(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-10-31
(45)【発行日】2024-11-11
(54)【発明の名称】発光素子
(51)【国際特許分類】
H10K 50/12 20230101AFI20241101BHJP
H10K 50/11 20230101ALI20241101BHJP
H10K 50/13 20230101ALI20241101BHJP
H10K 85/60 20230101ALI20241101BHJP
H10K 101/10 20230101ALN20241101BHJP
H10K 101/25 20230101ALN20241101BHJP
【FI】
H10K50/12
H10K50/11
H10K50/13
H10K85/60
H10K101:10
H10K101:25
(21)【出願番号】P 2023068949
(22)【出願日】2023-04-20
(62)【分割の表示】P 2021133439の分割
【原出願日】2014-08-26
【審査請求日】2023-05-17
(31)【優先権主張番号】P 2013174560
(32)【優先日】2013-08-26
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2013249449
(32)【優先日】2013-12-02
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2014112119
(32)【優先日】2014-05-30
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000153878
【氏名又は名称】株式会社半導体エネルギー研究所
(72)【発明者】
【氏名】石曽根 崇浩
(72)【発明者】
【氏名】瀬尾 哲史
(72)【発明者】
【氏名】野中 裕介
(72)【発明者】
【氏名】大澤 信晴
【審査官】岩井 好子
(56)【参考文献】
【文献】特開2012-195517(JP,A)
【文献】特開2019-054261(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H10K 50/12
H10K 50/11
H10K 50/13
H10K 85/60
H10K 101/10
H10K 101/25
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
第1の電極と第2の電極の間に、第1の発光層と第2の発光層と、を有し、
前記第1の発光層は、前記第1の電極と前記第2の発光層との間に設けられ、
前記第2の発光層は、前記第1の発光層と前記第2の電極との間に設けられ、
前記第1の発光層は、蛍光発光物質と、
アントラセン骨格を有するホスト材料と、を有し、
前記ホスト材料の一重項励起準位は、前記蛍光発光物質の一重項励起準位よりも高く、
前記ホスト材料の三重項励起準位は、前記蛍光発光物質の三重項励起準位よりも低く、
前記第2の発光層は、物質と、第1の有機化合物と、第2の有機化合物と、を有し、
前記第1の有機化合物と、前記第2の有機化合物とは、励起錯体を形成することができる組み合わせであり、
前記物質は、三重項励起エネルギーを発光に変換することができ、
前記励起錯体の発光スペクトルは、前記物質の吸収スペクトルの最も低エネルギー側の吸収帯と重なりを有し、
前記第1の発光層からの発光スペクトルは、前記第2の発光層からの発光スペクトルよりも短波長領域に存在する発光素子。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、物、方法、または、製造方法に関する。または、本発明は、プロセス、マシ
ン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関する。特
に、本発明の一態様は、半導体装置、表示装置、発光装置、蓄電装置、それらの駆動方法
、または、それらの製造方法に関する。特に、本発明の一態様は、有機化合物を発光物質
として用いた発光素子、ディスプレイモジュール、照明モジュール、表示装置、発光装置
、電子機器及び照明装置に関する。
【背景技術】
【0002】
近年、有機化合物を用いたエレクトロルミネッセンス(EL:Electrolumi
nescence)を利用する発光素子(有機EL素子)の研究開発が盛んに行われてい
る。これら発光素子の基本的な構成は、一対の電極間に発光物質を含む有機化合物層(E
L層)を挟んだものである。この素子に電圧を印加することにより、発光物質からの発光
を得ることができる。
【0003】
このような発光素子は自発光型であるため、視認性が高く、バックライトが不要である
等の利点があり、フラットパネルディスプレイ素子として好適であると考えられている。
また、このような発光素子を用いたディスプレイは、薄型軽量に作製できることも大きな
利点である。さらに応答速度が速いことも特徴の一つである。
【0004】
これらの発光素子は面状に発光を得ることができるため、大面積の素子を容易に形成す
ることができる。このことは、白熱電球やLEDに代表される点光源、あるいは蛍光灯に
代表される線光源では得難い特色であるため、照明等光源としての利用価値も高い。
【0005】
このような有機EL素子の場合、陰極から電子が、陽極から正孔(ホール)がそれぞれ
EL層に注入され、電流が流れる。そして、注入された電子及び正孔が再結合することに
よって発光性の有機化合物が励起状態となり、発光を得ることができる。
【0006】
有機化合物の励起状態としては、一重項励起状態(S*)と三重項励起状態(T*)が
あり、一重項励起状態からの発光が蛍光、三重項励起状態からの発光がりん光と呼ばれて
いる。そして、当該発光素子におけるその統計的な生成比率は、S*:T*=1:3であ
ると考えられている。
【0007】
一重項励起状態から発光する化合物(以下、蛍光発光物質と称す)では室温において、
通常、三重項励起状態からの発光(りん光)は観測されず、一重項励起状態からの発光(
蛍光)のみが観測される。したがって、蛍光発光物質を用いた発光素子における内部量子
効率(注入したキャリアに対して発生するフォトンの割合)の理論的限界は、S*:T*
=1:3であることを根拠に25%とされている。
【0008】
一方、三重項励起状態から発光する化合物(以下、りん光性化合物と称す)を用いれば
、三重項励起状態からの発光(りん光)が観測される。また、りん光性化合物は項間交差
が起こりやすいため、内部量子効率は100%まで理論上は可能となる。つまり、りん光
発光物質を用いた発光素子では、蛍光発光物質を用いた発光素子より高い発光効率が実現
容易となる。このような理由から、高効率な発光素子を実現するために、りん光性発光物
質を用いた発光素子の開発が近年盛んに行われている。
【0009】
特許文献1では、複数の発光ドーパントを含む発光領域を有し、当該発光ドーパントが
りん光を発する白色発光素子が開示されている。また、特許文献2では、蛍光発光層とり
ん光発光層との間に中間層(電荷発生層)を設けた素子(いわゆるタンデム素子)が開示
されている。
【先行技術文献】
【特許文献】
【0010】
【文献】特表2004-522276号公報
【文献】特開2006-024791号公報
【発明の概要】
【発明が解決しようとする課題】
【0011】
白色発光素子に代表される多色発光素子として、蛍光発光層とりん光発光層との間に中
間層(電荷発生層)を設けた素子が開発され一部実用化もなされている(例えば特許文献
2参照)。この構造を有する発光素子では、短波長側の発光を蛍光発光層から得、長波長
側の発光をりん光発光層から得ている。
【0012】
この構成は、寿命に不安のある短波長側の発光を蛍光とし、長波長側の発光をりん光と
することによって、全ての発光をりん光から得る素子よりは効率は落ちるものの、安定し
た特性の多色発光素子を得られることを目的とした構成である。
【0013】
性能より信頼性を優先した当該構造を有する多色発光素子は、未だ寿命が問題となるこ
との多い有機EL素子では実用化に有利ではあるものの、一つの発光素子を得るために成
膜する膜の数が多くなるという、実用化に不利な面もまた同時に有している。
【0014】
当該構成を有する多色発光素子においてりん光発光層と蛍光発光層との間に中間層を設
けている理由はいくつかあるが、その一つは蛍光発光層によるりん光の消光を抑制するた
めである。
【0015】
蛍光発光層には、通常、ホスト材料としてアントラセンなどに代表される縮合芳香環(
特に縮合芳香族炭化水素環)骨格を有する物質が用いられているが、これら縮合芳香環骨
格を有する物質は、比較的三重項準位が低いものが多い。このため、蛍光発光層とりん光
発光層を接して設けた場合、りん光発光層で生じた三重項励起エネルギーが蛍光発光層の
ホスト材料の三重項準位に移動してしまい、失活してしまう。三重項励起子は寿命が長い
ために励起子の拡散距離が長く、蛍光発光層とりん光発光層の界面で発生した励起エネル
ギーのみならず、蛍光発光層から離れたりん光発光層内部で生成した励起エネルギーも蛍
光発光層のホスト材料により失活してしまうために、発光効率の大幅な低下が起きてしま
う。
【0016】
一方、蛍光発光層に三重項励起エネルギーの大きなホスト材料を用いれば、そのような
問題は解決されるが、その場合当該ホスト材料の一重項励起エネルギーは非常に大きいも
のとなるため、ホスト材料から蛍光ドーパントへのエネルギー移動が不十分となり、蛍光
発光層において十分な発光効率が得られない。結果としてホスト材料の無輻射失活過程が
増大することにもなり、素子の特性(特に寿命)が低下することもある。また、ホスト材
料の一重項励起エネルギーが大きいということは、該ホスト材料のHOMO-LUMOギ
ャップが大きいことと同義であるため、駆動電圧の過剰な上昇にもつながる。
【0017】
そこで、本発明の一態様では、蛍光発光とりん光発光を用いた発光素子において、実用
化に有利な発光素子を提供することを課題とする。また、蛍光発光とりん光発光を用いた
発光素子において、成膜層数が比較的少ないことで、製造工程が少なく、実用化に有利な
発光素子を提供することを課題とする。
【0018】
または、本発明の他の一態様では、蛍光発光とりん光発光を用いた発光素子において、
良好な発光効率を有する発光素子を提供することを課題とする。
【0019】
または、本発明の他の一態様では、蛍光発光とりん光発光を用いた発光素子において、
成膜層数が比較的少なく、実用化に有利であり、且つ、良好な発光効率を有する発光素子
を提供することを課題とする。または、本発明の他の一態様では、新規な発光素子を提供
することを課題とする。
【0020】
または、本発明の一態様は、上述の発光素子を用いることにより、安価に製造可能なデ
ィスプレイモジュール、照明モジュール、発光装置、表示装置、電子機器、及び照明装置
を各々提供することを目的とする。
【0021】
または、本発明の一態様は、上述の発光素子を用いることにより、消費電力の低減され
たディスプレイモジュール、照明モジュール、発光装置、表示装置、電子機器、及び照明
装置を各々提供することを目的とする。
【0022】
本発明は上述の課題のうちいずれか一を解決すればよいものとする。
【課題を解決するための手段】
【0023】
ホスト材料と蛍光発光物質とを含む第1の発光層113aと、励起錯体を形成する2種
類の有機化合物と三重項励起エネルギーを発光に変換できる物質とを含む第2の発光層1
13bとの積層構造を備えた発光素子が上記課題を実現することができる。なお、第1の
発光層113aからの発光は第2の発光層113bからの発光よりも短波長側に発光スペ
クトルのピークが存在する発光素子がより有用である。
【0024】
本発明の一態様は、一対の電極と、前記一対の電極間に挟まれたEL層を有し、前記E
L層は第1の発光層113aと第2の発光層113bとを有し、前記第1の発光層113
aからの発光スペクトルは、前記第2の発光層113bからの発光スペクトルよりも短波
長領域に存在し、前記第1の発光層113aは少なくとも蛍光発光物質と、ホスト材料と
を有し、前記第2の発光層113bは少なくとも三重項励起エネルギーを発光に変換でき
る物質と、第1の有機化合物と、第2の有機化合物とを有し、前記第1の有機化合物と、
前記第2の有機化合物が励起錯体を形成することを特徴とする発光素子である。
【0025】
また、本発明の一態様は、一対の電極と、前記一対の電極間に挟まれたEL層を有し、
前記EL層は第1の発光層113aと第2の発光層113bとが接して積層され、前記第
1の発光層113aからの発光スペクトルは、前記第2の発光層113bからの発光スペ
クトルよりも短波長領域に存在し、前記第1の発光層113aは少なくとも蛍光発光物質
と、ホスト材料とを有し、前記第2の発光層113bは少なくとも三重項励起エネルギー
を発光に変換できる物質と、第1の有機化合物と、第2の有機化合物とを有し、前記第1
の有機化合物と、前記第2の有機化合物が励起錯体を形成することを特徴とする発光素子
である。
【0026】
または、本発明の他の一態様は、上記構成において、前記励起錯体から前記三重項励起
エネルギーを発光に変換できる物質へのエネルギーの授受があることを特徴とする発光素
子である。
【0027】
または、本発明の他の一態様は、上記構成において、前記ホスト材料の一重項励起準位
が前記蛍光発光物質の一重項励起準位よりも大きく、前記ホスト材料の三重項励起準位が
前記蛍光発光物質の三重項励起準位よりも小さいことを特徴とする発光素子である。
【0028】
または、本発明の他の一態様は、上記構成において、前記ホスト材料の三重項励起準位
が、前記第1の有機化合物および前記第2の有機化合物の三重項励起準位よりも小さいこ
とを特徴とする発光素子である。
【0029】
または、本発明の他の一態様は、上記構成において、前記ホスト材料が縮合芳香環骨格
を有する有機化合物である発光素子である。
【0030】
または、本発明の他の一態様は、上記構成において前記ホスト材料がアントラセン骨格
を有する有機化合物である発光素子である。
【0031】
または、本発明の他の一態様は、上記構成において、前記ホスト材料がアントラセン骨
格を有する有機化合物であり、前期蛍光発光物質がピレン骨格を有する有機化合物である
発光素子である。
【0032】
または、本発明の他の一態様は、上記構成において、前記第2の発光層113bが、前
記三重項励起エネルギーを発光に変換できる物質として、各々発光スペクトルの異なるn
種(nは2以上の整数)の物質を含むことを特徴とする発光素子である。
【0033】
または、本発明の他の一態様は、上記構成において、前記第2の発光層113bがn層
の層からなり、前記n層の層各々に異なる三重項励起エネルギーを発光に変換できる物質
を含むことを特徴とする発光素子である。
【0034】
または、本発明の他の一態様は、上記構成において、前記第2の発光層113bが、前
記三重項励起エネルギーを発光に変換できる物質として、各々発光スペクトルの異なる第
1のりん光発光物質と、第2のりん光発光物質とを含むことを特徴とする発光素子である
。
【0035】
または、本発明の他の一態様は、上記構成において、前記第1のりん光発光物質は赤色
領域の発光を呈し、前記第2のりん光発光物質は緑色領域の発光を呈し、前記蛍光発光物
質は青色領域の発光を呈する発光素子である。
【0036】
または、本発明の他の一態様は、上記構成において、前記第1のりん光発光物質は58
0nm乃至680nmに発光スペクトルのピークを有し、前記第2のりん光発光物質は5
00nm乃至560nmに発光スペクトルのピークを有し、前記蛍光発光物質は400n
m乃至480nmに発光スペクトルのピークを有する発光素子である。
【0037】
または、本発明の他の一態様は、上記構成において、前記第2の発光層113bが第1
のりん光発光層と第2のりん光発光層とからなり、前記第1のりん光発光層に第1のりん
光発光物質が含まれ、前記第2のりん光発光層に第2のりん光発光物質が含まれることを
特徴とする発光素子である。
【0038】
または、本発明の他の一態様は、上記構成において、前記第1の発光層113aと、前
記第1のりん光発光層及び第2のりん光発光層がこの順に積層されたことを特徴とする発
光素子である。
【0039】
または、本発明の他の一態様は、上記構成において、前記第1の発光層113aが陽極
側、前記第2のりん光発光層が陰極側に形成された発光素子である。
【0040】
または、本発明の他の一態様は、上記構成において、前記第1のりん光発光物質が前記
第1のりん光発光層内においてキャリアトラップ性を呈することを特徴とする発光素子で
ある。
【0041】
または、本発明の他の一態様は、上記構成において、前記キャリアトラップ性は、電子
トラップ性であることを特徴とする発光素子である。
【0042】
または、本発明の一態様は、上記いずれかに記載の発光素子を有するディスプレイモジ
ュールである。
【0043】
または、本発明の一態様は、上記いずれかに記載の発光素子を有する照明モジュールで
ある。
【0044】
または、本発明の一態様は、上記いずれかに記載の発光素子と、前記発光素子を制御す
る手段を備えた発光装置である。
【0045】
または、本発明の一態様は、上記いずれかに記載の発光素子を表示部に有し、前記発光
素子を制御する手段を備えた表示装置である。
【0046】
または、本発明の一態様は、上記いずれかに記載の発光素子を照明部に有し、前記発光
素子を制御する手段を備えた照明装置である。
【0047】
または、本発明の一態様は、上記いずれかに記載の発光素子を有する電子機器である。
【0048】
なお、本明細書中における発光装置とは、発光素子を用いた画像表示デバイスを含む。
また、発光素子にコネクター、例えば異方導電性フィルム又はTCP(Tape Car
rier Package)が取り付けられたモジュール、TCPの先にプリント配線板
が設けられたモジュール、又は発光素子にCOG(Chip On Glass)方式に
よりIC(集積回路)が直接実装されたモジュールも全て発光装置に含むものとする。さ
らに、照明器具等に用いられる発光装置も含むものとする。
【発明の効果】
【0049】
本発明の一態様では、蛍光発光とりん光発光を用いた発光素子において、成膜層数が比
較的少なく、実用化に有利な多色発光素子を提供することができる。
【0050】
また、本発明の他の一態様では、蛍光発光とりん光発光を用いた発光素子において、良
好な発光効率を有する多色発光素子を提供することができる。
【0051】
また、本発明の他の一態様では、蛍光発光とりん光発光を用いた発光素子において成膜
層数が比較的少なく、実用化に有利であり、且つ、良好な発光効率を有する多色発光素子
を提供することができる。
【0052】
また、本発明の他の一態様は、上述の発光素子を用いることにより、安価に製造可能な
ディスプレイモジュール、照明モジュール、発光装置、表示装置、電子機器、及び照明装
置を各々提供することができる。
【0053】
また、本発明の他の一態様は、上述の発光素子を用いることにより、消費電力の低減さ
れたディスプレイモジュール、照明モジュール、発光装置、表示装置、電子機器、及び照
明装置を各々提供することができる。
【図面の簡単な説明】
【0054】
【
図13】発光素子1の電流密度-輝度特性を表す図。
【
図14】発光素子1の輝度-電流効率特性を表す図。
【
図16】発光素子1の輝度-外部量子効率特性を表す図。
【
図18】発光素子1の規格化輝度時間変化を表す図。
【
図19】発光素子2及び発光素子3の発光スペクトル。
【
図21】本発明の一態様の発光素子における各物質及び励起錯体のエネルギー準位の相関図。
【発明を実施するための形態】
【0055】
以下、本発明の実施の態様について図面を用いて詳細に説明する。但し、本発明は以下
の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細
を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示
す実施の形態の記載内容に限定して解釈されるものではない。
【0056】
(実施の形態1)
本発明の一態様の発光素子の模式図を
図1(A)に示した。当該発光素子は、少なくと
も一対の電極(第1の電極101、第2の電極102)と発光層113を有するEL層1
03を有する。また、発光層113は第1の発光層113aと第2の発光層113bとを
有している。
【0057】
図1(A)においては、EL層103として、さらに正孔注入層111、正孔輸送層1
12、電子輸送層114及び電子注入層115が図示されているが、この積層構造は一例
であり、本発明の一態様の発光素子におけるEL層103の構成はこれに限られない。な
お、
図1(A)においては、第1の電極101が陽極として機能し、第2の電極102が
陰極として機能するものとして図示している。
【0058】
第1の発光層113aには蛍光発光物質とホスト材料が含まれている。また、第2の発
光層113bには、第1の有機化合物と第2の有機化合物とりん光発光物質が含まれてい
る。また、当該構成を有する発光層において第1の有機化合物と第2の有機化合物は、励
起錯体を形成する組み合わせとする。
【0059】
この構成を有することによって、第1の発光層113aからは蛍光発光物質由来の発光
が、第2の発光層113bからはりん光発光物質由来の発光が共に効率よく得られる。な
お、当該発光素子では第1の発光層113aと第2の発光層113bとの間に電荷発生層
が設けられていなくても(タンデム素子でなくても)蛍光発光とりん光発光が共に効率よ
く得ることができる。
【0060】
通常、蛍光発光層とりん光発光層とを同じEL層に導入して発光させると、りん光発光
層の三重項励起エネルギーが蛍光発光層の大部分を占めるホスト材料に移動してしまい、
大幅な発光効率の低下を引き起こす。これは、蛍光発光層には、通常、ホスト材料として
三重項準位が低いアントラセンなどに代表される縮合芳香環(特に縮合芳香族炭化水素環
)骨格を有する物質が用いられているため、りん光発光層で生じた三重項励起エネルギー
が蛍光発光層のホスト材料へと移動し、無放射失活してしまうためである。現状、蛍光発
光層において、縮合芳香環骨格を有する物質を用いずに所望の発光波長や良好な素子特性
・信頼性を得ることは困難であるため、蛍光発光層とりん光発光層とを同じEL層に導入
した構成とすると、良好な特性を有する発光素子を得ることが難しい。
【0061】
また、三重項励起状態は、緩和時間が長いために励起子の拡散距離が長く、蛍光発光層
から離れたりん光発光層内部で生成した励起子も、その多くが拡散により蛍光発光層に移
動してしまい、無放射失活することが事態を深刻にしている。
【0062】
ここで、本実施の形態では、第2の発光層113bを第1の有機化合物と第2の有機化
合物が励起錯体を形成し、この励起錯体から、りん光発光物質へ三重項励起エネルギーが
移動して発光が得られる構成とすることによって、上記問題を解決することができる。
【0063】
励起錯体は、2つの物質からなる励起状態である。そして、励起錯体はエネルギーを放
出することによって基底状態となると、当該励起錯体を形成していた2つの物質はまた元
の別々の物質として振舞う。すなわち、励起錯体には基底状態は存在しない。このことか
ら、励起錯体同士のエネルギー移動や、他の物質から励起錯体へのエネルギー移動は原理
的に起こりにくい。
【0064】
発光素子における励起錯体の生成は、第1の有機化合物及び第2の有機化合物のうち、
いずれか一方のカチオンと他方のアニオンが隣接することで、直接励起錯体を形成する過
程(エレクトロプレックス過程)が支配的であると考えられる。また、第1の有機化合物
及び第2の有機化合物の一方が励起状態になったとしても、速やかに他方の物質を取り込
んで励起錯体を形成することから、第2の発光層113bにおける励起子はそのほとんど
が励起錯体として存在する。
【0065】
また、励起錯体の一重項励起エネルギーは、第1の有機化合物及び第2の有機化合物のH
OMO準位、LUMO準位のうち、高い方のHOMO準位と低い方のLUMO準位とのエ
ネルギー差に相当するため、当該二つの有機化合物のどちらの一重項励起エネルギーより
も小さい値となり、励起錯体から第1の有機化合物及び第2の有機化合物への一重項励起
エネルギーの移動は起こらない。さらに、励起錯体の三重項励起エネルギーが、第1の有
機化合物又は第2の有機化合物よりも小さくなるように、好ましくは第1の有機化合物及
び第2の有機化合物よりも小さくなるように第1の有機化合物及び第2の有機化合物を選
択することによって励起錯体から第1の有機化合物及び第2の有機化合物へのエネルギー
移動はほとんど起こらなくすることができる。また、前述のように、励起錯体同士のエネ
ルギー移動もほとんどないため、第2の発光層113b内における励起子の拡散がほとん
ど起こらず、結果として、上述した問題を解決することができる。
【0066】
ここで、蛍光発光層である第1の発光層113aと第2の発光層113bとが接して形
成されていると、その界面においては、励起錯体から第1の発光層113aのホスト材料
へのエネルギー移動(特に三重項のエネルギー移動)が起こりうる。しかし、上述のよう
に第2の発光層113bにおいて励起子の拡散がほとんど起こらないため、励起錯体から
第1の発光層113aのホスト材料へのエネルギー移動が起こる範囲は極めて局所的な範
囲(すなわち第1の発光層113aと第2の発光層113bとの界面)に留まり、励起エ
ネルギーの大きな損失にはならない。したがって、第1の発光層113aと第2の発光層
113bは必ずしも接している必要はないが、これらが接していたとしても、高い効率を
得られるのが本発明の一態様の特徴と言える。すなわち、第1の発光層113aと第2の
発光層113bとが接して形成されている素子構造も、本発明の一態様である。
【0067】
このように、蛍光発光層に含まれるホスト材料の三重項励起エネルギーが、りん光発光
層に含まれる第1の有機化合物及び第2の有機化合物の三重項励起エネルギーよりも小さ
い場合においても、本発明の一態様を適用することによって、蛍光発光とりん光発光が共
に良好な発光効率で得られる発光素子を得ることができる。
【0068】
さらに、本発明の一態様の発光素子においては、第1の発光層113aと第2の発光層
113bとの界面において、励起錯体から第1の発光層113aのホスト材料へのエネル
ギー移動(特に三重項のエネルギー移動)や、りん光発光物質から第1の発光層113a
のホスト材料へのエネルギー移動が起こったとしても、その一部を第1の発光層113a
において発光に変換することができる構成とする。すなわち、第1の発光層113aを三
重項‐三重項消滅(T-Tアニヒレイション;TTA)によって一重項励起状態を生成す
ることが容易な構成とすることによって、上記の界面においてエキサイプレックスからホ
スト材料へ移動した三重項励起エネルギーの一部を第1の発光層113aにおいて蛍光発
光に変換することが可能となる。これにより、さらに本発明の一態様である発光素子は、
エネルギーのロスを低減した発光素子とすることができる。TTAによる一重項励起状態
の生成が容易な構成とするためには、第1の発光層113aにおいて、ホスト材料の一重
項励起準位が蛍光発光物質の一重項励起準位よりも大きく、且つ、ホスト材料の三重項励
起準位が蛍光発光物質の三重項励起準位よりも小さくなるようにホスト材料と蛍光発光物
質を選択すればよい。このような関係となるホスト材料と蛍光発光物質の選択としては、
代表的にはホスト材料としてアントラセン骨格を有する材料、蛍光発光物質としてピレン
骨格を有する材料の組み合わせ等が好適である。
【0069】
なお、第1の発光層113aは、膜厚が厚すぎると第2の発光層113bからの発光が
得にくくなる。また膜厚が薄すぎると、今度は第1の発光層113aからの発光が得にく
くなる。したがって、第1の発光層113aの膜厚は5nm以上20nm以下であること
が好ましい。
【0070】
また、第1の発光層113aが陽極側に形成されている場合、第1の発光層113aはホ
ール輸送性を有することが好ましい。この際、ホスト材料には正孔輸送性の高いバイポー
ラ性を有する材料を用いることが好適である。このような物質としてはアントラセン骨格
を有する材料が好ましい。さらに、蛍光発光物質のホールトラップ性が高い場合(例えば
後述するような縮合芳香族アミン化合物)は、その濃度を5%以下、好ましくは1%以上
4%以下、さらに好ましくは1%以上3%以下とすることが、りん光発光と蛍光発光をバ
ランスよくかつ高い効率で得るために好ましい構成である。なお、蛍光発光物質のHOM
Oがホスト材料のHOMOよりも高い場合に、該ホールトラップ性が発生する。
【0071】
第2の発光層113bにおいて励起錯体を形成する第1の有機化合物と第2の有機化合
物の組み合わせは、励起錯体を形成することが可能な組み合わせであればよいが、一方が
正孔輸送性を有する材料であり、他方が電子輸送性を有する材料であることが、より好ま
しい。この場合、ドナー-アクセプタ型の励起状態を形成しやすくなり、効率よく励起錯
体を形成することができるようになる。また、正孔輸送性を有する材料と電子輸送性を有
する材料との組み合わせによって第1の有機化合物と第2の有機化合物の組み合わせを構
成する場合、その混合比によってキャリアバランスを容易に制御することができる。具体
的には正孔輸送性を有する材料:電子輸送性を有する材料=1:9から9:1(重量比、
1:9及び9:1を含む)の範囲が好ましい。特に、量子効率をより高めるためには、第
2の発光層113bにおける最も陽極側の領域において、正孔輸送性を有する材料:電子
輸送性を有する材料=5:5から9:1(重量比、5:5及び9:1を含む)となってい
ることがより好ましい。また、当該構成を有する発光素子は、容易にキャリアバランスを
制御することができることから、再結合領域の制御も簡便に行うことができる。さらに、
本発明の一態様の発光素子は、上述のようにキャリアバランスを制御することによって発
光色の調整も行うことができるという特徴も有する。
【0072】
本実施の形態における発光素子では、キャリアの再結合領域はある程度の分布を持って
形成されることが好ましい。このためには、各発光層において適度なキャリアトラップ性
があることが好ましく、特に、りん光発光物質が電子トラップ性を有していることが好適
である。電子トラップ性が高い物質としては、ピリミジンやピラジンのようなジアジン骨
格を含む配位子を有する遷移金属錯体(イリジウム錯体や白金錯体など)が挙げられる。
なお、りん光発光物質のLUMOが、第1の有機化合物及び第2の有機化合物のいずれの
化合物よりも低い場合、該電子トラップ性が発生する。
【0073】
なお、本発光素子においては、第1の発光層113aからの発光が、第2の発光層11
3bからの発光よりも短波長側に発光のピークを有する構成とすることが好ましい。短波
長の発光を呈するりん光発光物質を用いた発光素子は輝度劣化が早い傾向がある。そこで
、短波長の発光を蛍光発光とすることによって、輝度劣化の小さい発光素子を提供するこ
とができる。
【0074】
なお、本発光素子は、EL層を形成するための層数がタンデム型の素子と比較して少な
く、層厚も薄いため、コスト的に有利であり量産に向く構成である。また、上述のように
EL層を形成するための層数が少ないことから、EL層の膜厚を薄くすることができ、光
学的に有利な構成(光取出し効率の高い構成)でもある。さらに、駆動電圧も小さく、5
V以下の駆動電圧で、蛍光発光とりん光発光の両方を効率よく得られる発光素子とするこ
とができる。
【0075】
また、蛍光発光層とりん光発光層とが接していても、上述のように励起錯体を用いてい
ることから三重項励起エネルギーの失活が起こりにくく、りん光発光と蛍光発光を両立す
ることが容易な構成である。
【0076】
本実施の形態で説明した発光素子における各物質及び励起錯体のエネルギー準位の相関図
を
図21に示す。図中、S
FHは第1の発光層113aにおけるホスト材料の一重項励起
準位、T
FHは第1の発光層113aにおけるホスト材料の三重項励起準位、S
FG、T
FGは各々第1の発光層113aにおけるゲスト材料(蛍光発光物質)の一重項励起準位
、三重項励起準位、S
PH、T
PHは各々第2の発光層113bにおけるホスト材料(第
1の有機化合物又は第2の有機化合物)の一重項励起準位、三重項励起準位、S
E,T
E
は第2の発光層113bにおける励起錯体の一重項励起準位及び三重項励起準位、T
PG
は第2の発光層113bにおけるゲスト材料(りん光発光物質)の三重項励起準位である
。
【0077】
図21に示すように、第1の発光層113aでは、ホスト材料の三重項励起分子の衝突に
よりTTAが起こり、ホスト材料の三重項励起分子の一部が一重項励起分子に変換される
(一部は熱失活する)。そして、このTTAにより生じたホスト材料の一重項励起エネル
ギーが、蛍光発光物質の一重項励起状態に移動し、そのエネルギーが蛍光に変換される。
【0078】
また、第2の発光層113bでは、励起錯体の励起準位SE,TEは、ホスト材料(第1
の有機化合物及び第2の有機化合物)の励起準位SPH,TPHよりも小さいため、励起
錯体からホスト材料への励起エネルギーの移動は起こらない。また、励起錯体から他の励
起錯体へのエネルギー移動も当然ない。励起錯体の励起エネルギーがゲスト材料(りん光
発光物質)に移動すると、発光に変換される。このように第2の発光層113bにおいて
は、三重項励起エネルギーの拡散がほとんどなく、発光に変換される。
【0079】
このように、三重項励起エネルギーの拡散が殆ど無い為、第1の発光層113aと第2の
発光層113bが接している界面ではエネルギー移動が多少あるものの(例えば、該界面
に存在するりん光発光物質のTPGからTFHやTFGへのエネルギー移動など)、第1
の発光層113aと第2の発光層113b、どちらからも良好な効率で発光を得ることが
できる。なお、第1の発光層113aにおいては、TTAによる三重項励起エネルギーに
よる一重項励起状態の生成が行われるため、界面において発生したエネルギー移動もその
一部を蛍光発光へと変換することができるためエネルギーの損失を低減させることが可能
である。
【0080】
また、本実施の形態における発光素子は、第1の発光層113aと第2の発光層113
bで異なる発光波長の光を得ることによって、多色発光の素子とすることができる。当該
発光素子の発光スペクトルは異なる発光ピークを有する発光が合成された光となるため、
少なくとも二つの極大値を有する発光スペクトルとなる。
【0081】
また、このような発光素子は白色発光を得るためにも好適である。第1の発光層113
aと第2の発光層113bとの光を互いに補色の関係とすることによって、白色発光を得
ることができる。また、いずれか、または両方の発光層に発光波長の異なる複数の発光物
質を用いることによって、3色や、4色以上の発光色からなる演色性の高い白色発光を得
ることもできる。この場合、各々の発光層を層状にさらに分割し、当該分割した層ごとに
異なる発光物質を含有させるようにしても良い。
【0082】
また、第2の発光層113bにおいては、りん光発光物質の最も低エネルギー側の吸収
帯と、励起錯体の発光スペクトルを重ねることで、より発光効率の良好な発光素子を得る
ことができる。また、りん光発光物質の最も低エネルギー側の吸収帯のピーク波長と、励
起錯体の発光スペクトルのピーク波長のエネルギー換算値の差が0.2eV以下であると
重なりが大きく好ましい構成である。なお、りん光発光物質の最も低エネルギー側の吸収
帯は三重項励起準位の吸収帯であることが好ましく、後述のようにりん光発光物質に替え
てTADF材料を用いる場合は、最も低エネルギー側の吸収帯は一重項励起準位の吸収帯
であることが好ましい。
【0083】
図1(A)においては、第1の発光層113aが陽極として機能する第1の電極101
側、第2の発光層113bが陰極として機能する第2の電極102側に形成されているが
、この積層順は逆であってもかまわない。すなわち、第1の発光層113aが陰極として
機能する第2の電極102側に形成され、第2の発光層113bが陽極として機能する第
1の電極101側に形成されていても良い。
【0084】
なお、本実施の形態の構成は、第2の発光層113bに含まれる発光物質は、三重項励
起エネルギーを発光に変換できる物質であれば良く、以上の説明において、りん光発光物
質として記載した部分に関しては熱活性化遅延蛍光(Thermally activa
ted delayed fluorescence,TADF)材料と、りん光発光層
と記載した部分に関してはTADF発光層と読み替えることができる。TADF材料とは
、三重項励起状態をわずかな熱エネルギーによって一重項励起状態にアップコンバート(
逆項間交差)させることが容易で、一重項励起状態からの発光(蛍光)を効率よく呈する
物質のことである。熱活性化遅延蛍光が効率良く得られる条件としては、三重項励起準位
と一重項励起準位のエネルギー差が0eV以上0.2eV以下、好ましくは0eV以上0
.1eV以下であることが挙げられる。りん光発光物質もTADF材料もどちらも三重項
励起エネルギーを発光に変換することが可能な物質である。
【0085】
(実施の形態2)
本実施の形態では実施の形態1で説明した発光素子の詳細な構造の例について
図1(A
)を用いて以下に説明する。
【0086】
本実施の形態における発光素子は、一対の電極間に複数の層からなるEL層を有する。
本実施の形態において、発光素子は、第1の電極101と、第2の電極102と、第1の
電極101と第2の電極102との間に設けられたEL層103とから構成されている。
なお、本形態では第1の電極101は陽極として機能し、第2の電極102は陰極として
機能するものとして、以下説明をする。つまり、第1の電極101の方が第2の電極10
2よりも電位が高くなるように、第1の電極101と第2の電極102に電圧を印加した
ときに、発光が得られる構成となっている。
【0087】
第1の電極101は陽極として機能するため、仕事関数の大きい(具体的には4.0e
V以上)金属、合金、導電性化合物、およびこれらの混合物などを用いて形成することが
好ましい。具体的には、例えば、酸化インジウム-酸化スズ(ITO:Indium T
in Oxide)、ケイ素若しくは酸化ケイ素を含有した酸化インジウム-酸化スズ、
酸化インジウム-酸化亜鉛、酸化タングステン及び酸化亜鉛を含有した酸化インジウム(
IWZO)等が挙げられる。これらの導電性金属酸化物膜は、通常スパッタリング法によ
り成膜されるが、ゾル-ゲル法などを応用して作製しても構わない。作製方法の例として
は、酸化インジウム-酸化亜鉛は、酸化インジウムに対し1乃至20wt%の酸化亜鉛を
加えたターゲットを用いてスパッタリング法により形成する方法などがある。また、酸化
タングステン及び酸化亜鉛を含有した酸化インジウム(IWZO)は、酸化インジウムに
対し酸化タングステンを0.5乃至5wt%、酸化亜鉛を0.1乃至1wt%含有したタ
ーゲットを用いてスパッタリング法により形成することもできる。この他、金(Au)、
白金(Pt)、ニッケル(Ni)、タングステン(W)、クロム(Cr)、モリブデン(
Mo)、鉄(Fe)、コバルト(Co)、銅(Cu)、パラジウム(Pd)、または金属
材料の窒化物(例えば、窒化チタン)等が挙げられる。グラフェンも用いることができる
。なお、後述する複合材料をEL層103における第1の電極101と接する層に用いる
ことで、仕事関数に関わらず、電極材料を選択することができるようになる。
【0088】
EL層103の積層構造については、発光層113が実施の形態1に示したような構成
となっていれば他は特に限定されない。例えば、正孔注入層、正孔輸送層、発光層、電子
輸送層、電子注入層、キャリアブロック層、中間層等を適宜組み合わせて構成することが
できる。本実施の形態では、EL層103は、第1の電極101の上に順に積層した正孔
注入層111、正孔輸送層112、発光層113、電子輸送層114、電子注入層115
を有する構成について説明する。各層を構成する材料について以下に具体的に示す。
【0089】
正孔注入層111は、正孔注入性の高い物質を含む層である。モリブデン酸化物やバナ
ジウム酸化物、ルテニウム酸化物、タングステン酸化物、マンガン酸化物等を用いること
ができる。この他、フタロシアニン(略称:H2Pc)や銅フタロシアニン(CuPC)
等のフタロシアニン系の化合物、4,4’-ビス[N-(4-ジフェニルアミノフェニル
)-N-フェニルアミノ]ビフェニル(略称:DPAB)、N,N’-ビス{4-[ビス
(3-メチルフェニル)アミノ]フェニル}-N,N’-ジフェニル-(1,1’-ビフ
ェニル)-4,4’-ジアミン(略称:DNTPD)等の芳香族アミン化合物、或いはポ
リ(3,4-エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)(PEDOT
/PSS)等の高分子等によっても正孔注入層111を形成することができる。
【0090】
また、正孔注入層111として、正孔輸送性の物質にアクセプター性物質を含有させた
複合材料を用いることができる。なお、正孔輸送性の物質にアクセプター性物質を含有さ
せたものを用いることにより、電極の仕事関数に依らず電極を形成する材料を選ぶことが
できる。つまり、第1の電極101として仕事関数の大きい材料だけでなく、仕事関数の
小さい材料も用いることができるようになる。アクセプター性物質としては、7,7,8
,8-テトラシアノ-2,3,5,6-テトラフルオロキノジメタン(略称:F4-TC
NQ)、クロラニル等を挙げることができる。また、遷移金属酸化物を挙げることができ
る。また元素周期表における第4族乃至第8族に属する金属の酸化物を挙げることができ
る。具体的には、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化クロム、酸化モリブ
デン、酸化タングステン、酸化マンガン、酸化レニウムは電子受容性が高いため好ましい
。中でも特に、酸化モリブデンは大気中でも安定であり、吸湿性が低く、扱いやすいため
好ましい。
【0091】
複合材料に用いる正孔輸送性の物質としては、芳香族アミン化合物、カルバゾール誘導
体、芳香族炭化水素、高分子化合物(オリゴマー、デンドリマー、ポリマー等)など、種
々の有機化合物を用いることができる。なお、複合材料に用いる有機化合物としては、正
孔輸送性の高い有機化合物であることが好ましい。具体的には、10-6cm2/Vs以
上の正孔移動度を有する物質であることが好ましい。以下では、複合材料における正孔輸
送性の物質として用いることのできる有機化合物を具体的に列挙する。
【0092】
例えば、芳香族アミン化合物としては、N,N’-ジ(p-トリル)-N,N’-ジフ
ェニル-p-フェニレンジアミン(略称:DTDPPA)、4,4’-ビス[N-(4-
ジフェニルアミノフェニル)-N-フェニルアミノ]ビフェニル(略称:DPAB)、N
,N’-ビス{4-[ビス(3-メチルフェニル)アミノ]フェニル}-N,N’-ジフ
ェニル-(1,1’-ビフェニル)-4,4’-ジアミン(略称:DNTPD)、1,3
,5-トリス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]ベンゼン
(略称:DPA3B)等を挙げることができる。
【0093】
複合材料に用いることのできるカルバゾール誘導体としては、具体的には、3-[N-
(9-フェニルカルバゾール-3-イル)-N-フェニルアミノ]-9-フェニルカルバ
ゾール(略称:PCzPCA1)、3,6-ビス[N-(9-フェニルカルバゾール-3
-イル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzPCA2)
、3-[N-(1-ナフチル)-N-(9-フェニルカルバゾール-3-イル)アミノ]
-9-フェニルカルバゾール(略称:PCzPCN1)等を挙げることができる。
【0094】
また、複合材料に用いることのできるカルバゾール誘導体としては、他に、4,4’-
ジ(N-カルバゾリル)ビフェニル(略称:CBP)、1,3,5-トリス[4-(N-
カルバゾリル)フェニル]ベンゼン(略称:TCPB)、9-[4-(10-フェニル-
9-アントリル)フェニル]-9H-カルバゾール(略称:CzPA)、1,4-ビス[
4-(N-カルバゾリル)フェニル]-2,3,5,6-テトラフェニルベンゼン等を用
いることができる。
【0095】
また、複合材料に用いることのできる芳香族炭化水素としては、例えば、2-tert
-ブチル-9,10-ジ(2-ナフチル)アントラセン(略称:t-BuDNA)、2-
tert-ブチル-9,10-ジ(1-ナフチル)アントラセン、9,10-ビス(3,
5-ジフェニルフェニル)アントラセン(略称:DPPA)、2-tert-ブチル-9
,10-ビス(4-フェニルフェニル)アントラセン(略称:t-BuDBA)、9,1
0-ジ(2-ナフチル)アントラセン(略称:DNA)、9,10-ジフェニルアントラ
セン(略称:DPAnth)、2-tert-ブチルアントラセン(略称:t-BuAn
th)、9,10-ビス(4-メチル-1-ナフチル)アントラセン(略称:DMNA)
、2-tert-ブチル-9,10-ビス[2-(1-ナフチル)フェニル]アントラセ
ン、9,10-ビス[2-(1-ナフチル)フェニル]アントラセン、2,3,6,7-
テトラメチル-9,10-ジ(1-ナフチル)アントラセン、2,3,6,7-テトラメ
チル-9,10-ジ(2-ナフチル)アントラセン、9,9’-ビアントリル、10,1
0’-ジフェニル-9,9’-ビアントリル、10,10’-ビス(2-フェニルフェニ
ル)-9,9’-ビアントリル、10,10’-ビス[(2,3,4,5,6-ペンタフ
ェニル)フェニル]-9,9’-ビアントリル、アントラセン、テトラセン、ルブレン、
ペリレン、2,5,8,11-テトラ(tert-ブチル)ペリレン等が挙げられる。ま
た、この他、ペンタセン、コロネン等も用いることができる。このように、1×10-6
cm2/Vs以上の正孔移動度を有し、炭素数14から42である芳香族炭化水素を用い
ることがより好ましい。
【0096】
なお、複合材料に用いることのできる芳香族炭化水素は、ビニル骨格を有していてもよ
い。ビニル基を有している芳香族炭化水素としては、例えば、4,4’-ビス(2,2-
ジフェニルビニル)ビフェニル(略称:DPVBi)、9,10-ビス[4-(2,2-
ジフェニルビニル)フェニル]アントラセン(略称:DPVPA)等が挙げられる。
【0097】
また、ポリ(N-ビニルカルバゾール)(略称:PVK)やポリ(4-ビニルトリフェ
ニルアミン)(略称:PVTPA)、ポリ[N-(4-{N’-[4-(4-ジフェニル
アミノ)フェニル]フェニル-N’-フェニルアミノ}フェニル)メタクリルアミド](
略称:PTPDMA)、ポリ[N,N’-ビス(4-ブチルフェニル)-N,N’-ビス
(フェニル)ベンジジン](略称:Poly-TPD)等の高分子化合物を用いることも
できる。
【0098】
正孔注入層を形成することによって、正孔の注入性が良好となり、駆動電圧の小さい発
光素子を得ることが可能となる。
【0099】
正孔輸送層112は、正孔輸送性の物質を含む層である。正孔輸送性の物質としては、
例えば、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(略
称:NPB)やN,N’-ビス(3-メチルフェニル)-N,N’-ジフェニル-[1,
1’-ビフェニル]-4,4’-ジアミン(略称:TPD)、4,4’,4’’-トリス
(N,N-ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4
’’-トリス[N-(3-メチルフェニル)-N-フェニルアミノ]トリフェニルアミン
(略称:MTDATA)、4,4’-ビス[N-(スピロ-9,9’-ビフルオレン-2
-イル)-N―フェニルアミノ]ビフェニル(略称:BSPB)、4-フェニル-4’-
(9-フェニルフルオレン-9-イル)トリフェニルアミン(略称:BPAFLP)など
の芳香族アミン化合物等を用いることができる。ここに述べた物質は、正孔輸送性が高く
、主に10-6cm2/Vs以上の正孔移動度を有する物質である。また、上述の複合材
料における正孔輸送性の物質として挙げた有機化合物も正孔輸送層112に用いることが
できる。また、ポリ(N-ビニルカルバゾール)(略称:PVK)やポリ(4-ビニルト
リフェニルアミン)(略称:PVTPA)等の高分子化合物を用いることもできる。なお
、正孔輸送性の物質を含む層は、単層のものだけでなく、上記物質からなる層が二層以上
積層したものとしてもよい。
【0100】
本発明の一態様の発光素子において、第1の発光層113aが陽極側に設けられる場合、
正孔輸送層112に用いられる物質のHOMO準位と、第1の発光層113aにおけるホ
スト材料のHOMO準位は近接(エネルギー差で0.2eV以下)していることが好まし
い。このことにより、ホールがトラップ準位にトラップされすぎることなく第1の発光層
113aや第2の発光層113bに流れてゆくため、蛍光発光とりん光発光とをバランス
よく、良好な効率で得ることが容易となる。
【0101】
発光層113は、実施の形態1で説明した発光層113の構成を有する。すなわち、第
1の電極側から、第1の発光層113a、第2の発光層113bが積層されて構成されて
いる。また、第1の発光層113aにはホスト材料と蛍光発光物質が含まれており、第2
の発光層113bには、第1の有機化合物、第2の有機化合物及び三重項励起エネルギー
を発光に変換可能な物質(りん光性化合物又はTADF材料)が含まれている。本実施の
形態の発光素子では、第1の有機化合物と第2の有機化合物は、励起錯体を形成する組み
合わせであるものとする。そして、励起錯体は、三重項励起エネルギーを発光に変換可能
な物質にエネルギーを提供し、第1の発光層113aと、第2の発光層113bから共に
効率よく発光を得ることができるものである。
【0102】
第1の発光層113aにおいて、蛍光発光物質として用いることが可能な材料としては
、例えば以下のようなものが挙げられる。また、これ以外の他の様々な蛍光発光物質を用
いることができる。
【0103】
5,6-ビス[4-(10-フェニル-9-アントリル)フェニル]-2,2’-ビピリ
ジン(略称:PAP2BPy)、5,6-ビス[4’-(10-フェニル-9-アントリ
ル)ビフェニル-4-イル]-2,2’-ビピリジン(略称:PAPP2BPy)、N,
N’-ビス[4-(9-フェニル-9H-フルオレン-9-イル)フェニル]-N,N’
-ジフェニル-ピレン-1,6-ジアミン(略称:1,6FLPAPrn)、N,N’-
ビス(3-メチルフェニル)-N,N’-ビス[3-(9-フェニル-9H-フルオレン
-9-イル)フェニル]-ピレン-1,6-ジアミン(略称:1,6mMemFLPAP
rn)、N,N’-ビス[4-(9H-カルバゾール-9-イル)フェニル]-N,N’
-ジフェニルスチルベン-4,4’-ジアミン(略称:YGA2S)、4-(9H-カル
バゾール-9-イル)-4’-(10-フェニル-9-アントリル)トリフェニルアミン
(略称:YGAPA)、4-(9H-カルバゾール-9-イル)-4’-(9,10-ジ
フェニル-2-アントリル)トリフェニルアミン(略称:2YGAPPA)、N,9-ジ
フェニル-N-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾ
ール-3-アミン(略称:PCAPA)、ペリレン、2,5,8,11-テトラ-ter
t-ブチルペリレン(略称:TBP)、4-(10-フェニル-9-アントリル)-4’
-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCB
APA)、N,N’’-(2-tert-ブチルアントラセン-9,10-ジイルジ-4
,1-フェニレン)ビス[N,N’,N’-トリフェニル-1,4-フェニレンジアミン
](略称:DPABPA)、N,9-ジフェニル-N-[4-(9,10-ジフェニル-
2-アントリル)フェニル]-9H-カルバゾール-3-アミン(略称:2PCAPPA
)、N-[4-(9,10-ジフェニル-2-アントリル)フェニル]-N,N’,N’
-トリフェニル-1,4-フェニレンジアミン(略称:2DPAPPA)、N,N,N’
,N’,N’’,N’’,N’’’,N’’’-オクタフェニルジベンゾ[g,p]クリ
セン-2,7,10,15-テトラアミン(略称:DBC1)、クマリン30、N-(9
,10-ジフェニル-2-アントリル)-N,9-ジフェニル-9H-カルバゾール-3
-アミン(略称:2PCAPA)、N-[9,10-ビス(1,1’-ビフェニル-2-
イル)-2-アントリル]-N,9-ジフェニル-9H-カルバゾール-3-アミン(略
称:2PCABPhA)、N-(9,10-ジフェニル-2-アントリル)-N,N’,
N’-トリフェニル-1,4-フェニレンジアミン(略称:2DPAPA)、N-[9,
10-ビス(1,1’-ビフェニル-2-イル)-2-アントリル]-N,N’,N’-
トリフェニル-1,4-フェニレンジアミン(略称:2DPABPhA)、9,10-ビ
ス(1,1’-ビフェニル-2-イル)-N-[4-(9H-カルバゾール-9-イル)
フェニル]-N-フェニルアントラセン-2-アミン(略称:2YGABPhA)、N,
N,9-トリフェニルアントラセン-9-アミン(略称:DPhAPhA)、クマリン5
45T、N,N’-ジフェニルキナクリドン、(略称:DPQd)、ルブレン、5,12
-ビス(1,1’-ビフェニル-4-イル)-6,11-ジフェニルテトラセン(略称:
BPT)、2-(2-{2-[4-(ジメチルアミノ)フェニル]エテニル}-6-メチ
ル-4H-ピラン-4-イリデン)プロパンジニトリル(略称:DCM1)、2-{2-
メチル-6-[2-(2,3,6,7-テトラヒドロ-1H,5H-ベンゾ[ij]キノ
リジン-9-イル)エテニル]-4H-ピラン-4-イリデン}プロパンジニトリル(略
称:DCM2)、N,N,N’,N’-テトラキス(4-メチルフェニル)テトラセン-
5,11-ジアミン(略称:p-mPhTD)、7,14-ジフェニル-N,N,N’,
N’-テトラキス(4-メチルフェニル)アセナフト[1,2-a]フルオランテン-3
,10-ジアミン(略称:p-mPhAFD)、2-{2-イソプロピル-6-[2-(
1,1,7,7-テトラメチル-2,3,6,7-テトラヒドロ-1H,5H-ベンゾ[
ij]キノリジン-9-イル)エテニル]-4H-ピラン-4-イリデン}プロパンジニ
トリル(略称:DCJTI)、2-{2-tert-ブチル-6-[2-(1,1,7,
7-テトラメチル-2,3,6,7-テトラヒドロ-1H,5H-ベンゾ[ij]キノリ
ジン-9-イル)エテニル]-4H-ピラン-4-イリデン}プロパンジニトリル(略称
:DCJTB)、2-(2,6-ビス{2-[4-(ジメチルアミノ)フェニル]エテニ
ル}-4H-ピラン-4-イリデン)プロパンジニトリル(略称:BisDCM)、2-
{2,6-ビス[2-(8-メトキシ-1,1,7,7-テトラメチル-2,3,6,7
-テトラヒドロ-1H,5H-ベンゾ[ij]キノリジン-9-イル)エテニル]-4H
-ピラン-4-イリデン}プロパンジニトリル(略称:BisDCJTM)などが挙げら
れる。特に、1,6FLPAPrnや1,6mMemFLPAPrnのようなピレンジア
ミン化合物に代表される縮合芳香族ジアミン化合物は、ホールトラップ性が高く、発光効
率や信頼性に優れているため好ましい。
【0104】
第1の発光層113aにおいて、ホスト材料として用いることが可能な物質としては、
例えば以下のようなものが挙げられる。
【0105】
9-フェニル-3-[4-(10-フェニル-9-アントリル)フェニル]-9H-カ
ルバゾール(略称:PCzPA)、9-[4-(10-フェニル-9-アントラセニル)
フェニル]-9H-カルバゾール(略称:CzPA)、7-[4-(10-フェニル-9
-アントリル)フェニル]-7H-ジベンゾ[c,g]カルバゾール(略称:cgDBC
zPA)、6-[3-(9,10-ジフェニル-2-アントリル)フェニル]-ベンゾ[
b]ナフト[1,2-d]フラン(略称:2mBnfPPA)、9-フェニル-10-{
4-(9-フェニル-9H-フルオレン-9-イル)ビフェニル-4’-イル}アントラ
セン(略称:FLPPA)等のアントラセン化合物が挙げられる。アントラセン骨格を有
する物質をホスト材料として用いると、発光効率、耐久性共に良好な発光層を実現するこ
とが可能である。特に、CzPA、cgDBCzPA、2mBnfPPA、PCzPAは
非常に良好な特性を示すため、好ましい選択である。
【0106】
第2の発光層113bにおいて、三重項励起エネルギーを発光に変換することができる物
質としては、りん光発光物質とTADF材料が該当し、例えば、以下のようなものが挙げ
られる。
【0107】
りん光発光物質としては、トリス{2-[5-(2-メチルフェニル)-4-(2,6-
ジメチルフェニル)-4H-1,2,4-トリアゾール-3-イル-κN2]フェニル-
κC}イリジウム(III)(略称:Ir(mpptz-dmp)3)、トリス(5-メ
チル-3,4-ジフェニル-4H-1,2,4-トリアゾラト)イリジウム(III)(
略称:Ir(Mptz)3)、トリス[4-(3-ビフェニル)-5-イソプロピル-3
-フェニル-4H-1,2,4-トリアゾラト]イリジウム(III)(略称:Ir(i
Prptz-3b)3)のような4H-トリアゾール骨格を有する有機金属イリジウム錯
体や、トリス[3-メチル-1-(2-メチルフェニル)-5-フェニル-1H-1,2
,4-トリアゾラト]イリジウム(III)(略称:Ir(Mptz1-mp)3)、ト
リス(1-メチル-5-フェニル-3-プロピル-1H-1,2,4-トリアゾラト)イ
リジウム(III)(略称:Ir(Prptz1-Me)3)のような1H-トリアゾー
ル骨格を有する有機金属イリジウム錯体、fac-トリス[(1-2,6-ジイソプロピ
ルフェニル)-2-フェニル-1H-イミダゾール]イリジウム(III)(略称:Ir
(iPrpmi)3)、トリス[3-(2,6-ジメチルフェニル)-7-メチルイミダ
ゾ[1,2-f]フェナントリジナト]イリジウム(III)(略称:Ir(dmpim
pt-Me)3)のようなイミダゾール骨格を有する有機金属イリジウム錯体、ビス[2
-(4’,6’-ジフルオロフェニル)ピリジナト-N,C2’]イリジウム(III)
テトラキス(1-ピラゾリル)ボラート(略称:FIr6)、ビス[2-(4’,6’-
ジフルオロフェニル)ピリジナト-N,C2’]イリジウム(III)ピコリナート(略
称:FIrpic)、ビス{2-[3’,5’-ビス(トリフルオロメチル)フェニル]
ピリジナト-N,C2’}イリジウム(III)ピコリナート(略称:Ir(CF3pp
y)2(pic))、ビス[2-(4’,6’-ジフルオロフェニル)ピリジナト-N,
C2’]イリジウム(III)アセチルアセトナート(略称:FIracac)のような
電子吸引基を有するフェニルピリジン誘導体を配位子とする有機金属イリジウム錯体が挙
げられる。これらは青色のりん光発光を示す化合物であり、440nmから520nmに
発光のピークを有する化合物である。
【0108】
また、トリス(4-メチル-6-フェニルピリミジナト)イリジウム(III)(略称:
Ir(mppm)3)、トリス(4-t-ブチル-6-フェニルピリミジナト)イリジウ
ム(III)(略称:Ir(tBuppm)3)、(アセチルアセトナト)ビス(6-メ
チル-4-フェニルピリミジナト)イリジウム(III)(略称:Ir(mppm)2(
acac))、(アセチルアセトナト)ビス(6-tert-ブチル-4-フェニルピリ
ミジナト)イリジウム(III)(略称:Ir(tBuppm)2(acac))、(ア
セチルアセトナト)ビス[6-(2-ノルボルニル)-4-フェニルピリミジナト]イリ
ジウム(III)(略称:Ir(nbppm)2(acac))、(アセチルアセトナト
)ビス[5-メチル-6-(2-メチルフェニル)-4-フェニルピリミジナト]イリジ
ウム(III)(略称:Ir(mpmppm)2(acac))、(アセチルアセトナト
)ビス(4,6-ジフェニルピリミジナト)イリジウム(III)(略称:Ir(dpp
m)2(acac))のようなピリミジン骨格を有する有機金属イリジウム錯体や、(ア
セチルアセトナト)ビス(3,5-ジメチル-2-フェニルピラジナト)イリジウム(I
II)(略称:Ir(mppr-Me)2(acac))、(アセチルアセトナト)ビス
(5-イソプロピル-3-メチル-2-フェニルピラジナト)イリジウム(III)(略
称:Ir(mppr-iPr)2(acac)のようなピラジン骨格を有する有機金属イ
リジウム錯体、トリス(2-フェニルピリジナト-N,C2’)イリジウム(III)(
略称:Ir(ppy)3)、ビス(2-フェニルピリジナト-N,C2’)イリジウム(
III)アセチルアセトナート(略称:Ir(ppy)2(acac))、ビス(ベンゾ
[h]キノリナト)イリジウム(III)アセチルアセトナート(略称:Ir(bzq)
2(acac))、トリス(ベンゾ[h]キノリナト)イリジウム(III)(略称:I
r(bzq)3)、トリス(2-フェニルキノリナト-N,C2’)イリジウム(III
)(略称:Ir(pq)3)、ビス(2-フェニルキノリナト-N,C2’)イリジウム
(III)アセチルアセトナート(略称:Ir(pq)2(acac))のようなピリジ
ン骨格を有する有機金属イリジウム錯体の他、トリス(アセチルアセトナト)(モノフェ
ナントロリン)テルビウム(III)(略称:Tb(acac)3(Phen))のよう
な希土類金属錯体も用いることができる。これらは主に緑色のりん光発光を示す化合物で
あり、500nm乃至600nmに発光のピークを有する。なお、ピリミジン骨格を有す
る有機金属イリジウム錯体は、信頼性や発光効率にも際だって優れるため、特に好ましい
。
【0109】
また、(ジイソブチリルメタナト)ビス[4,6-ビス(3-メチルフェニル)ピリミ
ジナト]イリジウム(III)(略称:Ir(5mdppm)2(dibm))、ビス[
4,6-ビス(3-メチルフェニル)ピリミジナト](ジピバロイルメタナト)イリジウ
ム(III)(略称:Ir(5mdppm)2(dpm))、ビス[4,6-ジ(ナフタ
レン-1-イル)ピリミジナト](ジピバロイルメタナト)イリジウム(III)(略称
:Ir(d1npm)2(dpm))のようなピリミジン骨格を有する有機金属イリジウ
ム錯体や、(アセチルアセトナト)ビス(2,3,5-トリフェニルピラジナト)イリジ
ウム(III)(略称:Ir(tppr)2(acac))、ビス(2,3,5-トリフ
ェニルピラジナト)(ジピバロイルメタナト)イリジウム(III)(略称:Ir(tp
pr)2(dpm))、(アセチルアセトナト)ビス[2,3-ビス(4-フルオロフェ
ニル)キノキサリナト]イリジウム(III)(略称:Ir(Fdpq)2(acac)
)のようなピラジン骨格を有する有機金属イリジウム錯体、トリス(1-フェニルイソキ
ノリナト-N,C2’)イリジウム(III)(略称:Ir(piq)3)、ビス(1-
フェニルイソキノリナト-N,C2’)イリジウム(III)(略称:Ir(piq)2
(acac))のようなピリジン骨格を有する有機金属イリジウム錯体の他、2,3,7
,8,12,13,17,18-オクタエチル-21H,23H-ポルフィリン白金(I
I)(略称:PtOEP)のような白金錯体や、トリス(1,3-ジフェニル-1,3-
プロパンジオナト)(モノフェナントロリン)ユーロピウム(III)(略称:Eu(D
BM)3(Phen))、トリス[1-(2-テノイル)-3,3,3-トリフルオロア
セトナト](モノフェナントロリン)ユーロピウム(III)(略称:Eu(TTA)3
(Phen))のような希土類金属錯体も用いることができる。これらは、赤色のりん光
発光を示す化合物であり、600nmから700nmに発光のピークを有する。また、ピ
ラジン骨格を有する有機金属イリジウム錯体は、色度の良い赤色発光が得られる。
【0110】
また、以上で述べたりん光性化合物の他、様々なりん光性発光材料を選択し、用いても
よい。
【0111】
TADF材料としては以下のようなものを用いることができる。
【0112】
フラーレン及びその誘導体、プロフラビン等のアクリジン誘導体、エオシン等。またマ
グネシウム(Mg)、亜鉛(Zn)、カドミウム(Cd)、スズ(Sn)、白金(Pt)
、インジウム(In)、もしくはパラジウム(Pd)等を含む金属含有ポルフィリン。該
金属含有ポルフィリンとしては、例えば、以下の構造式に示されるプロトポルフィリン-
フッ化スズ錯体(SnF2(Proto IX))、メソポルフィリン-フッ化スズ錯体
(SnF2(Meso IX))、ヘマトポルフィリン-フッ化スズ錯体(SnF2(H
emato IX))、コプロポルフィリンテトラメチルエステル-フッ化スズ錯体(S
nF2(Copro III-4Me))、オクタエチルポルフィリン-フッ化スズ錯体
(SnF2(OEP))、エチオポルフィリン-フッ化スズ錯体(SnF2(Etio
I))、オクタエチルポルフィリン-塩化白金錯体(PtCl2OEP)等も挙げられる
。
【0113】
【0114】
また、以下の構造式に示される2-(ビフェニル-4-イル)-4,6-ビス(12-フ
ェニルインドロ[2,3-a]カルバゾール-11-イル)-1,3,5-トリアジン(
PIC-TRZ)等のπ電子過剰型複素芳香環及びπ電子不足型複素芳香環を有する複素
環化合物も用いることができる。該複素環化合物は、π電子過剰型複素芳香環及びπ電子
不足型複素芳香環を有するため、電子輸送性及び正孔輸送性が高く、好ましい。なお、π
電子過剰型複素芳香環とπ電子不足型複素芳香環とが直接結合した物質は、π電子過剰型
複素芳香環のドナー性とπ電子不足型複素芳香環のアクセプター性が共に強くなり、S1
準位とT1準位のエネルギー差が小さくなるため、特に好ましい。
【0115】
【0116】
上記第1の有機化合物、第2の有機化合物として用いることが可能な材料としては、実
施の形態1に記載した条件を満たすような組み合わせであれば特に限定はなく、種々のキ
ャリア輸送材料を選択することができる。
【0117】
例えば、電子輸送性を有する材料としては、ビス(10-ヒドロキシベンゾ[h]キノリ
ナト)ベリリウム(II)(略称:BeBq2)、ビス(2-メチル-8-キノリノラト
)(4-フェニルフェノラト)アルミニウム(III)(略称:BAlq)、ビス(8-
キノリノラト)亜鉛(II)(略称:Znq)、ビス[2-(2-ベンゾオキサゾリル)
フェノラト]亜鉛(II)(略称:ZnPBO)、ビス[2-(2-ベンゾチアゾリル)
フェノラト]亜鉛(II)(略称:ZnBTZ)などの金属錯体や、2-(4-ビフェニ
リル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール(略称
:PBD)、3-(4-ビフェニリル)-4-フェニル-5-(4-tert-ブチルフ
ェニル)-1,2,4-トリアゾール(略称:TAZ)、1,3-ビス[5-(p-te
rt-ブチルフェニル)-1,3,4-オキサジアゾール-2-イル]ベンゼン(略称:
OXD-7)、9-[4-(5-フェニル-1,3,4-オキサジアゾール-2-イル)
フェニル]-9H-カルバゾール(略称:CO11)、2,2’,2’’-(1,3,5
-ベンゼントリイル)トリス(1-フェニル-1H-ベンゾイミダゾール)(略称:TP
BI)、2-[3-(ジベンゾチオフェン-4-イル)フェニル]-1-フェニル-1H
-ベンゾイミダゾール(略称:mDBTBIm-II)などのポリアゾール骨格を有する
複素環化合物、2-[3-(ジベンゾチオフェン-4-イル)フェニル]ジベンゾ[f,
h]キノキサリン(略称:2mDBTPDBq-II)、2-[3’-(ジベンゾチオフ
ェン-4-イル)ビフェニル-3-イル]ジベンゾ[f、h]キノキサリン(略称:2m
DBTBPDBq-II)、2-[3’-(9H-カルバゾール-9-イル)ビフェニル
-3-イル]ジベンゾ[f、h]キノキサリン(略称:2mCzBPDBq)、4,6-
ビス[3-(フェナントレン-9-イル)フェニル]ピリミジン(略称:4,6mPnP
2Pm)、4,6-ビス[3-(4-ジベンゾチエニル)フェニル]ピリミジン(略称:
4,6mDBTP2Pm-II)などのジアジン骨格を有する複素環化合物、3,5-ビ
ス[3-(9H-カルバゾール-9-イル)フェニル]ピリジン(略称:35DCzPP
y)、1,3,5-トリ[3-(3-ピリジル)フェニル]ベンゼン(略称:TmPyP
B)などのピリジン骨格を有する複素環化合物が挙げられる。上述した中でも、ジアジン
骨格を有する複素環化合物やピリジン骨格を有する複素環化合物は、信頼性が良好であり
好ましい。特に、ジアジン(ピリミジンやピラジン)骨格を有する複素環化合物は、電子
輸送性が高く、駆動電圧低減にも寄与する。
【0118】
また、正孔輸送性を有する材料としては、4,4’-ビス[N-(1-ナフチル)-N-
フェニルアミノ]ビフェニル(略称:NPB)、N,N’-ビス(3-メチルフェニル)
-N,N’-ジフェニル-[1,1’-ビフェニル]-4,4’-ジアミン(略称:TP
D)、4,4’-ビス[N-(スピロ-9,9’-ビフルオレン-2-イル)-N―フェ
ニルアミノ]ビフェニル(略称:BSPB)、4-フェニル-4’-(9-フェニルフル
オレン-9-イル)トリフェニルアミン(略称:BPAFLP)、4-フェニル-3’-
(9-フェニルフルオレン-9-イル)トリフェニルアミン(略称:mBPAFLP)、
4-フェニル-4’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルア
ミン(略称:PCBA1BP)、4,4’-ジフェニル-4’’-(9-フェニル-9-
H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBBi1BP)、4-(
1-ナフチル)-4’-(9-フェニル-9H-カルバゾール-3-イル)-トリフェニ
ルアミン(略称:PCBANB)、4、4’-ジ(1-ナフチル)-4’’-(9-フェ
ニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBNBB)、9
,9-ジメチル-N-フェニル-N-[4-(9-フェニル-9H-カルバゾール-3-
イル)フェニル]-フルオレン-2-アミン(略称:PCBAF)、N-フェニル-N-
[4-(9-フェニル-9H-カルバゾール-3-イル)フェニル]-スピロ-9,9’
-ビフルオレン-2-アミン(略称:PCBASF)などの芳香族アミン骨格を有する化
合物や、1,3-ビス(N-カルバゾリル)ベンゼン(略称:mCP)、4,4’-ジ(
N-カルバゾリル)ビフェニル(略称:CBP)、3,6-ビス(3,5-ジフェニルフ
ェニル)-9-フェニルカルバゾール(略称:CzTP)、3,3’-ビス(9-フェニ
ル-9H-カルバゾール)(略称:PCCP)などのカルバゾール骨格を有する化合物、
4,4’,4’’-(ベンゼン-1,3,5-トリイル)トリ(ジベンゾチオフェン)(
略称:DBT3P-II)、2,8-ジフェニル-4-[4-(9-フェニル-9H-フ
ルオレン-9-イル)フェニル]ジベンゾチオフェン(略称:DBTFLP-III)、
4-[4-(9-フェニル-9H-フルオレン-9-イル)フェニル]-6-フェニルジ
ベンゾチオフェン(略称:DBTFLP-IV)などのチオフェン骨格を有する化合物、
4,4’,4’’-(ベンゼン-1,3,5-トリイル)トリ(ジベンゾフラン)(略称
:DBF3P-II)、4-{3-[3-(9-フェニル-9H-フルオレン-9-イル
)フェニル]フェニル}ジベンゾフラン(略称:mmDBFFLBi-II)などのフラ
ン骨格を有する化合物が挙げられる。上述した中でも、芳香族アミン骨格を有する化合物
やカルバゾール骨格を有する化合物は、信頼性が良好であり、また、正孔輸送性が高く、
駆動電圧低減にも寄与するため好ましい。
【0119】
また、以上で述べたキャリア輸送材料の他、様々な物質の中からキャリア輸送材料を用い
ても良い。なお、第1の有機化合物及び第2の有機化合物としては、りん光性化合物の三
重項準位(基底状態と三重項励起状態とのエネルギー差)よりも大きい三重項準位を有す
る物質を選択することが好ましい。また、第1の有機化合物と第2の有機化合物は、りん
光発光物質の最も低エネルギー側の吸収帯の波長と重なるような発光を呈する励起錯体を
形成するような組み合わせを選択することが好ましい。
【0120】
さらに、第1の有機化合物と第2の有機化合物の組み合わせの一方を電子輸送性を有す
る材料、他方を正孔輸送性を有する材料とすることによって、励起錯体の形成に有利であ
る。また、各化合物の含有量を変更することによって、発光層の輸送性を容易に調整する
ことができ、再結合領域の制御も簡便に行うことができる。正孔輸送性を有する材料と電
子輸送性を有する材料の含有量の比は、正孔輸送性を有する材料:電子輸送性を有する材
料=1:9乃至9:1とすればよい。
【0121】
以上のような構成を有する発光層113は、真空蒸着法での共蒸着や、混合溶液として
インクジェット法やスピンコート法やディップコート法などを用いて作製することができ
る。
【0122】
なお、本実施の形態においては、陽極側に第1の発光層113a、陰極側に第2の発光
層113bが形成されている構成を説明したが、積層順は逆でもかまわない。すなわち、
陽極側に第2の発光層113b、陰極側に第1の発光層113aが形成されていても良い
。
【0123】
また、第2の発光層113bは、さらに2層以上に分かれていても良く、その際は各々
の層に異なる発光物質が含まれていても良い。特に、第2の発光層113bが第1のりん
光発光層と第2のりん光発光層の2層に分かれており、第1のりん光発光層からは赤色の
発光(580nm乃至680nmに発光スペクトルのピークを有する発光)が、第2のり
ん光発光層からは緑色の発光(500nm乃至560nmに発光スペクトルのピークを有
する発光)を得られる構成とし、第1の発光層113aからは青色の発光(400nm乃
至480nmに発光スペクトルのピークを有する発光)を得られる構成とすると、演色性
の良好な白色発光を得ることができるため好ましい構成である。なお、この場合、各々の
発光層が積層されている順は、第1の発光層113a、第1のりん光発光層、第2のりん
光発光層であることが発光素子の耐久性の観点から好ましく、さらに、第1の発光層11
3aが陽極側に形成されることがより良好な特性を得るために好ましい。
【0124】
以上に記載された以外の発光層113の構成、効果は実施の形態1に記載の構成、効果
と同じである。実施の形態1の記載を参照されたい。
【0125】
電子輸送層114は、電子輸送性の物質を含む層である。例えば、トリス(8-キノリ
ノラト)アルミニウム(略称:Alq)、トリス(4-メチル-8-キノリノラト)アル
ミニウム(略称:Almq3)、ビス(10-ヒドロキシベンゾ[h]キノリナト)ベリ
リウム(略称:BeBq2)、ビス(2-メチル-8-キノリノラト)(4-フェニルフ
ェノラト)アルミニウム(略称:BAlq)など、キノリン骨格またはベンゾキノリン骨
格を有する金属錯体等からなる層である。また、この他ビス[2-(2-ヒドロキシフェ
ニル)ベンズオキサゾラト]亜鉛(略称:Zn(BOX)2)、ビス[2-(2-ヒドロ
キシフェニル)ベンゾチアゾラト]亜鉛(略称:Zn(BTZ)2)などのオキサゾール
系、チアゾール系配位子を有する金属錯体なども用いることができる。さらに、金属錯体
以外にも、2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3
,4-オキサジアゾール(略称:PBD)や、1,3-ビス[5-(p-tert-ブチ
ルフェニル)-1,3,4-オキサジアゾール-2-イル]ベンゼン(略称:OXD-7
)、3-(4-ビフェニリル)-4-フェニル-5-(4-tert-ブチルフェニル)
-1,2,4-トリアゾール(略称:TAZ)、バソフェナントロリン(略称:BPhe
n)、バソキュプロイン(略称:BCP)なども用いることができる。ここに述べた物質
は、電子輸送性が高く、主に10-6cm2/Vs以上の電子移動度を有する物質である
。なお、上述した電子輸送性のホスト材料を電子輸送層114に用いても良い。
【0126】
また、電子輸送層114は、単層のものだけでなく、上記物質からなる層が二層以上積
層したものとしてもよい。
【0127】
また、電子輸送層と発光層との間に電子キャリアの移動を制御する層を設けても良い。
これは上述したような電子輸送性の高い材料に、電子トラップ性の高い物質を少量添加し
た層であって、電子キャリアの移動を抑制することによって、キャリアバランスを調節す
ることが可能となる。このような構成は、発光層を電子が突き抜けてしまうことにより発
生する問題(例えば素子寿命の低下)の抑制に大きな効果を発揮する。
【0128】
また、電子輸送層114と第2の電極102との間に、第2の電極102に接して電子
注入層115を設けてもよい。電子注入層115としては、フッ化リチウム(LiF)、
フッ化セシウム(CsF)、フッ化カルシウム(CaF2)等のようなアルカリ金属又は
アルカリ土類金属又はそれらの化合物を用いることができる。例えば、電子輸送性を有す
る物質からなる層中にアルカリ金属又はアルカリ土類金属又はそれらの化合物を含有させ
たものを用いることができる。なお、電子注入層115として、電子輸送性を有する物質
からなる層中にアルカリ金属又はアルカリ土類金属を含有させたものを用いることにより
、第2の電極102からの電子注入が効率良く行われるためより好ましい。
【0129】
第2の電極102を形成する物質としては、仕事関数の小さい(具体的には3.8eV
以下)金属、合金、電気伝導性化合物、およびこれらの混合物などを用いることができる
。このような陰極材料の具体例としては、リチウム(Li)やセシウム(Cs)等のアル
カリ金属、およびマグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)
等の元素周期表の第1族または第2族に属する元素、およびこれらを含む合金(MgAg
、AlLi)、ユウロピウム(Eu)、イッテルビウム(Yb)等の希土類金属およびこ
れらを含む合金等が挙げられる。しかしながら、第2の電極102と電子輸送層との間に
、電子注入層を設けることにより、仕事関数の大小に関わらず、Al、Ag、ITO、ケ
イ素若しくは酸化ケイ素を含有した酸化インジウム-酸化スズ等様々な導電性材料を第2
の電極102として用いることができる。これら導電性材料は、スパッタリング法やイン
クジェット法、スピンコート法等を用いて成膜することが可能である。
【0130】
また、EL層103の形成方法としては、乾式法、湿式法を問わず、種々の方法を用い
ることができる。例えば、真空蒸着法、インクジェット法またはスピンコート法など用い
ても構わない。また各電極または各層ごとに異なる成膜方法を用いて形成しても構わない
。
【0131】
電極についても、ゾル-ゲル法を用いて湿式法で形成しても良いし、金属材料のペース
トを用いて湿式法で形成してもよい。また、スパッタリング法や真空蒸着法などの乾式法
を用いて形成しても良い。
【0132】
以上のような構成を有する発光素子は、第1の電極101と第2の電極102との間に
生じた電位差により電流が流れ、発光性の高い物質を含む層である発光層113において
正孔と電子とが再結合し、発光するものである。つまり発光層113に発光領域が形成さ
れるような構成となっている。
【0133】
発光は、第1の電極101または第2の電極102のいずれか一方または両方を通って
外部に取り出される。従って、第1の電極101または第2の電極102のいずれか一方
または両方は、透光性を有する電極で成る。
【0134】
なお、第1の電極101と第2の電極102との間に設けられるEL層103の構成は
、上記のものには限定されない。しかし、発光領域と電極やキャリア注入層に用いられる
金属とが近接することによって生じる消光が抑制されるように、第1の電極101および
第2の電極102から離れた部位に正孔と電子とが再結合する発光領域を設けた構成が好
ましい。
【0135】
また、発光層113に接する正孔輸送層や電子輸送層、特に発光層113における発光
領域に近い方に接するキャリア輸送層は、発光層で生成した励起子からのエネルギー移動
を抑制するため、そのバンドギャップが発光層を構成する発光物質もしくは、発光層に含
まれる発光中心物質が有するバンドギャップより大きいバンドギャップを有する物質で構
成することが好ましい。
【0136】
本実施の形態における発光素子は、ガラス、プラスチックなどからなる基板上に作製す
ればよい。基板上に作製する順番としては、第1の電極101側から順に積層しても、第
2の電極102側から順に積層しても良い。発光装置は一基板上に一つの発光素子を形成
したものでも良いが、複数の発光素子を形成しても良い。一基板上にこのような発光素子
を複数作製することで、素子分割された照明装置やパッシブマトリクス型の発光装置を作
製することができる。また、ガラス、プラスチックなどからなる基板上に、例えば電界効
果トランジスタ(FET)を形成し、FETと電気的に接続された電極上に発光素子を作
製してもよい。これにより、FETによって発光素子の駆動を制御するアクティブマトリ
クス型の発光装置を作製できる。なお、FETの構造は、特に限定されない。また、FE
Tに用いる半導体の結晶性についても特に限定されず、非晶質半導体を用いてもよいし、
結晶性半導体を用いてもよい。また、FET基板に形成される駆動用回路についても、N
型およびP型のFETからなるものでもよいし、若しくはN型のFETまたはP型のFE
Tのいずれか一方からのみなるものであってもよい。
【0137】
なお、本実施の形態は、他の実施の形態と適宜組み合わせることが可能である。
【0138】
続いて、複数の発光ユニットを積層した構成の発光素子(以下、積層型素子ともいう)
の態様について、
図1(B)を参照して説明する。この発光素子は、第1の電極と第2の
電極との間に、複数の発光ユニットを有する発光素子である。一つの発光ユニットは、図
1(A)で示したEL層103と同様な構成を有する。つまり、
図1(A)で示した発光
素子は、1つの発光ユニットを有する発光素子であり、本実施の形態では、複数の発光ユ
ニットを有する発光素子ということができる。
【0139】
図1(B)において、第1の電極501と第2の電極502との間には、第1の発光ユ
ニット511と第2の発光ユニット512が積層されており、第1の発光ユニット511
と第2の発光ユニット512との間には電荷発生層513が設けられている。第1の電極
501と第2の電極502はそれぞれ
図1(A)における第1の電極101と第2の電極
102に相当し、
図1(A)の説明で述べたものと同じものを適用することができる。ま
た、第1の発光ユニット511と第2の発光ユニット512は同じ構成であっても異なる
構成であってもよい。
【0140】
電荷発生層513には、有機化合物と金属酸化物の複合材料が含まれている。この有機
化合物と金属酸化物の複合材料は、
図1(A)で示した正孔注入層111に用いることが
できる複合材料を用いることができる。有機化合物としては、正孔移動度が1×10
-6
cm
2/Vs以上であるものを適用することが好ましい。ただし、電子よりも正孔の輸送
性の高い物質であれば、これら以外のものを用いてもよい。有機化合物と金属酸化物の複
合材料は、キャリア注入性、キャリア輸送性に優れているため、低電圧駆動、低電流駆動
を実現することができる。なお、発光ユニットの陽極側の面が電荷発生層に接している場
合は、電荷発生層が発光ユニットの正孔輸送層の役割も担うことができるため、当該発光
ユニットには正孔輸送層を設けなくとも良い。
【0141】
なお、電荷発生層513は、有機化合物と金属酸化物の複合材料を含む層と他の材料に
より構成される層とを組み合わせた積層構造として形成してもよい。例えば、有機化合物
と金属酸化物の複合材料を含む層と、電子供与性物質の中から選ばれた一の化合物と電子
輸送性の高い化合物とを含む層とを組み合わせて形成してもよい。また、有機化合物と金
属酸化物の複合材料を含む層と、透明導電膜とを組み合わせて形成してもよい。
【0142】
いずれにしても、第1の発光ユニット511と第2の発光ユニット512に挟まれる電
荷発生層513は、第1の電極501と第2の電極502に電圧を印加したときに、一方
の発光ユニットに電子を注入し、他方の発光ユニットに正孔を注入するものであれば良い
。例えば、
図1(B)において、第1の電極の電位の方が第2の電極の電位よりも高くな
るように電圧を印加した場合、電荷発生層513は、第1の発光ユニット511に電子を
注入し、第2の発光ユニット512に正孔を注入するものであればよい。
【0143】
図1(B)では、2つの発光ユニットを有する発光素子について説明したが、3つ以上
の発光ユニットを積層した発光素子についても、同様に適用することが可能である。本実
施の形態に係る発光素子のように、一対の電極間に複数の発光ユニットを電荷発生層で仕
切って配置することで、電流密度を低く保ったまま、高輝度発光を可能とし、さらに長寿
命な素子を実現できる。また、低電圧駆動が可能で消費電力が低い発光装置を実現するこ
とができる。
【0144】
なお、複数のユニットのうち、少なくとも一つのユニットに、上記発光層113の構成
が用いられていることによって、当該ユニットの製造工程を削減することができるため、
実用化に有利な多色発光素子を提供することができる。
【0145】
なお、上記構成は、他の実施の形態や本実施の形態中の他の構成と適宜組み合わせるこ
とが可能である。
【0146】
(実施の形態3)
本実施の形態では、実施の形態1又は実施の形態2に記載の発光素子を用いた発光装置
について説明する。
【0147】
本実施の形態では、実施の形態1又は実施の形態2に記載の発光素子を用いて作製され
た発光装置について
図2を用いて説明する。なお、
図2(A)は、発光装置を示す上面図
、
図2(B)は
図2(A)をA-BおよびC-Dで切断した断面図である。この発光装置
は、発光素子の発光を制御するものとして、点線で示された駆動回路部(ソース線駆動回
路)601、画素部602、駆動回路部(ゲート線駆動回路)603を含んでいる。また
、604は封止基板、605はシール材であり、シール材605で囲まれた内側は、空間
607になっている。
【0148】
なお、引き回し配線608はソース線駆動回路601及びゲート線駆動回路603に入
力される信号を伝送するための配線であり、外部入力端子となるFPC(フレキシブルプ
リントサーキット)609からビデオ信号、クロック信号、スタート信号、リセット信号
等を受け取る。なお、ここではFPCしか図示されていないが、このFPCにはプリント
配線基板(PWB)が取り付けられていても良い。本明細書における発光装置には、発光
装置本体だけでなく、それにFPCもしくはPWBが取り付けられた状態をも含むものと
する。
【0149】
次に、断面構造について
図2(B)を用いて説明する。素子基板610上には駆動回路
部及び画素部が形成されているが、ここでは、駆動回路部であるソース線駆動回路601
と、画素部602中の一つの画素が示されている。
【0150】
なお、ソース線駆動回路601はnチャネル型FET623とpチャネル型FET62
4とを組み合わせたCMOS回路が形成される。また、駆動回路は、種々のCMOS回路
、PMOS回路もしくはNMOS回路で形成しても良い。また、本実施の形態では、基板
上に駆動回路を形成したドライバ一体型を示すが、必ずしもその必要はなく、駆動回路を
基板上ではなく外部に形成することもできる。
【0151】
また、画素部602はスイッチング用FET611と、電流制御用FET612とその
ドレインに電気的に接続された第1の電極613とを含む複数の画素により形成される。
なお、第1の電極613の端部を覆って絶縁物614が形成されている。ここでは、ポジ
型の感光性アクリル樹脂膜を用いることにより形成する。
【0152】
また、絶縁物614の上端部または下端部に曲率を有する曲面が形成されるようにする
ことが好ましい。例えば、絶縁物614の材料としてポジ型の感光性アクリルを用いた場
合、絶縁物614の上端部のみに曲率半径(0.2μm乃至3μm)を有する曲面を持た
せる。絶縁物614として、ネガ型の感光性樹脂、或いはポジ型の感光性樹脂のいずれも
使用することができる。
【0153】
第1の電極613上には、EL層616、および第2の電極617がそれぞれ形成され
ている。ここで、陽極として機能する第1の電極613に用いる材料としては、仕事関数
の大きい材料を用いることが望ましい。例えば、ITO膜、またはケイ素を含有したイン
ジウム錫酸化物膜、2乃至20wt%の酸化亜鉛を含む酸化インジウム膜、窒化チタン膜
、クロム膜、タングステン膜、Zn膜、Pt膜などの単層膜の他、窒化チタン膜とアルミ
ニウムを主成分とする膜との積層、窒化チタン膜とアルミニウムを主成分とする膜と窒化
チタン膜との3層構造等を用いることができる。なお、積層構造とすると、配線としての
抵抗も低く、良好なオーミックコンタクトがとれ、さらに陽極として機能させることがで
きる。
【0154】
また、EL層616は、蒸着マスクを用いた蒸着法、インクジェット法、スピンコート
法等の種々の方法によって形成される。EL層616は、実施の形態1又は実施の形態2
で説明したような構成を含んでいる。また、EL層616を構成する他の材料としては、
低分子化合物、または高分子化合物(オリゴマー、デンドリマーを含む)であっても良い
。
【0155】
さらに、EL層616上に形成され、陰極として機能する第2の電極617に用いる材
料としては、仕事関数の小さい材料(Al、Mg、Li、Ca、またはこれらの合金や化
合物であるMgAg、MgIn、AlLi等)を用いることが好ましい。なお、EL層6
16で生じた光が第2の電極617を透過させる場合には、第2の電極617として、膜
厚を薄くした金属薄膜と、透明導電膜(ITO、2乃至20wt%の酸化亜鉛を含む酸化
インジウム、ケイ素を含有したインジウム錫酸化物、酸化亜鉛(ZnO)等)との積層を
用いるのが良い。
【0156】
なお、第1の電極613、EL層616、第2の電極617でもって、発光素子が形成
されている。当該発光素子は実施の形態1又は実施の形態2の構成を有する発光素子であ
る。なお、画素部は複数の発光素子が形成されてなっているが、本実施の形態における発
光装置では、実施の形態1又は実施の形態2に記載の発光素子と、それ以外の構成を有す
る発光素子の両方が含まれていても良い。
【0157】
さらにシール材605で封止基板604を素子基板610と貼り合わせることにより、
素子基板610、封止基板604、およびシール材605で囲まれた空間607に発光素
子618が備えられた構造になっている。なお、空間607には、充填材が充填されてお
り、不活性気体(窒素やアルゴン等)が充填される場合の他、シール材605で充填され
る場合もある。封止基板には凹部を形成し、そこに乾燥材625を設けると水分の影響に
よる劣化を抑制することができ、好ましい構成である。
【0158】
なお、シール材605にはエポキシ系樹脂やガラスフリットを用いるのが好ましい。ま
た、これらの材料はできるだけ水分や酸素を透過しない材料であることが望ましい。また
、封止基板604に用いる材料としてガラス基板や石英基板の他、FRP(Fiber
Reinforced Plastics)、PVF(ポリビニルフロライド)、ポリエ
ステルまたはアクリル等からなるプラスチック基板を用いることができる。
【0159】
以上のようにして、実施の形態1又は実施の形態2に記載の発光素子を用いて作製され
た発光装置を得ることができる。
【0160】
図3には白色発光を呈する発光素子を形成し、着色層(カラーフィルタ)等を設けるこ
とによってフルカラー化した発光装置の例を示す。
図3(A)には基板1001、下地絶
縁膜1002、ゲート絶縁膜1003、ゲート電極1006、1007、1008、第1
の層間絶縁膜1020、第2の層間絶縁膜1021、周辺部1042、画素部1040、
駆動回路部1041、発光素子の第1の電極1024W、1024R、1024G、10
24B、隔壁1025、EL層1028、発光素子の第2の電極1029、封止基板10
31、シール材1032などが図示されている。
【0161】
また、
図3(A)では着色層(赤色の着色層1034R、緑色の着色層1034G、青
色の着色層1034B)は透明な基材1033に設けている。また、黒色層(ブラックマ
トリックス)1035をさらに設けても良い。着色層及び黒色層が設けられた透明な基材
1033は、位置合わせし、基板1001に固定する。なお、着色層、及び黒色層は、オ
ーバーコート層1036で覆われている。また、
図3(A)においては、光が着色層を透
過せずに外部へと出る発光層と、各色の着色層を透過して外部に光が出る発光層とがあり
、着色層を透過しない光は白、着色層を透過する光は赤、青、緑となることから、4色の
画素で映像を表現することができる。
【0162】
図3(B)では着色層(赤色の着色層1034R、緑色の着色層1034G、青色の着色
層1034B)をゲート絶縁膜1003と第1の層間絶縁膜1020との間に形成する例
を示した。このように、着色層は基板1001と封止基板1031の間に設けられていて
も良い。
【0163】
また、以上に説明した発光装置では、FETが形成されている基板1001側に光を取
り出す構造(ボトムエミッション型)の発光装置としたが、封止基板1031側に発光を
取り出す構造(トップエミッション型)の発光装置としても良い。トップエミッション型
の発光装置の断面図を
図4に示す。この場合、基板1001は光を通さない基板を用いる
ことができる。FETと発光素子の陽極とを接続する接続電極を作製するまでは、ボトム
エミッション型の発光装置と同様に形成する。その後、第3の層間絶縁膜1037を電極
1022を覆って形成する。この絶縁膜は平坦化の役割を担っていても良い。第3の層間
絶縁膜1037は第2の層間絶縁膜と同様の材料の他、他の様々な材料を用いて形成する
ことができる。
【0164】
発光素子の第1の電極1024W、1024R、1024G、1024Bはここでは陽
極とするが、陰極であっても構わない。また、
図4のようなトップエミッション型の発光
装置である場合、第1の電極を反射電極とすることが好ましい。EL層1028の構成は
、実施の形態1又は実施の形態2においてEL層103として説明したような構成とし、
且つ、白色の発光が得られるような素子構造とする。
【0165】
図4のようなトップエミッションの構造では着色層(赤色の着色層1034R、緑色の
着色層1034G、青色の着色層1034B)を設けた封止基板1031で封止を行うこ
とができる。封止基板1031には画素と画素との間に位置するように黒色層(ブラック
マトリックス)1035を設けても良い。着色層(赤色の着色層1034R、緑色の着色
層1034G、青色の着色層1034B)や黒色層(ブラックマトリックス)1035は
オーバーコート層によって覆われていても良い。なお封止基板1031は透光性を有する
基板を用いることとする。
【0166】
また、ここでは赤、緑、青、白の4色でフルカラー表示を行う例を示したが特に限定さ
れず、赤、緑、青の3色でフルカラー表示を行ってもよい。
【0167】
本実施の形態における発光装置は、実施の形態1又は実施の形態2に記載の発光素子を
用いているため、良好な特性を備えた発光装置を得ることができる。具体的には、実施の
形態1又は実施の形態2で示した発光素子は発光効率の良好な発光素子であり、消費電力
の低減された発光装置とすることができる。また、量産しやすい発光素子であり、安価な
発光装置を提供することができる。
【0168】
ここまでは、アクティブマトリクス型の発光装置について説明したが、以下からはパッ
シブマトリクス型の発光装置について説明する。
図5には本発明を適用して作製したパッ
シブマトリクス型の発光装置を示す。なお、
図5(A)は、発光装置を示す斜視図、
図5
(B)は
図5(A)をX-Yで切断した断面図である。
図5において、基板951上には
、電極952と電極956との間にはEL層955が設けられている。電極952の端部
は絶縁層953で覆われている。そして、絶縁層953上には隔壁層954が設けられて
いる。隔壁層954の側壁は、基板面に近くなるに伴って、一方の側壁と他方の側壁との
間隔が狭くなっていくような傾斜を有する。つまり、隔壁層954の短辺方向の断面は、
台形状であり、底辺(絶縁層953の面方向と同様の方向を向き、絶縁層953と接する
辺)の方が上辺(絶縁層953の面方向と同様の方向を向き、絶縁層953と接しない辺
)よりも短い。このように、隔壁層954を設けることで、静電気等に起因した発光素子
の不良を防ぐことが出来る。また、パッシブマトリクス型の発光装置においても、実施の
形態1又は実施の形態2で示した発光効率の良好な発光素子を用いており、消費電力の低
減された発光装置とすることができる。また、当該発光素子は量産しやすい発光素子であ
り、安価な発光装置を提供することができる。
【0169】
以上、説明した発光装置は、マトリクス状に配置された多数の微小な発光素子をそれぞ
れ制御することが可能であるため、画像の表現を行う表示装置として好適に利用できる発
光装置である。
【0170】
また、本実施の形態は他の実施の形態と自由に組み合わせることができる。
【0171】
(実施の形態4)
本実施の形態では、実施の形態1又は実施の形態2に記載の発光素子を照明装置として
用いる例を
図6を参照しながら説明する。
図6(B)は照明装置の上面図、
図6(A)は
図6(B)におけるe-f断面図である。
【0172】
本実施の形態における照明装置は、支持体である透光性を有する基板400上に、第1
の電極401が形成されている。第1の電極401は実施の形態1における第1の電極1
01に相当する。第1の電極401側から発光を取り出す場合、第1の電極401は透光
性を有する材料により形成する。
【0173】
第2の電極404に電圧を供給するためのパッド412が基板400上に形成される。
【0174】
第1の電極401上にはEL層403が形成されている。EL層403は実施の形態1
におけるEL層103の構成、又は発光ユニット511、512及び電荷発生層513を
合わせた構成などに相当する。なお、これらの構成については当該記載を参照されたい。
【0175】
EL層403を覆って第2の電極404を形成する。第2の電極404は実施の形態1
における第2の電極102に相当する。発光を第1の電極401側から取り出す場合、第
2の電極404は反射率の高い材料によって形成される。第2の電極404はパッド41
2と接続することによって、電圧が供給される。
【0176】
以上、第1の電極401、EL層403、及び第2の電極404を有する発光素子を本
実施の形態で示す照明装置は有している。当該発光素子は発光効率の高い発光素子である
ため、本実施の形態における照明装置は消費電力の小さい照明装置とすることができる。
【0177】
以上の構成を有する発光素子を、シール材405、406を用いて封止基板407を固
着し、封止することによって照明装置が完成する。シール材405、406はどちらか一
方でもかまわない。また、内側のシール材406(
図6(B)では図示せず)には乾燥剤
を混ぜることもでき、これにより、水分を吸着することができ、信頼性の向上につながる
。
【0178】
また、パッド412と第1の電極401の一部をシール材405、406の外に伸張し
て設けることによって、外部入力端子とすることができる。また、その上にコンバーター
などを搭載したICチップ420などを設けても良い。
【0179】
以上、本実施の形態に記載の照明装置は、EL素子に実施の形態1又は実施の形態2に
記載の発光素子を有することから、消費電力の小さい照明装置とすることができる。また
、駆動電圧の低い照明装置とすることができる。また、安価な照明装置とすることができ
る。
【0180】
(実施の形態5)
本実施の形態では、実施の形態1又は実施の形態2に記載の発光素子をその一部に含む
電子機器の例について説明する。実施の形態1又は実施の形態2に記載の発光素子は発光
効率が良好であり、消費電力が低減された発光素子である。その結果、本実施の形態に記
載の電子機器は、消費電力が低減された発光部を有する電子機器とすることが可能である
。また、実施の形態1又は実施の形態2に記載の発光素子は、成膜層数の少ない発光素子
であるため、安価な電子機器とすることが可能である。
【0181】
上記発光素子を適用した電子機器として、例えば、テレビジョン装置(テレビ、またはテ
レビジョン受信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタル
ビデオカメラ、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置ともいう
)、携帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機など
が挙げられる。これらの電子機器の具体例を以下に示す。
【0182】
図7(A)は、テレビジョン装置の一例を示している。テレビジョン装置は、筐体710
1に表示部7103が組み込まれている。また、ここでは、スタンド7105により筐体
7101を支持した構成を示している。表示部7103により、映像を表示することが可
能であり、表示部7103は、実施の形態1又は実施の形態2に記載の発光素子をマトリ
クス状に配列して構成されている。
【0183】
テレビジョン装置の操作は、筐体7101が備える操作スイッチや、別体のリモコン操作
機7110により行うことができる。リモコン操作機7110が備える操作キー7109
により、チャンネルや音量の操作を行うことができ、表示部7103に表示される映像を
操作することができる。また、リモコン操作機7110に、当該リモコン操作機7110
から出力する情報を表示する表示部7107を設ける構成としてもよい。
【0184】
なお、テレビジョン装置は、受信機やモデムなどを備えた構成とする。受信機により一般
のテレビ放送の受信を行うことができ、さらにモデムを介して有線または無線による通信
ネットワークに接続することにより、一方向(送信者から受信者)または双方向(送信者
と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である。
【0185】
図7(B1)はコンピュータであり、本体7201、筐体7202、表示部7203、キ
ーボード7204、外部接続ポート7205、ポインティングデバイス7206等を含む
。なお、このコンピュータは、実施の形態1又は実施の形態2で説明したものと同様の発
光素子をマトリクス状に配列して表示部7203に用いることにより作製される。
図7(
B1)のコンピュータは、
図7(B2)のような形態であっても良い。
図7(B2)のコ
ンピュータは、キーボード7204、ポインティングデバイス7206の代わりに第2の
表示部7210が設けられている。第2の表示部7210はタッチパネル式となっており
、第2の表示部7210に表示された入力用の表示を指や専用のペンで操作することによ
って入力を行うことができる。また、第2の表示部7210は入力用表示だけでなく、そ
の他の画像を表示することも可能である。また表示部7203もタッチパネルであっても
良い。二つの画面がヒンジで接続されていることによって、収納や運搬をする際に画面を
傷つける、破損するなどのトラブルの発生も防止することができる。なお、このコンピュ
ータは、実施の形態1又は実施の形態2に記載の発光素子をマトリクス状に配列して表示
部7203に用いることにより作製される。
【0186】
図7(C)は携帯型遊技機であり、筐体7301と筐体7302の2つの筐体で構成され
ており、連結部7303により、開閉可能に連結されている。筐体7301には、実施の
形態1又は実施の形態2で説明した発光素子をマトリクス状に配列して作製された表示部
7304が組み込まれ、筐体7302には表示部7305が組み込まれている。また、図
7(C)に示す携帯型遊技機は、その他、スピーカ部7306、記録媒体挿入部7307
、LEDランプ7308、入力手段(操作キー7309、接続端子7310、センサ73
11(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化
学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動
、におい又は赤外線を測定する機能を含むもの)、マイクロフォン7312)等を備えて
いる。もちろん、携帯型遊技機の構成は上述のものに限定されず、少なくとも表示部73
04および表示部7305の両方、または一方に実施の形態1又は実施の形態2に記載の
発光素子をマトリクス状に配列して作製された表示部を用いていればよく、その他付属設
備が適宜設けられた構成とすることができる。
図7(C)に示す携帯型遊技機は、記録媒
体に記録されているプログラム又はデータを読み出して表示部に表示する機能や、他の携
帯型遊技機と無線通信を行って情報を共有する機能を有する。なお、
図7(C)に示す携
帯型遊技機が有する機能はこれに限定されず、様々な機能を有することができる。
【0187】
図7(D)は、携帯電話機の一例を示している。携帯電話機は、筐体7401に組み込ま
れた表示部7402の他、操作ボタン7403、外部接続ポート7404、スピーカ74
05、マイク7406などを備えている。なお、携帯電話機は、実施の形態1又は実施の
形態2に記載の発光素子をマトリクス状に配列して作製された表示部7402を有してい
る。
【0188】
図7(D)に示す携帯電話機は、表示部7402を指などで触れることで、情報を入力す
ることができる構成とすることもできる。この場合、電話を掛ける、或いはメールを作成
するなどの操作は、表示部7402を指などで触れることにより行うことができる。
【0189】
表示部7402の画面は主として3つのモードがある。第1は、画像の表示を主とする表
示モードであり、第2は、文字等の情報の入力を主とする入力モードである。第3は表示
モードと入力モードの2つのモードが混合した表示+入力モードである。
【0190】
例えば、電話を掛ける、或いはメールを作成する場合は、表示部7402を文字の入力を
主とする文字入力モードとし、画面に表示させた文字の入力操作を行えばよい。この場合
、表示部7402の画面のほとんどにキーボードまたは番号ボタンを表示させることが好
ましい。
【0191】
また、携帯電話機内部に、ジャイロ、加速度センサ等の傾きを検出するセンサを有する検
出装置を設けることで、携帯電話機の向き(縦か横か)を判断して、表示部7402の画
面表示を自動的に切り替えるようにすることができる。
【0192】
また、画面モードの切り替えは、表示部7402を触れること、又は筐体7401の操作
ボタン7403の操作により行われる。また、表示部7402に表示される画像の種類に
よって切り替えるようにすることもできる。例えば、表示部に表示する画像信号が動画の
データであれば表示モード、テキストデータであれば入力モードに切り替える。
【0193】
また、入力モードにおいて、表示部7402の光センサで検出される信号を検知し、表示
部7402のタッチ操作による入力が一定期間ない場合には、画面のモードを入力モード
から表示モードに切り替えるように制御してもよい。
【0194】
表示部7402は、イメージセンサとして機能させることもできる。例えば、表示部74
02に掌や指で触れ、掌紋、指紋等を撮像することで、本人認証を行うことができる。ま
た、表示部に近赤外光を発光するバックライトまたは近赤外光を発光するセンシング用光
源を用いれば、指静脈、掌静脈などを撮像することもできる。
【0195】
なお、本実施の形態に示す構成は、実施の形態1乃至実施の形態4に示した構成を適宜組
み合わせて用いることができる。
【0196】
以上の様に実施の形態1又は実施の形態2に記載の発光素子を備えた発光装置の適用範
囲は極めて広く、この発光装置をあらゆる分野の電子機器に適用することが可能である。
実施の形態1又は実施の形態2に記載の発光素子を用いることにより、消費電力の低減さ
れた電子機器を得ることができる。
【0197】
図8は、実施の形態1又は実施の形態2に記載の発光素子をバックライトに適用した液
晶表示装置の一例である。
図8に示した液晶表示装置は、筐体901、液晶層902、バ
ックライトユニット903、筐体904を有し、液晶層902は、ドライバIC905と
接続されている。また、バックライトユニット903には、実施の形態1又は実施の形態
2に記載の発光素子が用いられおり、端子906により、電流が供給されている。
【0198】
実施の形態1又は実施の形態2に記載の発光素子を液晶表示装置のバックライトに適用
したことにより、消費電力の低減されたバックライトが得られる。また、実施の形態2に
記載の発光素子を用いることで、面発光の照明装置が作製でき、また大面積化も可能であ
る。これにより、バックライトの大面積化が可能であり、液晶表示装置の大面積化も可能
になる。さらに、実施の形態2に記載の発光素子を適用した発光装置は従来と比較し厚み
を小さくできるため、表示装置の薄型化も可能となる。
【0199】
図9は、実施の形態1又は実施の形態2に記載の発光素子を、照明装置である電気スタ
ンドに用いた例である。
図9に示す電気スタンドは、筐体2001と、光源2002を有
し、光源2002として、実施の形態4に記載の照明装置が用いられている。
【0200】
図10は、実施の形態1又は実施の形態2に記載の発光素子を、室内の照明装置300
1として用いた例である。実施の形態1又は実施の形態2に記載の発光素子は消費電力の
低減された発光素子であるため、消費電力の低減された照明装置とすることができる。ま
た、実施の形態1又は実施の形態2に記載の発光素子は大面積化が可能であるため、大面
積の照明装置として用いることができる。また、実施の形態1又は実施の形態2に記載の
発光素子は、薄型であるため、薄型化した照明装置として用いることが可能となる。
【0201】
実施の形態1又は実施の形態2に記載の発光素子は、自動車のフロントガラスやダッシ
ュボードにも搭載することができる。
図11に実施の形態2に記載の発光素子を自動車の
フロントガラスやダッシュボードに用いる一態様を示す。表示領域5000乃至表示領域
5005は実施の形態1又は実施の形態2に記載の発光素子を用いて設けられた表示であ
る。
【0202】
表示領域5000と表示領域5001は自動車のフロントガラスに設けられた実施の形
態1又は実施の形態2に記載の発光素子を搭載した表示装置である。実施の形態1又は実
施の形態2に記載の発光素子は、第1の電極と第2の電極を透光性を有する電極で作製す
ることによって、反対側が透けて見える、いわゆるシースルー状態の表示装置とすること
ができる。シースルー状態の表示であれば、自動車のフロントガラスに設置したとしても
、視界の妨げになることなく設置することができる。なお、駆動のためのトランジスタな
どを設ける場合には、有機半導体材料による有機トランジスタや、酸化物半導体を用いた
トランジスタなど、透光性を有するトランジスタを用いると良い。
【0203】
表示領域5002はピラー部分に設けられた実施の形態1又は実施の形態2に記載の発
光素子を搭載した表示装置である。表示領域5002には、車体に設けられた撮像手段か
らの映像を映し出すことによって、ピラーで遮られた視界を補完することができる。また
、同様に、ダッシュボード部分に設けられた表示領域5003は車体によって遮られた視
界を、自動車の外側に設けられた撮像手段からの映像を映し出すことによって、死角を補
い、安全性を高めることができる。見えない部分を補完するように映像を映すことによっ
て、より自然に違和感なく安全確認を行うことができる。
【0204】
表示領域5004や表示領域5005はナビゲーション情報、速度計や回転数計、走行
距離、給油量、ギア状態、エアコンの設定など、その他様々な情報を提供することができ
る。表示は使用者の好みに合わせて適宜その表示項目やレイアウトを変更することができ
る。なお、これら情報は表示領域5000乃至表示領域5003にも設けることができる
。また、表示領域5000乃至表示領域5005は照明装置として用いることも可能であ
る。
【0205】
実施の形態1又は実施の形態2に記載の発光素子は発光効率の高い発光素子とすること
ができる。また、消費電力の小さい発光素子とすることができる。このことから、表示領
域5000乃至表示領域5005に大きな画面を数多く設けても、バッテリーに負荷をか
けることが少なく、快適に使用することができることから実施の形態1又は実施の形態2
に記載の発光素子を用いた発光装置または照明装置は、車載用の発光装置又は照明装置と
して好適に用いることができる。
【0206】
図12(A)及び
図12(B)は2つ折り可能なタブレット型端末の一例である。
図1
2(A)は、開いた状態であり、タブレット型端末は、筐体9630、表示部9631a
、表示部9631b、表示モード切り替えスイッチ9034、電源スイッチ9035、省
電力モード切り替えスイッチ9036、留め具9033、操作スイッチ9038、を有す
る。なお、当該タブレット端末は、実施の形態1又は実施の形態2に記載の発光素子を備
えた発光装置を表示部9631a、表示部9631bの一方又は両方に用いることにより
作製される。
【0207】
表示部9631aは、一部をタッチパネル領域9632aとすることができ、表示され
た操作キー9637にふれることでデータ入力をすることができる。なお、表示部963
1aにおいては、一例として半分の領域が表示のみの機能を有する構成、もう半分の領域
がタッチパネルの機能を有する構成を示しているが該構成に限定されない。表示部963
1aの全ての領域がタッチパネルの機能を有する構成としても良い。例えば、表示部96
31aの全面をキーボードボタン表示させてタッチパネルとし、表示部9631bを表示
画面として用いることができる。
【0208】
また、表示部9631bにおいても表示部9631aと同様に、表示部9631bの一
部をタッチパネル領域9632bとすることができる。また、タッチパネルのキーボード
表示切り替えボタン9639が表示されている位置に指やスタイラスなどでふれることで
表示部9631bにキーボードボタンを表示することができる。
【0209】
また、タッチパネル領域9632aとタッチパネル領域9632bに対して同時にタッ
チ入力することもできる。
【0210】
また、表示モード切り替えスイッチ9034は、縦表示または横表示などの表示の向き
を切り替え、白黒表示やカラー表示の切り替えなどを選択できる。省電力モード切り替え
スイッチ9036は、タブレット型端末に内蔵している光センサで検出される使用時の外
光の光量に応じて表示の輝度を最適なものとすることができる。タブレット型端末は光セ
ンサだけでなく、ジャイロ、加速度センサ等の傾きを検出するセンサなどの他の検出装置
を内蔵させてもよい。
【0211】
また、
図12(A)では表示部9631bと表示部9631aの表示面積が同じ例を示
しているが特に限定されず、一方のサイズともう一方のサイズが異なっていてもよく、表
示の品質も異なっていてもよい。例えば一方が他方よりも高精細な表示を行える表示パネ
ルとしてもよい。
【0212】
図12(B)は、閉じた状態であり、本実施の形態におけるタブレット型端末では、筐
体9630、太陽電池9633、充放電制御回路9634、バッテリー9635、DCD
Cコンバータ9636を備える例を示す。なお、
図12(B)では充放電制御回路963
4の一例としてバッテリー9635、DCDCコンバータ9636を有する構成について
示している。
【0213】
なお、タブレット型端末は2つ折り可能なため、未使用時に筐体9630を閉じた状態
にすることができる。従って、表示部9631a、表示部9631bを保護できるため、
耐久性に優れ、長期使用の観点からも信頼性の優れたタブレット型端末を提供できる。
【0214】
また、この他にも
図12(A)及び
図12(B)に示したタブレット型端末は、様々な
情報(静止画、動画、テキスト画像など)を表示する機能、カレンダー、日付又は時刻な
どを表示部に表示する機能、表示部に表示した情報をタッチ入力操作又は編集するタッチ
入力機能、様々なソフトウェア(プログラム)によって処理を制御する機能、等を有する
ことができる。
【0215】
タブレット型端末の表面に装着された太陽電池9633によって、電力をタッチパネル
、表示部、または映像信号処理部等に供給することができる。なお、太陽電池9633は
、筐体9630の一面または二面に設けられていると効率的なバッテリー9635の充電
を行う構成とすることができるため好適である。
【0216】
また、
図12(B)に示す充放電制御回路9634の構成、及び動作について
図12(
C)にブロック図を示し説明する。
図12(C)には、太陽電池9633、バッテリー9
635、DCDCコンバータ9636、コンバータ9638、スイッチSW1乃至SW3
、表示部9631について示しており、バッテリー9635、DCDCコンバータ963
6、コンバータ9638、スイッチSW1乃至SW3が、
図12(B)に示す充放電制御
回路9634に対応する箇所となる。
【0217】
まず外光により太陽電池9633により発電がされる場合の動作の例について説明する
。太陽電池で発電した電力は、バッテリー9635を充電するための電圧となるようDC
DCコンバータ9636で昇圧または降圧がなされる。そして、表示部9631の動作に
太陽電池9633で充電された電力が用いられる際にはスイッチSW1をオンにし、コン
バータ9638で表示部9631に必要な電圧に昇圧または降圧をすることとなる。また
、表示部9631での表示を行わない際には、SW1をオフにし、SW2をオンにしてバ
ッテリー9635の充電を行う構成とすればよい。
【0218】
なお、太陽電池9633については、発電手段の一例として示したが、発電手段は特に
限定されず、圧電素子(ピエゾ素子)や熱電変換素子(ペルティエ素子)などの他の発電
手段によってバッテリー9635の充電を行う構成であってもよい。無線(非接触)で電
力を送受信して充電する無接点電力伝送モジュールや、また他の充電手段を組み合わせて
行う構成としてもよく、発電手段を有さなくとも良い。
【0219】
また、上記表示部9631を具備していれば、
図12に示した形状のタブレット型端末
に限定されない。
【実施例1】
【0220】
本実施例では、本発明の一態様の発光素子(発光素子1)について説明する。なお、発光
素子1は蛍光発光層(第1の発光層113a)とりん光発光層(第2の発光層113b)
が接して形成された発光層113を有しており、りん光発光層(第2の発光層113b)
は赤色のりん光を呈する第1のりん光発光層(第2の発光層113b-1)と、緑色のり
ん光発光を呈する第2のりん光発光層(第2の発光層113b-2)との積層から成って
いる。発光素子1で用いた有機化合物の構造式を以下に示す。
【0221】
【0222】
以下に、本実施例の発光素子1の作製方法を示す。
【0223】
(発光素子1の作製方法)
まず、ガラス基板上に、酸化珪素を含むインジウム錫酸化物(ITSO)をスパッタリン
グ法にて成膜し、第1の電極101を形成した。なお、その膜厚は110nmとし、電極
面積は2mm×2mmとした。ここで、第1の電極101は、発光素子の陽極として機能
する電極である。
【0224】
次に、基板上に発光素子を形成するための前処理として、基板表面を水で洗浄し、200
℃で1時間焼成した後、UVオゾン処理を370秒行った。
【0225】
その後、10-4Pa程度まで内部が減圧された真空蒸着装置に基板を導入し、真空蒸着
装置内の加熱室において、170℃で30分間の真空焼成を行った後、基板を30分程度
放冷した。
【0226】
次に、第1の電極101が形成された面が下方となるように、第1の電極101が形成さ
れた基板を真空蒸着装置内に設けられた基板ホルダーに固定し、10-4Pa程度まで減
圧した後、第1の電極101上に、抵抗加熱を用いた蒸着法により上記構造式(i)で表
される4,4’,4’’-(ベンゼン-1,3,5-トリイル)トリ(ジベンゾチオフェ
ン)(略称:DBT3P-II)、と酸化モリブデン(VI)を共蒸着することで、正孔
注入層111を形成した。その膜厚は、40nmとし、DBT3P-IIと酸化モリブデ
ンの比率は、重量比で4:2(=DBT3P-II:酸化モリブデン)となるように調節
した。なお、共蒸着法とは、一つの処理室内で、複数の蒸発源から同時に蒸着を行う蒸着
法である。
【0227】
次に、正孔注入層111上に、上記構造式(ii)で表される、9-フェニル-3-[4
-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール(略称:PCz
PA)を20nmの膜厚となるように成膜し、正孔輸送層112を形成した。
【0228】
さらに、正孔輸送層112上に、上記構造式(iii)で表される7-[4-(10-フ
ェニル-9-アントリル)フェニル]-7H-ジベンゾ[c,g]カルバゾール(略称:
cgDBCzPA)と上記構造式(iv)で表されるN,N’-ビス(3-メチルフェニ
ル)-N,N’-ビス[3-(9-フェニル-9H-フルオレン-9-イル)フェニル]
-ピレン-1,6-ジアミン(略称:1,6mMemFLPAPrn)とを、重量比1:
0.04(=cgDBCzPA:1,6mMemFLPAPrn)となるように10nm
共蒸着して蛍光発光層(第1の発光層113a)を形成した。その後、上記構造式(v)
で表される2-[3’-(ジベンゾチオフェン-4-イル)ビフェニル-3-イル]ジベ
ンゾ[f,h]キノキサリン(略称:2mDBTBPDBq-II)と、上記構造式(v
i)で表されるN-(1,1’-ビフェニル-4-イル)-N-[4-(9-フェニル-
9H-カルバゾール-3-イル)フェニル]-9,9-ジメチル-9H-フルオレン-2
-アミン(略称:PCBBiF)と、上記構造式(vii)で表される(ジピバロイルメ
タナト)ビス(2,3,5-トリフェニルピラジナト)イリジウム(III)(略称:[
Ir(tppr)2(dpm)])とを、重量比0.6:0.4:0.05(=2mDB
TBPDBq-II:PCBBiF:[Ir(tppr)2(dpm)])となるように
5nm共蒸着して第1のりん光発光層(第2の発光層113b-1)を形成し、続けて2
mDBTBPDBq-IIとPCBBiFと上記構造式(viii)で表されるビス[2
-(6-tert-ブチル-4-ピリミジニル-κN3)フェニル-κC](2,4-ペ
ンタンジオナト-κ2O,O’)イリジウム(III)(略称:[Ir(tBuppm)
2(acac)])とを、重量比0.8:0.2:0.05=(=2mDBTBPDBq
-II:PCBBiF:[Ir(tBuppm)2(acac)])となるように20n
m共蒸着し、第2のりん光発光層(第2の発光層113b-2)を形成してりん光発光層
(第2の発光層113b)を形成した。
【0229】
なお、りん光発光層(第2の発光層113b)において、2mDBTBPDBq-II
とPCBBiFは励起錯体を形成している。2mDBTBPDBq-IIとPCBBiF
の共蒸着膜のフォトルミネッセンス波長(すなわち励起錯体の発光波長)は、515nm
付近である。また、この発光波長は[Ir(tppr)2(dpm)]及び[Ir(tB
uppm)2(acac)]の最も長波長側の吸収帯と重なり、エネルギー移動の効率が
高い構成となっている。
【0230】
さらに、蛍光発光層のホスト材料であるcgDBCzPAの一重項励起エネルギーは、
蛍光発光物質である1,6mMemFLPAPrnの一重項励起エネルギーよりも大きく
、また、cgDBCzPAの三重項励起エネルギーは、1,6mMemFLPAPrnの
三重項励起エネルギーよりも小さいという関係にあり、蛍光発光層(第1の発光層113
a)は三重項-三重項アニヒレイションに伴う一重項励起子の再生成及び発光が得られや
すい構成となっている。実際に、同構成における遅延蛍光の発生も確認された。
【0231】
その後、りん光発光層(第2の発光層113b)上に2mDBTBPDBq-IIを膜厚
10nmとなるように成膜し、さらに、上記構造式(ix)で表されるバソフェナントロ
リン(略称:BPhen)を15nmとなるように成膜して、電子輸送層114を形成し
た。
【0232】
電子輸送層114を形成したら、その後、フッ化リチウム(LiF)を1nmの膜厚とな
るように蒸着し、電子注入層115を形成し、最後に、陰極として機能する第2の電極1
02として、アルミニウムを200nmの膜厚となるように蒸着することで、本実施例の
発光素子1を作製した。
【0233】
なお、上述した蒸着過程において、蒸着は全て抵抗加熱法を用いた。
【0234】
発光素子1を、窒素雰囲気のグローブボックス内において、大気に曝されないようにガラ
ス基板により封止する作業(シール材を素子の周囲に塗布し、封止時にUV処理、80℃
にて1時間熱処理)を行った後、信頼性について測定を行った。なお、測定は室温(25
℃に保たれた雰囲気)で行った。
【0235】
発光素子1の電流密度-輝度特性を
図13に、輝度-電流効率特性を
図14に、電圧-輝
度特性を
図15に、輝度-外部量子効率特性を
図16に、発光スペクトルを
図17に示す
。
【0236】
以上のように、発光素子1は、中間層を用いない構造でありながら1000cd/m2付
近で電流効率約30cd/A、外部量子効率約13%の良好な発光効率を示すことがわか
った。また、駆動電圧も3V台と低い。
【0237】
また、発光スペクトルから、[Ir(tppr)2(dpm)]由来の赤色発光と、[
Ir(tBuppm)2(acac)]由来の緑色発光及び1,6mMemFLPAPr
n由来の青色発光が観測された。このことから、蛍光発光層(第1の発光層113a)及
びりん光発光層(第2の発光層113b)のどちらからも十分に発光が得られていること
がわかる。また、発光素子1の1000cd/m2付近における相関色温度は3130K
、平均演色評価数92であり、照明用途としても十分な色温度であり、且つ非常に良好な
演色性を有する素子であることもわかった。
【0238】
続いて、初期輝度を5000cd/m
2とし、電流密度一定の条件で発光素子1を駆動
して、信頼性試験を行った結果を
図18に示す。
図18は、初期輝度を100%とした規
格化輝度の変化を示している。この結果から、発光素子1は、62時間経過後も初期輝度
の94%を保っており、駆動時間に伴う輝度低下の小さい、良好な信頼性を有する発光素
子であることがわかった。
【0239】
ここで、発光素子1に用いたcgDBCzPAおよび1,6mMemFLPArnの一重
項励起準位(S1準位)は、蒸着膜の吸収端から、それぞれ2.95eVおよび2.68
eVと見積もられた。
【0240】
また、本実施例において、発光素子1に用いた2mDBTBPDBq-II、PCBB
iF、cgDBCzPA、および1,6mMemFLPAPrnの三重項準位(T1準位
)について測定した結果を表1に示す。T1準位の測定には、各物質の燐光発光を測定す
ることにより求めた。測定条件としては、325nmの励起光を各物質に照射し、測定温
度10Kで測定した。エネルギー準位の測定は、発光波長より吸収波長から算出した方が
精度は高いが、T1準位の吸収は極めて微弱であり、測定が困難であることから、ここで
は、最も短波長側に位置する燐光発光ピーク波長をT1準位とした。したがって、測定値
に多少の誤差を含むものとする。なお、cgDBCzPAおよび1,6mMemFLPA
Prnについては、項間交差が起きにくいため、トリス(2-フェニルピリジナト)イリ
ジウム(略称:Ir(ppy)3)を増感剤として添加(共蒸着)することにより燐光発
光を観測した。
【0241】
【0242】
以上の結果から、発光素子1の蛍光発光層において、ホスト材料であるcgDBCzPA
の一重項励起準位は、蛍光発光物質である1,6mMemFLPAPrnの一重項励起準
位よりも大きく、また、cgDBCzPAの三重項励起準位は、1,6mMemFLPA
Prnの三重項励起準位よりも小さいという関係にあり、蛍光発光層(第1の発光層11
3a)は三重項-三重項アニヒレイションに伴う一重項励起子の再生成及び発光が得られ
やすい構成となっていることがわかる。
【0243】
また、蛍光発光層のホスト材料であるcgDBCzPAの三重項励起準位が、りん光発光
層における第1の有機化合物(2mDBTBPDBq-II)および第2の有機化合物(
PCBBiF)の三重項励起準位よりも小さくなっていることがわかる。このような構成
の場合、常識的には、りん光発光層内部で生成した三重項励起子の多くが蛍光発光層に拡
散してしまい、無放射失活してしまう。しかし本実施例の発光素子1においては、第1の
有機化合物と第2の有機化合物が励起錯体を形成しているため、りん光発光層内部で生成
した三重項励起子は蛍光発光層に拡散しにくい。励起錯体の基底状態は存在しないため、
励起錯体から励起錯体へのエネルギー移動が生じにくいことが要因の一つであると考えら
れる。その結果、発光素子1は、蛍光発光層、りん光発光層双方からの発光を得つつ、高
い効率をも達成するという常識を覆す特性が得られている。
【0244】
このように、本発明の一態様である発光素子1は、非常にバランスの良い、良好な特性を
有しつつ、簡便安価に作製することができる発光素子であることがわかる。この結果は、
りん光発光層のエネルギードナーとしてエキサイプレックスを用いたことによって励起子
拡散が抑制され三重項励起エネルギーの無放射失活が低減されたことと、蛍光発光層のホ
スト材料における三重項-三重項アニヒレイションにともなう遅延蛍光の発生による発光
効率の向上が寄与している。
【実施例2】
【0245】
本実施例では、本発明の一態様の発光素子である発光素子2及び発光素子3の作製方法及
び特性について示す。発光素子2及び発光素子3で用いた有機化合物の構造式を以下に示
す。
【0246】
【0247】
(発光素子2の作製方法)
ガラス基板上に、酸化珪素を含むインジウム錫酸化物(ITSO)をスパッタリング法に
て110nm成膜し、第1の電極101を形成した。なお、その電極面積は2mm×2m
mとした。
【0248】
次に、基板上に発光素子を形成するための前処理として、基板表面を水で洗浄し、200
℃で1時間焼成した後、UVオゾン処理を370秒行った。
【0249】
その後、10-4Pa程度まで内部が減圧された真空蒸着装置に基板を導入し、真空蒸着
装置内の加熱室において、170℃で30分間の真空焼成を行った後、基板を30分程度
放冷した。
【0250】
次に、第1の電極101が形成された面が下方となるように、第1の電極101が形成さ
れた基板を真空蒸着装置内に設けられた基板ホルダーに固定し、10-4Pa程度まで減
圧した後、第1の電極101上に、抵抗加熱を用いた蒸着法により上記構造式(i)で表
される4,4’,4’’-(ベンゼン-1,3,5-トリイル)トリ(ジベンゾチオフェ
ン)(略称:DBT3P-II)、と酸化モリブデン(VI)を共蒸着することで、正孔
注入層111を形成した。その膜厚は、30nmとし、DBT3P-IIと酸化モリブデ
ンの比率は、重量比で2:1(=DBT3P-II:酸化モリブデン)となるように調節
した。
【0251】
続いて、正孔注入層111上に、上記構造式(ii)で表される、9-フェニル-3-[
4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール(略称:PC
zPA)を20nmの膜厚となるように成膜し、正孔輸送層112を形成した。
【0252】
さらに、正孔輸送層112上に、上記構造式(iii)で表される7-[4-(10-フ
ェニル-9-アントリル)フェニル]-7H-ジベンゾ[c,g]カルバゾール(略称:
cgDBCzPA)と上記構造式(iv)で表されるN,N’-ビス(3-メチルフェニ
ル)-N,N’-ビス[3-(9-フェニル-9H-フルオレン-9-イル)フェニル]
-ピレン-1,6-ジアミン(略称:1,6mMemFLPAPrn)とを、重量比1:
0.02(=cgDBCzPA:1,6mMemFLPAPrn)となるように10nm
共蒸着して蛍光発光層である第1の発光層113aを形成した。その後、上記構造式(v
)で表される2-[3’-(ジベンゾチオフェン-4-イル)ビフェニル-3-イル]ジ
ベンゾ[f,h]キノキサリン(略称:2mDBTBPDBq-II)と、上記構造式(
vi)で表されるN-(1,1’-ビフェニル-4-イル)-N-[4-(9-フェニル
-9H-カルバゾール-3-イル)フェニル]-9,9-ジメチル-9H-フルオレン-
2-アミン(略称:PCBBiF)、上記構造式(x)で表されるビス{4,6-ジメチ
ル-2-[5-(2,6-ジメチルフェニル)-3-(3,5-ジメチルフェニル)-2
-ピラジニル-κN]フェニル-κC}(2,4-ペンタンジオナト-κ2O,O’)イ
リジウム(III)(略称:[Ir(dmdppr-dmp)2(acac)])とを、
重量比0.5:0.5:0.05(=2mDBTBPDBq-II:PCBBiF:[I
r(dmdppr-dmp)2(acac)])となるように5nm共蒸着して第1のり
ん光発光層(第2の発光層113b-1)を形成し、続けて2mDBTBPDBq-II
とPCBBiFと上記構造式(viii)で表されるビス[2-(6-tert-ブチル
-4-ピリミジニル-κN3)フェニル-κC](2,4-ペンタンジオナト-κ2O,
O’)イリジウム(III)(略称:[Ir(tBuppm)2(acac)])とを、
重量比0.8:0.2:0.05=(=2mDBTBPDBq-II:PCBBiF:[
Ir(tBuppm)2(acac)])となるように20nm共蒸着し、第2のりん光
発光層(第2の発光層113b-2)を形成してりん光発光層である第2の発光層113
bを形成した。
【0253】
なお、りん光発光層113bにおいて、2mDBTBPDBq-IIとPCBBiFは
励起錯体を形成している。また、その発光波長は[Ir(dmdppr-dmp)2(a
cac)]及び[Ir(tBuppm)2(acac)]の最も長波長側の吸収帯と重な
る、エネルギー移動の効率が高い構成となっている。
【0254】
さらに、蛍光発光層(第1の発光層113a)のホスト材料であるcgDBCzPAの
一重項励起エネルギーは、蛍光発光物質である1,6mMemFLPAPrnの一重項励
起エネルギーよりも大きく、また、cgDBCzPAの三重項励起エネルギーは、1,6
mMemFLPAPrnの三重項励起エネルギーよりも小さいという関係にあり、蛍光発
光層(第1の発光層113a)は三重項-三重項アニヒレイションに伴う一重項励起子の
再生成及び発光が得られやすい構成となっている。
【0255】
その後、りん光発光層である第2の発光層113b上に2mDBTBPDBq-IIを膜
厚10nmとなるように成膜し、さらに、上記構造式(ix)で表されるバソフェナント
ロリン(略称:BPhen)を15nmとなるように成膜して、電子輸送層114を形成
した。
【0256】
電子輸送層114を形成したら、その後、フッ化リチウム(LiF)を1nmの膜厚とな
るように蒸着し、電子注入層115を形成し、最後に、陰極として機能する第2の電極1
02として、アルミニウムを200nmの膜厚となるように蒸着することで、本実施例の
発光素子2を作製した。
【0257】
なお、上述した蒸着過程において、蒸着は全て抵抗加熱法を用いた。
【0258】
(発光素子3の作製方法)
発光素子3は、発光素子2における第1のりん光発光層(第2の発光層113b-1)を
構成する物質の比率を2mDBTBPDBq-II:PCBBiF:[Ir(dmdpp
r-dmp)2(acac)]=0.2:0.8:0.05(重量比)とし、第2のりん
光発光層(第2の発光層113b-2)を構成する物質の比率を2mDBTBPDBq-
II:PCBBiF:[Ir(tBuppm)2(acac)]=0.9:0.1:0.
05=(重量比)とした他は発光素子2と同様に作製した。
【0259】
発光素子2及び発光素子3を、窒素雰囲気のグローブボックス内において、発光素子が大
気に曝されないようにガラス基板により封止する作業(シール材を素子の周囲に塗布し、
封止時にUV処理、80℃にて1時間熱処理)を行った後、これら発光素子の特性につい
て測定を行った。なお、測定は室温(25℃に保たれた雰囲気)で、積分球を用いて行っ
た。電流密度2.5mA/cm3における特性値をまとめた表を示す。
【0260】
【0261】
発光素子2及び発光素子3共に、特殊な光取出し構造を設けていないにもかかわらず、良
好な外部量子効率、パワー効率を示した。また、電圧も3Vとタンデム型の発光素子と比
較して低い値となっている。
【0262】
また、発光素子2及び発光素子3の発光スペクトルをそれぞれ
図19(A)、(B)に
示す。発光スペクトルから、[Ir(dmdppr-dmp)
2(acac)]由来の赤
色発光と、[Ir(tBuppm)
2(acac)]由来の緑色発光及び1,6mMem
FLPAPrn由来の青色発光がいずれも観測された。このことから、蛍光発光層である
第1の発光層113a及びりん光発光層である第2の発光層113bのどちらからも十分
に発光が得られていることがわかる。
【0263】
さらに、これら発光素子は、平均演色評価数Raも85以上と演色性も良好であり、du
vも小さく照明用途に好適である。また、色温度はそれぞれ4710Kの昼白色、295
0Kの電球色と規格に合致した特性を示している。
【0264】
ところで、発光素子2と発光素子3との違いは、第2の発光層113bを構成する物質の
混合率のみである。すなわち、構成する物質の混合率の調整という簡便な操作で2950
Kから4710Kという広い色温度範囲で白色発光を得ることができることも、本実施例
より示される。なお、調整によっては2950K以下の色温度や4710K以上の色温度
も実現可能である。また、大きな効率の低下を伴わずにこれを実現していることも大きな
特徴である。本実施例では、青、緑、赤の三色発光で発光素子を作製したため、白色発光
の事例を説明したが、他の発光色で発光素子を作製した場合は、当該発光素子を構成する
物質の混合率の調整により発光の混色の割合を制御することができ、所望の発光色を簡便
に得ることができる発光素子とすることができる。
【0265】
このように、発光素子2及び発光素子3は、非常にバランスの良い、良好な特性を有しつ
つ、簡便安価に作製することができる発光素子であることがわかる。この結果は、りん光
発光層のエネルギードナーとしてエキサイプレックスを用いたことによって励起子拡散が
抑制され三重項励起エネルギーの無放射失活が低減されたこと、蛍光発光層のホスト材料
における三重項-三重項アニヒレイションにともなう遅延蛍光の発生による発光効率の向
上が寄与している。
【実施例3】
【0266】
本実施例では、本発明の一態様の発光素子である発光素子4の作製方法及び特性について
示す。発光素子4は第1の発光層113aが陰極側に、第2の発光層113bが陽極側に
形成された発光素子である。発光素子4で用いた有機化合物の構造式を以下に示す。
【0267】
【0268】
(発光素子4の作製方法)
ガラス基板上に、酸化珪素を含むインジウム錫酸化物(ITSO)をスパッタリング法に
て110nm成膜し、第1の電極101を形成した。なお、その電極面積は2mm×2m
mとした。
【0269】
次に、基板上に発光素子を形成するための前処理として、基板表面を水で洗浄し、200
℃で1時間焼成した後、UVオゾン処理を370秒行った。
【0270】
その後、10-4Pa程度まで内部が減圧された真空蒸着装置に基板を導入し、真空蒸着
装置内の加熱室において、170℃で30分間の真空焼成を行った後、基板を30分程度
放冷した。
【0271】
次に、第1の電極101が形成された面が下方となるように、第1の電極101が形成さ
れた基板を真空蒸着装置内に設けられた基板ホルダーに固定し、10-4Pa程度まで減
圧した後、第1の電極101上に、抵抗加熱を用いた蒸着法により上記構造式(i)で表
される4,4’,4’’-(ベンゼン-1,3,5-トリイル)トリ(ジベンゾチオフェ
ン)(略称:DBT3P-II)、と酸化モリブデン(VI)を共蒸着することで、正孔
注入層111を形成した。その膜厚は、40nmとし、DBT3P-IIと酸化モリブデ
ンの比率は、重量比で4:2(=DBT3P-II:酸化モリブデン)となるように調節
した。
【0272】
続いて、正孔注入層111上に、上記構造式(vi)で表される、N-(1,1’-ビフ
ェニル-4-イル)-N-[4-(9-フェニル-9H-カルバゾール-3-イル)フェ
ニル]-9,9-ジメチル-9H-フルオレン-2-アミン(略称:PCBBiF)を2
0nmの膜厚となるように成膜し、正孔輸送層112を形成した。
【0273】
さらに、正孔輸送層112上に、上記構造式(v)で表される2-[3’-(ジベンゾチ
オフェン-4-イル)ビフェニル-3-イル]ジベンゾ[f,h]キノキサリン(略称:
2mDBTBPDBq-II)と、PCBBiF、上記構造式(vii)で表される(ジ
ピバロイルメタナト)ビス(2,3,5-トリフェニルピラジナト)イリジウム(III
)(略称:[Ir(tppr)2(dpm)]とを、重量比0.2:0.8:0.05(
=2mDBTBPDBq-II:PCBBiF:[Ir(tppr)2(dpm)])と
なるように20nm共蒸着して第1のりん光発光層(第2の発光層113b-1)を形成
し、続けて2mDBTBPDBq-IIとPCBBiFと上記構造式(viii)で表さ
れるビス[2-(6-tert-ブチル-4-ピリミジニル-κN3)フェニル-κC]
(2,4-ペンタンジオナト-κ2O,O’)イリジウム(III)(略称:[Ir(t
Buppm)2(acac)])とを、重量比0.3:0.7:0.05(=2mDBT
BPDBq-II:PCBBiF:[Ir(tBuppm)2(acac)])となるよ
うに5nm共蒸着し、第2のりん光発光層(第2の発光層113b-2)を形成してりん
光発光層である第2の発光層113bを形成した。その後、上記構造式(iii)で表さ
れる7-[4-(10-フェニル-9-アントリル)フェニル]-7H-ジベンゾ[c,
g]カルバゾール(略称:cgDBCzPA)と、上記構造式(iv)で表されるN,N
’-ビス(3-メチルフェニル)-N,N’-ビス[3-(9-フェニル-9H-フルオ
レン-9-イル)フェニル]-ピレン-1,6-ジアミン(略称:1,6mMemFLP
APrn)とを、重量比1:0.04(=cgDBCzPA:1,6mMemFLPAP
rn)となるように25nm共蒸着して蛍光発光層である第1の発光層113aを形成し
、発光層113を形成した。
【0274】
なお、りん光発光層である第2の発光層113bにおいて、2mDBTBPDBq-I
IとPCBBiFは励起錯体を形成する。また、その発光波長は[Ir(tppr)2(
dpm)]及び[Ir(tBuppm)2(acac)]の最も長波長側の吸収帯と重な
る、エネルギー移動の効率が高い構成となっている。
【0275】
さらに、蛍光発光層(第1の発光層113a)のホスト材料であるcgDBCzPAの
一重項励起エネルギーは、蛍光発光物質である1,6mMemFLPAPrnの一重項励
起エネルギーよりも大きく、また、cgDBCzPAの三重項励起エネルギーは、1,6
mMemFLPAPrnの三重項励起エネルギーよりも小さいという関係にあり、蛍光発
光層(第1の発光層113a)は三重項-三重項アニヒレイションに伴う一重項励起子の
再生成及び発光が得られやすい構成となっている。
【0276】
その後、蛍光発光層である第1の発光層113a上にcgDBCzPAを膜厚10nmと
なるように成膜し、さらに、上記構造式(ix)で表されるバソフェナントロリン(略称
:BPhen)を15nmとなるように成膜して、電子輸送層114を形成した。
【0277】
電子輸送層114を形成した後、フッ化リチウム(LiF)を1nmの膜厚となるように
蒸着し、電子注入層115を形成し、最後に、陰極として機能する第2の電極102とし
て、アルミニウムを200nmの膜厚となるように蒸着することで、本実施例の発光素子
4を作製した。なお、上述した蒸着過程において、蒸着は全て抵抗加熱法を用いた。
【0278】
発光素子4の素子構造を以下の表に示す。
【0279】
発光素子4を、窒素雰囲気のグローブボックス内において、発光素子4が大気に曝されな
いようにガラス基板により封止する作業(シール材を素子の周囲に塗布し、封止時にUV
処理、80℃にて1時間熱処理)を行った後、発光素子4の電流密度2.5mA/cm2
で、1000cd/cm2付近における特性について測定を行った。
【0280】
【0281】
発光素子4は、特殊な光取出し構造を設けていないにもかかわらず、良好な外部量子効率
、パワー効率を示した。また、電圧も2.7Vとタンデム型の発光素子と比較して非常に
低い値となっている。
【0282】
また、発光素子4の発光スペクトルを
図20に示す。発光スペクトルから、[Ir(t
ppr)
2(dpm)]由来の赤色発光と、[Ir(tBuppm)
2(acac)]由
来の緑色発光及び1,6mMemFLPAPrn由来の青色発光がいずれも観測された。
このことから、蛍光発光層である第1の発光層113a及びりん光発光層である第2の発
光層113bのどちらからも十分に発光が得られていることがわかる。
【0283】
さらに、発光素子4は、平均演色評価数Raも84と演色性も良好であり、duvも小さ
く照明用途に好適である。また、色温度は2690Kの電球色と規格に合致した特性を示
している。
【0284】
このように、発光素子4は、バランスの良い、良好な特性を有しつつ、簡便安価に作製す
ることができる発光素子であることがわかる。この結果は、りん光発光層のエネルギード
ナーとしてエキサイプレックスを用いたことによって励起子拡散が抑制され三重項励起エ
ネルギーの無放射失活が低減されたこと、蛍光発光層のホスト材料における三重項-三重
項アニヒレイションにともなう遅延蛍光の発生による発光効率の向上が寄与している。ま
た、発光層113の積層順を変更しても良好な特性が出ることが分かった。
【符号の説明】
【0285】
101 第1の電極
102 第2の電極
103 EL層
111 正孔注入層
112 正孔輸送層
113 発光層
113a 第1の発光層
113b 第2の発光層
113b-1 第2の発光層
113b-2 第2の発光層
114 電子輸送層
115 電子注入層
400 基板
401 第1の電極
403 EL層
404 第2の電極
405 シール材
406 シール材
407 封止基板
412 パッド
420 ICチップ
501 第1の電極
502 第2の電極
511 第1の発光ユニット
512 第2の発光ユニット
513 電荷発生層
601 駆動回路部(ソース線駆動回路)
602 画素部
603 駆動回路部(ゲート線駆動回路)
604 封止基板
605 シール材
607 空間
608 配線
609 FPC(フレキシブルプリントサーキット)
610 素子基板
611 スイッチング用FET
612 電流制御用FET
613 第1の電極
614 絶縁物
616 EL層
617 第2の電極
618 発光素子
623 nチャネル型FET
624 pチャネル型FET
625 乾燥材
901 筐体
902 液晶層
903 バックライトユニット
904 筐体
905 ドライバIC
906 端子
951 基板
952 電極
953 絶縁層
954 隔壁層
955 EL層
956 電極
1001 基板
1002 下地絶縁膜
1003 ゲート絶縁膜
1006 ゲート電極
1007 ゲート電極
1008 ゲート電極
1020 第1の層間絶縁膜
1021 第2の層間絶縁膜
1022 電極
1024W 発光素子の第1の電極
1024R 発光素子の第1の電極
1024G 発光素子の第1の電極
1024B 発光素子の第1の電極
1025 隔壁
1028 EL層
1029 発光素子の第2の電極
1031 封止基板
1032 シール材
1033 透明な基材
1034R 赤色の着色層
1034G 緑色の着色層
1034B 青色の着色層
1035 黒色層(ブラックマトリックス)
1036 オーバーコート層
1037 第3の層間絶縁膜
1040 画素部
1041 駆動回路部
1042 周辺部
2001 筐体
2002 光源
3001 照明装置
5000 表示領域
5001 表示領域
5002 表示領域
5003 表示領域
5004 表示領域
5005 表示領域
7101 筐体
7103 表示部
7105 スタンド
7107 表示部
7109 操作キー
7110 リモコン操作機
7201 本体
7202 筐体
7203 表示部
7204 キーボード
7205 外部接続ポート
7206 ポインティングデバイス
7210 第2の表示部
7301 筐体
7302 筐体
7303 連結部
7304 表示部
7305 表示部
7306 スピーカ部
7307 記録媒体挿入部
7308 LEDランプ
7309 操作キー
7310 接続端子
7311 センサ
7401 筐体
7402 表示部
7403 操作ボタン
7404 外部接続ポート
7405 スピーカ
7406 マイク
7400 携帯電話機
9033 留め具
9034 スイッチ
9035 電源スイッチ
9036 スイッチ
9038 操作スイッチ
9630 筐体
9631 表示部
9631a 表示部
9631b 表示部
9632a タッチパネル領域
9632b タッチパネル領域
9633 太陽電池
9634 充放電制御回路
9635 バッテリー
9636 DCDCコンバータ
9637 操作キー
9638 コンバータ
9639 ボタン