IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ トヨタ自動車株式会社の特許一覧

特許7582241二次電池の制御装置、および、二次電池の満充電容量推定方法
<>
  • 特許-二次電池の制御装置、および、二次電池の満充電容量推定方法 図1
  • 特許-二次電池の制御装置、および、二次電池の満充電容量推定方法 図2
  • 特許-二次電池の制御装置、および、二次電池の満充電容量推定方法 図3
  • 特許-二次電池の制御装置、および、二次電池の満充電容量推定方法 図4
  • 特許-二次電池の制御装置、および、二次電池の満充電容量推定方法 図5
  • 特許-二次電池の制御装置、および、二次電池の満充電容量推定方法 図6
  • 特許-二次電池の制御装置、および、二次電池の満充電容量推定方法 図7
  • 特許-二次電池の制御装置、および、二次電池の満充電容量推定方法 図8
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-11-05
(45)【発行日】2024-11-13
(54)【発明の名称】二次電池の制御装置、および、二次電池の満充電容量推定方法
(51)【国際特許分類】
   G01R 31/387 20190101AFI20241106BHJP
   G01R 31/392 20190101ALI20241106BHJP
   G01R 31/3828 20190101ALI20241106BHJP
   H01M 10/48 20060101ALI20241106BHJP
   H02J 7/00 20060101ALI20241106BHJP
【FI】
G01R31/387
G01R31/392
G01R31/3828
H01M10/48 P
H02J7/00 M
【請求項の数】 3
(21)【出願番号】P 2022064476
(22)【出願日】2022-04-08
(65)【公開番号】P2023154861
(43)【公開日】2023-10-20
【審査請求日】2024-01-25
(73)【特許権者】
【識別番号】000003207
【氏名又は名称】トヨタ自動車株式会社
(74)【代理人】
【識別番号】110001195
【氏名又は名称】弁理士法人深見特許事務所
(72)【発明者】
【氏名】大西 健太
(72)【発明者】
【氏名】葛葉 光洋
(72)【発明者】
【氏名】内田 義宏
(72)【発明者】
【氏名】菅生 雄基
【審査官】小川 浩史
(56)【参考文献】
【文献】特開2010-266221(JP,A)
【文献】特開2012-145403(JP,A)
【文献】特開2021-150076(JP,A)
【文献】特開2022-139652(JP,A)
【文献】特開2014-167457(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01R 31/36-31/396
H01M 10/42-10/48
H02J 7/00
(57)【特許請求の範囲】
【請求項1】
蓄電率に対する開放端電圧の変化率が所定値以下であるフラット領域を有するSOC-OCV特性を有する二次電池の制御装置であって、
前記二次電池の使用態様は、前記二次電池に蓄えられた電力を消費する消費モードと前記二次電池を充電する充電モードを含み、
前記制御装置は、
前記二次電池の使用態様が前記消費モードのとき、前記二次電池の電圧変化が急峻になるステージ変化の発生を検出するステージ変化検出部と、
前記二次電池の前記ステージ変化時における蓄電量を記憶する記憶部と、
前記ステージ変化検出部で前記ステージ変化を検出した時点から前記消費モードが終了するまでの間、前記二次電池から放電される電流を積算する放電電流積算部と、
前記充電モードにおいて、前記二次電池の充電開始時から前記二次電池が満充電になるまでの間、前記二次電池に充電される電流を積算する充電電流積算部と、
前記記憶部に記憶された前記蓄電量、前記放電電流積算部で積算された放電電流積算量、および、前記充電電流積算部で積算された充電電流積算量に基づいて、前記二次電池の満充電容量を算出する満充電容量算出部と、を備える、二次電池の制御装置。
【請求項2】
前記記憶部に記憶された前記蓄電量をX[Ah]、前記放電電流積算部で積算された放電電流積算量をZ[Ah]、前記充電電流積算部で積算された充電電流積算量をY[Ah」としたとき、
前記満充電容量算出部は、前記二次電池の満充電容量C[Ah]を「C=Y-Z+X」として算出する、請求項1に記載の二次電池の制御装置。
【請求項3】
蓄電率に対する開放端電圧の変化率が所定値以下であるフラット領域を有するSOC-OCV特性を有する二次電池の満充電容量推定方法であって、
前記二次電池の使用態様は、前記二次電池に蓄えられた電力を消費する消費モードと前記二次電池を充電する充電モードを含み、
前記満充電容量推定方法は、
前記消費モードのとき、前記二次電池の電圧変化が急峻になるステージ変化が発生したときから前記消費モードが終了するまでの間に前記二次電池から放電される電流の積算値である放電電流積算量を取得するステップと、
前記充電モードにおいて、前記二次電池の充電を開始したときから前記二次電池が満充電になるまでの間に前記二次電池に充電される電流の積算値である充電電流積算量を取得するステップと、
前記ステージ変化が発生したときの前記二次電池の蓄電量と前記放電電流積算量と前記充電電流積算量とに基づいて、前記二次電池の満充電容量を算出するステップとを含む、二次電池の満充電容量推定方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、二次電池の制御装置、および、二次電池の満充電容量推定方法に関する。
【背景技術】
【0002】
特開2014-181924号公報(特許文献1)では、充電可能な電池(二次電池)の満充電容量を、SOC(State Of Charge:蓄電率)-OCV(Open Circuit Voltage:開放端電圧)特性を用いて推定している。特許文献1では、充電終了後の分極の影響を排除して満充電容量を推定するため、充電分極の解消後に、二次電池の満充電容量を推定している。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2014-181924号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
リン酸鉄系(LPF系)のリチウムイオン電池において、SOC-OCV特性に、SOCに対するOCVの変化率が所定値以下であるフラット領域が存在する。これは、リチウムイオンが負極材のグラファイトの層間に入り、ある特定の層ごとにリチウムイオンを規則的に吸蔵するステージ構造を形成するためであると考えられる。蓄電量の変化に伴いステージ構造も変化(ステージ変化)するが、ステージ構造が同じ場合には、蓄電量が変化しても電極電位はほとんど変化せずフラット領域が発生し、ステージ変化時に電極電位が急峻に変化する。
【0005】
二次電池が、SOCに対するOCVの変化率が所定値以下であるフラット領域を有するSOC-OCV特性を有する場合にあっては、当該フラット領域において、SOCの増加量に対するOCVの増加量の比率が非常に小さい。このため、SOC-OCV特性にフラット領域を有する二次電池では、SOC-OCV特性を用いてSOCを算出しても、その算出精度が低い。このため、SOC-OCV特性を用いて、満充電容量を推定しても。その算出精度が低くなる。
【0006】
本開示の目的は、二次電池が、SOCに対するOCVの変化率が所定値以下であるフラット領域を有するSOC-OCV特性を有する場合であっても、満充電容量を精度よく算出可能にすることである。
【課題を解決するための手段】
【0007】
本開示の二次電池の制御装置は、蓄電率に対する開放端電圧の変化率が所定値以下であるフラット領域を有するSOC-OCV特性を有する二次電池の制御装置である。二次電池の使用態様は、二次電池に蓄えられた電力を消費する消費モードと二次電池を充電する充電モードを含む。制御装置は、二次電池の使用態様が消費モードのとき、二次電池の電圧変化が急峻になるステージ変化の発生を検出するステージ変化検出部と、二次電池のステージ変化時における蓄電量を記憶する記憶部と、ステージ変化検出部でステージ変化を検出した時点から消費モードが終了するまでの間、二次電池から放電される電流を積算する放電電流積算部と、充電モードにおいて、二次電池の充電開始時から二次電池が満充電になるまでの間、二次電池に充電される電流を積算する充電電流積算部と、記憶部に記憶された蓄電量、放電電流積算部で積算された放電電流積算量、および、充電電流積算部で積算された充電電流積算量に基づいて、二次電池の満充電容量を算出する満充電容量算出部と、を備える。
【0008】
この構成によれば、蓄電率に対する開放端電圧の変化率が所定値以下であるフラット領域を有するSOC-OCV特性を有する二次電池の使用態様は、二次電池に蓄えられた電力を消費する消費モードと蓄電装置を充電する充電モードを含む。制御装置のステージ変化検出部は、二次電池の使用態様が消費モードのとき、二次電池の電圧変化が急峻になるステージ変化の発生を検出する。記憶部は、二次電池のステージ変化時における蓄電量を記憶している。放電電流積算部は、ステージ変化検出部でステージ変化を検出した時点から消費モードが終了するまでの間、二次電池から放電される電流を積算する。充電電流積算部は、充電モードにおいて、二次電池の充電開始時から二次電池が満充電になるまでの間、二次電池に充電される電流を積算する。満充電容量算出部は、充電電流積算部と、記憶部に記憶された蓄電量、放電電流積算部で積算された放電電流積算量、および、充電電流積算部で積算された充電電流積算量に基づいて、満充電容量を算出する。
【0009】
フラット領域を有するSOC-OCV特性を有する二次電池では、蓄電量の変化に伴い二次電池の電圧(開放端電圧)が急峻に変化する領域が存在する。本開示では、フラット領域において、蓄電量の変化に伴い二次電池の電圧が急峻に変化する(二次電池の電圧変化が急峻になる)ことを、ステージ変化と称する。フラット領域を有するSOC-OCV特性を有する二次電池において、ステージ変化が発生するときの蓄電量[Ah]は、二次電池の劣化状態にかかわらず、ほぼ同じ値である。満充電容量算出部は、記憶部に記憶された蓄電量(ステージ変化が発生したときの蓄電量)を基準として、放電電流積算量および充電電流積算量を用いて満充電容量を算出するので、二次電池の満充電容量を精度よく算出することができる。
【0010】
好ましくは、記憶部に記憶された蓄電量をX[Ah]、放電電流積算部で積算された放電電流積算量をZ[Ah]、充電電流積算部で積算された充電電流積算量をY[Ah」としたとき、満充電容量算出部は、満充電容量C[Ah]を「C=Y-Z+X」として算出するようにしてもよい。
【0011】
この構成によれば、蓄電量、放電電流積算量、および、充電電流積算量を用いて、直接、満充電容量を算出することができる。
【0012】
本開示の二次電池の満充電容量推定方法は、蓄電率に対する開放端電圧の変化率が所定値以下であるフラット領域を有するSOC-OCV特性を有する二次電池の満充電容量推定方法である。二次電池の使用態様は、二次電池に蓄えられた電力を消費する消費モードと二次電池を充電する充電モードを含む。満充電容量推定方法は、消費モードのとき、二次電池の電圧変化が急峻になるステージ変化が発生したときから消費モードが終了するまでの間に二次電池から放電される電流の積算値である放電電流積算量を取得するステップと、充電モードにおいて、二次電池の充電を開始したときから二次電池が満充電になるまでの間に二次電池に充電される電流の積算値である充電電流積算量を取得するステップと、ステージ変化が発生したときの二次電池の蓄電量と放電電流積算量と充電電流積算量とに基づいて、二次電池の満充電容量を算出するステップとを含む。
【0013】
この方法によれば、フラット領域を有するSOC-OCV特性を有する二次電池において、ステージ変化が発生するときの蓄電量[Ah]は、二次電池の劣化状態にかかわらずほぼ同じ値であるので、蓄電量(ステージ変化が発生したときの蓄電量)を基準として、放電電流積算量および充電電流積算量を用いて満充電容量を算出することにより、二次電池の満充電容量を精度よく算出することができる。
【発明の効果】
【0014】
本開示によれば、二次電池が、蓄電率(SOC)に対する開放端電圧(OCV)の変化率が所定値以下であるフラット領域を有するSOC-OCV特性を有する場合であっても、満充電容量を精度よく算出できる。
【図面の簡単な説明】
【0015】
図1】本実施の形態に係る電動車両の概略構成を説明する図である。
図2】本実施の形態に係るバッテリのSOC-OCV特性の一例を示す図である。
図3】本実施の形態に係るバッテリのOCVと蓄電量の関係の一例を示す図である。
図4】本実施の形態に係るバッテリの充放電特性の一例を示す図である。
図5】制御装置に構成された機能ブロックを説明する図である。
図6】本実施の形態の作用を説明する図である。
図7】制御装置で実行される放電電流積算量算出処理の概略を示すフローチャートである。
図8】制御装置で実行される満充電容量推定処理の概略を示すフローチャートである。
【発明を実施するための形態】
【0016】
以下、本開示の実施の形態について、図を参照して詳細に説明する。なお、以下に示す実施の形態においては、同一のまたは共通する部分について図中同一の符号を付し、その説明は繰り返さない。
【0017】
図1は、本実施の形態に係る電動車両100の概略構成を説明する図である。本実施の形態においては、電動車両100が電気自動車(BEV:Battery Electric Vehicle)である例について説明するが、電動車両100はBEVであることに限られるものではなく、たとえば、プラグインハイブリッド自動車(PHEV:Plug-in Hybrid Electric Vehicle)、ハイブリッド自動車(HEV:Hybrid Electric Vehicle)、燃料電池自動車(FCEV:Fuel Cell Electric Vehicle)などであってもよい。
【0018】
図1を参照して、電動車両100は、バッテリパック20と、昇圧コンバータ22と、インバータ23と、モータジェネレータ25と、伝達ギヤ26と、駆動輪27と、制御装置30と、表示部50とを備える。
【0019】
バッテリパック20は、電動車両100の駆動電源(すなわち動力源)として電動車両100に搭載される。バッテリパック20は、複数の単電池(セル)11を積層したスタックを直列に接続したバッテリ(電池モジュール)10によって構成される。セル11は、再充電可能な、たとえばリン酸鉄系リチウムイオン電池(LFP電池)によって構成されている。なお、本実施の形態では、スタックを直列に接続しているが、並列にスタックを接続したバッテリ10であってもよい。バッテリ10、セル11、および、スタックが、本開示の「二次電池」の一例に相当する。
【0020】
バッテリパック20には、さらに、電流センサ15、温度センサ16、電圧センサ17、および電池監視ユニット18が配置される。電池監視ユニット18は、たとえば、電子制御ユニット(ECU:Electronic Control Unit)によって構成される。以下では、電池監視ユニット18を「監視ECU18」とも称する。
【0021】
電流センサ15は、バッテリ10の入出力電流(以下、「電池電流Ib」とも称する)を検出する。以下では、電池電流Ibに関して、放電電流を正の値とし、充電電流を負の値として表すこととする。
【0022】
温度センサ16は、バッテリ10の温度(以下、「電池温度Tb」とも称する)を検出する。なお、温度センサ16は、複数個配置してもよい。この場合には、複数の温度センサ16による検出温度の加重平均値、最高値、または最低値を電池温度Tbとして用いたり、特定の温度センサ16による検出温度を電池温度Tbとして用いたりすることができる。電圧センサ17は、バッテリ10(セル11)の端子間電圧(以下、「電池電圧Vb」とも称する)を検出する。
【0023】
監視ECU18は、電流センサ15、温度センサ16、および電圧センサ17の検出値を受ける。監視ECU18は、電池電圧Vb、電池電流Ib、および電池温度Tbを制御装置30へ出力する。あるいは、監視ECU18は、内蔵されたメモリ(図示せず)に、電池電圧Vb、電池電流Ib、および電池温度Tbのデータを記憶可能である。
【0024】
さらに、監視ECU18は、電池電圧Vb、電池電流Ib、および電池温度Tbの少なくとも一部を用いて、バッテリ10の蓄電率(充電率)(SOC)を算出する機能を有する。なお、SOCの算出機能は、後述する制御装置30に持たせることも可能である。この場合には、制御装置30にSOCを算出する推定部が設けられる。
【0025】
なお、以下においては、電池電圧Vb、電池電流Ib、電池温度Tb、SOC等のバッテリ10に関するデータを総称して「測定データ」とも称する。
【0026】
バッテリ10は、システムメインリレー21a、21bを経由して昇圧コンバータ22に接続される。昇圧コンバータ22は、バッテリ10の出力電圧を昇圧する。昇圧コンバータ22は、インバータ23と接続されており、インバータ23は、昇圧コンバータ22からの直流電力を交流電力に変換する。
【0027】
モータジェネレータ(三相交流モータ)25は、インバータ23からの交流電力を受けることにより、電動車両100を走行させるための運動エネルギーを生成する。モータジェネレータ25によって生成された運動エネルギーは、駆動輪27に伝達される。一方で、電動車両100を減速させるときや、電動車両100を停止させるとき、モータジェネレータ25は、電動車両100の運動エネルギーを電気エネルギーに変換する。モータジェネレータ25で生成された交流電力は、インバータ23によって直流電力に変換され、昇圧コンバータ22を通じてバッテリ10に供給される。これにより、回生電力をバッテリ10に蓄えることができる。このように、モータジェネレータ25は、バッテリ10との間での電力の授受(すなわち、バッテリ10の充放電)を伴って、車両の駆動力または制動力を発生するように構成される。
【0028】
なお、昇圧コンバータ22は、省略することができる。また、モータジェネレータ25として直流モータを用いるときには、インバータ23を省略することができる。
【0029】
なお、動力源としてエンジンがさらに搭載されたPHEVとして電動車両100が構成される場合には、モータジェネレータ25の出力に加えて、エンジンの出力を走行のための駆動力に用いることができる。また、エンジン出力によって発電するモータジェネレータを用いて、エンジン出力によってバッテリ10の充電電力を発生させることも可能である。
【0030】
電動車両100は、外部電源40によってバッテリ10を充電するための外部充電機能を具備するように構成される。電動車両100は、充電器28および充電リレー29a、29bを備える。本開示において、外部電源40を用いたバッテリ10の充電を「外部充電」と称する。
【0031】
外部電源40は、車両の外部に設けられた電源であり、外部電源40としては、たとえば商用電源である。充電器28は、外部電源40からの電力をバッテリ10の充電電力に変換する。充電器28は、充電リレー29a、29bを経由してバッテリ10に接続されている。充電リレー29a、29bがオンであるとき、外部電源40からの電力によってバッテリ10を充電することができる。
【0032】
外部電源40および充電器28は、たとえば、充電ケーブル45によって接続可能である。すなわち、充電ケーブル45の装着時に、外部電源40および充電器28が電気的に接続されることにより、外部電源40を用いてバッテリ10を充電することができる。あるいは、外部電源40および充電器28の間で、非接触に電力が伝送されるように電動車両100が構成されてもよい。たとえば、外部電源側の送電コイル(図示せず)および電動車両側の受電コイル(図示せず)を経由して、電力を伝送することによって、外部電源40によりバッテリ10を充電することができる。
【0033】
外部電源40から交流電力が供給される場合には、充電器28は、外部電源40からの供給電力(交流電力)を、バッテリ10の充電電力(直流電力)に変換する機能を有するように構成される。外部電源40が直流電源である場合には、充電器28は、外部電源40からの直流電力の大きさを調整しバッテリ10へ供給する。電動車両100の外部充電の態様については特に限定されるものではない。
【0034】
制御装置30は、たとえば電子制御ユニット(ECU)によって構成され、制御部31、記憶部32、ステージ変化検出部33、放電電流積算部34、充電電流積算部35、満充電容量算出部36を含む。制御部31は、昇圧コンバータ22、およびインバータ23等の各種装置の動作を制御する。
【0035】
記憶部32には、制御部31、ステージ変化検出部33、等を動作させるためのプログラムや各種データが記憶される。なお、記憶部32については、制御部31等によるデータの読出および書込を可能として、制御装置30の外部に設けることも可能である。なお、ステージ変化検出部33、放電電流積算部34、充電電流積算部35、および、満充電容量算出部36の詳細に関しては、後述する。
【0036】
制御装置30の制御部31は、図示しない、アクセル開度センサ、車速センサ等の各種センサ等の信号を受け、各種の演算を行い、システムメインリレー21a、21b、昇圧コンバータ22、およびインバータ23等の動作を制御する。制御部31は、スタートスイッチ(パワースイッチ)がオフからオンに切り替わると、システムメインリレー21a、21bをオフからオンに切り替えたり、昇圧コンバータ22およびインバータ23を動作させたりする。制御装置30は、スタートスイッチがオンからオフに切り替わると、システムメインリレー21a、21bをオンからオフに切り替えたり、昇圧コンバータ22やインバータ23の動作を停止させたりする。制御部31は、外部充電が行われるとき、充電器28、充電リレー29a、29bを制御する。
【0037】
表示部50は、制御装置30からの制御指令に応じて、電動車両100のユーザに対して所定の情報を表示するように構成される。表示部50は、たとえば、液晶パネルを用いたタッチパネルディスプレイ等によって構成することができる。
【0038】
図2は、本実施の形態に係るバッテリ10(セル11)のSOC-OCV特性の一例を示す図である。バッテリ10(セル11)として、たとえば、リン酸鉄系リチウムイオン電池が採用される場合には、図2に示すように、SOC-OCV特性は、SOCに対するOCVの変化率が所定値よりも小さいフラット領域を有する。SOCは、バッテリ10の満充電容量に対する現在の蓄電量を百分率で示したものである。フラット領域においては、SOCに対するOCVの変化率は、0.2mV/%程度である。
【0039】
このため、SOC-OCV特性にフラット領域が有するバッテリ(セル)において、SOC-OCV特性を用いてSOCを算出しても、その算出精度が低い。したがって、特許文献1で開示されるように、SOC-OCV特性を用いてSOCを求め、このSOCを用いて満充電容量を算出しても、SOC-OCV特性にフラット領域が有するバッテリ(セル)の満充電容量を精度よく算出できない。
【0040】
本実施の形態のSOC-OCV特性では、図2に示すように、フラット領域が3個のステージに別れている。蓄電量の変化に伴いステージ構造も変化(ステージ変化)するが、ステージ構造が同じ場合には、蓄電量が変化しても電極電位はほとんど変化しないため、フラット領域が発生する。そして、ステージ変化時に電極電位が急峻に変化するため、OCVが急峻に変化し(OCVの変化率が所定値より大きくなり)、フラット領域からフラット領域に至るステージ変化が発生する。本実施の形態では、図2に示すように、2箇所においてステージ変化が発生している。本開示において、「ステージ変化」とは、SOC-OCV特性において、OCVが急峻に変化し(OCVの変化率が所定値より大きくなり)、フラット領域から隣接するフラット領域に至ることをいう。
【0041】
図3は、本実施の形態に係るバッテリ10(セル11)のOCVと蓄電量の関係の一例を示す図である。図3において、縦軸はOCVであり、横軸は蓄電量[Ah]である。図3において、実線は、バッテリ10(セル11)の新品時における、OCVと蓄電量の関係を示しており、破線は、バッテリ10が劣化した場合の関係を示している。図3に示すように、バッテリ10が劣化して満充電時の蓄電量(満充電容量)が低下しても、ステージ変化時における蓄電量は変化せず、新品時と劣化時において、ほぼ同じ値になる。
【0042】
本実施の形態では、バッテリ10が劣化しても、ステージ変化時における蓄電量はほぼ同じ値であることに着目し、ステージ変化が発生したときの蓄電量を基準として、バッテリ10の満充電容量を精度よく算出する。
【0043】
図4は、本実施の形態に係るバッテリ10(セル11)の充放電特性の一例を示す図である。図4において、縦軸は電池電圧Vbであり、横軸はSOCである。図4において、実線はバッテリ10のSOC-OCV特性であり、一点鎖線は、大きな電流(たとえば、充電レート:2C)で充電した場合の充電特性(充電曲線)であり、二点鎖線は、大きな電流(たとえば、放電レート:2C)で放電した場合の放電特性(放電曲線)を示している。図4に示すように、充放電電流が大きい場合、ステージ変化時に電池電圧Vbの急峻な変化が現れない場合がある。
【0044】
本実施の形態では、電動車両100の走行時にはバッテリ10の放電レートが比較的小さくなる走行状態(たとえば、定常走行時等)の頻度が高いことを利用して、バッテリ10のステージ変化を検出する。
【0045】
図5は、制御装置30に構成された機能ブロックを説明する図である。制御部31は、上記のように、各種センサからの信号、監視ECU18から測定データを用いて所定の演算を実行しインバータ23や充電器28等を制御して、電動車両100の走行状態や外部充電の制御を行う。
【0046】
電動車両100はBEVであり、制動時や降坂走行時には回生電力によってバッテリ10が充電されるが、回生電力は走行時に消費する電力に比べて少ない。このため、電動車両100の走行時には、バッテリ10のSOCが低下する。電動車両100の走行時は、本開示における、「二次電池に蓄えらら電力を消費する消費モード」の一例に相当する。なお、本開示において、電動車両100の走行時とは、スタートスイッチ(パワースイッチ)がオンされてからオフされるまでの間であり、電動車両100が走行可能な状態である。
【0047】
記憶部32には、バッテリ10(セル11)のステージ変化時における蓄電量X[Ah]が記憶されている。本実施の形態のバッテリ10(セル11)には、図3に示すように、2箇所においてステージ変化が発生している。本実施の形態では、蓄電量が大きい(SOCが大きい)方のステージ変化時の蓄電量Xを、記憶部32に格納している。なお、ステージ変化時の蓄電量Xは、予め実験やシミュレーションによって求められ、記憶部32に記憶される。
【0048】
ステージ変化検出部33は、電動車両100の走行時、バッテリ10の電圧変化が急峻になるステージ変化の発生を検出する。本実施の形態では、蓄電量が大きい(SOCが大きい)方のステージ変化の発生を検出する。たとえば、図3図2)において、蓄電量が大きい(SOCが大きい)方のステージ変化が、SOCが50%以上の領域で発生し、蓄電量が小さい(SOCが小さい)方のステージ変化が、SOCが50%未満の領域で発生する場合、ステージ変化検出部33は、電動車両100の走行時、電池電圧Vbの微分値ΔVbとSOCを監視する。そして、SOCが50%の領域において微分値ΔVbが所定値α以上になったとき、ステージ変化の発生を検出し、放電電流積算部34へ、ステージ変化の検出信号を出力する。
【0049】
放電電流積算部34は、ステージ変化検出部33から、ステージ変化の検出信号を受信すると、電池電流Ibを用いて、バッテリ10からの放電電流の積算を開始する。電池電流Ibは、放電電流が正の値であり、充電電流が負の値であるので、放電電流の積算値である放電電流積算量Z[Ah]は、回生電力によってバッテリ10が充電されるときには減少するが、SOCの低下に伴い増加する。放電電流積算部34は、制御部31から、スタートスイッチがオフされ電動車両100の走行が終了したことの通知を受けると、バッテリ10からの放電電流の積算を終了し、放電電流積算量Z[Ah]を記憶部32に記憶する。放電電流積算量Z[Ah]は、ステージ変化検出部33で前記ステージ変化を検出した時点から、電動車両100の走行が終了するまで(消費モードが終了するまで)の間に、バッテリ10から放電された蓄電量[Ah]である。
【0050】
制御部31は、充電ケーブル45が接続され外部充電を開始すると、充電電流積算部35へ、外部充電の開始を通知する。充電電流積算部35は、バッテリ10の外部充電が開始されると、電池電流Ibを用いて、バッテリ10への充電電流の積算を開始する。充電電流積算部35は、バッテリ10が満充電になり外部充電が終了すると、充電電流の積算を終了し、充電電流の積算値である充電電流積算量Y[Ah]を記憶部32に記憶する。なお、電池電流Ibは、充電電流であるので負の値をとるが、充電電流積算量Y[Ah]は、符号を反転し正の値として記憶される。制御部31は、電池電圧Vbが満充電に対応する値になったとき、充電リレー29a、29bをオフ(開放)し充電器28の作動を停止するとともに、外部充電の終了を充電電流積算部35に通知する。なお、制御部31は、バッテリ10のSOCが満充電を示す値(たとえば、90%)になったとき、外部充電を終了するようにしてもよい。満充電に対応する電池電圧Vbの値、および、満充電を示すSOCの値は、バッテリ10(セル11)の満充電付近において、電池電圧Vb/OCVが立ち上がった(急激に大きくなった)以降の値が好ましい。
【0051】
満充電容量算出部36は、バッテリ10(セル11)の満充電容量Cを算出する。満充電容量算出部36は、記憶部32から、ステージ変化時における蓄電量X[Ah]、放電電流積算量Z[Ah]、充電電流積算量Y[Ah]を読み出す。そして、満充電容量算出部36は、満充電容量C[Ah」を「C=Y-Z+X」として算出する。満充電容量Cは、バッテリ10(セル11)の満充電時における蓄電量[Ah]である。
【0052】
図6は、本実施の形態の作用を説明する図である。図6を参照して、電動車両100のスタートスイッチ(パワースイッチ)がオンになり、走行を開始すると、バッテリ10の蓄電量/SOCが減少する(バッテリ10の使用態様が消費モードになる)。バッテリ10の蓄電量/SOCが低下して行く際に、SOCが50%以上の領域において、電池電圧Vbの変化が急峻になり微分値ΔVbが所定値以上であるステージ変化が発生すると、ステージ変化検出部33でステージ変化の発生を検出する。
【0053】
放電電流積算部34は、ステージ変化が検出された時点から、スタートスイッチ(パワースイッチ)がオフされて、電動車両100の走行が終了するまで(消費モードが終了するまで)の間、電池電流Ibを用いて、バッテリ10から放電される放電電流を積算する。そして、放電電流積算部34は、放電電流の積算値である放電電流積算量Z[Ah]を、記憶部32に格納する。
【0054】
充電電流積算部35は、外部充電が開始されると、電池電流Ibを用いて、バッテリ10に充電される充電電流の積算を開始する。充電電流積算部35は、バッテリ10が満充電になり外部充電が終了すると、充電電流の積算を終了する。そして、充電電流積算部35は、充電電流の積算値である充電電流積算量Y[Ah]を、記憶部32に格納する。
【0055】
満充電容量算出部36は、記憶部32から、ステージ変化時における蓄電量X[Ah]、放電電流積算量Z[Ah]、充電電流積算量Y[Ah]を読み出し、満充電容量C[Ah」を「C=Y-Z+X」として算出する。ステージ変化時における蓄電量X[Ah]は、バッテリ10の新品時と劣化時において、ほぼ同じ値である。したがって、ステージ変化が発生したときの蓄電量X[Ah]を基準として、放電電流積算量Z[Ah]および充電電流積算量Y[Ah]を用い、「C=Y-Z+X」として算出した満充電容量C[Ah」は、バッテリ10(セル11)の満充電容量を精度よく表している。
【0056】
ステージ変化検出部33は、電動車両100の走行時にステージ変化の発生を検出している。電動車両100の走行時は、比較的、放電電流が小さい(Cレートが小さい)状態の頻度が高いので、ステージ変化の発生を確実に検出できる。
【0057】
本実施の形態において、制御装置30で処理される制御の概略について説明する。図7は、制御装置30で実行される放電電流積算量算出処理の概略を示すフローチャートである。このフローチャートは、電動車両100のスタートスイッチ(パワースイッチ)がオンされているとき、所定期間毎に繰り返し処理される。まず、ステップ(以下、ステップを「S」と略す)10において、電圧センサ17で検出した電池電圧Vbの微分値ΔVbが所定値α以上であるか否かを判定する。所定値αは、ステージ変化が発生しているか否かを判定する閾値であり、予め実験等で設定される。ステージ変化が発生すると、微分値ΔVbが所定値α以上になり、S10で肯定判定されS11へ進む。微分値ΔVbが所定値α未満であれば、ステージ変化は発生していないので、否定判定されS16へ進む。
【0058】
S11では、SOCが50%以上であるか否かを判定し、SOCが50%以上の場合、肯定判定されS12へ進み、SOCが50%未満であれば、否定判定されS16へ進む。
【0059】
S12では、S10およびS11で肯定判定され、蓄電量が大きい(SOCが大きい)方のステージ変化を検出したので、電池電流Ibを積算することにより放電電流を積算する。そして、S13へ進み、スタートスイッチ(パワースイッチ)がオフされたか否かを判定する。S13において、スタートスイッチがオフされていない場合は、S12に戻り、電池電流Ibを用いて放電電流の積算を継続する。スタートスイッチがオフになると、S13において肯定判定され、S14へ進む。
【0060】
S14では、S12で積算された放電電流を放電電流積算量Z[Ah]として、記憶部32に記憶し、S15に進む。S15では、フラグFを1に設定したあと、今回のルーチンを終了する。
【0061】
S10あるいはS11で否定判定され、S16に進むと、フラグFを0に設定したあと、今回のルーチンを終了する。
【0062】
図8は、制御装置30で実行される満充電容量推定処理の概略を示すフローチャートである。このフローチャートは、充電ケーブル45が接続され外部充電を開始すると実行される。ステップS20では、フラグFが1であるか否かを判定する。フラグFが1とき、肯定判定されS20へ進む。フラグFが0の場合、否定判定され、今回のルーチンを終了する。
【0063】
S21では、電池電流Ibを積算することにより、充電電流を積算する。そして、S22へ進み、バッテリ10が満充電になり、外部充電が終了したか否かを判定する。外部充電が終了していない場合には、否定判定されS21へ戻り、電池電流Ibを用いて充電電流の積算を継続する。外部充電が終了すると、S22で肯定判定されS23へ進む。
【0064】
S23では、S22で積算された充電電流を充電電流積算量Y[Ah]として、記憶部32に記憶し、S24へ進む。S24では、フラグFを0にしたあと、S25へ進む。
【0065】
S25では、記憶部32から、ステージ変化時における蓄電量X[Ah]、放電電流積算量Z[Ah]、充電電流積算量Y[Ah]を読み出し、満充電容量C[Ah」を「C=Y-Z+X」として算出したあと、今回のルーチンを終了する。
【0066】
上記の実施の形態では、蓄電量が大きい(SOCが大きい)方のステージ変化の発生を検出していたが、蓄電量が小さい(SOCが小さい)方のステージ変化の発生を検出し、このステージ変化時の蓄電量(図3において、X1[Ah])を基準として、満充電容量Cを算出するようにしてもよい。
【0067】
上記の実施の形態では、外部充電時の充電電流積算量Y[Ah]を求めていた。しかし、電動車両としてPHEVを用いた場合、PHEVの走行時に、SOCが下限値に達したあと、バッテリが満充電になるまで強制充電を行い、その強制充電における電池電流Ibを積算することにより充電電流積算量Y[Ah]を算出するようにしてもよい。
【0068】
上記の実施の形態では、ステージ変化検出部33は、電動車両100の走行時に、バッテリ10の電圧変化が急峻になるステージ変化の発生を検出していた。バッテリ10の電力を補機バッテリの充電用電力として使用する構成や、バッテリ10の電力を用いて電動エアコン等の補機負荷を駆動する構成の場合には、ステージ変化検出部33は、これらの補機類へバッテリ10から放電が行われているときに、バッテリ10の電圧変化が急峻になるステージ変化の発生を検出してもよい。この場合、放電電流積算部34は、これら補機への放電電流を積算する。
【0069】
電動車両100が、充電器28に代えて、あるいは、加えて充放電器を備え、バッテリ10から家庭用負荷や電力系統へ放電可能である場合、ステージ変化検出部33は、家庭用負荷へ放電が行われているとき、あるいは、電力系統へ放電(逆潮流)が行われているときに、バッテリ10の電圧変化が急峻になるステージ変化の発生を検出してもよい。この場合、放電電流積算部34は、家庭用負荷、電力系統への放電電流を積算する。
【0070】
上記の実施の形態では、ステージ変化検出部33は、電池電圧Vbの微分値ΔVbが所定値α以上になったとき、ステージ変化の発生を検出し、放電電流積算部34へ、ステージ変化の検出信号を出力していた。しかし、ステージ変化の発生の検出は、この方法に限られない。たとえば、バッテリ10の温度や劣化度等の各種条件下におけるステージ変化の発生時の電池電圧をマップ等に記憶しておき、このマップを用いてステージ変化の発生を検出するようにしてもよい。
【0071】
本開示における実施態様を例示すると、次のような態様を例示できる。
【0072】
1)蓄電率に対する開放端電圧の変化率が所定値以下であるフラット領域を有するSOC-OCV特性を有する二次電池(10)の制御装置であって、二次電池(10)の使用態様は、二次電池(10)に蓄えられた電力を消費する消費モードと二次電池(10)を充電する充電モードを含み、制御装置(30)は、二次電池(10)の使用態様が消費モードのとき、二次電池(10)の電圧変化が急峻になるステージ変化の発生を検出するステージ変化検出部(33)と、二次電池(10)のステージ変化時における蓄電量Xを記憶する記憶部(32)と、ステージ変化検出部(33)でステージ変化を検出した時点から消費モードが終了するまでの間、二次電池(10)から放電される電流を積算する放電電流積算部(34)と、充電モードにおいて、二次電池(10)の充電開始時から二次電池(10)が満充電になるまでの間、二次電池(10)に充電される電流を積算する充電電流積算部(35)と、記憶部(32)に記憶された蓄電量X、放電電流積算部(34)で積算された放電電流積算量Z、および、充電電流積算部(35)で積算された充電電流積算量Yに基づいて、二次電池(10)の満充電容量Cを算出する満充電容量算出部(36)と、を備える。
【0073】
2)上記1において、二次電池(10)は、電動車両(100)に搭載された動力源であり、消費モードは、二次電池(10)の電力を使用した電動車両(100)の走行時であり、充電モードは、二次電池(10)の外部充電を行っているときである。
【0074】
二次電池のステージ変化(蓄電量の変化に伴う二次電池の急峻な電圧変化)は、充放電電流が大きい場合、顕著な傾向を示さない。この構成では、電動車両の走行時(消費モード)において、ステージ変化検出部がステージ変化の発生を検出する。電動車両の走行時は、比較的、放電電流が小さい(Cレートが小さい)状態の頻度が高いので、ステージ変化検出部でステージ変化の発生を、確実に検出できる。なお、二次電池の電力を補機バッテリの充電用電力として使用する構成の場合、あるいは、二次電池の電力を用いて電動エアコン等の補機負荷の駆動を行う構成の場合、電動車両の走行時とは、これら補機類で電力消費を行う状態を含む。
【0075】
3)上記1または2において、ステージ変化検出部(33)は、二次電池(10)の電圧の微分値(ΔVb)が所定値以上のとき、ステージ変化の発生を検出する。
【0076】
4)上記1~3において、満充電容量算出部(36)は、満充電容量Cを「満充電容量C=充電電流積算量Y-放電電流積算量Z+蓄電量X」として算出する。
【0077】
以上、今回開示された実施の形態はすべての点で例示であって制限的なものではない。本開示の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
【符号の説明】
【0078】
10 バッテリ、11 単電池(セル)、15 電流センサ、16 温度センサ、17 電圧センサ、18 電池監視ユニット、20 バッテリパック、21a、21b システムメインリレー、22 昇圧コンバータ、23 インバータ、25 モータジェネレータ、26 伝達ギヤ、27 駆動輪、28 充電器、29a、29b 充電リレー、30 制御装置、31 制御部、32 記憶部、33 ステージ変化検出部、34 放電電流積算部、35 充電電流積算部、36 満充電容量算出部、40 外部電源、45 充電ケーブル、50 表示部、100 電動車両。
図1
図2
図3
図4
図5
図6
図7
図8