IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ザ・ボーイング・カンパニーの特許一覧

特許7582794航空機センサをモデリングするためのデータ主導方式機械学習
<>
  • 特許-航空機センサをモデリングするためのデータ主導方式機械学習 図1
  • 特許-航空機センサをモデリングするためのデータ主導方式機械学習 図2
  • 特許-航空機センサをモデリングするためのデータ主導方式機械学習 図3
  • 特許-航空機センサをモデリングするためのデータ主導方式機械学習 図4
  • 特許-航空機センサをモデリングするためのデータ主導方式機械学習 図5
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-11-05
(45)【発行日】2024-11-13
(54)【発明の名称】航空機センサをモデリングするためのデータ主導方式機械学習
(51)【国際特許分類】
   G06N 20/00 20190101AFI20241106BHJP
   B64F 5/60 20170101ALI20241106BHJP
【FI】
G06N20/00
B64F5/60
G06N20/00 130
【請求項の数】 14
【外国語出願】
(21)【出願番号】P 2020092347
(22)【出願日】2020-05-27
(65)【公開番号】P2021005370
(43)【公開日】2021-01-14
【審査請求日】2023-05-17
(31)【優先権主張番号】16/433,822
(32)【優先日】2019-06-06
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】500520743
【氏名又は名称】ザ・ボーイング・カンパニー
【氏名又は名称原語表記】The Boeing Company
(74)【代理人】
【識別番号】100135389
【弁理士】
【氏名又は名称】臼井 尚
(74)【代理人】
【識別番号】100086380
【弁理士】
【氏名又は名称】吉田 稔
(74)【代理人】
【識別番号】100103078
【弁理士】
【氏名又は名称】田中 達也
(74)【代理人】
【識別番号】100130650
【弁理士】
【氏名又は名称】鈴木 泰光
(74)【代理人】
【識別番号】100168099
【弁理士】
【氏名又は名称】鈴木 伸太郎
(74)【代理人】
【識別番号】100168044
【弁理士】
【氏名又は名称】小淵 景太
(74)【代理人】
【識別番号】100200609
【弁理士】
【氏名又は名称】齊藤 智和
(72)【発明者】
【氏名】アンドリュー ルイス ベレソン
(72)【発明者】
【氏名】デブラ アリス リグドン
(72)【発明者】
【氏名】マイケル トーマス スウェイン
(72)【発明者】
【氏名】ヒュー トラン グエン
【審査官】新井 則和
(56)【参考文献】
【文献】特開2016-224913(JP,A)
【文献】欧州特許出願公開第03413246(EP,A1)
【文献】特開2019-028929(JP,A)
【文献】国際公開第2018/045241(WO,A2)
【文献】特表2019-501830(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G06N 20/00
B64F 5/60
(57)【特許請求の範囲】
【請求項1】
被設計システムを構成するコンポーネント集合のそれぞれのコンポーネントに関連付けられた一組のオペレーション挙動を表すトレーニングデータを受け取ることと、
前記コンポーネント集合における所与のコンポーネントに関連付けられた正常オペレーション挙動を、前記コンポーネント集合における他のコンポーネントのそれぞれに関連付けられた他の正常オペレーション挙動との関係により予測するよう構成された予測モデルを、前記トレーニングデータに基づいて生成することと、
前記所与のコンポーネントに関連付けられたリアルタイムオペレーション挙動を含むとともに、前記コンポーネント集合のそれぞれのコンポーネントに関連付けられた一組のリアルタイムオペレーション挙動を表すリアルタイムデータを受け取ることと、
前記所与のコンポーネントに関連付けられた前記リアルタイムオペレーション挙動を、前記予測モデルに基づいて、正常又は異常のいずれかに分類することと、
前記リアルタイムオペレーション挙動が異常であると分類された場合に、故障診断通知を生成することと、を含む方法。
【請求項2】
前記コンポーネント集合は、輸送体のコンポーネントを含み、前記被設計システムは、輸送体である、請求項1に記載の方法。
【請求項3】
前記コンポーネント集合は、航空機のコンポーネントを含み、前記被設計システムは、航空機である、請求項1又は2に記載の方法。
【請求項4】
前記トレーニングデータは、航空機群に含まれる複数の航空機から受け取られる、請求項1~3のいずれかに記載の方法。
【請求項5】
前記所与のコンポーネントに関連付けられた前記リアルタイムオペレーション挙動の分類は、前記航空機のアビオニクスベイに配置されたプロセッサによって、前記航空機のフライト中に実行される、請求項3又は4に記載の方法。
【請求項6】
前記予測モデルを生成することは、前記トレーニングデータを用いた教師あり機械学習プロセスにより前記予測モデルをトレーニングすることを含む、請求項1~5のいずれかに記載の方法。
【請求項7】
前記トレーニングデータの前記一組のオペレーション挙動は、公称オペレーション挙動と非公称オペレーション挙動との両方を含む、請求項1~6のいずれかに記載の方法。
【請求項8】
前記一組のリアルタイムオペレーション挙動は、ユーザ入力群、機器状態群、測定値群、又は、それらの組み合わせを含む、請求項1~7のいずれかに記載の方法。
【請求項9】
前記コンポーネント集合における第2コンポーネントに関連付けられた第2正常オペレーション挙動を、前記コンポーネント集合における他のコンポーネントのそれぞれに関連付けられた他の正常オペレーション挙動との関係により予測するよう構成された第2予測モデルを、前記トレーニングデータに基づいて生成することをさらに含み、前記一組のリアルタイムオペレーション挙動は、前記第2コンポーネントについて第2リアルタイムオペレーション挙動を含んでおり、
前記第2コンポーネントに関連付けられた前記第2リアルタイムオペレーション挙動を、正常又は異常のいずれかに分類することと、
前記第2リアルタイムオペレーション挙動が異常であると分類された場合に、故障診断通知を生成することと、をさらに含む、請求項1~8のいずれかに記載の方法。
【請求項10】
前記所与のコンポーネントを特定するために、最初に述べた前記予測モデル及び前記第2予測モデルに基づいてパターン分析を行うことをさらに含み、前記故障診断通知は、前記所与のコンポーネントの特定を含むものである、請求項9に記載の方法。
【請求項11】
前記故障診断通知を出力装置に送ることをさらに含む、請求項1~10のいずれかに記載の方法。
【請求項12】
コンポーネント集合のそれぞれのコンポーネントに関連付けられた一組のリアルタイムオペレーション挙動を表すリアルタイムデータを生成するよう構成された被設計システムにおけるコンポーネント集合と、
前記コンポーネント集合における所与のコンポーネントに関連付けられた正常オペレーション挙動を、前記コンポーネント集合における他のコンポーネントのそれぞれに関連付けられた他の正常オペレーション挙動との関係により予測するように、コンピュータ処理された予測モデルと、
前記所与のコンポーネントに関連付けられたリアルタイムオペレーション挙動を含む、前記一組のリアルタイムオペレーション挙動を受け取るとともに、前記予測モデルに基づいて、前記所与のコンポーネントに関連付けられた前記リアルタイムオペレーション挙動を、正常又は異常のいずれかに分類するよう構成されたプロセッサと、
前記プロセッサが前記リアルタイムオペレーション挙動を異常であると分類した場合に、故障診断通知を出力するよう構成された出力装置と、を含むシステム。
【請求項13】
前記コンポーネント集合のそれぞれのコンポーネントに関連付けられた一組のオペレーション挙動を表すトレーニングデータを受け取るとともに、前記トレーニングデータに基づいて前記予測モデルを生成するよう構成された第2プロセッサをさらに含む、請求項12に記載のシステム。
【請求項14】
前記コンポーネント集合は、輸送体のコンポーネントを含んでおり、前記被設計システムは、輸送体であるか、
前記コンポーネント集合は、航空機のコンポーネントを含み、前記被設計システムは、航空機であるか、
前記コンポーネント集合は、ユーザ入力装置群、機器群、測定センサ群、又は、それらの組み合わせを含むものであるか、のうちの少なくとも1つを充足する、請求項12又は13に記載のシステム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、概して、状態検知(state sensing)及び/又は故障検知(fault sensing)に関し、より具体的には、データ主導方式機械学習を用いて航空機センサをモデリングする技術に関する。
【背景技術】
【0002】
例えば、工場設備及び機械など、また、特に航空機やその他の輸送体などの被設計システム(engineered system)は、一般的に、多くのコンポーネント及びサブシステムを含む。システムが適切に機能するために、これらのコンポーネントは、保守や交換を定期的に行う必要がある。時には、定期的な保守の範囲外で、コンポーネント及び/又はサブシステムに予想外の劣化が生じる場合がある。劣化したコンポーネントは、ログ、認識可能な現象(noticeable effects)、トラブルシューティング、定期検査、及び/又は、その他の故障検知方法によって特定されうる。このような状況が発生すると、予定外のメンテナンス及び多大なコストが必要になる可能性がある。
【0003】
現行の対策は、手作業を基本とするものが一般的であり、また、検査対象である特定のサブシステムの専門家のサポートを必要とする。この対策は、時間とコストがかかる上に、問題の発生を確実に予測して予定外のダウンタイムの発生を防ぐには、十分でない可能性がある。また、現行のコンポーネント及びサブシステムの劣化の検知方法では、誤検知や見落としも多く発生する傾向がある。
【0004】
特定のサブシステムでは、機械学習技術を利用して不具合の検知を行っている。しかしながら、現在利用されている機械学習は、個々のサブシステムに注目した手法であり、同じ被設計システムに含まれる他のコンポーネントやサブシステムから収集されるデータは対象に含まれない。このため、現行のアプローチでは、環境的及び外的な影響を捕捉するセンサにおいて、システム全体として潜在的に含まれる有用な情報が見過ごされる可能性がある。よって、現在利用されている機械学習技術では、コンポーネント及び/又はサブシステムの劣化を、被設計システム全体との関連に基づいて確実に検知することはできない。また、その他の欠点も含まれうる。
【発明の概要】
【0005】
本開示によれば、被設計システムにおけるコンポーネント及び/又はサブシステムの劣化を、他のコンポーネント及び/又はサブシステムとの関連に基づいて検知するシステム及び方法が提供される。本開示のシステム及び方法によれば、劣化コンポーネントを正確に検知することができるので、予定外のメンテナンスに関わる時間及びコストを節約することができる。例えば、コンポーネントの劣化は、故障の前触れである可能性もあるので、劣化コンポーネントを検出することにより、故障や異常を予測することが可能になる。一実施例による方法は、被設計システムを構成するコンポーネント集合のそれぞれコンポーネントに関連付けられた一組のオペレーション挙動を表すトレーニングデータを受け取ることを含む。本方法は、前記コンポーネント集合における所与のコンポーネントに関連付けられた正常オペレーション挙動を、前記コンポーネント集合における他のコンポーネントのそれぞれに関連付けられた他の正常オペレーション挙動との関係により予測するよう構成された予測モデルを、前記トレーニングデータに基づいて生成することをさらに含む。本方法は、前記所与のコンポーネントに関連付けられたリアルタイムオペレーション挙動を含む、前記コンポーネント集合のそれぞれのコンポーネントに関連付けられた一組のリアルタイムオペレーション挙動を表すリアルタイムデータを受け取ることをさらに含む。本方法は、前記所与のコンポーネントに関連付けられた前記リアルタイムオペレーション挙動を、前記予測モデルに基づいて、正常又は異常のいずれかに分類することを含む。前記方法は、前記リアルタイムオペレーション挙動が異常であると分類された場合に、故障診断通知を生成することをさらに含む。
【0006】
いくつかの実施例では、前記コンポーネント集合は、輸送体のコンポーネントを含み、前記被設計システムは、輸送体である。いくつかの実施例では、前記コンポーネント集合は、航空機のコンポーネントを含み、前記被設計システムは、航空機である。いくつかの実施例では、前記トレーニングデータは、航空機群に含まれる複数の航空機から受け取られる。いくつかの実施例では、前記所与のコンポーネントに関連付けられた前記リアルタイムオペレーション挙動の分類は、前記航空機のアビオニクスベイに配置されたプロセッサによって、前記航空機のフライト中に実行される。いくつかの実施例では、前記予測モデルを生成することは、前記トレーニングデータを用いた教師あり機械学習プロセスにより前記予測モデルをトレーニングすることを含む。いくつかの実施例では、前記一組のリアルタイムオペレーション挙動は、ユーザ入力群、機器状態群、測定値群、又は、それらの組み合わせを含む。
【0007】
いくつかの実施例では、本方法は、前記コンポーネント集合における第2コンポーネントに関連付けられた第2正常オペレーション挙動を、前記コンポーネント集合における他のコンポーネントのそれぞれに関連付けられた他の正常オペレーション挙動との関係により予測するよう構成された第2予測モデルを、前記トレーニングデータに基づいて生成することをさらに含む。前記一組のリアルタイムオペレーション挙動は、前記第2コンポーネントの第2リアルタイムオペレーション挙動を含む。いくつかの実施例では、本方法は、前記第2コンポーネントに関連付けられた前記第2リアルタイムオペレーション挙動を、正常又は異常のいずれかに分類することと、前記第2リアルタイムオペレーション挙動が異常であると分類された場合に、故障診断通知を生成することと、を含む。
【0008】
いくつかの実施例では、前記故障診断通知は、前記所与のコンポーネントの特定を含む。いくつかの実施例では、本方法は、前記故障診断通知を出力装置に送ることを含む。
【0009】
いくつかの実施例によるシステムは、コンポーネント集合のそれぞれのコンポーネントに関連付けられた一組のリアルタイムオペレーション挙動を表すリアルタイムデータを生成するよう構成された被設計システムにおけるコンポーネント集合を含む。前記システムは、前記コンポーネント集合における所与のコンポーネントに関連付けられた正常オペレーション挙動を、前記コンポーネント集合における他のコンポーネントのそれぞれに関連付けられた他の正常オペレーション挙動との関係により予測するように、コンピュータにおいて実現された予測モデルをさらに含む。前記システムは、前記所与のコンポーネントに関連付けられたリアルタイムオペレーション挙動を含む、前記一組のリアルタイムオペレーション挙動を受け取るとともに、前記予測モデルに基づいて、前記所与のコンポーネントに関連付けられた前記リアルタイムオペレーション挙動を、正常又は異常のいずれかに分類するよう構成されたプロセッサをさらに含む。前記システムは、前記プロセッサが前記リアルタイムオペレーション挙動を異常であると分類した場合に、故障診断通知を出力するよう構成された出力装置をさらに含む。
【0010】
いくつかの実施例では、前記システムは、前記コンポーネント集合のそれぞれのコンポーネントに関連付けられた一組のオペレーション挙動を表すトレーニングデータを受け取るとともに、前記トレーニングデータに基づいて前記予測モデルを生成するよう構成された第2プロセッサを含む。いくつかの実施例では、前記コンポーネント集合は、輸送体のコンポーネントを含み、前記被設計システムは、輸送体である。いくつかの実施例では、前記コンポーネント集合は、航空機のコンポーネントを含み、前記被設計システムは、航空機である。いくつかの実施例では、前記プロセッサは、航空機のアビオニクスベイに配置される。いくつかの実施例では、前記コンポーネント集合は、ユーザ入力装置群、機器群、測定センサ群、又は、それらの組み合わせを含む。
【0011】
いくつかの実施例における方法は、被設計システムを構成するコンポーネント集合のそれぞれのコンポーネントに関連付けられた一組のリアルタイムオペレーション挙動を表すリアルタイムデータを受け取ることを含む。前記一組のリアルタイムオペレーション挙動は、前記コンポーネント集合における所与のコンポーネントに関連付けられたリアルタイムオペレーション挙動を含む。本方法は、前記所与のコンポーネントに関連付けられた正常オペレーション挙動を、前記コンポーネント集合における他のコンポーネントのそれぞれに関連付けられた他の正常オペレーション挙動との関係により予測するよう構成された予測モデルに基づいて、前記所与のコンポーネントに関連付けられた前記リアルタイムオペレーション挙動を正常又は異常のいずれかに分類することをさらに含む。前記方法は、前記リアルタイムオペレーション挙動が異常であると分類された場合に、故障診断通知を生成することをさらに含む。
【0012】
いくつかの実施例では、前記方法は、前記コンポーネント集合のそれぞれのコンポーネントに関連付けられた一組のオペレーション挙動を表すトレーニングデータを受け取ることと、前記トレーニングデータに基づいて、前記予測モデルを生成することと、を含む。いくつかの実施例では、前記予測モデルを生成することは、前記トレーニングデータを用いた教師あり機械学習プロセスにより前記予測モデルをトレーニングすることを含む。いくつかの実施例では、前記一組のリアルタイムオペレーション挙動は、ユーザ入力群、機器状態群、測定値群、又は、それらの組み合わせを含む。
【図面の簡単な説明】
【0013】
図1】被設計システムにおける劣化コンポーネントを検知するための予測モデルをトレーニングするシステムの実施例を示すブロック図である。
図2】被設計システムのコンポーネントに関連付けられた正常オペレーション挙動を、予測モデルを用いて予測するシステムの実施例を示すブロック図である。
図3】被設計システムにおける劣化コンポーネントを検知するシステムの実施例を示すブロック図である。
図4】予測モデルをトレーニングする方法の実施例を示すフロー図である。
図5】被設計システムにおける劣化コンポーネントを検知する方法の実施例を示すフロー図である。
【発明を実施するための形態】
【0014】
本開示には、様々な変形や代替的な形態が可能であるが、以下では、図面を参照して特定の実施例について説明する。ただし、この説明は、本開示をこれら特定の形態に限定することを意図するものでないことは理解されよう。むしろ、あらゆる変形、均等の構成及び代替の構成も本開示の範囲に包含されることを意図するものである。
【0015】
図1を参照すると、被設計システム112における劣化コンポーネントを検知するための予測モデル138をトレーニングするシステム100の実施例のブロック図が示されている。被設計システム112は、第1コンポーネント116、第2コンポーネント118及び第3コンポーネント120を含むコンポーネント集合114を有する。同図では、例として3つのコンポーネントが示されているが、実際には、コンポーネント集合114は、3つより多いコンポーネントを含んでもよいし、それより少ないコンポーネントを含んでもよい。最も現実的な用途では、コンポーネント集合114は、多数のコンポーネントを含む。
【0016】
被設計システム112は、例えば、航空機などの輸送体に相当する。例えば、図1は、第1航空機122A、第2航空機122B及び第3航空機122Cを含む航空機群122を示している。航空機122A~Cは、互いに同じ種類の航空機であり、互いに同じコンポーネントを含んでもよい。したがって、航空機122A~Cの各々が被設計システム112に相当しうる。
【0017】
例を挙げて説明すると、第1航空機122Aは、第1コンポーネント116に相当する第1コンポーネント116Aと、第2コンポーネント118に相当する第2コンポーネント118Aと、第3コンポーネント120に相当する第3コンポーネント120Aと、を含む。同様に、第2航空機122Bは、第1コンポーネント116A及び第1コンポーネント116の双方に相当する第1コンポーネント116Bと、第2コンポーネント118A及び第2コンポーネント118の双方に相当する第2コンポーネント118Bと、第3コンポーネント120A及び第3コンポーネント120の双方に相当する第3コンポーネント120Bと、を含む。また、第3航空機122Cは、第1コンポーネント116A、第1コンポーネント116B及び第1コンポーネント116に相当する第1コンポーネント116Cと、第2コンポーネント118A、第2コンポーネント118B及び第2コンポーネント118に相当する第2コンポーネント118Cと、第3コンポーネント120A、第3コンポーネント120B及び第3コンポーネント120に相当する第3コンポーネント120Cと、を含む。
【0018】
コンポーネント116、118、120の各々は、フライト中に継続的にデータを生成する。例えば、コンポーネント集合114は、ユーザ入力装置群(例えば、操縦装置、ユーザプロンプト、録音及び録画装置など)、機器群(例えば、操縦翼面、エンジンシステム、モータなど)、測定センサ群(例えば、圧力センサ、温度センサなど)、又は、それらの組み合わせを含む。コンポーネント集合114により生成されたデータが多量にあれば、この生成データをトレーニングデータ102として利用することができる。
【0019】
トレーニングデータ102は、被設計システム112を構成するコンポーネント集合114のそれぞれのコンポーネントに関連付けられた一組のオペレーション挙動(set of operational behaviors)104を表すものでもよい。例えば、トレーニングデータ102は、第1コンポーネント116に関連付けられた第1オペレーション挙動106と、第2コンポーネント118に関連付けられた第2オペレーション挙動108と、第3コンポーネント120に関連付けられた第3オペレーション挙動110と、を表す。トレーニングデータ102は、被設計システム112が正常に動作する間、継続的に収集されるので、一組のオペレーション挙動104は、若干の例外はあるが、予測モデル138のトレーニングに適切な公称オペレーション挙動を(nominal behaviors)含む。なお、トレーニングデータのストリームには、非公称データ(off-nominal data)がある程度含まれる可能性がある。ただし、大量のデータを受け取ることから、非公称データが実質的な影響を及ぼすレベルに至ることはない。つまり、本開示のシステム100は、そのような「ノイズ」を含むトレーニングデータを許容できる堅牢な解決策であると言える。さらに、トレーニングデータ102は、航空機群122全体から収集されるので、一組のオペレーション挙動104は、航空機群122における個々の航空機のいずれかではなく、航空機群122全体に基づく公称挙動の記述であるといえる。
【0020】
システム100は、予測モデル138をトレーニングするよう構成されたコンピュータ装置130を含む。コンピュータ装置130は、プロセッサ132及びメモリ134を含む。プロセッサ132は、中央処理装置(CPU)、グラフィックス処理ユニット(GPU)、デジタル信号プロセッサ(DSP)、ペリフェラル・インターフェイス・コントローラ(PIC)、又は、他の種類のマイクロプロセッサを含むことができる。また、これは、集積回路、フィールド・プログラマブル・ゲート・アレイ(FPGA)、特定用途向け集積回路(ASIC)、論理ゲート回路の組み合わせ、その他の種類のデジタル又はアナログの電気部品など、又は、それらの組み合わせとして実現することができる。実施例によっては、プロセッサ132は、複数の処理要素に分散して配置し、分散処理を行うよう構成してもよい。
【0021】
さらに、コンピュータ装置130は、メモリ134を含む。メモリの例としては、ランダムアクセスメモリ(RAM)、リードオンリーメモリ(ROM)、磁気ディスクメモリ、光ディスクメモリ、フラッシュメモリ、データ及びプロセッサ命令を格納可能な他の種類のメモリなど、又は、それらの組み合わせがある。実施例によっては、メモリ又はその一部は、コンピュータ装置130の外部に配置されてもよいし、当該コンピュータ装置において他の部分から離れた場所に配置されてもよい。メモリ134は、プロセッサ132により実行されると、プロセッサ132に処理を実行させる命令を格納することができる。これらの処理は、本明細書に記載の任意の処理に相当し、具体的には、これらの処理は、予測モデル138のトレーニングに相当する。
【0022】
プロセッサ132とメモリ134は一緒に用いられて、予測モデル138を生成する教師あり機械学習プロセス136を実現する。予測モデル138は、オペレーション挙動を正常又は異常のいずれかに分類するのに利用できる任意の人工知能モデルを含む。例えば、予測モデル138は、決定木、関連付け規則、その他の種類の機械学習分類プロセス、又は、それらの組み合わせを含む。また、これは、サポートベクターマシンネットワーク、ベイジアンネットワーク、ニューラルネツトワーク、その他の種類の機械学習分類ネットワークシステム、又は、それらの組み合わせとして実現することができる。
【0023】
トレーニングデータ102は、動作中に複数のシステム部分(system implementations)から受け取られる。説明のため、図1では、トレーニングデータ102は、被設計システム112を航空機群全体のレベルで分析するのか、或いは、個々の航空機レベルで分析するのかによって、航空機群122から、或いは、航空機群122における個々の航空機122A、122B、122Cの任意の1つから受け取られる。なお、図1では、航空機を示しているが、被設計システムは、任意の種類の機器又は電気システムであってもよく、航空機に限定されるものではない。次に、予測モデル138は、トレーニングデータ102を用いた教師あり機械学習プロセス136によってトレーニングされる。一組のオペレーション挙動104の大部分は、コンポーネント集合114の公称挙動であるので、予測モデル138は、第1コンポーネント116における正常オペレーション挙動と異常オペレーション挙動とを判別するように構成される。好適なことに、これらの予測は、第1コンポーネント116に関連付けられた第1オペレーション挙動106だけに基づくのではなく、他のオペレーション挙動108、110にも基づいて行われる。これら他のオペレーション挙動は、コンポーネント116関連付けられてはいないが、第2コンポーネント118及び第3コンポーネント120が被設計システム112において第1コンポーネント116と相互に作用するので、関係があるといえよう。同様に、第2予測モデル139は、第2コンポーネント118の正常オペレーション挙動と異常オペレーション挙動とを判別するように構成され、第3予測モデル140は、第3コンポーネント120の正常オペレーション挙動と異常オペレーション挙動とを判別するように構成される。
【0024】
予測モデル138のトレーニングは、第1コンポーネント116の第1オペレーション挙動106に加えて、他のコンポーネント118、120についての他の挙動108、110も表すトレーニングデータ102に基づいて行われるので、予測モデル138は、第1コンポーネント116が正常に動作しているか、或いは、異常が発生しているかを、被設計システム112の全体を考慮して判別するよう構成される。第2予測モデル139及び第3予測モデル140についても、同様の効果が得られる。また、その他の効果もありうる。
【0025】
図2を参照すると、同図は、被設計システム112のコンポーネント116に関連付けられた第1正常オペレーション挙動202を、予測モデル138を用いて予測するシステム200の実施例を示すブロック図である。図1を参照して説明したように、トレーニングされた予測モデル138は、第1コンポーネント116の第1正常オペレーション挙動202を予測するのに利用できる。例えば、予測モデル138に、第2コンポーネント118の第2正常オペレーション挙動204、及び、第3コンポーネント120の第3正常オペレーション挙動206を入力する。予測モデル138は、第2正常オペレーション挙動204及び第3正常オペレーション挙動206に基づいて、第1コンポーネント116の第1正常オペレーション挙動202を特定又は予測することができる。図3を参照してさらに説明するように、予測された第1正常オペレーション挙動202は、コンポーネント116の実挙動と比較されて、コンポーネント116の挙動が正常であるか、或いは、異常が発生しているかが判別される。なお、図2では、第1コンポーネント116の第1正常オペレーション挙動202を予測する場合が示されているが、同様に、第2予測モデル139を用いて、第2コンポーネント118の第2正常オペレーション挙動204を、第1正常オペレーション挙動202と第3正常オペレーション挙動206とに基づいて予測することができる。同様に、第3予測モデル140を用いて、第3コンポーネント120の第3正常オペレーション挙動206を、第1正常オペレーション挙動202及び第2正常オペレーション挙動204に基づいて予測することができる。
【0026】
図3を参照すると、同図は、被設計システム112における劣化コンポーネントを検知するシステム300の実施例を示すブロック図である。システム300は、コンポーネント集合114を備える被設計システム112とコンピュータ装置322を含む。被設計システム112が航空機である場合は、コンピュータ装置322は、航空機のアビオニクスベイ320に配置することができる。或いは、コンピュータ装置322は、地上ベースの装置であって、フライト後の処理に用いられるものでもよい。
【0027】
コンピュータ装置322は、プロセッサ324、メモリ326及び出力装置328を含む。プロセッサ324は、中央処理装置(CPU)、グラフィックス処理ユニット(GPU)、デジタル信号プロセッサ(DSP)、ペリフェラル・インターフェイス・コントローラ(PIC)、又は、他の種類のマイクロプロセッサを含むことができる。また、これは、集積回路、フィールド・プログラマブル・ゲート・アレイ(FPGA)、特定用途向け集積回路(ASIC)、論理ゲート回路の組み合わせ、その他の種類のデジタル又はアナログ電気部品など、又は、それらの組み合わせとして実現することができる。実施例によっては、プロセッサ324は、複数の処理要素に分散して配置し、分散処理を行うよう構成してもよい。
【0028】
メモリ326の例としては、ランダムアクセスメモリ(RAM)、リードオンリーメモリ(ROM)、磁気ディスクメモリ、光ディスクメモリ、フラッシュメモリ、データ及びプロセッサ命令を格納可能な他の種類のメモリなど、又は、それらの組み合わせがある。実施例によっては、メモリ326又はその一部は、コンピュータ装置322の外部に配置されてもよいし、当該コンピュータ装置において他の部分から離れた場所に配置されてもよい。メモリ326は、プロセッサ324により実行されると、プロセッサ324に処理を実行させる命令を格納することができる。これらの処理は、本明細書に記載の任意の処理に相当し、具体的には、予測モデル138を用いて、コンポーネント116、118、120のうちの1つにおける故障を検知する処理に相当する。
【0029】
出力装置328は、ユーザ或いはコンピュータ装置322の外部装置と通信可能な任意のデバイスを含む。例えば、出力装置328は、標示灯、表示画面、スピーカなどのユーザ出力装置を含む。また、出力装置328は、シリアル通信機器、ネットワークカードなどのネットワーク出力装置を含むことができる。
【0030】
予測モデル138、139、140は、コンピュータ装置322にメモリ326又は他の形態で保存することができる。予測モデル138、139、140を用いて得られた結果に基づいて、故障診断(例えば、故障検知)の通知(indication)330を、本明細書に説明するように生成してもよい。出力装置328は、故障診断通知330をユーザ又は他のデバイスに通知するよう構成されている。
【0031】
被設計システム112は、動作中に、一組のリアルタイムオペレーション挙動308を含むリアルタイムデータ310を生成する。本明細書において、「リアルタイム」なる用語は、リアルタイムデータ310が、現時点で進行中の処理(例えば、飛行中のフライト)、又は、直近の処理(例えば、航空機が直近に飛行したフライト)に対応することを意味する。特に、「リアルタイム」なる概念は、データアクセスの遅延を考慮したものである。一組のリアルタイムオペレーション挙動308は、例えば、第1コンポーネント116に関連付けられた第1リアルタイムオペレーション挙動と、第2コンポーネント118に関連付けられた第2リアルタイムオペレーション挙動と、第3コンポーネント120に関連付けられた第3リアルタイムオペレーション挙動と、を含む。
【0032】
コンピュータ装置322は、リアルタイムデータ310を受け取る。リアルタイムデータ310に基づき、プロセッサ324は、予測モデル138を用いて、コンポーネント116に関連付けられた第1リアルタイムオペレーション挙動302を、正常又は異常のいずれかに分類する。例えば、予測モデル138は、第1コンポーネント116の正常オペレーション挙動202を算出する。この第1正常オペレーション挙動202は、第1リアルタイムオペレーション挙動302と比較され、これにより、第1リアルタイムオペレーション挙動302が異常であるか否か判別される。第1リアルタイムオペレーション挙動302が異常であると分類されると、プロセッサ324は、故障診断通知330を生成する。実施例によっては、第1リアルタイムオペレーション挙動302の分類は、フライト中に行われる。
【0033】
同様の演算を行うことによって、第2リアルタイムオペレーション挙動304及び/又は第3リアルタイムオペレーション挙動306についても、異常か否かを判別することができる。例えば、第2予測モデル139によれば、第2コンポーネント118に関連付けられた第2正常オペレーション挙動204を算出することができ、第3予測モデル140によれば、第3コンポーネント120に関連付けられた第3正常オペレーション挙動206を算出することができる。よって、コンポーネント116、118、120の各々の正常オペレーション挙動202、204、206を、一組のリアルタイムオペレーション挙動308における他のオペレーション挙動に基づいて算出することができる。一組のリアルタイムオペレーション挙動308におけるいずれかのオペレーション挙動が異常であれば、コンポーネント116、118、120のうちのいずれが異常に動作しているかを示す故障診断通知330を生成することができる。
【0034】
コンポーネント116、118、120それぞれのリアルタイムオペレーション挙動302、304、306に基づいてリアルタイムデータ310を分類する予測モデル138~140を用いることにより、システム300は、被設計システムにおける単一のコンポーネントの挙動に基づくのではなく、システム全体に基づいて、劣化コンポーネント及び/又はサブシステムを検知することができる。したがって、システム300は、他の検知システムでは見逃されるような異常挙動を検知することができる。なお、他の利点もありうる。
【0035】
図4を参照すると、同図は、予測モデルをトレーニングする方法400の実施例を示すフロー図である。方法400は、402において、被設計システムを構成するコンポーネント集合のそれぞれのコンポーネントに関連付けられた一組のオペレーション挙動を表すトレーニングデータを受け取る。例えば、コンピュータ装置130がトレーニングデータ102を受け取る。
【0036】
方法400は、404において、トレーニングデータに基づいて予測モデルを生成することをさらに含み、この予測モデルは、コンポーネント集合における所与のコンポーネントに関連付けられた正常オペレーション挙動を、コンポーネント集合における他のコンポーネントのそれぞれに関連付けられた他の正常オペレーション挙動との関係により予測するよう構成される。例えば、予測モデル138、139、140は、コンポーネント116、118、120に関連付けられた正常オペレーション挙動を、被設計システム112全体との関係により予測するように構成される。これにより、被設計システム112における劣化を診断するに際し、予測モデル138、139、140でモデリングされたコンポーネント以外のコンポーネントに関連する劣化であっても、診断できるようになる。また、方法400は、406において、第1予測モデル及び第2予測モデルに基づいてパターン分析を行って、該当するコンポーネントを特定する。予測モデル138、139、140のうちのいずれが異常を示しており、いずれが正常を示しているかに関連するパターンを分析することにより、異常挙動の根本的な原因となるサブシステムを特定することができ、場合によっては、そのサブシステムのどのコンポーネントが原因であるかを特定することができる。換言すると、劣化しており、交換が必要な部品を発見することができる。
【0037】
よって、被設計システムにおける所与のコンポーネントに関連付けられた正常オペレーション挙動を、当該システムの他のコンポーネントのそれぞれに関連付けられた他の正常オペレーション挙動との関係により予測する予測モデルを構築することにより、方法400は、所与のコンポーネントが正常に動作しているか、異常が発生しているかを、被設計システム全体を考慮して判別することができる。また、その他の効果も含まれうる。
【0038】
図5を参照すると、同図は、被設計システムにおける劣化コンポーネントを検知する方法500の実施例を示している。方法500は、502において、被設計システムを構成するコンポーネント集合のそれぞれのコンポーネントに関連付けられた一組のリアルタイムオペレーション挙動を表すリアルタイムデータを受け取ることを含む。当該一組のリアルタイムオペレーション挙動には、コンポーネント集合における所与のコンポーネントに関連付けられたリアルタイムオペレーション挙動が含まれる。例えば、コンピュータ装置322がリアルタイムデータ310を受け取る。
【0039】
方法500は、さらに、504において、所与のコンポーネントに関連付けられたリアルタイムオペレーション挙動を正常又は異常のいずれかに分類することを含み、この分類は、当該コンポーネントに関連付けられた正常オペレーション挙動を、コンポーネント集合における他のコンポーネントのそれぞれに関連付けられた他の正常オペレーション挙動との関係により予測するよう構成された予測モデルに基づいて行われる。例えば、第1リアルタイムオペレーション挙動302は、予測モデル138により分類される。
【0040】
方法500は、さらに、506において、リアルタイムオペレーション挙動が異常であると分類された場合に、故障診断通知を生成することを含む。例えば、プロセッサ324が故障診断通知330を生成する。
【0041】
方法500は、また、508において、故障診断通知を出力装置に送ることを含む。例えば、故障診断通知330は、出力装置328に送られ、出力される。
【0042】
本開示は、さらに、以下の付記による実施例も包含する。
【0043】
付記1. 被設計システムを構成するコンポーネント集合のそれぞれのコンポーネントに関連付けられた一組のオペレーション挙動を表すトレーニングデータを受け取ることと、前記コンポーネント集合における所与のコンポーネントに関連付けられた正常オペレーション挙動を、前記コンポーネント集合における他のコンポーネントのそれぞれに関連付けられた他の正常オペレーション挙動との関係により予測するよう構成された予測モデルを、前記トレーニングデータに基づいて生成することと、前記所与のコンポーネントに関連付けられたリアルタイムオペレーション挙動を含むとともに、前記コンポーネント集合のそれぞれのコンポーネントに関連付けられた一組のリアルタイムオペレーション挙動を表すリアルタイムデータを受け取ることと、前記所与のコンポーネントに関連付けられた前記リアルタイムオペレーション挙動を、前記予測モデルに基づいて、正常又は異常のいずれかに分類することと、前記リアルタイムオペレーション挙動が異常であると分類された場合に、故障診断通知を生成することと、を含む方法。
【0044】
付記2. 前記コンポーネント集合は、輸送体のコンポーネントを含み、前記被設計システムは、輸送体である、付記1に記載の方法。
【0045】
付記3. 前記コンポーネント集合は、航空機のコンポーネントを含み、前記被設計システムは、航空機である、付記1又は2に記載の方法。
【0046】
付記4. 前記トレーニングデータは、航空機群に含まれる複数の航空機から受け取られる、付記1~3のいずれかに記載の方法。
【0047】
付記5. 前記所与のコンポーネントに関連付けられた前記リアルタイムオペレーション挙動の分類は、前記航空機のアビオニクスベイに配置されたプロセッサによって、前記航空機のフライト中に実行される、付記1~4のいずれかに記載の方法。
【0048】
付記6. 前記予測モデルを生成することは、前記トレーニングデータを用いた教師あり機械学習プロセスにより前記予測モデルをトレーニングすることを含む、付記1~5のいずれかに記載の方法。
【0049】
付記7. 前記トレーニングデータの前記一組のオペレーション挙動は、正常オペレーション挙動と非公称オペレーション挙動との両方を含む、付記1~6のいずれかに記載の方法。
【0050】
付記8. 前記一組のリアルタイムオペレーション挙動は、ユーザ入力群、機器状態群、測定値群、又は、それらの組み合わせを含む、付記1~7のいずれかに記載の方法。
【0051】
付記9. 前記コンポーネント集合における第2コンポーネントに関連付けられた第2正常オペレーション挙動を、前記コンポーネント集合における他のコンポーネントのそれぞれに関連付けられた他の正常オペレーション挙動との関係により予測するよう構成された第2予測モデルを、前記トレーニングデータに基づいて生成することをさらに含み、前記一組のリアルタイムオペレーション挙動は、前記第2コンポーネントについて第2リアルタイムオペレーション挙動を含んでおり、前記第2コンポーネントに関連付けられた前記第2リアルタイムオペレーション挙動を、正常又は異常のいずれかに分類することと、前記第2リアルタイムオペレーション挙動が異常であると分類された場合に、故障診断通知を生成することと、をさらに含む、付記1~8のいずれかに記載の方法。
【0052】
付記10. 前記所与のコンポーネントを特定するために、前記第1予測モデル及び前記第2予測モデルに基づいてパターン分析を行うことをさらに含み、前記故障診断通知は、前記所与のコンポーネントの特定を含むものである、付記1~9のいずれかに記載の方法。
【0053】
付記11. 前記故障診断通知を出力装置に送ることをさらに含む、付記1~10のいずれかに記載の方法。
【0054】
付記12. コンポーネント集合のそれぞれのコンポーネントに関連付けられた一組のリアルタイムオペレーション挙動を表すリアルタイムデータを生成するよう構成された被設計システムにおけるコンポーネント集合と、前記コンポーネント集合における所与のコンポーネントに関連付けられた正常オペレーション挙動を、前記コンポーネント集合における他のコンポーネントのそれぞれに関連付けられた他の正常オペレーション挙動との関係により予測するように、コンピュータ処理された予測モデルと、前記所与のコンポーネントに関連付けられたリアルタイムオペレーション挙動を含む、前記一組のリアルタイムオペレーション挙動を受け取るとともに、前記予測モデルに基づいて、前記所与のコンポーネントに関連付けられた前記リアルタイムオペレーション挙動を、正常又は異常のいずれかに分類するよう構成されたプロセッサと、前記プロセッサが前記リアルタイムオペレーション挙動を異常であると分類した場合に、故障診断通知を出力するよう構成された出力装置と、を含むシステム。
【0055】
付記13. 前記コンポーネント集合のそれぞれのコンポーネントに関連付けられた一組のオペレーション挙動を表すトレーニングデータを受け取るとともに、前記トレーニングデータに基づいて前記予測モデルを生成するよう構成された第2プロセッサをさらに含む、付記12に記載のシステム。
【0056】
付記14. 前記コンポーネント集合は、輸送体のコンポーネントを含み、前記被設計システムは、輸送体である、付記12又は13に記載のシステム。
【0057】
付記15. 前記コンポーネント集合は、航空機のコンポーネントを含み、前記被設計システムは、航空機である、付記12~14のいずれかに記載のシステム。
【0058】
付記16. 前記コンポーネント集合は、ユーザ入力装置群、機器群、測定センサ群、又は、それらの組み合わせを含む、付記12~15のいずれかに記載のシステム。
【0059】
付記17. 被設計システムを構成するコンポーネント集合のそれぞれのコンポーネントに関連付けられるとともに、前記コンポーネント集合における所与のコンポーネントに関連付けられたリアルタイムオペレーション挙動を含む一組のリアルタイムオペレーション挙動を表すリアルタイムデータを受け取ることと、前記所与のコンポーネントに関連付けられた正常オペレーション挙動を、前記コンポーネント集合における他のコンポーネントのそれぞれに関連付けられた他の正常オペレーション挙動との関係により予測するよう構成された予測モデルに基づいて、前記所与のコンポーネントに関連付けられた前記リアルタイムオペレーション挙動を正常又は異常のいずれかに分類することと、前記リアルタイムオペレーション挙動が異常であると分類された場合に、故障診断通知を生成することと、を含む方法。
【0060】
付記18. 前記コンポーネント集合のそれぞれのコンポーネントに関連付けられた一組のオペレーション挙動を表すトレーニングデータを受け取ることと、前記トレーニングデータに基づいて、前記予測モデルを生成することと、をさらに含む、付記17に記載の方法。
【0061】
付記19. 前記予測モデルを生成することは、前記トレーニングデータを用いた教師あり機械学習プロセスにより前記予測モデルをトレーニングすることを含む、付記17又は18に記載の方法。
【0062】
付記20. 前記一組のリアルタイムオペレーション挙動は、ユーザ入力群、機器状態群、測定値群、又は、それらの組み合わせを含む、付記17~19のいずれかに記載の方法。
【0063】
方法400では、所与のコンポーネントに関連付けられたリアルタイムオペレーション挙動を正常又は異常のいずれかに分類する処理を予測モデルに基づいて行っており、当該予測モデルは、当該コンポーネントに関連付けられた正常オペレーション挙動を、コンポーネント集合における他のコンポーネントのそれぞれに関連付けられた他の正常オペレーション挙動に関連して予測するよう構成されたものであり、これにより、当該方法は、劣化コンポーネント及び/又はサブシステムの検知を、被設計システムにおける単一のコンポーネントの挙動ではなく、システム全体に鑑みて行うことができる。また、その他の利点も含まれるうる。
【0064】
上述の記載において様々な実施例について説明したが、本開示は、これに限定されるものではなく、全体として当業者に明らかなすべての変更及び変形も包含すると解釈されるべきである。
図1
図2
図3
図4
図5