】圧力測定用チャンバ
(51)【国際特許分類】
   A61M 1/36 20060101AFI20241029BHJP
【FI】
A61M1/36 105
A61M1/36 111
【請求項の数】 3
(21)【出願番号】P 2022063161
(22)【出願日】2022-04-05
(62)【分割の表示】P 2017195093の分割
【原出願日】2017-10-05
(65)【公開番号】P2022082688
(43)【公開日】2022-06-02
【審査請求日】2022-04-22
【前置審査】
(73)【特許権者】
【識別番号】000135036
【氏名又は名称】ニプロ株式会社
(74)【代理人】
【識別番号】110001427
【氏名又は名称】弁理士法人前田特許事務所
(72)【発明者】
【氏名】川邉 美浪
【審査官】沼田 規好
(56)【参考文献】
【文献】特開2016-077406(JP,A)
【文献】特開平08-094474(JP,A)
【文献】特開平04-303725(JP,A)
【文献】米国特許出願公開第2005/0095154(US,A1)
【文献】特表2011-512882(JP,A)
【文献】米国特許出願公開第2009/0099498(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
A61M 1/36
(57)【特許請求の範囲】
【請求項1】
第1の枠体と第2の枠体とが組み合わされて内部に空洞を有する樹脂材料により形成されたハウジングと、前記空洞を前記第1の枠体側の血液側チャンバ及び前記第2の枠体側の空気側チャンバに区切る軟質の樹脂材料により形成された可撓性膜とを備え、
前記第1の枠体は、前記血液側チャンバに血液が流入する入口ポート及び血液が流出する出口ポートを有し、
前記第2の枠体は、内面に開口した圧力検出ポートを有し、
少なくとも前記圧力検出ポートの開口領域の領域外から開口領域に亘って、前記第2の枠体の内面と前記可撓性膜との間に、通気性を有する多孔性の樹脂材料により形成された中間部材が配置され、
前記可撓性膜が前記第2の枠体側に最大限変位した状態において前記中間部材は、前記第2の枠体の内面と前記可撓性膜との当接を防止し、
前記開口領域は、前記圧力検出ポートの中心を中心とし、前記圧力検出ポートの前記第2の枠体の内面における開口直径の3倍の直径を有する円状領域である、血液回路の圧力測定用チャンバ。
【請求項2】
前記中間部材は、前記圧力検出ポートと対向して配置されている、請求項1に記載の血液回路の圧力測定用チャンバ。
【請求項3】
前記中間部材は、多孔性の樹脂材料により形成されている、請求項1又は2に記載の血液回路の圧力測定用チャンバ。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、圧力測定用チャンバに関する。
【背景技術】
【0002】
透析回路等の血液の体外循環回路においては、循環ラインにおける圧力測定が欠かせない。例えば、人工透析において血液の圧力が設定圧力からずれてしまうと、血球にダメージを与えたりしてしまう。
【0003】
体外循環回路における圧力測定として、チャンバ内を血液が流れる血液側チャンバと、空気で満たされた空気側チャンバとの2つの部分に可撓性膜により分割して、空気側チャンバにおいて圧力を測定する圧力測定用チャンバが知られている(例えば、特許文献1を参照。)。
【先行技術文献】
【特許文献】
【0004】
【文献】特開昭61-143069号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、このような圧力測定用チャンバには以下のような問題がある。可撓性膜が空気側ハウジングの壁面と接触して密着すると、可撓性膜と壁面との間に空気が閉じ込められ、圧力検出ポートと通気していない孤立した空気胞が形成されてしまう。孤立した空気胞が形成されると、圧力測定範囲が小さくなってしまう。
【0006】
本開示の課題は、圧力検出ポートと通気していない孤立した空気胞が形成されにくくすることである。
【課題を解決するための手段】
【0007】
本開示の圧力測定用チャンバの第1の態様は、内部に空洞を有するハウジングと、空洞を血液側チャンバ及び空気側チャンバに区切る可撓性膜とを備え、ハウジングの空気側チャンバに接する側は、内面に開口した圧力検出ポートと、内面に形成された段差とを有し、段差は、ハウジングと可撓性膜との間に通気路を形成する。
【0008】
本開示の圧力チャンバの一態様によれば、可撓性膜が空気側チャンバにおいてハウジングの内面と接触した場合にも通気路を確保することができるので、圧力検出ポートと通気していない空気胞が形成されにくくすることができる。これにより、圧力測定範囲の変動を生じにくくすることが可能となる。
【0009】
本開示の圧力測定用チャンバの第2の態様は、内部に空洞を有するハウジングと、空洞を血液側チャンバ及び空気側チャンバに区切る可撓性膜とを備え、ハウジングの空気側チャンバに接する側は、内面に開口した圧力検出ポートを有し、可撓性膜の空気側チャンバに接する側は、外面に形成された段差を有し、段差は、ハウジングと可撓性膜との間に通気路を形成する。
【0010】
可撓性膜に段差部を形成することにより、簡易に且つ自由度高く通気路を形成することができる。
【0011】
圧力測定用チャンバの第1の態様及び第2の態様において、通気路は、圧力検出ポートまでつながっていることが好ましい。このような構成とすることにより、圧力検出ポートに至る通気路が確保され、圧力検出ポートがチャンバ内の他の領域から孤立して閉塞してしまうおそれを低減することができる。
【0012】
圧力測定用チャンバの第1の態様及び第2の態様において、可撓性膜は、長軸と短軸とを有するドーム状膜であり、通気路は、長軸方向に延びるようにできる。このような構成とすることにより、可撓性膜の長軸方向における片側だけが大きく変位した場合にも通気路の確保が容易となる。
【0013】
本開示の圧力測定用チャンバの第3の態様は、内部に空洞を有するハウジングと、空洞を血液側チャンバ及び空気側チャンバに区切る可撓性膜と、空気側チャンバにおいてハウジングと可撓性膜との間に設けられ、段差を有し、可撓性膜との間に通気路を形成する通気路形成部材とを備え、ハウジングの空気側チャンバに接する側は、内面に開口した圧力検出ポートを有している。ハウジングと可撓性膜との間に設けられた通気路形成部材を備えていることにより、孤立した空気胞の発生を抑えることが可能となる。
【0014】
本開示の圧力測定用チャンバの第4の態様は、内部に空洞を有するハウジングと、空洞を血液側チャンバ及び空気側チャンバに区切る可撓性膜と、空気側チャンバにおいてハウジングと可撓性膜との間に設けられ、通気性を有する材料により形成された通気路形成部材とを備え、ハウジングの空気側チャンバに接する側は、内面に開口した圧力検出ポートを有している。通気性を有する材料により形成された通気路形成部材を備えていることにより、孤立した空気胞の発生を抑えることが可能となる。
【0015】
本開示の圧力測定用チャンバの第5の態様は、内部に空洞を有するハウジングと、空洞を血液側チャンバ及び空気側チャンバに区切る可撓性膜とを備え、ハウジングの空気側チャンバに接する側は、内面に開口した圧力検出ポートを有し、空気側チャンバにおいてハウジングと可撓性膜との間に、可撓性膜がハウジングに接した際に気体を通過させる通気路を有する。第4の態様の圧力測定用チャンバは、可撓性膜がハウジングに接した際に気体を通過させる通気路が形成されるため、孤立した空気胞が生じにくくすることが可能となる。
【発明の効果】
【0016】
本開示の圧力測定用チャンバによれば、圧力検出ポートと通気していない空気胞を生じにくくすることができる。
【図面の簡単な説明】
【0017】
図1】本実施形態に係る圧力測定用チャンバを示す分解斜視図である。
図2図1のII-II線における断面図である。
図3】第2の枠体を示す平面図である。
図4】第2の枠体の変形例を示す平面図である。
図5】第2の枠体の変形例を示す断面図である。
図6】通気路形成リブの配置の変形例を示す平面図である。
図7】通気路形成リブの配置の変形例を示す平面図である。
図8】通気路形成部材を用いた変形例を示す分解斜視図である。
図9】多孔性の通気路形成部材を用いた変形例を示す分解斜視図である。
【発明を実施するための形態】
【0018】
図1図3に示すように、本実施形態の圧力測定用チャンバは、内部に空洞を有するハウジング101と、空洞を血液側チャンバ105及び空気側チャンバ106に区切る可撓
性膜102とを備えている。ハウジング101の空気側チャンバ106と接する側には、内面に開口した圧力検出ポート119が設けられている。また、可撓性膜102の一部が空気側チャンバ106においてハウジング101の内面と接した際に、可撓性膜102の接触ヶ所における通気を確保する通気路が形成されるように設けられた通気路形成リブ151を有している。
【0019】
本実施形態の圧力測定用チャンバは、どのような向きにして使用することもできるが、以下においては、血液側チャンバ105を下側にし、空気側チャンバ106を上側にした状態について説明する。
【0020】
ハウジング101は、内部に空洞を設けるように互いに向かい合わせて接続された第1の枠体111と第2の枠体112とにより形成されている。第1の枠体111は、空洞を形成する第1の凹部形成面113と、第1の凹部形成面113を囲む第1の鍔部114と、長軸方向の互いに反対側の位置に設けられた血液流入口115及び血液流出口116とを有している。第2の枠体112は、第1の凹部形成面113と共に空洞を形成する第2の凹部形成面117と、第2の凹部形成面117を囲む第2の鍔部118とを有している。第2の凹部の外面から突出して圧力検出ポート119が設けられており、圧力検出ポート119は第2の凹部形成面117の内面に開口している。また、第2の凹部形成面117の内面には、内側に突出した通気路形成リブ151が設けられている。
【0021】
可撓性膜102は、ドーム状の膜本体121と、膜本体121の外縁を囲むように設けられ、第1の鍔部114と第2の鍔部118との間に挟み込まれるリブ122とを有している。第1の枠体111と第2の枠体112との間に可撓性膜102が挟み込まれることにより、空洞は2つの部分に分離され、第1の枠体111側は血液が流れる血液側チャンバ105となり、第2の枠体112側は空気が満たされた空気側チャンバ106となる。血液側チャンバ105内の圧力変化は、膜本体121を介して空気側チャンバ106に伝達される。空気側チャンバ106内の圧力変化は、圧力検出ポート119に接続された圧力センサ等により検出することができる。なお、圧力検出ポート119には、端部にコネクタを備えたチューブが固定されていると、圧力チャンバの取り扱い性が向上するので好ましい。
【0022】
本実施形態において、可撓性膜102は、膜本体121が長軸と短軸とを有し、且つ立体的な楕円ドーム状となっている。血液側チャンバ105内の圧力が上昇すると、可撓性膜102は、空気側チャンバ106側に膨れる。可撓性膜102は、ハウジング101の空気側チャンバに接する側(第2の凹部形成面117)に向かって最大限変位した際に、可撓性膜102とハウジング101の内面との間にできるだけ空間ができないように、第2の凹部形成面117と略同寸法となるように形成されている。可撓性膜102は連続的に変動する血圧に応じて変位するので、可撓性膜102の動きを確実にコントロールすることは困難であり、可撓性膜102の一部が第2の凹部形成面117の内面と接触する場合がある。可撓性膜102がハウジング101の内面と接触しないように、空気側チャンバ106のハウジングを過剰に大きく設計することはできるが、その分空気側チャンバ106の容積が大きくなる。この場合、所定の範囲を測定するのに必要な可撓性膜102の変動必要量も大きくなってしまうので、可撓性膜102も大きくしなければならなくなり、圧力測定チャンバ全体が大型化してしまう。
【0023】
第2の凹部形成面117全体が平滑であると、可撓性膜102が部分的にハウジングと密着し、圧力検出ポート119との通気が妨げられ、孤立した空気胞が形成されるおそれがある。孤立した空気胞が形成されると、圧力の測定範囲が減少してしまう事態を招く。また、圧力検出ポート119付近において可撓性膜102がハウジング101の内面に密着し、圧力検出ポート119が空気側チャンバ106内の他の領域から孤立して閉塞して
しまうおそれもある。
【0024】
一方、本実施形態の圧力測定用チャンバは、第2の凹部形成面117に通気路形成リブ151を有している。このため、可撓性膜102がハウジング101の内面に接した場合にも、可撓性膜102とハウジング101の内面との間に通気路が形成される。このため、可撓性膜102がハウジング101の内面に接したとしても、通気路により可撓性膜102がハウジング101の内面に接した部分を越えて空気が移動でき、孤立した空気胞が形成されにくい。また、空気側チャンバ106の容積を最小限に抑えることができ、通気路形成リブ151を設けることは、装置を小型化するという観点からも有利となる。
【0025】
通気路形成リブ151は、通気路が形成されるようにできれば、どのようにしてもよいが、例えば図1に示すように、線状の通気路形成リブ151が第2の凹部形成面117の中央部から放射状に複数の方向に延びるようにすることができる。通気路形成リブ151を放射状に設けることにより、第2の凹部形成面117のどの位置において可撓性膜102の接触が生じても、可撓性膜102の密着を防いで、通気路を確保することが容易となる。また、複数の箇所において可撓性膜102の接触が生じたとしても、圧力検出ポート119に至る通気路を確保できる。
【0026】
図1には、線状に延びる通気路形成リブ151が45度ずつずれて8方向に延びている例を示したが、通気路形成リブ151が延びる方向の数はさらに少なくても多くてもよく、例えば180度ずれて2方向に延びるようにすることもできる。但し、通気路形成リブ151の延びる方向が多い方が空気が閉じ込められた空気胞の形成を抑える効果が高くなるため、4方向以上とすることが好ましく、6方向以上とすることがより好ましい。圧力測定用チャンバのサイズ及び成型精度を考えると48方向程度が最大となる。成型の容易さを考慮すると、24方向以下が好ましく、16方向以下がより好ましい。なお、リブは直線状であっても曲線状であってもよい。
【0027】
通気路形成リブ151を放射状に設ける場合、等間隔に設けた方が、空気胞の形成を抑える効果が高くなるが、等間隔に設けなくてもよい。
【0028】
通気路形成リブ151の長さは、特に限定されないが、第2の凹部形成面117のできるだけ下方まで設けることが好ましい。
【0029】
通気路形成リブ151の高さは、通気路を確保する観点から、好ましくは0.1mm以上、より好ましくは0.2mm以上であり、形成を容易にする観点から、好ましくは0.5mm以下、より好ましくは0.4mm以下である。通気路形成リブ151の幅は、通気路を確保する観点から、好ましくは0.1mm以上、より好ましくは0.2mm以上であり、形成を容易にする観点から、好ましくは0.7mm以下、より好ましくは0.5mm以下である。
【0030】
図1においては、第2の凹部形成面117の中央部には、成型の際のゲートによる窪み155が存在し、その周囲に通気路形成リブ151が独立して設けられた例を示した。成型の際にゲートや突き出しピン等により生じる凹部や凸部も、通気路形成リブ151と共に、通気路の形成に利用することができる。
【0031】
図4に示すように、この位置にゲートが存在しない場合には、通気路形成リブ151が中央部で接続されていてもよい。また、通気路形成リブ151が第2の凹部形成面117の中央部から放射状に配置された例を示したが、中央部に限らず、空気側チャンバ106の任意の位置から放射状に配置することができる。また、中央部に圧力検出ポートを形成することもできる。
【0032】
放射状に設けられた通気路形成リブ151の1つは、圧力検出ポート119の開口領域119aに達するように設けることが好ましい。通気路形成リブ151が、圧力検出ポート119の開口縁119bに達していなくても、開口領域119aに達していれば、可撓性膜102による圧力検出ポート119の閉塞が生じにくくなり、圧力検出ポート119と通気していない空気胞が生じる可能性を大幅に低減できる。開口領域119aは、圧力検出ポート119の直径の好ましくは3倍程度、より好ましくは2倍程度の範囲の領域である。但し、通気路形成リブ151が圧力検出ポート119の開口縁119bに達していてもよい。
【0033】
また、通気路形成リブ151と圧力検出ポート119の開口との間に点状の凸部154を設けてもよい。開口の近傍に凸部154を設けることにより、可撓性膜102により圧力検出ポート119が閉塞しにくくすることができる。凸部154は、開口領域119aに設けられていればよいが、通気路形成リブ151の延長線上に設けられていることが好ましい。また、通気路形成リブ151よりも突出する高さを高くした方が、圧力検出ポート119がより閉塞しにくくできる。凸部154は、少なくとも1つ設ければよいが、圧力検出ポート119をより閉塞しにくくするために、圧力検出ポート119の周りに複数設けることが好ましい。
【0034】
通気路形成リブ151はどのような方法により形成してもよい。例えば、第2の凹部形成面117に凸部が形成されるように設計した金型を用いて、第2の枠体112を形成すればよい。また、平滑な第2の凹部形成面117を有する第2の枠体112を形成した後、別部材をハウジングと可撓性膜との間に固定して、第2の凹部形成面117の近傍に通気路形成リブ151を形成することもできる。
【0035】
空気側チャンバ106においてハウジング101の内面に通気路形成リブ151を設ける例を示したが、ハウジング101の内面に通気路が形成できるような段差が設けられていればよい。例えば、図5に示すように、通気路形成リブ151に代えて、第2の凹部形成面117に窪んだ通気路形成溝152を設けることもできる。通気路形成溝152を設ける場合には、圧力検出ポート119に至る通気路を形成するために、全ての通気路形成溝152が相互に接続され、圧力検出ポート119の開口縁119bに達していることが好ましい。通気路形成溝152が圧力検出ポート119の開口縁119bに達していれば、圧力検出ポート119の開口付近において可撓性膜が壁面に密着したとしても、圧力検出ポートに至る通気路を確保することができ、好ましい。なお、開口領域119aに凸部154を設ける場合には、通気路形成溝152が開口領域119aに達していればよい。
【0036】
通気路形成溝152の深さは、通気路を確保する観点から、好ましくは0.1mm以上、より好ましくは0.2mm以上であり、形成を容易にする観点から、好ましくは0.5mm以下、より好ましくは0.4mm以下である。通気路形成溝152の幅は、通気路を確保する観点から、通気路形成溝152が線状の場合、好ましくは0.1mm以上、より好ましくは0.2mm以上であり、形成を容易にする観点から、好ましくは0.7mm以下、より好ましくは0.5mm以下である。通気路形成溝152は点状、線状、又は面状等のどのようであってもよい。また、開口領域119aを、ドーム状に溝が形成された面状の通気路形成溝として形成してもよい。
【0037】
図4において、第2の凹部形成面117の1ヶ所から複数の方向に放射状に延びる通気路形成リブ151を設ける例を示したが、放射状に限らず、図6に示す変形例のように、開口領域119aからループを描くように曲線状の通気路形成リブ151Aを設けることもできる。曲線状の通気路形成リブ151Aを設けた場合にも、ハウジング101のどの位置において可撓性膜102の接触が生じても、可撓性膜102の密着を防いで、通気路
を確保することが容易となる。また、複数の箇所において可撓性膜102の接触が生じたとしても、圧力検出ポート119に至る通気路を確保できる。
【0038】
ループを描くように通気路形成リブ151A設ける場合は、通気路の形成をより確実にするために、ループを複数の部分に分割する通気路形成リブ151Bをさらに追加することが好ましい。ループを分割する通気路形成リブ151Bは、開口領域119aに達していることが好ましい。このようにすれば、通気路の確保がさらに容易となる。なお、ループを分割する通気路形成リブ151Bは、ループ形状の通気路形成リブ151Aと一体となっていても、分離していてもよい。また、ループが多重になるように通気路形成リブを設けることもできる。ループを多重にする場合、全てのループが開口領域119aから始まるようにすることができる。また、ループを分割する通気路形成リブ151Bを設ける場合には、同心円状に設けることもできる。
【0039】
ループ形状ではなく、図7に示す変形例のように、開口領域119aを一方の端部として螺旋形状に設けられた曲線状の通気路形成リブ151Cとすることもできる。螺旋形状の通気路形成リブ151Cによっても、第2の凹部形成面117のどの位置において可撓性膜102の接触が生じても、可撓性膜102の密着を防いで、通気路を確保することが容易となる。また、複数の箇所において可撓性膜102の接触が生じたとしても、圧力検出ポート119に至る通気路を確保できる。螺旋形状の通気路形成リブ151Cに加えて、螺旋を分割するように通気路形成リブを組み合わせることもできる。
【0040】
これらの変形例の場合においても、開口領域119aに凸部154を設けることができる。また、リブに代えて溝とすることもできる。さらに、実施形態及び変形例の通気路形成リブ及び通気路形成溝は、相互に組み合わせることができる。例えば、ループ形状の通気路形成リブと放射状の通気路形成リブとを設けることができる。また、通気路形成リブと通気路形成溝とを組み合わせることもできる。
【0041】
通気路を形成するための段差をハウジング111の内面に設ける例を示したが、可撓性膜102の空気側チャンバ106と接する側に設けることもできる。また、ハウジング111と可撓性膜102との両方に段差を設けることもできる。この場合、ハウジング111に設けられた段差と、可撓性膜102の設けられた段差とが互いに交差するようにすれば、空気胞をより生じにくくすることができる。
【0042】
また、空気側チャンバ106においてハウジング101の内面と可撓性膜102との間に通気路形成部材160との間に、別体となった通気路形成部材160を挟み込む構成とすることもできる。例えば図8に示す変形例においては、平面X字状となった通気路形成リブを有する通気路形成部材160を第2の枠体112と可撓性膜102との間に挟み込んでいる。このような構成とすることにより、第2の凹部形成面117の近傍に段差が形成されて、可撓性膜102が空気側チャンバ106側に不均一に膨れた場合にも、可撓性膜102がハウジング101の内面と接しないようにして、通気路を確保することができる。通気路形成部材160がハウジング101及び可撓性膜102から独立しているため、ハウジングの肉厚寸法を厚くする必要をなくすことができる。また、通気路形成部材は、可撓性膜102により押圧された際にほとんど変形しない程度に硬い材料により形成されていることが好ましい。
【0043】
さらに、図9に示す変形例のように、通気性の材料により形成されたドーム状の通気路形成部材162を設けることもできる。通気路形成部材162が通気性を有しているため、可撓性膜102が空気側チャンバ106側に膨れて、通気路形成部材162に接した場合にも、ハウジング101と可撓性膜102との間に通気路を確保することができる。通気路形成部材162は、通気性を有していればよく、例えば多孔質の焼結体又はスポンジ
若しくはメッシュ等の多孔性の樹脂材料により形成することができる。通気路形成部材162は、可撓性膜102により押圧された際に押しつぶされない程度の硬度を有していることが好ましい。なお、ハウジング101の内面と通気路形成部材162の外面との間に隙間ができるように、通気路形成部材162の外面に凹凸を設けることもできる。
【0044】
空気側チャンバ106において、可撓性膜102の一部がハウジング101の内面に接した際に、可撓性膜102が接した部分を越えて気体が移動できる通気路を形成することができる種々の例を示したが、ハウジング101と可撓性膜102との間に通気路が形成できれば、これらの構成に限らず、どのような構成としてもよい。
【0045】
実施形態及び変形例において、第1の凹部形成面113と第2の凹部形成面117とにより形成された空洞は、平面楕円形状であり、長軸と短軸とを有している。空洞の平面形状を、長軸を有している形状とすることにより、血液の滞留を生じにくくすることができる。長軸と短軸とを有している平面形状は特に限定されないが、角がない形状である方が血栓の形成を抑える観点からは好ましい。なお、長軸と短軸とを有している形状に限らず、円形状等の等方形状とすることもできる。
【0046】
空洞が長軸を有する平面形状の場合、血液流入口115と血液流出口116とは、空洞の長軸方向の互いに反対側の位置に設けることが好ましい。これにより、血液流入口115から流入した血液は、血液側チャンバ105内を血液流出口116に向かってほぼ一方向に流れ、平面円形状の血液側チャンバ105と比べて滞留が発生しにくく、血栓を生じにくくできる。但し、空洞内をU字状又はL字状に血液が流れるような位置に、血液流入口115と血液流出口116とを設けることもできる。
【0047】
空洞が長軸及び短軸を有する平面形状で、膜本体121が長軸及び短軸を有するドーム状の場合、長軸方向における片側だけが上方に変位してしまう現象が生じやすい。このため、第2の凹部形成面117に長軸方向に延びる段差が設けられていた方が、孤立した空気胞を発生しにくくすることができる。
【0048】
本実施形態及び変形例において、ダイアフラムとして機能するドーム状の膜本体121を有する可撓性膜を設ける例を示した。このようなドーム状の膜本体121は、その内面に凹凸、角部、又は、直線部分がなく、全体が曲面で形成されているため、血液の滞留が生じにくいという利点が得られる。しかし、可撓性膜はチャンバ内を2つの部分に区画することができればよく、例えばWO2016/068213に記載されているような筒状の可撓性膜とすることもできる。但し、膜本体121をドーム状とすることにより、筒状の可撓性膜と比べて、圧力測定用チャンバを小型化できるという利点が得られる。
【0049】
可撓性膜102は、可撓性の材料により形成することができ、例えば、シリコンゴム、天然ゴム、ブチルゴム、イソプレンゴム、ブタジエンゴム、及びスチレン-ブタジエンゴム等の各種ゴム材料、ポリウレタン系、ポリエステル系、ポリアミド系、オレフィン系、及びスチレン系等の各種熱可塑性エラストマ、並びにポリ塩化ビニル、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体、架橋型エチレン-酢酸ビニル共重合体等のポリオレフィン、ポリエチレンテレフタレート等のポリエステル、ポリウレタン、及びポリアミド等の軟質の樹脂を用いることができる。
【0050】
第1の枠体111及び第2の枠体112の材質はある程度の剛性を有する材料であれば特に限定されないが、透明な材料により形成すれば、血流の確認が容易となる。例えば、ポリカーボネート、ポリエチレンテレフタレート、グリコール変性ポリエチレンテレフタレート、及びグリコール変性ポリエステル等のポリエステル系樹脂、ポルエチレン及びポリプロピレン等のオレフィン系樹脂、塩化ビニル系樹脂、ポリスチレン樹脂、アクリル樹
脂、アクリロニトリル・スチレン共重合体樹脂、ポリエーテルスルホン樹脂、並びにポリスルホン樹脂等を用いることができる。第1の枠体111及び第2の枠体112の一方のみを透明としてもよく、全体を透明とするのではなく透明な窓部を設けてもよい。また、第1の枠体111及び第2の枠体112が不透明であってもよい。
【0051】
血液流入口115及び血液流出口116には血液回路のチューブが接続される。また、圧力検出ポート119は直接圧力測定装置のポートに接続されるようであってもよいし、圧力検出ポート119にチューブが接続され、チューブ端部のコネクタが圧力測定装置のポートに接続されるような仕様であってもよい。圧力測定装置は、人工透析装置等に組み込まれているものであっても、スタンドアロンの装置であってもよい。
【0052】
本実施形態の圧力測定用チャンバは、人工透析用又は人工心肺用等の血液の体外循環回路に接続して、血圧測定することができる。
【産業上の利用可能性】
【0053】
本開示の圧力測定用チャンバは、血液回路等に接続する圧力測定用のチャンバとして有用である。
【符号の説明】
【0054】
101 ハウジング
102 可撓性膜
105 血液側チャンバ
106 空気側チャンバ
111 第1の枠体
112 第2の枠体
113 第1の凹部形成面
114 第1の鍔部
115 血液流入口
116 血液流出口
117 第2の凹部形成面
118 第2の鍔部
119 圧力検出ポート
119a 開口領域
119b 開口縁
121 膜本体
122 リブ
151 通気路形成リブ
151A 通気路形成リブ
151B 通気路形成リブ
151C 通気路形成リブ
152 通気路形成溝
154 凸部
155 窪み
160 通気路形成部材
162 通気路形成部材
図1
図2
図3
図4
図5
図6
図7
図8
図9