IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ヴィアサイト,インコーポレイテッドの特許一覧

特許7580508霊長類多能性幹細胞集合体懸濁培養物及びその分化方法
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-10-31
(45)【発行日】2024-11-11
(54)【発明の名称】霊長類多能性幹細胞集合体懸濁培養物及びその分化方法
(51)【国際特許分類】
   C12M 1/10 20060101AFI20241101BHJP
   C12M 3/02 20060101ALI20241101BHJP
   C12N 5/0735 20100101ALI20241101BHJP
   C12N 5/10 20060101ALI20241101BHJP
【FI】
C12M1/10
C12M3/02
C12N5/0735
C12N5/10
【請求項の数】 12
【外国語出願】
(21)【出願番号】P 2023025135
(22)【出願日】2023-02-21
(62)【分割の表示】P 2020156084の分割
【原出願日】2013-10-31
(65)【公開番号】P2023075135
(43)【公開日】2023-05-30
【審査請求日】2023-03-23
(31)【優先権主張番号】13/672688
(32)【優先日】2012-11-08
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】503431792
【氏名又は名称】ヴィアサイト,インコーポレイテッド
(74)【代理人】
【識別番号】110002860
【氏名又は名称】弁理士法人秀和特許事務所
(74)【代理人】
【識別番号】100100549
【弁理士】
【氏名又は名称】川口 嘉之
(72)【発明者】
【氏名】シュルツ トーマス シー
【審査官】鈴木 崇之
(56)【参考文献】
【文献】特表2012-520672(JP,A)
【文献】特表2012-507281(JP,A)
【文献】特表2010-504090(JP,A)
【文献】米国特許出願公開第2007/0264713(US,A1)
【文献】米国特許出願公開第2010/0112691(US,A1)
【文献】Biotechnol. Bioeng.,2009年,Vol. 102, No. 2,pp. 493-507
(58)【調査した分野】(Int.Cl.,DB名)
C12M 1/00-3/10
C12N 5/07-5/0735
C12N 5/10
C12N 1/00
JSTPlus/JMEDPlus/JST7580(JDreamIII)
PubMed
(57)【特許請求の範囲】
【請求項1】
ローラーボトル及び前記ローラーボトルを3rpm~20rpmの回転速度で回転させる回転手段を含むローラーボトルシステムであって、前記ローラーボトルは、生理学的に許容される媒体中に懸濁された霊長類多能性幹細胞(pPSC)集合体又はpPSCから派生した集合体の培養物を含み、前記pPSC集合体又はpPSCから派生した集合体は、(a)胚様体以外のものであり、(b)サイズ及び形が均一であり、(c)単独細胞懸濁液から形成される、前記ローラーボトルシステム。
【請求項2】
前記pPSCが、フィーダーフリー、マトリックスフリー、および接着性の成長培養フリー環境にある、請求項1に記載のローラーボトルシステム。
【請求項3】
前記pPSC集合体が、100~300マイクロメートルの直径を有する、請求項1又は2に記載のローラーボトルシステム。
【請求項4】
前記pPSC集合体が、OCT4, NANOG, SSEA-3, SSEA-4, Tra-1-81 および Tra-1-60から成る群から選択される少なくとも1つのマーカーを発現する、請求項1~3のいずれか1項に記載のローラーボトルシステム。
【請求項5】
前記pPSC集合体がヒト胚性幹細胞(hESC)およびヒト誘導多能性幹細胞(iPSC)から成る群から選択される、請求項1~4のいずれか1項に記載のローラーボトルシステム。
【請求項6】
ローラーボトル内で生理的に許容できる媒体中に懸濁された霊長類多能性幹細胞(pPSC)集合体を生成する方法であって、
a. 未分化pPSCの培養物を提供すること;
b. pPSCの未分化増殖をサポートする培地中の未分化pPSCの単独細胞懸濁液をローラーボトルにシーディングすること;および
c. ローラーボトル内で3rpm~20rpmの回転速度で未分化pPSC懸濁液を撹拌し、pPSC集合体を形成すること;を含み、
それにより、ローラーボトル内で生理的に許容できる媒体中に懸濁された、サイズ及び形が均一であるpPSC集合体を生成する、前記方法。
【請求項7】
前記回転速度が5rpm~12rpmである、請求項6に記載の方法。
【請求項8】
前記pPSC集合体が100~300マイクロメートルの直径を有する、請求項6又は7に記載の方法。
【請求項9】
前記pPSCが、フィーダーフリー、マトリックスフリー、および接着性の成長培養フリー環境にある、請求項6~8のいずれか1項に記載の方法。
【請求項10】
ローラーボトル内で霊長類多能性幹細胞(pPSC)を分化させる方法であって、
a. 未分化pPSCの単独細胞懸濁液を提供すること;
b. ローラーボトル内で、前記ローラーボトルを3rpm~20rpmの回転速度で、回転させる回転手段により生理的に許容できる媒体中の前記pPSCを撹拌し、pPSC集合体を形成すること;および
c. 前記ローラーボトル内のpPSC集合体を、pPSCを分化させる培地に接触させ、分化細胞集合体を形成すること;を含み、
それにより、ローラーボトル内でpPSCを分化させる、前記方法。
【請求項11】
前記pPSCが、フィーダーフリー、マトリックスフリー、および接着性の成長培養フリー環境で分化する、請求項10に記載の方法。
【請求項12】
前記回転速度が5rpm~12rpmである、請求項10又は11に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
連邦政府によって後援された研究または発育に関する声明
本発明の完成のための研究の一部は、米国政府資金のアメリカ国立衛生研究所グラントNo.5R24 RR021313-05を利用して為された。従って、米国政府は本発明に対してある種の権利を有する。
【0002】
本発明は2011年8月29日に出願された米国特許出願番号13/220,590の一部継続出願であり、該特許出願は2008年11月4日に出願され、2011年8月30日に発行された米国特許8,008,075である米国特許出願番号12/264,760の継続出願であり、これらの内容はその全体が参考として本明細書で参照される。
【背景技術】
【0003】
発明の背景
発明の分野
本発明は事実上血清およびフィーダーを含まない懸濁細胞集合体組成物、および細胞集合体懸濁液の分化方法に関する。
【0004】
これまで、真核性のほ乳動物細胞のための大規模製造過程(「スケールアップ」)を提供する効率的システムは全くなく、特に、本明細書に記載されるヒト胚性幹細胞(hESC)などの哺乳動物多能性細胞については全くなかった。生体外で未分化状態でhES細胞を維持するために、hES細胞は典型的にはマウス胎児線維芽細胞(MEF)フィーダーの上で維持され、手動の機械的な解離(例えば、微細手術)を経て、個々のコロニーへ継代された。これらの方法は未分化hESC細胞または分化型hES細胞の大量産生を必要としない調査研究、遺伝子ターゲッティング、薬物送達、試験管内毒性研究には十分である。酵素継代を含むhESC細胞の安定した大規模なエキスパンジョンのための、将来的な臨床適用は改良された方法を要求する。
【0005】
hESCの酵素のエキスパンションは実行できるが、これらの方法は、hESCが生存のためのパラ-およびオートクライン信号と同様に細胞間相互作用に依存するので、技術的な欠陥がある。したがって、単独細胞として存在する場合と比べて、hESCは細胞内微小環境を好む。また、hESCの酵素解離が異常核型に導き、遺伝的および後成的変化の結果につながることがあるという報告がある。その結果、高度に支持的な培養環境であって、同時に長い培養の期間、多能性、多分化能性、または遺伝的安定性において妥協せずに、未分化hESまたは分化型hESCの確固とした大規模なエキスパンジョン(すなわち、製造プロセス)を考慮することが本質的である。
【0006】
ヒト多能性細胞はヒト発達の初期段階を調査して、糖尿病やパーキンソン病のようないくつかの病状での治療関与のめったにないチャンスを提供する。例えば、ヒト胚性幹細胞(hESC)から得られたインスリンを作り出すβ細胞の使用は、提供者膵からの細胞を利用する現在の細胞治療手順に大きな改良を提供するだろう。現在の、提供者膵からの細胞を利用する糖尿病に関する細胞治療は、移植に必要である高品質の小島細胞への不足によって制限される。I型糖尿病患者のための細胞治療は、約8×108のすい臓島細胞の移植を必要とする(Shapiroら,2000,N Engl J Med 343:230-238;Shapiroら,2001a,Best Pract Res Clin Endocrinol Metab 15:241-264;Shapiroら,2001,British Medical Journal 322:861)そのため、少なくとも2つの健常ドナー臓器が、成功する臓器移植のための十分な小島細胞を得
るのに必要である。
【0007】
その結果、ヒト多能性幹細胞(hESC)は早期胚中で多能性細胞生物学と分化の基礎となる機構の研究の強力なモデル系を示す。また、哺乳動物の遺伝操作の機会を与え、結果の商業的、医学的、農業的用途の機会を与える。さらに、胚性幹細胞の潜在的な増殖および分化は、細胞損傷または機能不全から生じる疾病の治療のための移殖に適合する細胞の無制限なソースを作るのに使用される。国際特許出願WO99/53021に記載された早期原始外胚葉(EPL)細胞、生体内または生体外の派生したICM/胚盤葉上層、生体内または生体外の派生した原始外胚葉、始原生殖細胞(EG細胞)、奇形しゅ細胞(EC細胞)、および脱分化または核移植で誘導された多能性細胞をはじめとする、他の多能性細胞および細胞ラインが、これらの特性と用途のいくつかまたはすべてを共有するだろう。国際特許出願WO97/32033と米国特許番号5,453,357は、齧歯動物以外の種からの細胞を含む多能性細胞を記述する。ヒトEG細胞は国際特許出願WO00/27995および米国特許番号6,200,806に記載されている。そしてヒトEG細胞は国際特許出願WO98/43679に記載されている。
【0008】
胚性幹細胞多能性と分化を規制する生化学的機構は、非常に不十分にしか理解されていない。しかしながら、利用可能な限られた実験によって得られるデータ(多くの事例証拠)は、in vitro培養条件下での多能性胚性幹細胞の連続的維持は、細胞外環境に存在するシトキンと生育因子の存在に依存していることを示唆する。
【0009】
ヒトESCがヒト細胞療法のためにかなりの量の高品質の分化細胞を開発する出発物質のソースを提供する一方、臨床の安全と有効度を決定する期待される規定のガイドラインと等価な条件で、これらの細胞を得、および/または、培養しなければならない。そのようなガイドラインはcGMPにソースされた全ての成分を有する培地の使用を必要とするだろう。そのような化学的に定義された/GMP標準状態の開発が、治療目的でhESCから得られた細胞とhESCの人体での使用を容易にするために必要である。
【0010】
さらに、hESCベースの細胞置換療法の最終の用途は、大量培養を可能にする方法と規定ガイドラインに対応する分化条件の開発を必要とするだろう。いくつかのグループがhESCのための簡易型の生育条件を報告したが、これらの研究にはかなりの制限がある。しかしながら、一般に、これまで、多能性細胞の成功した単離、長期のクローン維持、遺伝操作、および生殖細胞系列移行(germ line transmission)は難しかった。
【0011】
幹細胞のための細胞培養条件の大部分は、培地内に血清代用品(KSR)を含んでいる。(Xuら,2005 Stem Cells,23:315-323;Xuら,2005 Nature Methods,2:185-189;Beattieら,2005
Stem Cells,23:489-495;Amitら,2004 Biol.Reprod.,70:837-845;Jamesら,2005 Development,132:1279-1282)KSRは非常に浄化されたソースではなく、ウシ血清アルブミン(BSA)の粗精製物を含んでいる。他のものは短期試験を実行するだけであり、したがって、それらの条件が長期間の間、多能性の維持を可能にするかどうかは、明確でない。(Satoら,(2004)Nature Med.,10:55-63;米国特許公開2006/0030042および2005/0233446)。他のものはFGF2、アクチビンA、およびインスリンで化学的に定義された培地における、多能性の長期の維持を示したが、細胞はヒト血清でコーティングされたプレートであって、細胞のプレーティングの前に「洗い落とされた」ものの上で育てられた。(Valuerら,2005 J Cell Sci.,118(Pt 19):4495-509)FGF2はこれらのすべての培地の成分であるが、それが1次的または2次的な自己再生シグナルを提供するかどうかは明確でない;特にいくつかの配合物では、高濃度でそれを使用することが必要である(最大100ng/mL、Xuら,2005 Nature Methods,2:185-189)。
【0012】
さらに、これらのグループのすべてが、それらの培地にマイクロg/mLのレベルでインスリンを含んでいるか、またはKSRの使用により存在するインスリンを含む。インスリンがインスリン受容器と結合することを通して、グルコース代謝と「細胞生存」シグナリングにおいて機能すると通常考えられている。生理学的濃度を超えたレベルでは、しかしながら、インスリンは、低い効率でIGF1受容体と結合して、PI3 キナーゼ/AKT系路を通して古典的な増殖因子活性を与えることができる。KSRまたは他の培地におけるそのような高水準(マイクロg/mLのレベル)でのインスリンの存在/必要は、hESCによって発現されるIGF1受容体に結合されることを介して主な活性が顕在化されることを示唆している(Spergerら,2003 PNAS,100(23):13350-13355)。IGF1Rの完全な補体とhESCでの細胞内信号系路メンバーの発現は、この系路の機能的活性を意味しそうである(Miuraら,2004 Aging Cell,3:333-343)。インスリンまたはIGF1がhESCの自己再生に必要である主要な信号を顕在化させることができる。これは、hESCの培養のために開発された全ての条件は、インスリン、KSRにより提供されたインスリン、または血清により提供されたIGF1を含むという事実により示唆される。この概念を支持するものとして、PI3 キナーゼがhESC培養で禁止されると、細胞が分化することが示されている(D’Amourら,2005 Nat.Biotechnol.,23(12):1534-41;McLeanら,2007 Stem Cells 25:29-38)。
【0013】
最近の刊行物は、hESCについてのヒト化された、定義された培地について概説する(Ludwigら,Nature Biotechnology,published online January 1,2006,doi:10.1038/nbtl 177)。しかしながら、この最近の配合物は、FGF2、TGFβ、LiCl、γ-アミノ酪酸およびピペコリン酸のような、hESCの増殖に影響を及ぼすことが示唆されるいくつかの要素を含んでいる。また、この最近定義された細胞培地はインスリンを含むことに留意すべきである。
【0014】
インシュリン/IGF1、ヘレグリン、Activin Aシグナリングの組み合わせに基づくhESCのための自己再生シグナリングパラダイムは以前に、出願人によって報告された。ワング他2007 Blood 110:4111-4119を参照されたい。このような関係においては私たちは、外因のFGF2信号が余分であり必要とされないことを見いだした(上記シュルツとロビンズ、2009) (In:Lakshmipathy et al.eds.,Emerging Technology Platforms for Stem Cells.John Wiley&Sons.,Hoboken,NJ,pp.251-274)。ヘレグリンはEGF増殖因子ファミリーのメンバーである。少なくとも14のメンバーがあり、EGF、TGFβ、ヘパリン結合EGF(hb-EGF)、ニューレグリン-β(ヘレグリン-β(HRG-β)とも呼ばれる)、膠細胞成長因子、および他のもの、HRG-α、アンフィレグリン、ベタセルリン、およびエピレグリンがあげられるがこれらに限定されない。これらのすべての成長因子が、EGFドメインを含んでいて、最初に膜横断たんぱく質として典型的に発現され、メタロプロテイナーゼ(特異的に、ADAM)タンパク質によって処理され、溶解性のエクトドメイン成長因子を発生させる。EGFファミリーのメンバーは、異なる親和性を有する、ErbB1、2、3、および4細胞表面受容体のホモ-またはヘテロ-ダイマーと相互作用する(ジョーンズ他、FEBS Lett、1999、447: 227-231)。EGF成長因子ファミリーは少なくとも14個のメンバーを有し、EGF、TGFβ、ヘパリン結合EGF(hb-EGF)、ニューレグリンβ(ヘレグリンβ(HRG-β)、グリア成長因子及びその他の呼称もある)、HRG-α、アンフィレギュリン、ベータセルリン、及びエピレギュリンを含むが、これらに限定されない。これらの成長因子の全てがEGFドメインを含み、一般的にはまず初めに膜貫通タンパク質として発現し、この膜貫通タンパク質がメタロプロテアーゼ(具体的には、ADAM)タンパク質によるプロセシングを受けることで可溶性のエクトドメイン成長因子が生成される。EGFファミリーメンバーはErbB1、2、3及び4細胞表面受容体のホモ二量体又はヘテロ二量体のいずれとも種々の親和性で相互作用する(Jonesら、FEBS Lett、1999年、447:227-231頁)。EGF、TGFα及びhbEGFはErbB1/1(EGFR)ホモ二量体及びErbB1/2ヘテロ二量体を高親和性(1から100nMの範囲)で結合する一方、HRG-βはErbB3及びErbB4を極めて高い親和性(1nM未満の範囲)で結合する。活性化したErbB受容体は、PI3キナーゼ/AKT経路及びまたMAPK経路も通じてシグナルを伝達する。ErbB2及びErbB3はhESCのなかで最も高度に発現する成長因子受容体であり(Spergerら、2003年 PNAS、100(23):13350-13355頁)、HRG-βはマウス始原生殖細胞の増殖を支持することが既に示されている(Toyoda-Ohnoら、1999年 Dev.Biol.、215(2):399-406頁)。さらに、過剰発現及びその後のErbB2の不適切な活性化が、腫瘍発生と関連している(Neveら、2001年 Ann.Oncol.、12 補遺1:S9-13頁;Zhou & Hung、2003年 Semin.Oncol.、30(5 補遺16):38-48頁;Yarden、2001年 Oncology、61 補遺2:1-13頁)。あるhESC中にトリソミーとして蓄積することが観察されている染色体上には、ヒトErbB2(17番染色体q腕)、及びErbB3(12番染色体q腕)が存在する(Draperら、2004年 Nat.Biotechnol.、22(1):53-4頁;Cowanら、2004年 N Engl.J.Med.、350(13):1353-6頁;Brimbleら、2004年 Stem Cells Dev.、13(6):585-97頁;Maitraら、2005年 Nat.Genet.37(10):1099-103頁;Mitalipovaら、2005年 Nat.Biotechnol.23(1):19-20頁;Draperら、2004年 Stem Cells Dev.、13(4):325-36頁;Ludwigら、Nature Biotechnology、オンライン刊行2006年1月1日、doi:10.1038/nbt1177)。
【0015】
ErbB2及びErbB3(Brownら、2004年 Biol.Reprod.、71:2003-2011頁;Salas-Vidal & Lomeli、2004年、Dev Biol.、265:75-89頁)はマウス胚盤胞で発現するが、これは特に内部細胞塊(ICM)に限定されず、並びにErbB1、EGF及びTGFβはヒト胚盤胞で発現する(Chiaら、1995年 Development、1221(2):299-307頁)。HB-EGFは、ヒトIVF胚盤胞培養物中において増殖効果を有する(Martinら、1998年 Hum.Reprod.、13(6):1645-52頁;Sargentら、1998年 Hum.Reprod.13 補遺4:239-48頁)、及び15%血清中で成長するマウスES細胞に対し中程度の追加的な効果を(Heoら、2005年、Am.J.Phy.Cell Physiol.、近日刊行)。移植前及び移植後早期の発生は、ErbB2-/-、ErbB3-/-、ニューレグリン1-/-(Britschら、1998年 Genes Dev.、12:1825-36頁)、ADAM17-/-(Peschonら、1998年 Science、282:1281-1284頁)及びADAM19-/-(Horiuchi、2005年 Dev.Biol.、283(2):459-71頁)ヌル胚において影響を受けないように思われる。従って、hESCにおけるErbB受容体ファミリーを介したシグナル伝達の重要性は、これまでのところ不明である。
【0016】
ニューレグリン1(NRG1)は、複数のスプライシング変異及びタンパク質プロセシング変異を呈する大型遺伝子である。これは多数のタンパク質アイソフォームを生成するが、本明細書においてこれらはまとめてニューレグリンと称される。ニューレグリンは主に、細胞表面膜貫通タンパク質として発現する。細胞外領域には、免疫グロブリン様ドメイン、炭水化物修飾領域及びEGFドメインが含まれる。NRG1発現アイソフォームは既に論考されている(Falls、2003年 Exp.Cell Res.、284:14-30頁)。細胞膜メタロプロテアーゼADAM17及びADAM19は、膜貫通型のニューレグリン1を可溶性ニューレグリン/ヘレグリンにプロセシングすることが示されている。HRG-α及びHRG-βは、ニューレグリンの切断されたエクトドメインであり、EGF及び他のドメインを含む。EGFドメインはErbB受容体の結合及び活性化を担うことから、組換え分子はこのドメインを含むだけで、本質的にこのタンパク質の全ての可溶性成長因子作用を呈することができる(Jonesら、1999年 FEBS
Lett.、447:227-231頁)。また、ニューレグリンのプロセシングされた膜貫通型アイソフォームもあり、これはEGFドメインのErbB受容体との相互作用を介することで隣接する細胞においてジャクスタクラインによるシグナル伝達を引き起こすと考えられる。
【0017】
それでも、培養で多能性を維持することへのhESC研究の進行における重要な開発は、臨床の安全と有効度を決定する期待される規定のガイドラインと互換性がある培地と細胞培養条件の解明になるだろう。最も良い結果はhESCのための化学的に定義された培地の有用性であるだろうが、それらがGMP規格に沿って製造されるなら、化学的に定義されないコンポーネンツは、許容できる。したがって、治療目的で使用できる多能性幹細胞の集合体の培養と安定化のための方法と組成物であって、培養組成物が定義され、および/またはGMP規格に沿って製造されるものを特定することに対する必要がある。
【0018】
移殖に続いて機能する前駆細胞または分化細胞タイプの生産は、hESCベースの治療法の研究の潜在的な主要な期待である。段階的な実験計画、特に4ステージの段階的な実験計画を使用することは実質的に本明細書に、そして以前の出願人の特許および非特許刊行物に記載されたものと同様である。また本明細書で言及される霊長類多能性幹細胞(pPSC)、例えば、hESCまたはiPSCはステージ4の末期までに膵性タイプ細胞の混合種個体群に分化するよう導かれることができる分化可能な細胞である。細胞の混合物は少なくとも一般的に「膵性前駆細胞」、「膵性内胚葉」、または「膵性上皮細胞」と呼ばれ、これらは「PE」または「PDX1陽性の膵性内胚葉」、または「膵性内胚葉細胞」、または「PEC」またはそれの同等物とも呼ばれる。
【0019】
PECの細胞構成は、出願人の先行特許と非特許出願に記載されているように、完全にキャラクタライズされている。たとえばKroon ら、2008 Nature Biotechnology 26:443-52,および米国特許No.7,534,608;7,695,965;および7,993,920;発明の名称は生体内インシュリンの製造方法;および8,278,106、発明の名称はヒト多能性幹細胞から誘導される膵性細胞のカプセル化。流動細胞計測法を使用して、PECの10以上の異なった発達ロットからの20個以上のサンプルの定量化は以下のタイプの細胞を示した。細胞混合物の約50%(33-60%の範囲)は、NKX6-1を発現するがクロモグラニン(CHGA)を発現しない細胞から成る。約44%(33-62%の範囲)のポリーホルモン性内分泌細胞はCHGAを発現する。CHGA陽性細胞は、生体内の移殖に続いて、グルカゴン発現細胞を発達させ、成熟することが示された。約7%(1.3-13%の範囲)はPDX1を発現し、同時にCHGAおよびNKX6-1を発現しない(PDX1だけが存在する)。非常に小さい細胞群、混合物または集合体における約1%(0.27-6.9%の範囲)は上記のマーカー;PDX1、NKX6-1、CHGAのいずれも(または、トリプルネガティブ細胞)発現しない。したがって、PECまたはそれの同等物は、細胞のこの集合体または混合物をいう。また、PEC組成物または集合体は、さらに詳細に実施例27と表12に記載されている。クルーン他、2008、上掲、シュルツ他、2012、上掲(その開示は本明細書中に参考としてそれらの全体のすべてを援用する)。
【0020】
カプセル化されているかまたはカプセル化されていない移植されたPECは、主としてグルコース応答性ベータ細胞への一層の成熟化があとに続く、内分泌性リネッジへの膵性前駆細胞のデ・ノボコミットメントにかかわるように見える機構を通して、生体内で機能するすい小島のような構造をもたらす。したがって、そのような移植は血糖に感受性であり、処理されたヒトインシュリンの計量された放出で反応し、ネズミのストレプトゾトシン(STZ)誘発の高血糖から守る。Kroon他、2008、上掲を参照されたい。
【0021】
hESCから他の候補膵性リネッジを得ているが、長期のグルコース応答性ヒトc-ペプチド分泌とSTZ-誘発高血糖に対する保護の両方によって定義される生体内のポスト移植機能をいずれも示していない。動物モデルでの示された機能がなければ、これらの異なる実験計画のスケーラビリティ、または臨床的可能性を測るのは難しい。Cai J.ら、2009 J Mol Cell Biol 2:50-60;Johannessonら、2009 PLoS One 4:e4794; Mfopouら、2010 Gastroenterology 138:2233-2245;Ungrinら、 2011 Biotechnol Bioeng.Dec 2.doi:10.1002/bit.24375;Clarkら、2007 Biochem Biophys Res Commun 356:587-593;Jiangら、2007 Cell Res 17:333-344;およびShimら、2007 Diabetologia
50:1228-1238。その開示は本明細書中に参考としてそれらの全体のすべてを援用する。
【0022】
本明細書に記載された発明は、定義された培地を使用する無フィーダーの条件が、hESCの単独細胞継代とバルク培養をサポートするという出願人の前のデモンストレーションに続くものである。シュルツとロビンズ、2009、上掲、および米国特許第8,278,106、発明の名称:ヒト多能性幹細胞から誘導された膵性細胞のカプセル化。その開示は本明細書中に参考としてそれらの全体のすべてを援用する。hESCベースの技術の臨床試験への進行に重要であるのは、比較できるスケーラビリティのデモンストレーションである。増殖効率を高める改良は、また、時間を節約し、費用節減をもたらし、培養に費やされた時間にわたる集合体の変動の可能性を最小にするだろう。Maitraら、2005 Nat Genet 37:1099-1103。その開示は本明細書中に参考としてそれらの全体のすべてを援用する。重要にことに、本明細書に記載されるローラーボトルを使用して、たとえばhESCの凍結保存と共に、スケーリングを行うと、短期間および長期間の製品の製造について定義されたおよびばらつきのない製品を提供し、研究開発戦略の発展を提供する。
【先行技術文献】
【特許文献】
【0023】
【文献】米国特許第8,278,106
【文献】米国特許第7,534,608
【文献】米国特許第7,993,920
【非特許文献】
【0024】
【文献】Lakshmipathy et al.eds.,Emerging Technology Platforms for Stem Cells.John Wiley&Sons.,Hoboken,NJ,pp.251-274
【文献】Schulz et al.2012,Stem Cells 7:1-17,e37004
【発明の概要】
【発明が解決しようとする課題】
【0025】
本発明は基本栄養塩溶液(basal salt nutrient solution)とErbB3配位子を含む組成物に関し、該組成物には血清が本質的に含まれない。
また、本発明は基本栄養塩溶液と、分化可能な細胞におけるErbB2-由来チロシンキナーゼ活性を刺激するための手段を含む組成物に関する。
本発明は分化可能な細胞を培養する方法に関する。この方法は細胞培地表面に分化可能な細胞をプレーティング(plating)し、分化可能な細胞に基本栄養塩溶液を提供して、ErbB3と特異的に結合するリガンドを提供する。
【0026】
本発明は分化可能な細胞を培養する方法に関する。この方法では、細胞培地表面に分化可能な細胞をプレーティングして、分化可能な細胞に基本栄養塩溶液と、分化可能な細胞中のErbB2-由来チロシンキナーゼ活性を刺激する手段を提供することを含む。
【0027】
また、本発明は分化可能な細胞を培養する方法であって、消化の前に培地チャンバー中に含まれている分化可能な細胞の層に消化液を提供し、消化が細胞の層を単独細胞にすることを含む方法に関する。消化の後に、単独細胞は分化可能な細胞培養液とともに新しい組織培養チャンバー内に置かれる。そこでは、分化可能な細胞培養液は基本栄養塩溶液とErbB3リガンドを含む。いったん培養されると、単独の分化可能な細胞は単独細胞の成長と分裂を可能にする条件に置かれる。
【0028】
本発明は多能性hESの接着培養物からhES細胞集合体を懸濁液中に発生させるための方法に関する。この方法では未分化状態でエキスパンションを許容する接着成長培養条件でhES細胞を培養し;接着したhES培養細胞を単独細胞懸濁液培養(single
cell suspension culture)に分離し(diassociating);単独の細胞懸濁培養液を、単独細胞懸濁培養液が懸濁液中にhES-由来細胞集合体を形成するまで撹拌することにより、懸濁液中のhES-由来細胞集合体(hES-derived cell aggregates)を形成することを許容する第一の分化可能培養条件と接触させ、懸濁液中のhES-由来細胞集合体を発生させる。好ましい実施態様では、単独細胞懸濁培養の撹はんは約80rpmから160rpmで実行される。
【0029】
また、本発明はhES-由来単独細胞懸濁液から、hES-由来細胞集合体の懸濁液を発生させるための方法に関する。この方法は、未分化状態でエキスパンションを許容する接着性の成長培養条件でhES細胞を培養すること;hES細胞を分化するのに好適な第一の分化培養条件に未分化hES細胞を接触させ、接着したhES-由来細胞を得ること;接着したhES-由来細胞を単独細胞懸濁培養物に分離すること;単独細胞懸濁培養物を、単独細胞懸濁培養液が、懸濁液中にhES-由来細胞集合体を形成するまで撹拌することにより、単独の細胞懸濁培養液を、懸濁液中のhES-由来細胞集合体を形成することを許容する第二の分化培養条件と接触させ、懸濁液中のhES-由来細胞集合体を発生させる。好適な実施態様では、単独細胞懸濁培養の撹はんは約80rpmから160rpmで実行される。
【0030】
本発明は懸濁液中に霊長類多能性幹細胞(pPSC)集合体を含むローラーボトルに関する。本発明のある特定の態様では、pPSC集合体は、ヒト胚性幹細胞(hESC)、誘導多能性幹細胞(iPSC)、および/または、他のヒトの多能性幹細胞から成る群から選択された細胞である。1つの実施態様では、ローラーボトルはベントされないが、インキュベータまたはオーブンの能力に応じてベントすることができる。
【0031】
また、本発明は多能性幹細胞培養条件にpPSCを接触させ、pPSC集合体が形成されるまで培養物を撹拌し、それによりローラーボトル中にpPSC集合体を発生させることを含む、pPSC集合体を含むローラーボトルを発生させるための方法に関する。ある特定の実施態様では、pPSC培養物の撹はんは約3rpm、約4rpm、約5rpm、約6rpm、約7rpm、約8rpm、約9rpm、約10rpm、約11rpm、約12rpm、約13rpm、約14rpm、約15rpm、約16rpm、約17rpm、約18rpm、約19rpm、約20rpm、約21rpm、約22rpm、約23rpm、約24rpm、約25rpm、約26rpm、約27rpm、約28rpm、約29rpm、および約30rpmで回転することにより実行される。典型的に、pPSC培養物の撹はんは約5rpm、約6rpm、約7rpm、約8rpm、約9rpm、約10rpm、約11rpm、および約12rpmで回転することにより実行される。
【0032】
本発明の他の態様は、pPSCを分化する培養条件に分化可能であるかまたは未分化のpPSC集合体を接触させ、pPSCから派生した集合体が形成されるまでpPSC集合体を撹拌し、それによりローラーボトル中の懸濁液中のpPSCから派生した集合体を発生させることを含む、ローラーボトル中でpPSC集合体の分化方法に関する。ある特定の実施態様では、pPSCにより派生される集合体の浮遊培地の撹はんは約3rpm、約4rpm、約5rpm、約6rpm、約7rpm、約8rpm、約9rpm、約10rpm、約11rpm、約12rpm、約13rpm、約14rpm、約15rpm、約16rpm、約17rpm、約18rpm、約19rpm、約20rpm、約21rpm、約22rpm、約23rpm、約24rpm、約25rpm、約26rpm、約27rpm、約28rpm、約29rpm、および約30rpmで回転することにより実行される。典型的に、pPSC培養の撹はんは約5rpm、約6rpm、約7rpm、約8rpm、約9rpm、約10rpm、約11rpm、および約12rpmで回転することにより実行される。
【0033】
本発明のさらなる別の実施態様は、ボトルのローテーションまたはローリングを必要としないで、容器の回転ボトルタイプ内の流体流れをローリングさせる方法に関する。1つの実施態様では、ローリングタイプの動きは実質的に作り直されるが、回転する容器を使用しない。別の実施態様では、霊長類多能性幹細胞培養物は、例えば、ほとんどまたは全く乱流がないスムースで規則的な態様で流体をポンプで送るか、流すことにより、流れが付与される。そのような実施態様では、いかなるサブ流れ(sub-current)も近くの他のサブ流れと平行に動く。また、このタイプの動きは層流(一般的に粘度の大きい流体が、特には低速で動く時に一般的に使用される)または流線流(流体移動の安定した動き)として特徴付けられる。さらに別の実施態様では、流体移動は1種以上のバッフルを伴い、このバッフルは、連続的に均一な細胞懸濁液を作成するために室の中で流体流を分配する。更なる実施態様では、流体移動はデフレクター、分配チャネルおよび/または流路の1または組み合わせを伴う。それぞれの実施態様では、少なくとも一以上のシールが培養器の上に設けられ、細胞集合、成長および分化の間、容器の中の無菌環境を確実にする。
【0034】
また、本発明は多能性細胞培養の細胞濃度を最適化するか、または様々な増殖因子、たとえばFGF10、EGF、KGF、ノギン(noggin)およびレチノイン酸、アポプトーシス阻害剤、Rho-キナーゼ阻害薬、および同様のものの濃度を変えることにより、得られた細胞培養物の組成を富化または変化させる方法、および/またはhES-由来細胞集合体懸濁液のポピュレーションを変化させる方法に関する。
【図面の簡単な説明】
【0035】
図1図1は規定された条件(8ng/mL FGF2、100ng/mL LR-IGF1、1ng/mL アクチビンA(Activin A)における、BG01v中の、ADAM19、ニューレグリン1、およびErbB1-3のリアルタイムのRT PCR発現解析について示す。GAPDHとOCT4コントロール反応を示す。
図2図2は、AG879を使用した、BG01v細胞の増殖抑制について示す。BG01v細胞は、6-ウエルのトレー中にプレーティングされて、プレーティング後、DMSO(A)、50nM-20マイクロM AG1478(B)、または100mM-20マイクロM AG879(C)に24時間暴露された。培養5日後に、培養物は、アルカリホスファターゼ活性のために固定され、染色された。AG1478は、これらの濃度(Bに示された20マイクロM)では増殖に影響するように見えなかったが、AG879は5マイクロM(C)で実質的に細胞成育を遅くした。
図3図3は10ng/mL HRG-β、10ng/mL アクチビン A、200ng/mL LR-IGF1、および8ng/mL FGF2を含む定義された培養液であるDC-HAIF中で培養されたBG01v細胞のモルホロジー(AおよびB)について示す。また10ng/mL HRG-β、10ng/mL アクチビン A、および200ng/mL LR-IGF1を含む定義された培養液で培養されたBG01v細胞のモルホロジー(CおよびD)について示す。
図4図4はマウス胚性幹細胞(A)とMEFs(B)中のRT PCRによるADAM19、ニューレグリン1、およびErbB1-4の発現について示す。
図5図5はマウス胚性幹細胞中でのErbB1とErbB2シグナリングの抑制について示す。2×10 Mouse R1ES細胞が、10%のFBS中1:1000のMATRIGEL(登録商標)、10%のKSRと1000U/mLマウスLIF(ESGRO)上にプレーティングされた。翌日、DMSO(対照キャリア)、1-50マイクロMのAG1478、または1-50マイクロMのAG879が新鮮な培地と共に加えられた。培地は、8日目に固定されて、アルカリホスファターゼ活性のために染色された。DMSO(A)および1-50 マイクロMのAG1478(BおよびC)は増殖を明白に抑制しなかった。AG879は50マイクロMのときに実質的に細胞成育を禁止して(DおよびFの比較)、20マイクロM(E)で増殖を遅くしたかもしれない。
図6A図6はコンディショニングされた培地(CM)中で育てられたBG02細胞の増殖抑制について示す。(A)50マイクロMのAG825は、CM中で育てられたBG02 hESCの増殖を禁止した。(B)AG825はhESC中のErbB2 Y1248リン酸化を抑制する。(C)増殖因子の異なった併用におけるCyT49 hESCの連続継代のコロニー計数。(D)BG02細胞を使用するhESC増殖におけるIGF1およびHRGの役割の細胞計数分析(左)。(E)繰返し実験のOCT4/DAPI免疫染色は、ActA/FGF2条件と比べて、IGF1とHRGがOCT4細胞の割合をかなり増加させたことを示した。(F)一夜増殖因子のない飢餓状態で、次いで15分、DC-HAIFでパルスされたBG01 DC-HAIF hESCのRTKブロッティング分析。または、定常状態培養物が示される(左)。規格化された相対強度の平均と範囲がプロットされた(右)。
図6B図6の続き。
図6C図6の続き。
図6D図6の続き。
図6E図6の続き。
図6F図6の続き。
図7図7は異なった増殖因子の組み合わせに従って規定された条件で育てられたマウスES細胞について示す。(A)2×10細胞が8日間異なった増殖因子の組み合わせで育てられた後の、APコロニーのスコアを示している。(B-G)異なった増殖因子の組み合わせで育てられたAPコロニーの4倍イメージを示す。
図8A図8はDC-HAIF培地中で維持されるヒト胚性幹細胞のキャラクタリゼーションについて示す。(A)BG02 DC-HAIF p25細胞からの奇形腫の分析は外胚葉、中胚葉および内胚葉への多能性分化能を示した。(B)分化した15%FCS/5%KSR中で培養されたBG02細胞の免疫染色。(C)CM中(64継代)またはDC-HAIF(規定された培地内で10または32継代)で維持されたBG02細胞中の47,296の転写プローブを含む高密度イルミナ セントリックス ヒューマン-6 エクスプレッション ビードチップス(Illumina Sentrix Human-6 Expression Beadchips)を使用して調査された転写の分配のベン図。(D)BG02 DC-HAIF p32細胞の転写プロフィールが、CM中で維持されたBG02細胞のものと非常に類似し(上部)、DC-HAIFでの初期および終期の継代培養と実質的に変化されなかった(下部)ことを示すスキャッタープロット分析。(E)ビードスタジオ(Beadstudio)ソフトウェアを使用することで作られた異なったポピュレーションにおける相対遺伝子表現の階層的な菌株群形成樹状図。
図8B図8の続き。
図8C図8の続き。
図8D図8の続き。
図9図9はDC-HAIF媒地の存在下で、ヒト化細胞外マトリックス(ECMs)上で培養された細胞のモルホロジーについて示す。(A)増殖因子の減少されたMATRIGEL(登録商標)(1:200に希釈)上で成長されたCyT49細胞(1:200に希釈)。CyT49細胞はまた、(B)全ヒト血清、(C)ヒトフィブロネクチン、および(D)VITROGRO(登録商標)でコーティングされた組織培養皿で成長された。
図10図10はヒト胚性幹細胞の単独細胞継代について示す。(A-D)ACCUTASE(登録商標)での継代および60mmの培養ざら中のおよそ5×10の細胞のプレーティングの後の、ステージごとのBG02細胞のイメージ。(A)初期の平板培養の1.5時間後、生存細胞が皿に接着していることを示す。(B)平板培養後20時間では、細胞の大多数は集合し、小さいコロニーを形成した。これらのコロニーは、平板培養後4日まで、増殖して拡大し(C)、5-6日間の経過で皿全体を覆いながら上皮のような単分子層を形成する(D)。(E)DC-HAIF中でACCUTASE(登録商標)とともに19回継代したBG02培養で示された正常な男性核型。
図11図11は、(A)ACCUTASE(登録商標)、(B)0.25%トリプシン(Trypsin)/EDTA、(C)TrypLE、または(D)バーシーン(Versene)を使用したヒト胚性幹細胞の単独細胞継代の後の細胞モルホロジーを示す。
図12図12はDC-HAIF中で培養されたヒト胚性幹細胞の大規模な成長について示す。(A)>1010の細胞へのエキスパンションの後のBG02細胞のフローサイトメトリー解析。> 85%の細胞はOCT4、CD9、SSEA-4、TRA-1-81を発現した。(B)OCT4、NANOG、REX1、SOX2、UTF1、CRIPTO、FOXD3、TERT、およびDPPA5の多能性マーカーの発現のRT PCR分析。分化型リネッジ(differentiated lineages)のマーカー、α-フェトプロテイン(AFP)、MSX1、およびHAND1は検出されなかった。(C)ヒト染色体特異性反復配列(human chromosome-specific repeats)を使用する蛍光 in situ ハイブリダイゼーション(FISH)が、hChr12、17、XおよびYの標準のコピー数の維持を示した。
図13図13は、7代または2カ月より長い期間、FGF2の非存在下で、HRG-βとIGF1を含む規定された培地中で成長されたhESC BG02細胞のモルホロジー(A)と正常核型(B)について示す。
図14図14は、DC-HAIF(32代)またはDC-HAI(10代)中で維持されたhESC(BG02)からの転写のスキャッタープロット分析について示す。大部分の転写の発現が両方のサンプルで検出された。そして、転写性は、外因のFGF2が非存在下でのhESCの培養によっては、実質的に変化されなかった。相関係数(R)が、>0(すべてのドット)の発現水準でのすべての検出された転写を使用することで、または>0.99の検出信頼度を示す転写で求められた(R select、点線の楕円形により示される)。斜線は、平均および2フォールドディファレンス(2-fold difference)の限界を示す。
図15図15はDC-HAIFで維持された初期および晩期の継代BG02細胞の異なったポピュレーションにおける相対遺伝子発現の階層的な菌株群形成樹状図を示す。細胞は、密接(約0.0075)に群生し、コンディショニングされた培地(CM)でBG02およびBG03細胞が同様に維持された(約0.037)。また、DC-HAI中で維持されたBG02細胞は、他の評価されるhESCポピュレーションと密接して群生される。説明として、図15では、CMはコンディショニングされた媒体である。DCは、上で定義されるように、定義された培養液DC-HAIFである。apはACCUTASE(登録商標)単独細胞継代である。DC-HAIは、FGF2を含まないことを除いて、本明細書に定義されるような、DC-HAIFと同じである。
図16図16は96-ウエルおよび384-ウエルのDC-HAIF中で培養されたBG02細胞のモルホロジーとアルカリ性ホスファターゼ染色について示す。96-ウエルプレートの1つのウエルで成長したBG02細胞(10細胞/ウエル)の相コントラストイメージング(A)および(B)アルカリ性ホスファターゼ染色。384-ウエルプレートの1つのウエルで成長したBG02細胞(10細胞/ウエル)の相コントラストイメージング(C)および(D)アルカリ性ホスファターゼ染色。
図17図17はDC-HAIFで懸濁培養で育てられたBG02の暗視野イメージについて示す。2日目と6日目の培養物について示す。4倍率を使用することでイメージを得た。
図18図18はDC-HAIFの接着および懸濁培養での成長速度について示す。接着および懸濁培養で平行なウエルで1×10細胞のBG02がプレーティングされた。細胞数は1-6日で数えられた。
図19図19は懸濁および接着hESCのqPCR分析について表現する。懸濁液で成長するBG02細胞(S.hESC)と接着培地で成長するもの(hESC)は同等なレベルのOCT4発現およびSOX17発現の欠如を示した。胚体内胚葉(DE)に分化した接着細胞、および懸濁液中で胚体内胚葉(S.DE d3)に分化した懸濁hESCは、ともに期待された顕著なOCT4の少ない発現とSOX17の多い発現を示した。
図20図20は懸濁培養におけるY27632の存在下でのhESC集合の増大について示す。3mLのDC-HAIFまたはDC-HAIF + Y27632中に、2×10のBG02細胞をシードし、6-ウエルのトレイ中で、100rpmの回転台上でインキュベータ内においた。1日目と3日目に集合体のイメージを得た。
図21図21はY27632の存在下での懸濁集合体のRT PCR分析について示す。RT-PCRは、多能性のマーカーの発現を評価するために増殖した培養物に実行された。OCT4、NANOG、REX1、SOX2、UTF1、CRIPTO、FOXD3、TERTおよびDPPA5は検出された。分化型リネッジのマーカーであるAFP、MSX1、およびHAND1は検出されなかった。
図22A図22A-Nはマーカー遺伝子OCT4(パネルA)、BRACH(パネルB)、SOX17(パネルC)、FOXA2またはHNF3beta(パネルD)、HNF1beta(パネルE)、PDX1(パネルF)NKX6.1(パネルG)、NKX2.2(パネルH)、INS(パネルI)、GCG(パネルJ)、SST(パネルK)、SOX7(パネルL)、ZIC1(パネルM)、AFP(パネルN)、HNF4A(パネルO)、およびPTF1A(パネルP)の発現様式を示す棒グラフである。これは完全なリストではないが、多能性ヒト胚性幹(hES)細胞(ステージ0、d0)、胚体内胚葉細胞(ステージl;d2)、PDX1-陰性の前腸内胚葉細胞(ステージ2;d5)、PDX1-陽性内胚葉細胞(ステージ3、d8)、膵性内胚葉細胞(ステージ4;d11)、膵性内分泌性先駆、および/またはホルモン分泌細胞(ステージ5;d15)を同定するために使用できる。
図22B図22の続き。
図22C図22の続き。
図22D図22の続き。
図22E図22の続き。
図22F図22の続き。
図22G図22の続き。
図22H図22の続き。
図22I図22の続き。
図22J図22の続き。
図22K図22の続き。
図22L図22の続き。
図22M図22の続き。
図22N図22の続き。
図22O図22の続き。
図22P図22の続き。
図23図23は、培養物における培地の全容積(mL)と相関した懸濁液の細胞集合体の直径(ミクロン)の範囲を示すグラフである。
図24A図24A-Dは、hES-由来細胞中のPDX1(パネルA)、NKX6.1(パネルB)、NGN3(パネルC)、およびNKX2.2(パネルD)の、それらが由来するhES細胞培養の細胞濃度との相関での、マーカー遺伝子の発現パターンを示す棒グラフである。
図24B図24の続き。
図24C図24の続き。
図24D図24の続き。
図25図25は、0日(d0)での多能性細胞の細胞集合体の直径と、2、5、8および12日目(それぞれd2、d5、d8、およびd12)の分化した細胞集合体の直径を示す。測定された細胞集合体サイズは、最小、最大、2番目と3番目の四分線、およびメジアンを示しながらプロットされた。毎日、1x10細胞/mL(左)と2x10細胞/mL(右)から形成された細胞集合体を示している。
図26A図26A-Dは、回転ボトル容器フォーマット中の種々の示した標識遺伝子の発現パターンを示している棒グラフである。それぞれのチャートの左のサンプルは6ウェルのトレーの中に形成されたゼロ日目(d0)の細胞集合体(多能性細胞マーカー対照)を表す。棒によってマークされたサンプルは、(左から右に向かって):0日目の未分化集合体、および2、5、8、12日目の分化した集合体を示す。黒い棒は、1x10細胞/mLの回転ボトル;黒いダッシュの付いた棒は2x10細胞/mLの回転ボトル;灰色の棒は、6ウェルのトレーである。
図26B図26の続き。
図26C図26の続き。
図26D図26の続き。
図27A図27A-Dは、実施例27の表11と12に記載されているように、より大きい回転ボトル容器フォーマット中の種々の示したマーカー遺伝子の発現パターンを示している棒グラフである。左のサンプルは6ウェルのトレーhESC集合と分化(対照;図27A)を表す。0、2、5、8、および12日目での、ベントされた(V)またはベントされない(NV)490cmローラーボトル(約1.2L容量)での分化が示されている。2日目のサンプルは培養物の損失のため、最後の490Vのサンプル(一番右のカラム)については採取されなかった。同じd0コントロールはそれぞれのローラーボトル分化(アスタリスク)に使用された。
図27B図27の続き。
図27C図27の続き。
図27D図27の続き。
【発明を実施するための形態】
【0036】
発明の詳細な説明
ポリマーの足場、マトリクス、および/または、ゲル内に個別細胞をシードすることに基づいている再生医療の従来知られている方法と対照して、本明細書に記載された方法は、組織形成の構成用ブロックとして多能性hES単独細胞懸濁液またはhES-由来(分化された)単独細胞懸濁液から形成された細胞集合体懸濁液を使用する。細胞集合体はしばしば数百ないし数千もの個別細胞により構成され、接着結合部と細胞外マトリックスを介して連結され、全体として最終的な分化された生成物に貢献する。この点で、より伝統的な設計された組織に対して多くの有用な特性を提供する組織のタイプとして細胞集合体を定義できる。
【0037】
本発明の1つの実施態様では、多能性幹細胞培養物またはhES-由来細胞培養物の単独細胞懸濁液からhES細胞集合体懸濁液を製造する方法が提供される。多能性幹細胞は、初めは、線維芽細胞フィーダーの上で培養されるか、またはそれらはフィーダーなしで培養されることができる。hESCの単離方法およびヒトフィーダー細胞上での培養は、ヒトフィーダー細胞上でのヒトES細胞の培養方法(METHODS FOR THE CULTURE OF HUMAN EMBRYONIC STEM CELLS ON HUMAN FEEDER CELLS)の名称の、米国特許第7,432,140号に記載され、その全体が本明細書の一部として参照される。フィーダーの上に培養されたhESCから直接作られているか、またはそれから開始された多能性ES細胞集合体懸濁培養は、例えば、接着培養におけるようなhESC単分子層作成の必要性を避ける。これらの方法は実施例17および18に詳細に記載される。
【0038】
本発明の他の実施態様は、分化培地、例えば、TGFβファミリーまたは受容体を活性化することのできる分化培地試薬、望ましくはTGFβファミリーメンバー内に、直接細胞集合体懸濁液を製造する方法を提供する。そのような試薬としては、アクチビン A、アクチビン B、GDF-8、GDF-11、およびNodalがあげられるが、これらには限定されない。分化培地内に細胞集合体懸濁液を製造する方法は他の方法と区別され、多能性幹細胞培地、例えばStemPro内に細胞集合体懸濁液培養物の生産を提供する。
【0039】
本発明のさらなる他の実施態様は、たとえば上掲のd’Amour2005と2006年に記載されたようなステージ1、2、3、4からの細胞である、分化型hES細胞培養物(hES-由来細胞培養物」または「hES-由来細胞」とも呼ばれる)から形成された細胞集合体懸濁液を製造する方法を提供する。したがって、本明細書に記載される細胞集合体を形成するための方法は、hESまたはhES-由来細胞の多能性または多分化能性ステージのいずれかに制限されないで、むしろ使用方法と細胞タイプ最適化の必要性が、どの方法が好ましいかを決めるだろう。これらの方法は実施例19-22で詳細に記載される。
【0040】
本発明の別の実施態様では、得られる細胞組成物の制御、例えば膵性内胚葉細胞、膵臓内分泌細胞、および/または、PDX1内胚葉細胞の割合の制御を、異なった増殖因子の濃度を変えることによって行う。これらの方法は実施例21に詳細に記載される。
【0041】
別途記載されない限り、本明細書で使用する用語は、関連技術における当業者の慣例的用法によると理解されるべきである。また、以下に提供された用語の定義に加えて、分子生物学上の一般的な定義は以下の文献に見いだされる;Riegerら,1991 Glossary of genetics:classical and molecular,5th Ed.,Berlin:Springer-Verlag;およびCur
rent Protocols in Molecular Biology,F.M.Ausubelら,Eds.,Current Protocols,ajoint venture between Greene Publishing Associates,Inc.and John Wiley&Sons,Inc.,(1998 Supplement)。単数形の表記が明細書と特許請求の範囲において使用される場合、それが使用されている文脈に基づいて、1つまたはそれ以上の意味であることが理解されるべきである。たとえば、「細胞」は少なくとも1つの細胞を意味する。
【0042】
また明細書および特許請求の範囲において、特記の無い限り、成分の量、物質の割合または比率、反応条件および他の数値については、すべての場合に“約”という用語によって修飾されるものとして理解される。反する記述のない限り、明細書および特許請求の範囲において記載される数値パラメータは近似値であり、本発明により得られることが求められるものに応じて変化することができる。少なくとも、特許請求の範囲について均等論の適用を制限するものではなく、それぞれの数値パラメータは少なくとも有効数字として報告されており、通常の丸めの技術によっている。
【0043】
「約」という本明細書に使用される用語は、“約”が付された数が、示された数字のプラスマイナス1-10%を含むことを意味する。例えば、“約”100細胞は95-105の細胞、または状況によっては99-101の細胞を意味する。本明細書では、「1から20」などの数字の範囲は、与えられた範囲のそれぞれの整数を呼ぶ。例えば、「1から20の細胞」は1つの細胞、2つの細胞、3つの細胞などで最大20の細胞までを意味する。約が整数でない範囲に付された場合、示された有効数字と同じ程度で、プラスマイナス1-10%を含むことを意味する。例えば約1.50から2.50mMは、最低で1.35Mで最大で2.75Mの間の値であり、0.01の増分で上記の間の任意の数であることができる。
【0044】
本発明はhES-由来単独細胞懸濁液から、hES-由来細胞集合体の生産のための方法を提供する。種々の機械的および非生物学的要素は、培養における細胞の動きと集合、最適の細胞集合体の生育性と特性に相関する流体機械的なミクロ環境、並びにスケールアップに使用できる規格化された変数に影響を与えるので、様々な培養容器、皿、三角フラスコ、バイオリアクタ、ボトルなどにおける細胞の増殖および分化の動きおよび効果、および存在する場合には細胞に関する様々な培地条件を特徴付けることが必要である。それらの要因としては、これらに限定するものではないが、せん断速度、せん断応力、細胞濃度、および細胞媒体中の種々の増殖因子があげられる。
【0045】
せん断速度とせん断応力は、システム中の流体せん断を定義する力学特性である。せん断速度は、特定の距離における流体速度と定義されて、秒-1の単位で表される。せん断速度は、せん断応力に比例し、せん断速度(γ)=せん断応力(t)/粘度(マイクロ)である。せん断応力は、細胞表面のタンジェント方向に作用する流体せん断力と定義されて、単位面積あたりの力(ダイン/cmまたはN/m)として表される。せん断応力は静置されていた細胞を含む流体を撹拌することにより、静置した液体を通して細胞を撹拌することにより、または撹拌された動的な液体環境の中を細胞を動かすことにより発生されることができる。流体粘度は典型的にはポイズで測定され、1ポイズ=1ダイン 秒/cm=100センチポイズ(cp)である。知られている最少の粘性流体の1つである水の粘度は0.01cpである。培地における、真核細胞の典型的な懸濁液の粘度は、25℃の温度で1.0から1.1cpの間である。密度と温度の両方が液体粘度に影響する。
【0046】
また、流体速度は、流れが層流であるか、または乱流であるかを決める。層流は、粘性力が支配的である場合に生じ、低速での平滑で均一な流線によって特徴付けられる。対照
的に、乱流においては高速度と慣性力が支配的であり、渦巻(eddies)と渦(vortices)の発生、および空間と時間にまたがる無秩序な流れにより特徴付けられる。レイノルズ数(Re)として知られる無次元の数値は、層流または乱流の流れの存在を定量化するのに通常使用される。レイノルズ数は、慣性対粘性力の比率であり、(密度×速度×長さスケール)/(粘度)として定量化される。層流はRe<2300の時に支配的であり、Re>4000の時には乱流が支配的である。流体速度とのこの相関に基づいて、レイノルズ数とその結果、すなわち流体流が層流であるかまたは乱流であるかの程度は、懸濁液中の細胞が経験するせん断速度とせん断応力に直接正比例する。しかしながら、高速せん断応力条件は層流の、そして乱流の両方の液体環境で発生しうる。初めは、液体が動きに抵抗する傾向がある。引力を受ける固体表面の最も近くの流体には、境界層または流れがない範囲がすぐ表面に隣接して発生する。これは表面から流体流れの中心まで流体速度の傾きを形成する。流体速度の傾きは、境界層から最も高い流体速度の領域までの距離と、流体の速度の関数である。容器を通る、または容器の周りの液体流れが加速するのに従って、流れの速度は液体の粘度に打ち勝ち、そして、平滑で、層状から成る傾きは破壊され、乱流が形成される。トーマス他は、乱流条件の下の細胞分解が、局所的に高速せん断応力と高エネルギー放散速度の領域で最も頻繁に起こることを示した。トーマス他、(1994)Cytotechnology 15:329-335を参照。これらの領域はランダムに発生するが、速度勾配が最も高い境界層でしばしば見つけられる。流体速度におけるこれらのランダムな変動は、細胞培養の製造システムのスケールアップで決定的なマイナスの影響を与える場合がある、非常に高いせん断応力の領域を発生させる場合がある。したがって、ほ乳類細胞培養製造スケールアップシステムにおいて、そのようなシステムのせん断力の主な供給源を制御することによる、細胞密度と生育性を維持できる方法の必要性が存在している。
【0047】
Henzler(Henzler、2000、バイオリアクタ中での粒子応力(Particle stress in bioreactors)、In Advances
in Biochemical Engineering/Biotechnology、Scheper、T. Ed. Springer-Verlag、Berlin)およびColomer他(Colomer、J.ら 2005. 低せん断流れにおける粒子凝集の実験的分析(Experimental analysis of coagulation of particles under low-shear flow)、Water Res. 39:2994)により与えられた方法により、回転する6-ウエルの皿中のバルク流体の流体機械的特性が計算された。無次元の応力は、乱流定数×(集合体直径/コルモゴロフ マイクロスケール)^乱流指数と等しい。せん断応力は無次元応力×流体密度×(動粘度×力のインプット)^0.5と等しい。せん断速度はせん断応力/動粘度と等しい。力のインプットとコルモゴロフのマイクロスケールの計算において、レイノルズ数は、各回転速度について必要であり、(回転速度×フラスコ直径)^2/粘度と等しい。力のインプットとコルモゴロフのマイクロスケールの両方がレイノルズ数の関数なので、すべてのせん断応力およびせん断速度の計算値は回転速度に従って変化する。
【0048】
そのうえ、せん断応力とせん断速度は、形成される集合体の直径に依存する無次元応力の関数であり、その結果、集合体によって経験されるせん断応力および速度は回転の時間と共に増加すると予想される。計算の例が、100-200ミクロンの集合体直径と、60-140rpmの間の回転速度について、実施例17に示されている。これらの方法は、経時的なバルク流体の平均したせん断に関する見積りを提供するために使用された。しかしながら、容器の壁におけるせん断応力は、境界効果のために最も高くなると予想される。壁面せん断応力を予測するために、Ley他が、6-ウエルの皿の壁面せん断応力が回転半径×(密度×動粘度)(2×pi×回転速度)0.5に等しいとの提案をした。このアプローチを使用して、壁面せん断応力は、60rpmから140rpmまでの回転速度について計算されて、実施例18に示されている。バルク流体中で集合体によって経験される時間平均されたせん断応力と異なり、壁で起こるせん断応力は集合直径に非依存性であることに注意すべきである。
【0049】
培養細胞濃度は、また、組織機能の重要な要素であり、2次元である伝統的な組織(例えば、接着して構成されたもの)で達成および/または最適化するのは難しい。細胞濃度の分化に対する効果はさらに詳細に実施例20で説明される。より正確に生体内の細胞密度と立体配座を反映する3次元(3D)の構造を仮定することによって、細胞集合体はこの限界を克服できる。その結果、細胞がそれらの意図している構造を達成する期間をかなり減少し、および/または、より一貫していて効率的にすることができる。そのうえ、3D集合形式の細胞は分化することができ、より最適に機能することができる。この構造が、接着培養よりもより正常な生理学的現象に類似しているからである。製造工程における機械的な困難は、たとえば接着培養における機械的な困難と比較して、懸濁培養において浮動している細胞集合体にほとんどダメージを与えない。
【0050】
また、典型的な製造規模の懸濁培養は細胞濃度を最大にしている間、細胞生存率を維持するための方法として培地の連続かん流(continuous perfusion)を利用する。このような関係においては、培地交換は接着細胞と懸濁集合体に異なった影響の流体せん断を与える。培地流れが細胞表面を横切って流れるとき、不動化された接着細胞は流体せん断応力を受けることがある。対照的に、懸濁集合体は集合体表面を横切るせん断応力をほとんど受けない。集合体が適用されたせん断力に対応して自由に崩れることができるからである。長期間のせん断応力が接着胚性幹細胞に有害であり、懸濁している集合体の形式が最適な生存および機能のために好しいことが予想される。多能性幹細胞から由来される多能性幹細胞、および/または、多分化能性前駆細胞(multipotent progenitor cells)の生産のための効率的な製造プロセスと、せん断速度とせん断応力に関連する上記の観測された機構の必要性に基づく必要性が存在している。本発明は、初めて多能性幹細胞から懸濁形式、特には細胞集合体懸濁液形式で得られた多能性幹細胞、および/または、多分化能性前駆細胞の生産のための製造方法を提供する。
【0051】
本明細書において使用される時、「単独細胞懸濁液(single cell suspension)」またはその同等な表現は、すべての機械的または化学意味において、hES細胞単独細胞懸濁液またはhES-由来(hES-derived)単独細胞懸濁液を意味する。細胞集塊を解離して、第1次組織、培養物中の接着細胞および集合体から、単独細胞懸濁液を形成するためにはいくつかの方法が存在し、例えば、物理的力(細胞スクレーパ、狭口径ピペット、細針吸引、渦離解、および細かいナイロンまたはステンレスメッシュを通した強制濾過などによる摩砕などの機械的な解離)、酵素(トリプシン、コラゲナーゼ、アキュターゼ(Acutase)などによる酵素的な解離)、または両者の併用があげられる。さらに、hES細胞の単独細胞への解離を支持するために役立つ方法および培養培地条件は、エキスパンション、細胞選別、マルチウェルプレート検定のためのシーディングの定義のために有用であり、培養手順とクローンエキスパンジョンの自動化を可能にする。したがって、本発明の1つの実施態様は、未分化の多能性hES細胞または分化型hES細胞の長期の維持と効率的なエキスパンションをサポートすることができる、単独細胞の安定した酵素学的解離hES細胞またはhES-由来細胞培養系を発生させるための方法を提供する。
【0052】
本明細書において使用される時、「ローラーボトル」、「回転ボトル」またはそれらの同等表現は、その軸の周りで回転するように適合された円筒型容器を言う。これらの容器はコーニング、フィッシャー サイエンティフィック、および他のメーカーを通して販売されたローラーボトルを含むが、これらの容器には限られず、たとえばドラム、バレル、
および側壁上を回転できる他のボトルタイプ容器も同様に含まれる。本明細書に記載されるローラーボトルは、筒状であるか、または円形の横断面を持つ必要はない。それらは非円状、例えば、一定の幅を有する閉曲線であることができる。1つの実施態様では、カーブは、米国特許番号5,866,419(本明細書中に参考として援用する)に記載されているような、ルーロー三角形または丸コーナを有するルーロー三角形である。円形断面のローラーボトルが滑らかな回転を提供する唯一の形状又は幾何学的形状ではない。そのようなカーブは無限の数で存在し、それらも本発明において意図される。しかし一般にそのようなカーブは産業上では遭遇しない。なぜなら回転ボトルに使用されるほとんどの機械は、固定された状態でカーブに垂直に水平軸が走ることを要求するからである。非円状のローラーでは、回転の間に前後の運動(back-and-forth translationをmotion)を伴うのでそうはならない。他の円柱状ローラーボトルでの普通の円運動に加えて、この追加の動きまたは回転は、円形の断面タイプのローラーボトルと比べて、ガス交換の機能をアップする。
【0053】
典型的な筒状のローラーボトルは、下端の壁、上端の壁、および下端と上端の壁の間に延びる筒状の側壁を含んでいる。上端の壁は、ローラーボトルの内部へのアクセスを提供するために開口部を含んでいる。そのようなローラーボトルの内面は細胞相互作用、および/または、接着に対して活性な表面を提供する。したがって、バイオケミストリのオックスフォード辞典は、ローラーボトルが接着細胞の単分子層の培養に使用される円筒型容器であることを示す。真に、接着細胞などの多量の細胞を育てるか、または細胞によって分泌される医薬用原料などのような細胞副産物の産生に、ローラーボトルは望ましい。ローラーボトルの筒状の側壁は、平滑であるかまたはパターンづけられる。ボトルにパターンが付けられる時、パターンは下端の壁から上端の壁まで延びる。増加した細胞成長表面と、ボトルが側壁の軸の周囲を回転する時にボトルのすべての内部表面領域への液体の流れを容易にするためである。
【0054】
ローラーボトルの断面に依存せず(円形であるかまたは非円形であるかに関わらず)、液体増殖培養液はローラーボトルの中に投入され、保持される。ボトルの回転運動は、液体培地で内面を濡らし続ける。その結果、細胞生長を促進する。適切な装置の回転ローラーは、本発明のローラーボトルを回転させるのに使われる。
【0055】
通常、ローラーボトルはガラス、ステンレスまたは透明なプラスチック、たとえばポリスチレン、ポリウレタン、ポリ塩化ビニル、ポリカーボネート、ポリプロピレンなどのポリオレフィン、グリコール添加剤を含むポリエチレン・テレフタラート、エチレングリコール1,4-シクロヘキサンジメタノールテレフタレートコポリエステル、および同様のものなどで作られる。細胞成育がボトルを倒立顕微鏡に置くことによってモニターできるように、透明な材料が好ましい。
【0056】
手動および自動化されたローラーボトルシステムは製薬、生化学、医学の分野で使用されており、たとえば細胞成育や伝染病、非相同糖タンパク質生産、ワクチン製剤、および高密度植物細胞培養などのプロセスに40年間以上使用されている。Tanaka et
al.1983,Biotechnol.Bioeng.25:2359;Tanaka 1987,Process Biochem.Aug.,106;Hong, et
al.1989,Biotechnol.Prog.5:137;Elliot 1990,Bioprocess Tech.10:207;Tsao 1992,Annals N.Y.Acad.Sci.665:127;Pennell&Milstein
1992,J.of Immun.Meth.146:43;Olivas et al.,1995,Immun.Meth.182,73(1995);Singhvi et al.1996,Cytotechnology 22:79;およびKunitake et al.997,Biotechnology 52:3289を参照。こ
れらの文献の記載は本明細書に参考としてその全体が援用される。さらに、細胞培養製品(すなわち、ワクチン)の工業規模生産のために、単位操作ベースシステムが利用されているときさえ、細胞は最終的な増殖期のためのマイクロキャリア培養への転送の前に頻繁にローラーボトル内で継代される。Edy,1984,Adv.Exp.Med. Biol.172:169を参照。この文献の記載は本明細書に参考としてその全体が援用される。
【0057】
これまで、接着細胞を培養するためのローラーボトルの広範囲の使用はいくつかの要素の結果と考えられている。プロセスは以下を含む。(i)水平な円筒容器は培地または流体の十分な量を含み、軸方向に回転される。ローラーボトルのスケールアップは長さの関数であるので、スケールアップのための開発や工夫は必要ない。工業化のための短い開発のタイムラインのため、新製品の市場への早い導入ができる。(ii)ローラーボトルシステムは一定の流体-気体接触を許容する。すなわち軸の回転は、回転中にいつもボトルの内部表面を、少なくとも薄層の流体または培地がコーティングすることを許容する。この層が、増加する流体-ガス交換を許容し、ボトルが回転するとき、その気体はローラーボトルの底部の培地のプールの中にある細胞に戻る。(iii)大量培養において長期間の無菌状態を維持するのが可能である。なぜなら、1以上のローラーボトルの汚染が全体のロットの汚染をもたらさないからである。(iv)栄養物と廃棄物レベルの精密制御が可能である。および(v)細胞の直接監視が可能である。例えば、ステージ1-4後の細胞の効率的な分化と適切な特定を確実にするためのある特定の細胞マーカーの識別が比較的簡単になる。
【0058】
ローラーボトルまたはローラータイプの容器の立体的な細胞集合体を培養する使用に制限されず、本発明の細胞集合体を作る他の手段があることを意図する。たとえばローラーボトルまたは筒状の容器のドラム上の回転により作られた動きを使わないことも意図される。一般に、pPSC集合体を作るために使用される動きのタイプは、例えば、より層流の流れを作るために容器または部屋を煙霧化することによって作れる。本明細書でローラーボトルについて説明している状態で達成されたものと同様の状態での動きは、液体培地または細胞自体の流入と流出を促進する入口と出口を設けることによって作ることができる。またこの動きは一個以上または組み合わせの流れディストリビュータによって達成されることができる。例えば、そのような流れディストリビュータとしては、部屋の中の流体または培地の流れを広げて、その結果、立体的な細胞集合体の連続した一定の混合を行うためのバッフルがあげられる。別の例では、流れディストリビュータは1以上のデフレクタープレート、分配チャネルおよび/または流れチャンネルの組み合わせであることができる。そのチャンネルはローラーボトルタイプ、円筒容器または部屋の中で必ずしも起こるわけではないが、ローラーボトルの中に見いだされるものと類似した流体の動きを作り出す。その結果、非乱流であるが、細胞衝突を促進して、本明細書に記載されるように、細胞がお互いに接着し、細胞集合体を形成するのを許容するに十分な低いせん断力を発生させる流体の動きを作成する代替の手段がある。
【0059】
それでも、ローラーボトルの中で接着性であるか、または接着依存性細胞の一定の特徴には、不利益もある。例えば、接着細胞の成長は細胞の接着のために本質的にかなりの表面積を必要とする。そして、ローラーボトルの成長に利用可能な表面積が制限される。ローラーボトルの中で混合する在来法は、すべての目的、たとえば細胞移植または播種、細胞成育、および/または、ウイルス伝播、または増殖のために一方向へ一定速度で回転する。接着性および接着依存性細胞を培養するためのほとんどのローラーボトルプロセスでの標準の回転数は、約0.125rpmから5rpmである。これらの培養のためには、細胞ができるだけ早くローラーボトルの側面と接触することが重要である。細胞が容器壁へ接触した後にのみ、細胞は分化し、細胞シートを形成することができるからである。容器の内壁への遅い細胞付着は、ローラーボトルの表面での細胞の低い生存度および/または不均質な播種と、したがって不均質な成長を導く。そのうえ、効率の悪い混合は細胞成育を制限する。なぜならボトルが回転するので浸漬された表面に接着した細胞シートから毒素類(例えば、二酸化炭素)の適当な除去や、適切な栄養物(例えば、酸素)の適切な取得ができないからである。興味深いことに、これらの不利益は、懸濁液中における、分化可能な多能性細胞の増殖、集合、成長、および分化にローラーボトルを使用するのに重要ではない。
【0060】
上記の特性および6ウェルトレーなどの中でhES細胞集合体を形成するための方法に関する。出願人の開示によれば、当業者は多能性幹細胞集合体を作るためにローラーボトルを使用しないだろう。Schulz et al.2012,Stem Cells 7:1-17,e37004,および米国特許8,153,429および8,008,075を参照されたい。これらの文献は本明細書中に参考としてそれらの全体が援用される。シュルツは、環状または半径方向の運動または回転を使用し、中心の渦に重ね合わせ、培養容器の中心で細胞のより高い局所的濃度を得ることにより効果的に多能性幹細胞を集合できることを教示する。例えば、6ウェルトレーのセンターや、三角フラスコのセンターまたは回転形式のバイオリアクタの中心に細胞のより高い局所的濃度を得ることができる。ローラーボトルでは半径方向の渦を達成できない。なぜならローラーボトルはその底部の上を回転するのではなく、その側壁上を回転するからである。したがって、中心渦の動きを含んでいるシステムから、本明細書に記載されるローラーボトルなどのようなそうではないものにこの方法を移転するのは、直感的でない。
【0061】
出願人は、他のタイプの動き、たとえば前後のゆれ(rocking)、撹拌およびhES細胞
の遠心沈殿のような動きを使用して静置培養の研究を行ない、これらのタイプの動きではhES細胞の集合体または分化可能な細胞集合体の形成が許容されなかった。さらに、これらの条件下で形成されたhESまたはhES細胞由来の集合体が、生体内でグルコース応答性細胞タイプの機能を引き起こさなかった。これはPECの成功した製造のための全ての方法の究極のテストである。少なくとも Kroon et al.2008,supra and Schulz et al.(2012)supra.を参照されたい。動きや運動だけで多能性幹細胞またはhES細胞の懸濁液集合体または分化可能な細胞集合体を形成できるとは言えず、実際そうではない。これらの研究(データは示されない)は、単なる流体の動きだけではなく、そのような動きと供に加えられる力が、単独細胞多能性幹細胞の安定な細胞-細胞集合体の生成に至る細胞集合体の形成に必要な接着性の接触を容易にする。
【0062】
簡潔に先に言及されたように、ローラーボトルの回転は、中心渦を形成する6ウェルのトレー、三角フラスコ、および同様のものの回転と非常に異なっている。ローラーボトルでは、ボトルがその側壁上で回転する時に培地の多くの部分がボトルの底部に残り、ボトルが回転する時に薄層の液体または培地がボトルの内側表面をコーティングする。この薄い液体層はボトルが回転する時のガス交換を増加させ、したがってOレベルを培地全体にわたり増加させる。すなわち、一旦培地の薄層が培地の過半が存在するボトルの底部に戻ると、それは増大した量の酸素を運ぶ。直感的ではないが、特に当技術分野で標準である非常に低い速度で回転すると(例えば、0.125から5rpm)、十分な細胞間接触または衝突が許容される。同時に霊長類多能性幹細胞(pPSC)集合体の生成を許容するほど低いせん断力が維持されつつ、分化可能な細胞集合体の単独の分化を許容する。
【0063】
細胞の集合、成長、継代、増殖および分化のためにローラーボトルを使用することは、6ウェルトレー、三角フラスコおよびバイオリアクタの場合と相違する。なぜなら2つのフォーマットの間で回転速度が違うからである。例えば、6ウェルトレー、三角フラスコ、バイオリアクタ、および同様のものでは、約80、85、90、95、100、105、110、115、および120rpmのより高い回転速度を使用する。これは少なくとも細胞集合体の集合またはクラスタの形成、または培地中のより大きな細胞の形成を防ぐために必要である。集合している細胞集合体(例えば、300μm以上の大きい集合体)を、サイズが均一でより小さい(約100-200μm)おおむね球体の細胞集合体と一緒にするべきではない。pPSCのローラーボトルでの集合、成長、継代、増殖および分化は、約3、4、5、6、7、8、9および10rpmの比較的低い回転速度で実行される。これらの低い回転速度は6ウェルトレー、三角フラスコ、バイオリアクタおよび同様のもので生ずるせん断力と同じ程度のせん断力を発生しない。出願人の以前の考慮(シュルツ他2012を参照されたい、上掲)では、細胞集合体生成がこれらの条件では成功しないと予想された。
【0064】
多能性幹細胞の集合、成長、継代、増殖および分化のためにローラーボトルを使用する利点は、他の細胞培養器と比較して、最も小さいローラーボトルの中で一度最適化されたら、方法論的により大きいボトル中でも追加の工夫をすることなくほぼ同様に作動することである。例えば、同じ標準的な断面を有するが実質的により大きい容量を有するより長いボトルを使用することにより、または一連のボトルを使用することにより、総培養質量は同じボトル直径、直径/体積比および回転速度を使用してスケールアップすることができる。ローラーボトルの長さ(スケール)の増大は細胞集合または分化過程に影響しない。490cmのローラーボトル(直径が11.12センチメータ、キャップを含む長さが17.30センチメータ)から、850cmのローラーボトル(直径が11.63センチメータ、キャップを含む長さが27.36センチメータ)へ、および1750cmのローラーボトル(直径が11.73センチメータ、キャップを含む長さが53.16センチメータ)まで、およびより大きなローラーボトルへの細胞プロセスまたは製造のスケールアップは本明細書に記載される以外の変更を伴わないかまたは実質的に伴わない。
【0065】
少なくとも上記の理由で、ローラーボトルにおける細胞製造のスケーラビリティは6ウェルトレー、三角フラスコ、バイオリアクタ、および同様のものの旋回性プラットフォームシステムと異なっている。例えば、1x10細胞/mLの1Lの多能性幹細胞の培養を達成するために、約30の6ウェルトレーが必要であるだろう。別の言い方をすれば、80の6ウェルトレー(合計で480ウェル)を使用することの代わりに、4つの850cmのローラーボトルしか必要としない。当業者は、それが、より少ない操作であると十分理解するだろう。そして、ローラーボトル培養に必要である労力は、製造の改良である。さらに、異なったスケールで旋回性プラットホームを使用するとき、集合を達成するために容積、速度、および旋回半径を調節をしなければならない。コニカルフラスコ中の霊長類PSC集合体は、例えば、約150rpmの比較的高い回転速度で最もよく発生するが、これがあまりに強い乱流を引き起こし増加する細胞死(データは示されない)につながる。単に前後にゆれるプラットホームにボトルまたはジャーを置くのでは、本明細書に記載された細胞懸濁液集合体は作られない(データは示されない)。ロッキング・モーションの前後の揺れは、適切な細胞同士の接触と接着をサポートするために適当な流体の運動を作成せず、潜在的はあまりに強い乱流とせん断力を引き起こし、増加する細胞死が生ずる。同様に、正方形のボトルと15cmガラスジャーは同様の理由(データは示されない)のため、pPSC集合体形成のスケールアップのためには不適当な培養器である。単なる細胞同士の接触はpPSC集合体の形成を引き起こさない。なぜなら、hES細胞の単一細胞懸濁液が遠心分離された後に、細胞ペレットが回収されるときに、細胞集合体は観測されなかったからである(データは示されない)。したがって、効率的で一貫した細胞集合(一貫した集合体直径を含む)をサポートする真に適切な流体運動でスケールアップ可能なシステムは発見されておらず、当業者が考え、期待するよりも難しい。実際、接着性のおよび接着依存性の細胞タイプの大規模なスケールアップ培養に従来使用されていたローラーボトルが、30分の1に低下した速度で、本明細書に記載されるように、pPSC集合体の生成と分化のための適切な条件を提供することは、驚くべきことであった。
【0066】
本明細書において使用される時、「接触」という用語(すなわち、細胞、例えば、分化可能な細胞と、化合物との接触)は、化合物と細胞を一緒に生体外(例えば、培養物中で化合物を細胞に追加する)でインキュベートすることを含んでいることを意図する。「接触」という用語は、被検者中で自然に起こることがある、ErbB3リガンド、および任意にTGF-βファミリーのメンバーを含む定義された細胞媒地への細胞のin vivo暴露(すなわち、天然の生理学的過程の結果、起こることがある暴露)を含めないことを意図する。ErbB3リガンド、および任意にTGF-βファミリーのメンバーを含む定義された細胞培地と細胞が接触するステップは、任意の好適な方法で行うことができる。例えば、接着培養、または懸濁培養で細胞を処理できる。細胞を安定させるか、または細胞を分化するために、定義された培地と接触された細胞は、さらに細胞分化環境で処理できることが理解される。
【0067】
本明細書において使用される時、「分化」という用語は、それが由来する細胞タイプよりも、より分化された型である細胞タイプの生産について言及する。したがって、用語は部分的にまたは最終的に分化された細胞形を包含する。一般に、hES細胞から得られた分化細胞とは、hES-由来細胞、hES-由来細胞集合体培養物、hES-由来単独細胞懸濁液、またはhES-由来細胞接着培養物、および同様のものをいう。
【0068】
本明細書において使用される時、「実質的に」の用語は、大きい範囲又は程度をいい、たとえば方法において「実質的に同様」の用語が使用される場合には、大きい範囲又は程度において類似し、他の方法とは異なる方法をいう。本明細書に使用される場合、例えば「実質的に含まない」、たとえば「実質的に汚染物を含まない」、「実質的に血清を含まない」、「インスリンまたはインスリン様増殖因子を実質的に含まない」、またはそれの同等表現は、溶液、培地、サプリメントおよび賦形剤なとが少なくとも98%、少なくとも98.5%、少なくとも99%において、または少なくとも99.5%、または少なくとも100%、血清、汚染物または同等物を含まないことを意味する。1つの実施態様では、血清を含まない、100%血清を含まない、または実質的に血清を含まない定義された培地が提供される。逆に、組成物、プロセス、方法、溶液、培地、サプリメント、賦形剤、および同様のものが、「実質的に同様である」またはそれと同等の表現が記載された場合には、プロセス、方法、溶液等が、少なくとも80%、少なくとも85%、少なくとも90%、少なくとも95%、または少なくとも99%が、本明細書で先に記載された方法と、また全体として本明細書に組み込まれた方法と類似することをいう。
【0069】
本発明のある実施態様では、「富化された」という用語は、希望の細胞リネッジを約50%、55%、60%、65%、70%、75%、80%、85%、90%、または95%以上で含む細胞培養物をいう。
【0070】
本明細書において使用される時、化合物の「有効な量」という用語またはそれと同等の表現は、フィーダー細胞がないときまたは血清もしくは血清代替物がないときに、1カ月以上、培養物における分化可能な細胞の安定化に作用するように、定義された培地の残余の成分中に存在する化合物の十分な濃度をいう。この量は、当業者であれば容易に決定することができる。
【0071】
本明細書において使用される時、「発現」という用語は、ポリヌクレオチドの転写または細胞の中のポリペプチドの翻訳についていい、分子のレベルは分子を発現する細胞では分子を発現しない細胞よりも測定可能に高くされることをいう。分子の発現を測定する方法は、当業者にとって周知であり、ノーザンブロット法、RT PCR、in situ
ハイブリダイゼーション、ウェスタンブロット法、および免疫染色があげられるが、これらに限定されるものではない。
【0072】
本明細書において使用される時、細胞、細胞ライン、細胞培養または細胞のポピュレーションについて述べる時、「単離された(isolated)」という用語は、細胞の天然源から実質的に分離され、細胞、細胞ライン、細胞培養、または細胞ポピュレーションが生体外で培養できるようにされることをいう。さらに、「単離」という用語は、二個以上の細胞のグループからの1種以上の細胞の物理的選択についていい、細胞は細胞のモルホロジーおよび/または様々なマーカーの発現に基づいて選択される。
【0073】
本発明は、以下の本発明の好ましい実施態様の詳細な説明ならびにそこに含まれる実施例を参照することでさらによく理解され得る。しかしながら、本発明にかかる組成物と方法について説明する前に、本発明は特定の核酸、特定のポリペプチド、特定の細胞型、特定の宿主細胞、特定の条件、または特定の方法などに限定されないことが理解されるべきである。当業者には当然、種々の改良と変更が明らかである。
【0074】
DNAリガーゼ、DNAポリメラーゼ、制限エンドヌクレアーゼなどを含む、クローン化、DNA単離、増幅、および精製のための標準的方法、酵素反応のための標準的方法、および様々な分離技法は当業者により知られていて、一般的に採用されているものである。多くの標準的方法がSambrookら,1989 Molecular Cloning,Second Edition,Cold Spring Harbor Laboratory,Plainview,New York;Maniatisら,1982 Molecular Cloning,Cold Spring Harbor Laboratory,Plainview,New York;Wu(Ed.)1993 Meth.Enzymol.218,Part I;Wu(Ed.)1979 Meth. Enzymol.68;Wuら,(Eds.)1983 Meth.Enzymol. 100 and 101;Grossman and Moldave(Eds.) 1980 Meth.Enzymol.65;Miller(ed.)1972 Experiments in Molecular Genetics,Cold Spring Harbor Laboratory,Cold Spring Harbor,New York;Old and Primrose,1981 Principles of Gene Manipulation,University of California Press,Berkeley;Schleif and Wensink,1982 Practical Methods in Molecular Biology;Glover Ed.)1985 DNA Cloning Vol.I and II,IRL Press,Oxford,UK;Hames and Higgins(Eds.)1985 Nucleic Acid Hybridization,IRL Press,Oxford,UK;および Setlow and Hollaender 1979 Genetic Engineering: Principles and Methods,VoIs.1-4,Plenum Press、New York;に記載されている。使用される略語と用語体系は、この分野で標準であると考えられて、本明細書に引用されたものなどの専門雑誌で一般的に使用される。
【0075】
本発明は基本栄養塩溶液、ErbB3リガンドの有効な量を含む組成物と方法に関し、本発明の組成物は実質的に血清を含まない。本発明の組成物および方法は、細胞、特には分化可能な細胞の培養に有用である。分化可能な細胞を培養する間の異なったポイントで、様々な成分を細胞培養に追加できることが理解される。培地は本明細書に記載されたもの以外の成分を含むことができる。しかしながら、培地の調製の間、または分化可能な細胞の培養の間の1つのポイントで、定義された培地は基本栄養塩溶液とErbB2-由来チロシンキナーゼの活性化手段を含むことが企図される。
【0076】
本明細書に記載される基本栄養塩溶液は、hESの細胞成育と生育性を維持するのに使われるが、本発明の他の実施態様においては、多能性または多能性細胞の分化を維持するために、代替の幹細胞培養液も実質的に同様に作用し、たとえばKSR(Invitrogen)、無異物性のKSR(xeno-free KSR)(Invitrogen)、StemPro(登録商標)(Invitrogen)、mTeSR(登録商標)l(StemCell Technologies)、HEScGRO(ミリポア)、DMEMベース培地などがあげられるが、これらに制限されるものではない。
【0077】
別の実施態様では、hES細胞は、細胞外マトリックス蛋白質(ECM)、たとえばMATRIGELの存在下および/または非存在下で、本明細書に記載された定義された培地で培養される。ECMの非存在下で培養されたヒト胚性幹細胞は、約0.5から10%ヒト血清(hS)を含んでいるか、または300Kおよび/または100Kカットオフスピンカラム(Microcon)からのhS濃縮画分を含む。直接hSまたはhS濃縮画分を含む培地でhES細胞を直接インキュベートすることによって、hES細胞集合体懸濁液を製造できる。hSまたはhS濃縮画分と培地容器を約30分、1時間、2時間、3時間、4、何時間、5時間、6時間、12時間、および24時間、37℃でインキュベートした後に、hES細胞集合体懸濁液を製造できる。hSまたはhS濃縮画分含有培地におけるhES細胞のためのコロニー形成率は、PCT/US2007/062755に記載されている、DC-HAIFで培養されたhES細胞、またはECMとしてMATRIGELを使用してDC-HAIF培地で培養されたhES細胞、または他の類似する培地で培養されたhES細胞において観察されたものと匹敵していた。実質的に血清を含まない定義された培地でhES細胞を培養することが、2007年10月19日に出願された、米国出願番号11/8875、057の、ヒト血清を含むフィーダー多能性幹細胞培地のための方法と組成物(METHODS AND COMPOSITIONS FOR FEEDER PLURIPOTENT STEM CELL MEDIA CONTAINING HUMAN SERUM)に記載され、これは本明細書の一部として組み込まれる。
【0078】
異なる実施態様では、hES細胞集合体懸濁液は実質的に血清を含まない培地で、外因的に付加された繊維芽細胞生長因子(FGF)の非存在下で培養された。これはトムソンらの米国特許番号7,005,252の、血清を含まない培地であるが、FGFをはじめとする外因的に付加された増殖因子を含む培地でhES細胞を培養することを必要とする発明と区別される。
【0079】
細胞制御は細胞の中で生化学経路を調節することに至る、膜を横切る細胞外シグナルの形質導入を通して作用できる。蛋白質燐酸化は最終的に細胞応答をもたらす、細胞内信号が分子から分子へ伝播される1つの経過を表す。これらの情報伝達カスケードは非常に規制され、ホスファターゼおよび多くのプロテインキナーゼの存在により証明されるように、しばしば重なる。プロテインチロシンキナーゼがヒトでは、糖尿病、癌腫を含む多くの病状の発展における重要な役割を有することが知られて、また、さまざまな先天性症候群に関係すると報告された。セリントレオニンキナーゼ(例えば、Rho-キナーゼ)は酵素類のクラスであり、阻害されたならば、糖尿病、癌腫、さまざまな炎症性の心臓血管疾患、およびAIDSをはじめとする、ヒトのかかる病気の治療に関連性を持つことができる。これまで特定されたか、または設計された阻害剤の大部分が、ATP結合部位で作用する。そのようなATP拮抗阻害剤は、ATP結合部位の、より不十分に保存された領域を狙う選択能を示した。
【0080】
小さいGTP結合蛋白質のRho-キナーゼファミリーはRho A-EとG、Rac1および2、Cdc42、およびTC10を含む少なくとも10のメンバーを含む。阻害物はしばしばROKまたはROCK阻害剤と呼ばれる、そして、それらは本明細書におい
て互換性を持って使用される。RhoA、RhoB、およびRhoCのエフェクタドメインは、同じアミノ酸配列を持って、同様の細胞内標的を持っているように見える。Rho-キナーゼはRhOの原発性川下媒体(primary downstream mediator)として操作して、2つのアイソフォームα(ROCK2)とβ(ROCKl)として存在している。Rho-キナーゼファミリー蛋白質は、N末端ドメインに触媒作用(キナーゼ)ドメイン、中間部分にコイルドコイル領域、およびC末端領域に推定プレックストリン相同性(putative pleckstrin-homology)(PH)ドメインがある。ROCKのRho-結合ドメインは、コイルドコイル領域のC末端部分に局所化されて、RhoのGTP結合形式はキナーゼ活性の増進をもたらす。Rho/Rhoキナーゼ仲介経路は、アンジオテンシンII、セロトニン、トロンビン、エンドセリン-1、ノルエピネフリン、血小板由来増殖因子、ATP/ADP、および細胞外ヌクレオチド、およびウロテンシンIIをはじめとする多くのアゴニストにより開始される情報伝達で重要な役割を果たす。目標作動因子/基体の調節で、Rho-キナーゼは、平滑筋収縮、アクチン細胞骨格組織、細胞接着、自動運動性、および遺伝子発現を含む様々な細胞機能で重要な役割を果たす。また、動脈硬化の病因に関連していると知覚されている多くの細胞機能を調停することにおけるRho-キナーゼタンパク質の果たす役割により、このキナーゼの阻害剤は、アテローム性動脈硬化を進行すると思われる内皮の収縮と内皮透過性の増大に伴った様々な動脈硬化性心血管病の治療または予防の役に立つかもしれない。したがって、本発明の他の実施態様では、細胞生存を促進する、および/または、サポートする薬剤が、種々の細胞培養培地、例えば、Rho-キナーゼ阻害剤Y-27632、Fasudil、およびH-1152PおよびITS(インスリン/鉄結合性グロブリン/セレニウム;Gibco)に加えられる。これらの細胞生存促進薬は、たとえば前腸内胚葉、膵性内胚葉、膵性上皮、膵性幹細胞集合体、および同様のもの、特には分離された膵性内胚葉および膵性幹細胞集合体のような、部分的に分離したhES細胞またはhESによって由来された培養物の再会合を促進することにより機能する。hESまたはhES-由来の細胞の生存の増大は、細胞が懸濁された細胞集合体で生産されたか、または接着性の平板培養から製造されたかどうかの如何にかかわらず、細胞外マトリックスの有無、血清の有無、フィーダーの有無にかかわらず達成された。これらの細胞集合体の生存の増大は、セルソータを使用した精製システムを容易にして、改良する。したがって、細胞の回収を改良した。Y27632などのRho-キナーゼ阻害剤の使用は、連続継代で分離した単独細胞、または極低温の保存からの生存を促進することによって、hES-由来の細胞タイプのエキスパンションを許容する。Y27632などのRho-キナーゼ阻害剤は、hESおよびhES由来細胞培養物でテストされ、Rho-キナーゼ阻害剤は他の細胞形に適用でき、たとえば一般に上皮性細胞、たとえば肺、胸腺、腎臓、神経性の細胞タイプ、たとえば網膜色素上皮細胞などに適用できる。
【0081】
本明細書において使用される時、「分化可能な細胞」という用語は、少なくとも部分的に成熟した細胞に分化できる細胞または細胞集合、または細胞の分化、たとえば他の細胞との融合、または少なくとも部分的に成熟した細胞への分化に参加できるものを記載するために使用される。本明細書において使用される時,「部分的に成熟している細胞(partially mature cells)」、「前駆細胞(progenitor cells)」、「未熟細胞(immature cells)」、「前駆体細胞(precusor cells)」、「多分化能性細胞(multipotent cells)」、およびそれらと同等の用語は、例えば、胚体内胚葉細胞、PDX1陰性前腸内胚葉細胞、PDX1陽性プレ膵性内胚葉細胞を含むPDX1陽性の膵性内胚葉細胞、PDX1陽性膵性内胚葉端細胞のような、末端分化細胞を含む。すべてが、同じ臓器または組織からの成熟細胞の、たとえばモルホロジーまたは蛋白質発現などの遺伝表現型の少なくとも1つの特徴を示すが、さらに他の少なくとも1つの細胞タイプに分化できる。例えば、正常の、成熟したヘパトサイトは、アルブミン、線維素原、α-1-アンチトリプシン、プロトロンビン凝固因子、鉄結合性グロブリン、およびシトクロムP-450などの解毒
酵素のようなタンパク質を通常発現する。したがって、本発明において「部分的に成熟しているヘパトサイト」は、アルブミンまたは別の1種以上のタンパク質を発現することができるか、または正常で、成熟したヘパトサイトの外観または機能を持ち始めることができる。
【0082】
サイズと形の両方で異なることがある以前に知られている方法で製造された細胞集合体と対照的に、本明細書に記載された細胞集合体と方法は、狭いサイズと形状の分布を有する。すなわち、細胞集合体はサイズおよび/または形が実質的に均一である。分化性能と培養均質性に、細胞集合体の大きさの均一性は重要である。透過性が等しいと仮定すると、基本的な質量輸送分析を集合体に適用した場合には、より小さい集合体への拡散と比べて、大きい集合体の中心への酸素および栄養物の拡散は遅くなると予想される。膵性リネッジ細胞への集合した胚性幹細胞の分化が特異的増殖因子の一時的適用に依存しているので、異なった直径の集合体の混合物を有する培養物は、均一(大きさ形状)な細胞集合体と比べて、同期していない培養物である傾向がある。細胞集合体のこの混合物は不均一をもたらして、低い分化性能をもたらして、結局製造、スケールアップ、および生産にそれ自体を適合させることができない。本明細書に使用された細胞集合体は、様々な形のものであることができる、例えば、球、シリンダ(望ましくは、等しい高さと直径を有する)、または棒状などであることができる。本発明の1つの実施態様で他の形状の集合体を使用できるが、一般に、細胞集合体が球体、または筒状であることが望ましい。別の実施態様では、細胞集合体は、球体であって大きさ形状が実質的に一定である。例えば、細胞集合体がサイズにおいて異なるか、または均一でないなら、細胞の大規模なスケールアッププロセスを信頼性良く製造して、実行するのは難しいだろう。したがって、本明細書に使用される場合、「実質的に一定」の、または「大きさ形状が実質的に一定」の句またはそれの同等表現は、集合体の均一性における広がりについて言及して、それは約20%以下である。別の実施態様では、集合体の均一性における広がりは、約15%以下、10%以下または5%以下である。
【0083】
1つの集合あたりの細胞の正確な数は重要でないが、それぞれの集合のサイズ(その結果、1集合あたりの細胞数)が酸素および栄養物が中心細胞に拡散する能力によって制限され、またこの数は細胞タイプとこの細胞タイプの栄養需要量に応じて変化することが当業者によって認められるだろう。細胞集合体は、1集合あたりの細胞の最少数(例えば、2または3つの細胞)を含むことができるか、または1集合あたり数百または数千もの細胞を含むことができる。通常、細胞集合体は1集合あたり数百から数千の細胞を含む。本発明の目的のために、細胞集合体は典型的には約50ミクロンから約600ミクロンのサイズを有するが、細胞のタイプにより変化し、サイズはこの範囲内よりさらに少ないか、または大きいことができる。1つの実施態様では、細胞集合体のサイズは、約50ミクロンから約250ミクロン、または約75から200ミクロン、望ましくは約100から150ミクロンである。対照的に、懸濁液で得られることができる筒状の、または非球状細胞の集合体では、マイナー、およびメジャーな軸(例えば、X、Y、およびZ軸)に基づいた直径が等しくない。これらの非球状細胞集合体は、サイズが大きく、直径および高さが約500ミクロンから600ミクロンである傾向がある。しかしながら、それらが分化していなかった場合、本明細書に記載された方法で分化がいったん開始されると、これらの非球状hES細胞集合体は球体になる。非球状細胞集合体は、筒状の、そして立方体様の細胞集合体を含み、これらに制限されないが、サイズと形状は依然として一定である。
【0084】
本明細書に記載された細胞集合体を形成するのに多くの細胞タイプを使用できる。一般に、設計される(例えば、膵臓、肝臓、肺、腎臓、心、膀胱、血管、および同様のものを含む様々な臓器構造)三次元構造に応じて、細胞タイプの選択は異なるだろう。例えば、三次元構造が膵臓であれば、細胞集合体は膵臓で通常見られる1つまたは複数の細胞タイプ(例えば、インスリン、グルカゴン、グレリン、などの内分泌細胞ソマトスタチンタイ
プ細胞、内皮細胞、平滑筋細胞など)を有利に含むだろう。当業者は、立体的な組織または臓器のタイプに基づいて望ましいように細胞集合体のための適切な細胞形を選ぶことができる。適当な細胞タイプとしての非限定的な例としては、細胞(例えば、成人のおよび胚性)、収縮性または筋肉細胞(例えば、横紋筋細胞と平滑筋細胞)、神経系細胞(例えば、膠細胞、樹枝状、およびニューロン)、結合組織(骨、軟骨、骨形成細胞および軟骨形成細胞に分化する細胞、およびリンパ組織)、実質細胞、上皮系細胞(腔、脈管またはチャンネルでライニングを形成する内皮細胞)、外分泌上皮細胞、上皮系吸収細胞、角化上皮系細胞(例えば、角質細胞と角膜上皮細胞)、細胞外マトリックス分泌細胞、粘膜上皮細胞、腎臓上皮細胞、肺上皮細胞、乳房上皮細胞、および同様のもの、および未分化細胞(たとえば胚細胞、幹細胞、他の前駆細胞など)があげられる。
【0085】
本明細書に記載された細胞集合体は、ホモ細胞集合体またはヘテロ細胞集合体である場合がある。本明細書において使用される時、「ホモ細胞」、「単細胞」の細胞集合体またはそれの同等の表現は懸濁液中の複数の細胞集合体を示す。ここで各細胞集合体は実質的に単独細胞の複数の生細胞を含む。たとえば本明細書の方法で製造されるhES細胞集合体は、実質的にホモ細胞であることができ、多能性hES細胞から実質的に成ることができ、胚体内胚葉細胞から実質的に成ることができ、前腸内胚葉細胞から実質的に成ることができ、膵性内胚葉細胞から実質的に成ることができ、さらにPDX1-陽性のプレ膵性内胚葉細胞、PDX1-陽性の膵性内胚葉細胞、PDX1-陽性の膵性内胚葉、膵性の内分泌性前駆細胞、膵臓内分泌細胞、および同様のものであることができる。
【0086】
本明細書において使用される時、「実質的に」または「本質的に」との用語は、「デ ミニマム(de minimus)」または少量の成分または細胞が細胞集合体懸濁液タイプ内に存在することを意味し、たとえば本明細書に記載された懸濁液における細胞集合体は「本質的にまたは実質的に均質」であり、「本質的にまたは実質的にホモ細胞」であり、「本質的にhES細胞」であり、「本質的にまたは実質的に胚体内胚葉細胞」であり、「本質的にまたは実質的に前腸内胚葉細胞」であり、「本質的にまたは実質的にPDX1-陰性の前腸内胚葉細胞」であり、「本質的にまたは実質的にPDX1-陽性のプレ膵性内胚葉細胞」であり、「本質的にまたは実質的にPDX1-陽性の膵性内胚葉または前駆細胞」であり、「本質的にまたは実質的にPDX1-陽性の膵性内胚葉端細胞」であり、「本質的にまたは実質的に膵性内分泌腺の前駆細胞」であり、「本質的にまたは実質的に膵性内分泌腺の細胞」、および同様のものである。
【0087】
実質的にホモ-細胞の細胞集合体懸濁液培養液は、たとえば約50%未満のhESC、約45%未満のhESC、約40%未満のhESC、約35%未満のhESC、約30%未満のhESC、約25%未満のhESC、約20%未満のhESC、約15%未満のhESC、約10%未満のhESC、約5%未満のhESC、約4%未満のhESC、約3%未満のhESC、約2%未満のhESCまたは約1%未満のhESCを、培養物におけるhES-由来の細胞合計に基づいて含む、hES-由来細胞集合体懸濁液培養物である。別の表現をすれば、hES-由来細胞集合体懸濁液培養物、たとえばPDX1-陰性の前腸内胚葉、PDX-陽性のプレ膵性内胚葉細胞、PDX1-陽性の膵性内胚葉または前駆細胞、PDX1-陽性の膵性端細胞、膵性内分泌前駆細胞、および膵臓内分泌細胞を少なくとも50%、少なくとも55%、少なくとも60%、少なくとも65%、少なくとも70%、少なくとも75%、少なくとも80%、少なくとも85%、少なくとも90%、または少なくとも95%で含む。
【0088】
本明細書において使用される時、「ヘテロ細胞の(hetero-cellular)」および「多細胞の(multi-cellular)」またはそれらと同等な表現は、細胞集合体であって、それぞれの細胞集合体は少なくとも2、3、4、5、6以上の細胞タイプの複数の細胞を含む細胞集合体、または少なくとも1の細胞タイプと非細胞成分、例えば細胞外マトリックス(ECM)物質(例えば、コラーゲン、フィブロネクチン、ラミニン、エラスチン、および/または、プロテオグリカン)を含む細胞集合体をいう。そのようなECMコンポーネンツは細胞により自然に分泌できるか、または細胞はECM物質および/または、細胞接着分子、たとえばレクチン、インテグリン、免疫グロブリン、またはカドヘリンなどの発現水準を変えることが当該技術分野で知られている任意の適切な方法で遺伝子操作されることができる。別の実施態様では、集合体生成の間、天然のECM物質またはECM物質を模倣する任意の合成物質のいずれかを集合体に組み入れることができる。例えば、膵性上皮または膵性内胚葉細胞集合体(またはステージ4細胞集合体)などのhES-由来細胞集合体の本明細書に記載された生産方法は、膵性上皮または内胚葉細胞から実質的に成るが、小細胞数の他の非膵性上皮性タイプ細胞、または内胚葉前駆細胞、および膵性内分泌性細胞(例えば、インスリン分泌細胞)からなることもできる。
【0089】
本明細書に記載された懸濁方法により生産されたホモ-、またはヘテロ-細胞集合体は、当該技術分野において記載された細胞集合体とは異なり、胚様体(EB)と呼ばれた細胞集合体と同じではない。EBは、ES細胞が単層培養中で過成長した時、または未定義の培地で内の懸濁培養で維持されるか、または多発性胚葉組織に向けた非由来性のプロトコール(すなわち、ランダムな分化)を介して分化された時に現れる分化したおよび未分化の細胞の細胞集合体であるので、胚様体は本明細書に記載された細胞集合体と明確に区別される。対照的に、実施例17と20で詳細に議論される本発明は、接着性の平板培養で酵素的にhES細胞を分離し、単独細胞懸濁液を形成し、ついで複数の細胞を一緒にして細胞集合体を形成し、上記のd’Amour2005および2006に実質的に記載されているように、これらの細胞集合体懸濁培養を分化のために使用する。以下でさらにEBと本発明の細胞集合体の他の相違点について議論する。
【0090】
さらに、胚様体(EB)を形成する他の方法を説明する。本明細書において使用される時、「胚様体(embryoid bodies)」、「集合体(aggregate bodies)」との用語またはそれと同等の表現は、ES細胞が単層培養中で過成長した時、または未定義の培地で内の懸濁培養で維持されるか、または多発性胚葉組織に向けた非由来性のプロトコール(すなわち、ランダムな分化)を介して分化された時に現れる分化したおよび未分化の細胞の細胞集合体をいう。すなわち、EBは、本明細書に記載されるような、多能性幹細胞の単独細胞懸濁液から形成されない。また、EBはhES-由来の多分化能性細胞の接着培養から形成されない。これらの特徴のみによっても、胚様体と本発明は明確に区別される。
【0091】
胚様体はモルホロジー的な評価基準により識別可能な通常、数個の胚葉である異なる細胞タイプの混合物である。胚様体とはそれの大部分が非由来分化、すなわち、たとえば未分化細胞が定義された増殖因子が存在していない血清の高濃縮に露出されたような、胚性幹(ES)細胞から得られる細胞の集合体から構成される形態学的構造について通常言及する。EB形成(例えば、マウス胚性幹細胞のためのLeukemiaの抑制要素、または他の、同様のブロック因子の除去)に適した培養条件の下では、胚性幹細胞は増殖し、小塊の細胞を形成して分化し始める。最初に、ヒト胚性幹細胞のための約1-4日の分化に対応して、細胞の小塊は内胚葉細胞の層を外側の層の上に形成する。これは「単純性胚様体」であると考えられている。第二に、ヒト胚性幹細胞のための約3-20日の後分化に対応して、「複雑な胚様体」が形成される。これは外胚葉性および中胚葉細胞および誘導体組織の大規模な分化で特徴付けられる。本明細書において使用される時、文脈により異なるものと考えられない限り、EBは単純性のものと複雑なEBsの両者を含んでいる。ES細胞の培養で胚様体を形成した時に関する決定は、当技術分野の当業者によって例えば、モルホロジーの目視検査により、ルーチン的に行われる。培養条件に依存して、約20以上の細胞の浮いた塊はEBであると考えられている。たとえばSchmittら、(1991)Genes Dev.5,728-740;Doetschmanら(1985)J.Embryol.Exp.Morph.87、27-45を参照。また、用語は胚性生殖腺領域から抽出された初期の細胞である、始原生殖細胞から得られたものと等価の構造をも意味する。例えば、Shamblott,ら(1998)Proc.Natl.Acad.Sci.USA 95,13726を参照。また当技術分野で時々EG細胞または胚芽細胞と呼ばれる始原生殖細胞は、適切な因子群で処理されると、胚様体を誘導することができる多能性ES細胞を形成できる。例えば、米国特許番号5,670,372、および上記のShamblottらを参照。
【0092】
EBを作るための様々な方法が存在している、例えば(2008)ネイチャープロトコル3(5):468-776に記載されたスピン胚様体(spin embryoid bodies)、上記のBauwens他(2008)に記載されているような、マイクロパターンド細胞外マトリックスアイランド上にプレーティングされた単独細胞懸濁液からEBが形成される。しかしながら、これらの方法はhES細胞およびhESによって由来された細胞の大規模な生産(製造)には、費用的に採算が合わず、それほど効率的でない。スケールアップ生産が実際に始まるまでに、あまりに多くの工程を必要とするからである。たとえば、Bauwens他の方法では、細胞が懸濁培養を始めるために選択される前に、最初に低減した増殖因子MATRIGEL(登録商標)にhES細胞をシードしなければならない。この方法の時間と費用は、カスタム設計されたマイクロ-パターンド組織培養プレートが必要であるので、厄介である。さらに、Ngらの方法は、hES細胞とhES-由来の細胞の大規模な製造には、より均一なEBを作成するために遠心分離機の使用が必要であり、費用効率的でない。最後に、これらのすべての方法論では、本発明のようには、細胞集合体は多能性幹細胞の単独細胞懸濁液から作られない。
【0093】
胚様体は本発明で記載される細胞集合体とは異なり、3つの胚葉からの多数の細胞タイプで作られた細胞集合体であり、典型的には未分化胚性幹細胞の集合体を非有向性分化シグナル(non-directed differentiation signals)、たとえば20%のウシ胎仔血清などに暴露することによって作成される細胞集合体である。この非有向性方法論の結果は、生体外で通常の胎児成長をまねることを意図する細胞タイプの混合物である。このアプローチは基礎研究レベルで胎児成長を調べることの役に立つが、それは細胞収率、集合体のアイデンティティ、集合体の純粋さ、バッチの一貫性、安全性、細胞機能、および商品原価が主要な関心であるところのすべての大規模な細胞治療製造プロセスには適用できない。そのうえ、胚様体から所定の細胞タイプを精製するのに使われた任意の富化作用戦略にかかわらず、分化プロトコールは単独細胞タイプの大集合体を発生させる直接的なアプローチを提供しない。それに続いて、汚染物集合体がいつも支配的であり、特定集合体を精製するどんな試みも妨げるだろう。胚性幹細胞の集合体を作成して、分化することへのすべての先行研究は、それらの方法論において以下のコンポーネンツの一個以上を有する:
1) ヒト胚性幹細胞ではなくマウスの使用
2) 通常の細胞接着過程ではなく、細胞を集合させるために遠心沈殿に依存する強制集合プロトコール
3) 静的条件における、細胞塊の集合
4) 非単独細胞解離または表面の細胞をこすり落とすことによる集合体の形成
5) すべての胚様体と胚葉の細胞タイプの形成をもたらす、15-20%の胎児ウシ血清を使用する細胞集合体の非直接分化。
我々の知識によれば、胚様体を分化するのに15-20%のFCSを利用しない唯一の研究が、細胞集合体が強制的な集合で形成されて、次に集合体がすぐに中胚葉に、適切な培地を使用して分化されるプロトコールについて説明する(Ngら、Blood.2005 106(5):1601)。しかしながら、この仕事では、10-12日間静的に集合された後、研究者が非集合の接着培養に胚様体を移しているので、本発明とは無関係で
ある。従来の仕事と対照的に、本願は以下のアプローチを提供する。
1) ヒト胚性幹細胞を単独細胞に分離し、集合直径および細胞生存のコントロールを改良するために最適化されたせん断速度で回転培養(rotational culture)することによる集合体の形成、
2) 次に直接、胚体内胚葉へES細胞集合体を分化させ、前腸内胚葉に分化させ、プレ膵性前腸内胚葉へ分化させ、次いで膵性内胚葉および最終的に膵臓内分泌細胞へ分化させる。
この分化プロトコールは高能率と最小量の汚染物集合体で、胚体内胚葉および膵性リネッジ集合体を発生させる。そのうえ、他のすべての公開された研究と対照的に、胚性幹細胞集合と分化へのこのアプローチは胚様体を作成しない。
【0094】
分化型および未分化細胞の混合物であり、典型的には数個の胚葉からの細胞から成り、ランダムな分化を行う胚様体と対照的に、本明細書に記載された細胞集合体は、本質的にまたは実質的にホモ-セルであり、多能性、多分化能性、バイポテント(bipotent)、またはユニポテント(unipotent)タイプの細胞の集合体として存在し、たとえば胚細胞、胚体内胚葉、前腸内胚葉、PDX1-陽性の膵性内胚葉、膵臓内分泌細胞、および同様のものとして存在する。
【0095】
本発明は、再現可能に、容易に大規模製造に適用できるプロセスを使用し、実質的に大きさおよび形状が一定の細胞集合体を製造できる経済効率的な製造プロセスまたは方法を提供することによって、上記の課題を解決する。1つの特定の実施態様では、分化可能な細胞は本発明の細胞培地を使用して、懸濁培養中でエキスパンドする。別の特定の実施態様では、分化可能な細胞が懸濁液内に保持されエキスパンドされる。すなわち、それらは、未分化のままで残っているか、またはさらに分化するのが阻まれる。当該技術分野において、細胞増殖に関連して「エキスパンド(expand)」の用語が使用される時、細胞増殖および細胞数の増加、好ましくは生菌細胞数の増加をいう。具体的な実施態様では、細胞は、培養懸濁液中で、約1日、すなわち約24時間以上の間培養することによって、エキスパンドする。より具体的な実施態様では、細胞は懸濁培養中で少なくとも1、2、3、4、5、6、7日間、または少なくとも2、3、4、5、6、7、8週間培養することによりエキスパンドする。
【0096】
本明細書に記載された分化培養条件とhES-由来の細胞タイプは、実質的にd’Amour他、2006、上掲、で記載されていたものと同様である。d’Amour他、2006、は5ステップ分化プロトコールについて説明する:
ステージ1(実質的に胚体内胚葉生産)
ステージ2(実質的にPDX1-陰性の前腸内胚葉生産)
ステージ3(実質的にPDX1-陽性の前腸内胚葉生産)
ステージ4(実質的に、膵性内胚葉、または上皮または膵性内分泌性前駆体生産)、および
ステージ5(実質的に、ホルモン発現性内分泌細胞生産)。
重要なことには、初めて、本明細書に記載された懸濁法でこれらのすべての細胞形を製造できる。
【0097】
本明細書において使用される時、「胚体内胚葉(DE)」は、腸管または腸管に由来する臓器細胞に分化できる多分化能内胚葉リネッジ細胞を示す。ある実施態様によると、胚体内胚葉細胞はほ乳動物細胞である。そして、好適な実施態様では、胚体内胚葉細胞はヒト細胞である。本発明のいくつかの実施態様では、胚体内胚葉細胞は、発現するか、またはあるマーカーを有意に発現しない。いくつかの実施態様では、SOX17、CXCR4、MIXL1、GATA4、HNF3beta、GSC、FGF17、VWF、CALCR、FOXQ1、CMKOR1、CRIP1、およびCERから選ばれた1種以上のマーカーは、胚体内胚葉細胞の中で発現される。他の実施態様では、OCT4、α-フェトタンパク(AFP)、スロムボムデュリン(Thrombomodulin(登録商標))、SPARC、SOX7、およびHNF4alphaから選ばれた1種以上のマーカーは、胚体内胚葉細胞の中で有意に発現されない。胚体内胚葉細胞集合体とそれの生産方法は、2004年12月23日に出願された、名称が胚体内胚葉(DEFINITIVE ENDODERM)の、米国特許出願第11/021,618に記載されており、この出願は全体が本明細書に組み込まれる。
【0098】
本発明のさらに異なる実施態様は、「PDX1-陰性の前腸内胚葉細胞」および「前腸内胚葉細胞」、およびそれらの同等物の細胞培養と細胞集合体に関する。PDX1-陰性の前腸内胚葉細胞は、また多分化能性であり、様々な細胞と、胸腺、甲状腺、副甲状腺、肺/気管支、肝臓、咽頭部、鰓嚢、十二指腸の一部およびエウスターキオ管を含む組織をもたらすことができる。いくつかの実施態様では、前腸内胚葉細胞は、SOX17、HNF1B、HNF1α、FOXA1を非前腸内胚葉細胞、たとえばこれらのマーカーを有意に発現しない胚体内胚葉またはPDX陽性の内胚葉と比べて、増加するレベルで発現する。PDX1-陰性の前腸内胚葉細胞は、PDX1、AFP、SOX7、およびSOX1を低レベルで発現するかまたは全く発現しない。PDX1-陰性の前腸内胚葉細胞集合体とその生産方法は、2006年10月27日に出願された、PDX1発現性の背側および腹側の前腸内胚葉細胞(PDX1-expressing dorsal and ventral foregut endoderm)のタイトルの米国特許出願第11/588,693に記載され、この出願は全体が本明細書に組み込まれる。
【0099】
本発明の他の実施態様は「PDX1-陽性の膵性前腸内胚葉細胞」、および「PDX1-陽性のプレ膵性内胚葉」、またはそれの同等物の細胞培養に関する。PDX1-陽性のプレ膵性内胚葉細胞は、多分化能性であり、様々な細胞および/または、胃、腸および膵臓をはじめとする組織をもたらすことができる。いくつかの実施態様では、これらのマーカーを多量には発現しない非プレ膵性内胚葉細胞と比べて、PDX1-陽性のプレ膵性内胚葉細胞は、PDX1、HNF6、SOX9、およびPROXlを増大したレベルで発現する。また、PDX1-陽性のプレ膵性内胚葉細胞は、NKX6.1、PTF1A、CPA、およびcMYCを低レベルで発現するかまたは全く発現しない。
【0100】
本発明の他の実施態様は、「PDX1-陽性の膵性内胚葉細胞(PDX1-positive pancreatic endoderm cells)」、「PDX1陽性の膵性前駆(PDX1-positive pancreatic progenitor)」、「膵性上皮(pancreatic epithelium)」、「PE」またはそれらの同等物の細胞培養に関する。PDX1-陽性の膵性前駆細胞は、多分化能性であり、腺房、管および内分泌細胞を含む膵の中の様々な細胞をもたらすことができる。いくつかの実施態様では、PDX1-陽性の膵性前駆細胞は、PDX1とNKX6.1を、これらのマーカーを多量には発現しない非プレ膵性内胚葉細胞と比べて、増大したレベルで発現させる。また、PDX1-陽性の膵性前駆細胞は、PTF1A、CPA、cMYC、NGN3、PAX4、ARX、NKX2.2、INS、GCG、GHRL、SST、およびPPを低レベルで発現するかまたは全く発現しない。
【0101】
あるいはまた、本発明の他の実施態様は「PDX1-陽性の膵性内胚葉端細胞(PDXI-positive pancreatic endoderm tip cells)」、またはそれの同等物の細胞培養に関する。いくつかの実施態様では、PDX1-陽性の膵性内胚葉端細胞はPDX1-陽性の膵性前駆細胞と同様、増加したレベルのPDXlおよびNKX6.1を発現するが、PDX1陽性の膵性前駆細胞と異なり、PDX1-陽性の膵性内胚葉端細胞はさらに、PTF1A、CPAおよびcMYCを増加したレベルで発現する。PDX1-陽性の膵性内胚葉端細胞は、NGN3、PAX4、ARXおよびNKX2.2、INS、GCG、GHRL、SST、およびPPを低レベルで発現するかまたは全く発現しない。
【0102】
本発明の他の実施態様は「膵性内分泌性前駆細胞」、「膵性内分泌前駆細胞」またはそれの同等物の細胞培養に関する。膵性内分泌前駆細胞は、多分化能性であり、アルファ、ベータ、デルタおよびPP細胞を含む成熟している内分泌細胞をもたらす。いくつかの実施態様では、他の非内分泌性前駆細胞タイプと比べて、膵性内分泌前駆細胞はNGN3、PAX4、ARX、およびNKX2.2を増加したレベルで発現する。また、膵性前駆細胞はINS、GCG、GHRL、SST、およびPPを低レベルで発現するかまたは全く発現しない。
【0103】
本発明のさらなる実施態様は、「膵臓内分泌細胞」、「膵臓ホルモン分泌細胞」、「膵性の小島ホルモン発現細胞」、またはそれの同等物の細胞培養に関し、多能性細胞から生体外で得られた細胞、例えば、アルファ、ベータ、デルタおよび/またはPP細胞またはそれらの組み合わせに関する。内分泌細胞はポリ-ホルモン性またはシングル-ホルモン性であることができ、たとえば、インスリン、グルカゴン、グレリン、ソマトスタチン、および膵臓ポリペプチドまたはそれらの組み合わせであることができる。したがって、内分泌細胞は1種以上の膵臓ホルモンを発現することができる。これは少なくともヒトすい島細胞の機能のいくつかを有する。膵島ホルモン発現細胞は、成熟または未熟であることができる。ある種のマーカーの示差的発現に基づいてか、または生体外または生体内での機能的な能力、例えば、グルコース反応性に基づいて、成熟している膵性小島ホルモン発現細胞と未熟な膵性小島ホルモン発現細胞を区別できる。また、膵臓内分泌細胞はNGN3、PAX4、ARX、およびNKX2.2を低レベルで発現するかまたは全く発現しない。
【0104】
間葉の胚体内胚葉細胞と比べて、上記の細胞形の大部分は上皮化される。いくつかの実施態様において、膵性内胚葉細胞は、2006年10月27日に出願された、PDXI発現性の背側および腹側の前腸内胚葉細胞(PDX1 EXPRESSING DOSAL
AND VENTRAL FOREGUT ENDODERM)の名称の米国特許出願11/588,693に記載された表3から選択される1つ以上のマーカー、および/または表4から選択される1つ以上のマーカー、および2005年4月26日に出願されたPDX1発現性の内胚葉細胞(PDX1-expressing endoderm)の名称の米国特許出願11/115,868の1種以上のマーカーを発現する。これらは本明細書中に参考として全体が援用される。
【0105】
本発明は、それらのソースまたはそれらの形成性(plasticity)にかかわらず、分化可能な細胞に有用な組成物と方法を企図する。本明細書においては、当該技術分野においてそうであるように、細胞の「形成性」は概略的な意味で使用される。すなわち、細胞の形成性は、胎児、胎児または成長した有機体からの組織または臓器で見い出される特定の細胞タイプに分化する細胞の能力について言及する。細胞が「より形成性」であればあるほど、細胞が分化できるかもしれない組織はより多くなる。「多能性細胞」は、細胞とそれらの子孫(progeny)を含んでいる。それらは多能性(pluripotent)、多分化能性(multipotent)、オリゴポテント(oligopotent)、および単能性(unipotent)細胞に分化するか、それらをもたらすか、および/または、全部でない場合には数個の、胎児、胎児または成長した有機体からの臓器で見い出される成熟したまたは部分的に成熟した細胞タイプとなる。「多分化能性細胞」は細胞とそれらの子孫を含んでいる。それらは多分化能性、オリゴポテント、および単能性細胞に分化するか、それらをもたらすか、および/または、成熟したまたは部分的に成熟した細胞タイプが特定の組織、臓器または臓器システムに限定される場合を除き、1以上の成熟したまたは部分的に成熟した細胞タイプとなる。例えば、多分化能性造血剤前駆細胞、および/またはその子孫は、1種以上のタイプの骨髄性前駆細胞やリンパ前駆細胞細胞などのオリゴポテント細胞に分化するか、またはそれらをもたらす能力を有し、また、通常、血液の中で見つけられる他の成熟した細胞組成をもたらす。「オリゴポテント細胞」は、成熟した、または部分的に成熟した細胞に分化する能力が多分化能性細胞より制限されている細胞およびそれらの子孫を含む。しかしながら、オリゴポテント細胞は、オリゴポテントおよび単能性細胞、および/または、1種以上の成熟した、または部分的に成熟した細胞タイプの特定の組織、臓器または臓器系に分化するような能力をまだ持つことができる。オリゴポテント細胞の1つの例は、骨髄性の前駆細胞である。これは成熟した、または部分的に成熟した、赤血球、血小板、好塩基球、好酸球、好中性および単核細胞をもたらすことができる。「単能性細胞」は、他の単能性細胞、および/または、1つのタイプの成熟した、または部分的に成熟した細胞タイプに分化するか、それらをもたらす能力を持っている細胞とそれらの子孫を含む。
【0106】
本明細書に使用される分化可能な細胞は多能性、多分化能性、オリゴポテント、または、ユニポテントであることができる。本発明のある実施態様では、分化可能な細胞は多能性の分化可能な細胞である。より特異的な実施態様では、多能性の分化可能な細胞は、胚性幹細胞、ICM/胚盤葉上層細胞、原始外胚葉細胞、始原生殖細胞、および奇形癌細胞から成る群から選択される。1つの特定の実施例では、分化可能な細胞は哺乳動物胚性幹細胞である。より特定の実施態様では、分化可能な細胞はヒト胚性幹細胞である。
【0107】
本発明は、細胞が本明細書に定義されるような分化可能であるならば、動物の中の任意のソースからの分化可能な細胞をも企図する。例えば、分化可能な細胞は、胎児、またはその内部の任意の始原生殖層、胎盤またはじゅう毛膜組織、または成人の幹細胞などの、より成熟している組織から得ることができ、たとえば脂質、骨髄、神経組織、乳房組織、肝臓組織、膵臓組織、上皮性組織、呼吸器組織、生殖腺および筋肉組織から得ることができるが、これらに制限されるものではない。具体的な実施態様では、分化可能な細胞は胚性幹細胞である。他の具体的な実施態様では、分化可能な細胞は成人の幹細胞である。さらに、他の具体的な実施態様では、幹細胞は胎盤の、または、絨毛膜に由来する幹細胞である。
【0108】
本発明は、もちろん分化可能な細胞を発生させることができるすべての動物からの分化可能な細胞も使用することを企図する。分化可能な細胞が得られる動物は、脊椎動物、無脊椎動物、哺乳動物、非哺乳動物、ヒト、または非ヒトであることができる。動物ソースの例としては、霊長動物、齧歯動物、犬科、ネコ科、ウマ科、うし科、およびブタ科の動物を含むが、これらに限定されない。
【0109】
当業者に知られている任意の方法を使用することで本発明の分化可能な細胞を誘導できる。例えば、脱分化および核移植方法を使用することでヒト多能性細胞を製造できる。さらに、本発明に使用されるヒトICM/胚盤葉上層細胞または原始外胚葉細胞は生体内または生体外で誘導できる。原始外胚葉細胞はWO99/53021に記載されているように、接着培養または懸濁培養における細胞集合体として生産できる。さらに、ヒト多能性細胞は当業者に知られている任意の方法により継代することが可能で、手動の継代方法や、酵素的、または非酵素的継代方法などのバルク継代方法を使用することができる。
【0110】
ある実施態様では胚性幹細胞が利用される場合、胚性幹細胞は正常核型を持っているが、他の実施態様では、胚性幹細胞が異常核型を持っている。1つの実施態様では、胚性幹細胞の大部分が正常核型を持っている。調べられた有糸分裂の中期の50%以上、55%以上、60%以上、65%以上、70%以上、75%以上、80%以上、85%以上、90%以上または95%以上が正常核型を示すことが企図される。
【0111】
別の実施態様では、胚性幹細胞の大部分が異常核型を持っている。調べられた有糸分裂の中期の50%以上、55%以上、60%以上、65%以上、70%以上、75%以上、80%以上、85%以上、90%以上または95%以上が異常核型を示すことが企図される。ある実施態様では、細胞が5以上、6、7、8、9、10、11、12、13、14、15、または20以上の継代培養された後には、異常核型が明白である。1つの具体的な実施態様では、異常核型は常染色体が染色体1、7、8、12、14および17から成る群から選択される少なくとも1つの常染色体の三染色体を含む。別の実施態様では、異常核型は少なくとも1よりも多い常染色体の1つが染色体1、7、8、12、14および17から成る群から選択される1よりも多い常染色体の三染色体を含む。1つの実施態様では、常染色体は、第12染色体または17染色体である。別の実施態様では、異常核型は性染色体をさらに含む。1つの実施態様では、核型は2個のX染色体と1個のY染色体を含む。また、染色体の転座が起こることがあると想定されて、そのような転座は「異常核型」という用語中に包含される。また、上記の染色体異常と他の染色体異常の組み合わせは本発明に包含される。
【0112】
本発明の組成物と方法は基本栄養塩溶液を含む。本明細書において使用される時、基本栄養塩溶液とは、通常の細胞代謝のために本質的なある種のバルクな無機イオン類と水を細胞に提供する塩の混合物であり、細胞内と細胞外の浸透バランスを維持して、エネルギー源として炭水化物を提供して、生理的pH範囲内の中に媒体を維持するための緩衝化システムを提供する塩の混合物をいう。基本栄養塩溶液の例としては、ダルベッコの修正イーグル培地(DMEM)、最小必須培地(Minimal Essential Medium)(MEM)、基本イーグル培地(Basal Medium Eagle)(BME)、RPMl1640、ハムズF-10(Ham’s F-10)、ハムズF-12(Ham’s F-12)、アルファ-最小必須培地(α-Minimal Essential Medium)(αMEM)、グラスゴー最小必須培地(Glasgow’s Minimal Essential Medium)(G-MEM)、およびイスコブの改良ダルベッコ培地(Iscove’s Modified Dulbecco’s Medium)、およびそれらの混合物があげられるが、これらに限定されるものではない。1つの具体的な実施例では、基本栄養塩溶液はDMEMとハムズF12の約50:50混合物である。
【0113】
組成物がさらに微量元素を含むことが企図される。商業的に微量元素を購入でき、例えば、Mediatechから購入できる。微量元素の非限定的な例としては、アルミニウム、塩素、硫酸、鉄、カドミウム、コバルト、クロム、ゲルマニウム、ナトリウム、カリウム、カルシウム、ホスフェートおよびマグネシウムがあげられるが、これらに制限されるものではない。微量元素を含む化合物の具体的な例としては、AlCl、硝酸銀、Ba(C、CdCl、CdSO、CoCl、CrCl、Cr(SO、CuSO、クエン酸第二鉄、GeO、KI、KBr、LI、モリブデン酸、MnSO、MnCl、NaF、NaSiO、NaVO、NHVO、(NHMo24、NiSO、RbCl、セレニウム、NaSeO、HSeO、亜セレン酸塩-2Na、セレノメチオノン、SnCl、ZnSO、ZrOCl、それらの混合物、およびそれの塩があげられるが、これらに制限されるものではない。セレニウム、亜セレン酸塩またはセレノメチオノンが存在している場合には、約0.002から約0.02mg/Lの濃度で存在する。また、さらに、ヒドロキシルアパタイトも存在することができる。
【0114】
定義された培地にアミノ酸類を加えることができると企図される。そのようなアミノ酸類の非限定的な例としては、グリシン、L-アラニン、L-アラニル-L-グルタミン、L-グルタミン/グルタマックス、L-塩酸アルギニン、L-アスパラギン-HO、L-アスパラギン酸、L-システイン ヒドロクロライド HO、L-シスチン2HCl
、L-グルタミン酸、L-ヒスチジン塩酸塩-HO、L-イソロイシン、L-ロイシン、L-塩酸リジン、L-メチオニン、L-フェニルアラニン、L-プロリン、L-ヒドロキシプロリン、L-セリン、L-トレオニン、L-トリプトファン、L-チロシン二ナトリウム塩二水和物、およびL-バリンがあげられる。ある実施態様では、アミノ酸は、L-イソロイシン、L-フェニルアラニン、L-プロリン、L-ヒドロキシプロリン、L-バリン、およびそれらの混合物質である。
【0115】
また、定義された培地はアスコルビン酸を含むことができると企図される。望ましくは、アスコルビン酸は約1mg/Lから約1000mg/L、または2mg/Lから約500mg/L、または約5mg/Lから約100mg/L、または約10mg/Lから約100mg/L、または約50mg/Lの初期濃度において存在している。
【0116】
さらに、本発明の組成物と方法は他の成分を含むことができ、たとえば血清アルブミン、鉄結合性グロブリン、L-グルタミン、リピド、抗生物質、βメルカプトエタノール、ビタミン、鉱物、ATP、および類似物が存在することができる。存在することができるビタミン類の例としてはビタミンA、B、B、B、B、B、B、B、B12、C、D、D、D、D、D、E、トコトリエノール、KおよびKを含むが、これらに限定されない。当業者はミネラル、ビタミン、ATP、リピド、必須脂肪酸などの、特定の培養における使用のための最適濃度を決定できる。例えば、サプリメントの濃度は約0.001マイクロMから約1mMまたはそれ以上であることができる。サプリメントが提供されることができる濃度の具体的な例は、約0.005マイクロM、0.01マイクロM、0.05マイクロM、0.1マイクロM、0.5マイクロM、1.0マイクロM、2.0マイクロM、2.5マイクロM、3.0マイクロM、4.0マイクロM、5.0マイクロM、10マイクロM、20マイクロM、100マイクロMなどがあげられるが、これらに限定されない。1つの具体的な実施態様では、本発明の組成物と方法はビタミンBとグルタミンを含む。別の具体的な的実施態様では、本発明の組成物と方法はビタミンCと鉄分サプリメントを含む。別の具体的な実施態様では、本発明の組成物および方法は、ビタミンKとビタミンAを含む。別の具体的な実施態様では、本発明の組成物および方法は、ビタミンDとATPを含む。別の具体的な実施態様では、本発明の組成物と方法はビタミンB12および鉄結合性グロブリンを含む。別の具体的な実施態様では、本発明の組成物と方法はトコトリエノールとβメルカプトエタノールを含む。別の具体的な実施態様では、本発明の組成物と方法はグルタミンとATPを含む。別の具体的な実施態様では、本発明の組成物と方法はオメガ3-脂肪酸とグルタミンを含む。別の具体的な実施態様では、本発明の組成物と方法はオメガ6-脂肪酸とビタミンBを含む。別の具体的な実施態様では、本発明の組成物と方法は、α-リノレン酸、およびBを含む。
【0117】
本発明の組成物は事実上血清を含まない。本明細書において使用される時、「事実上血清を含まない」とは、本発明の溶液における、血清の非存在を示す。血清は、本発明の組成物と方法における必須成分ではない。したがって、すべての組成物における血清の存在は単に不純物とされ、たとえば細胞初代培養からの残留結成であるか、または出発物質からのものである。例えば、事実上血清を含まない培地または環境は、10%未満、9%、8%、7%、6%、5%、4%、3%、2%、または1%未満の血清を含むことができ、媒体または環境の改良された生物活性維持能力が依然として観測される。本発明の具体的な実施態様では、事実上血清を含まない組成物は、血清または血清代替物を含んでいないか、または定義された培地に加えられる血清または血清代替物の成分の単離からの血清または血清代替物の痕跡量を含むだけである。
【0118】
本発明の組成物および方法においては、分化可能な細胞の中にErbB2チロシンキナーゼ活性を刺激する手段を含む。本発明の具体的な実施態様では、本発明の組成物および方法は、少なくとも1つのErbB3リガンドの存在を含む。典型的には、ErbB3リガンドは、ErbB3受容体と結合して、ErbB2受容体と二量化する。ErbB2受容体は、次いで分化可能な細胞の中で細胞内のチロシンキナーゼ活性に応答性となる。
【0119】
本明細書において使用される時、「ErbB3リガンド」はErbB3に結合するリガンドであって、ついでErbB2と二量化し、その結果、ErbB2/ErbB3ヘテロ二量体受容体のErbB2部分のチロシンキナーゼ活性を活性化するものをいう。ErbB3リガンドの非限定的な例としてはニューレグリン-1;HRG-β、HRG-α、ニュー分化因子(Neu Differentiation Factor:NDF)を含むニューレグリン-1のスプライス変異体とアイソフォーム、アセチルコリン受容体由来作用(ARIA)、膠細胞増殖因子2(GGF2)、および知覚性および運動性ニューロン-由来要素(Sensory And Motor Neuron-Derived Factor:SMDF)、ニューレグリン-2;NRG2-βを含むがこれに限定されないニューレグリン-2のスプライス変異体(splice variants)とアイソフォーム;エピレグリン;ビレグリン(Biregulin)があげられる。
【0120】
1つの実施態様では、ErbB2-由来チロシンキナーゼ活性を刺激する手段は、ニューレグリン-1、ヘレグリン-β(Heregulin-β:HRG-β)、ヘレグリン-α(HRG-α)、ニュー分化因子(NDF)、アセチルコリンの受容体由来活性体(ARIA)、膠細胞増殖因子2(GGF2)、運動ニューロン由来要素(motor-neuron derived factor:SMDF)、ニューレグリン-2、ニューレグリン-2β(NRG2-β)、エピレグリン(Epiregulin)、ビレグリン、およびそれらの変異体、機能的な断片(functional fragments)からなる群から選択された少なくとも1つのErbB3リガンドを含む。別の具体的な実施態様では、本発明の組成物および方法は、たとえば二個以上ErbB3リガンドを使用することであるがこれらに限定されない、ErbB2-由来チロシンキナーゼ活性を刺激する1より多い手段を含む。
【0121】
さらなる具体的な実施態様では、本発明の組成物と方法は、ErbB3リガンドは、HRG-β、またはそれらの変異体、機能的な断片である。1つの実施態様では、培地添加タンパク質、ポリペプチド、それらの変異体または由来体の機能的な断片は、培養される細胞種と同じである。例えば、マウス胚性幹細胞が培養されている場合、培養における添加物としてハツカネズミ(mus musculs) HRG-β配列と同じアミノ酸配列を有するHRG-βを使用でき、「同じ種」であると考えられる。他の実施態様では、生物学的添加物から誘導された種は、培養される細胞と異なっていると考えられる。例えば、マウス胚性幹細胞が培養されている場合、ヒトHRG-β配列と同じアミノ酸配列を有するHRG-βを使用でき、「異なる種」であると考えられる。
【0122】
本明細書において使用される時、「機能的な断片」は、完全な長さのポリペプチドとして同様の生理的または細胞の効果を生む完全な長さのポリペプチドの断片またはスプライス変異体をいう。機能的な断片の生物学的な効果は、同様の生理的または細胞の効果が見られる限り、完全な長さのポリペプチドと同じ範囲または強度である必要はない。例えば、HRG-βの機能的な断片は検出可能にErbB2-由来チロシンキナーゼを刺激できる。
【0123】
本明細書において使用される時、「変異体」という用語はキメラまたは融合ポリペプチド、同族体、類似物と、オーソログ、またはパラログを含む。さらに、参照される蛋白質またはポリペプチドの変異体は、アミノ酸配列が参照される蛋白質またはポリペプチドと少なくとも約80%同じであるタンパク質またはポリペプチドである。具体的な実施態様では、変異体は比較蛋白質またはポリペプチドと少なくとも約85%、90%、95%、
95%、97%、98%、99%、または100%同じである。本明細書において配列アラインメントに関連して用語「対応する」が使用される時には、参照される蛋白質またはポリペプチド内の記載された位置を意味することを意図している。たとえば野生型ヒトまたはマウスのニューレグリン-1と、変成された蛋白質またはポリペプチドにおける参照される蛋白質またはポリペプチドにおける位置をいう。したがって、対象のタンパク質またはポリペプチドのアミノ酸配列が、参照される蛋白質またはポリペプチド配列のアミノ酸配列と並べられた時、参照される蛋白質またはポリペプチドのアミノ酸配列のある記載された位置に対応する配列は、参照される配列の位置と並ぶ配列であり、参照配列と正確な数字の同じ位置にある必要があるわけではない。以下で配列間で対応するアミノ酸を決定するための配列を整列する方法を説明する。
【0124】
たとえばTGF-βである参照されるアミノ酸配列コードとたとえば少なくとも約95%「同じ」アミノ酸配列を有するポリペプチドは、ポリペプチドのアミノ酸配列が参照されるTGF-βをコード化する参照アミノ酸配列の100アミノ酸あたり最大およそ5つの変成を含むことができるのを除いて、ポリペプチドのアミノ酸配列が参照配列と同じであることを意味することが理解される。言い換えれば、参照アミノ酸配列と約95%同じアミノ酸配列を持っているペプチドを得るためには、参照配列のアミノ酸残基の約5%までを削除するか、または他のアミノ酸で置換でき、または参照配列に、総アミノ酸類の約5%までのアミノ酸を挿入できる。参照配列のこれらの修飾は参照アミノ酸配列のN末端またはC末端位置において、またはそれらの端末の位置の間のどこでも起こることができ、参照配列のアミノ酸の間に個別に存在するか、または参照配列中に1種以上の隣接するグループとして存在することができる。
【0125】
本明細書において使用される時、「同一性」の用語は、参照されるヌクレオチドまたはアミノ酸配列と比べた、ヌクレオチド配列またはアミノ酸配列の同一性の尺度である。一般に、配列は最も高い順番の一致が得られるように並べられる。「同一性」自体は、当該技術分野で認識された意味を持ち、公知の技術により計算できる。(参照:、例えば、コンピュータによる分子生物学(Computational Molecular Biology)、Lesk,A.M.,ed.,Oxford University Press,New York(1988);Biocomputing:インフォーマティクスおよびゲノムプロジェクト(Informatics And Genome Projects),Smith,D.W.,ed.,Academic Press,New York(1993);配列データのコンピュータ分析 パート(Computer Analysis of Sequence Data,Part I),Griffin,A.M.,and Griffin,H.G,eds.,Humana Press,New Jersey(1994);von Heinje,G,分子生物学における配列分析(Sequence Analysis In Molecular Biology),Academic Press(1987);および 配列分析プライマー(Sequence Analysis Primer),Gribskov,M.and Devereux,J.,eds.,M Stockton Press,New York(1991))。2つのポリヌクレオチドまたはポリペプチド配列の間の同一性を測定するいくつかの方法が存在しているが、「同一性」という用語は当業者には公知である(Carillo,H.&Lipton,D.,Siam J Applied Math 48:1073(1988))。2つの配列の間の同一性または類似性を決定するのに一般的に使われる方法は、これに限定されるものではないが、大規模コンピュータのガイド(Guide to Huge Computers),Martin J.Bishop,ed.,Academic Press,San Diego(1994)and Carillo,H.& Lipton,D.,Siam J Applied Math 48:1073(1988)に開示されている。コンピュータプログラムは同一性と類似性について計算する方法とアルゴリズムを含むことができる。2つの配列の間の同一性と類似性を決定するコンピュータプログラム方法の例は、これに限定されるものではないが、GCG プログラムパッケージ(Devereux,J.,ら,Nucleic Acids Research 12(i):387(1984)),BLASTP,ExPASy5 BLASTN, FASTA(Atschul,S.F.,ら,J Molec Biol 215:403(1990))および FASTDBに示される。同一性と類似性を決定する方法の例は、Michaels,G.and Garian,R.,Current Protocols in Protein Science,VoI 1,John Wiley & Sons,Inc.(2000)に記載され、これは参照され、本明細書に組み込まれる。本発明の1つの実施態様では、二つ以上のポリペプチドの間の同一性を決定するために使用されるアルゴリズムは、BLASTPである。
【0126】
本発明の別の実施態様では、二つ以上のポリペプチドの間の同一性を決定するために使用されるアルゴリズムは、FASTDBである。これはBrutlagらのアルゴリズムによる(Comp.App.Biosci.6:237-245(1990))。これは参照され、本明細書に組み込まれる。FASTDB配列アラインメントでは、対照とされる配列はアミノ配列である。得られる配列アラインメントの同一性はパーセントで示される。同一性のパーセントを計算するためにアミノ酸配列のFASTDBアラインメントに使用されるパラメータ類は、これらに限定されないが、以下の通りである。マトリックス=PAM、k-tuple=2、ミスマッチペナルティ=1、ジョイニングペナルティ=20、ランダマイゼイショングループ長さ=0、カットオフスコア=1、ギャップペナルティ=5、ギャップサイズペナルティ 0.05、ウインドーサイズ=500、または対象とされるアミノ配列の長さの、どちらか短い方。
【0127】
対象の配列がN末端またはC終点の付加または染色体欠失のために対象とされる配列よりも短いかまたは長い場合、内部の付加または染色体欠失のためであるかに関わらず、手作業で矯正をすることができる。なぜなら、パーセントの同一性について計算するとき、FASTDBプログラムが対象の配列のN末端とC末端のトランケーションまたは付加を計算しないからである。対象とされている配列に関し、5’または3’末端においてトランケーションされている配列について、同一性のパーセントは、マッチング/アラインしていない対象配列に対する、N-末端およびC末端である対象配列の塩基の数について計算することによって、対象配列の全塩基のパーセントとして修正される。FASTDB配列アラインメントの結果が、マッチング/アラインメントを決定する。アラインメントの割合は、具体的なパラメータ類を使用して上記のFASTDBプログラムで計算された同一性パーセントから引き算され、最終パーセント同一性スコアが得られる。アラインメントがどのようにお互いに「対応するか」を決定する目的に、同一性パーセントと同様に、この修正されたスコアを使用できる。手動で同一性パーセントスコアを調整する目的のために、参照または対象の配列のNまたはC末端を超えて伸びる質問(対象)の配列の残基を考慮することができる。すなわち、比較配列のNまたはC末端にマッチ/アラインされていない残基は、手動でパーセント同一性スコアまたはアラインメントナンバリングを調整するときに計算できる。
【0128】
例えば、90アミノ酸残基被検配列は、パーセントの同一性を決定するために100残基参照配列と並べられる。染色体欠失は対象の配列のN末端で起こる。したがって、FASTDB配列はN末端で最初の10残基のマッチ/アラインメントを示さない。10の不対残基が配列の10%を示す時(NとC末端における残基数が被検配列における残基の総数と合っていない時)、FASTDBプログラムで計算されたパーセント同一性スコアから10%が引かれる。残っている90の残基が完全に合わせられているなら、最終的な同一性パーセントは90%である。別の例では、90残基の対象配列は100の対象配列と比較される。このとき、染色体欠失は、対象の配列のNまたはC末端には残基が全くない
、対象とマッチしないかまたはアラインされていない内部欠損である。この場合、FASTDBによって計算されたパーセントの同一性は、手動で修正されない。
【0129】
また、本発明はキメラまたは融合ポリペプチド(chimeric or fusion polypeptides)を提供する。本明細書において使用される時、「キメラポリペプチド」または「融合ポリペプチド」は、少なくとも第二の異なったポリペプチドに有効にリンクされた参照ポリペプチドのメンバーの一部を含む。第二のポリペプチドは、実質的に参照ポリペプチドと同じでないポリペプチドに対応するアミノ酸配列を有し、該ポリペプチドは同じかまたは異なった有機体から誘導される。融合ポリペプチドに関して、「有効にリンクする」という用語は、参照ポリペプチドと第二のポリペプチドがお互いに融合し、両方の配列が使用される配列に生ずる期待される機能を実現させるようにされることを意図する。参照ポリペプチドのN末端またはC末端に第二のポリペプチドを融合できる。例えば、ある実施態様では、融合ポリペプチドは、IGF-1配列がGST配列のC末端に融合されたGST-IGF-1融合ポリペプチドである。そのような融合ポリペプチドは組換ポリペプチドの精製を容易にすることができる。別の実施態様では、融合ポリペプチドはN末端におけるヘテロロガスシグナル配列を含むことができる。ある宿主細胞(例えば、哺乳動物宿主細胞)の中では、ポリペプチドの発現および/または分泌はヘテロロガスシグナル配列の使用で増加できる。
【0130】
断片および融合ポリペプチドに加えて、本発明は天然存在ポリペプチドの同族体と類似物を含んでいる。「同族体」は本明細書において類似又は同一のヌクレオチドまたはアミノ酸配列を持つ2つの核酸またはポリペプチドと定義される。同族体は、以下に定義されるような、対立遺伝子多型、オーソログ、パラログ、アゴニスト、およびきっ抗体を含んでいる。「同族体」という用語はさらに遺伝コードの縮退のため参照ヌクレオチド配列と異なっていて、その結果参照ヌクレオチド配列によってコード化されたものと同じポリペプチドをコード化する核酸分子を包含する。本明細書において使用される時、「天然存在」は天然に発生する核酸またはアミノ酸配列を示す。
【0131】
ポリペプチドのアゴニストは実質的にポリペプチドの生物活動と同じ、またはサブセットを保持できる。ポリペプチドの拮抗物質はポリペプチドから天然に発生する活性の一以上を禁止できる。
【0132】
本発明の組成物および方法のより具体的な実施態様では、ErbB3リガンドは、HRG-β、その変異体または機能的な断片である。さらに、ErbB3リガンドの非限定的な例は以下に開示される。米国特許No.6,136,558、6,387,638、および7,063,961。これらは参考として本明細書に援用される。
【0133】
一般に、ヘレグリンは2つの主要な型式に分類され、C末端部分で異なる2つの変異体のEGF-様ドメイン(EGF-like domains)に基づいて、アルファおよびベータとされる。しかしながら、これらのEGF-様ドメインは、そこに含まれる6つのシステイン残基のスペーシングが同じである。アミノ酸配列比較に基づいて、ホームズ他は、EGF-様ドメインの1番目から6番目のシステインの間において、HRGsがヘパリン結合EGF-様増殖因子(HB EGF)と45%類似し、アンフィレグリン(AR)と35%同一で、TGF-αと32%同一で、EGFと27%同一であることを見いだした。
【0134】
44KDa ニュー分化因子(NDF)はヒトHRGのラット同等物である。HRGポリペプチドのように、NDFはEGF-様ドメインが免疫グロブリン(Ig)相同ドメインの(immunoglobulin (Ig) homology domain)あとに続き、N末端シグナルペプチドを欠いている。現在、EGF-様ドメインの配列に基
づく、アルファまたはベータポリペプチドのどちらかとして分類された少なくとも6の異なった線維芽細胞 pro-NDFsがある。アイソフォーム1から4はEGF-様ドメインと膜貫通領域の間の変化するストレッチに基づいて特徴付けられる。したがって、異なったNDFアイソフォームは、スプライシングの変化により発生して、異なった組織特異的機能を実行できるように見える。EP 505148;WO93/22424;および WO94/28133を参照。これらは本明細書に援用される。
【0135】
本発明の1つの実施態様では、本発明の組成物と方法は外因のインスリンとインスリン代用物を含まない。「外因のインスリンまたはインスリン代用物」を含まないという句は、インスリンまたはインスリン代用物を故意に本発明の組成物または方法に追加されないということを示すのに本明細書に使用される。本発明のある実施態様では、本発明の方法と組成物は、したがって、故意に供給されるインスリンまたはインスリン代用物を含まない。しかしながら、本発明の組成物または方法が必ずしも内因性インスリンを踏むことができないというわけではない。本明細書において使用される時、「内因性インスリン」は、本発明の方法により培養された時に、培養細胞が自らの作用としてインスリンを製造できることを示す。細胞初代培養からの不純物、または出発物質からの残留不純物を示すものとして内因性インスリンが使用されることもある。具体的例では、本発明の組成物および方法は、50、45、40、35、30、25、20、15、10、9、8、7、6、5、4、3、2、または1マイクロg/mL以下のインスリンを含んでいる。
【0136】
本明細書において使用される時、「インスリン」という用語は、正常な生理学的濃度でインスリン受容体と結合し、インスリン受容体を通してシグナルを引き起こすことができる、タンパク質、変異体またはその断片を示す。「インスリン」という用語は、すべての自然なヒトインスリン、他の哺乳動物インスリン、これらの配列の同族体やまたは変異体のポリペプチド配列を有するタンパク質を包含する。さらに、用語インスリンはインスリン受容体と結合し、インスリン受容体を通してシグナルを引き起こすことができる、ポリペプチド断片を包含する。「インスリン代用物」という用語はインスリンとして実質的に同様の結果を与えるためにインスリンに代わって使用されるすべての亜鉛含有化合物をも包含する。インスリン代用物の例としては、塩化亜鉛、硝酸亜鉛、臭化亜鉛、および硫酸亜鉛を含むが、これらに限定されない。
【0137】
はっきり言えば、インスリン様増殖因子は、本発明で企図されるインスリン代用物でなく、またインスリンの同族体でもない。従って、別の具体的実施態様では、本発明の組成物および方法は少なくとも1回のインスリン様増殖因子(IGF)、変異体またはそれの機能的な断片の使用を含む。別の実施態様では、本発明の組成物および方法はすべての外因のインスリン様増殖因子(IGFs)も含まない。具体的実施態様では、本発明の組成物および方法は200、150、100、75、50、25、20、15、10、9、8、7、6、5、4、3、2または1ng/mL以下のIGF-1を含んでいる。
【0138】
本明細書において使用される時、「IGF-1Rのアクチベータ」という用語は調整された細胞増殖、分化、およびアポプトーシスにおいて極めて重要な役割を果たす有糸分裂促進因子をいう。IGF-1Rのアクチベータの効果は、他の受容体を通して媒介されることもできるが、IGF-1Rを通して通常媒介される。また、IGF-1Rは腫瘍ウイルス蛋白質と癌遺伝子産物によって引き起こされた細胞形質転換を含み、相互作用は特異的結合蛋白質(IGFBPs)のグループによって規制される。さらに、IGFBPプロテアーゼの大きいグループはIGFBPsを加水分解し、IGFs結合を解離し、IGF-1Rと相互作用する能力を再開する。本発明の目的のために、リガンド、受容体、結合蛋白質、およびプロテアーゼはすべてIGF-1Rのアクチベータであると考えられている。ある実施態様では、IGF-1Rのアクチベータは、IGF-1、またはIGF-2である。更なる実施態様では、IGF-1RのアクチベータはIGF-1類似物である。
IGF-1類似物の非限定的な例は、LongR3-IGF1,Des(l-3)IGF-1,[Arg]IGF-l,[Ala31]IFG-1,Des(2,3)[Ala31]IGF-1,[Leu24]IGF-l,Des(2,3)[Leu24]IGF-l,[Leu60]IGF-l,[Ala31][Leu60]IGF-l,[Leu24][Ala31]IGF-l,およびそれらの組み合わせである。更なる実施態様では、IFG-1類似物はLongR3-IGF1である。LongR3-IGF1はヒトインスリン増殖因子-1の組換え型の類似物である。LongR3-IGF1は、約1ng/mLから約1000ng/ml、より望ましくは約5ng/mlから約500ng/mL、より望ましくは約50ng/mlから約500ng/mL、より望ましくは約100ng/mlから約300ng/mL、または約100ng/mlの濃度において初期的に存在していると想定される。
【0139】
ある実施態様では、本発明の組成物および方法は、形質転換増殖因子ベータ(transforming growth factor beta:TGF-β)、またはTGF-βファミリー、変異体またはそれの機能的な断片を含む。本明細書において使用される時、「TGF-βファミリーのメンバー」という用語または増殖因子に関連して使用される同様の語は、TGF-βファミリーに関連する当業者に使用される一般的なもの、またはTGF-βファミリーのメンバーに知られた相同性により、またはTGF-βファミリーのメンバーに知られた機能の類似性により特徴付けられる。本発明の具体的な実施対態様では、TGF-βファミリーのメンバーが存在する場合には、TGF-βファミリーのメンバー、変異体またはそれの機能的な断片がSMAD2または3を活性化する。ある実施態様では、TGF-βファミリーのメンバーは、ノーダル(Nodal)、アクチビン A、アクチビン B、TGF-β、骨形成タンパク質-2(BMP2)、および骨形成タンパク質-4(BMP4)から成るグループから選ばれる。1つの実施態様では、TGF-βファミリーのメンバーはアクチビン Aである。
【0140】
ノーダル(Nodal)が存在している場合には、約0.1ng/mLから約2000ng/ml、より望ましくは約1ng/mlから約1000ng/mL、より望ましくは約10ng/mlから約750ng/mL、より望ましくは約25ng/mlから約500ng/mLの初期濃度で存在していることが企図される。使用される場合には、アクチビン Aは約0.01ng/mLから約1000ng/ml、より望ましくは約0.1ng/mlから約100ng/mL、より望ましくは約0.1ng/mlから約25ng/mL、または望ましくは約10ng/mlの初期濃度において存在していることが企図される。存在する場合には、TGF-βは約0.01ng/mlから約100ng/mL、より望ましくは約0.1ng/mlから約50ng/mL、より望ましくは約0.1ng/mlから約20ng/mLの初期濃度において存在していることが企図される。
【0141】
本発明の追加の実施態様では、本発明の組成物および方法はFGF受容体のアクチベータを含まない。現在、繊維芽細胞生長因子のファミリーの少なくとも22の公知のメンバーがあり、これらの因子は4つのFGF受容体の少なくとも1つに結合する。本明細書において使用される時、「FGF受容体のアクチベータ」という用語は、一般に、FGF-βファミリーに関連する当業者に使用される一般的なもの、またはFGF-βファミリーのメンバーに知られた相同性により、またはFGF-βファミリーのメンバーに知られた機能の類似性により特徴付けられる増殖因子をいう。ある実施態様では、FGF受容体のアクチベータはFGFであり、たとえばαFGFおよびFGF2であるが、これらに限定されない。具体的な実施態様では、組成物および方法には外因のFGF2を含まない。「外因のFGF2」を含まないとの用語は、故意に本発明の組成物または方法に線維芽細胞増殖因子2、すなわち塩基性FGFが追加されないことを示すものとして本明細書に使用される。したがって、本発明のある実施態様では、本発明の方法と組成物は故意に供給されたFGF2を含まない。しかしながら、本発明の組成物または方法が必ずしも内因性のFGF2を含むことができないというわけではない。本明細書において使用される時、「内因性のFGF2」は、本発明の方法により培養された時に、培養細胞それ自身がFGF2を製造できることを示す。細胞初代培養からの不純物、または出発物質からの残留不純物を示すものとして内因性FGF2が使用されることもある。具体例としては、本発明の組成物または方法は、10、9、8、7、6、5、4、3、2、または1ng/mL以下のFGF2を含んでいる。
【0142】
しかしながら、本発明の組成物および方法は、FGFポリペプチド、その機能的な断片またはその変異体を包含するFGF受容体の少なくとも1つのアクチベータを含むことができると企図される。FGF2が存在する場合には、約0.1ng/mLから約100ng/ml、より望ましくは約0.5ng/mlから約50ng/mL、より望ましくは約1ng/mlから約25ng/mL、より望ましくは約1ng/mlから約12ng/mL、また最も望ましくは約8ng/mlの初期濃度において存在することが企図される。別の具体的実施態様では、本発明の組成物および方法は、FGF2以外のFGF受容体の少なくとも1つのアクチベータを含むことができる。例えば、本発明の組成物および方法は、FGF-7、FGF10、FGF-22、それらの変異体またはそれらの機能的な断片の少なくとも1つを含むことができる。具体的実施態様では、FGF-7、FGF-10とFGF-22、それらの変異体またはそれらの機能的な断片の少なくとも2つが存在している。別の実施態様では、FGF-7、FGF-10、FGF-22、それらの変異体またはそれらの機能的な断片の3つのすべてが存在している。FGF-7、FGF-10、FGF-22、それらの変異体またはそれらの機能的な断片のいずれかが存在する場合には、それぞれが約0.1ng/mLから約100ng/ml、より望ましくは約0.5ng/mlから約50ng/mL、より望ましくは約1ng/mlから約25ng/mL、より望ましくは約1ng/mlから約12ng/mL、また最も望ましくは約8ng/mlの初期濃度において存在することが企図される。
【0143】
さらなる実施態様では、本発明の組成物および方法は、血清アルブミン(SA)を含む。具体的実施態様では、SAはウシのSA(BSA)またはヒトのSA(HAS)のどちらかである。具体的実施態様では、SAの濃度は容積(v/v)で約0.2%以上であるが、約10%v/v以下である。さらなる具体的な実施態様では、SAの濃度は、約0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1.0%、1.2%、1.4%、1.6%、1.8%、2.0%、2.2%、2.4%、2.6%、2.8%、3.0%、3.2%、3.4%、3.6%、3.8%、4.0%、4.2%、4.4%、4.6%、4.8%、5.0%、5.2%、5.4%、5.6%、5.8%、6.0%、6.2%、6.4%、6.6%、6.8%、7.0%、7.2%、7.4%、7.6%、7.8%、8.0%、8.2%、8.4%、8.6%、8.8%、9.0%、9.2%、9.4%、9.6% および 9.8%(v/v)よりも高い。
【0144】
追加の実施態様では、本発明の組成物と方法は少なくとも1つの不溶性基質を含む。例えば、これらに制限されるものではないが、ポリスチレン、ポリプロピレンのような化合物を含む細胞培養表面に分化細胞を置くことができる、次いで不溶性基質で表面をコーティングできる。具体的実施態様では、不溶性基質はコラーゲン、フィブロネクチン、それらの断片またはそれらの変異体から成る群から選択される。不溶性基質の他の例はフィブリン、エラスチン、フィブロネクチン、ラミニン、およびニドゲンを含むが、これらに限定されない。
【0145】
従って本発明の細胞培養環境および方法は接着培養に細胞をプレーティングすることを含む。本明細書において使用される時、「プレートされる」、および「プレーティング」という用語は、細胞が接着培養中で成長することを許容する任意のプロセスをいう。本明細書において使用される時、「接着培養」という用語は、細胞が個体表面で培養される培
養システムであって、該個体表面は不溶性基体でコーティングされ、ついで以下に例示されるような基体の他の表面被覆でコーティングされるか、または細胞が増殖するか安定することを許容する任意の他の化学物質または生物物質などでコーティングされるものをいう。細胞はしっかりと固体表面、または基体に接着することができるし、またそうでないこともできる。接着培養のための基体は、ポリオルニチン(polyornithine)、ラミニン、ポリリシン、精製コラーゲン、ゼラチン、フィブロネクチン、テネイシン、ビトロネクチン、エンタクチン、ヘパリン硫酸塩プロテオグリカン、多糖分解酸(PGA)、ポリ乳酸(PLA)、およびポリ乳酸グリコール酸(PLGA)の一つ又はそれらの任意の組み合わせを含むことができる。さらに、接着培養のための基体はフィーダー層または多能性ヒト細胞または細胞培養物を含むマトリックスを含むことができる。本明細書において使用される時、「細胞外マトリックス」という用語は、上で説明した固体基体(ただしこれらに限定されない)を包含し、並びにフィーダー層または多能性ヒト細胞または細胞培養物を含むマトリックスを包含する。1つの実施態様では、細胞はMATRIGEL(登録商標)でコーティングされたプレート上にプレーティングされる。別の実施態様では、細胞はフィブロネクチンコーティングされたプレート上にプレーティングされる。ある実施態様では、細胞がフィブロネクチン上にプレーティングされる場合、プレートは10マイクロg/mLのヒト血漿フィブロネクチン(インビトロゲン、#33016-015)のコーティングで調製され、組織グレード水で希釈され、室温で2から3時間保持される。別の実施態様では、細胞がプラスチック上にプレーティングされるのを許容するため、24時間までの間、血清を媒体中に置くことができる。細胞の接着を促進するために血清を使用する場合には、次に、培地が移されて、事実上血清を含まない組成物をプレーティングされた細胞に加える。
【0146】
本発明の組成物および方法は、分化可能な細胞が本質的にはフィーダー細胞またはフィーダー層を含まない条件下で培養されることを企図する。本明細書において使用される時、「フィーダー細胞」は生体外で成長する細胞である。すなわち、標的細胞と共同培養され、分化の段階において標的細胞を安定させる細胞をいう。本明細書において使用される時、「フィーダー細胞」という用語と「フィーダー細胞層」とは互換性を持って使用できる。本明細書において使用される時、「フィーダー細胞を本質的に含まない」との用語は、フィーダー細胞を含まないか、または「デ ミニマス(de minimus)」の数のフィーダー細胞を含む組織培養条件を示す。「デ ミニマス」の用語は、分化された細胞がフィーダー細胞上で培養されていた先の培養条件から現在の培養条件へ持ち越された、フィーダー細胞の数を意味する。上記の方法の1つの実施態様では、分化の現状における標的細胞を安定させるフィーダー細胞から、コンディショニングされた培地を得る。別の実施態様では、定義された培地はコンディショニングされていない培地であり、これはフィーダー細胞から得られない培地である。
【0147】
本明細書において使用される時、細胞または細胞培養物の細胞の分化状態に関連して使用される時に「安定」という用語は、細胞が複数の代にわたり培地中で増殖を続け、好ましくは培地中で増殖を続け、全部ではなくてもほとんどの培地中の細胞が同じ分化状態にあることを意味する。さらに安定した細胞が分裂するとき、分裂は同じ細胞タイプの細胞または同じ分化状態の細胞を通常もたらす。一般に、安定した細胞または細胞集合体は、培養条件が変更されない場合には、さらなる分化又は再分化せず、細胞は継代され続け、過成長しない。1つの実施態様では、安定している細胞は、無期限に、または少なくとも2代以上にわたり、安定状態で増殖ができる。より具体的な実施態様では、細胞は3代以上、4代以上、5代以上、6代以上、7代以上、8代以上、9代以上、10代以上、15代以上、20代以上、25代以上、30代以上にわたり、細胞は安定している。1つの実施態様では、細胞は約1カ月以上、2カ月以上、3カ月以上、4カ月以上、5カ月以上、6カ月以上、7カ月以上、8カ月以上、9カ月以上、10カ月、または11カ月の連続した継代において安定である。別の実施態様では、約1年間以上の連続した継代において、
細胞は安定している。1つの実施態様では、それらが分化されるのが望ましくなるまで、幹細胞は多能性状態で定義された培地において通常の継代で維持される。本明細書において使用される時、「増殖」という用語は細胞培養における細胞の数の増大について言う。
【0148】
ある実施態様では、本発明の組成物と方法はBMPシグナリングのイナクチベータを含む。本明細書において使用される時、「BMPシグナリングのイナクチベータ」とは、1種以上のBMPタンパク質の活性、またはそれらの上流または下流シグナルコンポーネンツのいずれかと、可能なシグナリング経路のいずれかを介して拮抗する薬剤をいう。BMPシグナリングのイナクチベートに使用される1つまたは複数の化合物は、当技術分野で知られているもの、または今後発見される任意の化合物であることができる。BMPシグナリングのイナクチベータの非限定的な例としては、ドミナント-陰性 トランケイティド (dominant-negative, truncated)BMP受容体、可溶性のBMP受容体、BMP受容体-Fcキメラ、ノギン(noggin)、ホリスタチン(follistatin)、神経由来因子(chordin)、グレムリン(gremlin)、セルベラス/DANファミリー蛋白質(cerberus/DAN family proteins)、ベントロピン(ventropin)、高ドーズアクチビン(high dose activin)、およびアムニオンレス(amnionless)があげられる。
【0149】
ある実施態様では、本発明の組成物と方法は少なくとも1つのホルモン、シトキン、アディポカイン、成長ホルモン、それらの変異体またはそれらの機能的な断片を含むことができる。ある実施態様では、定義された培地に存在している成長ホルモンは、定義された培地で培養される分化可能な細胞と同じ種のものであると想定される。したがって、例えば、ヒト細胞が培養されているなら、成長ホルモンはヒト成長ホルモンである。また、培養細胞と異なった種から来ている成長ホルモンの使用も想定される。望ましくは、ホルモン、シトキン、アディポカイン、および/または成長ホルモンは、約0.001ng/mlから約1000ng/mL、より望ましくは約0.001ng/mlから約250ng/mL、または、より望ましくは約0.01ng/mlから約150ng/mlの初期濃度で存在する。
【0150】
本発明の組成物と方法に含むことができるシトキンとアディポカインの例としては、シトキン類の4αヘリックスバンドルファミリー、シトキン類のインターロイキン-1(IL-I)ファミリー、シトキン類のIL-17ファミリー、およびシトキン類のケモカインファミリーを含むが、これらに限定されない。もちろん、本発明はシトキン類のこれらのファミリーのそれぞれのメンバーとサブクラスを企図し、たとえば、CCケモカイン類、CXCケモカイン類、Cケモカイン類およびCXCケモカイン類、インターフェロン類、インターロイキン類、リンホトキシン類、c‐kitリガンド、顆粒球・マクロファージコロニー刺激因子(Granulocyte/Macrophage-Colony Stimulating Factor:GM-CSF)、単球-マクロファージコロニー刺激因子(monocyte-macrophage colony-stimulating factor M-CSF)、顆粒球コロニー刺激因子(G-CSF)、レプチン、アディポネクチン、レジスチン、プラスミノゲンアクチベータインヒビター-1(PAI-1)、腫瘍壊死因子アルファ(TNFα)、腫瘍壊死因子ベータ(TNFβ)、白血病阻止因子、ビスファチン、レチノール結合蛋白4(RBP4)、エリスロポイエチン(EPO)、スロンボポエチン(THPO)があげられるが、これらに限定されるものではない。もちろん、当業者は本発明が上に記載された要素の変異体または機能的な断片を企図していることを理解するだろう。
【0151】
本発明は分化可能な細胞を培養する方法に関し、この方法は、細胞培養表面に分化可能な細胞をプレーティングすることを含み、基本栄養塩溶液を細胞に提供して、細胞にEr
bB2-由来チロシンキナーゼ活性を刺激する手段を提供することを含む。
【0152】
1つの実施態様では、血清または血清代替物の非存在下、およびフィーダー細胞層の非存在下で、少なくとも1つの本発明の組成物と分化可能な細胞が接触し、細胞が少なくとも1カ月、未分化状態で維持されるようにされる。多能性は表面マーカー、転写性マーカー、核型、3つの胚葉層の細胞に分化する能力に関する細胞のキャラクタリゼーションを介して決定できる。当業者にとって、これらのキャラクタリゼーションは周知である。
本発明記述種々の分化可能なpPSCの実施態様としては以下が挙げられる;hESC、CyT49、CyT203、CyT25、BGO1、BG02、およびMEL1を含むがこれらに限定されないヒト多能性幹細胞、iPSC-482c7、iPSC-603(Cellular Dynamics International,Inc.、マディソン、ウィスコンシン)、iPSC-G4、iPSC-B7(Shinya山中、iPS Cell Researchのためのセンター、京都大学)などの誘導多能性幹(iPS)細胞。G4とB7を使用する研究が、米国の特許出願No.12/765,714に詳細に記載されている。2010年4月22日に出願され、出願の名称は分化された再プログラムされた細胞からの細胞組成物である。上記文献は参考として、本明細書にその全体が援用する。これらのヒト多能性幹細胞の特定のものは、National Institutes of Health (NIH)、たとえばNIH Human Stem Registry(例えば、CyT49 Registration No.#0041)に登録されている。また、CyT49と他の利用可能な細胞ラインに関する情報はstemcells.nih.gov/research/registryにもある。さらに、他の細胞ライン(例えば、BG01とBG01v)は、Wisconsin International Stem Cell(WISC)Bank (Catalog name,BG01)の会員であるWiCellRおよび ATCC (Catalog No.SCRC-2002)により第3者に販売されている。本明細書に記載された他の細胞ラインは、WiCellRまたはATCCなどの生物学的集積所に登録されたりまたは分配されたりできないが、直接または間接的に研究者、実験室および/または団体から利用可能である。当業者にとって、例えば、細胞ラインと試薬を求める公的な要求は生命科学で通例である。典型的に、これらの細胞または材料の移転は、細胞ラインまたは材料の所有者と受容者との標準的な物質移転協定を通してできる。これらのタイプの物質移転は研究環境、特に生命科学で頻繁にある。実際、出願人はそれらが誘導されてキャラクタライズされた時以来、商業的におよび非営利の組織産業のパートナー、および共同研究者を介して細胞を移転しており、CyT49(2006)、CyT203(2005)、CyT25(2002)、BG01(2001)、BG02(2001)、BG03(2001)、およびBG01v(2004)が移転されている。括弧内の日付は細胞ラインまたは材料が公的に利用可能となった日付を示す。
【0153】
2006年8月に、Klimanskaya他は、hESCが単一割球から得られることを示した。したがって、胚種を完全に保って、その破壊を引き起こさないで得られた。それぞれの胚種から顕微手術のテクニックを使用して生検を実行し、19のES細胞様の派生物および2つの安定なhESCラインを入手した。これらのhESCラインは、6カ月以上未分化状態で維持できて、正常核型、並びに、Oct-4,SSEA-3,SSEA-4,TRA-1-60,TRA-1-81,nanogおよびアルカリホスファターゼを含む多能性のマーカーの発現を示した。これらのhESCは分化して、誘導体のすべての3胚性胚葉をどちらも生体外で形成し、奇形腫を生体内で形成する。胚種アドレスの破壊なしで新しい幹細胞系を作成するこれらの方法は、ヒト胚種の使用に関する倫理学に関係する。Klimanskaya他を参照されたい。2006 Nature 444:481-5,Epub 2006 Aug 23、その全体を本明細書中に参考として援用する。本研究はある特定のCyTまたはBG hES細胞ラインを使用した。
【0154】
しかしながら2006年6月16日に出願された最初の米国仮特許出願No.60/805,039に続いて、他の研究者が最初に述べられた方法またはその変法を使用し、H7,H9,HUES7,H1,HSF6,chHES-8(ch=China),chHES-20およびchHES-22,H9,BG01,BG02,HUES4,HUES8,HUES9,およびHUES 2を始めとする(ただしこれらに限定されない)他のヒト多能性幹細胞を使用して報告を発表した;他の誘導多能性(iPS)幹細胞ラインとしては、DiPS-H1およびDiPS-H2(T1-糖尿病の特異的iPS細胞)や、2010年4月22日に出願された、分化された再プログラムされた細胞からの細胞組成物の名称の、2010-0272695に記載されたものがあげられる。本明細書中に参考としてそれらの全体が参照される。さらに、ヒト単為発生幹細胞(hpSC)ヒト多能性幹細胞;例えば以下を参照されたい;D’Amour et al.2005,Nature Biotechnology 23:1534-1541;Cai et al.2007,Hepatology,45:1229-39;King et al.2008,Regen.Med.3:175-80;Zhou et al.2008,Stem Cells&Development 17:737-750;Brunner
et al.2009,Genome Res.19:1044-1056;Maehr et al.2009,PNAS 106:15768-15773;Argawal et al.2008,Stem Cells 26:1117-1127;Bingham et al.2009,Stem Cells&Devel 18:1-10;Borowiak et al.2009, Cell Stem Cell 4:348-358;Chen et al.2009, Nature Chem Biology 5:258:265;Revazova et. al.2007,Cloning Stem Cells 9:432-449;Turovets et. al.2011,Differentiation 81:292-8,Epub 2011 Feb 8。本明細書中に参考としてそれらの全体が参照される。したがって、本発明の方法が本明細書に記載された多能性細胞に制限されないと証明するための豊富な証拠が、多くの研究団体によって提供されている。
【0155】
表1と2は、本発明の方法および組成物における使用に適する、ある特定のhESCとiPSCに関する非制限的なリストであり、これらは世界中で研究、および/または商業目的に入手できる。表1と2の情報は、国立衛生研究所の幹細胞レジストリ、マサチューセッツ医学大学、ウスター(マサチューセッツ)、米国に位置する、ヒト胚性幹細胞レジストリおよび国際幹細胞レジストリに示されるものを含む。細胞ラインが利用可能となり、登録が得られると、定期的にこれらのデータベースはアップデートされる。
【0156】
【表1-1】
【0157】
【表1-2】
【0158】
【表1-3】
【0159】
【表1-4】
【0160】
【表1-5】
【0161】
【表1-6】
【0162】
【表1-7】
【0163】
【表1-8】
【0164】
【表1-9】
【0165】
【表2-1】
【0166】
【表2-2】
【0167】
【表2-3】
【0168】
【表2-4】
【0169】
【表2-5】
【0170】
【表2-6】
【0171】
iPSC(誘導多能性幹細胞)に関し、出願人は、以前に、2010年4月22日に出願された、分化された再プログラムされた細胞からの細胞組成物と題する米国の特許出願No.12/765,714(米国特許公開2010-0272695)において、細胞集合体懸濁液分化について説明した。この特許は本明細書中に参考として全体を援用する。ヒトiPSC集合体はさらに詳細に実施例27で記載されている。米国特許公開2010-0272695および実施例27は、細胞培地に少なくともRho-キナーゼまたはROCK阻害剤を加えると、成長、生存、細胞の増殖および細胞間接着を向上、増加および/または促進することを記載する。たとえばY-27632を使うとき、濃度は約0.01から約1000マイクロM、典型的には約0.1から約100マイクロM、しばしば約1.0から約50マイクロM、最も多くは約5から20マイクロMである。Fasudil/HA1077が使用される場合、前述のY-27632濃度の約2-3倍で使用される。H-1152が使用される場合、それは画分として、例えば前述のY-27632濃度の約1/10ずつ、約1/20ずつ、約1/30ずつ、約1/40ずつ、約1/50ずつ、および約1/60ずつ使用される。使用されるROCK阻害剤の濃度は、阻害剤の生理活性、阻害能力、およびそれが使用される条件に一部依存するだろう。さらに、ROCK阻害剤で処理する時間またはステージは、成長、生存、細胞の増殖および細胞間接着を向上、増加および/または促進などの所期の効果が達成されるなら、特に制限されない。
【0172】
本明細書に記載された細胞集合体は、任意の生理的に許容できる媒体中に懸濁でき、典型的には含まれる細胞タイプに従って選ばれる。組織培養液は例えば、糖類およびアミノ酸類のような基本的栄養、増殖因子類、抗生物質類(汚染を最小にするため)、および同様のものなどを含むことができる。別の実施態様では、分化可能な細胞は本明細書に記載された細胞培地を使用して懸濁液中で培養される。「懸濁」との用語が細胞培養の文脈で使用される場合、当技術分野で用いられる意味で使用される。すなわち、細胞培養懸濁液は、細胞または細胞集合体が表面に接着しない細胞培養環境である。当業者は懸濁培養技
術に詳しく、たとえば、これらに限定されるものではないが、フローフード類(flow
hoods)、インキュベータ、および/または、細胞を一定の動きに維持するために使用される装置、例えば、撹拌機プラットホーム、シェーカーなどを必要に応じて備えることができる。本明細書において使用される時、細胞が動いている場合、またはそれらの間の環境が細胞に対して動いている場合には、細胞には「動き」がある。細胞が「動き」の状態に維持されると、1つの実施態様では、動きは細胞をせん断力に暴露することを避けるか、または防ぐように設計されている「優しい動き」または「優しい撹はん」となるだろう。
【0173】
細胞集合体を作るさまざまな方法が当該技術分野において公知であり、例えば「ハンギングドロップ(hanging drpo)」法が知られ、この方法では組織培養液の逆さの滴の中で細胞が滴の底部に沈み、集まり、実験フラスコ中で細胞懸濁液を震動させる。これらのテクニックの種々の変法も使用できる。例えば、N.E.Timminsら,(2004)Angiogenesis 7,97-103;W.Daiら,(1996)Biotechnology and Bioengineering 50,349-356;R.A.Fotyら,(1996)Development 122,1611-1620;G.Forgacsら,(2001)J.Biophys.74,2227-2234(1998);K.S.Fumkawaら,Cell Transplantation 10,441-445;R.Glicklisら,(2004)Biotechnology and Bioengineering 86,672-680;Carpenedoら,(2007)Stem Cells 25,2224-2234;およびT.Korffら,(2001)FASEBJ.15,447-457を参照。これらの全体は本明細書に参照され組み込まれる。より最近では、細胞集合体はマイクロパターン化されたコロニーを懸濁液内にこすり落とし、マイクロタイタープレートのコロニーを遠心分離で取り出し懸濁液にするか、またはピペットを使用してパターンドマイクロウェルで成長されたコロニーを取り出し懸濁させる(Ungrin他、(2008)PLoS ONE 3(2)、1-12;Bauwens他、(2008)、Stem Cells Published online June 26,2008)。本明細書に記載された細胞集合体を製造するのにそのような方法を使用できるが、本明細書に製造された細胞集合体は、同期した有向分化(synchronous directed-differentiation)のために上記のd’Amour他2006に記載されているようにして、最適化される。これらの他の方法と異なって、本明細書に記載された懸濁液中における細胞集合体を製造するための方法は大規模製造に影響を受けやすい。
【0174】
一般に、本発明の細胞培地組成は、少なくとも1日に1度リフレッシュされるが、よりしばしばまたは、より少なく懸濁培養物の具体的必要性と事情によって媒体を変えることができる。生体外で、細胞は、通常バッチ・モードにより培養液で育てられて、様々な培地条件に暴露される。本明細書に記載されたように、細胞は接着培養として、または懸濁中における細胞集合体として皿培地中に存在して、取り囲む培地に接触し;および定期的に廃棄物培地が取り替えられる。一般に、1時間、2時間、3時間、4時間、5時間、6時間、7時間、8時間、9時間、10時間、11時間、12時間、13時間、14時間、15時間、16時間、17時間、18時間、19時間、20時間、21時間、22時間、23時間、または24時間毎、またはそれの任意の時間で培養液をリフレッシュできる。追加例では、1.1日、1.2日、1.3日、1.4日、1.5日、1.6日、1.7日、1.8日、1.9日または2日またはそれ以上ごとに、またはそれらの間の任意の期間で培地はリフレッシュされることができるが、これらに限定されるものではない。
【0175】
しかし、本発明の別の実施態様では、増殖因子および頻繁に取り替えられなければならない他の薬剤の分解を防止するために環流方法(perfusion method)が採用され、または一定期間の間に培地からの廃棄物を減耗する手段として環流方法が採用
された。例えば、米国特許第5,320,963号は、懸濁細胞の潅流培養のためのバイオリアクタについて説明する。米国特許第5,605,822号は、環流による培養でのHSC細胞の成長のために、増殖因子を提供するのにストロマ細胞を使うバイオリアクタシステムについて説明する。米国特許第5,646,043号は、HSC細胞の成長のための培地組成物を含む連続した周期的環流でのHSC細胞の成長について説明する。米国特許第5,155,035号は、流体培地回転による細胞の懸濁培養のためのバイオリアクタについて説明する。これらは参照され本明細書にそれらの全体が取り入れられる。
【0176】
一般に、本発明の培地組成物中で懸濁培養される細胞は、ほぼ毎週、「スプリット(split)」または「継代(passage)」されるが、細胞は具体的な必要性および懸濁培養の環境に応じて、より頻繁にまたはより少ない頻度で継代されることができる。例えば、細胞は1日、2日、3日、4日、5日、6日、7日、8日、9日、10日、11日、12日、13日、14日間、またはそれらの間の任意のタイムフレームで継代されることができる。本明細書において使用される時、それが細胞培養の文脈で使用される場合、「スプリット」または「継代」という用語は、当該技術分野における使用されている意味で使用される。すなわち、細胞培養スプリットまたは継代は、前の培養からの細胞の収集と、新しい細胞培養容器への、より少ない数の収集された(収穫された)細胞の移転である。一般に、継代細胞は、健康な細胞培養環境で成長し続けることができる。当業者は細胞培養継代のプロセスおよび方法になじみ深く、これは必ずではないがそれらの成長エキスパンションの間に一緒に集合している細胞を分けるために使用できる酵素的または非酵素的方法の使用を含む。
【0177】
ある場合に、ある程度の細胞死が、継代直後の(懸濁または接着培養の)細胞で起こることがある。1つの実施態様では、分化可能な細胞は、24時間以上細胞媒体のリフレッシュを遅らせることによって継代から「回復できる」。その後、より頻繁に細胞媒体を変えることができる。別の実施態様では、細胞培地は、さらに細胞死の防止剤を含むことができる。例えば最近Wantanabe他は、解離の後にヒト胚性幹細胞を保護するためにRho-関連キナーゼ阻害薬(Rho-associated kinase inhibitor)、Y27632の使用を開示する。Wantanabe,K.,ら,Nat.Biotechnol,25(6):681-686(2007)を参照されたい。これは参照され、本明細書に援用される。追加の実施態様では、細胞培地は、継代直後の細胞死を防ぐか、または減衰させるようにカスパーゼ阻害剤、増殖因子または他の栄養素を含むことができる。使用できる物の具体的例としては、HA1077、ジヒドロクロライド(Dihydrochloride)、ヒドロキシファスジル(Hydroxyfasudil)、Rho キナーゼ 阻害剤、Rho-キナーゼ 阻害剤 II、Rho キナーゼ 阻害剤 III、キナーゼ 阻害剤 IV、およびY27632があげられるが、これらに限定されるわけではない。なお、上記の物質はすべて商業的に利用可能である。さらに別の実施態様では、細胞継代直後またはその間の細胞死を防ぐかまたは減衰させるために使用される物質または要素は、細胞が継代のプロセスから回復した後に、細胞培地から取り除くことができる。追加の実施態様では、未分化胚性幹細胞は、標準のベース培地中で有効に集合することができ、解離と集合の間、生育性を維持するためにY27632または他の関与を必要としない。
【0178】
また、追加の実施態様では、本発明の組成物および方法は界面活性化合物の存在または使用を含むことができる。1つの特定の実施例では、本発明の組成物と方法は懸濁培養において少なくとも1つの表面活性剤を含む。界面活性化合物は、当技術分野で周知であり、一般的には両親媒性である。具体的実施態様では、本発明はアニオン系、カチオン性、ノニオン性または双性である少なくとも1つの表面活性剤の使用を含む。本発明の組成物および方法に使用される表面活性剤の濃度の決定は、ルーチン的な検査と最適化の問題である。たとえばオーエン他は、ヒーラ細胞とヒト羊膜細胞の細胞培養法における界面活性化合物の使用を報告する。Owenら,J.Cell.Sc,32:363-376(1978)を参照。これは参照して本明細書に組み込まれる。使用できる界面活性化合物の例としては、これらに限定されるわけではないが、以下の物質があげられる;ドデシル硫酸ナトリウム(SDS)、アンモニウムラウリル硫酸、および他のアルキル硫酸塩;ナトリウムラウレススルフェート(SLES)、アルキルベンゼンスルホン酸エステル、石鹸、または脂肪酸塩、セチルトリメチルアンモニウム臭素(CTAB)(ヘキサデシルトリメチル臭化アンモニウム)、および他のアルキルトリメチルアンモニウム塩、塩化セチルピリジニウム(CPC)、ポリエトキシル化獣脂アミン(POEA)、ベンズアルコニウム塩化物(BAC)、ベンズエトニウム塩化物(BZT)、ドデシルベタイン、ドデシルジメチルアミン酸化物、コカミドプロピルベタイン、ヤシアンフォグリシナート、アルキルポリ(エチレンオキシド)、ポリエチレンオキシドとポリプロピレン・オキシドコポリマー、たとえばプルロニック(Pluronic)F68、アルキルポリグリコシド、たとえば、オクチルグルコシド、デシルマルトシド、脂肪アルコール、セチルアルコール、オレイルアルコール、コカミド MEA、コカミドDEAおよびコカミドTEA、および/または、ポリオキシエチレン-ソルビタン モノラウレート(トゥイーン)があげられるが、これらに制限されるものではない。
【0179】
本明細書に記載された実施態様は、低せん断環境を維持することにより、システムの細胞濃度を維持して、流体せん断応力を最小にし、hES細胞を増殖させ、および/または分化させる大規模製造のための方法を提供する。特に、本発明は60mmの皿、6ウェルのプレート、回転するボトル、バイオリアクタ(例えば、スピナーフラスコ)、および容器などで細胞懸濁液を培養することによる、真核細胞製造スケールアップシステムにおける低せん断環境を維持するための方法を提供する。あるいはまた、細胞を培養する連続かん流システムは、細胞の懸濁、酸化、および新鮮な栄養物の提供のため、すなわち成長および/または分化のために、バイオリアクタまたは容器内における撹拌または動きを必要とする。細胞懸濁液を得るために、バイオリアクタ容器は典型的にはせん断応力の可能なソースである1種以上の可動な機械的撹はん装置を使用する。
【0180】
細胞成育と生育性を維持するのに、一定の、そして、最適化された攪拌せん断速度を確立して、維持することは重要である。例えば増加したせん断速度は、以下の点で有害である:
(1); 過度のせん断はエネルギー消費量を上げる。
(2); 過度のせん断は細胞膜表面での拡散を干渉する。
(3); 過度のせん断はある化合物から生理活性を奪うことがある。
(4); 過度のせん断は、融解(cell lysis)に通じる破壊の閾値張力を超えて細胞膜を変形する。
したがって、細胞集合体の直径、単独細胞解離およびせん断に対する特定の細胞ラインの感度に依存して、5から500秒-1の範囲内の中のせん断を維持することが望ましい。本発明の方法で有用な構成におけるせん断速度の例は、6ウェルの皿において、60-140rpmの間の回転速度で、100-200ミクロンの直径の集合直径について、実施例17に示されている。これらの値は、回転の間にバルク流体に起こる時間平均のせん断応力を見積もっている。しかしながら、容器の壁におけるせん断応力は、境界効果のためより高くなると予想される。上記のLey他の方法を使用して、壁面せん断応力は、60rpmから140rpmまでの回転速度のために計算されて、実施例17-19に示されている。
【0181】
そっと撹拌されている細胞懸濁液を発生させるための手段または装置の他の例も存在していて、当業者にとって周知である。例としては、プロペラのようなインペラー、または他の機械的手段、たとえばブラダー(bladders)、流体または気体の流れに基づく手段、超音波定在波発生器、前後にゆれるかまたは回転するプラットホーム、または細
胞懸濁液を製造するそれらの組み合わせなどがあげられる。本発明の方法では、回転するプラットホームは、6ウェルのプレート内に細胞を分散させる例示的な手段であり、400秒-1未満のせん断速度を発生させる。撹拌された流体懸濁液を発生するための撹拌機タイプまたは機構にかかわらず、バルク流体内の見積もられた時間平均されたせん断速度とせん断応力は、すべての流体混合装置が関係づけられる規格化要素を提供する。装置の中の流れの状態はそれらのプロフィルおよび層流または乱流の流れの程度により異なることができ、せん断の計算は、異なった機構による混合により発生される装置内の流れを等しくする基礎を提供する。例えば、4cmのインペラー直径、6.4cmの容器幅、90度のインペラー角度、および0.1cmのインペラー幅を有する125mLスピナーフラスコでは、100rpmで回転している5mL培地を有する6ウェルの皿で、直径100μmの集合体について、バルク流体で同じ時間平均せん断速度とせん断応力を発生する。
【0182】
また、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、23、24、25、26、27、28、29、30日間、40日間以上、50日間以上にわたり、スケールアップ製造システムの低せん断環境を維持するのに本発明の方法を使用できる。例示的な稼働時間は少なくとも約1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、23、24、25、26、27、28、29、30日間、40日間以上、50日間以上である。
【0183】
分化可能な細胞は、酵素学的または非酵素学的方法を使用して、または、本発明の規定培地との接触の前および接触の後の手動の解離方法により、継代することができる。酵素的な解離方法の非限定的な例としては、トリプシン、コラゲナーゼ、ジスパーゼ、ACCUTASE(登録商標)などのプロテアーゼの使用を含む。1つの実施態様では、ACCUTASE(登録商標)は接触された細胞の継代に使用される。酵素的継代方法が使用されるとき、得られた培養物は、シングレット(singlet)、ダブレット(doublet)、トリプレット(triplet)および細胞のクランプ(clumps)を含むことができ、これらは使用された酵素の種類に応じてサイズが異なる。非酵素学的解離方法の非限定的な例は細胞分散バッファ(cell dispersal buffer)である。当技術分野において手動の継代技術についてはよく説明されており、たとえばSchulzら,2004 Stem Cells,22(7):1218-38に記載されている。存在する場合には、細胞外マトリックスの選択により継代方法の選択は影響を及ぼされるが、当業者によって容易に決定されることができる。
【0184】
1つの具体的実施態様では、分化可能な細胞を培養する方法は、解離が単独細胞に細胞層を壊す解離の前に、培養チャンバーに含まれている分化可能な細胞の層の解離溶液を提供することを含む。解離の後に、単独細胞は幹細胞培養液と新しい組織培養チャンバーに置かれる;そこでは、幹細胞培養液は基本栄養塩溶液とErbB3リガンドを含む。いったん培養されると、単独幹細胞は単独細胞の成長と分裂を可能にする条件に置かれる。別の具体的実施態様では、分化可能な細胞を培養する方法は、先の培養チャンバーに含まれている分化可能な細胞集合へ解離溶液(dissociation solution)を提供することを含む、そこでは、解離により単独細胞または、より小さい集合体に細胞の集合体を壊す。
【0185】
本発明の方法で使用される離解溶液(disaggregation solution)は、大規模な急性毒性を細胞に引き起こさずに、単独細胞に細胞をばらばらにするか、または離解することができる離解溶液であることができる。離解溶液の例は、トリプシン、ACCUTASE(登録商標)、0.25%のトリプシン/EDTA、TrypLE、またはVERSENE(登録商標)(EDTA)とトリプシンを含むが、これらに限定されない。本発明の方法は、少なくともいくつかの単独細胞が離解され再培養できることを条件として、集密層または懸濁液中のあらゆる細胞が単独細胞に離解されることを必要とするわけではない。
【0186】
培養の始め、または継代の後に、どんな密度でも分化可能な細胞をシードでき、培養チャンバーにひとつの細胞でもよい。さまざまな要素によって、シードされる細胞の細胞濃度を調整できる。たとえば接着培養、懸濁培養の使用、使用される培養細胞培養液の具体的処方、生育条件、および培養される細胞の想定された使用を含む。細胞培養密度の例としては以下があげられる;0.01×10細胞/ml,0.05×10細胞/ml,0.1×10細胞/ml,0.5×10細胞/ml,1.0×10細胞/ml,1.2×10細胞/ml,1.4×10細胞/ml,1.6×10細胞/ml,1.8×10細胞/ml,2.0×10細胞/ml,3.0×10細胞/ml,4.0×10細胞/ml,5.0×10細胞/ml,6.0×10細胞/ml,7.0×10細胞/ml,8.0×10細胞/ml,9.0×10細胞/ml,または10.0×10細胞/ml、またはそれ以上、たとえば5×10細胞/mLまでが、良好な細胞の生存を示して培養される。これらの値の間の任意の値も採用できる。
【0187】
上記に加えて、本明細書に使用される時には、「細胞濃度操作」という用語、「操作された細胞濃度」またはそれの等価な表現は、製造プロセスまたはシステムでの細胞密度が操作され、増殖性または分化性のhES細胞培養物を生産することをいう。そのような細胞濃度は、システムに供給されるビタミン、ミネラル、アミノ酸、代謝物などの栄養物、または酸素分圧などの環境条件が、細胞生育力を維持するために十分である下でのものをいう。あるいはまた、そのような細胞濃度は、細胞生育力を維持できるような速度でシステムから廃棄物を取り除くことができる下でのものをいう。当業者は容易にそのような細胞濃度を決定できる。
【0188】
維持できる作動細胞濃度は、少なくとも約0.5×10細胞/mLからである。典型的なスケールアップシステム作動式細胞濃度は、約0.5×10細胞/mLから約25×10細胞/mLの間である。例示的な濃度は、約2.5×10細胞/ml、22×10細胞/mLから、最大5×10細胞/mLの間である。本発明の方法では、細胞生存率は少なくとも約40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、および約100%までである。他のスケールアップシステム作動細胞濃度と許容細胞生存率レベルは、当業者によって認められ、当業者にとって周知のテクニックにより決定できる。例えば、バッチ、フェドバッチ(fed-batch)および連続供給される構成では、約0.5×10細胞/mLから15×10細胞/mLの間の細胞濃度であってもよい。
【0189】
また、それらの形成性または他の特性に影響を及ぼす分子類または要素について、分化可能な細胞をスクリーンに利用できる。例えば、アポプトーシス、分化または、増殖または分化可能な細胞から発生した分化されたリネッジを引き起こす薬剤を特定するのに分化可能な細胞を使用できる。
【0190】
本発明の組成物および方法が単独細胞継代を許容するので、分化可能な細胞は大量処理設定、これらに制限されるものではないが、たとえば96ウェルプレートまたは384ウェルプレートで成功裏に培養された。図16は、本発明の方法を使用して、96ウェルプレートおよび384ウェルプレートの両方でDC-HAIF内で培養されたBG02細胞のモルホロジーとアルカリ性ホスファターゼ染色を示している。簡潔には、ACCUTASE(登録商標)を使用して継代され、96ウェルプレートおよび384ウェルプレートでプレーティングされたhESC細胞は、他の培養ざらを使用して観測されたものと同様のコロニー形成率を示した。さらに、細胞はコロニーを形成して、より小さい環境で5日間成功裏にエキスパンドした。これらのより小さい培養物はモルホロジー的に未分化のままで残り、未分化細胞のマーカーであるアルカリホスファターゼにより均一に陽性に染色された。さらに、ACEA Biosciences,Inc.(www.aceabio.com)からのRT-CES(登録商標)法を使用することで、細胞増殖と生育性を測定することができる、インピーダンスのリアルタイム測定値を提供する96ウェルの培養装置(図示せず)でhESCを育てることができた。そのようなアプローチは分化可能な細胞における微妙であるか即座の効果のラベルを使用しない識別と定量化を可能にするだろう。また、増殖、アポプトーシスおよびモルホロジー変化のリアルタイム測定も可能にするだろう。
【0191】
本発明の組成物および方法は、上記または本明細書のほかの場所に記載された線分の任意の組み合わせを実際には含むことができる。ただし、本発明の組成物と方法は基本栄養塩溶液と、ErbB2-由来チロシンキナーゼ活性を刺激する手段を含む。プロトコールのデザインにより、本発明の組成物および方法の成分が異なることは当業者には理解されるであろう。従って、本発明の1つの実施態様は、96ウェルプレートおよび/または384ウェルのプレートで分化可能な細胞を培養することに関する。本発明の組成物および方法を使用して、細胞培養チャンバー、すなわち培養ざらは特定の大きさに制限されない。したがって、本明細書に記載された方法は、具体的な培養チャンバー寸法、および/または、hES細胞を発生させる手段と装置によっては決して制限されない。
【0192】
本明細書に記載された組成物と方法は、いくつかの有用な特徴を持っている。例えば、本明細書に記載された組成物と方法は、ヒトの発達の初期をモデル化することの役に立つ。さらに、本明細書に記載された組成物と方法は、疾病の治療介入に有用であり、たとえば神経変性の障害、糖尿病または腎不全症などのように、純粋な組織または細胞タイプの発達によるものに有用である。
【0193】
分化可能な細胞から分化する細胞タイプは、これらに制限されるものではないが、薬物発見、薬物開発および試験、毒性学、治療目的および基礎科学研究のための細胞の生産を含む研究開発の多くの分野で用途を持っている。これらの細胞タイプはさまざまな研究分野で対象となる分子類を発現する。これらは標準参照テキストに記載される様々な細胞タイプの機能に必要であることが知られている分子類を含んでいる。これらの分子類としてはサイトカイン類、増殖因子、サイトカイン受容体、細胞外マトリックス、転写因子、分泌されたポリペプチド類および他の分子、および増殖因子受容体を含むが、これらに限定されない。
【0194】
本発明の分化可能な細胞が、細胞分化環境との接触を介して分化できることが企図される。本明細書において使用される時、「細胞分化環境」という用語は、分化可能な細胞の分化が誘導されるか、または分化細胞の中でヒト細胞培養が富化されるように誘導される細胞培養条件を示す。望ましくは、増殖因子によって引き起こされた分化型細胞リネッジは、均質になるだろう。「均一性」の用語は、約50%、60%、70%、80%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、または99%以上の希望の細胞リネッジを含む集合体を示す。
【0195】
部分的に、末端に、または可逆的に本発明の分化可能な細胞を分化するのに細胞分化媒体または環境を利用できる。本発明によると、細胞分化環境の培地は、さまざまな成分、たとえば、KODMEM培地(Knockout Dulbecco’s Modified Eagle’s Medium)、DMEM、HamのF12培地、FBS(ウシ胎仔血清)、FGF2(線維芽細胞増殖因子2)、KSRまたはhLIF(ヒト白血病阻止因子)を含むことができる。また、細胞分化環境は、たとえばL-グルタミン、NEAA(非必須アミノ酸)、P/S(ペニシリン/ストレプトマイシン)、N2、B27およ
びβメルカプトエタノール(βME)のようなサプリメントを含むことができる。以下のような追加要素を細胞分化環境に加えることができると企図される;フィブロネクチン、ラミニン、ヘパリン、ヘパリン硫酸塩、レチノイン酸、表皮細胞増殖因子ファミリー(EGFs)のメンバー;FGF2、FGF7、FGF8、および/またはFGF10を含む線維芽細胞増殖因子ファミリー(FGFs)のメンバー、血小板由来増殖因子ファミリー(PDGFs)のメンバー;転換増殖因子(TGF)/骨形成たん白質の(BMP)/成長および分化因子(GDF)ファミリーのアンタゴニスト、これらに限定されるものではないがたとえば、ノギン、ホリスタチン、コルジン、グレムリン、セルベラス/DANファミリー蛋白質、ベントピン、高ドーズアクチビン、およびアムニオンレス(amnionless);変異体またはそれらの機能的な断片。TGF/BMP/GDFアンタゴニストも、TGF/BMP/GDF受容体-Fcキメラの形で加えることができる。加えることができる他の要素としては、Notch受容体ファミリー(Notch receptor family)を介してシグナリングを活性化または不活性化できる分子類、これらに制限されるものではないが、たとえば、デルタ-様(Delta-like)およびジャグド(Jagged)ファミリーのタンパク質、並びにノッチ(Notch)プロセッシング、または解裂の阻害剤、またはそれらの変異体および機能的な断片を含んでいる。他の増殖因子としては、インスリンの様の増殖因子ファミリー(insulin like growth factor family:IGF)、インスリン、ウイングレスリレイテッド(WNT)因子ファミリー(wingless related (WNT) factor family)、ヘッジホッグ因子ファミリー(hedgehog factor family)、それらの変異体または機能的な断片があげられる。内胚葉系中胚葉幹/前駆細胞、内胚葉幹/前駆細胞、中胚葉幹/前駆細胞、または胚体内胚葉幹/前駆細胞の増殖と生存を促進するため、並びにこれらの前駆細胞の由来体の生存や分化を促進するために、追加要素を加えることができる。
【0196】
本明細書に記載された組成物は、試験化合物をスクリーニングして、試験化合物が分化可能な細胞の多能性、増殖、および/または分化を調節するかどうか決定するために有用である。当業者は容易に分化可能な細胞の多能性、増殖、および/または、分化を確かめることができる。非限定的な方法としては、細胞形態、様々なマーカーの発現、奇形腫形成、細胞数、およびインピーダンスの測定を含んでいる。
【0197】
希望の細胞リネッジへの分化可能な細胞の進行、または未分化状態での維持は、希望の細胞リネッジのマーカー遺伝子特性の発現、並びに分化可能な細胞タイプのマーカー遺伝子特性の欠損を定量化することによって、モニターできる。そのようなマーカー遺伝子の遺伝子表現を定量化する1つの方法が定量的PCR(Q-PCR)の使用である。Q-PCRを実行する方法は当技術分野で周知である。また、当技術分野で知られている他の方法もマーカー遺伝子発現を定量化するために使用できる。対象となる標識遺伝子に特異的な抗体を使用することによって、マーカー遺伝子発現を検出できる。
【0198】
ある実施態様では、スクリーニング法は分化可能な細胞の多能性、増殖および/または分化を調節できる化合物を特定する、以下を含む方法を包含する;
(a); 分化可能な細胞を提供すること;
(b); 基本栄養塩溶液とErbB3リガンドを含み、事実上血清を含まない組成物中で細胞を培養すること;
(c); テスト化合物と細胞を接触させること;および
多能性、増殖、および/または、分化の増大または減少が、化合物と接触された細胞で起こるかどうか決定すること。
ここで前記の増大が起こっていれば、化合物が多能性、増殖、および/または、分化を調節することを示す。ある実施態様では、ErbB3リガンドはHRG-βである。他の実施態様では、テスト化合物でErbB3リガンドを置換して、テスト化合物の効果を決
定できる。例えば、テスト化合物で起こる多能性、増殖、および/または分化への効果は、ErbB3リガンドで起こる多能性、増殖、および/または分化への効果と比較され、分化可能な細胞へのテスト化合物の効果を決定することができる。本発明のスクリーニング法に、本明細書に記載されたすべての組成物を使用できると想定される。
【0199】
さらに別の実施態様では、ErbB3リガンド(ErbB2-由来チロシンキナーゼ(tyrosine kinase)活性)の、非存在下で培養され、ErbB3リガンド(ErbB2-由来チロシンキナーゼ活性)の欠損の際の細胞への効果を決定できる。
【0200】
本明細書に記載された方法を使用して、希望の細胞リネッジを含む、他の細胞タイプを実質的に含まない組成物を製造できる。あるいはまた、分化可能な細胞と希望の細胞リネッジの混合物質を含む組成物を製造できる。
【0201】
本発明のいくつかの実施態様では、そのような細胞に特異的なアフィニティータグを使用することによって、希望の細胞リネッジの細胞を分離できる。標的細胞に特異的なアフィニティータグの1つの例は、本明細書に記載された方法で生産された細胞培養において見い出される標的細胞の細胞表面に存在しているが、他の細胞タイプには実質的に存在していないマーカーポリペプチドに特異的である抗体である。
【0202】
また、本発明はキットに関し、該キットはErbB2-由来チロシンキナーゼ活性を刺激することができる少なくとも1つの化合物と、基本栄養塩溶液を含む。1つの実施態様では、キットは本明細書に記載されるような少なくとも1つのErbB3リガンドを含む。別の実施態様では、キットは1より多いErbB3リガンドを含む。別の実施態様では、キットは、本明細書に記載されるように、少なくとも1つのTGF-β、TGF-βファミリー、それらの変異体または機能的な断片を含む。さらに別の実施態様では、キットは1より多いTGF-β、TGF-βファミリー、それらの変異体または機能的な断片を含む。さらに別の実施態様では、キットは少なくとも1つの繊維芽細胞生長因子、それらの変異体または機能的な断片を含む。別の実施態様では、キットは2以上の繊維芽細胞生長因子、それらの変異体または機能的な断片を含む。具体的実施態様では、キットは少なくとも1つのFGF-7、FGF-8、FGF-10、FGF-22、それらの変異体または機能的な断片の1つを含む。別の実施態様では、キットは血清アルブミンを含む。さらに別の実施態様では、キットは血清、本明細書に記載される少なくとも1つの不溶性基体、および/または、少なくとも1つの離解溶液を含む。
【0203】
本発明のキットは上記の、または本明細書に任意の場所に記載された成分のすべての組み合わせも含むことができる。当業者が認めるように、本発明のキットに供給された成分は、キットのための用途により異なるだろう。したがって、この出願に記載された様々な機能を実行するようにキットを設計できる、そして、そのようなキットの成分は従って、異なるだろう。
【0204】
本出願を通じて、種々の文献が参照されている。これらの刊行物の開示内容は、本発明の技術分野における技術水準をより完全に記載するために、その全体が本願に参考として援用される。
【0205】
実施例
ヒト胚性幹細胞ラインBG01v(BresaGen,Inc.、アセインズ、ジョージア州)は本明細書に記載された実験のいくつかに使用された。BG01v hESCラインは核型変異体細胞ラインである。その細胞ラインは特異的三染色体(核型:49,XXY,+12,+17)を含む安定した核型を示す。親培養は先に説明したように維持された(Schulzら,2003,BMC Neurosci.,4:27;Schul
zら,2004,Stem Cells,22(7):1218-38;Rosieら,2004,Dev.Dynamics,229:259-274;Brimbleら,2004 Stem Cells Dev.,13:585-596)。簡潔にいえば、細胞はMATRIGEL(登録商標)またはフィブロネクチンでコーティングされた皿で、DMEM:F12と20%のKSR、8ng/mL FGF2、2mM L-グルタミン、1x 非必須アミノ酸、0.5U/mLペニシリン、0.5U/mLストレプトマイシン、0.1mMのβメルカプトエタノールを含むマウス胎児線維芽細胞(MEFs)(MEF-CM)からのコンディショニングされた培地(シグマ、セントルイス、ミズーリ州、米国)で、コラゲナーゼ継代で成長された。
【0206】
本明細書でテストされた定義された培養(DC)培地は、DMEM/F12、2mM グルタマックス(Glutamax)、Ix 非必須アミノ酸、0.5U/mLペニシリン、0.5U/mLストレプトマイシン、10マイクロg/mLの鉄結合性グロブリン(すべてInvitrogen、カールスバッド、カリフォルニア州、米国から)、0.1mM βメルカプトエタノール(シグマ)、0.2%脂肪酸非含有のコーンズ 画分(Cohn’s fractions)V BSA(Serologicals)、1x トレースエレメントミックシィズ(Trace Element mixes) A、B、およびC(Cellgro)、並びに50マイクロg/mL アスコルビン酸(シグマ)で構成される。可変レベルの組換え型の増殖因子が使用された。該因子としては、FGF2(シグマ)、LongR3-IGF1(JRH Biosciences),ヘレグリン(Heregulin)-β EGF ドメイン(HRGβ,Peprotech),TGFβ(R&D systems),ノダル(nodal)(R&D systems),LIF(R&D systems),EGF(R&D systems),TGFα(R&D systems),HRGα(R&D systems),BMP4(R&D systems),およびアクチビン A(R&D Systems)があげられる。LongR3-IGF1は、IGF1結合蛋白質への親和性を減少させたIGF1の改質バージョンである。その或るものはhESCで発現される。DC-HAIFは10ng/mL HRG-β、10ng/mL アクチビン A、200ng/mL LR-IGFl、および8ng/mL FGF2を含む、先のように定義された培養液である。DC-HAIは、10ng/mL
HRG-β、10ng/mL アクチビン A、および200ng/mL LR-IGF1を含む、先に定義された培養液である。DC-HAIFとDC-HAI、LR-IGF1成分は、もちろんIFGlで置き換えられる。
【0207】
MATRIGEL(登録商標)が塗布された皿は、増殖因子低減(Growth Factor Reduced)BD MATRIGEL(登録商標)マトリツクス(BD Biosciences,Franklin Lakes、ニュージャージー、米国)を冷DMEM/F-12中の約1:30から約1:1000への最終濃度範囲へ希釈することにより調製される。1つの実施態様では、MATRIGEL(登録商標)の濃度は約1:200である。1ml/35mmの皿は、室温で1から2時間、または4℃で少なくとも一夜、皿をコーティングするのに使用された。最大1週間、4℃で、培養物は貯蔵された。使用の直前MATRIGEL(登録商標)溶液を取り除いた。テストされた条件に関しては、親培養は複数の条件の比較のために6ウェルの皿にプレーティングされた。培養物は、典型的には直接試験条件でプレーティングされた。培養物は、プレーティングの4から5日後から毎日評価されて、形態学的な評価基準に基づいて等級付けされた。1から5の評価尺度は、全体の培養を調べて、未分化コロニーの総合的な比率、それらの相対的大きさ、明白な分化を示しているコロニー比率またはコルニーの部分を算定することによった。グレード5は大きい未分化コロニーと無視できる分化で「理想的な」培養を示す。グレード4は非常に良い培養を示すが、幾分かの明白な分化を示す。グレード3は許容できる培養を示すが、コロニーのおよそ半分が明白な分化を示している。グレード2は、主として分化しており、時々の推定的な未分化細胞が存在する。グレード1の培養物は、分化したコロニーを含むか、または培養物は、接着しなかったか、生き残らなかった。未分化細胞の良いエキスパンションを示した培養物は、これらの条件での、より長い期間培養を評価するために継代された。
【0208】
実施例1-BG01v細胞におけるErbB1-3、Nrgl、およびADAM19の発現
リアルタイムのRT PCRは、BG01v細胞中でのErbB1-3、ニューレグリン、およびADAM-19の発現を示すのに使用された(図1)。100ng/mL LongR3-IGF1(LR-IGF1)、8ng/mL FGF2、1ng/mL アクチビン Aを含む、上で説明したようなDC培地で培養されたBG01v細胞が収穫され、RNAがメーカーの取扱説明書にしたがって、RN イージーミニキット(RN easy mini kit)(Qiagen)を使用して調製された。最初のストランドcDNAは、iScriptキット(Biorad)を使用することで調製された。そして、リアルタイムPCRが、MJ リサーチ オプティコン ターミナルサイクラー(MJ Research Opticon thermal cycler)を使用して行われた。
【0209】
ADAM19(Hs00224960_ミリリットル)、EGFR(Hs00l93306_ミリリットル)、ErbB2(Hs00170433_ミリリットル)、ErbB3(Hs00176538_ミリリットル)、NRGl(Hs00247620_ミリリットル)、OCT4(Hs00742896_sl)についてのタクマン(TaqMan)検定方法(アプライドバイオシステム)、およびコントロールGAPDHが、タクマン ユニバーサル PCR(TaqMan universal PCR)(アプライドバイオシステム)で使用された。未分化BG01v細胞でのこれらの転写の発現を示す、リアルタイムの増幅プロットが図1に示される。
【0210】
実施例2-ErbB2の抑制はBG01v 細胞の増殖を遅くすること
リガンドのEGFドメインファミリーは受容体チロシンキナーゼのErbBファミリーに結合する。hESC中のErbBチロシンキナーゼの公知の阻害効果を調べるために、BG01v細胞は1000:1に希釈されたMATRIGEL(登録商標)の上の6ウエルトレーで、100ng/mL LongR3-IGF1、8ng/mL FGF2、および1ng/mL アクチビン Aを含む定義された培養液(DC)中にプレーティングされた。翌日、DMSO(キャリアコントロール)、50nM-20マイクロM AG1478(ErbB1阻害剤)、または100nM-20マイクロM AG879(ErbB2 阻害剤)が新鮮培地と共に加えられた。細胞は5日間、毎日培地を交換しつつ培養された。培養物は、アルカリホスファターゼ活性について固定され、染色された。
【0211】
AP+BG01v細胞のサブコンフリューエント(subconfluent)コロニーが、コントロールとAG1478培養細胞の中で観察された(図2Aおよび2B)。DMSOもAG1478(50nM-20マイクロM)も細胞増殖に明白な影響を及ぼさないことが示された。AG879はしかしながら、5マイクロMで実質的に細胞成育を禁止して(図2C)、20マイクロMで細胞死を引き起こした(図示せず)。AG879で育てられた培養物は、分化を見せず、多能性形態学とアルカリホスファターゼ活性を維持するように見えた。これはAG879が、分化を起こさずに増殖を抑制することを示し、細胞生存において、BG01v細胞がErbB2シグナリングに頼っていることを示唆している。逆に、上記と同様の条件で育てられたBG01v細胞は、増殖においてErbB1信号に頼っているように見えない。
【0212】
実施例3-BG01v細胞はヘレグリンを含む定義された培地中で維持される
ErbB2とErbB3の発現とAG879での増殖抑制は、BG01v細胞が内因性のErbBシグナリングに活性であり、またそれらが外因性のHRG-βに反応することができることを示唆した。BG01v細胞は1:1000に希釈されたMATRIGEL(登録商標)上で、10ng/mL HRG-β、200ng/mL LongR3-IGFl、8ng/mL FGF2、および10ng/mL アクチビン Aを含むDC媒体中で成長された(図3AおよびB)。細胞は4代または20日より長く成長され、未分化モルホロジーを示し、高い突発性分化を示さなかった。
【0213】
さらに、BG01v細胞は2代、または13日より長い間にわたり、10ng/mL HRGβ、200ng/mL LongR3-IGF1、および10ng/mL アクチビン Aを含むDC媒体内で維持された。これらの培養物は通常通り増殖し、非常に低い突発性分化を示した。これはFGF2の非存在下で、HRGβの存在下で、定義された条件下でBG01v細胞を維持できたことを示している。
【0214】
実施例4-ES細胞中のErbB2-由来チロシンキナーゼの役割
RT-PCRは、mESCがADAM19、ニューレグリン1(Nrgl)、およびErbB1-4を発現することを示した(図4A)。mESCでは、ErbB2と3はErbB1よりも高いレベルで発現したことが示され、ErbB4の低レベルが検出された。これらのデータは、内因性のHRG-βがmESC自己再生の推進にかかわることができたことを示唆する。
【0215】
また、マウス胎児線維芽細胞(MEFs)中のErbB受容体転写物の発現も調べられた(図4B)。MEFsは、マウスおよびヒトEC細胞と胚性幹細胞を維持するのに歴史的に使用されてきたE12.5-13.5の内臓から得られた細胞の不均一集合体である。この集合体におけるNrglとAdam19の発現は、HRG-βエクトドメインが、MEF馴化培地内にも存在していて、多能性に有意な効果を示すことができることを示唆する。
【0216】
AG1478とAG879は、マウス胚性幹細胞でのHRG/ErbBシグナリングの役割を調べるのに使用された。R1マウスES細胞はDMEMの標準状態、10%FBS、10%KSR、0.5U/mLペニシリン、0.5U/mLストレプトマイシン、IxNEAA、1mMピルビン酸ナトリウム、1000U/mL LIF(ESGRO)、0.1mM βMEで維持されて、0.5%トリプシン/EDTAで継代された。2×10細胞/ウェルは1:1000に希釈されたMATRIGEL(登録商標)上で6ウエルトレー中にプレーティングされた。プレーティングの翌日、DMSO(キャリアコントロール)、1-50マイクロM AG1478、または1-50マイクロM AG879が新鮮培地と共に加えられた。細胞は毎日培地を交換しつつ、さらに8日間培養された。培養物は、ついで固定されたアルカリホスファターゼ活性について、染色された。
【0217】
DMSOと1-50 マイクロM AG1478は細胞増殖に明白な影響を有していなかった。アルカリホスファターゼポジティブのmESCの「サブ-コンフルエント」コロニーが観察された(図5A-C)。しかしながら、AG879は50マイクロMで実質的に細胞成育を禁止して(図5Dおよび5Fの比較)、20マイクロMで増殖を遅くしたかもしれない(図5E)。AG879で育てられたmESCは、分化を示さず、多能性モルホロジーと、アルカリホスファターゼ活性を維持した。
【0218】
結果は、AG879が増殖を抑制し、mESCの分化を示さず、mESCが増殖のためにErbB2シグナリングを必要とすることを示唆した。逆に、mESCは、増殖のためのErbB1シグナリングに頼っていないように見える。増殖を抑制するために必要とされるAG879の濃度は、mESCについて、定義された条件で育てられたBG01v細
胞のためのそれより約10倍高かった。mESC条件で使用した血清が薬の活性を妨げたか、AG879はマウスErbB2チロシンキナーゼについてヒトErbB2チロシンキナーゼより低い親和性を有するか、またはErbB2が胚性幹細胞の異なった種でわずかに異なった役割を果たすことができるかを示している。
【0219】
ErbB2チロシンキナーゼの別の高選択的阻害剤、チルホスチンAG825(Murillo,ら 2001 Cancer Res 61,7408-7412)が、ヒトESCでのErbB2の役割を調査するのに使用された。AG825は、条件培地(CM)で成長するhESCの増殖を顕著に禁止した(図6A)。AG825は広範囲の細胞死を起こさずに増殖を抑制し、5日間より長くhESCの生存が維持できた(図示せず)。ウェスタンブロット法は、AG825が、DC-HAIFで成長する飢餓/ヘレグリン(HRG)パルストhESC(starved/heregulin(HRG) pulsed hESC)内で、チロシン-1248でErbB2の自動りん酸化を禁止したことを示した(図6B)。したがって、ErbB2の分裂のシグナリングはhESC増殖を厳しく抑制した。定義された生育条件でhESCを確立するために、培養は、直接CM条件からDC-HAIFに継代され、最小の突発性分化を示した(図6C)。コロニーと細胞計量検定方法は、LongR3-IGF1とHRGが、本発明の実施態様の1つの文脈における自己再生および増殖における主要な役割を演ずることを確認した(図6Dおよび6E)。IGF1R、IR、FGF2α、ErbB2、およびErbB3のリン酸化は、定常状態DC-HAIF培養、およびDC-HAIFパルスト飢餓培地(starved cultures that were pulsed with DC-HAIF)の両者で観測された(図6F)。
【0220】
実施例5、定義された条件における、マウスES細胞の培養
さらにマウス胚性幹細胞でのHRG/ErbB2シグナリングの役割を調べるために、R1 ES細胞の増殖が増殖因子の組み合わせを使用して、DC培地で調べられた。1×10細胞/ウェルが6ウェルのトレーの中にプレーティングされ、0.2%のゼラチンで被覆され、10ng/mL HRG-β、100ng/mL LongR3-IGF1、1ng/mL アクチビン A、1000U/mLマウスLIFまたは10ng/mL BMP4の組み合わせを含むDC中で培養された(以下の表1)。増殖は8日間観測された。
【0221】
生存可能なコロニーは、少なくともLIF/HRG-βまたはLIF/BMP4を含む条件でのみ成長した(表1)。LongR3-IGF1またはアクチビンがこれらの組み合わせに加えられたときには、明確な追加の利益は観測されなかった。通常の増殖はコントロール親培養で観測された。そして、生存可能なコロニーは増殖因子なしの定義された培地では観測されなかった。表3参照。
【0222】
【表3】
【0223】
定量的測定法は6ウェルのトレー中の1:1000のMATRIGEL(登録商標)と、10または50ng/mLのHRG-ベータ、EGF、1000U/mL LIFまたは10ng/mL BMP4の選択された組み合わせに2×10細胞/ウエルをプレーティングして行った。培養物は、8日間成長され、固定された。そして、アルカリ性ホスファターゼコロニーの数が数えられた(図7A)。定義された条件で増殖因子なしではコロニーは全く観測されなかった。そして、45よりも少ないコロニーがHRG-β、HRG-β/EGF、およびHRG-β/BMPの組み合わせで観測された。1358のコロニーがLIFのみで観測されたが、4114および3734コロニーが10ng/mL HRG-β/LIFと50ng/mL HRG-β/LIFの組み合わせでそれぞれ観測された。これは、定義された条件では、LIFだけが実質的な多能性信号を提供したことを示した。そして、HRG-βはLIFと大きい相乗効果を示し、この分析評価において、増殖性mESCコロニーの数を倍以上にした。また、この分析評価の低倍率イメージはこの相乗的な増殖促進効果を示す(図7B-G)。
【0224】
実施例6-DC-HAIF中で維持されたヒト胚幹細胞(hESC)の多能性のキャラクタリゼーション
複数のアプローチが、DC-HAIF内のhESCの形成性の維持を確認するのに使用された。6カ月(25代)DC-HAIF内で培養されたBG02細胞は、複雑な奇形腫を形成する可能性を維持(図8A)し、生体外の3個の胚葉層の代表種であった。転写分析は、CMおよびDC-HAIF内で維持されたhESC細胞(Liuら、2006,BMC Dev Biol 6,20)でグローバルな発現を比較するのに使用された。11,600より多くの転写がDC-HAIF中で育てられた10から32継代のBG02細胞で、およびCM中で64継代で育てられたBG02細胞で検出された。CD9、DNMT3、NANOG、OCT4、TERTおよびUTF1(図示せず)などの知られているhESCマーカーをはじめとするすべての集合体では約10364の転写が一般にあった(図8C)。高い相関係数が、CMとDC-HAIF培養の比較(Rselect=0.928)と、早い段階および遅い段階での継代細胞(Rselect=0.959)で観測された(図8D)。階層的なクラスター分析は、DC-HAIF中で維持されたBG02細胞は、しっかりと保持され、CM中で維持されたBG02とBG03細胞に近い類似性を有していた(図8E)。これらのデータは前の分析と一致し、未分化hESCは、胚様体または線維芽細胞(Liuら、2006,BMC Dev Biol 6,20)と比べて、しっかりとクラスターされていることを示している。したがって、本発明の組成物で維持された細胞は、多能性のキーマーカーを維持できる。従って、分化可能な細胞の自己再生を支持するための簡単な培地として本発明の組成物を使用できる。
【0225】
実施例7-DC-HAIF中のヒト化細胞外マトリックス(ECM)におけるヒト胚性幹細胞(hESC)の維持
ErbB2シグナリングの役割を調査して、hESCのための定義された培地を開発するために、DC-HAIF培養物を増殖因子の減少されたl:30のMATRIGEL(登録商標)でコーティングされた培養皿上に初期的に広げた。1:200、または1:1000で希釈された基体上に長期的に成功裏に維持できた(図9A)。また、ヒト血清(図9B);ヒトフィブロネクチン(図9C);またはプロプライアタリイ ヒューマナイズド ECM(proprietary humanized ECM)であるVITROGRO(登録商標)(図9D)でコーティングされた組織培養皿上で、BG02とCyT49 hESCを5継代より長く維持できた。
【0226】
実施例8-ヒト胚性幹細胞(hESC)の単独細胞継代
複数の研究グループは、ある種の三倍体性、著しくはhChrl2と17は、hESCに、ある部分的な最適培養条件の下で蓄積されることを示した(Bakerら,2007
Nat.Biotech.25(2):207-215)。三倍体性の外観は、培養物が継代時に単独細胞に分離される時に、最も直接的に不十分な細胞生存に関連するように思え、これらの異数性の細胞ハーバリング(harboring)のために推定される強い選択成長の利点が細胞に提供される。逆に、本発明の1つの実施態様でDC-HAIFで成長するhESCが、単独細胞に分離された後のプレーティングで、高い生育性を維持した(図10A-D)。BG0lとBG02細胞は、ACCUTASE:登録商標でそれぞれ>18および19の継代の後、正常核型に維持された(図10E)。細胞における正常核型の維持は、単独細胞へのhESC培養物の離解が本来DC-HAIFで維持されたhESCのこれらの三染色体性の蓄積につながらなかったことを示した。BG0lとBG02培養物も、複数の継代試薬を使用した単独細胞への離解により継代される(図11)。培地は、5継代のために、ACCUTASE(登録商標)、0.25%Trypsin/EDTA、TrypLE、またはバーシーン(VERSENE:登録商標)でスプリットされ、カリオタイプされた(karyotyped)。データは、本発明の組成物でのhESCの培養および継代は、さまざまな細胞解離試薬を使用して、正常核型が少なくとも2のヒト胚性細胞ラインで維持されたことを示す。
【0227】
また、本発明の組成物を使用して、未分化hESCの大規模なエキスパンションも可能である。60mmのプレート内のBG02細胞の最初のコンフルーエントな培地(confluent culture)は、DC-HAIF内で20日間の1つの実験で、1.12×1010より多くの細胞に4継代で増殖された。培養は未分化のままで残り、流動細胞計測法によれば、バッチ内の細胞の85%より多くがOCT4、CD9、SSEA-4、TRA-1-81などの多能性のマーカーの発現を維持した(図12A)。また、多能性の他のマーカーの発現もRT PCR分析で観測された。一方分化型リネッジのα-フェトプロテイン、MSX1、およびHAND1のマーカーは検出されなかった(図12B)。蛍光 in situ ハイブリダイゼーション分析は、DC-HAIF内で培養され継代された細胞は、hChrl2(98% 2-コピー)、hChrl7(98%、2-コピー)、hChrX(95%、1-コピー)およびhChrY(98%、1-コピー)について、期待されたコピー数を維持した(図12C)。また、核型分析は、正常な倍数性染色体内容とバンディングプロフィール(banding profile)がこ
れらの細胞で維持されたことを示した。
【0228】
実施例9-生理学的濃度で適用される際の、インスリン、およびIGF1のhESCへの異なる効果
本質的にはこれまでのhESCについての既報告培養条件のすべてが、IRとIGFlRの両方を刺激できるインスリンを生理学的に過剰な量で含んでいる。IGF1と比べて、インスリンおよびインスリン代用物が及ぼす活性を区別するために、hESCがこれらの増殖因子の生理的濃度の定義された培地条件で培養される。インスリンとIGF1の濃度は約0.2から約200ng/mLまでとされ、細胞増殖は、5日後に細胞を数えることによってモニターされる。成功裏に広がる培地は、連続的に5回継代される。インスリンの生理的濃度はhESC培養のエキスパンションをサポートしないが、IGF1の生理的濃度はhESC培養のエキスパンションをサポートする。これはインスリンまたはインスリン代用物の活性がIGF1を置き換えることができないことを示し、IGF1とインスリン(またはインスリン代用物)はhESCへの作用に関して別々のクラスの生物的活性を及ぼす。
【0229】
実施例10-サプリメントの効果をスクリーニングする方法
中間密度で成長するhESCの成長または分化に対するビタミンB12とBの効果を初期的に評価するために、BG02細胞は、ACCUTASE(登録商標)を使用して、1×10細胞/ウエルで、6ウェルトレー中で定義された培養(DC)培地でプレーティングされ、分裂された。DC培地は10ng/mL HRG-β、200ng/mL LongR3-IGF1、および10ng/mL FGF10を含んでいる。ビタミンB(0.5マイクロM)、および/または、ビタミンB12(0.5マイクロM)は試験ウエルに加えられる。各条件での細胞数は7日後に数えられる。両方の実験用および対照ウェルでの細胞数およびコロニー数は、ビタミンB12とBの細胞成長に与える効果の見通しを与える。
さらに、OCT4などの分化マーカーについて試験ウエル内で評価して、添加剤およびサプリメントの分化可能な細胞の分化状態への効果を決定できる。
【0230】
実施例11-FGF2の非存在下でのhESCの培地
BG02細胞は長い期間(20継代)、DC-HAI内で維持された(図13A)。BG0l細胞も、連続的にDC-HAI内で継代された。ともにFGF2の非存在下であった。培養は、悪化もしなかったし、明白な分化を示しもしないで、培養時期の全期間にわたり未分化コロニーの通常のエキスパンションを示した。BG02培養における、正常男性核型の維持は、DC-HAI内での6継代の後に示された(図13B、20/20の正常な有糸分裂の中期の広がり)。
【0231】
転写分析は、DC-HAIFとDC-HAIで維持されたhESC細胞でグローバルな発現(global expression)を比較するのに使用された。総セルRNAは、hESCからTrizol(Invitrogen)を使用して分離されて、メーカーの示唆された実験計画によりDNase I(Invitrogen)で処理された。サンプル増幅は、全RNAの100ngで、イルミナ RNA 増幅(Illumina RNA Amplification)キットを使用して実行された。そして、ラベリングはラベルされていないUTPと1:1の比率でビオチン(biotin)-16-UTP(Perkin Elmer Life and Analytical Sciences)を加えることによって達成された。ラベルされた増幅物(1アレイあたりの700ng)は、メーカーの指示(Illumina,Inc.)により、47,296の転写プローブを含むイルミナ セントリックス ヒューマン-6 エクスプレッション ビードチップス(Illumina Sentrix Human-6 Expression Beadchips)とハイブリダイズされた。アレイはイルミナ ビード アレイ リーダー(Illumina Bead Array Reader)共焦点スキャナでスキャンされ、1次データ処理、バックグランド除去、およびデータ分析が、メーカーの指示によりイルミナ ビードスタジオ(Illumina BeadStudio)ソフトウェアを使用することで実行された。0.99(計算されたカットオフが、目標配列シグナルがネガティブコントロールから識別可能であったことを示した)の最小の検出信頼スコアが、転写産物の存在または欠如を区別するために使用された。データ分析は、他のhESCのサンプルのために説明した並列アプローチを使用することで実行された(Liuら 2006,BMC Dev Biol 6:20)。階層的なクラスター形成は、先に(Liuら、2005,BMC Dev Biol 6:20)説明したように実行されて、ANOVAによって特定された分化発現遺伝子(differentially expressed genes)を使用する類似性測定基準として平均連結とユークリッド距離に基づいた(p<0.05)。アレイ製造に使用される感度および品質管理試験の詳細、およびビードスタジオソフトウェアで使用されるアルゴリズムの詳細な説明はIllumina Inc(サンディエゴ(カリフォルニア))から利用可能である。検出された転写の大部分がDC-HAIFとDC-HAI BG02培養の両方で発現され、CD9、DNMT3、NANOG、OCT4、TERTおよびUTF1などの公知のhESCマーカーを含んでいた(図示せず)。高い相関係数が、DC-HAIFとDC-HAI培養の比較で観測された(Rselect=0.961)(図14)。階層的なクラスター形成分析は、DC-HAI内で維持されたBG02細胞はしっかりとグループ化され(grouped tightly)、複数の培養形式のBG02や他のhESCラインと同様にDC-HAIF内で維持された細胞に近い類似性を保有した(図15)。これらのデータは、胚様体または線維芽細胞と比べて、未分化hESCが群生した(clustered tightly)ことを示している前の分析と一致している。(Liuら、2006,BMC Dev Biol 6:20)
【0232】
さらに、DC-HAI内で維持されたBG02細胞は、SCIDベージュのネズミで形成された複雑な奇形腫における内胚葉、外胚葉および中胚葉の代表種に分化し(図示せず)、外因のFGF2の非存在下で育てられた培養における、多能性の維持を示した。
【0233】
外因のFGF2が単独細胞継代で必要であったかどうかを調べるために、BG0l細胞はACCUTASE(登録商標)で継代され、10ng/mL HRG-βおよび200ng/mL LongR3-IGF1(DC-HI)のみを含む定義された条件で成長された。これらのDC-HI培養物は、10継代維持されて、明白な分化または増殖の減速を示さなかった。
【0234】
これらの研究は、hESC最小含有ヘレグリンとIGF1を含む定義された培地内で維持されるとき、外因のFGF2は必要でないことを明確に示した。さらに、FGF2のない培養液は中胚葉、内胚葉、および外胚葉への生体内での分化と転写プロフィールをはじめとする、多能性の基本性質を保有した。
【0235】
実施例12-懸濁培養
BG02細胞の出発時の培地は、本明細書に記載されたように、1:200matrigelによってコーティングされた皿の上のDC-HAIF培地で維持されて、ACCUTASE(登録商標)で継代され分割された。懸濁培養を開始するために、BG02細胞はACCUTASE(登録商標)でばらばらにされ、DC-HAIF培地中、1.6、3、または6×10細胞/mL(3mL体積中、0.5、1、または2×10細胞)の密度でローアタッチメント6ウエルトレイに置いた。トレーは5%のCOの加湿されたインキュベータ内に、80-100rpmで回転プラットホーム上に置かれた。これらの条件下で、hESCは24時間以内に形態学的に小球の生存細胞に融合した。
【0236】
2日目、およびその後の毎日、ウェルの培地を変えた。懸濁集合体は増殖し続け、時間とともに分化の明白な徴候なしで大きくなった(図17)。球のいくつかが、培養の過程の上で集合体であり続けたが、いくつかの集合体が大部分よりはるかに大きくなった。さらに、培養の最初の数日の間に、合体過程において非球状集合体が観測できた。この連続的な集合に限れば、38マイクロg/mL DNaseIが最初の24時間の懸濁培養中に含まれていた。しかし、より少ない集合体がDNaseIの存在下で形成されるので、このアプローチは比較的大きい初期の集合に役に立つように見えた。しかしながら、DNaseI処理が引き続く球の合体を減少させて、DNaseIへの暴露が一貫してこれらの集合体をより堅くし、分離の際に破壊されるかどうかは明確でない。
【0237】
懸濁培養はACCUTASE(登録商標)で約7日毎に離解され、新しい球が作られた。密度は実験により異なったが、この範囲内の密度(1.6-6×10細胞/ミリリットル)で作られた球は12継代より長い間、または80日より長い間、分化の形態学的な徴候なしで培地中で維持できた。連続的に継代された懸濁hESCのFISH分析が、一般的な異数性の染色体数を算定するために実行された。6継代の間懸濁液中で育てられたBG02細胞は、hChr12(96%、2-コピー、n=788)、hChr17(97%、2-コピー、n=587)、hChr X(97%、1コピー、n=724)、およびhChr Y(98%、1コピー、n=689)について通常のカウントを示した。
【0238】
実施例13-懸濁培養における、分化可能な細胞のエキスパンション
血清または分化誘導剤の存在下での胚様体培養と異なり、DC-HAIF中のhESCの懸濁集合体は分化するように見えなかった。明白な臓器の内胚葉は観測されないで、また原腸腔(proamniotic cavities)類似構造の形成も、胚様体分化に関する古典的な徴候もなかった。より密接に分化の欠如を調べるために、培養物は1:200に希釈されたMATRIGEL(登録商標)上の接着条件にプレーティングして戻され、DC-HAIF中で培養された。これらの培養物は、本来未分化であり、より大きくて平らにされた細胞、または構造領域の存在などの増加する分化の明白なモルホロジー的な徴候を示さなかった。
【0239】
細胞計数は、接着培養と比べて、懸濁培養中における細胞の相対成長率を評価するのに使用された。この実験では、BG02細胞の接着培養はACCUTASE(登録商標)で継代され、約1×10の細胞が懸濁培養または接着培養ウェルに置かれた。個々のウェルは、1-6日の間、計数され、対数スケールでプロットされた(図18)。接着培養中では、24時間後でのhESCのより高い初期割合(約90%対約14%)を示したが、成長率はその後、同等であった。これは、hESCが伝統的な接着培養と懸濁培養で、ほぼ同じくらい急速に増殖できることを示した。継代の間に行われた細胞の計数は、この単純懸濁系で可能なエキスパンションの量を測ることを許容する。いくつかの培養では、5×10の細胞の播種で、7日後には約10以上の細胞が発生した。懸濁培養における7日後のエキスパンションは、約20倍またはそれ以上のエキスパンションに等しく、観察された最大のエキスパンションは約24倍であった。
【0240】
実施例14-懸濁培養でエキスパンドされた分化可能な細胞の特性
定量的RT-PCR(qPCR)は、DC-HAIF中での懸濁培養および接着培養で育てられたhESCの遺伝子発現を比較するのに使用された。多能性細胞のマーカーであるOCT4の同程度が、両方の培養形式で観測され、懸濁培養で維持された培養が、本来未分化であったことが確認された。胚体内胚葉のマーカーであるSOX17は、hESCのどちらの集合体でも発現されなかった。また、qPCR分析は懸濁培養hESCが、懸濁における集合体として胚体内胚葉に分化する可能性を調べた。接着および懸濁hESCは、同じ条件を使用して分化された。2%のBSA、100ng/mL アクチビン A、8ng/mL FGF2、および25ng/mL Wnt3Aを含むRPMIでhESC培養物が24時間処理され、次いで、Wnt3Aを含まずに同じ培地で2日間処理した。未分化hESCと比べて、両方の胚体内胚葉のサンプルでOCT4の発現は減少され、SOX17の発現は増大された。この分化分析は、DC-HAIFでの懸濁培養で培養されたhESCが、胚体内胚葉の同様な形成で証明されるように、それらの分化能を維持したことが確認された。
【0241】
実施例15-懸濁培養におけるアポトーシス阻害剤の付加
懸濁中における初期の継代の後に細胞の損失を減衰させるために、アポプトーシスの阻害剤が媒体に追加された。細胞は実施例12のように継代された。ただし、Y-27632ではなく、p160-Rho会合 コイルドコイルキナーゼ(p160-Rho-associated coiled-coil kinase:ROCK)が培地に追加された。
【0242】
BG02細胞の懸濁集合体は、3mL DC-HAIF培地中、6ウェル皿に2×10の単独細胞を播種し、インキュベーター内の100rpmの回転プラットホームに置くことにより形成された(表4、実験 A)。10μMのY27632 ROCK阻害剤は、実験計画にしたがって試験ウエルに加えられ、毎日観測され、24時間(1日目)後と4日または5日後に数えられた。図20に示されるように、Y27632の添加は懸濁培養の初期の集合フェーズで絶大な効果があった。阻害剤のない培地で集合された細胞と比べて、はるかに大きい集合体がY27632の存在下で形成された(図20)。細胞計数は、より生存可能な細胞が阻害剤があるときに存在すると確認した(表4、実験 A)。細胞数におけるこの相違は、培養時期の経過中にわたり持続した。また、阻害剤のない培養と比べてより多くの細胞が4日目に観察された。先の懸濁培養の実験と同様、Y27632に暴露された細胞は連続的に継代されることができ、未分化状態で維持されることができた(図示せず)。再度分割される際、Y27632で処理されたもののほぼ2倍の細胞が観察された(表2の実験 A)。RT-PCR分析は、Y27632の存在下で、懸濁培養で育てられたBG02細胞は、未分化のままで残っていたことを示した(図21)。
【0243】
前の実験で、懸濁培養および接着培養における細胞の成長率が初期の24時間後に同様であったのを示したように、Y27632がこの当初期間の後に除去された実験が行われた(表4、実験 B)。前の観察と一致して、Y27632は初期の生存、最初の継代の後のhESCの集合を増大させたが、24時間後に阻害剤を除去すると、5日目に分析された細胞の数と生育性カウントには否定的な影響は与えられなかった。未処置の培養における3.9×10の細胞と比べて、阻害剤が存在していたとき、1.4×10(+Y27632)と1.8×10(+/-Y27632)の生存細胞が発生した。この分析は、懸濁hESC培養の最初の24時間の間、Y27632は最も大きい影響力があったことを確認した。
【0244】
Y27632の存在下で観測された向上された生存と集合のため、懸濁培養をシードするのに使用される細胞数を減少させることが可能かどうか調べるために実験が行われた(表4、実験 C)。前の実験では、3mL DC-HAIFあたりおよそ5×10以下の細胞の低密度での胚性幹細胞の播種では良好に作用しないことが示された。ROCK阻害物の添加は低い密度での細胞播種を許容するかどうかを確認するために、ある範囲の細胞濃度(2×10細胞から約1×10の細胞)が、3mL DC-HAIFで6ウェルトレー細胞で懸濁培養をシードするのに使用された。10マイクロMのY27632がすべての条件で加えられ、細胞数と生育性が5日目に評価された。成功裏の集合とエキスパンションが低い播種密度でさえ観測された。1×10の細胞でシードされただけである培地であっても、ほぼ13倍の生存細胞のエキスパンションが観察された。したがって、Y27632によるROCKの抑制は、この懸濁培養システムでは、より低い密度でh
ESCの初期生存を容易にした。
【0245】
【表4】
【0246】
Expt.:実験
p0は継代0、p1は継代1
N/Aは未測定
細胞数と割合はそれぞれ少数第0または1位で四捨五入される。
【0247】
実施例16-様々な培地における懸濁培養
FGF2および/またはアクチビン Aの非存在下で胚性幹細胞の懸濁培養が可能かどうかを決定するために、これらの要素の有無により胚性幹細胞がさまざまな培地で培養された。表3は懸濁培養の細胞計数結果を示し、懸濁培養は外因のFGF2が存在しない場合(HAI条件)、または外因のFGF2またはアクチビン Aが存在しない場合(HI条件)にも、成功裏にエキスパンジョンさせることができたことを示す。Y27632の添加は、すべての条件下で、5日で細胞収率を増大させた。さらに、各培地における細胞は分化のモルホロジー的な徴候を示さず、成功裏に継代された。
【0248】
【表5】
【0249】
実施例17-懸濁細胞集合体の増加する生存、一様な密度、およびサイズにおける最適化されたせん断速度
本明細書に開示されたシステム、方法および装置によれば、懸濁細胞の中で維持できるすべての細胞ラインが利益を受け、利用できると企図される。細胞としては、ヒト細胞ラインCyT49、CyT203、Cyt2S、BG0l、BG02、マウス、犬、非ヒト霊長類幹細胞ラインをはじめとするほ乳動物細胞、および他のものを含むが、これらに限定されない。
【0250】
本明細書に提供された結果は、反応装置に関する操作パラメータ、特に培養物の流れ速度およびせん断力に応じて、細胞増殖と分化を制御されたレベルで維持するか、または減衰させることができることを示す。細胞培養物に加えられたせん断力は、細胞増殖に有意な効果を持つことができる。本明細書で使われた回転プラットホームなどの対称的システムは、均一な、主として層流のせん断応力を容器の周囲に提供し、撹はん槽バイオリアクタのような非対称システムとその取り付けは、局所性な高速せん断応力によって特徴付けられる乱流の領域を有する。バイオリアクタまたは細胞培養装置が対称的システムでなければ、培養物流れの方向は回転から生じるせん断応力の性質と程度の両方に影響する。
【0251】
もちろん、最適の回転数は具体的な培地に依存し、培地中の細胞数、培養液の粘度、培地のタイプ、懸濁液における特定の細胞の丈夫さ(いくらかの細胞は他のものより大きなせん断力に耐えることができる)などに依存する。最適の回転数は特定の条件の組に応じて容易に決定できる。本明細書に説明され、想定された回転数は、層流条件を維持するために特に、役に立つ。本明細書に記載された実験は以下の条件で行われた:
1)細胞増殖と分化は制御されたレベルまたは制御されたレベルの近くに維持された。
および
2)細胞が増殖し分化する条件は減衰された。
以下は、hES細胞集合体培養物または分化型hES細胞集合体培養物を良好に維持することができる一般法である。当業者は本明細書に提供された説明に基づき細胞集合体の大きさおよび形状を最適化できる。
【0252】
下記の表4は、細胞集合体の直径(μm)に関連する、せん断速度および応力を示す。ヒト胚性幹細胞はオービタルローテーター(Bamstead LabLine Multipurpose Rotator)を使用して様々な回転速度で、1、2、3および/または4日の間集合された:60rpm、80rpm、100rpm、120rpm、130rpm、140rpm、150rpm、および160rpm。また、表4は、細胞集合体の直径に依存する、細胞集合体により経験された効果的なせん断速度を示す。
【0253】
【表6】
【0254】
回転速度がどのように、ES集合体の直径をコントロールするかを決定するために、100rpm、120rpmまたは140rpmで回転させてES集合体を発生させた。集合体の直径は2日後に回転培養物から得られた、5倍フェーズコントラスト画像から定量化された。100rpm培養において、平均直径+/-SDは198μm+/-21μmであった。120rpmの培養において、平均直径+/-SDは225μm+/-28μmであった。140rpmの培養において、平均直径+/-SDは85μm+/-15μmであった。それぞれの直径分布は、ANOVAおよびターキー マルチプルコンパリゾン(Tukey Multiple Comparison)のポストテストを使用して統計的に有意である(p<.001)。表4に示されるように、せん断速度は60rpmから140rpmへ指数関数的に増える。例えば、100μmの直径集合体のための100rpmではせん断速度はほぼ30秒-1であるのに対し、140rpmではほぼ80秒-1であり、3倍に増大にする。典型的には、140rpmより高い回転速度はより大きく、均一度の低いhES細胞集合体をもたらした。細胞集合体培養物は、初めは減少した回転速度、例えば、約1日間、60rpmから80rpmで培養して、その後より高い回転速度(例えば、100rpm-140rpm、又はそれ以上)で、細胞集合体のサイズおよび形への悪影響を及ぼすことなく培養することができる。
【0255】
細胞集合体の直径はせん断速度に従って変化するが、様々な条件、すなわち異なる回転速度、および/または細胞集合体の異なるサイズおよび形状において遺伝子発現には甚大な効果は全くないことに留意することは重要である。すなわち、多能性hES細胞またはhES細胞-由来細胞タイプ(例えば、胚体内胚葉、前腸内胚葉、PDX1内胚葉、膵性内胚葉、および内分泌細胞)のために観察された署名マーカーが、上記の本明細書に参照され組み込まれているd’Amour他の出願およびそれらの関連出願で説明されたこと
と一致していた。
【0256】
細胞生存または細胞生存率に対する回転速度、せん断速度、およびせん断応力の効果を決定するために、生存が減少速度(例えば、60rpmから80rpm)での1日により改良されたことが示された。例えば、細胞生存は、60rpmから140rpmの間の回転速度において少なくとも60%以上に及んだ。また、より高い回転速度(例えば、100rpm以上)と比べて、減少した回転速度培養であるd1、d2、およびd3では、細胞集合体の数もより多かった。また、細胞集合体が、より高い回転速度(例えば、140rpm以上)で培養されたとき、顕著な分裂および離解があった。しかしながら、同時にこれらのデータは、細胞集合体が最初に少なくとも1日間減少した回転速度で培養されたとき、細胞生存が増加されることを示して、回転速度が100rpmに140rpmまで増加したとき、細胞生存には大幅ダウンが全くなかったことを示す。もっとも、140rpm未満の回転速度での分化は好ましい。
【0257】
また、培養体積は上で議論したように、せん断速度およびせん断応力に影響を及ぼし、これは細胞集合体の大きさおよび形状の均一性に影響する。たとえば単独細胞懸濁培養が開始され、6mLで細胞集合体が形成された場合、4mLで開始されたものと比べて、より均一な大きさと形状の細胞集合体が得られる。図23を参照する。4mLで培養されると、細胞集合体の直径は50ミクロン未満から250ミクロン以上まで変化するが、6mLで培養されると、直径はより狭い範囲となり、細胞集合体の直径は50ミクロン以上から200ミクロン以下になった。説明した細胞集合体は接着性のhES細胞培養からつくられた単独細胞懸濁培養から開始されたが、hES-由来接着性プレーティングから開始された細胞集合体懸濁培養も同様な挙動を取ることが期待される。したがって、培地の容積は、細胞集合体懸濁液培養が開始されるステージからほぼ独立している。
【0258】
さらに、さまざまな異なった培地条件でhES細胞集合体を培養できる。例えば、StemPro(登録商標)含有培地、DMEM/F12含有培地;20%のKnockout血清代替物含有(KSR、Invitrogen)DMEM/F12含有培地;20ng/mL FGF(R&D Systems)と20ng/mL アクチビン A(R&D Systems)をさらに含むStemPro(登録商標)およびDMEM/F12培地;10ng/mL ヘレグリン(Heregulin)Bをさらに含むStemPro(登録商標)およびDMEM/F12培地;中でhES細胞集合体培養を維持できる。あるいはまた、無異物性のKSR(Invitrogen)が補われた状態で、本明細書に参照された培地と市販の培地のいずれも使用できる。最後に、細胞集合体は、上記の培地であってさらに外因のFGFを含んでいない培地でも、培養され製造された。
【0259】
実施例18-懸濁培養におけるhES細胞集合体は内胚葉リネッジタイプ細胞に分化できる
上記のd’Amour他(2006)および米国特許出願番号2005/0266554、2005/0158853、2006/0003313、2006/0148081、2007/0122905と2007/0259421で記載されているように、ヒト胚性幹(hES)細胞は、生体外で維持され、胚体内胚葉(ステージ1)、前腸内胚葉、およびPDX1内胚葉に分化する。上記の文献は参照され、その全体が本明細書の一部として組み込まれる。
【0260】
簡潔にいえば、未分化多能性hES接着(プレート)細胞は、マウス胚線維芽細胞フィーダー層(ミリポア、先のChemiconまたはSpecialty Media)の上、または、20%のKnockOut血清代替物(Invitrogen/Gibco)、1mM非必須アミノ酸(Invitrogen/Gibco)、グルタマックス(Glutamax)(Invitrogen/Gibco)、ペニシリン/ストレプトマイ
シン(Invitrogen/Gibco)、0.55mM 2-メルカプトエタノール(Invitrogen/Gibco)、および4ng/mLから20ng/mLの組替えヒトFGF2(R&D Systems)が補われたDMEM/F12(Mediatech)内のヒト血清で被覆された60mmのプレート(0.1から20%の最終濃度;Valley Biomedical)の上で維持された。あるいはまた、上記の培地は無異物性のKSR(Xeno-free KSR)(Gibco)とヒト血清を補うことができる。また、hES細胞がコーティングを施していない培養プレート上にシードされた後に、ヒト血清が培養に追加された。アクチビン Aの少用量は(2-25ng/ml、R&D Systems)、未分化増殖を維持するのを助けるために成長培地に追加された。0日目(d0)の接着性の多能性hES細胞は、高水準の多能性蛋白質マーカー、OCT4を発現する。図1、パネルA、d0のプレートコントロールを参照。
【0261】
細胞は手動または酵素的に、実質的に上記のd’Amour他らに記載されているように、再度継代された。懸濁培養物は、分離されて、円錐管に移されて、約5分間1000rpmで遠心分離された。上澄を取り除き、バイセル セルアナライザー(ViCell
Cell Analyzer)を使用して標準の細胞計数を実行した。60mmのプレートからの典型的な細胞数は3×10から12×10の範囲で変化し、継代の前の培地中での日数および細胞ラインに依存する。一次細胞懸濁液中における細胞数がいったん測定されると、懸濁液はさらにStemPro(登録商標)または無異物性のKSRを含む培地で上記のように希釈され、1×10細胞/mLの最終的な容積に希釈された。この容積は、>4×10細胞/mLに増加できるが、より頻繁なフィーディングを必要とする。ROCK阻害剤Y27632(Axxora)は細胞懸濁液に約1-15マイクロM、典型的には10マイクロMの最終濃度まで加えられた。そして、チューブは優しい反転によって混ぜられた。いくつかの場合、Y27632は、集合体生成の速度を制御するために懸濁に加えられなかった。再懸濁された細胞は、次にローバインディング6ウェル皿(1ウェルあたりの細胞懸濁液約5mL)の各ウェルに等しく分配されて、分化の前に約1-4日間、100rpmから140rpmで回転プラットホーム上に置かれた。
【0262】
この培養の間、hES細胞集合体が形成され、少なくとも毎日1-2回、Y27632を新鮮なStemPro(登録商標)培地からY27632を除いたものの4mLで、4mLの培地を取り替えることによって、培養物に毎日フィーデングするか、または前記のいずれかの培地に無異物性のKSRを補った。培地交換(「フィーデング」)は、集合体の分裂を回避し、回転の間に集合体を浮かせておける表面張力を破ることがあるために、できるだけ速く実行されるべきである。また、細胞集合体の成長を最適化し、集合体の大きさと形状の均一性を最適化するために、長期間、回転プラットホームまたは装置から細胞集合体を取り除くべきでない。かくして、当技術分野で確立しているhES細胞接着培養からhES細胞集合体を製造できる。
【0263】
現在hES細胞集合体は、上記のD’Amour他(2006)に記載されているように、懸濁液中の集合体として直接分化できる。簡潔にいえば、ウェルからStemPro(登録商標)(マイナスY27632)培地または無異物性のKSRが補われた前記の任意の培地を取り除き(例えば、吸引される)、そして5mLの、hES細胞集合体は血清を含まないRMPI(Cat.15-040-CV;Mediated.)の5mL、ペニシリン/ストレプトマイシン(Invitrogen)、およびグルタマックス(また、RMPI、ペン/ストレプ(Pen/Strep)、およびグルタマックス培地とも呼ばれる)、0% FBS、1% ペン/ストレプ、1% グルタマックスで洗浄された。そして、洗浄培地を取り除く1-2分前に、回転プラットホーム上に6ウェル皿を戻した。これは少なくとも二度またはインスリンおよび/または、IGF-1が十分取り除かれるまで繰り返された。多能性の維持とES自己再生に必要であるが、同じ要素が制御された、シンクロした、リネッジ-由来された分化に有害だからである。
様々な外因性マイトジェンの添加および除去により、すべての内胚葉リネッジへの分化は、d’Amour他(2006)で説明したように、100rpmで実質的に実行された。さらに詳細に以下で説明する。
【0264】
胚体内胚葉(ステージI)への分化
ヒトES細胞集合体は初日はRPMI、100ng/mLアクチビンAおよび可変濃度のFBS(US Defined FBS、HyClone、カタログNo.SH30070.03)、および25ng/mL-75ng/mL Wnt3a、2日目と3日目(d0からd2)は、さらに100ng/mLアクチビンAおよび可変濃度のFBS(HyClone)を含むRMPI、ペン/ストレプ、およびグルタマックス培地において分化された。3日のステージ1実験計画が使用されるか、または望ましい場合には、ほとんどの分化実験FBS濃度は、最初の24時間(d1)では0%、第2の24時間(d2)については0.2%(d2)、および第3の24時間(d3)については0.2%(d3)である。望ましくは、2日のステージ1実験計画が実行される。
【0265】
2日のステージ1実験計画の終わりの懸濁培養における、hES-由来細胞集合体のQPCR分析は、接着プレート対照と比べて、hES集合体の胚体内胚葉へ向けての高能率的な有向分化を示す。細胞集合体は100rpm、120rpm、および140rpmで形成された。いくつかの実験では、hES-由来集合体が、分化の前にバイオリアクタ(スピナーフラスコ)に移された。胚体内胚葉細胞に分化したhES細胞培養と、接着hES細胞培養物がコントロールとして使用された。未分化hES細胞集合体と接着性のプレートコントロールと比べて、SOX17とFOXA2の増加した発現レベルが懸濁培養と接着培養の細胞集合体で観測された。図22、パネルC(SOX17)、およびD(FOXA2)のステージ1(d2)を参照。さらに、内胚葉の最終的な接着プレートコントロールと比較して、SOX7、胚体外および臓器の内胚葉を汚染と関連する遺伝子の発現水準は、胚体内胚葉細胞集合体内でかなり減少した。図22、パネルLのステージ1(d2)を参照。
【0266】
CXCR4とHNF3beta(FoxA2)タンパク質を使用するフローサイトメトリー分析は、ES細胞-由来集合体の有向分化は、少なくとも97%CXCR4-陽性、少なくとも97%HNF3beta-陽性、および少なくとも95%CXCR4/HNF3beta コ-陽性の集合体をもたらすことを示した。
【0267】
さらにhES細胞集合体分化の効率を評価するために、ES-由来細胞集合体の凍結切片が、SOX17およびHNF3beta発現について、免疫細胞学および共焦点顕微鏡を使用することで調べられた。染色された凍結切片の像解析は、ステージ1(胚体内胚葉細胞)の終期のすべての細胞のほぼ90%以上が、HNF3betaおよび/または、SOX17を発現したことを示した。
【0268】
これらのデータはすべて、細胞集合体としての胚性幹細胞の高能率的な分化が達成でき、識別領域の胚体内胚葉マーカー(signature definitive endoderm marker)の発現水準に基づいて、接着平板培養の分化と比べて、本明細書に記載されるように、胚体内胚葉を製造するための方法は、より効率的であることを示す。
【0269】
PDX1-陰性の前腸内胚葉細胞への分化(ステージ2)
ステージ1からのヒト最終内胚葉細胞(Human definitive endoderm cell)の集合体は、PBS+/+で簡単に洗浄され、ついでRMPI、ペン/ストレプおよびグルタマックス培地で更に2%FBS、25ng-50ng/mL KGF(R&D Systems)を含むものの中でさらに2ないし3日分化された。い
くつかの実験では、ステージ2の初日の間、5マイクロMのSB431542(シグマオルドリッチInc.)または2.5マイクロMのTGF-beta Inhibitor
IV(Calbiochem)が加えられた。あるいはまた、RMPI、ペン/ストレプ、およびグルタマックス培地/0.2%FBS/ITS(インスリン/鉄結合性グロブリン/セレニウム)が使用された。
【0270】
QPCR分析は、実質的に上で議論したようにして実行された。接着性の平板培養のコントロールと比較して、HNF1βとHNF4alphaの増加した発現レベルが細胞集合体培養で観測された。図22、パネルE(HNF1B)、およびパネルO(HNF4alpha)のステージ2(d5)を参照。具体的ステージ0、1、2、および5hESまたはhES-由来細胞集合体(または、分化型集合体についての「dAggs」)を製造する方法はパネルOでわずかに変更された。この文脈では、分化された細胞集合体は、対応するステージの、それらが由来する接着平板対照培養から開始された、分化されたhESまたはhES-由来細胞集合体をいう。例えば、ステージ1では、分化細胞集合体(「dAggs」)懸濁培養は、ステージ0の接着性プレートから開始され、100rpmから140rpmの回転プラットホーム上で約24時間、本明細書に記載された培地のいずれでインキュベートされる。これらの分化型細胞集合体は、対応する接着性のプレート対照でステージ1の胚体内胚葉細胞にさらに分化された。図22、パネルOは、ステージの1つの分化細胞の集合体または接着性のプレート対照のどちらかにも、顕著なHNF4alpha(HNF4A)発現がないことを示している。対照的に、同様の方法がステージ2のサンプルのために行われて、HNF4Aを発現量の増加したレベルで製造した。ステージ5のサンプルでは、HNF4Aの発現も確固としている。
【0271】
さらに、平板培養コントロールと比較して、胚体外の内胚葉(SOX7)に関連する遺伝子の発現水準は、hES-由来細胞集合体培養でかなり減少した。図22、パネルL、ステージ2(d5)を参照。その結果、懸濁培養における細胞集合体によるPDX1-陰性の前腸内胚葉細胞の有向分化が胚体外の内胚葉汚染物を取り除くことを示す。
【0272】
これらのデータはすべて、hES細胞集合体の有向分化が高能率的であることを示し、識別領域のPDX1-陰性の前腸内胚葉マーカーの発現水準に基づき、前腸内胚葉細胞を製造するための方法は、接着性の平板培養での分化と比較して改善されたことを示す。
【0273】
PDX1-陽性の前腸内胚葉細胞への分化(ステージ3)
ステージ2からの前腸内胚葉細胞は1から3日間、無血清RMPIで、グルタマックス(Invitrogen)、ペニシリン/ストレプトマイシン(Invitrogen)、0.5X B27-サプリメント(Invitrogen/Gibco)、さらに1マイクロMないし2マイクロMのレチノイン酸(RA、Sigma)と0.25nM KAAD-シクロパミン(cyclopamine)(Toronto Research Chemicals);または1マイクロMないし2マイクロMのレチノイン酸、0.25nM KAAD-シクロパミン、および50ng/mL ノギン(R&D systems)を加えて分化させた。あるいはまた、0.2マイクロMないし0.5マイクロMのRAと、0.25nM KAAD-シクロパミンが1日間、培地に加えられた。さらに、いくつかの実験では、RAまたはKAAD-シクロパミンが、細胞集合体培養物に追加されなかった。他の実施態様では、0.1-0.2%の有効濃度のBSAが加えられた。
【0274】
接着性の平板培養コントロールと比べて、PDX1の増大した発現レベルが、hES-由来細胞集合体で観測された。図22、パネルF(PDX1)、ステージ3(d8)を参照。さらに、平板培養コントロールと比べて、胚体外内胚葉(SOX7)に関連する遺伝子と臓器の内胚葉(AFP)の発現水準は、hES-由来細胞集合体培養で顕著に減少した。図22、パネルL(SOX7)、およびパネルN(AFP)、ステージ3(d8)を
参照。したがって、懸濁培養における細胞集合体によるPDX1-陽性の前腸内胚葉細胞を製造する有向分化が、胚体外の内胚葉汚染物を取り除くことが示された。
【0275】
これらのデータは、hES細胞集合体の有向分化が高能率的であることを示し、識別領域のPDX1-陽性の前腸内胚葉マーカーの発現水準に基づき、PDX1-陽性の内胚葉細胞を製造するための方法は、対照の接着性の平板培養での分化と比較して改善されることを示す。
【0276】
膵性内胚葉または膵性内分泌前駆細胞への分化(ステージ4)
ステージ4では、ステージ3培養からRAが取り出され、DMEMプラスB27(1:100Gibco)で培地を一度洗浄した。ついで洗浄液を、4-8日間、DMEM+1XB27サプリメント単独、または以下の要素のいずれかまたはすべてとの組み合わせに取り替える:ノギン(50ng/ml)、FGF10(50ng/ml)、KGF(25-50ng/ml)、EGF(25-50ng/ml)、1-5%FBS。RAが加えられない場合では、1-9日間、30-100ng/mL(R&D systems)でノギンが培地に加えられた。さらに、いくつかの実験では、25ng/mLでFGF10が加えられた。
【0277】
NKX6.1およびPDX-IおよびPTF1Aの増大した発現レベルが、ES細胞-由来集合体と対応する接着性の平板培養コントロールで観測された。図22、パネルF(PDX1)、パネルG(NKX6.1)、およびパネルP(PTFAl)、ステージ4(d11)を参照。図22、パネルPでは、懸濁培養におけるhES、および/または、hES-由来集合体が、それらが由来する接着性の平板培養内の細胞数に影響を受けるか否かを決定するために、棒グラフが方法からの結果を表現する。パネル Pのみが1×10細胞の結果を示すが、細胞集合体懸濁液培養は様々な種子カウント(例えば、1×10から2×10細胞)から始められた。すべてが、実質的に同様であり、良い生育性とほとんどない細胞死を有する細胞集合培養を製造した。たとえばステージ4では、分化された細胞集合体懸濁培養細胞(「dAggs」)は、d5(ステージ2)の接着性の平板培養から始められて、再び本明細書に記載された培地のいずれかにより、24時間、100rpmから140rpmの回転プラットホーム上でインキュベートされた。これらの分化型細胞集合体はさらに、PTF1Aを発現するステージ4膵性内胚葉タイプ細胞に分化された(パネルP)。対応するステージ4の接着性の平板培養コントロールと比べて、PTF1Aの発現増加がみられる。
【0278】
さらに、接着性の平板培養コントロールと比べて、AFPの発現水準はhES-由来細胞集合体でかなり減少した。図22、パネルN、ステージ4(d11)を参照。したがって、懸濁培養における細胞集合体によるPDX1-陽性の膵性内胚葉細胞を製造する有向分化は、臓器の内胚葉汚染物を取り除く。
【0279】
NKX6.1、HNF3betaおよびクロモグラニン(Chromogranin)(CHG)タンパク質を使用したフローサイトメトリー分析は、hES-由来細胞集合体の有効分化が少なくとも53%のCHG-陽性、少なくとも40%のNKX6.1とCHGコ-陽性、および少量のHNF3betaと他のタイプの細胞である細胞集合体を与えたことを示した。
【0280】
hES-由来の集合体の低温断面が、NKX6.1、PDX1およびNKX2.2の発現について、免疫細胞化学および共焦点顕微鏡を使用して、ステージ4の最後で調べられた。像解析は膵性内胚葉(または、PDX1-陽性の膵性内胚葉)への集合体細胞の高能率的な分化を示した。ほぼすべての細胞がPDX1を発現し、細胞の大集合体がNKX6.1(約40%の細胞)および/またはNKX2.2(約40%の細胞)を発現した。
【0281】
ホルモン発現性内分泌細胞への分化(ステージ5)
ステージ5分化において、ステージ4の分化細胞集合体が、CMRL(Invitrogen/Gibco)またはRMPI、ペン/ストレプ、およびグルタマックス培地および0.5X B27-サプリメントのどちらかで続けられていた。いくつかの実験では、培地はステージ5の間、0.2-5%の範囲のヒト血清(Valley Biomedical)または牛胎児血清で補われた。
【0282】
再び、ステージ2-4からの細胞タイプと同様に、接着性の平板培養コントロールと比較して、特定の細胞型に関連する遺伝子の発現の増加が観測された。例えば、増加した発現レベルのホルモンインスリン(INS)、グルカゴン(GCG)、およびソマトスタチン(SST)が観察された。図22、パネルI(INS)、パネルJ(GCG)、およびパネルK(SST)のステージ5(dl5)を参照。さらに、接着性の平板培養コントロールと比較して、AFPとZIC1、外胚葉に関連している遺伝子の発現水準はhES-由来の細胞集合体でかなり減少した。図22、パネルM(ZIC1)、およびパネルN(AFP)のステージ5(dl5)を参照。したがって、懸濁培養における細胞集合体を通して膵臓内分泌細胞を製造する有向分化は、外はい葉のおよび臓器の内胚葉の汚染要因物を取り除く。
【0283】
内分泌性集合体細胞を発現するhES-由来のホルモンの生産は、説明したプロトコールでの23日目におけるフローサイトメトリー分析で確認された。集合体は、初めは、5mL DMEM/F12で140rpmで形成され、別法としてノックアウト血清代替物(KSR;Gibco/Invitrogen、一貫性のため0063と比較)または無異物性のKSR(Invitrogen)を含み、次に、100rpmで分化された。NKX6.1、クロモグラニン A、インスリン、グルカゴン、およびソマトスタチン蛋白質発現の分析は、ES細胞-由来の集合体は約20%のNKX6.1+/クロモグラニンA-膵性上皮、および約74%のクロモグラニン A+内分泌組織を含むことを示す。さらに、細胞の11%はインスリンを、14%はグルカゴンを、および11%はソマトスタチンを発現する。これらでは、インスリン+細胞の68%はシングル-陽性(single positive)であり、グルカゴン+細胞の70%はシングル-陽性であり、ソマトスタチン陽性細胞の52%はシングル-陽性である。シングルホルモンの陽性の程度は、ほとんどポリホルモーナル(polyhormonal)細胞であった接着培養で説明された値を超えている。
【0284】
さらにホルモン発現性内分泌細胞への集合体の分化の効率を評価するために、ES-由来の集合体の低温断面が、グルカゴン、インスリンおよびソマトスタチン発現について、ステージ5の間、免疫細胞化学および共焦点顕微鏡を使用して調べられた。20倍の低温断面の像解析は集合体細胞のホルモン-陽性への高能率な分化を示し、ほとんどすべての細胞がグルカゴン、ソマトスタチンまたはインスリンを発現した。また、先の接着培養実験と対照して、集合体における細胞の大部分が、発達の間生体内で起こるように、シングルホルモン(single hormone)を発現するように見える。
【0285】
実施例19-様々なステージからの接着培養は、細胞集合体を形成し、膵性内胚葉タイプ細胞に分化できる
以下は、hES-由来の細胞集合体の生産は多能性hES細胞から開始できるだけではなく、細胞集合体は分化培地(0日目の細胞集合体)内に直接開始され、また分化されたかまたはhES-由来の細胞から開始でき、たとえば、ステージ1、2、4および5またはhES-由来の細胞から細胞集合体を製造できることを示す。
【0286】
0日目の細胞集合体
ステージ1の初日(d0)で製造された細胞集合体:
接着性の多能性hES細胞は成長され、手動または酵素的に継代され、分離され、数えられ、ペレットにされ、該ペレットはRMPI、ペン/ストレプおよびグルタマックス培地を含み、さらに100ng/mLアクチビンA、25ng/mL-75ng/mL Wnt3a、0.2%のFBS(HyClone)を含む分化培地中で1x10細胞/mLから約1×10細胞/mLの最終的な容積に再懸濁された。この容積は、>4×106細胞/mLに増加できるが、より頻繁なフィーディングを必要とする。時々DNaseが10-50ng/mLの濃度で含まれる。ROCK阻害剤Y27632(Axxora)は細胞懸濁液に約1-15マイクロM、典型的には10マイクロMの最終濃度まで加えられた。他のケースでは、約1:2000から1:5000のITS(インスリン/鉄結合性グロブリン/セレニウム、Gibco)が培地に追加された。Rho-キナーゼ阻害剤とITSの両方が、細胞生存をサポートするために加えられた。再懸濁された細胞は、実質的に上で説明された、ローバインディング6ウェルの皿の各ウェルに等しく分配され、一晩100rpmから140rpmで回転プラットホーム上に置かれた。この培養の期間、均一サイズと形の細胞集合体が形成された。その結果、高い密度の培養物は、PDX1-陽性の膵性内胚葉またはPDX-陽性の膵性前駆細胞について、効果的に又は実質的に豊化した。実施例21に詳細を提供する。
【0287】
ステージ1のd0に製造された細胞集合体は、次に、RMPI、ペン/ストレプ、およびグルタマックス培地を含む分化培地で1-2Xで毎日フィードされ、次の2-3日間はさらに100ng/mLアクチビンAと0.2%のFBS(HyClone)を含むものがフィードされた。プロトコールの引き続くステップ(ステージ2-5)は、ES集合体のために上で説明したものと実質的に同じである。
【0288】
ステージ1-2日目と3日目
ステージ1のd2-d3に製造された細胞集合体:
接着性のhES細胞は、実質的に上で説明されたようにして発育され、継代され、次に、実質的にd’Amour他(2006)(上掲)で記載されているように、ステージ1に分化された。
【0289】
ステージ1(分化プロトコールへの約d2またはd3;
胚体内胚葉タイプ細胞)の終期で、接着培養はPBS+/-で1度洗浄され、1mLまたは5mLピペットを使用して37℃にあらかじめ暖かくされたアキュターゼ(Accutase)の2mLで、約2-5分、単独細胞に分離された。次に、RMPI、ペン/ストレプ、およびグルタマックス培地中の10%FBSの4mLが加えられ、単独細胞懸濁液は40ミクロンの青色フィルター(BD Biosciences)を通して濾過され、50mL円錐管に入れられた。細胞は、実質的に上で説明したように、数えられて、ペレットにされた(遠心分離された)。
【0290】
次に、細胞ペレットはRMPI、ペン/ストレプ およびグルタマックス培地、さらに2%のFBS、プラスDNase(50-100 マイクロg/ml、ロシュ・ダイアグノスティックス)、および100ng/mLアクチビンAを含む培地中に再懸濁された。あるいはまた、細胞ペレットはRMPI、ペン/ストレプ、グルタマックス、および2%のFBS、およびDNase(50-100 マイクロg/mL)、25ng-50ng/mL KGF(R&D Systems)を含む培地中に再懸濁された。いくつかの実験では、5マイクロMのSB431542(シグマオルドリッチInc.)または2.5マイクロMのTGF-beta Inhibitor IV(Calbiochem)がKGFとともに含まれていた。いくつかの実験では、Y27332(10マイクロM)が含まれた。再懸濁された細胞は、上記のようにローバインディング6ウェルの皿の各ウェルに等しく分配され、100rpmから140rpmの回転プラットホーム上に一晩おか
れ、均一サイズと形の細胞集合体が形成された。
【0291】
そして、ステージ1の最後に製造された細胞集合体は、さらに分化された。プロトコールの引き続くステップ(ステージ2-5)は、実施例17および18におけるES集合体と、実質的に同じである。
【0292】
ステージ2、5日目から6日目
ステージ2でd5-d6に製造された細胞集合体:
接着性のhES細胞は、実質的に上で説明されたようにして発育され、継代され、次に、実質的にd’Amour他(2006)(上掲)で記載されているように、ステージ2に分化された。ステージ1からの接着細胞集合体は、ステージ2のためにPBS+/+で簡単に洗浄され、さらに2%FBS、グルタマックス、ペニシリン/ストレプトマイシン、および25ng-50ng/mL KGF(R&D Systems)が追加されたRPMI中で3日分化された。いくつかの実験では、5マイクロM SB431542(シグマオルドリッチInc.)または2.5マイクロM TGF-beta Inhibitor IV(Calbiochem)がステージ2の初日の間、加えられた。
【0293】
ステージ2(分化プロトコールの約d5またはd6;前腸タイプ細胞)の終期の接着細胞は、実質的に上記のように単独細胞に分離され、計数され、ペレットにされた。次に、細胞ペレットはDMEM、ペン/ストレプおよびグルタマックス培地、さらにIX B27-サプリメントおよびDNase(50-100 マイクロg/ml、ロシュ・ダイアグノスティックス)を含み、FBSを含まないかもしくは1-2%のFBS、または0.5%から10%のヒト血清(hS)、並びに;1マイクロMのレチノイン酸(RA、Sigma)および0.25nM KAAD-シクロパミン(Toronto Research Chemicals);または1マイクロMないし2マイクロMのレチノイン酸、0.25nM KAAD-シクロパミン、および50ng/mLノギン(R&D systems);または0.25nM KAAD-シクロパミンと100ng/mLノギン;または100ng/mLノギン;または0.2μMないし0.5μMのRAと0.25nM KAAD-シクロパミン;または0.2マイクロMないし0.5マイクロMのRA、0.25nM KAAD-シクロパミンと50ng/mLノギン;のいずれかを含む分化培地中で再懸濁された。いくつかの実験では、Y27332(10マイクロM)が含まれていた。
【0294】
再懸濁された細胞は、等しく各ウェルに分配されて、回転プラットホーム上で100rpmから140rpmで一晩回転され、均一なサイズと形の細胞集合体がそれらの間に形成された。
【0295】
ステージ2の終わりに製造された細胞集合体は、回転プラットホームでさらに分化されて、1-2X、毎日フィードされ、さらに0-2日は、DMEM、ペン/ストレプとグルタマックス培地、更にIX B27-サプリメント、1マイクロMから2マイクロMのレチノイン酸(RA、Sigma)、および;0.25nM KAAD-シクロパミン(Toronto Research Chemicals);1マイクロMから2マイクロMのレチノイン酸、0.25nM KAAD-シクロパミンおよび50ng/mLノギン(R&D systems);または0.25nM KAAD-シクロパミンと100ng/mLノギン;または100ng/mLノギン;または0.2マイクロMから0.5μMのRAと0.25nM KAAD-シクロパミン;または0.2μMから0.5マイクロMのRA、0.25nM KAAD-シクロパミン、および50ng/mLノギンのいずれかを含むものがフィードされた。
【0296】
そして、ステージ2の終わりに製造された細胞集合体は、上で説明したように、さらに
ステージ3、4と5に分化された。
【0297】
ステージ4および5-10日目から30日目
ステージ4でd10-dl4で細胞集合体が製造された:
再度、接着性のhES細胞は実質的に上で説明したように成長され継代され、ついでD’Amour他(2006)(上掲)に記載されているように、ステージ2に分化された。
【0298】
ステージ3に関しては、ステージ2からの接着細胞は1から3日間、DMEM、ペン/ストレプ、グルタマックス培地であって、更にIX B27-サプリメント、および1マイクロMから2マイクロMのRAと0.25nM KAAD-シクロパミンを含む培地中でさらに分化された。他の場合では、50ng/mLノギンがRAとKAAD-シクロパミンと共に加えられた。あるいはまた、0.2マイクロMから0.5マイクロMのRAと、KAAD-シクロパミンの0.25nMが、ちょうど1日間、培地に加えられた。他の実験では、RAもKAAD-シクロパミンも加えられなかった。ステージ4では、1-2X、毎日、グルタマックスが補われたDMEM、ペニシリン/ストレプトマイシン、およびIX B27-サプリメントを細胞に与えた。実施例17と18で既に記載されているように、さらにステージ4細胞をステージ5細胞に分化できる。
【0299】
ステージ4(分化プロトコールの約d10-d14;膵性上皮および内分泌性タイプ細胞)またはステージ5(分化プロトコールの約16日目から30日目;内分泌性先駆および内分泌細胞)の接着培養物は、同様に単独細胞に分離されて、計数され、ペレットにされた。そして、細胞ペレットはDMEM CMRLによって補われたペン/ストレプおよびグルタマックス、およびIX B27-サプリメント、DNase(50-100 マイクロg/ml、ロシュ・ダイアグノスティックス)、および0-2%のFBS中で再懸濁された。いくつかの実験では、Y27332(10マイクロM)が含まれ、細胞生存をサポートした。細胞は、上で説明したように、等しく6ウェルのプレートに分配されて、4時間ないし一晩、100rpmから140rpmの回転プラットホーム上に置かれた。
【0300】
さらに、実施例17-19のように、ステージ2およびステージ5で製造された細胞集合体は、それらが由来する接着性の平板培養と比べて膵性細胞タイプが富化された。例えば、1つの典型的な実験では、ステージ2で製造されて、ステージ4でフローサイトメトリーで分析された細胞集合体は、少なくとも98%の膵性細胞タイプ(73%のクロモグラニン(Chromogranin)A 陽性 内分泌細胞、25%のNkx6.1 陽性 膵性内胚葉(PE))、および2%の非すい臓細胞がタイプからなる。細胞集合体が由来する接着性の平板培養は約73%の膵性細胞タイプ(33%のクロモグラニン A 陽性 内分泌細胞、および40%のNkx6.1 陽性 PE)、および27%の非すい臓細胞タイプからなる。したがって、ステージ2における集合体は、膵性細胞タイプをもたらす前駆細胞を富化し、非すい臓細胞タイプを減少できる。同様に、典型的な実験では、ステージ5で製造されて、フローサイトメトリーで分析された細胞集合体は、少なくとも75%のクロモグラニン A 陽性 内分泌性細胞タイプから成ったが、細胞集合体が由来する接着性の平板培養は約25%のクロモグラニン A 陽性 内分泌性細胞タイプから成る。したがって、ステージ5での集合体は膵臓内分泌細胞を効果的に富化できる。
【0301】
したがって本明細書に記載された方法は、細胞集合体懸濁液でhES細胞の有向分化の効率を向上するだけでなく、汚染物集合体(例えば、外はい葉、栄養外胚葉、臓器の内胚葉、および胚体外の内胚葉)を有するhES-由来の膵性細胞タイプ(または、集合体)を減少すると同時に膵性細胞タイプ(例えば、膵性内胚葉および内分泌細胞)を富化する方法を提供する。
【0302】
実施例20-細胞密度のhES分化結果への効果
以下は、細胞密度の変化が特定の培地と増殖因子条件の中で分化結果に作用することを示す。細胞密度における調節から得られる分化効率は、内因的に製造された伝達分子の濃度の変化を反映し、細胞分化への影響を及ぼすこれらの分子の濃度依存性を反映する。
【0303】
直接分化培地で生産されたd0細胞集合体を含むヒトES細胞集合体とhES-由来の細胞集合体は、実質的に上記のように発生された。ステージ1と2を経た分化の5日後、分化した細胞集合体はプールされて、異なる播種密度、例えば、前腸内胚葉の28mLの懸濁液で個々のウェルにリアリコートされ(re-aliquoted)、ステージ細胞集合体は、4、6、8または10mL/ウエルで(2.5倍の範囲内の細胞密度)播種されたか、またはリアリコートされた。この細胞分配が2回行われ、1組のウエルにステージ3培地(DMEM/PenStrep/グルタマックス+1% B27サプリメント(vol/vol)+0.25マイクロM KAAD-シクロパミン+3マイクロM TTNPB)で50ng/mLのノギンを含む培地が供給され、他のウエルの組は25ng/mLのノギンを含んでいた。ステージ3は3日間、毎日培地交換して続けられた。細胞試料は、リアルタイムQPCR分析のためにステージ3の最後の3日間(または約8日目)に2個取られ、また再びステージの4の後(または約14日目)に再度取られた。
【0304】
ステージ3の間に使用される細胞密度とノギンの濃度は、膵性内胚葉前駆細胞、および/または、内分泌性前駆細胞または前駆体を示すそれらの遺伝子類の発現に異なった影響を与えた。簡潔にいえば、細胞密度の増大と膵性前駆細胞細胞タイプ(例えば、膵性内胚葉、膵性上皮、PDX1-陽性の膵性内胚葉)の対応する増大の間には、直線関係がある。例えば、ステージ3(または、8日目)の後に、細胞密度の増大は、PDX1とNKX6-1の高められた遺伝子発現で示したように、膵性前駆細胞の細胞数の増大に対応する。図24Aおよび24Bを参照。対照的に、ステージ4(または、14日目)の後の、細胞密度の増大と内分泌性前駆細胞細胞タイプにおける減少の間には逆相関性がにあった。例えば、細胞密度が減少するにつれて、ステージ3(または、8日目)の後に、少なくともNGN3とNKX2-2の減少した発現がみられた。図24Cおよび24Dを参照。
【0305】
しかし、与えられる任意の密度でのノギンの低い濃度(例えば、25ng/mL)は、NGN3とNKX2-2の減少した発現で示されるように、内分泌性前駆細胞タイプを減少させた。図24Cおよび24Dを参照。細胞培養における、ノギンの細胞密度非依存性作用は、細胞から内因的に生成されたBMPシグナルが外因的に加えられたノギンによって拮抗されることを示唆する。内因的に生成された信号の分化結果への影響は、BMPのみに制限されるのではなく、他の増殖因子、および/または、細胞によって培地中に分泌された薬剤が、単独または外因の増殖因子、および/または、薬剤と組み合わされて類似的または対照的な作用を持つことができる。
【0306】
実施例21-膵性内胚葉または内分泌性細胞タイプが富化されて発生される細胞集合体懸濁液培養の最適化
hES-由来の細胞集合体集合体の細胞組成は、様々な増殖因子、および/または、薬剤の濃縮を制御することによって、ある細胞タイプのために最適化される。本明細書に記載された膵性細胞組成物は、hES細胞接着培養、d0細胞集合体(細胞集合体はhES接着培養から開始されたか、多能性幹細胞培地ではなく、直接分化培地に置かれた)、または前の例に記載されているように、分化の様々なステージのhES-由来の細胞集合体懸濁液から開始された、単独細胞懸濁培養から生成された。ステージ4の間、細胞集合体はNOGGIN(N)、KGF(K),FGF10(F),およびEGF(E)の因子群の異なった濃度に暴露された。分化hES細胞集合体の細胞組成は、CHGA、NKX6.1、およびPDX1を含むマーカーのパネルを使用しながら、フローサイトメトリー分析で評価された。任意の集合体中の、内分泌細胞、膵性内胚葉細胞、PDX1+内胚葉細胞、および非-膵性細胞の合計パーセントが表6に示される。
【0307】
表6のデータは、ある増殖因子の濃度と比率を制御することによって、得られた組成物をある種の細胞タイプのために最適化できることを示す。例えば、KGFおよびEGF(例えば、K(25)E(10)の71%対22.1%)の濃度を下げることによって、内分泌性タイプ細胞と比べて、膵性内胚葉タイプ細胞の割合は増加した。対照的に、KGFおよびEGFの高い濃度と、ノギンおよびFGF10(例えば、N(50)F(50)K(50)E(50))の包含は、膵性内胚葉タイプ細胞の数を減少させ、総数が内分泌性タイプ細胞(例えば、39.6%対40.1%)と匹敵した。より高い濃度におけるノギンおよびKGF(例えば、N(50)K(50))、または増殖因子を加えない時には、得られる集合体内で、膵性内胚葉細胞タイプと比べて、内分泌性タイプ細胞の集合体を増加させた。また、非すい臓細胞タイプ(すなわち非PDX1-陽性タイプ細胞)の割合は、KGFおよびEGFの量を減らす(例えば、K(25)E(10);1.51%)ことにより、または増殖因子を加えない(1.53%)ことによって、顕著に低下できる。
【0308】
したがって、表7は、分化のあるステージ(例えば、ステージ4)で培養培地における、異なった増殖因子の濃度を少なくとも変えると、膵性内胚葉、内分泌性、PDX1-陽性 内胚葉または非膵性細胞タイプのある集合体がかなり増加および/または、減少することを明確に示す。
【0309】
【表7】
【0310】
さらに、特定のhES-由来の細胞タイプを富化するかまたは精製する他の方法が存在している。これは2008年4月8日に出願された、米国特許出願第12/107,02
0,特発性好酸球増加症候群細胞から得られた内胚葉AND膵性内胚葉細胞を精製するための方法(METHODS FOR PURIFYING ENDODERM AND PANCREATIC ENDODERM CELLS DERIVED FROM HES CELLS)に記載され、この特許は本明細書で参照され、組み込まれる。この出願は上掲のd’Amourら2005の2006年に説明されるように、ステージ1、2、3、4と5のそれぞれのステージをもたらすすべての細胞タイプを含む様々なhES-細胞タイプを富化するための方法を説明する。この出願は、CD30、CD49a、CD49e、CD55、CD98、CD99、CD142、CD165、CD200、CD318、CD334およびCD340を含む(ただしこれらに限定されない)様々な抗体類を使用する。
【0311】
hES-由来の細胞または細胞集合体を富化するための方法は、抗体親和性手段を使う方法に制限されず、ある細胞タイプの富化を許容する、当業者にとって周知の利用可能な、または将来利用可能なすべての方法を含むことができる。1つの細胞タイプを減少するかまたは、別の細胞タイプまたは培養物から分離することにより富化を行うことができる。
【0312】
実施例22-生体内の成熟膵性内胚葉であってインスリン応答性の細胞集合体懸濁液
本明細書に記載される細胞集合体懸濁液を生成する方法は、生体内で機能する膵性前駆細胞を提供することを示すために、実施例17-21の、上記のhES-由来の細胞集合体(例えば、PDX1-陽性の内胚葉、膵性内胚葉、膵性上皮、内分泌性先駆、内分泌細胞、および同様のもの)が動物に移植された。正常、および糖尿病が誘発された動物への移殖の方法、動物の生体内のグルコース応答性の決定、および移植された成熟した細胞の生体内でのインスリン生産が実質的に、Kroonら(2008) Nature Biotechnology 26(4):443-452、および2007年7月5日に出願された、米国特許出願第11/773,944,膵性ホルモンの生成方法(METHODS OF PRODUCING PANCREATIC HORMONES)に記載された方法で実行された。これらは本明細書で参照され、組み込まれる。実質的に、同じ水準のヒトC-ペプチドはKroon他の米国特許出願第11/773,944(上掲)にみられるものと同様の期間で、これらの動物の血清で観測された。
【0313】
本明細書に記載された、方法、組成物、および装置は、好適な実施態様を代表するが、例示であり、本発明の範囲を制限することは意図されない。そこでの変化および他の用途は当業者によって考えられるであろうが、それらは本発明の精神の範囲内に包含され、請求の範囲によって定義される。本明細書中で開示された発明に対する種々の置換および変更が、本発明の範囲および精神から逸脱することなく行われうることは、当業者に容易に理解されるであろう。
【0314】
本発明に関する一定の態様においては、異なる実施態様として記載されていても、実施態様の組み合わせが提供されることができることが理解される。例えば、hES-由来の細胞集合体を懸濁培養中で作るための方法は、任意の内胚葉リネッジ細胞タイプ、たとえば膵性リネッジタイプ細胞、肝臓リネッジタイプ細胞、上皮性リネッジタイプ細胞、甲状腺リネッジ細胞、および胸腺リネッジ細胞を生成するために作られ、最適化できる。したがって本明細書に具体的に説明されたhES-由来の細胞タイプには制限されない。また逆に、本発明の様々な態様は、簡潔さのために単一の実施態様として記載されているが、それらを別々に行うこともできるし、また任意の適当なサブコンビネーションとしても提供できる。例えば、当業者には、hES細胞およびhES-由来の細胞集合体を接着性の平板培養または懸濁培養から、未分化接着性の平板培養または懸濁培養から、分化型接着性の平板培養または懸濁培養から生成するための記載された方法は、例示に過ぎず、これらの方法の組み合わせも使用できることは、明らかである。
【0315】
実施例23
ヒト多能性幹細胞と膵性前駆細胞の凍結保存とバンキング
実施例24で記載された継代実験計画により収穫された接着性のhES細胞培養物がプールされ、数えられた。細胞ペレットはあらかじめ暖められた約50%のhESC培地(成長因子は含まない)/約50%のヒトの血清に再懸濁された。等量の約80%ののhESC培地(成長因子は含まない)/20%DMSOが撹拌下に滴下された。細胞の1mLが、冷凍するために1.8mL のクライオバイアル中に入れられ、ナルゲン ミスターフロスティ容器内で約24時間、-80℃で冷凍され、液体窒素中に移された。実質的に同様の方法がcGMPの存在下で実行された。
【0316】
上記の方法は多能性の、または、分化可能な幹細胞の凍結保存について説明する。多能性幹細胞から分化された細胞の凍結保存、例えば、膵性先祖細胞について、2009年11月13日に出願された、ヒト多能性幹細胞から誘導された膵性リネッジ細胞のカプセル化に関する米国特許出願12/618,659で先に詳細に説明した。この出願は本明細書中に参考としてそれらの全体が援用される。
【0317】
実施例24
ローラーボトルを含む様々な培養器中の未分化ヒト多能性幹細胞の接着性培地、継代、および増殖
細胞の集合体ベースの細胞療法製品の製造のための主要なボトルネック、特にヒト多能性幹細胞から得られるものについてのボトルネックは、懸濁液中での3次元の細胞集合体の形成である。具体的には、ボトルネックは、単分子層接着多能性幹細胞を取って、多能性幹細胞集合体(すなわち、懸濁液集合培養物)にそれらを変換することである。先に説明したように、たとえば6ウェルトレー中でhES細胞集合体が形成され、それに続いて6ウェルトレーまたは他の培養フォーマット、たとえばバイオリアクタ、ボトルなどの中で分化される。以下の実施例で説明される本発明の実施態様は、懸濁液中の細胞集合体としての多能性幹細胞の成長、継代、増殖、およびローラーボトル中での細胞集合体の分化のための方法を提供する。実施例25を参照されたい。
【0318】
ヒト多能性幹細胞の培養と増殖
解凍または通常の継代において、3日または4日間の成長サイクルについて、異なる分化細胞培養器中で、それぞれ5万または3万3000細胞/cmでそれぞれ分離したhESCが培養された。hESC成長培地は、DMEM/F12含有GlutaMAXに、10%v/vのXenoフリーのKnockOut Serum Replacement、1%v/vの非必須アミノ酸、0.1mMの2-メルカプトエタノール、1%v/vのペニシリン/ストレプトマイシン、10ng/mLのヘレグリン-1β、および10ng/mLのアクチビンAが添加されたものから成った。培養の日だけ(1日処理)、約10%(vol/vol)の非熱処理不活性化ヒトAB血清(Valley Biomedical)を、上記のXenoフリーの培地とともに添加して細胞付着が容易にされた。0.2mL/cmの標準化された平板培養容積が、異なった組織培養プレート、T型培養瓶、および細胞ファクトリーに少なくとも以下の表8に記載されているように、使用された。使用される成長培地の容積をそれぞれの追加のフィーディング日に増加した。表8に示す。表8中、体積はmLであり、SAは表面積を表す。
【0319】
【表8】
【0320】
ヒト多能性幹細胞の継代
継代の日に、培養物に新鮮な増殖培養液が加えられ、4から8時間培養した後に分離した。培地はPBS(Life Technologies)で洗浄され、あらかじめ暖かくされたACCUTASE(Innovative Cell Technologies)を使用して、6分間、約37℃で分離した。いくつかの実験ではACCUTASEが加えられ、次にすぐに吸引され(すなわち、4-6分以内)、細胞分離が残留試薬内で最小の作業容積で達成できるようにされる。これは細胞ファクトリを始めとするある種の培養容器においては、培地交換工程の数を最小にするので好ましい。ACCUTASEへの暴露の後、冷たいhESC培地(ヘレグリンもアクチビンも含まない)の3倍容積が加えられて、細胞が分離されて、集められた。分離された細胞は冷たいhESC培地(ヘレグリンもアクチビンも含まない)の3倍容積を使用して優しく集められ、ViCellの自動細胞カウンタ(BD Biosciences)または血球計を使用して数えられ、5分間200 x gで遠心分離され、細胞ペレットは1-10 x10細胞/mLで新鮮な増殖培養中に同じ培養条件で再懸濁された。
【0321】
表8は、使用されたさまざまな培養器と培地容積を示す。しかし当業者は示された培養容器以外の他の培養容器も、本明細書に記載された詳細な説明に基づくヒト多能性幹細胞の成長、継代、および増殖に使用されることを理解するであろう。例えば、ローラーボトル中の懸濁分化の方法に関しては実施例25を参照。
【0322】
いくつかの研究では、継代されたhESCは、細胞接着なしで新しくて、コーティングの施していない6ウェルのトレーに加えられ、旋回されて集合体が形成された。典型的には、StemPro(登録商標) hESC SFM培地 (Life Technologies)に、10ng/mLのヘレグリン-1β、および10ng/mLのアクチビンA、またはXF-HA培地が追加され、hESCの浮遊培養のために使用された。細胞培養は37℃、8%のCOで、加湿されたインキュベータ内で行われた。
【0323】
回転ボトルフォーマットにおいて、多能性幹細胞の集合をテストするために、接着性のhESC培養物からのhESC集合体、または冷凍細胞から解凍され、洗浄され培地中に懸濁されたものからの10hESC/mLの単独細胞懸濁液が調製され、異なる容器の中に置かれた。それぞれの容器は管状の形状をしており、横にして置かれ、回転できる形状を有している。10mLの細胞懸濁液を含む50mLのチューブと、30mLまたは1
20mLの細胞懸濁液を含む150mLのボトルを、約37℃のハイブリダイゼーションオーブンに置き、約5rpmで回転した。回転はビルトインの速度可変の機械的なボトル回転機を使用して行われた。初期の研究では、オーブンにはCOが供給されなかった。細胞集合の制御のために、同時に研究が6ウェルのトレーを使用して行われた。集合体の直径および形態に基づいて、多能性幹細胞集合体が回転しているボトルフォーマットと6ウェルのトレーフォーマット内で形成された。また、多能性幹細胞集合体が、前の実験でプラスチック製のジャーを使用して形成された。これらの研究は、速度、容器形状および流体動態に関して、6ウェルのトレー中の回転培養と完全に異なった容器フォーマットでも集合が有効に進むことを示す。さらに、この回転ボトルフォーマットは本明細書に記載された方法を実質的に最適化することなくスケールアップでき、重要なボトルネックを回避する。
【0324】
実施例25
ローラーボトルの中で多能幹細胞の集合と分化
ヒト胚性幹細胞(実施例24)は150mLの瓶内で集合体とされ、上記の出願人のステージ1-4分化実験計画を使用して、膵性前駆細胞(または、PEC)へ分化された。150mLのローラーボトルに、StemPro hESC SFM培地またはXF HA培地中で、1x10細胞/mLまたは2x10の細胞/mL細胞の濃度のどちらかでシードされた。表9を参照。ステージ1-4の培地条件は、先に記載した通り(シュルツ他(2012)を参照)であり、表9にまとめられる。約5rpm、8rpm、10rpm、および12rpmの回転速度が、hESC集合とステージ1-4の分化を通して試験され、COのインキュベータへの供給はされなかった。COの供給はローラーボトルに使用されたキャップに依存し、例えば、プラグキャップか、通気しているキャップか、または通気していないキャップかによる。図25は、ローラーボトル集合と分化の間に形成された細胞集合体の平均直径サイズを示す。それぞれのボックスプロットは、最小、最大、2番目の四分線と3番目の四分線を示している。初期の未分化(d0)および分化細胞集合体のメジアン(d2、d5、d8、およびd12)も示される。細胞集合体直径は両方の条件について測定された。初めに形成された細胞集合体の平均直径は、培地が2x10細胞/mLでシードされたものに比較して、約1x10細胞/mLでシードされたものの方が大きかった。しかしながら、分化の後期(例えば、ステージ3-4)には、直径サイズは同等となり、区別がつかなかった。また図25は、ローラーボトルの中に形成された分化細胞集合体の間には根本的な相違が全くなくて、前の懸濁液分化実験の際に6ウェルのトレーの中に形成されたものとも相違がなかった。また、ローラーボトルにおける分化は典型的な増殖を示し、6ウェルのトレー、バイオリアクタ、および同様のものの中で培養された以前に観察されたものと比較して集合体直径の収縮が見られた(図25)。集合体の直径は初期の細胞密度に依存せず、また初期hESCまたは未分化細胞成育培地組成物にも依存しなかった。簡潔に言えば、細胞集合体は、ステージ1および2の間(図25の、d0およびd2)増殖し、ステージ3(図25、d5)の間に収縮して、再びステージ4(図25、d8およびd15)の間に増殖した。分化の間中、細胞集合体は、明白な塊状集積(例えば、300ミクロン以上の大きい集合体)またはせん断破壊を示さなかった。
【0325】
【表9】
【0326】
XF HA: DMEM/F12にGlutaMAXを加えたもの、さらに10%v/vのXenoフリーのKnockOut Serum Replacement、1%v/vの非必須アミノ酸、0.1mMの2-メルカプトエタノール、1%v/vのペニシリン/ストレプトマイシン(すべてLife Technologiesから)、10ng/mLのヘレグリン-1β((Peprotech)および10ng/mLアクチビンA(R&Dシステム)を加えた。
SP: StemPro hESC SFM(Life Technologies)。r0.2FBS: RPMI1640(Mediatech);0.2%のFBS(HyClone)、1x GlutaMAX-1(Life Technologies)、1%v/vのペニシリン/ストレプトマイシン。
ITS: 1:5000または1:1000に希釈されたインシュリン-トランスフェリン-セレニウム(Life Technologies)。
A100: 100 ng/mL組替えヒトアクチビン A(R&Dシステム)。
W50: 50ng/mL組み替えマウスWnt3A(R&Dシステム)。
K25: 25ng/mL組替えヒト角質細胞増殖因子(KGF)(R&Dシステム)。IV: 2.5マイクロM TGF-β(RI キナーゼ阻害剤IV(EMD Bioscience)。
db: DMEM HI グロコース(HyClone)、0.5x B-27(Life Technologies)、1x GlutaMAX-1、および1%v/vのペニシリン/ストレプトマイシンを補った。
CTT3: 0.25μMのKAAD-シクロパミン(トロント化学研究所)と3nM TTNPB(シグマ-オルドリッチ)。
N50: 50ng/mLの組換え型のヒトノギン(R&Dシステム)。
K50: 50ng/mLの組替えヒト角質細胞増殖因子(R&Dシステム);
E50: 50ng/mLの組替えヒトEGF(R&Dシステム);
5、8、10、12rpmの回転速度がhESC集合またはステージ1-4の分化、または両方で実行された。
【0327】
ステージ1-4中で遺伝子発現を調べるために、1x10細胞/mLと2x10細胞/mLの出発濃度で実行された分化を分析するためにQ-PCRが使用された(図26)。ある特定の遺伝子だけが図26に示されているが、出願人は、以前に非常に詳細にステージ1-4のそれぞれにおいて多くの遺伝子の発現および非発現について説明した。米国特許8,211,699、 ERBB3リガンドを使用した、懸濁液中での多能性幹細胞の培養方法、2012年7月3日発行;米国特許7,958,585、プリミティブストリークおよび内胚葉系中胚葉細胞、2011年7月26日発行;米国特許7,510,876、胚体内胚葉 (CYTHERA.045A)、2009年3月31日発行;米国特許7,541,185、胚体内胚葉の分化のためのファクターの同定方法、2009年6月2日発行;米国特許7,625,753、胚体内胚葉の増殖、2009年12月1日発行;米国特許7,695,963、胚体内胚葉産生の増大方法、2010年4月13日発行;米国特許7,704,738、胚体内胚葉、2010年4月27日発行;米国特許7,993,916、胚体内胚葉産生の増大方法、2011年8月9日発行;米国特許8,008,075、幹細胞集合体懸濁組成物およびその分化方法、2011年8月30日発行;米国特許8,178,878、自己再生のための組成物および方法、およびヒト胚性幹細胞の分化、2012年5月29日発行;米国特許8,216,836、胚体内胚葉の分化のためのファクターの同定方法、2012年7月10日発行;米国特許7,534,608、膵性ホルモンの製造方法、2009年5月19日発行;米国特許7,695,965、膵性ホルモンの製造方法、2010年4月13日発行;米国特許7,993,920、膵性ホルモンの製造方法、2011年8月9日発行;米国特許8,129,182、内分泌性前駆体細胞、膵性ホルモン発現細胞、およびその製造方法、2012年3月6日発行;米国特許出願11/875,057、ヒト血清を含むフィーダーフリーな多能性幹細胞のための組成物および方法、2007年10月19日出願;米国特許出願12/618,659、ヒト多能性幹細胞から誘導された膵性リネッジ細胞のカプセル化、2009年11月13日出願;本明細書中に参考としてそれらの全体が援用される。分化方法に高い信頼度を得た後にだけ、出願人はマーカーのより小さいセットをシグネチャーマーカーとして選択し、図26に示されているように、様々なステージ1-4細胞集合体を同定した。
【0328】
図26は、回転するボトルフォーマット内で分化された細胞集合体が、分化のそれぞれのステージで期待される典型的なシグネチャーマーカーを発現することを示す。これは同時に6ウエルトレーで実行された分化の研究と一致している(対照、図26)。同様に、シグネチャーマーカーの発現の欠如が、予想される場合で観測された。例えば、OCT4やNanogなどの多能性幹細胞マーカーはすべての培養条件でd0に存在していた(図26A)。同様に、内胚葉系中胚葉マーカーのMIXL1とEomesの一時的な増殖機構が、ローラーボトル分化と6-ウエルトレーの分化の両方に存在する(図26、それぞれ黒色の棒、黒色の斜線、灰色の棒の比較)。ステージ2の細胞は胚体内胚葉を産生した。これはSOX17およびHNF3β[FOXA2]を発現する。これは6-ウエルトレーで分化されたステージ2タイプの細胞に観察されるものと同様である。ステージ4タイプの細胞はPDX1とNKX6.1を発現する。これは6-ウエルトレーで分化された培養物に観察されるものと同様である(図26、それぞれ黒色の棒、黒色の斜線、灰色の棒の比較)。最後に、オフターゲットリネッジのためのマーカーの発現は、150mLの回転されたボトルと6ウェルのトレーの培養物において実質的に差は無かった。分化のコントロールは回転フォーマット中で厳しく保持される。これらのマーカーはZIC1(外胚葉リネッジ)、初期発現PAX6(神経リネッジ)、SOX7(胚体外内胚葉)、CDX2(栄養外胚葉)、および初期発現AFP(卵黄袋)を含む。
【0329】
【表10】
【0330】
pPSCが小規模でローラーボトルフォーマットで集合体となることができることがいったん示されると(実施例25)、より大きい培養物がローラーボトル中で集合の実用的なスケールアップ可能性とPECへのhESCの分化を示すために調製された。CyT49 hESCを使用した実験が、表10に示されるように行われた。ヒトESCはStemPro hESC SFM培地で集合体とされ、他の多能性幹細胞培地、例えば、ヒト血清アルブミン(HAS)の有るものと無いものであるXF HA培地、が他の実験に使用された(データは示されない)。0日目(d0)のhESC集合体が有効にそれぞれの条件で形成された。表10にまとめられた実験培養は、8rpmで回転された。他の実験では、5、10、および12rpmにおいて集合物が利用され、hESC集合体は6ウェルのトレーと8rpmでのローラーボトル中で観測されたものと同様の形態学および直径で形成された(データは示されない)。hESC集合体が低い回転速度、たとえば5、6、および7rpmで実行された場合、またはStemPro(登録商標) hESC SFM(Life Technologies)培地で行われた場合には、細胞集合体の凝集の増大が観測された(すなわち、300μm以上の構造;データは示されない)。いくつかの実験はベント付きのボトルキャップ(V)を使用して行われ、他のものはベント付きのボトルキャップを使用しなかった(NV)。ベントは分化プロセスに対して実質的な相違をもたらさなかったし、qPCR遺伝子発現解析(図26)で決定するように、hESCの適切な特定に影響するように見えなかった。要約すれば、ローラーボトルにおけるhESC集合は、さまざまな回転速度(例えば、約5から12rpmsの間)、種々多能性の幹細胞培養培地、ベントのあるものと無いものであるキャップで、およびCOの導入される場合とされない場合において達成できた。これらの異なった要素は実質的に集合体の形態学的特徴、形状、および平均直径サイズを変えるようには見えない。
【0331】
実施例27
ローラーボトル中でのステム細胞集合体の分化のスケールアップ
ヒトESC集合体が、実施例25および26に記載されているように、1200mLまたは490cmのローラーボトルを使用して実行された。それぞれのローラーボトル集合におけるhESC集合体は一貫していて同様に(例えば、形態学特徴および直径サイズ)見えたので、集合体は集められ、ペレットにされ、集合体のペレットが表11に示された分化のために、1200mLまたは490cmのローラーボトルに分配された。hESCの集合物ペレットの全容積は約4400μLであり、表11に示された分化のために、4x1200mLのボトル(490cm)に再分配した。分化は、表9に記載されているように実行された。分化培養物は同様の形態学特徴を示したが、低い回転速度で回転したボトル内に少量の集合体が見られた(データは示されない)。しかしながら、12日(ステージ4)までの集合体ペレット体積は、全ての条件で同様であった。回収された全ての細胞ペレットはそれぞれのボトルにおいて出発ペレット体積(約1000μリットル)に比較して約1:1の収率であった。表11を参照されたい。
【0332】
pPSCの集合はhESCに制限されない。ヒト iPSCは、hESCについて先に説明したものと実質的に同様の方法で、表11に示された条件の下でテストされた。ヒト
iPSC-482c7(Cellular Dynamics International Inc.Madison,Wisconsin,USA)は490cmローラーボトル内で集合された。hiPSCの出発体積の合計は、1x10細胞/mLで約25mLにすぎなかった。集合プラットホームはさまざまな細胞体積で行うことができるくらい頑丈であり、出発体積とより大きい490cmローラーボトルの間のより大きな相違があるときも大丈夫である。ヒトiPSC細胞集合体は形態学的に上で説明した6ウェルのトレーまたはローラーボトルでのhESC出発体と同様に見えた。すなわち、明白な集合のない約100から約300ミクロンまでのiPSC集合体サイズ範囲であった。また、先に述べたように、本明細書にその全体が参照される2010年4月22日に出願された、分化され再プログラムされた細胞からの誘導された細胞組成物と題する米国特許出願No.12/765,714は、Rho-キナーゼ阻害剤類の改良されたpPSC集合体の分化を開示する。しかしながら、‘714の出願はhESC集合体を開示していないので(分化だけを開示)、その出願は、たとえば出発pPSC培地中の10 μM Y-27632 がpPSC集合をも改良することは開示していない。hESC集合がローラーボトル内で実行できるので、ローラーボトル内での細胞集合体分化も実行でき、‘714の出願または関連する出願において詳細に説明されているように、または本明細書の記載および表9に記載されているように実行できる。
【0333】
さらに、hESC集合体の一体性を示すために、hESC集合体は、最初にローラーボトル内で形成されて、次にそれに続いて6ウェルのトレーの中で分化された。これは、最初にさまざまな条件、例えば、異なる多能性幹細胞培地、および異なる回転速度の下でローラーボトルで形成されたhESC集合体を使用して実行された。6ウェルのトレーにおけるローラーボトルhESC集合体の分化は集合体形状と直径で同等であり、hESC集合体が最初に6ウェルのトレー中で形成されたときに観察された細胞形態であった(対照;データは示されない)。したがって、ローラーボトル内におけるhESC集合体の一体性は、フォーマット変化では実質的に変化しない。
【0334】
ローラーボトルを使用したスケールアップが、細胞の集合体への参加を損ねないことを示すために、集合体生成に続く非取り込み細胞の生存細胞数が、d0(すなわち、集合の開始後18から24時間)で数えられ、入力細胞の約75-80%が未分化hESC集合体に組み入れられたことが確認された。これは6ウェルのトレーでの観察結果(約75%)と匹敵するか、または良好である。シュルツ他を参照されたい;2012、上掲、図S4、S6。XF HA培地を使用した研究が、約50%から約77%(データは示されない)までのさまざまな取り込み率を提供しているので、使用される多能性幹細胞の培地によって取り込みの割合は異なるかもしれない。
【0335】
表11および9の分化プロセスのQ-PCR分析は、適切なリネッジ特定がPECの形成までの各段階で現れたことを示した。図27A-Dを参照されたい。表11に記載されている4つの培地は、多能性のマーカー(例えば、OCT4、Nanog)の下向き調節と、内胚葉系中胚葉マーカー(例えば、MixL1、Eomes)の上向き調節を示した。図27Aを参照されたい。胚体内胚葉(例えば、SOX17とHNF3β)のマーカーは2日目から予想通りに発現され、次いで他の内胚葉と膵性マーカー(例えば、HNF1β、PDX1、NKX6-1、PTF1A、NGN3、およびNKX2-2)が発現された。図27Bを参照されたい。重要なことには、6ウエルトレー対照分化(例えば、PAX6、SOX7、CDX2、AFP、およびZIC1)と比べて、オフターゲットリネッジ(非内胚葉の、または、非膵性のリネッジ)を示すマーカーは上がらなかった。したがって、膵性の内訳の厳格な管理がこれらのスケールアップされた分化実験で維持された。図27Cを参照されたい。例えば、典型的にいくつかの分化で散発的に起こる小規模のオフターゲット集合体の存在を示すAFP発現は6ウェルのトレー対照では低かった。図27Dとシュルツ他を参照されたい。2012、上掲。AFP発現はローラーボトル培地でさえ低かった。これは潜在的にd12での集合体の小さい個体数の低下を示す。図27Dを参照されたい。
【0336】
多段階(ステージ1-4)実験計画でhESCから分化された膵性細胞培養物の細胞構成を評価するために、共染色との組み合わせに基づくフローサイトメトリー分析が、以前にケリー他に実質的に記載されていたように使用された。2011、ネイチャーバイオテクノロジー29:750--56。D’Amour他、2005、上掲、クルーン他、2008、上掲、シュルツ他、2012、上掲。本明細書に参考としてそれらの全体が援用される。シュルツ他、2012、上掲は、少なくとも37の分化について大規模なフローサイトメトリー分析とPEC細胞組成を示した。シュルツ他はPECの細胞構成を以下から成るものとして記述した:約26-36%のCHGA/NKX6-1/PDX1+/-、約46-56%のCHGA/NKX6-1+/-/PDX1+/-(ポリ-ホルモン性内分泌細胞)、約10-15%のCHGA/NKX6-1/PDX1(PDX1-内胚葉細胞のみ)、および3%以下のCHGA/NKX6-1/PDX1(残りのまたは、トリプルネガティブ細胞)。シュルツ他を参照されたい。2012、上掲、図2C
【0337】
同様に、図11に示されるように、フローサイトメトリー分析がローラーボトルで分化微分されたステージ4(12日目)PEC培養物について実行された。PEC組成物は上記のシュルツの他で記載されていたものと一致し、正確な割合は表12に示された条件で4つのローラーボトルからの平均である。これらのスケールアップされたローラーボトル分化のPECは、約40%のCHGA/NKX6-1/PDX1+/-、約43%のCHGA/NKX6-1+/-/PDX1+/-または(ポリ-ホルモン性内分泌細胞)、約10%のCHGA/NKX6-1/PDX1(またはPDX1-内胚葉細胞のみ)、および約2%のCHGA/NKX6-1/PDX1(または残りのまたは、トリプルネガティブ細胞)。PEC組成物のフローサイトメトリー分析は、5rpmと8rpmの異なった回転速度も、ベント付きのまたはベント無しのキャップのタイプも、PEC細胞組成に見かけの影響を与えなかったことを示す。上記の記載およびQ-PCE分析に基づいて、これらの条件はPECへの途中のステージ1-4の細胞のリネッジ内訳に効果を与えない(図26)。したがって、上記の研究と分析はスケールアップ可能な回転ボトルフォーマットでのhESCの集合とPECへの分化の有効性を確認した。表12中、Vはベント有り、NVはベント無しを表す。
【0338】
【表11】
【0339】
上記の方法と組成物は生体外で培養された細胞に関する。しかしながら、上記の生体外での分化細胞組成物は生体内の用途に使用できる。本明細書に記載された組成物の使用は、少なくとも以下の出願人の米国特許に詳細に記載されている:米国特許7,534,608;7,695,965;および7,993,920;発明の名称は膵性ホルモンの製造方法、それぞれ、2009年5月19日、2010年4月13日、および2011年8月9日に発行された;および米国特許8,278,106;発明の名称は多能性幹細胞から誘導された膵性細胞のカプセル化。これらの開示は本明細書中に参考としてそれらの全体が援用される。本明細書に記載される組成物の使用と機能はKroon他、2008、上掲、およびシュルツ他、2012、上掲を含む前記非特許刊行物で出願人により報告された。それらの開示も本明細書中に参考としてそれらの全体が援用される。
【0340】
本明細書中で開示された発明に対する種々の置換および変更が、本発明の範囲および精神から逸脱することなく行われうることは、当業者に容易に理解されるであろう。上記のように、ローラーボトルは異なったサイズおよび形状であることができ、潜在的にはそれらの容器は円柱状ではなく、その方法がローラーボトルのものと同じ動きをシミュレートする容器が使用できる。さらに、異なったタイプのXF HAまたはStemPro hESC SFM培地などのpPSC培地の使用と、他のタイプの培地、たとえばTeSR(登録商標)培地、Essential(登録商標)8、およびpPSCなどのの成長と培養に産業で一般的に使われた任意のpPSC培地も使用できる。
【0341】
例えば、集合、および/または分化が、例えば、COおよび他の気体のようなガスを供給することを必要とするかどうかは、使用される(例えば、ベントするか、またはベントしない)ローラーボトルキャップのタイプに一部依存する。COは標準の組織培養インキュベータ内の培養条件に容易に組み入れられる。しかしながら、外部COを供給しない(ガスを供給しない)集合、および/または分化が、スケールアップした製造の際に
ある種の利益を与えることができる:大規模製造あたりの、より多くの容積/ボトルと、したがってより少ないボトル数。また、多くのボトルの配列は例えば、インキュベータと比べて、ウォークイン式のホットルーム内で行うことができる。たとえばスケールアップに際してロボット工学とオートメーションの利用を大いに簡素化する。
【0342】
ある特定の培養器が本明細書に記載された(例えば、6ウエルトレー、バイオリアクタ、三角フラスコ、ローラーボトル、および同様のもの)が、他の同様の培養器、例えば、同様のサイズ、形状、寸法、および機能を有するものが企図される。コーニングのプラスチックやガラスローラーボトルなどの商業ローラーボトルは以下のサイズの範囲を有する:490cm(100から150mLの保持)。850cm(170から255mLの保持)。1700cm(340から510mLの保持)。1750cm(350から525mLの保持)。670-680cm(135から200mLの保持)。840cm(170から255mLの保持)。1170cm(235から350mLの保持)。1330cm(265から400mLの保持)。1585cm(315から475mL)。1585cm(315から475mLの保持)。
【0343】
三角フラスコは、錐状体に形成されていて、先細りしているボデイと狭い頚部を持っている。ビーカと区別される形状は、内容物が外部の機械的装置または手によって渦を巻かれるかまたは攪拌されるのを許容する。狭い頚部が内容物がこぼれることを防止し、ビーカと比べて蒸発損失を抑え、コニカルフラスコの平底がフラスコを安定させる。本明細書に記載された発明は、同様の形状を持っている他の容器の使用を企図する。
【0344】
本明細書に記載された発明は、バイオリアクタ、および生物学的にアクティブな環境をサポートする全ての製造装置、設計された装置またはシステムの使用も企図する。そのようなバイオリアクタは一般的に筒状であり、数リットルから数立方メートルまでのサイズがある。多くの市販のバイオリアクタがある、そして、本明細書に提供された詳細な説明を考慮して、当業者は、それらのプロセスのために正しい容器を選択するように誘導される。
【0345】
したがって、本発明の説明と製造に関する推奨に基づき、当業者は容易に培養のスケールアップに必要とする適切なサイズローラーボトルを選ぶことができる。
【0346】
この明細書で参照されたすべての刊行物および特許は、本明細書に参考としてそれらの全体が援用される。
【0347】
以下の特許請求の範囲および明細書で使用される「本質的に~からなる」との用語は、この句に関連して列記された要素を含むことを意味し、列記された要素について開示された活性または作用を妨害し、またはこれに寄与しない他の要素に制限される。すなわち、「本質的に~からなる」との用語は、列記された要素が必要とされ、義務的であることを示すが、列記された要素の活性および作用に影響を与えるか否かにより、他の要素も任意に存在することができ、または存在することができないことを意味する。
図1
図2
図3
図4
図5
図6A
図6B
図6C
図6D
図6E
図6F
図7
図8A
図8B
図8C
図8D
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22A
図22B
図22C
図22D
図22E
図22F
図22G
図22H
図22I
図22J
図22K
図22L
図22M
図22N
図22O
図22P
図23
図24A
図24B
図24C
図24D
図25
図26A
図26B
図26C
図26D
図27A
図27B
図27C
図27D