(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-11-06
(45)【発行日】2024-11-14
(54)【発明の名称】表示装置、表示モジュール、及び電子機器
(51)【国際特許分類】
G09F 9/30 20060101AFI20241107BHJP
H01L 31/10 20060101ALI20241107BHJP
H10K 50/10 20230101ALI20241107BHJP
H10K 59/10 20230101ALI20241107BHJP
【FI】
G09F9/30 365
H01L31/10 G
H10K50/10
H10K59/10
(21)【出願番号】P 2020113767
(22)【出願日】2020-07-01
【審査請求日】2023-06-13
(31)【優先権主張番号】P 2019126332
(32)【優先日】2019-07-05
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000153878
【氏名又は名称】株式会社半導体エネルギー研究所
(72)【発明者】
【氏名】鎌田 太介
(72)【発明者】
【氏名】初見 亮
(72)【発明者】
【氏名】久保田 大介
(72)【発明者】
【氏名】橋本 直明
(72)【発明者】
【氏名】鈴木 恒徳
(72)【発明者】
【氏名】尾坂 晴恵
(72)【発明者】
【氏名】瀬尾 哲史
【審査官】新井 重雄
(56)【参考文献】
【文献】特開2017-208173(JP,A)
【文献】特開2011-040479(JP,A)
【文献】特開2016-015423(JP,A)
【文献】特開2018-190804(JP,A)
【文献】特開2012-186392(JP,A)
【文献】米国特許出願公開第2006/0188746(US,A1)
【文献】米国特許出願公開第2019/0065815(US,A1)
【文献】中国特許出願公開第109309105(CN,A)
【文献】特開2017-038079(JP,A)
【文献】特開2002-289352(JP,A)
【文献】特開2006-065305(JP,A)
【文献】特開2016-066597(JP,A)
【文献】特開2018-088521(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G09F 9/30
H01L 31/10
H10K 50/10
H10K 59/10
(57)【特許請求の範囲】
【請求項1】
受光デバイス
、発光デバイス
、樹脂層、遮光層及び基板を有し、
前記受光デバイスは、第1の画素電極、活性層、及び共通電極を有し、
前記発光デバイスは、第2の画素電極、発光層、電子輸送層、及び前記共通電極を有し、
前記活性層は、前記第1の画素電極上に位置し、
前記活性層は、第1の有機化合物を有し、
前記発光層は、前記第2の画素電極上に位置し、
前記発光層は、前記第1の有機化合物とは異なる第2の有機化合物を有し、
前記共通電極は、前記活性層を介して前記第1の画素電極と重なる部分と、前記発光層を介して前記第2の画素電極と重なる部分と、を有し、
前記電子輸送層は、電子輸送性材料と、第1の物質と、を有し、
前記第1の物質は、金属、金属塩、金属酸化物、または有機金属錯体であり、
前記電子輸送層は、第1の領域と、第2の領域と、を有し、
前記第1の領域と前記第2の領域とは、前記第1の物質の濃度が互いに異な
り、
前記樹脂層及び前記遮光層は、それぞれ、前記共通電極と前記基板との間に位置し、
前記樹脂層は、前記受光デバイスと重なる開口を有し、
前記樹脂層は、前記発光デバイスと重なる部分を有し、
前記遮光層は、前記共通電極と前記樹脂層との間に位置する部分を有する、表示装置。
【請求項2】
請求項
1において、
前記遮光層は、前記開口の少なくとも一部、及び、前記開口にて露出している前記樹脂層の側面の少なくとも一部を覆う、表示装置。
【請求項3】
受光デバイス
、発光デバイス
、樹脂層、遮光層及び基板を有し、
前記受光デバイスは、第1の画素電極、活性層、及び共通電極を有し、
前記発光デバイスは、第2の画素電極、発光層、電子輸送層、及び前記共通電極を有し、
前記活性層は、前記第1の画素電極上に位置し、
前記活性層は、第1の有機化合物を有し、
前記発光層は、前記第2の画素電極上に位置し、
前記発光層は、前記第1の有機化合物とは異なる第2の有機化合物を有し、
前記共通電極は、前記活性層を介して前記第1の画素電極と重なる部分と、前記発光層を介して前記第2の画素電極と重なる部分と、を有し、
前記電子輸送層は、電子輸送性材料と、第1の物質と、を有し、
前記第1の物質は、金属、金属塩、金属酸化物、または有機金属錯体であり、
前記電子輸送層は、第1の領域と、第2の領域と、を有し、
前記第1の領域と前記第2の領域とは、前記第1の物質の濃度が互いに異な
り、
前記樹脂層及び前記遮光層は、それぞれ、前記共通電極と前記基板との間に位置し、
前記樹脂層は、島状に設けられ、かつ、前記発光デバイスと重なる部分を有し、
前記遮光層は、前記共通電極と前記樹脂層との間に位置する部分を有し、
前記基板を通過した光の少なくとも一部は、前記樹脂層を介さずに、前記受光デバイスに入射する、表示装置。
【請求項4】
請求項
3において、
前記遮光層は、前記樹脂層の側面の少なくとも一部を覆う、表示装置。
【請求項5】
請求項
1乃至
請求項4のいずれか一において、
さらに、接着層を有し、
前記接着層は、前記共通電極と前記基板との間に位置し、
前記樹脂層及び前記遮光層は、それぞれ、前記接着層と前記基板との間に位置し、
前記接着層は、前記受光デバイスと重なる第1の部分と、前記発光デバイスと重なる第2の部分と、を有し、
前記第1の部分は、前記第2の部分に比べて厚い、表示装置。
【請求項6】
請求項1
乃至請求項5のいずれか一において、
前記第1の領域は、前記第2の領域よりも前記発光層側に位置し、
前記第1の領域は、前記第2の領域に比べて、前記第1の物質の濃度が高い、表示装置。
【請求項7】
請求項1
乃至請求項6のいずれか一において、
前記電子輸送性材料は、HOMO準位が-6.0eV以上であり、かつ電界強度[V/cm]の平方根が600における電子移動度が1×10
-7cm
2/Vs以上5×10
-5cm
2/Vs以下である、表示装置。
【請求項8】
請求項1乃至
請求項7のいずれか一において、
前記発光デバイスは、さらに、正孔注入層を有し、
前記正孔注入層は、前記第2の画素電極及び前記共通電極のうち陽極として機能する電極に接し、
前記正孔注入層は、第1の化合物及び第2の化合物を有し、
前記第1の化合物は、前記第2の化合物に対する電子受容性を有し、
前記第2の化合物のHOMO準位は、-5.7eV以上-5.4eV以下である、表示装置。
【請求項9】
請求項1乃至
請求項8のいずれか一において、
前記受光デバイスは、さらに、前記電子輸送層を有し、
前記電子輸送層は、前記第1の画素電極上及び前記第2の画素電極上に位置し、
前記電子輸送層は、前記活性層と重なる部分と、前記発光層と重なる部分と、を有する、表示装置。
【請求項10】
請求項1乃至
請求項9のいずれか一において、
前記受光デバイス及び前記発光デバイスは、さらに、共通層を有し、
前記共通層は、前記第1の画素電極上及び前記第2の画素電極上に位置し、
前記共通層は、前記活性層と重なる部分と、前記発光層と重なる部分と、を有する、表示装置。
【請求項11】
請求項1乃至
請求項10のいずれか一において、
前記発光デバイスは、青色の光を呈する、表示装置。
【請求項12】
請求項1乃至
請求項11のいずれか一において、
前記発光デバイスは、蛍光発光デバイスである、表示装置。
【請求項13】
請求項1乃至
請求項12のいずれか一において、
可撓性を有する、表示装置。
【請求項14】
請求項1乃至
請求項13のいずれか一に記載の表示装置と、コネクタまたは集積回路と、を有する、表示モジュール。
【請求項15】
請求項
14に記載の表示モジュールと、
アンテナ、バッテリ、筐体、カメラ、スピーカ、マイク、及び操作ボタンのうち、少なくとも一つと、を有する、電子機器。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の一態様は、表示装置、表示モジュール、及び電子機器に関する。本発明の一態様は、受光デバイス(受光素子ともいう)と発光デバイス(発光素子ともいう)とを有する表示装置に関する。
【0002】
なお、本発明の一態様は、上記の技術分野に限定されない。本発明の一態様の技術分野としては、半導体装置、表示装置、発光装置、蓄電装置、記憶装置、電子機器、照明装置、入力装置(例えば、タッチセンサなど)、入出力装置(例えば、タッチパネルなど)、それらの駆動方法、又はそれらの製造方法を一例として挙げることができる。
【背景技術】
【0003】
近年、表示装置は様々な用途への応用が期待されている。例えば、大型の表示装置の用途としては、家庭用のテレビジョン装置(テレビまたはテレビジョン受信機ともいう)、デジタルサイネージ(Digital Signage:電子看板)、PID(Public Information Display)等が挙げられる。また、携帯情報端末として、タッチパネルを備えるスマートフォンやタブレット端末の開発が進められている。
【0004】
表示装置としては、例えば、発光デバイスを有する発光装置が開発されている。エレクトロルミネッセンス(Electroluminescence、以下ELと記す)現象を利用した発光デバイス(ELデバイス、EL素子ともいう)は、薄型軽量化が容易である、入力信号に対し高速に応答可能である、直流低電圧電源を用いて駆動可能である等の特徴を有し、表示装置に応用されている。例えば、特許文献1に、有機ELデバイス(有機EL素子ともいう)が適用された、可撓性を有する発光装置が開示されている。
【先行技術文献】
【特許文献】
【0005】
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明の一態様は、光検出機能を有する表示装置を提供することを課題の一とする。本発明の一態様は、光検出機能を有し、かつ、信頼性の高い表示装置を提供することを課題の一とする。本発明の一態様は、利便性の高い表示装置を提供することを課題の一とする。本発明の一態様は、多機能の表示装置を提供することを課題の一とする。本発明の一態様は、表示品位の高い表示装置を提供することを課題の一とする。本発明の一態様は、光検出の感度の高い表示装置を提供することを課題の一とする。本発明の一態様は、新規な表示装置を提供することを課題の一とする。
【0007】
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。本発明の一態様は、必ずしも、これらの課題の全てを解決する必要はないものとする。明細書、図面、請求項の記載から、これら以外の課題を抽出することが可能である。
【課題を解決するための手段】
【0008】
本発明の一態様は、受光デバイス及び発光デバイスを有する表示装置である。受光デバイスは、第1の画素電極、活性層、及び共通電極を有する。発光デバイスは、第2の画素電極、正孔注入層、発光層、電子輸送層、及び共通電極を有する。活性層は、第1の画素電極上に位置し、かつ、第1の有機化合物を有する。発光層は、第2の画素電極上に位置し、かつ、第1の有機化合物とは異なる第2の有機化合物を有する。共通電極は、活性層を介して第1の画素電極と重なる部分と、発光層を介して第2の画素電極と重なる部分と、を有する。正孔注入層は、第2の画素電極及び共通電極のうち陽極として機能する電極に接し、かつ、第1の化合物及び第2の化合物を有する。電子輸送層は、電子輸送性材料を有する。第1の化合物は、第2の化合物に対する電子受容性を有する。第2の化合物のHOMO準位は、-5.7eV以上-5.4eV以下である。電子輸送性材料は、HOMO準位が-6.0eV以上であり、かつ電界強度[V/cm]の平方根が600における電子移動度が1×10-7cm2/Vs以上5×10-5cm2/Vs以下である。受光デバイスは、さらに、正孔注入層を有することが好ましい。正孔注入層は、第1の画素電極上及び第2の画素電極上に位置し、かつ、活性層と重なる部分と、発光層と重なる部分と、を有することが好ましい。
【0009】
本発明の一態様は、受光デバイス及び発光デバイスを有する表示装置である。受光デバイスは、第1の画素電極、活性層、及び共通電極を有する。発光デバイスは、第2の画素電極、発光層、電子輸送層、及び共通電極を有する。活性層は、第1の画素電極上に位置し、かつ、第1の有機化合物を有する。発光層は、第2の画素電極上に位置し、かつ、第1の有機化合物とは異なる第2の有機化合物を有する。共通電極は、活性層を介して第1の画素電極と重なる部分と、発光層を介して第2の画素電極と重なる部分と、を有する。電子輸送層は、電子輸送性材料と、第1の物質と、を有する。第1の物質は、金属、金属塩、金属酸化物、または有機金属錯体である。電子輸送層は、第1の領域と、第2の領域と、を有する。第1の領域と第2の領域とは、第1の物質の濃度が互いに異なる。第1の領域が、第2の領域よりも発光層側に位置するとき、第1の領域は、第2の領域に比べて、第1の物質の濃度が高いことが好ましい。電子輸送性材料は、HOMO準位が-6.0eV以上であり、かつ電界強度[V/cm]の平方根が600における電子移動度が1×10-7cm2/Vs以上5×10-5cm2/Vs以下であることが好ましい。発光デバイスは、さらに、正孔注入層を有することが好ましい。正孔注入層は、第2の画素電極及び共通電極のうち陽極として機能する電極に接し、かつ、正孔注入層は、第1の化合物及び第2の化合物を有することが好ましい。第1の化合物は、第2の化合物に対する電子受容性を有することが好ましい。第2の化合物のHOMO準位は、-5.7eV以上-5.4eV以下であることが好ましい。
【0010】
受光デバイスは、さらに、電子輸送層を有することが好ましい。電子輸送層は、第1の画素電極上及び第2の画素電極上に位置し、かつ、活性層と重なる部分と、発光層と重なる部分と、を有することが好ましい。
【0011】
受光デバイス及び発光デバイスは、さらに、共通層を有することが好ましい。共通層は、第1の画素電極上及び第2の画素電極上に位置し、かつ、活性層と重なる部分と、発光層と重なる部分と、を有することが好ましい。
【0012】
発光デバイスは、さらに、第1の正孔輸送層を有することが好ましい。第1の正孔輸送層は、第3の化合物を有することが好ましい。第3の化合物のHOMO準位は、第2の化合物のHOMO準位以下の値であり、かつ、第3の化合物のHOMO準位と第2の化合物のHOMO準位との差は、0.2eV以内であることが好ましい。第2の化合物及び第3の化合物は、それぞれ、カルバゾール骨格、ジベンゾフラン骨格、ジベンゾチオフェン骨格、及びアントラセン骨格のうち少なくとも一つを有することが好ましい。
【0013】
発光デバイスは、さらに、第2の正孔輸送層を有することが好ましい。第2の正孔輸送層は、第4の化合物を有することが好ましい。第4の化合物のHOMO準位は、第3の化合物のHOMO準位よりも低いことが好ましい。第2の化合物、第3の化合物、及び第4の化合物は、それぞれ、カルバゾール骨格、ジベンゾフラン骨格、ジベンゾチオフェン骨格、及びアントラセン骨格のうち少なくとも一つを有することが好ましい。
【0014】
第1の物質は、アルカリ金属またはアルカリ土類金属を有する、有機金属錯体であることが好ましい。第1の物質は、窒素及び酸素を有する配位子と、アルカリ金属またはアルカリ土類金属と、を有する有機金属錯体であることが好ましい。第1の物質は、キノリノール配位子と、アルカリ金属またはアルカリ土類金属と、を有する有機金属錯体であることが好ましい。
【0015】
発光デバイスは、青色の光を呈することが好ましい。
【0016】
発光デバイスは、蛍光発光デバイスであることが好ましい。
【0017】
本発明の一態様の表示装置は、さらに、樹脂層、遮光層、及び基板を有することが好ましい。樹脂層及び遮光層は、それぞれ、共通電極と基板との間に位置することが好ましい。
【0018】
例えば、樹脂層は、受光デバイスと重なる開口を有することが好ましい。樹脂層は、発光デバイスと重なる部分を有することが好ましい。遮光層は、共通電極と樹脂層との間に位置する部分を有することが好ましい。遮光層は、開口の少なくとも一部、及び、開口にて露出している樹脂層の側面の少なくとも一部を覆うことが好ましい。
【0019】
または、樹脂層は、島状に設けられ、かつ、発光デバイスと重なる部分を有することが好ましい。遮光層は、共通電極と樹脂層との間に位置する部分を有することが好ましい。基板を通過した光の少なくとも一部は、樹脂層を介さずに、受光デバイスに入射することが好ましい。遮光層は、樹脂層の側面の少なくとも一部を覆うことが好ましい。
【0020】
本発明の一態様の表示装置は、さらに、接着層を有することが好ましい。接着層は、共通電極と基板との間に位置することが好ましい。樹脂層及び遮光層は、それぞれ、接着層と基板との間に位置することが好ましい。接着層は、受光デバイスと重なる第1の部分と、発光デバイスと重なる第2の部分と、を有することが好ましい。第1の部分は、第2の部分に比べて厚いことが好ましい。
【0021】
本発明の一態様の表示装置は、可撓性を有することが好ましい。
【0022】
本発明の一態様は、上記いずれかの構成の表示装置を有し、フレキシブルプリント回路基板(Flexible Printed Circuit、以下、FPCと記す)もしくはTCP(Tape Carrier Package)等のコネクタが取り付けられたモジュール、またはCOG(Chip On Glass)方式もしくはCOF(Chip On Film)方式等により集積回路(IC)が実装されたモジュール等のモジュールである。
【0023】
本発明の一態様は、上記のモジュールと、アンテナ、バッテリ、筐体、カメラ、スピーカ、マイク、及び操作ボタンのうち少なくとも一つと、を有する電子機器である。
【発明の効果】
【0024】
本発明の一態様により、光検出機能を有する表示装置を提供できる。本発明の一態様により、光検出機能を有し、かつ、信頼性の高い表示装置を提供できる。本発明の一態様により、利便性の高い表示装置を提供できる。本発明の一態様により、多機能の表示装置を提供できる。本発明の一態様により、表示品位の高い表示装置を提供できる。本発明の一態様により、光検出の感度の高い表示装置を提供できる。本発明の一態様により、新規な表示装置を提供できる。
【0025】
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。明細書、図面、請求項の記載から、これら以外の効果を抽出することが可能である。
【図面の簡単な説明】
【0026】
【
図1】
図1(A)~
図1(D)は、表示装置の一例を示す断面図である。
図1(E)~
図1(I)は、画素の一例を示す上面図である。
【
図2】
図2は、表示装置の一例を示す断面図である。
【
図3】
図3(A)は、表示装置の一例を示す断面図である。
図3(B)、
図3(C)は、樹脂層の上面レイアウトの一例を示す図である。
【
図4】
図4(A)、
図4(B)は、表示装置の一例を示す断面図である。
【
図5】
図5(A)~
図5(C)は、表示装置の一例を示す断面図である。
【
図6】
図6(A)~
図6(C)は、表示装置の一例を示す断面図である。
【
図7】
図7(A)は、表示装置の一例を示す上面図である。
図7(B)は、表示装置の一例を示す断面図である。
【
図8】
図8(A)、
図8(B)は、表示装置の一例を示す断面図である。
【
図9】
図9(A)は、表示装置の一例を示す上面図である。
図9(B)は、表示装置の一例を示す断面図である。
【
図10】
図10(A)は、表示装置の一例を示す上面図である。
図10(B)は、表示装置の一例を示す断面図である。
【
図17】
図17(A)は、表示装置の一例を示す断面図である。
図17(B)は、トランジスタの一例を示す断面図である。
【
図19】
図19(A)~
図19(C)は、発光デバイスの発光モデルを説明する概念図である。
図19(D)は、発光デバイスの時間経過に伴う規格化輝度を説明する図である。
【
図20】
図20(A)~
図20(D)は、電子輸送層における第1の物質の濃度を説明する図である。
【
図22】
図22(A)は、画素の一例を示すブロック図である。
図22(B)は、画素回路の一例を示す回路図である。
【
図26】
図26は、電子オンリーデバイスの構造を示す図である。
【
図27】
図27は、電子オンリーデバイスの電流密度-電圧特性を示す図である。
【
図28】
図28は、直流電圧7.0VにおけるZADN:Liq(1:1)の算出されたキャパシタンスCの周波数特性を示す図である。
【
図29】
図29は、直流電圧7.0VにおけるZADN:Liq(1:1)の-ΔBの周波数特性を示す図である。
【
図30】
図30は、各有機化合物における電子移動度の電界強度依存特性を示す図である。
【発明を実施するための形態】
【0027】
実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
【0028】
なお、以下に説明する発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。また、同様の機能を指す場合には、ハッチパターンを同じくし、特に符号を付さない場合がある。
【0029】
また、図面において示す各構成の、位置、大きさ、範囲などは、理解の簡単のため、実際の位置、大きさ、範囲などを表していない場合がある。このため、開示する発明は、必ずしも、図面に開示された位置、大きさ、範囲などに限定されない。
【0030】
なお、「膜」という言葉と、「層」という言葉とは、場合によっては、又は、状況に応じて、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能である。または、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能である。
【0031】
(実施の形態1)
本実施の形態では、本発明の一態様の表示装置について
図1~
図18を用いて説明する。
【0032】
本実施の形態の表示装置は、表示部に、受光デバイスと発光デバイスとを有する。本実施の形態の表示装置は、表示部に、発光デバイスがマトリクス状に配置されており、当該表示部で画像を表示することができる。また、当該表示部には、受光デバイスがマトリクス状に配置されており、表示部は、受光部としての機能も有する。受光部は、イメージセンサやタッチセンサに用いることができる。つまり、受光部で光を検出することで、画像を撮像することや、対象物(指やペンなど)の近接もしくは接触を検出することができる。さらに、本実施の形態の表示装置は、発光デバイスをセンサの光源として利用することができる。したがって、表示装置と別に受光部及び光源を設けなくてよく、電子機器の部品点数を削減することができる。
【0033】
本実施の形態の表示装置では、表示部が有する発光デバイスの発光を対象物が反射した際、受光デバイスがその反射光を検出できるため、暗い場所でも、撮像やタッチ(ニアタッチを含む)検出が可能である。
【0034】
本実施の形態の表示装置は、発光デバイスを用いて、画像を表示する機能を有する。つまり、発光デバイスは、表示デバイスとして機能する。
【0035】
発光デバイスとしては、OLED(Organic Light Emitting Diode)やQLED(Quantum-dot Light Emitting Diode)などのELデバイスを用いることが好ましい。ELデバイスが有する発光物質としては、蛍光を発する物質(蛍光材料)、燐光を発する物質(燐光材料)、無機化合物(量子ドット材料など)、熱活性化遅延蛍光を示す物質(熱活性化遅延蛍光(Thermally Activated Delayed Fluorescence:TADF)材料)などが挙げられる。また、発光デバイスとして、マイクロLED(Light Emitting Diode)などのLEDを用いることもできる。
【0036】
本実施の形態の表示装置は、受光デバイスを用いて、光を検出する機能を有する。
【0037】
受光デバイスをイメージセンサに用いる場合、本実施の形態の表示装置は、受光デバイスを用いて、画像を撮像することができる。例えば、本実施の形態の表示装置は、スキャナとして用いることができる。
【0038】
例えば、イメージセンサを用いて、指紋、掌紋、または虹彩などのデータを取得することができる。つまり、本実施の形態の表示装置に、生体認証用センサを内蔵させることができる。表示装置が生体認証用センサを内蔵することで、表示装置とは別に生体認証用センサを設ける場合に比べて、電子機器の部品点数を少なくでき、電子機器の小型化及び軽量化が可能である。
【0039】
また、イメージセンサを用いて、ユーザーの表情、目の動き、または瞳孔径の変化などのデータを取得することができる。当該データを解析することで、ユーザーの心身の情報を取得することができる。当該情報をもとに表示及び音声の一方又は双方の出力内容を変化させることで、例えば、VR(Virtual Reality)向け機器、AR(Augmented Reality)向け機器、またはMR(Mixed Reality)向け機器において、ユーザーが機器を安全に使用できるよう図ることができる。
【0040】
また、受光デバイスをタッチセンサに用いる場合、本実施の形態の表示装置は、受光デバイスを用いて、対象物の近接または接触を検出することができる。
【0041】
受光デバイスとしては、例えば、pn型またはpin型のフォトダイオードを用いることができる。受光デバイスは、受光デバイスに入射する光を検出し電荷を発生させる光電変換デバイスとして機能する。入射する光量に基づき、発生する電荷量が決まる。
【0042】
特に、受光デバイスとして、有機化合物を含む層を有する有機フォトダイオードを用いることが好ましい。有機フォトダイオードは、薄型化、軽量化、及び大面積化が容易であり、また、形状及びデザインの自由度が高いため、様々な表示装置に適用できる。
【0043】
本発明の一態様では、発光デバイスとして有機ELデバイスを用い、受光デバイスとして有機フォトダイオードを用いる。有機ELデバイス及び有機フォトダイオードは、同一基板上に形成することができる。したがって、有機ELデバイスを用いた表示装置に有機フォトダイオードを内蔵することができる。
【0044】
有機ELデバイス及び有機フォトダイオードを構成する全ての層を作り分けようとすると、成膜工程が非常に多くなる。有機フォトダイオードは、有機ELデバイスと共通の構成にできる層が多いため、共通の構成にできる層は一括で成膜することで、成膜工程の増加を抑制することができる。また、成膜回数が同じであっても、一部のデバイスにのみ成膜される層を減らすことで、成膜パターンのズレの影響を低減すること、成膜マスク(メタルマスクなど)に付着したゴミ(パーティクルと呼ばれる小さな異物を含む)の影響を低減すること、などが可能となる。これにより、表示装置の作製の歩留まりを高めることができる。
【0045】
例えば、一対の電極のうち一方(共通電極)を、受光デバイス及び発光デバイスで共通の層とすることができる。また、例えば、正孔注入層、正孔輸送層、電子輸送層、及び電子注入層の少なくとも一つを、受光デバイス及び発光デバイスで共通の層とすることが好ましい。また、例えば、受光デバイスの活性層と発光デバイスの発光層とを作り分け、それ以外の層は、発光デバイスと受光デバイスとで同一の構成にすることもできる。このように、受光デバイス及び発光デバイスが共通の層を有することで、成膜回数及びマスクの数を減らすことができ、表示装置の作製工程及び作製コストを削減することができる。
【0046】
なお、受光デバイス及び発光デバイスが共通で有する層は、受光デバイスにおける機能と発光デバイスにおける機能とが異なる場合がある。本明細書中では、発光デバイスにおける機能に基づいて構成要素を呼称する。例えば、正孔注入層は、発光デバイスにおいて正孔注入層として機能し、受光デバイスにおいて正孔輸送層として機能する。同様に、電子注入層は、発光デバイスにおいて電子注入層として機能し、受光デバイスにおいて電子輸送層として機能する。
【0047】
本発明の一態様の表示装置は、表示部に、受光デバイス及び発光デバイスを有する。受光デバイスは、第1の画素電極、活性層、及び共通電極を有する。発光デバイスは、第2の画素電極、発光層、及び共通電極を有する。活性層は、第1の画素電極上に位置し、かつ、第1の有機化合物を有する。発光層は、第2の画素電極上に位置し、かつ、第1の有機化合物とは異なる第2の有機化合物を有する。共通電極は、活性層を介して第1の画素電極と重なる部分と、発光層を介して第2の画素電極と重なる部分と、を有する。
【0048】
発光デバイスは、さらに、正孔注入層及び電子輸送層を有することが好ましい。このとき、正孔注入層は、第2の画素電極及び共通電極のうち陽極として機能する電極に接し、かつ、第1の化合物及び第2の化合物を有する。電子輸送層は、電子輸送性材料を有する。第1の化合物は、第2の化合物に対する電子受容性を有する。第2の化合物のHOMO準位は、-5.7eV以上-5.4eV以下である。電子輸送性材料は、HOMO準位が-6.0eV以上であり、かつ電界強度[V/cm]の平方根が600における電子移動度が1×10-7cm2/Vs以上5×10-5cm2/Vs以下である。
【0049】
または、発光デバイスは、さらに、電子輸送層を有することが好ましい。このとき、電子輸送層は、電子輸送性材料と、第1の物質と、を有する。第1の物質は、金属、金属塩、金属酸化物、または有機金属錯体である。電子輸送層は、第1の領域と、第2の領域と、を有する。第1の領域と第2の領域とは、第1の物質の濃度が互いに異なる。例えば、第1の領域が、第2の領域よりも発光層側に位置するとき、第1の領域は、第2の領域に比べて、第1の物質の濃度が高いことが好ましい。電子輸送性材料は、HOMO準位が-6.0eV以上であり、かつ電界強度[V/cm]の平方根が600における電子移動度が1×10-7cm2/Vs以上5×10-5cm2/Vs以下であることが好ましい。
【0050】
本発明の一態様の発光デバイスは、発光層に正孔が注入されやすく、かつ、電子が注入されにくい構成である。陽極側から正孔が容易に注入され、かつ、陰極側から発光層への電子の注入量が抑制されることで、発光層が電子過多の状態になることを抑制できる。そして、時間の経過に従って発光層に電子が注入されていくことで輝度が上昇し、当該輝度上昇により初期劣化を相殺することができる。初期劣化が抑制され、駆動寿命が非常に長い発光デバイスを用いることで、信頼性を高めることができる。なお、本発明の一態様の表示装置に用いる発光デバイスの詳細については、実施の形態2で詳述する。
【0051】
本発明の一態様の表示装置の表示面では、発光デバイスからの発光が取り出され、かつ、受光デバイスに照射される光が通過する。表示装置は、発光デバイス及び受光デバイスよりも表示面側に、遮光層を有することが好ましい。発光デバイスからの発光は、遮光層の開口(または遮光層が設けられていない領域)を介して、表示装置の外部に取り出されることが好ましく、受光デバイスには、遮光層の開口(または遮光層が設けられていない領域)を介して、光が照射されることが好ましい。
【0052】
受光デバイスは、発光デバイスの発光が対象物によって反射された光を検出する。しかし、発光デバイスの発光が、表示装置内で反射され、対象物を介さずに、受光デバイスに入射されてしまう場合がある。このような迷光は光検出時にノイズとなり、S/N比(Signal-to-noise ratio)を低下させる要因となる。発光デバイス及び受光デバイスよりも表示面側に遮光層を設けることで、迷光の影響を抑制することができる。これにより、ノイズを低減し、受光デバイスを用いたセンサの感度を高めることができる。
【0053】
遮光層が発光デバイスから近い位置にあるほど、表示装置内の発光デバイスの迷光を抑制し、センサの感度を高めることができる。また、遮光層が発光デバイスから近い位置にあるほど、斜め方向から表示装置を観察した際のコントラストの低下及び色度の変化を抑制でき、表示の視野角特性を良好にすることができる。一方で、遮光層が受光デバイスから遠い位置にあるほど、受光デバイスの撮像範囲の面積を狭くすることができ、撮像の解像度を高めることができる。
【0054】
そこで、本発明の一態様では、遮光層から受光デバイスまでの距離と、遮光層から発光デバイスまでの距離と、に差が生じるよう、遮光層を形成する面に構造物(例えば樹脂層)を設ける。構造物のレイアウト及び厚さを調整することで、遮光層から受光デバイスまでの距離を長くし、かつ、遮光層から発光デバイスまでの距離を短くすることができる。これにより、センサのノイズを低減しつつ、撮像の解像度を高め、かつ、表示の視野角依存性を抑制することができる。したがって、表示装置における表示品位と撮像品位との双方を高めることができる。
【0055】
具体的には、本発明の一態様の表示装置は、さらに、樹脂層、遮光層、及び基板を有することが好ましい。樹脂層及び遮光層は、それぞれ、共通電極と基板との間に位置することが好ましい。
【0056】
発光デバイスが発する光の少なくとも一部は、樹脂層を介して、基板の外部に取り出される。基板を通過した光の少なくとも一部は、樹脂層を介さずに、受光デバイスに入射する。例えば、樹脂層は、受光デバイスと重なる開口を有する。または、樹脂層は、発光デバイスと重なる位置に島状に設けられる。
【0057】
樹脂層は、発光デバイスと重なる位置に設けられ、受光デバイスと重なる位置には設けられない。したがって、遮光層から発光デバイスまでの距離は、遮光層から受光デバイスまでの距離に比べて短くなる。これにより、表示装置における表示品位と撮像品位との双方を高めることができる。
【0058】
図1(A)~
図1(D)に、本発明の一態様の表示装置の断面図を示す。
【0059】
図1(A)に示す表示装置50Aは、基板51と基板59との間に、受光デバイスを有する層53と、発光デバイスを有する層57と、を有する。
【0060】
図1(B)に示す表示装置50Bは、基板51と基板59との間に、受光デバイスを有する層53、トランジスタを有する層55、及び、発光デバイスを有する層57を有する。
【0061】
表示装置50A及び表示装置50Bは、発光デバイスを有する層57から、赤色(R)、緑色(G)、及び青色(B)の光が射出される構成である。
【0062】
本発明の一態様の表示装置は、マトリクス状に配置された複数の画素を有する。1つの画素は、1つ以上の副画素を有する。1つの副画素は、1つの発光デバイスを有する。例えば、画素には、副画素を3つ有する構成(R、G、Bの3色、または、黄色(Y)、シアン(C)、及びマゼンタ(M)の3色など)、または、副画素を4つ有する構成(R、G、B、白色(W)の4色、または、R、G、B、Yの4色など)を適用できる。さらに、画素は、受光デバイスを有する。受光デバイスは、全ての画素に設けられていてもよく、一部の画素に設けられていてもよい。また、1つの画素が複数の受光デバイスを有していてもよい。
【0063】
トランジスタを有する層55は、第1のトランジスタ及び第2のトランジスタを有することが好ましい。第1のトランジスタは、受光デバイスと電気的に接続される。第2のトランジスタは、発光デバイスと電気的に接続される。
【0064】
本発明の一態様の表示装置は、表示装置に接触している指などの対象物を検出する機能を有していてもよい。例えば、
図1(C)に示すように、発光デバイスを有する層57において発光デバイスが発した光を、表示装置50Bに接触した指52が反射することで、受光デバイスを有する層53における受光デバイスがその反射光を検出する。これにより、表示装置50Bに指52が接触したことを検出することができる。
【0065】
本発明の一態様の表示装置は、
図1(D)に示すように、表示装置50Bに近接している(接触していない)対象物を検出または撮像する機能を有していてもよい。
【0066】
[画素]
図1(E)~
図1(I)に、画素の一例を示す。
【0067】
図1(E)~
図1(G)に示す画素は、R、G、Bの3つの副画素(3つの発光デバイス)と、受光デバイスPDと、を有する。
図1(E)は、2×2のマトリクス状に、3つの副画素と受光デバイスPDとが配置されている例であり、
図1(F)は、横1列に、3つの副画素と受光デバイスPDとが配置されている例である。
図1(G)は、横1列に3つの副画素が配置され、その下に受光デバイスPDが配置されている例である。なお、
図1(E)~
図1(G)に示す画素は、それぞれ、表示に用いる3つの副画素と、光検出に用いる1つの副画素と、の4つの副画素で構成されているということもできる。
【0068】
図1(H)に示す画素は、R、G、B、Wの4つの副画素(4つの発光デバイス)と、受光デバイスPDと、を有する。
【0069】
図1(I)に示す画素は、R、G、Bの3つの副画素と、赤外光を発する発光デバイスIRと、受光デバイスPDとを有する。このとき、受光デバイスPDは、赤外光を検出する機能を有することが好ましい。受光デバイスPDは、可視光及び赤外光の双方を検出する機能を有していてもよい。センサの用途に応じて、受光デバイスPDが検出する光の波長を決定することができる。
【0070】
以下では、
図2~
図12を用いて、本発明の一態様の表示装置が有する発光デバイス及び受光デバイスの、詳細な構成について説明する。
【0071】
本発明の一態様の表示装置は、発光デバイスが形成されている基板とは反対方向に光を射出するトップエミッション型、発光デバイスが形成されている基板側に光を射出するボトムエミッション型、両面に光を射出するデュアルエミッション型のいずれであってもよい。
【0072】
図2~
図12では、トップエミッション型の表示装置を例に挙げて説明する。
【0073】
なお、本実施の形態では、主に、可視光を発する発光デバイスと、可視光を検出する受光デバイスと、を有する表示装置について説明するが、表示装置は、さらに、赤外光を発する発光デバイスを有していてもよい。また、受光デバイスは、赤外光を検出する構成、または、可視光及び赤外光の双方を検出する構成であってもよい。
【0074】
[表示装置10]
図2に表示装置10の断面図を示す。
【0075】
表示装置10は、受光デバイス110及び発光デバイス190を有する。
【0076】
発光デバイス190は、画素電極191、バッファ層192、発光層193、バッファ層194、及び共通電極115を有する。発光層193は、有機化合物を有する。発光デバイス190は、可視光を発する機能を有する。なお、表示装置10は、さらに、赤外光を発する機能を有する発光デバイスを有していてもよい。本実施の形態では、画素電極191が陽極として機能し、共通電極115が陰極として機能する場合を例に挙げて説明する。
【0077】
受光デバイス110は、画素電極181、バッファ層182、活性層183、バッファ層184、及び共通電極115を有する。活性層183は、有機化合物を有する。受光デバイス110は、可視光を検出する機能を有する。なお、受光デバイス110は、さらに、赤外光を検出する機能を有していてもよい。本実施の形態では、発光デバイス190と揃えて、画素電極181が陽極として機能し、共通電極115が陰極として機能するものとして説明する。つまり、受光デバイス110を、画素電極181と共通電極115との間に逆バイアスをかけて駆動することで、表示装置10は、受光デバイス110に入射する光を検出し、電荷を発生させ、電流として取り出すことができる。
【0078】
画素電極181、画素電極191、バッファ層182、バッファ層192、活性層183、発光層193、バッファ層184、バッファ層194、及び共通電極115は、それぞれ、単層構造であってもよく、積層構造であってもよい。
【0079】
画素電極181及び画素電極191は、絶縁層214上に位置する。画素電極181と画素電極191は、同一の材料及び同一の工程で形成することができる。画素電極181の端部及び画素電極191の端部は、それぞれ、隔壁216によって覆われている。画素電極181と画素電極191とは隔壁216によって互いに電気的に絶縁されている(電気的に分離されている、ともいう)。
【0080】
隔壁216としては、有機絶縁膜が好適である。有機絶縁膜に用いることができる材料としては、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂、及びこれら樹脂の前駆体等が挙げられる。隔壁216は、可視光を透過する層である。詳細は後述するが、隔壁216のかわりに、可視光を遮る隔壁217を設けてもよい。
【0081】
バッファ層182は、画素電極181上に位置する。活性層183は、バッファ層182を介して、画素電極181と重なる。バッファ層184は、活性層183上に位置する。活性層183は、バッファ層184を介して、共通電極115と重なる。バッファ層182は、正孔輸送層を有することができる。バッファ層184は、電子輸送層を有することができる。
【0082】
バッファ層192は、画素電極191上に位置する。発光層193は、バッファ層192を介して、画素電極191と重なる。バッファ層194は、発光層193上に位置する。発光層193は、バッファ層194を介して、共通電極115と重なる。バッファ層192は、正孔注入層及び正孔輸送層の一方または双方を有することができる。バッファ層194は、電子注入層及び電子輸送層の一方または双方を有することができる。
【0083】
共通電極115は、受光デバイス110と発光デバイス190に共通で用いられる層である。
【0084】
受光デバイス110及び発光デバイス190が有する一対の電極の材料及び膜厚等は等しくすることができる。これにより、表示装置の作製コストの削減及び作製工程の簡略化ができる。
【0085】
表示装置10は、一対の基板(基板151及び基板152)間に、受光デバイス110、発光デバイス190、トランジスタ41、及びトランジスタ42等を有する。
【0086】
受光デバイス110において、それぞれ画素電極181及び共通電極115の間に位置するバッファ層182、活性層183、及びバッファ層184は、有機層(有機化合物を含む層)ということもできる。画素電極181は可視光を反射する機能を有することが好ましい。共通電極115は可視光を透過する機能を有する。なお、受光デバイス110が赤外光を検出する構成である場合、共通電極115は赤外光を透過する機能を有する。さらに、画素電極181は赤外光を反射する機能を有することが好ましい。
【0087】
受光デバイス110は、光を検出する機能を有する。具体的には、受光デバイス110は、表示装置10の外部から入射される光22を受光し、電気信号に変換する、光電変換デバイスである。光22は、発光デバイス190の発光を対象物が反射した光ということもできる。また、光22は、後述するレンズを介して受光デバイス110に入射してもよい。
【0088】
発光デバイス190において、それぞれ画素電極191及び共通電極115の間に位置するバッファ層192、発光層193、及びバッファ層194は、まとめてEL層ということもできる。なお、EL層は、少なくとも発光層を有する。画素電極191は可視光を反射する機能を有することが好ましい。共通電極115は可視光を透過する機能を有する。なお、表示装置10が、赤外光を発する発光デバイスを有する構成である場合、共通電極115は赤外光を透過する機能を有する。さらに、画素電極191は赤外光を反射する機能を有することが好ましい。
【0089】
本実施の形態の表示装置が有する発光デバイスには、微小光共振器(マイクロキャビティ)構造が適用されていることが好ましい。したがって、発光デバイスが有する一対の電極の一方は、可視光に対する透過性及び反射性を有する電極(半透過・半反射電極)を有することが好ましく、他方は、可視光に対する反射性を有する電極(反射電極)を有することが好ましい。発光デバイスがマイクロキャビティ構造を有することで、発光層から得られる発光を両電極間で共振させ、発光デバイスから射出される光を強めることができる。
【0090】
なお、半透過・半反射電極は、反射電極と可視光に対する透過性を有する電極(透明電極ともいう)との積層構造とすることができる。本明細書等では、それぞれ、半透過・半反射電極の一部として機能する、反射電極を画素電極または共通電極と記し、透明電極を光学調整層と記すことがあるが、透明電極(光学調整層)も、画素電極または共通電極としての機能を有するといえることがある。
【0091】
透明電極の光の透過率は、40%以上とする。例えば、発光デバイスには、可視光(波長400nm以上750nm未満の光)の透過率が40%以上である電極を用いることが好ましい。また、半透過・半反射電極の可視光の反射率は、10%以上95%以下、好ましくは30%以上80%以下とする。反射電極の可視光の反射率は、40%以上100%以下、好ましくは70%以上100%以下とする。また、これらの電極の抵抗率は、1×10-2Ωcm以下が好ましい。なお、表示装置に、近赤外光を発する発光デバイスを用いる場合、これらの電極の近赤外光(波長750nm以上1300nm以下の光)の透過率、反射率も上記数値範囲であることが好ましい。
【0092】
バッファ層192またはバッファ層194は、光学調整層としての機能を有していてもよい。バッファ層192またはバッファ層194の膜厚を異ならせることで、各発光デバイスにおいて、特定の色の光を強めて取り出すことができる。なお、半透過・半反射電極が、反射電極と透明電極との積層構造の場合、一対の電極間の光学距離とは、一対の反射電極間の光学距離を示す。
【0093】
発光デバイス190は、可視光を発する機能を有する。具体的には、発光デバイス190は、画素電極191と共通電極115との間に電圧を印加することで、基板152側に光を射出する電界発光デバイスである(発光21参照)。
【0094】
発光層193は、受光デバイス110と重ならないように形成されることが好ましい。これにより、発光層193が光22を吸収することを抑制でき、受光デバイス110に照射される光量を多くすることができる。
【0095】
画素電極181は、絶縁層214に設けられた開口を介して、トランジスタ41が有するソースまたはドレインと電気的に接続される。
【0096】
画素電極191は、絶縁層214に設けられた開口を介して、トランジスタ42が有するソースまたはドレインと電気的に接続される。トランジスタ42は、発光デバイス190の駆動を制御する機能を有する。
【0097】
トランジスタ41とトランジスタ42とは、同一の層(
図2では基板151)上に接している。
【0098】
受光デバイス110と電気的に接続される回路の少なくとも一部は、発光デバイス190と電気的に接続される回路と同一の材料及び同一の工程で形成されることが好ましい。これにより、2つの回路を別々に形成する場合に比べて、表示装置の厚さを薄くすることができ、また、作製工程を簡略化できる。
【0099】
受光デバイス110及び発光デバイス190は、それぞれ、保護層116に覆われていることが好ましい。
図2では、保護層116が、共通電極115上に接して設けられている。保護層116を設けることで、受光デバイス110及び発光デバイス190に水などの不純物が入り込むことを抑制し、受光デバイス110及び発光デバイス190の信頼性を高めることができる。また、接着層142によって、保護層116と基板152とが貼り合わされている。
【0100】
基板152の基板151側の面には、遮光層158が設けられている。遮光層158は、発光デバイス190と重なる位置、及び、受光デバイス110と重なる位置に開口を有する。なお、本明細書等において、発光デバイス190と重なる位置とは、具体的には、発光デバイス190の発光領域と重なる位置を指す。同様に、受光デバイス110と重なる位置とは、具体的には、受光デバイス110の受光領域と重なる位置を指す。
【0101】
ここで、発光デバイス190の発光が対象物によって反射された光を受光デバイス110は検出する。しかし、発光デバイス190の発光が、表示装置10内で反射され、対象物を介さずに、受光デバイス110に入射されてしまう場合がある。遮光層158は、このような迷光の影響を抑制することができる。例えば、遮光層158が設けられていない場合、発光デバイス190が発した光23は、基板152で反射され、反射光24が受光デバイス110に入射することがある。遮光層158を設けることで、反射光24が受光デバイス110に入射することを抑制できる。これにより、ノイズを低減し、受光デバイス110を用いたセンサの感度を高めることができる。
【0102】
遮光層158としては、発光デバイスからの発光を遮る材料を用いることができる。遮光層158は、可視光を吸収することが好ましい。遮光層158として、例えば、金属材料、又は、顔料(カーボンブラックなど)もしくは染料を含む樹脂材料等を用いてブラックマトリクスを形成することができる。遮光層158は、赤色のカラーフィルタ、緑色のカラーフィルタ、及び青色のカラーフィルタの積層構造であってもよい。
【0103】
[表示装置10A]
図3(A)に表示装置10Aの断面図を示す。なお、以降の表示装置の説明において、先に説明した表示装置と同様の構成については、説明を省略することがある。
【0104】
表示装置10Aは、樹脂層159を有する点で、表示装置10と異なる。
【0105】
樹脂層159は、基板152の基板151側の面に設けられている。樹脂層159は、発光デバイス190と重なる位置に設けられ、受光デバイス110と重なる位置には設けられない。
【0106】
樹脂層159は、例えば、
図3(B)に示すように、発光デバイス190と重なる位置に設けられ、かつ、受光デバイス110と重なる位置に開口159pを有する構成とすることができる。または、樹脂層159は、例えば、
図3(C)に示すように、発光デバイス190と重なる位置に島状に設けられ、かつ、受光デバイス110と重なる位置には設けられない構成とすることができる。
【0107】
基板152の基板151側の面及び樹脂層159の基板151側の面には、遮光層158が設けられている。遮光層158は、発光デバイス190と重なる位置、及び、受光デバイス110と重なる位置に開口を有する。
【0108】
例えば、遮光層158は、樹脂層159を通過し基板152の基板151側の面で反射した迷光23aを吸収することができる。また、遮光層158は、樹脂層159に届く前に迷光23bを吸収することができる。これにより、受光デバイス110に入射する迷光を低減することができる。したがって、ノイズを低減し、受光デバイス110を用いたセンサの感度を高めることができる。特に、遮光層158が発光デバイス190から近い位置にあると、迷光をより低減できるため好ましい。また、遮光層158が発光デバイス190から近い位置にあると、表示の視野角依存性を抑制できるため、表示品位の向上の観点からも好ましい。
【0109】
また、遮光層158を設けることで、受光デバイス110が光を検出する範囲を制御することができる。遮光層158が受光デバイス110から離れた位置にあると、撮像範囲が狭くなり、撮像の解像度を高めることができる。
【0110】
樹脂層159が開口を有する場合、遮光層158は、当該開口の少なくとも一部、及び当該開口にて露出している樹脂層159の側面の少なくとも一部を覆うことが好ましい。
【0111】
樹脂層159が島状に設けられている場合、遮光層158は、樹脂層159の側面の少なくとも一部を覆うことが好ましい。
【0112】
このように、樹脂層159の形状に沿って遮光層158が設けられるため、遮光層158から発光デバイス190(具体的には、発光デバイス190の発光領域)までの距離は、遮光層158から受光デバイス110(具体的には、受光デバイス110の受光領域)までの距離に比べて短くなる。これにより、センサのノイズを低減しつつ、撮像の解像度を高め、かつ、表示の視野角依存性を抑制することができる。したがって、表示装置における表示品位と撮像品位との双方を高めることができる。
【0113】
樹脂層159は、発光デバイス190の発光を透過する層である。樹脂層159の材料としては、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂、及びこれら樹脂の前駆体等が挙げられる。なお、基板152と遮光層158との間に設ける構造物は、樹脂層に限定されず、無機絶縁膜などを用いてもよい。当該構造物の厚さが厚いほど、遮光層から受光デバイスまでの距離と、遮光層から発光デバイスまでの距離と、に差が生じる。樹脂などの有機絶縁膜は厚く形成することが容易であるため、当該構造物として好適である。
【0114】
遮光層158から受光デバイス110までの距離と、遮光層158から発光デバイス190までの距離と、を比較するために、例えば、遮光層158の受光デバイス110側の端部から共通電極115までの最短距離L1と、遮光層158の発光デバイス190側の端部から共通電極115までの最短距離L2と、を用いることができる。最短距離L1に比べて、最短距離L2が短いことで、発光デバイス190からの迷光を抑制し、受光デバイス110を用いたセンサの感度を高めることができる。また、表示の視野角依存性を抑制することができる。最短距離L2に比べて、最短距離L1が長いことで、受光デバイス110の撮像範囲を狭くすることができ、撮像の解像度を高めることができる。
【0115】
また、接着層142における、発光デバイス190と重なる部分に比べて、受光デバイス110と重なる部分が厚い構成とすることでも、遮光層158から受光デバイス110までの距離と、遮光層158から発光デバイス190までの距離と、に差を生じさせることができる。
【0116】
[表示装置10B]
図4(A)に表示装置10Bの断面図を示す。
【0117】
表示装置10Bは、バッファ層182及びバッファ層192を有さず、共通層112を有する点で、表示装置10Aと異なる。
【0118】
共通層112は、隔壁216上、画素電極181上、及び画素電極191上に位置する。共通層112は、受光デバイス110及び発光デバイス190に共通で用いられる層である。共通層112は、単層構造であってもよく、積層構造であってもよい。
【0119】
共通層112としては、例えば、正孔注入層及び正孔輸送層の一方または双方を形成することができる。共通層112は、発光デバイス190における機能と受光デバイス110における機能とが異なる場合がある。例えば、共通層112が正孔注入層を有するとき、当該正孔注入層は、発光デバイス190において正孔注入層として機能し、受光デバイス110において正孔輸送層として機能する。
【0120】
活性層及び発光層以外の層のうち少なくとも一部を、受光デバイスと発光デバイスとで互いに共通の構成とすることで、表示装置の作製工程を削減でき、好ましい。
【0121】
[表示装置10C]
図4(B)に表示装置10Cの断面図を示す。
【0122】
表示装置10Cは、バッファ層184及びバッファ層194を有さず、共通層114を有する点で、表示装置10Aと異なる。
【0123】
共通層114は、隔壁216上、活性層183上、及び発光層193上に位置する。共通層114は、受光デバイス110及び発光デバイス190に共通で用いられる層である。共通層114は、単層構造であってもよく、積層構造であってもよい。
【0124】
共通層114としては、例えば、電子注入層及び電子輸送層の一方または双方を形成することができる。共通層114は、発光デバイス190における機能と受光デバイス110における機能とが異なる場合がある。例えば、共通層114が電子注入層を有するとき、当該電子注入層は、発光デバイス190において電子注入層として機能し、受光デバイス110において電子輸送層として機能する。
【0125】
活性層及び発光層以外の層のうち少なくとも一部を、受光デバイスと発光デバイスとで互いに共通の構成とすることで、表示装置の作製工程を削減でき、好ましい。
【0126】
[表示装置10D]
図5(A)に表示装置10Dの断面図を示す。
【0127】
表示装置10Dは、バッファ層182、バッファ層192、バッファ層184、及びバッファ層194を有さず、共通層112及び共通層114を有する点で、表示装置10Aと異なる。
【0128】
本実施の形態の表示装置では、受光デバイス110の活性層183に有機化合物を用いる。受光デバイス110は、活性層183以外の層を、発光デバイス190(ELデバイス)と共通の構成にすることができる。そのため、発光デバイス190の作製工程に、活性層183を成膜する工程を追加するのみで、発光デバイス190の形成と並行して受光デバイス110を形成することができる。また、発光デバイス190と受光デバイス110とを同一基板上に形成することができる。したがって、作製工程を大幅に増やすことなく、表示装置に受光デバイス110を内蔵することができる。
【0129】
表示装置10Dでは、受光デバイス110の活性層183と、発光デバイス190の発光層193と、を作り分ける以外は、受光デバイス110と発光デバイス190が共通の構成である例を示す。ただし、受光デバイス110と発光デバイス190の構成はこれに限定されない。受光デバイス110と発光デバイス190は、活性層183と発光層193のほかにも、互いに作り分ける層を有していてもよい(前述の表示装置10A、10B、10C参照)。受光デバイス110と発光デバイス190は、共通で用いられる層(共通層)を1層以上有することが好ましい。これにより、作製工程を大幅に増やすことなく、表示装置に受光デバイス110を内蔵することができる。
【0130】
[表示装置10E]
図5(B)に表示装置10Eの断面図を示す。
【0131】
表示装置10Eは、基板151及び基板152を有さず、基板153、基板154、接着層155、及び絶縁層212を有する点で、表示装置10Dと異なる。
【0132】
基板153と絶縁層212とは接着層155によって貼り合わされている。基板154と保護層116とは接着層142によって貼り合わされている。
【0133】
表示装置10Eは、作製基板上に形成された絶縁層212、トランジスタ41、トランジスタ42、受光デバイス110、及び発光デバイス190等を、基板153上に転置することで作製される構成である。基板153及び基板154は、それぞれ、可撓性を有することが好ましい。これにより、表示装置10Eの可撓性を高めることができる。例えば、基板153及び基板154には、それぞれ、樹脂を用いることが好ましい。
【0134】
基板153及び基板154としては、それぞれ、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル樹脂、ポリアクリロニトリル樹脂、アクリル樹脂、ポリイミド樹脂、ポリメチルメタクリレート樹脂、ポリカーボネート(PC)樹脂、ポリエーテルスルホン(PES)樹脂、ポリアミド樹脂(ナイロン、アラミド等)、ポリシロキサン樹脂、シクロオレフィン樹脂、ポリスチレン樹脂、ポリアミドイミド樹脂、ポリウレタン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリプロピレン樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、ABS樹脂、セルロースナノファイバー等を用いることができる。基板153及び基板154の一方または双方に、可撓性を有する程度の厚さのガラスを用いてもよい。
【0135】
本実施の形態の表示装置が有する基板には、光学等方性が高いフィルムを用いてもよい。光学等方性が高いフィルムとしては、トリアセチルセルロース(TAC、セルローストリアセテートともいう)フィルム、シクロオレフィンポリマー(COP)フィルム、シクロオレフィンコポリマー(COC)フィルム、及びアクリルフィルム等が挙げられる。
【0136】
[表示装置10F、10G、10H]
図5(C)に表示装置10Fの断面図を示す。
図6(A)に表示装置10Gの断面図を示す。
図6(B)に表示装置10Hの断面図を示す。
【0137】
表示装置10Fは、表示装置10Dの構成に加え、レンズ149を有する。
【0138】
本実施の形態の表示装置は、レンズ149を有していてもよい。レンズ149は、受光デバイス110と重なる位置に設けられている。表示装置10Fでは、レンズ149が基板152に接して設けられている。表示装置10Fが有するレンズ149は、基板151側に凸面を有している。
【0139】
基板152の同一面上に遮光層158とレンズ149との双方を形成する場合、形成順は問わない。
図5(C)では、レンズ149を先に形成する例を示すが、遮光層158を先に形成してもよい。
図5(C)では、レンズ149の端部が遮光層158によって覆われている。
【0140】
表示装置10Fは、光22がレンズ149を介して受光デバイス110に入射する構成である。レンズ149を有すると、レンズ149を有さない場合に比べて、受光デバイス110の撮像範囲を狭くすることができ、隣接する受光デバイス110と撮像範囲が重なることを抑制できる。これにより、ぼやけの少ない、鮮明な画像を撮像できる。また、受光デバイス110の撮像範囲が同じ場合、レンズ149を有すると、レンズ149を有さない場合に比べて、ピンホールの大きさ(
図5(C)では受光デバイス110と重なる遮光層158の開口の大きさに相当する)を大きくすることができる。したがって、レンズ149を有することで、受光デバイス110に入射する光量を増やすことができる。
【0141】
図6(A)に示す表示装置10Gも、表示装置10Fと同様に、光22がレンズ149を介して受光デバイス110に入射する構成の一つである。
【0142】
表示装置10Gでは、レンズ149が保護層116の上面に接して設けられている。表示装置10Gが有するレンズ149は、基板152側に凸面を有している。
【0143】
図6(B)に示す表示装置10Hは、基板152の表示面側に、レンズアレイ146が設けられている。レンズアレイ146が有するレンズは、受光デバイス110と重なる位置に設けられている。基板152の基板151側の面には、遮光層158が設けられていることが好ましい。
【0144】
本実施の形態の表示装置に用いるレンズの形成方法としては、基板上または受光デバイス上にマイクロレンズなどのレンズを直接形成してもよいし、別途作製されたマイクロレンズアレイなどのレンズアレイを基板に貼り合わせてもよい。
【0145】
レンズは、1.3以上2.5以下の屈折率を有することが好ましい。レンズは、無機材料及び有機材料の少なくとも一方を用いて形成することができる。例えば、樹脂を含む材料をレンズに用いることができる。また、酸化物及び硫化物の少なくとも一方を含む材料をレンズに用いることができる。
【0146】
具体的には、塩素、臭素、またはヨウ素を含む樹脂、重金属原子を含む樹脂、芳香環を含む樹脂、硫黄を含む樹脂などをレンズに用いることができる。または、樹脂と当該樹脂より屈折率の高い材料のナノ粒子を含む材料をレンズに用いることができる。酸化チタンまたは酸化ジルコニウムなどをナノ粒子に用いることができる。
【0147】
また、酸化セリウム、酸化ハフニウム、酸化ランタン、酸化マグネシウム、酸化ニオブ、酸化タンタル、酸化チタン、酸化イットリウム、酸化亜鉛、インジウムとスズを含む酸化物、またはインジウムとガリウムと亜鉛を含む酸化物などを、レンズに用いることができる。または、硫化亜鉛などを、レンズに用いることができる。
【0148】
[表示装置10J]
図6(C)に表示装置10Jの断面図を示す。
【0149】
表示装置10Jは、可視光を透過する隔壁216を有さず、可視光を遮る隔壁217を有する点で、表示装置10Dと異なる。
【0150】
隔壁217は、発光デバイス190が発した光を吸収することが好ましい。隔壁217として、例えば、顔料もしくは染料を含む樹脂材料等を用いてブラックマトリクスを形成することができる。また、茶色レジスト材料を用いることで、着色された絶縁層で隔壁217を構成することができる。
【0151】
表示装置10D(
図5(A))において、発光デバイス190が発した光は、基板152及び隔壁216で反射され、反射光が受光デバイス110に入射することがある。また、発光デバイス190が発した光が隔壁216を透過し、トランジスタまたは配線等で反射されることで、反射光が受光デバイス110に入射することがある。表示装置10Jでは、隔壁217によって光が吸収されることで、このような反射光が受光デバイス110に入射することを抑制できる。これにより、ノイズを低減し、受光デバイス110を用いたセンサの感度を高めることができる。
【0152】
隔壁217は、少なくとも、受光デバイス110が検出する光の波長を吸収することが好ましい。例えば、発光デバイス190が発する緑色の光を受光デバイス110が検出する場合、隔壁217は、少なくとも緑色の光を吸収することが好ましい。例えば、隔壁217が、赤色のカラーフィルタを有すると、緑色の光を吸収することができ、反射光が受光デバイス110に入射することを抑制できる。
【0153】
遮光層158は、樹脂層159に届く前に迷光23bの多くを吸収することができるが、迷光23bの一部は反射し、隔壁217に入射することがある。隔壁217が迷光23bを吸収する構成であると、迷光23bがトランジスタ又は配線等に入射することを抑制できる。したがって、受光デバイス110に迷光23cが到達することを抑制することができる。迷光23bが遮光層158と隔壁217に当たる回数が多いほど、吸収される光量を増やすことができ、受光デバイス110に到達する迷光23cの量を極めて少なくすることができる。樹脂層159の厚さが厚いと、迷光23bが遮光層158と隔壁217に当たる回数を増やすことができるため、好ましい。
【0154】
また、隔壁217が光を吸収することで、発光デバイス190から直接、隔壁217に入射された迷光23dを、隔壁217によって吸収することができる。このことからも、隔壁217を設けることで、受光デバイス110に入射する迷光を低減することができる。
【0155】
[表示装置10K]
図7(A)に、表示装置10Kの上面図を示す。
図7(B)に、
図7(A)における一点鎖線A1-A2間の断面図を示す。
図8(A)に、
図7(A)における一点鎖線A3-A4間の断面図を示す。
【0156】
図7(A)において点線の枠で囲った部分が1つの画素に相当する。1つの画素は、受光デバイス110、赤色の発光デバイス190R、緑色の発光デバイス190G、及び、青色の発光デバイス190Bを有する。
【0157】
受光デバイス110及び発光デバイス190R、190G、190Bの上面形状は特に限定されない。
図7(A)に示す画素のレイアウトには、六方最密充填型が適用されている。六方最密充填型のレイアウトとすることで、受光デバイス110及び発光デバイス190R、190G、190の開口率を高めることができ、好ましい。上面視において、受光デバイス110の受光領域は四角形であり、発光デバイス190R、190G、190Bの発光領域は、それぞれ六角形である。
【0158】
上面視(平面視ともいえる)において、受光デバイス110は、枠状の遮光層219aの内側に設けられている。受光デバイス110の四辺を遮光層219aで完全に囲うことで、迷光が受光デバイス110に入射することを抑制できる。なお、枠状の遮光層219aは、間隙(切れ目、途切れている部分、欠けている部分ともいえる)を有していてもよい。
【0159】
上面視において、緑色の発光デバイス190Gと青色の発光デバイス190Bとの間には、スペーサ219bが設けられている。
【0160】
図7(B)及び
図8(A)に示すように、表示装置10Kは、受光デバイス110、赤色の発光デバイス190R、緑色の発光デバイス190G、及び、青色の発光デバイス190Bを有する。
【0161】
発光デバイス190Rは、画素電極191R、共通層112、発光層193R、共通層114、及び共通電極115を有する。発光層193Rは、赤色の光21Rを発する有機化合物を有する。発光デバイス190Rは、赤色の光を発する機能を有する。
【0162】
発光デバイス190Gは、画素電極191G、共通層112、発光層193G、共通層114、及び共通電極115を有する。発光層193Gは、緑色の光21Gを発する有機化合物を有する。発光デバイス190Gは、緑色の光を発する機能を有する。
【0163】
発光デバイス190Bは、画素電極191B、共通層112、発光層193B、共通層114、及び共通電極115を有する。発光層193Bは、青色の光21Bを発する有機化合物を有する。発光デバイス190Bは、青色の光を発する機能を有する。
【0164】
受光デバイス110は、画素電極181、共通層112、活性層183、共通層114、及び共通電極115を有する。活性層183は、有機化合物を有する。受光デバイス110は、可視光を検出する機能を有する。
【0165】
表示装置10Kは、一対の基板(基板151及び基板152)間に、受光デバイス110、発光デバイス190R、発光デバイス190G、発光デバイス190B、トランジスタ41、トランジスタ42R、トランジスタ42G、及びトランジスタ42B等を有する。
【0166】
画素電極181、191R、191G、191Bの端部は、それぞれ、隔壁216によって覆われている。
【0167】
画素電極181は、絶縁層214に設けられた開口を介して、トランジスタ41が有するソースまたはドレインと電気的に接続される。画素電極191Rは、絶縁層214に設けられた開口を介して、トランジスタ42Rが有するソースまたはドレインと電気的に接続される。同様に、画素電極191Gは、絶縁層214に設けられた開口を介して、トランジスタ42Gが有するソースまたはドレインと電気的に接続される。そして、画素電極191Bは、絶縁層214に設けられた開口を介して、トランジスタ42Bが有するソースまたはドレインと電気的に接続される。
【0168】
受光デバイス110及び発光デバイス190R、190G、190Bは、それぞれ、保護層116に覆われている。
【0169】
基板152の基板151側の面には、樹脂層159が設けられている。樹脂層159は、発光デバイス190R、190G、190Bと重なる位置に設けられ、受光デバイス110と重なる位置には設けられない。
【0170】
基板152の基板151側の面及び樹脂層159の基板151側の面には、遮光層158が設けられている。遮光層158は、発光デバイス190R、190G、190Bのそれぞれと重なる位置、及び、受光デバイス110と重なる位置に開口を有する。
【0171】
上面視において、隔壁216には、枠状に開口が設けられている。
図7(B)では、隔壁216は、受光デバイス110と発光デバイス190Rとの間に、開口を有する。そして、開口を覆うように、遮光層219aが設けられている。遮光層219aは、隔壁216の開口、及び、開口にて露出した隔壁216の側面を覆うことが好ましい。遮光層219aは、さらに、隔壁216の上面の少なくとも一部を覆うことが好ましい。
【0172】
隔壁216に開口を設けず、隔壁216上に遮光層219aを設ける構成とすることもできるが、迷光が隔壁216を透過して受光デバイス110に入射する可能性がある。隔壁216に開口を設け、当該開口を埋めるように遮光層219aを設ける構成とすることで、隔壁216を透過した迷光が、隔壁216の開口にて遮光層219aで吸収される。これにより、迷光が受光デバイス110に入射することを抑制できる。
【0173】
遮光層219aは、順テーパ形状であることが好ましい。これにより、遮光層219a上に設けられる膜(共通層112、共通層114、共通電極115、及び保護層116など)の被覆性を高めることができる。
【0174】
遮光層219aは、少なくとも、受光デバイス110が検出する光の波長を吸収することが好ましい。例えば、発光デバイス190Gが発する緑色の光を受光デバイス110が検出する場合、遮光層219aは、少なくとも緑色の光を吸収することが好ましい。例えば、遮光層219aが、赤色のカラーフィルタを有すると、緑色の光を吸収することができ、反射光が受光デバイス110に入射することを抑制できる。遮光層219aは、顔料もしくは染料を含む樹脂材料等を用いて形成されたブラックマトリクスであってもよい。遮光層219aは、赤色のカラーフィルタ、緑色のカラーフィルタ、及び青色のカラーフィルタの積層構造であってもよい。または、遮光層219aとして、茶色レジスト材料を用いて、着色された絶縁層を形成してもよい。
【0175】
例えば、発光デバイス190Gが発する緑色の光を受光デバイス110が検出する場合、発光デバイス190Gが発した光は、基板152及び隔壁216で反射され、反射光が受光デバイス110に入射することがある。また、発光デバイス190Gが発した光が隔壁216を透過し、トランジスタまたは配線等で反射されることで、反射光が受光デバイス110に入射することがある。表示装置10Kでは、遮光層158及び遮光層219aによって光が吸収されることで、このような反射光が受光デバイス110に入射することを抑制できる。これにより、ノイズを低減し、受光デバイス110を用いたセンサの感度を高めることができる。
【0176】
例えば、遮光層158は、樹脂層159に届く前に迷光23bの多くを吸収することができる。さらに、迷光23bの一部が遮光層158で反射しても、遮光層219aが迷光23bを吸収することで、迷光23bがトランジスタ又は配線等に入射することを抑制できる。したがって、受光デバイス110に迷光が到達することを抑制できる。迷光23bが遮光層158と遮光層219aに当たる回数が多いほど、吸収される光量を増やすことができ、受光デバイス110に到達する迷光の量を極めて少なくすることができる。樹脂層159の厚さが厚いと、迷光23bが遮光層158と遮光層219aに当たる回数を増やすことができるため、好ましい。樹脂層159の厚さが厚いと、遮光層158から各色の発光デバイスまでの距離が短くなり、表示の視野角依存性を抑制できるため、表示品位の向上の観点からも好ましい。
【0177】
また、遮光層219aが光を吸収することで、発光デバイスから直接、遮光層219aに入射された迷光23dを、遮光層219aによって吸収することができる。このことからも、遮光層219aを設けることで、受光デバイス110に入射する迷光を低減することができる。
【0178】
また、遮光層158を設けることで、受光デバイス110が光を検出する範囲を制御することができる。遮光層158から受光デバイス110までの距離が長いと、撮像範囲が狭くなり、撮像の解像度を高めることができる。
【0179】
スペーサ219bは、隔壁216上に位置し、かつ、上面視において、発光デバイス190Gと発光デバイス190Bとの間に位置する。スペーサ219bの上面は、遮光層219aの上面よりも遮光層158に近いことが好ましい。遮光層219aの厚さL3が、隔壁216の厚さとスペーサ219bの厚さの和L4以上の値であると、枠状の遮光層219aの内側に接着層142が十分に充填されず、受光デバイス110、さらには、表示装置10Kの信頼性が低下する恐れがある。したがって、隔壁216の厚さとスペーサ219bの厚さの和L4は、遮光層219aの厚さL3よりも大きいことが好ましい。これにより、接着層142を充填することが容易となる。
図8(A)に示すように、スペーサ219bと遮光層158とが重なる部分において、遮光層158は保護層116(または共通電極115)と接していてもよい。
【0180】
[表示装置10L]
図8(B)に、表示装置10Lの断面図を示す。
【0181】
表示装置10Lは、発光デバイス190R、190G、190Bが、同一の発光層を有する構成である。
図8(B)は、
図7(A)における一点鎖線A3-A4間の断面図に相当する。
【0182】
図8(B)に示す発光デバイス190Gは、画素電極191G、光学調整層197G、共通層112、発光層113、共通層114、及び共通電極115を有する。
図8(B)に示す発光デバイス190Bは、画素電極191B、光学調整層197B、共通層112、発光層113、共通層114、及び共通電極115を有する。共通層112、発光層113、及び共通層114は、発光デバイス190R、190G、190Bにおいて共通の構成である。例えば、発光層113は、赤色の光を発する発光層193R、緑色の光を発する発光層193G、及び青色の光を発する発光層193Bを有する。
【0183】
なお、
図8(B)では、EL層を共通層112、発光層113、及び共通層114で示すが、これに限定されない。発光デバイスは、画素電極と共通電極との間に1つのEL層を有するシングル構造(
図18(A))であってもよく、複数のEL層を有するタンデム構造(
図18(B))であってもよい。
【0184】
発光層113は、各色の光を発する発光デバイスに共通して設けられる。発光デバイス190Gが発する光は、着色層CFGを介して、緑色の光21Gとして取り出される。発光デバイス190Bが発する光は、着色層CFBを介して、青色の光21Bとして取り出される。
【0185】
発光デバイス190G及び発光デバイス190Bは、厚さが互いに異なる光学調整層を有する点以外は同一の構成である。画素電極191G及び画素電極191Bとして反射電極を用いる。光学調整層として、反射電極上の透明電極を用いることができる。各色の発光デバイスは、それぞれ異なる厚さの光学調整層197を有することが好ましい。
図8(B)に示す発光デバイス190Gは、画素電極191Gと共通電極115の間の光学距離が緑色の光を強める光学距離となるように、光学調整層197Gを用いて光学調整されている。同様に、発光デバイス190Bは、画素電極191Bと共通電極115の間の光学距離が青色の光を強める光学距離となるように、光学調整層197Bを用いて光学調整されている。
【0186】
[表示装置10M]
図9(A)に、表示装置10Mの上面図を示す。
図9(B)に、
図9(A)における一点鎖線A5-A6間の断面図を示す。
【0187】
図9(A)及び
図9(B)に示す表示装置10Mは、緑色の発光デバイス190Gと青色の発光デバイス190Bとの間に、遮光層219aが設けられている点、及び、空間143が不活性ガスで充填された、中空封止構造が適用されている点で、
図7(A)、
図7(B)、及び
図8(A)に示す表示装置10Kと異なる。
【0188】
表示装置10Mのように、遮光層219aは、発光デバイス190Rと受光デバイス110との間、及び、発光デバイス190Gと発光デバイス190Bとの間の双方に設けてもよい。
【0189】
[表示装置10N]
図10(A)に、表示装置10Nの上面図を示す。
図10(B)に、
図10(A)における一点鎖線A7-A8間の断面図を示す。
図11(A)に、
図10(A)における一点鎖線A9-A10間の断面図を示す。
【0190】
表示装置10N(
図10(A))における一点鎖線A3-A4間の断面構造は、表示装置10K(
図8(A))と同様の構成を適用できる。または、表示装置10M(
図9(B))と同様の構成を適用してもよい。
【0191】
表示装置10Nは、遮光層219aの上面形状及び断面形状が、表示装置10K(
図7(A)及び
図7(B))と異なる。
【0192】
上面視(平面視ともいえる)において、遮光層219aは、受光デバイス110の四辺を囲み、かつ、一端と他端が互いに離れている構成である。遮光層219aの間隙220(切れ目、途切れている部分、欠けている部分ともいえる)は、赤色の発光デバイス190R側に位置する。ここで、センシングに用いる光源が、特定の色の発光デバイスのみである場合、当該センシングに用いる発光デバイスとは異なる発光デバイス側に、遮光層219aの間隙220が位置することが好ましい。例えば、表示装置10Nであれば、緑色の発光デバイス190Gまたは青色の発光デバイス190Bを用いて、センシングを行う構成が好ましい。これにより、センシング時のノイズの影響を抑制することができる。また、緑色の発光デバイス190Gを用いてセンシングを行う場合、領域230に示すように、遮光層219aの一端は、緑色の発光デバイス190Gに比べて、赤色の発光デバイス190R側に突出していることが好ましい。これにより、緑色の発光デバイス190Gからの迷光が、間隙220を介して、受光デバイス110に入射することを抑制できる。
【0193】
隔壁216は、受光デバイス110と発光デバイス190Rとの間に、開口を有する。そして、開口を覆うように、遮光層219aが設けられている。遮光層219aは、隔壁216の開口、及び、開口にて露出した隔壁216の側面を覆うことが好ましい。遮光層219aは、さらに、隔壁216の上面の少なくとも一部を覆うことが好ましい。
【0194】
遮光層219aは、逆テーパ形状であってもよい。逆テーパ形状の遮光層219a上に設けられる有機膜及び共通電極115の厚さは、遮光層219aの側面付近で薄くなることがある。また、遮光層219aの側面付近に、空隙160が生じることがある。
【0195】
ここで、上面視において、遮光層219aが、受光デバイス110の四辺を全て囲ってしまうと、共通電極115が遮光層219aによって段切れし、遮光層219aの内側と外側とで、共通電極115が分離してしまう恐れがある。そこで、遮光層219aの上面形状を、受光デバイス110の四辺を囲み、かつ、一端と他端が離れている構成とし、間隙220を設けることで、共通電極115が分離することを抑制できる。これにより、表示装置10Nにおける表示不良を抑制できる。
【0196】
図11(A)は、遮光層219aの間隙220を含む断面図である。上面視において、隔壁216には、遮光層219aの上面形状と同様に、受光デバイス110の四辺を囲み、かつ、一端と他端が互いに離れている構成の開口が設けられている。遮光層219aの間隙220では、隔壁216上に、共通層112、共通層114、共通電極115、及び保護層116が順に設けられている。
【0197】
[表示装置10P]
図11(B)に、表示装置10Pの断面図を示す。
【0198】
表示装置10Pは、遮光層219aの側面に接する側壁219cを有する点で、表示装置10Nと異なる。
【0199】
表示装置10Pにおいて、遮光層219aの上面形状は、
図7(A)のように、枠状であってもよく、
図10(A)のように、間隙220を有していてもよい。
【0200】
逆テーパ形状の遮光層219aの側面に接する側壁219cを設けることで、有機膜及び共通電極115等の被覆性を向上させることができ、表示装置の表示品位を高めることができる。共通電極115の被覆性を高めることで、共通電極115の段切れ、さらには薄膜化を抑制できるため、共通電極115の電圧降下に起因する表示の輝度ムラを抑制することができる。
【0201】
側壁219cは、隔壁216に用いることができる材料を用いて形成することができる。
【0202】
[表示装置10Q]
図12(A)及び
図12(B)に、表示装置10Qの断面図を示す。表示装置10Qは、表示装置10K(
図7(A))と同様の上面構造を適用することができる。
図12(A)に、
図7(A)における一点鎖線A1-A2間の断面図を示す。
図12(B)に、
図7(A)における一点鎖線A3-A4間の断面図を示す。
【0203】
表示装置10Qは、隔壁216を有さず、隔壁217を有する点で、表示装置10Kと主に異なる。
【0204】
遮光層219aは、隔壁217上に位置する。隔壁217は、隔壁216とは異なり、発光デバイスが発した光を吸収することができるため、隔壁217に開口を設けなくてよい。発光デバイスから隔壁217に入射された迷光23dは、隔壁217で吸収される。発光デバイスから遮光層219aに入射された迷光23dは、遮光層219aで吸収される。
【0205】
スペーサ219bは、発光デバイス190Gと発光デバイス190Bとの間に位置する。スペーサ219bの上面は、遮光層219aの上面よりも遮光層158に近いことが好ましい。スペーサ219bの厚さが遮光層219aの厚さよりも薄いと、枠状の遮光層219aの内側に接着層142が十分に充填されず、受光デバイス110、さらには、表示装置10Qの信頼性が低下する恐れがある。したがって、スペーサ219bは、遮光層219aよりも厚いことが好ましい。これにより、接着層142を充填することが容易となる。
図12(B)に示すように、スペーサ219bと遮光層158とが重なる部分において、遮光層158は保護層116(または共通電極115)と接していてもよい。
【0206】
以下では、
図13~
図17を用いて、本発明の一態様の表示装置の、より詳細な構成について説明する。
【0207】
[表示装置100A]
図13に、表示装置100Aの斜視図を示し、
図14に、表示装置100Aの断面図を示す。
【0208】
表示装置100Aは、基板152と基板151とが貼り合わされた構成を有する。
図13では、基板152を破線で明示している。
【0209】
表示装置100Aは、表示部162、回路164、配線165等を有する。
図13では表示装置100AにIC(集積回路)173及びFPC172が実装されている例を示している。そのため、
図13に示す構成は、表示装置100A、IC、及びFPCを有する表示モジュールということもできる。
【0210】
回路164としては、例えば走査線駆動回路を用いることができる。
【0211】
配線165は、表示部162及び回路164に信号及び電力を供給する機能を有する。当該信号及び電力は、FPC172を介して外部から、またはIC173から配線165に入力される。
【0212】
図13では、COG(Chip On Glass)方式またはCOF(Chip On Film)方式等により、基板151にIC173が設けられている例を示す。IC173は、例えば走査線駆動回路または信号線駆動回路などを有するICを適用できる。なお、表示装置100A及び表示モジュールは、ICを設けない構成としてもよい。また、ICを、COF方式等により、FPCに実装してもよい。
【0213】
図14に、表示装置100Aの、FPC172を含む領域の一部、回路164の一部、表示部162の一部、及び、端部を含む領域の一部をそれぞれ切断したときの断面の一例を示す。
【0214】
図14に示す表示装置100Aは、基板151と基板152の間に、トランジスタ201、トランジスタ205、トランジスタ206、発光デバイス190、受光デバイス110等を有する。
【0215】
樹脂層159と絶縁層214は接着層142を介して接着されている。発光デバイス190及び受光デバイス110の封止には、固体封止構造または中空封止構造などが適用できる。
図14では、基板152、接着層142、及び基板151に囲まれた空間143が、不活性ガス(窒素やアルゴンなど)で充填されており、中空封止構造が適用されている。接着層142は、発光デバイス190及び受光デバイス110と重ねて設けられていてもよい。また、基板152、接着層142、及び基板151に囲まれた空間143を、接着層142とは異なる樹脂で充填してもよい。
【0216】
発光デバイス190は、絶縁層214側から画素電極191、共通層112、発光層193、共通層114、及び共通電極115の順に積層された積層構造を有する。画素電極191は、絶縁層214に設けられた開口を介して、トランジスタ206が有する導電層222bと接続されている。
【0217】
画素電極191の端部は、隔壁217によって覆われている。画素電極191は可視光を反射する材料を含み、共通電極115は可視光を透過する材料を含む。
【0218】
受光デバイス110は、絶縁層214側から画素電極181、共通層112、活性層183、共通層114、及び共通電極115の順に積層された積層構造を有する。画素電極181は、絶縁層214に設けられた開口を介して、トランジスタ205が有する導電層222bと電気的に接続されている。画素電極181の端部は、隔壁217によって覆われている。画素電極181は可視光を反射する材料を含み、共通電極115は可視光を透過する材料を含む。
【0219】
発光デバイス190が発する光は、基板152側に射出される。また、受光デバイス110には、基板152及び空間143を介して、光が入射する。基板152には、可視光に対する透過性が高い材料を用いることが好ましい。
【0220】
画素電極181及び画素電極191は同一の材料及び同一の工程で作製することができる。共通層112、共通層114、及び共通電極115は、受光デバイス110と発光デバイス190との双方に用いられる。受光デバイス110と発光デバイス190とは、活性層183と発光層193の構成が異なる以外は全て共通の構成とすることができる。これにより、作製工程を大幅に増やすことなく、表示装置100Aに受光デバイス110を内蔵することができる。
【0221】
基板152の基板151側の面には、樹脂層159及び遮光層158が設けられている。樹脂層159は、発光デバイス190と重なる位置に設けられ、受光デバイス110と重なる位置には設けられない。遮光層158は、基板152の基板151側の面、樹脂層159の側面、及び樹脂層159の基板151側の面を覆って設けられる。遮光層158は、受光デバイス110と重なる位置及び発光デバイス190と重なる位置に開口を有する。遮光層158を設けることで、受光デバイス110が光を検出する範囲を制御することができる。また、遮光層158を有することで、対象物を介さずに、発光デバイス190から受光デバイス110に光が直接入射することを抑制できる。したがって、ノイズが少なく感度の高いセンサを実現できる。樹脂層159が設けられていることで、遮光層158から発光デバイス190までの距離を、遮光層158から受光デバイス110までの距離に比べて短くすることができる。これにより、センサのノイズを低減しつつ、表示の視野角依存性を抑制することができる。したがって、表示品位と撮像品位との双方を高めることができる。
【0222】
表示装置100Aにおける隔壁217及び遮光層219aの構成は、表示装置10Q(
図12(A))と同様である。
【0223】
隔壁217は、画素電極181の端部及び画素電極191の端部を覆っている。隔壁217上には、遮光層219aが設けられている。遮光層219aは、受光デバイス110と発光デバイス190との間に位置する。隔壁217及び遮光層219aは、受光デバイス110が検出する光の波長を吸収することが好ましい。これにより、受光デバイス110に入射する迷光を抑制することができる。
【0224】
トランジスタ201、トランジスタ205、及びトランジスタ206は、いずれも基板151上に形成されている。これらのトランジスタは、同一の材料及び同一の工程により作製することができる。
【0225】
基板151上には、絶縁層211、絶縁層213、絶縁層215、及び絶縁層214がこの順で設けられている。絶縁層211は、その一部が各トランジスタのゲート絶縁層として機能する。絶縁層213は、その一部が各トランジスタのゲート絶縁層として機能する。絶縁層215は、トランジスタを覆って設けられる。絶縁層214は、トランジスタを覆って設けられ、平坦化層としての機能を有する。なお、ゲート絶縁層の数及びトランジスタを覆う絶縁層の数は限定されず、それぞれ単層であっても2層以上であってもよい。
【0226】
トランジスタを覆う絶縁層の少なくとも一層に、水や水素などの不純物が拡散しにくい材料を用いることが好ましい。これにより、絶縁層をバリア層として機能させることができる。このような構成とすることで、トランジスタに外部から不純物が拡散することを効果的に抑制でき、表示装置の信頼性を高めることができる。
【0227】
絶縁層211、絶縁層213、及び絶縁層215としては、それぞれ、無機絶縁膜を用いることが好ましい。無機絶縁膜としては、例えば、窒化シリコン膜、酸化窒化シリコン膜、酸化シリコン膜、窒化酸化シリコン膜、酸化アルミニウム膜、窒化アルミニウム膜などを用いることができる。また、酸化ハフニウム膜、酸化イットリウム膜、酸化ジルコニウム膜、酸化ガリウム膜、酸化タンタル膜、酸化マグネシウム膜、酸化ランタン膜、酸化セリウム膜、及び酸化ネオジム膜等を用いてもよい。また、上述の絶縁膜を2以上積層して用いてもよい。
【0228】
ここで、有機絶縁膜は、無機絶縁膜に比べてバリア性が低いことが多い。そのため、有機絶縁膜は、表示装置100Aの端部近傍に開口を有することが好ましい。これにより、表示装置100Aの端部から有機絶縁膜を介して不純物が入り込むことを抑制することができる。または、有機絶縁膜の端部が表示装置100Aの端部よりも内側にくるように有機絶縁膜を形成し、表示装置100Aの端部に有機絶縁膜が露出しないようにしてもよい。
【0229】
平坦化層として機能する絶縁層214には、有機絶縁膜が好適である。有機絶縁膜に用いることができる材料としては、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂、及びこれら樹脂の前駆体等が挙げられる。
【0230】
図14に示す領域228では、絶縁層214に開口が形成されている。これにより、絶縁層214に有機絶縁膜を用いる場合であっても、絶縁層214を介して外部から表示部162に不純物が入り込むことを抑制できる。したがって、表示装置100Aの信頼性を高めることができる。
【0231】
トランジスタ201、トランジスタ205、及びトランジスタ206は、ゲートとして機能する導電層221、ゲート絶縁層として機能する絶縁層211、ソース及びドレインとして機能する導電層222a及び導電層222b、半導体層231、ゲート絶縁層として機能する絶縁層213、並びに、ゲートとして機能する導電層223を有する。ここでは、同一の導電膜を加工して得られる複数の層に、同じハッチングパターンを付している。絶縁層211は、導電層221と半導体層231との間に位置する。絶縁層213は、導電層223と半導体層231との間に位置する。
【0232】
本実施の形態の表示装置が有するトランジスタの構造は特に限定されない。例えば、プレーナ型のトランジスタ、スタガ型のトランジスタ、逆スタガ型のトランジスタ等を用いることができる。また、トップゲート型またはボトムゲート型のいずれのトランジスタ構造としてもよい。または、チャネルが形成される半導体層の上下にゲートが設けられていてもよい。
【0233】
トランジスタ201、トランジスタ205、及びトランジスタ206には、チャネルが形成される半導体層を2つのゲートで挟持する構成が適用されている。2つのゲートを接続し、これらに同一の信号を供給することによりトランジスタを駆動してもよい。または、2つのゲートのうち、一方に閾値電圧を制御するための電位を与え、他方に駆動のための電位を与えることで、トランジスタの閾値電圧を制御してもよい。
【0234】
トランジスタに用いる半導体材料の結晶性についても特に限定されず、非晶質半導体、結晶性を有する半導体(微結晶半導体、多結晶半導体、単結晶半導体、または一部に結晶領域を有する半導体)のいずれを用いてもよい。結晶性を有する半導体を用いると、トランジスタ特性の劣化を抑制できるため好ましい。
【0235】
トランジスタの半導体層は、金属酸化物(酸化物半導体ともいう)を有することが好ましい。または、トランジスタの半導体層は、シリコンを有していてもよい。シリコンとしては、アモルファスシリコン、結晶性のシリコン(低温ポリシリコン、単結晶シリコンなど)などが挙げられる。
【0236】
半導体層は、例えば、インジウムと、M(Mは、ガリウム、アルミニウム、シリコン、ホウ素、イットリウム、スズ、銅、バナジウム、ベリリウム、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、及びマグネシウムから選ばれた一種または複数種)と、亜鉛と、を有することが好ましい。特に、Mは、アルミニウム、ガリウム、イットリウム、及びスズから選ばれた一種または複数種であることが好ましい。
【0237】
特に、半導体層として、インジウム(In)、ガリウム(Ga)、及び亜鉛(Zn)を含む酸化物(IGZOとも記す)を用いることが好ましい。
【0238】
半導体層がIn-M-Zn酸化物の場合、当該In-M-Zn酸化物におけるInの原子数比はMの原子数比以上であることが好ましい。このようなIn-M-Zn酸化物の金属元素の原子数比として、In:M:Zn=1:1:1またはその近傍の組成、In:M:Zn=1:1:1.2またはその近傍の組成、In:M:Zn=2:1:3またはその近傍の組成、In:M:Zn=3:1:2またはその近傍の組成、In:M:Zn=4:2:3またはその近傍の組成、In:M:Zn=4:2:4.1またはその近傍の組成、In:M:Zn=5:1:3またはその近傍の組成、In:M:Zn=5:1:6またはその近傍の組成、In:M:Zn=5:1:7またはその近傍の組成、In:M:Zn=5:1:8またはその近傍の組成、In:M:Zn=6:1:6またはその近傍の組成、In:M:Zn=5:2:5またはその近傍の組成、等が挙げられる。なお、近傍の組成とは、所望の原子数比の±30%の範囲を含む。
【0239】
例えば、原子数比がIn:Ga:Zn=4:2:3またはその近傍の組成と記載する場合、Inの原子数比を4としたとき、Gaの原子数比が1以上3以下であり、Znの原子数比が2以上4以下である場合を含む。また、原子数比がIn:Ga:Zn=5:1:6またはその近傍の組成と記載する場合、Inの原子数比を5としたときに、Gaの原子数比が0.1より大きく2以下であり、Znの原子数比が5以上7以下である場合を含む。また、原子数比がIn:Ga:Zn=1:1:1またはその近傍の組成と記載する場合、Inの原子数比を1としたときに、Gaの原子数比が0.1より大きく2以下であり、Znの原子数比が0.1より大きく2以下である場合を含む。
【0240】
回路164が有するトランジスタと、表示部162が有するトランジスタは、同じ構造であってもよく、異なる構造であってもよい。回路164が有する複数のトランジスタの構造は、全て同じであってもよく、2種類以上あってもよい。同様に、表示部162が有する複数のトランジスタの構造は、全て同じであってもよく、2種類以上あってもよい。
【0241】
基板151の、基板152が重ならない領域には、接続部204が設けられている。接続部204では、配線165が導電層166及び接続層242を介してFPC172と電気的に接続されている。接続部204の上面は、画素電極181と同一の導電膜を加工して得られた導電層166が露出している。これにより、接続部204とFPC172とを接続層242を介して電気的に接続することができる。
【0242】
基板152の外側には各種光学部材を配置することができる。光学部材としては、偏光板、位相差板、光拡散層(拡散フィルムなど)、反射防止層、及び集光フィルム等が挙げられる。また、基板152の外側には、ゴミの付着を抑制する帯電防止膜、汚れを付着しにくくする撥水性の膜、使用に伴う傷の発生を抑制するハードコート膜、衝撃吸収層等を配置してもよい。
【0243】
基板151及び基板152には、それぞれ、ガラス、石英、セラミック、サファイア、樹脂などを用いることができる。基板151及び基板152に可撓性を有する材料を用いると、表示装置の可撓性を高めることができる。
【0244】
接着層としては、紫外線硬化型等の光硬化型接着剤、反応硬化型接着剤、熱硬化型接着剤、嫌気型接着剤などの各種硬化型接着剤を用いることができる。これら接着剤としてはエポキシ樹脂、アクリル樹脂、シリコーン樹脂、フェノール樹脂、ポリイミド樹脂、イミド樹脂、PVC(ポリビニルクロライド)樹脂、PVB(ポリビニルブチラル)樹脂、EVA(エチレンビニルアセテート)樹脂等が挙げられる。特に、エポキシ樹脂等の透湿性が低い材料が好ましい。また、二液混合型の樹脂を用いてもよい。また、接着シート等を用いてもよい。
【0245】
接続層242としては、異方性導電フィルム(ACF:Anisotropic Conductive Film)、異方性導電ペースト(ACP:Anisotropic Conductive Paste)などを用いることができる。
【0246】
発光デバイス190は、トップエミッション型、ボトムエミッション型、デュアルエミッション型などがある。光を取り出す側の電極には、可視光を透過する導電膜を用いる。また、光を取り出さない側の電極には、可視光を反射する導電膜を用いることが好ましい。
【0247】
発光デバイス190は少なくとも発光層193を有する。発光デバイス190は、発光層193以外の層として、正孔注入性の高い物質、正孔輸送性の高い物質、正孔ブロック材料、電子輸送性の高い物質、電子注入性の高い物質、またはバイポーラ性の物質(電子輸送性及び正孔輸送性が高い物質)等を含む層をさらに有していてもよい。例えば、共通層112は、正孔注入層及び正孔輸送層の一方又は双方を有することが好ましい。例えば、共通層114は、電子輸送層及び電子注入層の一方または双方を有することが好ましい。
【0248】
正孔注入層は、陽極から正孔輸送層に正孔を注入する層であり、正孔注入性の高い材料を含む層である。正孔注入性の高い材料としては、芳香族アミン化合物や、正孔輸送性材料とアクセプター性材料(電子受容性材料)とを含む複合材料を用いることができる。
【0249】
発光デバイスにおいて、正孔輸送層は、正孔注入層によって、陽極から注入された正孔を発光層に輸送する層である。受光デバイスにおいて、正孔輸送層は、活性層において入射した光に基づき発生した正孔を陽極に輸送する層である。正孔輸送層は、正孔輸送性材料を含む層である。正孔輸送性材料としては、1×10-6cm2/Vs以上の正孔移動度を有する物質が好ましい。なお、電子よりも正孔の輸送性の高い物質であれば、これら以外のものも用いることができる。正孔輸送性材料としては、π電子過剰型複素芳香族化合物(例えばカルバゾール誘導体、チオフェン誘導体、フラン誘導体など)や芳香族アミン(芳香族アミン骨格を有する化合物)等の正孔輸送性の高い材料が好ましい。
【0250】
発光デバイスにおいて、電子輸送層は、電子注入層によって、陰極から注入された電子を発光層に輸送する層である。受光デバイスにおいて、電子輸送層は、活性層において入射した光に基づき発生した電子を陰極に輸送する層である。電子輸送層は、電子輸送性材料を含む層である。電子輸送性材料としては、1×10-6cm2/Vs以上の電子移動度を有する物質が好ましい。なお、正孔よりも電子の輸送性の高い物質であれば、これら以外のものも用いることができる。電子輸送性材料としては、キノリン骨格を有する金属錯体、ベンゾキノリン骨格を有する金属錯体、オキサゾール骨格を有する金属錯体、チアゾール骨格を有する金属錯体等の他、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、オキサゾール誘導体、チアゾール誘導体、フェナントロリン誘導体、キノリン配位子を有するキノリン誘導体、ベンゾキノリン誘導体、キノキサリン誘導体、ジベンゾキノキサリン誘導体、ピリジン誘導体、ビピリジン誘導体、ピリミジン誘導体、その他含窒素複素芳香族化合物を含むπ電子不足型複素芳香族化合物等の電子輸送性の高い材料を用いることができる。
【0251】
電子注入層は、陰極から電子輸送層に電子を注入する層であり、電子注入性の高い材料を含む層である。電子注入性の高い材料としては、アルカリ金属、アルカリ土類金属、またはそれらの化合物を用いることができる。電子注入性の高い材料としては、電子輸送性材料とドナー性材料(電子供与性材料)とを含む複合材料を用いることもできる。
【0252】
共通層112、発光層193、及び共通層114には低分子系化合物及び高分子系化合物のいずれを用いることもでき、無機化合物を含んでいてもよい。共通層112、発光層193、及び共通層114を構成する層は、それぞれ、蒸着法(真空蒸着法を含む)、転写法、印刷法、インクジェット法、塗布法等の方法で形成することができる。
【0253】
発光層193は、発光物質を含む層である。発光層193は、1種または複数種の発光物質を有することができる。発光物質としては、青色、紫色、青紫色、緑色、黄緑色、黄色、橙色、赤色などの発光色を呈する物質を適宜用いる。また、発光物質として、近赤外光を発する物質を用いることもできる。
【0254】
受光デバイス110の活性層183は、半導体を含む。当該半導体としては、シリコンなどの無機半導体、及び、有機化合物を含む有機半導体が挙げられる。本実施の形態では、活性層が有する半導体として、有機半導体を用いる例を示す。有機半導体を用いることで、発光デバイス190の発光層193と、受光デバイス110の活性層183と、を同じ方法(例えば、真空蒸着法)で形成することができ、製造装置を共通化できるため好ましい。
【0255】
活性層183が有するn型半導体の材料としては、フラーレン(例えばC60、C70等)またはその誘導体等の電子受容性の有機半導体材料が挙げられる。また、活性層183が有するp型半導体の材料としては、銅(II)フタロシアニン(Copper(II) phthalocyanine;CuPc)やテトラフェニルジベンゾペリフランテン(Tetraphenyldibenzoperiflanthene;DBP)、亜鉛フタロシアニン(Zinc Phthalocyanine;ZnPc)等の電子供与性の有機半導体材料が挙げられる。また、p型半導体の材料として、スズフタロシアニン(SnPc)を用いてもよい。
【0256】
例えば、活性層183は、n型半導体とp型半導体と共蒸着して形成することが好ましい。
【0257】
トランジスタのゲート、ソース及びドレインのほか、表示装置を構成する各種配線及び電極などの導電層に用いることのできる材料としては、アルミニウム、チタン、クロム、ニッケル、銅、イットリウム、ジルコニウム、モリブデン、銀、タンタル、及びタングステンなどの金属、並びに、当該金属を主成分とする合金などが挙げられる。これらの材料を含む膜を単層で、または積層構造として用いることができる。
【0258】
また、透光性を有する導電材料としては、酸化インジウム、インジウム錫酸化物、インジウム亜鉛酸化物、酸化亜鉛、ガリウムを含む酸化亜鉛などの導電性酸化物またはグラフェンを用いることができる。または、金、銀、白金、マグネシウム、ニッケル、タングステン、クロム、モリブデン、鉄、コバルト、銅、パラジウム、及びチタンなどの金属材料や、該金属材料を含む合金材料を用いることができる。または、該金属材料の窒化物(例えば、窒化チタン)などを用いてもよい。なお、金属材料、合金材料(またはそれらの窒化物)を用いる場合には、透光性を有する程度に薄くすることが好ましい。また、上記材料の積層膜を導電層として用いることができる。例えば、銀とマグネシウムの合金とインジウムスズ酸化物の積層膜などを用いると、導電性を高めることができるため好ましい。これらは、表示装置を構成する各種配線及び電極などの導電層や、表示デバイスが有する導電層(画素電極や共通電極として機能する導電層)にも用いることができる。
【0259】
各絶縁層に用いることのできる絶縁材料としては、例えば、アクリル樹脂、エポキシ樹脂などの樹脂、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウムなどの無機絶縁材料が挙げられる。
【0260】
[表示装置100B]
図15(A)に、表示装置100Bの断面図を示す。
【0261】
表示装置100Bは、保護層116を有する点及び固体封止構造が適用されている点で、主に表示装置100Aと異なる。
【0262】
受光デバイス110及び発光デバイス190を覆う保護層116を設けることで、受光デバイス110及び発光デバイス190に水などの不純物が入り込むことを抑制し、受光デバイス110及び発光デバイス190の信頼性を高めることができる。
【0263】
表示装置100Bの端部近傍の領域228において、絶縁層214の開口を介して、絶縁層215と保護層116とが互いに接することが好ましい。特に、絶縁層215が有する無機絶縁膜と保護層116が有する無機絶縁膜とが互いに接することが好ましい。これにより、有機絶縁膜を介して外部から表示部162に不純物が入り込むことを抑制することができる。したがって、表示装置100Bの信頼性を高めることができる。
【0264】
図15(B)に、保護層116が3層構造である例を示す。
図15(B)において、保護層116は、共通電極115上の無機絶縁層116aと、無機絶縁層116a上の有機絶縁層116bと、有機絶縁層116b上の無機絶縁層116cと、を有する。
【0265】
無機絶縁層116aの端部と無機絶縁層116cの端部は、有機絶縁層116bの端部よりも外側に延在し、互いに接している。そして、無機絶縁層116aは、絶縁層214(有機絶縁層)の開口を介して、絶縁層215(無機絶縁層)と接する。これにより、絶縁層215と保護層116とで、受光デバイス110及び発光デバイス190を囲うことができるため、受光デバイス110及び発光デバイス190の信頼性を高めることができる。
【0266】
このように、保護層116は、有機絶縁膜と無機絶縁膜との積層構造であってもよい。このとき、有機絶縁膜の端部よりも無機絶縁膜の端部を外側に延在させることが好ましい。
【0267】
また、表示装置100Bでは、保護層116と基板152とが接着層142によって貼り合わされている。接着層142は、受光デバイス110及び発光デバイス190とそれぞれ重ねて設けられており、表示装置100Bには、固体封止構造が適用されている。
【0268】
[表示装置100C]
図16及び
図17(A)に、表示装置100Cの断面図を示す。表示装置100Cの斜視図は表示装置100A(
図13)と同様である。
図16には、表示装置100Cの、FPC172を含む領域の一部、回路164の一部、及び、表示部162の一部をそれぞれ切断したときの断面の一例を示す。
図17(A)には、表示装置100Cの、表示部162の一部を切断したときの断面の一例を示す。
図16では、表示部162のうち、特に、受光デバイス110と赤色の光を発する発光デバイス190Rを含む領域を切断したときの断面の一例を示す。
図17(A)では、表示部162のうち、特に、緑色の光を発する発光デバイス190Gと青色の光を発する発光デバイス190Bを含む領域を切断したときの断面の一例を示す。
【0269】
図16及び
図17(A)に示す表示装置100Cは、基板153と基板154の間に、トランジスタ203、トランジスタ207、トランジスタ208、トランジスタ209、トランジスタ210、発光デバイス190R、発光デバイス190G、発光デバイス190B、及び受光デバイス110等を有する。
【0270】
樹脂層159と共通電極115とは接着層142を介して接着されており、表示装置100Cには、固体封止構造が適用されている。
【0271】
基板153と絶縁層212とは接着層155によって貼り合わされている。基板154と絶縁層157とは接着層156によって貼り合わされている。
【0272】
表示装置100Cの作製方法としては、まず、絶縁層212、各トランジスタ、受光デバイス110、各発光デバイス等が設けられた第1の作製基板と、絶縁層157、樹脂層159、及び遮光層158等が設けられた第2の作製基板と、を接着層142によって貼り合わせる。そして、第1の作製基板を剥離し露出した面に基板153を貼り、第2の作製基板を剥離し露出した面に基板154を貼ることで、第1の作製基板上及び第2の作製基板上に形成した各構成要素を、基板153及び基板154に転置する。基板153及び基板154は、それぞれ、可撓性を有することが好ましい。これにより、表示装置100Cの可撓性を高めることができる。
【0273】
絶縁層212及び絶縁層157には、それぞれ、絶縁層211、絶縁層213、及び絶縁層215に用いることができる無機絶縁膜を用いることができる。
【0274】
発光デバイス190Rは、絶縁層214b側から画素電極191R、共通層112、発光層193R、共通層114、及び共通電極115の順に積層された積層構造を有する。画素電極191Rは、絶縁層214bに設けられた開口を介して、導電層169Rと接続されている。導電層169Rは、絶縁層214aに設けられた開口を介して、トランジスタ208が有する導電層222bと接続されている。導電層222bは、絶縁層215に設けられた開口を介して、低抵抗領域231nと接続される。つまり、画素電極191Rは、トランジスタ208と電気的に接続されている。トランジスタ208は、発光デバイス190Rの駆動を制御する機能を有する。
【0275】
同様に、発光デバイス190Gは、絶縁層214b側から画素電極191G、共通層112、発光層193G、共通層114、及び共通電極115の順に積層された積層構造を有する。画素電極191Gは、導電層169G及びトランジスタ209の導電層222bを介して、トランジスタ209の低抵抗領域231nと電気的に接続される。つまり、画素電極191Gは、トランジスタ209と電気的に接続されている。トランジスタ209は、発光デバイス190Gの駆動を制御する機能を有する。
【0276】
そして、発光デバイス190Bは、絶縁層214b側から画素電極191B、共通層112、発光層193B、共通層114、及び共通電極115の順に積層された積層構造を有する。画素電極191Bは、導電層169B及びトランジスタ210の導電層222bを介して、トランジスタ210の低抵抗領域231nと電気的に接続される。つまり、画素電極191Bは、トランジスタ210と電気的に接続されている。トランジスタ210は、発光デバイス190Bの駆動を制御する機能を有する。
【0277】
受光デバイス110は、絶縁層214b側から画素電極181、共通層112、活性層183、共通層114、及び共通電極115の順に積層された積層構造を有する。画素電極181は、導電層168及びトランジスタ207の導電層222bを介して、トランジスタ207の低抵抗領域231nと電気的に接続される。つまり、画素電極181は、トランジスタ207と電気的に接続されている。
【0278】
画素電極181、191R、191G、191Bの端部は、隔壁216によって覆われている。画素電極181、191R、191G、191Bは可視光を反射する材料を含み、共通電極115は可視光を透過する材料を含む。
【0279】
発光デバイス190R、190G、190Bが発する光は、基板154側に射出される。また、受光デバイス110には、基板154及び接着層142を介して、光が入射する。基板154には、可視光に対する透過性が高い材料を用いることが好ましい。
【0280】
画素電極181及び画素電極191は同一の材料及び同一の工程で作製することができる。共通層112、共通層114、及び共通電極115は、受光デバイス110及び発光デバイス190R、190G、190Bに共通して用いられる。受光デバイス110と各色の発光デバイスとは、活性層183と発光層の構成が異なる以外は全て共通の構成とすることができる。これにより、作製工程を大幅に増やすことなく、表示装置100Cに受光デバイス110を内蔵することができる。
【0281】
絶縁層157の基板153側の面には、樹脂層159及び遮光層158が設けられている。樹脂層159は、発光デバイス190R、190G、190Bと重なる位置に設けられ、受光デバイス110と重なる位置には設けられない。遮光層158は、絶縁層157の基板153側の面、樹脂層159の側面、及び樹脂層159の基板153側の面を覆って設けられる。遮光層158は、受光デバイス110と重なる位置及び発光デバイス190R、190G、190Bのそれぞれと重なる位置に開口を有する。遮光層158を設けることで、受光デバイス110が光を検出する範囲を制御することができる。また、遮光層158を有することで、対象物を介さずに、発光デバイス190R、190G、190Bから受光デバイス110に光が直接入射することを抑制できる。したがって、ノイズが少なく感度の高いセンサを実現できる。樹脂層159が設けられていることで、遮光層158から各色の発光デバイスまでの距離は、遮光層158から受光デバイス110までの距離に比べて短い。これにより、センサのノイズを低減しつつ、表示の視野角依存性を抑制することができる。したがって、表示品位と撮像品位との双方を高めることができる。
【0282】
表示装置100Cにおける隔壁216、遮光層219a、及びスペーサ219bの構成は、表示装置10K(
図7(B)及び
図8(A))と同様である。
【0283】
図16では、隔壁216は、受光デバイス110と発光デバイス190Rとの間に開口を有する。当該開口を埋めるように、遮光層219aが設けられている。遮光層219aは、受光デバイス110と発光デバイス190Rとの間に位置する。遮光層219aは、発光デバイス190Rが発した光を吸収する。これにより、受光デバイス110に入射する迷光を抑制することができる。
【0284】
スペーサ219bは、発光デバイス190Gと発光デバイス190Bとの間に位置する。スペーサ219bの上面は、遮光層219aの上面よりも遮光層158に近いことが好ましい。例えば、隔壁216の高さ(厚さ)とスペーサ219bの高さ(厚さ)の和は、遮光層219aの高さ(厚さ)よりも大きいことが好ましい。これにより、接着層142を充填することが容易となる。
図17(A)に示すように、スペーサ219bと遮光層158とが重なる部分において、遮光層158は共通電極115(または保護層)と接していてもよい。
【0285】
基板153の、基板154が重ならない領域には、接続部204が設けられている。接続部204では、配線165が導電層167、導電層166、及び接続層242を介してFPC172と電気的に接続されている。導電層167は、導電層168と同一の導電膜を加工して得ることができる。接続部204の上面は、画素電極181と同一の導電膜を加工して得られた導電層166が露出している。これにより、接続部204とFPC172とを接続層242を介して電気的に接続することができる。
【0286】
トランジスタ207、トランジスタ208、トランジスタ209、及びトランジスタ210は、ゲートとして機能する導電層221、ゲート絶縁層として機能する絶縁層211、チャネル形成領域231i及び一対の低抵抗領域231nを有する半導体層、一対の低抵抗領域231nの一方と接続する導電層222a、一対の低抵抗領域231nの他方と接続する導電層222b、ゲート絶縁層として機能する絶縁層225、ゲートとして機能する導電層223、並びに、導電層223を覆う絶縁層215を有する。絶縁層211は、導電層221とチャネル形成領域231iとの間に位置する。絶縁層225は、導電層223とチャネル形成領域231iとの間に位置する。
【0287】
導電層222a及び導電層222bは、それぞれ、絶縁層215に設けられた開口を介して低抵抗領域231nと接続される。導電層222a及び導電層222bのうち、一方はソースとして機能し、他方はドレインとして機能する。
【0288】
図16では、絶縁層225は、半導体層231のチャネル形成領域231iと重なり、低抵抗領域231nとは重ならない。例えば、導電層223をマスクとして絶縁層225を加工することで、
図16に示す構造を作製できる。
図16では、絶縁層225及び導電層223を覆って絶縁層215が設けられ、絶縁層215の開口を介して、導電層222a及び導電層222bがそれぞれ低抵抗領域231nと接続されている。さらに、導電層222a上及び導電層222b上に、トランジスタを覆う絶縁層を設けてもよい。
【0289】
一方、
図17(B)に示すトランジスタ202では、絶縁層225が半導体層の上面及び側面を覆う例を示す。導電層222a及び導電層222bは、それぞれ、絶縁層225及び絶縁層215に設けられた開口を介して低抵抗領域231nと接続される。
【0290】
以上のように、本実施の形態の表示装置は、表示部に受光デバイスと発光デバイスとを有し、表示部は画像を表示する機能と光を検出する機能との双方を有する。これにより、表示部の外部または表示装置の外部にセンサを設ける場合に比べて、電子機器の小型化及び軽量化を図ることができる。また、表示部の外部または表示装置の外部に設けるセンサと組み合わせて、より多機能の電子機器を実現することもできる。
【0291】
受光デバイスは、一対の電極間に設けられる層のうち少なくとも一層を、発光デバイス(ELデバイス)と共通の構成にすることができる。例えば、受光デバイスは、活性層以外の全ての層を、発光デバイス(ELデバイス)と共通の構成にすることもできる。つまり、発光デバイスの作製工程に、活性層を成膜する工程を追加するのみで、発光デバイスと受光デバイスとを同一基板上に形成することができる。また、受光デバイスと発光デバイスは、画素電極と共通電極とを、それぞれ、同一の材料及び同一の工程で形成することができる。また、受光デバイスと電気的に接続される回路と、発光デバイスと電気的に接続される回路と、を、同一の材料及び同一の工程で作製することで、表示装置の作製工程を簡略化できる。このように、複雑な工程を有さなくとも、受光デバイスを内蔵し、利便性の高い表示装置を作製することができる。
【0292】
本実施の形態の表示装置は、発光層に正孔が注入されやすく、かつ、電子が注入されにくい構成の発光デバイスを有する。このような構成を適用することで、発光デバイスの初期劣化を抑制し、駆動寿命を非常に長くすることができる。これにより、発光デバイスの信頼性、さらには、表示装置の信頼性を高めることができる。
【0293】
本実施の形態の表示装置は、遮光層から受光デバイスまでの距離が長く、かつ、遮光層から発光デバイスまでの距離が短くなるように、遮光層を形成する面に構造物を設ける。これにより、センサのノイズを低減しつつ、撮像の解像度を高め、かつ、表示の視野角依存性を抑制することができる。したがって、表示装置における表示品位と撮像品位との双方を高めることができる。
【0294】
本実施の形態は、他の実施の形態と適宜組み合わせることができる。また、本明細書において、1つの実施の形態の中に、複数の構成例が示される場合は、構成例を適宜組み合わせることが可能である。
【0295】
(実施の形態2)
本実施の形態では、本発明の一態様の表示装置に用いることができる発光デバイスについて
図18を用いて説明する。
【0296】
図18(A)に示す発光デバイスは、陽極101、EL層103、及び陰極102を有する。
図18(A)に示す発光デバイスには、一対の電極間に1つのEL層が挟まれた、シングル構造が適用されている。EL層103は、陽極101側から、正孔注入層121、正孔輸送層122、発光層123、電子輸送層124、及び電子注入層125を有する。なお、
図18(A)~
図18(D)には示さないが、発光デバイスは光学調整層を有していてもよい。
【0297】
陽極101、陰極102、正孔注入層121、正孔輸送層122、発光層123、電子輸送層124、及び電子注入層125は、それぞれ、単層構造であっても、積層構造であってもよい。
【0298】
図18(B)に示す発光デバイスは、陽極101、EL層103a、電荷発生層104、EL層103b、及び陰極102を有する。
図18(B)に示す発光デバイスには、2つのEL層の間に電荷発生層104を有する、タンデム構造が適用されている。
【0299】
タンデム構造の発光デバイスにおける各EL層には、
図18(A)、
図18(C)、
図18(D)などに示すシングル構造の発光デバイスにおけるEL層と同様の構成を適用できる。
【0300】
電荷発生層104は、陽極101と陰極102に電圧を印加したときに、EL層103a及びEL層103bのうち、一方に電子を注入し、他方に正孔(ホール)を注入する機能を有する。従って、
図18(B)において、陽極101に陰極102よりも電位が高くなるように電圧を印加すると、電荷発生層104からEL層103aに電子が注入され、EL層103bに正孔が注入される。
【0301】
タンデム構造の発光デバイスにおいて、各EL層の発光色を異なるものにすることで、発光デバイス全体として、所望の色の発光を得ることができる。例えば、2つのEL層を有する発光デバイスにおいて、一方のEL層から赤色と緑色との発光、他方のEL層から青色の発光を得ることで、発光デバイス全体として、白色発光する発光デバイスを得ることができる。例えば、3つのEL層を有する発光デバイスにおいて、第1のEL層から青色の発光、第2のEL層から緑色の発光、第3のEL層から赤色の発光を得ることで、発光デバイス全体として、白色発光する発光デバイスを得ることができる。例えば、3つのEL層を有する発光デバイスにおいて、第1のEL層から青色の発光、第1のEL層上の第2のEL層から黄色、黄緑色、または緑色と、赤色との発光、第2のEL層上の第3のEL層から青色の発光を得ることで、発光デバイス全体として、白色発光する発光デバイスを得ることができる。例えば、4つのEL層を有する発光デバイスにおいて、第1のEL層から青色の発光、それぞれ第1のEL層上の第2のEL層及び第3のEL層の一方から黄色、黄緑色、または緑色の発光、他方から赤色の発光、第2のEL層上及び第3のEL層上の第4のEL層から青色の発光を得ることで、発光デバイス全体として、白色発光する発光デバイスを得ることができる。
【0302】
図18(C)及び
図18(D)に示す発光デバイスが有する正孔輸送層122は、正孔注入層121側の正孔輸送層122aと、発光層123側の正孔輸送層122bと、の、2層構造である。
【0303】
図18(D)に示す発光デバイスが有する電子輸送層124は、発光層123側の電子輸送層124aと、電子注入層125側の電子輸送層124bと、の、2層構造である。
【0304】
本実施の形態の発光デバイスが有する正孔注入層、正孔輸送層、電子輸送層、及び電子注入層の少なくとも一つは、受光デバイスと共通の層とすることができる。したがって、別々に形成する場合に比べて作製工程を削減することができ、かつ、同一面上に発光デバイスと受光デバイスを形成することができる。
【0305】
例えば、本実施の形態の発光デバイスは、正孔注入層、正孔輸送層、電子輸送層、及び電子注入層のすべてを受光デバイスと共通の層とすることができる。したがって、発光デバイスの発光層と受光デバイスの活性層とを作り分けるのみで、同一面上に、発光デバイスと受光デバイスとを形成することができる。
【0306】
以下では、発光デバイスに用いることができる材料について、説明する。
【0307】
<電極>
発光デバイスの一対の電極を形成する材料としては、金属、合金、電気伝導性化合物、及びこれらの混合物などを適宜用いることができる。具体的には、In-Sn酸化物(ITOともいう)、In-Si-Sn酸化物(ITSOともいう)、In-Zn酸化物、In-W-Zn酸化物が挙げられる。その他、アルミニウム(Al)、チタン(Ti)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、ガリウム(Ga)、亜鉛(Zn)、インジウム(In)、スズ(Sn)、モリブデン(Mo)、タンタル(Ta)、タングステン(W)、パラジウム(Pd)、金(Au)、白金(Pt)、銀(Ag)、イットリウム(Y)、ネオジム(Nd)などの金属、及びこれらを適宜組み合わせて含む合金を用いることもできる。その他、上記例示のない元素周期表の第1族または第2族に属する元素(例えば、リチウム(Li)、セシウム(Cs)、カルシウム(Ca)、ストロンチウム(Sr))、ユウロピウム(Eu)、イッテルビウム(Yb)などの希土類金属及びこれらを適宜組み合わせて含む合金、グラフェン等を用いることができる。
【0308】
なお、マイクロキャビティ構造を有する発光デバイスを作製する場合は、反射電極と半透過・半反射電極とを用いる。従って、所望の導電性材料を単数または複数用い、単層または積層して形成することができる。電極の作製には、スパッタリング法や真空蒸着法を用いることができる。
【0309】
<正孔注入層>
正孔注入層121は、第1の化合物及び第2の化合物を有することが好ましい。
【0310】
第1の化合物は、電子受容性材料(アクセプター性材料)であり、第2の化合物に対する電子受容性を有する。
【0311】
第2の化合物は、正孔輸送性材料である。正孔輸送性材料は、電子よりも正孔の輸送性が高い。
【0312】
第2の化合物の最高被占有軌道準位(HOMO準位)は比較的低い(深い)ことが好ましい。具体的には、第2の化合物のHOMO準位は、-5.7eV以上-5.4eV以下であることが好ましい。第2の化合物のHOMO準位が比較的低いことで、正孔輸送層122への正孔の注入が容易となり、好ましい。
【0313】
第1の化合物としては、電子吸引基(特にフルオロ基のようなハロゲン基やシアノ基)を有する有機化合物を用いることができる。
【0314】
第1の化合物としては、例えば、キノジメタン誘導体、クロラニル誘導体、ヘキサアザトリフェニレン誘導体などの有機アクセプターを用いることができる。具体的には、7,7,8,8-テトラシアノ-2,3,5,6-テトラフルオロキノジメタン(略称:F4-TCNQ)、クロラニル、2,3,6,7,10,11-ヘキサシアノ-1,4,5,8,9,12-ヘキサアザトリフェニレン(略称:HAT-CN)、1,3,4,5,7,8-ヘキサフルオロテトラシアノ-ナフトキノジメタン(略称:F6-TCNNQ)、2-(7-ジシアノメチレン-1,3,4,5,6,8,9,10-オクタフルオロ-7H-ピレン-2-イリデン)マロノニトリル等を挙げることができる。特に、HAT-CNのように複素原子を複数有する縮合芳香環に電子吸引基が結合している化合物が、熱的に安定であり好ましい。また、電子吸引基(特にフルオロ基のようなハロゲン基やシアノ基)を有する[3]ラジアレン誘導体は、電子受容性が非常に高いため好ましい。電子吸引基を有する[3]ラジアレン誘導体としては、例えば、α,α’,α’’-1,2,3-シクロプロパントリイリデントリス[4-シアノ-2,3,5,6-テトラフルオロベンゼンアセトニトリル]、α,α’,α’’-1,2,3-シクロプロパントリイリデントリス[2,6-ジクロロ-3,5-ジフルオロ-4-(トリフルオロメチル)ベンゼンアセトニトリル]、α,α’,α’’-1,2,3-シクロプロパントリイリデントリス[2,3,4,5,6-ペンタフルオロベンゼンアセトニトリル]などが挙げられる。
【0315】
第2の化合物は、正孔輸送性骨格を有することが好ましい。当該正孔輸送性骨格としては、正孔輸送性材料のHOMO準位が高く(浅く)なりすぎない、カルバゾール骨格、ジベンゾフラン骨格、ジベンゾチオフェン骨格、及びアントラセン骨格が好ましい。
【0316】
第2の化合物は、カルバゾール骨格、ジベンゾフラン骨格、ジベンゾチオフェン骨格、及びアントラセン骨格のうち少なくとも一つを有することが好ましい。第2の化合物は、ジベンゾフラン環またはジベンゾチオフェン環を含む置換基を有する芳香族アミン、ナフタレン環を有する芳香族モノアミン、または9-フルオレニル基がアリーレン基を介してアミンの窒素に結合する芳香族モノアミンであってもよい。
【0317】
第2の化合物が、N,N-ビス(4-ビフェニル)アミノ基を有すると、長寿命な発光デバイスを作製することができるため好ましい。
【0318】
第2の化合物としては、例えば、N-(4-ビフェニル)-6,N-ジフェニルベンゾ[b]ナフト[1,2-d]フラン-8-アミン(略称:BnfABP)、N,N-ビス(4-ビフェニル)-6-フェニルベンゾ[b]ナフト[1,2-d]フラン-8-アミン(略称:BBABnf)、4,4’-ビス(6-フェニルベンゾ[b]ナフト[1,2-d]フラン-8-イル)-4’’-フェニルトリフェニルアミン(略称:BnfBB1BP)、N,N-ビス(4-ビフェニル)ベンゾ[b]ナフト[1,2-d]フラン-6-アミン(略称:BBABnf(6))、N,N-ビス(4-ビフェニル)ベンゾ[b]ナフト[1,2-d]フラン-8-アミン(略称:BBABnf(8))、N,N-ビス(4-ビフェニル)ベンゾ[b]ナフト[2,3-d]フラン-4-アミン(略称:BBABnf(II)(4))、N,N-ビス[4-(ジベンゾフラン-4-イル)フェニル]-4-アミノ-p-ターフェニル(略称:DBfBB1TP)、N-[4-(ジベンゾチオフェン-4-イル)フェニル]-N-フェニル-4-ビフェニルアミン(略称:ThBA1BP)、4-(2-ナフチル)-4’,4’’-ジフェニルトリフェニルアミン(略称:BBAβNB)、4-[4-(2-ナフチル)フェニル]-4’,4’’-ジフェニルトリフェニルアミン(略称:BBAβNBi)、4,4’-ジフェニル-4’’-(6;1’-ビナフチル-2-イル)トリフェニルアミン(略称:BBAαNβNB)、4,4’-ジフェニル-4’’-(7;1’-ビナフチル-2-イル)トリフェニルアミン(略称:BBAαNβNB-03)、4,4’-ジフェニル-4’’-(7-フェニル)ナフチル-2-イルトリフェニルアミン(略称:BBAPβNB-03)、4,4’-ジフェニル-4’’-(6;2’-ビナフチル-2-イル)トリフェニルアミン(略称:BBA(βN2)B)、4,4’-ジフェニル-4’’-(7;2’-ビナフチル-2-イル)トリフェニルアミン(略称:BBA(βN2)B-03)、4,4’-ジフェニル-4’’-(4;2’-ビナフチル-1-イル)トリフェニルアミン(略称:BBAβNαNB)、4,4’-ジフェニル-4’’-(5;2’-ビナフチル-1-イル)トリフェニルアミン(略称:BBAβNαNB-02)、4-(4-ビフェニリル)-4’-(2-ナフチル)-4’’-フェニルトリフェニルアミン(略称:TPBiAβNB)、4-(3-ビフェニリル)-4’-[4-(2-ナフチル)フェニル]-4’’-フェニルトリフェニルアミン(略称:mTPBiAβNBi)、4-(4-ビフェニリル)-4’-[4-(2-ナフチル)フェニル]-4’’-フェニルトリフェニルアミン(略称:TPBiAβNBi)、4-フェニル-4’-(1-ナフチル)トリフェニルアミン(略称:αNBA1BP)、4,4’-ビス(1-ナフチル)トリフェニルアミン(略称:αNBB1BP)、4,4’-ジフェニル-4’’-[4’-(カルバゾール-9-イル)ビフェニル-4-イル]トリフェニルアミン(略称:YGTBi1BP)、4’-[4-(3-フェニル-9H-カルバゾール-9-イル)フェニル]トリス(1,1’-ビフェニル-4-イル)アミン(略称:YGTBi1BP-02)、4-[4’-(カルバゾール-9-イル)ビフェニル-4-イル]-4’-(2-ナフチル)-4’’-フェニルトリフェニルアミン(略称:YGTBiβNB)、N-[4-(9-フェニル-9H-カルバゾール-3-イル)フェニル]-N-[4-(1-ナフチル)フェニル]-9,9’-スピロビ(9H-フルオレン)-2-アミン(略称:PCBNBSF)、N,N-ビス([1,1’-ビフェニル]-4-イル)-9,9’-スピロビ[9H-フルオレン]-2-アミン(略称:BBASF)、N,N-ビス([1,1’-ビフェニル]-4-イル)-9,9’-スピロビ[9H-フルオレン]-4-アミン(略称:BBASF(4))、N-(1,1’-ビフェニル-2-イル)-N-(9,9-ジメチル-9H-フルオレン-2-イル)-9,9’-スピロビ(9H-フルオレン)-4-アミン(略称:oFBiSF)、N-(4-ビフェニル)-N-(9,9-ジメチル-9H-フルオレン-2-イル)ジベンゾフラン-4-アミン(略称:FrBiF)、N-[4-(1-ナフチル)フェニル]-N-[3-(6-フェニルジベンゾフラン-4-イル)フェニル]-1-ナフチルアミン(略称:mPDBfBNBN)、4-フェニル-4’-(9-フェニルフルオレン-9-イル)トリフェニルアミン(略称:BPAFLP)、4-フェニル-3’-(9-フェニルフルオレン-9-イル)トリフェニルアミン(略称:mBPAFLP)、4-フェニル-4’-[4-(9-フェニルフルオレン-9-イル)フェニル]トリフェニルアミン(略称:BPAFLBi)、4-フェニル-4’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBA1BP)、4,4’-ジフェニル-4’’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBBi1BP)、4-(1-ナフチル)-4’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBANB)、4,4’-ジ(1-ナフチル)-4’’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBNBB)、N-フェニル-N-[4-(9-フェニル-9H-カルバゾール-3-イル)フェニル]スピロ-9,9’-ビフルオレン-2-アミン(略称:PCBASF)、N-(1,1’-ビフェニル-4-イル)-9,9-ジメチル-N-[4-(9-フェニル-9H-カルバゾール-3-イル)フェニル]-9H-フルオレン-2-アミン(略称:PCBBiF)、3,3’-(ナフタレン-1,4-ジイル)ビス(9-フェニル-9H-カルバゾール)(略称:PCzN2)、4-(10-フェニル-9-アントリル)-4’-(9-フェニル-9H-フルオレン-9-イル)トリフェニルアミン(略称:FLPAPA)等が挙げられる。
【0319】
<正孔輸送層>
正孔輸送層122は、正孔注入層121によって注入された正孔を発光層123に輸送する層である。
【0320】
正孔輸送層122は、第3の化合物を有することが好ましい。
【0321】
第3の化合物は、正孔輸送性材料である。正孔輸送性材料としては、第2の化合物に用いることができる正孔輸送性材料を用いることができる。
【0322】
第3の化合物のHOMO準位は、第2の化合物のHOMO準位以下の値であることが好ましい。第3の化合物のHOMO準位と第2の化合物のHOMO準位との差は、0.2eV以内であることが好ましい。
【0323】
第2の化合物及び第3の化合物は、それぞれ、カルバゾール骨格、ジベンゾフラン骨格、ジベンゾチオフェン骨格、及びアントラセン骨格のうち少なくとも一つを有することが好ましい。
【0324】
第2の化合物と第3の化合物が同一の正孔輸送性骨格(特にジベンゾフラン骨格)を有すると、正孔の注入がスムーズになるため好ましい。
【0325】
第2の化合物と第3の化合物が同じであると、正孔の注入がスムーズとなるため、より好ましい。
【0326】
正孔輸送層122が積層構造である場合、正孔輸送層122を構成する各層は、正孔を発光層123に輸送する層である。
【0327】
図18(C)、
図18(D)における正孔輸送層122aは、
図18(A)における正孔輸送層122と同様の構成とすることができる。
【0328】
図18(C)、
図18(D)における正孔輸送層122b(つまり、正孔輸送層122のうち、最も発光層123側に位置する層)は、電子ブロック層としての機能を有することが好ましい。
【0329】
正孔輸送層122bは、第4の化合物を有することが好ましい。
【0330】
第4の化合物は、正孔輸送性材料である。正孔輸送性材料としては、第2の化合物に用いることができる正孔輸送性材料を用いることができる。
【0331】
第4の化合物のHOMO準位は、第3の化合物のHOMO準位よりも低いことが好ましい。第4の化合物のHOMO準位と第3の化合物のHOMO準位との差は、0.2eV以内であることが好ましい。
【0332】
第2の化合物、第3の化合物、及び第4の化合物は、それぞれ、カルバゾール骨格、ジベンゾフラン骨格、ジベンゾチオフェン骨格、及びアントラセン骨格のうち少なくとも一つを有することが好ましい。
【0333】
第2の化合物、第3の化合物、及び第4の化合物が同一の正孔輸送性骨格(特にジベンゾフラン骨格)を有すると、正孔の注入がスムーズになるため好ましい。
【0334】
上述したように、第2の化合物と第3の化合物(さらには第4の化合物)について、HOMO準位の差が小さい、または、正孔輸送性骨格(好ましくは同一の正孔輸送性骨格)を有することで、正孔注入層及び正孔輸送層への正孔注入がスムーズに行われ、駆動電圧の上昇や発光層123における正孔の過少状態を防ぐことができる。
【0335】
<発光層>
発光層は、発光物質を含む層である。発光層は、1種または複数種の発光物質を有することができる。発光物質としては、青色、紫色、青紫色、緑色、黄緑色、黄色、橙色、赤色などの発光色を呈する物質を適宜用いる。また、発光物質として、近赤外光を発する物質を用いることもできる。
【0336】
発光層は、発光物質(ゲスト材料)に加えて、1種または複数種の有機化合物(ホスト材料、アシスト材料等)を有していてもよい。1種または複数種の有機化合物としては、本実施の形態で説明する正孔輸送性材料及び電子輸送性材料の一方または双方を用いることができる。また、1種または複数種の有機化合物として、バイポーラ性材料を用いてもよい。
【0337】
発光層に用いることができる発光物質として、特に限定は無く、一重項励起エネルギーを可視光領域もしくは近赤外光領域の発光に変える発光物質、または三重項励起エネルギーを可視光領域もしくは近赤外光領域の発光に変える発光物質を用いることができる。
【0338】
一重項励起エネルギーを発光に変える発光物質としては、蛍光発光物質が挙げられ、例えば、ピレン誘導体、アントラセン誘導体、トリフェニレン誘導体、フルオレン誘導体、カルバゾール誘導体、ジベンゾチオフェン誘導体、ジベンゾフラン誘導体、ジベンゾキノキサリン誘導体、キノキサリン誘導体、ピリジン誘導体、ピリミジン誘導体、フェナントレン誘導体、ナフタレン誘導体などが挙げられる。特にピレン誘導体は発光量子収率が高いので好ましい。ピレン誘導体の具体例としては、N,N’-ビス(3-メチルフェニル)-N,N’-ビス[3-(9-フェニル-9H-フルオレン-9-イル)フェニル]ピレン-1,6-ジアミン(略称:1,6mMemFLPAPrn)、N,N’-ジフェニル-N,N’-ビス[4-(9-フェニル-9H-フルオレン-9-イル)フェニル]ピレン-1,6-ジアミン(略称:1,6FLPAPrn)、N,N’-ビス(ジベンゾフラン-2-イル)-N,N’-ジフェニルピレン-1,6-ジアミン(略称:1,6FrAPrn)、N,N’-ビス(ジベンゾチオフェン-2-イル)-N,N’-ジフェニルピレン-1,6-ジアミン(略称:1,6ThAPrn)、N,N’-(ピレン-1,6-ジイル)ビス[(N-フェニルベンゾ[b]ナフト[1,2-d]フラン)-6-アミン](略称:1,6BnfAPrn)、N,N’-(ピレン-1,6-ジイル)ビス[(N-フェニルベンゾ[b]ナフト[1,2-d]フラン)-8-アミン](略称:1,6BnfAPrn-02)、N,N’-(ピレン-1,6-ジイル)ビス[(6,N-ジフェニルベンゾ[b]ナフト[1,2-d]フラン)-8-アミン](略称:1,6BnfAPrn-03)などが挙げられる。特に、これら1,6FLPAPrn、1,6mMemFLPAPrn、1,6BnfAPrn-03のようなピレンジアミン化合物に代表される縮合芳香族ジアミン化合物は、ホールトラップ性が高く、発光効率や信頼性に優れているため、好ましい。
【0339】
その他にも、5,6-ビス[4-(10-フェニル-9-アントリル)フェニル]-2,2’-ビピリジン(略称:PAP2BPy)、5,6-ビス[4’-(10-フェニル-9-アントリル)ビフェニル-4-イル]-2,2’-ビピリジン(略称:PAPP2BPy)、N,N’-ビス[4-(9H-カルバゾール-9-イル)フェニル]-N,N’-ジフェニルスチルベン-4,4’-ジアミン(略称:YGA2S)、4-(9H-カルバゾール-9-イル)-4’-(10-フェニル-9-アントリル)トリフェニルアミン(略称:YGAPA)、4-(9H-カルバゾール-9-イル)-4’-(9,10-ジフェニル-2-アントリル)トリフェニルアミン(略称:2YGAPPA)、N,9-ジフェニル-N-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール-3-アミン(略称:PCAPA)、4-(10-フェニル-9-アントリル)-4’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBAPA)、4-[4-(10-フェニル-9-アントリル)フェニル]-4’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBAPBA)、ペリレン、2,5,8,11-テトラ(tert-ブチル)ペリレン(略称:TBP)、N,N’’-(2-tert-ブチルアントラセン-9,10-ジイルジ-4,1-フェニレン)ビス[N,N’,N’-トリフェニル-1,4-フェニレンジアミン](略称:DPABPA)、N,9-ジフェニル-N-[4-(9,10-ジフェニル-2-アントリル)フェニル]-9H-カルバゾール-3-アミン(略称:2PCAPPA)、N-[4-(9,10-ジフェニル-2-アントリル)フェニル]-N,N’,N’-トリフェニル-1,4-フェニレンジアミン(略称:2DPAPPA)、3,10-ビス[N-(9-フェニル-9H-カルバゾール-2-イル)-N-フェニルアミノ]ナフト[2,3-b;6,7-b’]ビスベンゾフラン(略称:3,10PCA2Nbf(IV)-02)、3,10-ビス[N-(ジベンゾフラン-3-イル)-N-フェニルアミノ]ナフト[2,3-b;6,7-b’]ビスベンゾフラン(略称:3,10FrA2Nbf(IV)-02)等を用いることができる。
【0340】
三重項励起エネルギーを発光に変える発光物質としては、例えば、燐光発光物質や熱活性化遅延蛍光を示す熱活性化遅延蛍光(Thermally activated delayed fluorescence:TADF)材料が挙げられる。
【0341】
燐光発光物質としては、例えば、4H-トリアゾール骨格、1H-トリアゾール骨格、イミダゾール骨格、ピリミジン骨格、ピラジン骨格、またはピリジン骨格を有する有機金属錯体(特にイリジウム錯体)、電子吸引基を有するフェニルピリジン誘導体を配位子とする有機金属錯体(特にイリジウム錯体)、白金錯体、希土類金属錯体等が挙げられる。
【0342】
青色または緑色を呈し、発光スペクトルのピーク波長が450nm以上570nm以下である燐光発光物質としては、以下のような物質が挙げられる。
【0343】
例えば、トリス{2-[5-(2-メチルフェニル)-4-(2,6-ジメチルフェニル)-4H-1,2,4-トリアゾール-3-イル-κN2]フェニル-κC}イリジウム(III)(略称:[Ir(mpptz-dmp)3])、トリス(5-メチル-3,4-ジフェニル-4H-1,2,4-トリアゾラト)イリジウム(III)(略称:[Ir(Mptz)3])、トリス[4-(3-ビフェニル)-5-イソプロピル-3-フェニル-4H-1,2,4-トリアゾラト]イリジウム(III)(略称:[Ir(iPrptz-3b)3])、トリス[3-(5-ビフェニル)-5-イソプロピル-4-フェニル-4H-1,2,4-トリアゾラト]イリジウム(III)(略称:Ir(iPr5btz)3])、のような4H-トリアゾール骨格を有する有機金属錯体、トリス[3-メチル-1-(2-メチルフェニル)-5-フェニル-1H-1,2,4-トリアゾラト]イリジウム(III)(略称:[Ir(Mptz1-mp)3])、トリス(1-メチル-5-フェニル-3-プロピル-1H-1,2,4-トリアゾラト)イリジウム(III)(略称:[Ir(Prptz1-Me)3])のような1H-トリアゾール骨格を有する有機金属錯体、fac-トリス[1-(2,6-ジイソプロピルフェニル)-2-フェニル-1H-イミダゾール]イリジウム(III)(略称:[Ir(iPrpmi)3])、トリス[3-(2,6-ジメチルフェニル)-7-メチルイミダゾ[1,2-f]フェナントリジナト]イリジウム(III)(略称:[Ir(dmpimpt-Me)3])のようなイミダゾール骨格を有する有機金属錯体、ビス[2-(4’,6’-ジフルオロフェニル)ピリジナト-N,C2’]イリジウム(III)テトラキス(1-ピラゾリル)ボラート(略称:FIr6)、ビス[2-(4’,6’-ジフルオロフェニル)ピリジナト-N,C2’]イリジウム(III)ピコリナート(略称:FIrpic)、ビス{2-[3’,5’-ビス(トリフルオロメチル)フェニル]ピリジナト-N,C2’}イリジウム(III)ピコリナート(略称:[Ir(CF3ppy)2(pic)])、ビス[2-(4’,6’-ジフルオロフェニル)ピリジナト-N,C2’]イリジウム(III)アセチルアセトナート(略称:FIr(acac))のように電子吸引基を有するフェニルピリジン誘導体を配位子とする有機金属錯体等が挙げられる。
【0344】
緑色または黄色を呈し、発光スペクトルのピーク波長が495nm以上590nm以下である燐光発光物質としては、以下のような物質が挙げられる。
【0345】
例えば、トリス(4-メチル-6-フェニルピリミジナト)イリジウム(III)(略称:[Ir(mppm)3])、トリス(4-t-ブチル-6-フェニルピリミジナト)イリジウム(III)(略称:[Ir(tBuppm)3])、(アセチルアセトナト)ビス(6-メチル-4-フェニルピリミジナト)イリジウム(III)(略称:[Ir(mppm)2(acac)])、(アセチルアセトナト)ビス(6-tert-ブチル-4-フェニルピリミジナト)イリジウム(III)(略称:[Ir(tBuppm)2(acac)])、(アセチルアセトナト)ビス[6-(2-ノルボルニル)-4-フェニルピリミジナト]イリジウム(III)(略称:[Ir(nbppm)2(acac)])、(アセチルアセトナト)ビス[5-メチル-6-(2-メチルフェニル)-4-フェニルピリミジナト]イリジウム(III)(略称:[Ir(mpmppm)2(acac)])、(アセチルアセトナト)ビス{4,6-ジメチル-2-[6-(2,6-ジメチルフェニル)-4-ピリミジニル-κN3]フェニル-κC}イリジウム(III)(略称:[Ir(dmppm-dmp)2(acac)])、(アセチルアセトナト)ビス(4,6-ジフェニルピリミジナト)イリジウム(III)(略称:[Ir(dppm)2(acac)])のようなピリミジン骨格を有する有機金属イリジウム錯体、(アセチルアセトナト)ビス(3,5-ジメチル-2-フェニルピラジナト)イリジウム(III)(略称:[Ir(mppr-Me)2(acac)])、(アセチルアセトナト)ビス(5-イソプロピル-3-メチル-2-フェニルピラジナト)イリジウム(III)(略称:[Ir(mppr-iPr)2(acac)])のようなピラジン骨格を有する有機金属イリジウム錯体、トリス(2-フェニルピリジナト-N,C2’)イリジウム(III)(略称:[Ir(ppy)3])、ビス(2-フェニルピリジナト-N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(ppy)2(acac)])、ビス(ベンゾ[h]キノリナト)イリジウム(III)アセチルアセトナート(略称:[Ir(bzq)2(acac)])、トリス(ベンゾ[h]キノリナト)イリジウム(III)(略称:[Ir(bzq)3])、トリス(2-フェニルキノリナト-N,C2’)イリジウム(III)(略称:[Ir(pq)3])、ビス(2-フェニルキノリナト-N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(pq)2(acac)])、[2-(4-フェニル-2-ピリジニル-κN)フェニル-κC]ビス[2-(2-ピリジニル-κN)フェニル-κC]イリジウム(III)(略称:[Ir(ppy)2(4dppy)])、ビス[2-(2-ピリジニル-κN)フェニル-κC][2-(4-メチル-5-フェニル-2-ピリジニル-κN)フェニル-κC]のようなピリジン骨格を有する有機金属イリジウム錯体、ビス(2,4-ジフェニル-1,3-オキサゾラト-N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(dpo)2(acac)])、ビス{2-[4’-(パーフルオロフェニル)フェニル]ピリジナト-N,C2’}イリジウム(III)アセチルアセトナート(略称:[Ir(p-PF-ph)2(acac)])、ビス(2-フェニルベンゾチアゾラト-N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(bt)2(acac)])などの有機金属錯体の他、トリス(アセチルアセトナト)(モノフェナントロリン)テルビウム(III)(略称:[Tb(acac)3(Phen)])のような希土類金属錯体が挙げられる。
【0346】
黄色または赤色を呈し、発光スペクトルのピーク波長が570nm以上750nm以下である燐光発光物質としては、以下のような物質が挙げられる。
【0347】
例えば、(ジイソブチリルメタナト)ビス[4,6-ビス(3-メチルフェニル)ピリミジナト]イリジウム(III)(略称:[Ir(5mdppm)2(dibm)])、ビス[4,6-ビス(3-メチルフェニル)ピリミジナト](ジピバロイルメタナト)イリジウム(III)(略称:[Ir(5mdppm)2(dpm)])、ビス[4,6-ジ(ナフタレン-1-イル)ピリミジナト](ジピバロイルメタナト)イリジウム(III)(略称:[Ir(d1npm)2(dpm)])、トリス(4-t-ブチル-6-フェニルピリミジナト)イリジウム(III)(略称:[Ir(tBuppm)3])のようなピリミジン骨格を有する有機金属錯体、(アセチルアセトナト)ビス(2,3,5-トリフェニルピラジナト)イリジウム(III)(略称:[Ir(tppr)2(acac)])、ビス(2,3,5-トリフェニルピラジナト)(ジピバロイルメタナト)イリジウム(III)(略称:[Ir(tppr)2(dpm)])、ビス{4,6-ジメチル-2-[3-(3,5-ジメチルフェニル)-5-フェニル-2-ピラジニル-κN]フェニル-κC}(2,6-ジメチル-3,5-ヘプタンジオナト-κ2O,O’)イリジウム(III)(略称:[Ir(dmdppr-P)2(dibm)])、ビス{4,6-ジメチル-2-[5-(4-シアノ-2,6-ジメチルフェニル)-3-(3,5-ジメチルフェニル)-2-ピラジニル-κN]フェニル-κC}(2,2,6,6-テトラメチル-3,5-ヘプタンジオナト-κ2O,O’)イリジウム(III)(略称:[Ir(dmdppr-dmCP)2(dpm)])、(アセチルアセトナト)ビス[2-メチル-3-フェニルキノキサリナト-N,C2’]イリジウム(III)(略称:[Ir(mpq)2(acac)])、(アセチルアセトナト)ビス(2,3-ジフェニルキノキサリナト-N,C2’)イリジウム(III)(略称:[Ir(dpq)2(acac)])、(アセチルアセトナト)ビス[2,3-ビス(4-フルオロフェニル)キノキサリナト]イリジウム(III)(略称:[Ir(Fdpq)2(acac)])、ビス{4,6-ジメチル-2-[5-(5-シアノ-2-メチルフェニル)-3-(3,5-ジメチルフェニル)-2-ピラジニル-κN]フェニル-κC}(2,2,6,6-テトラメチル-3,5-ヘプタンジオナト-κ2O,O’)イリジウム(III)(略称:[Ir(dmdppr-m5CP)2(dpm)])のようなピラジン骨格を有する有機金属錯体や、トリス(1-フェニルイソキノリナト-N,C2’)イリジウム(III)(略称:[Ir(piq)3])、ビス(1-フェニルイソキノリナト-N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(piq)2(acac)])、ビス[4,6-ジメチル-2-(2-キノリニル-κN)フェニル-κC](2,4-ペンタンジオナト-κ2O,O’)イリジウム(III)のようなピリジン骨格を有する有機金属錯体、2,3,7,8,12,13,17,18-オクタエチル-21H,23H-ポルフィリン白金(II)(略称:[PtOEP])のような白金錯体、トリス(1,3-ジフェニル-1,3-プロパンジオナト)(モノフェナントロリン)ユーロピウム(III)(略称:[Eu(DBM)3(Phen)])、トリス[1-(2-テノイル)-3,3,3-トリフルオロアセトナト](モノフェナントロリン)ユーロピウム(III)(略称:[Eu(TTA)3(Phen)])のような希土類金属錯体が挙げられる。
【0348】
発光層に用いる有機化合物(ホスト材料、アシスト材料等)としては、発光物質のエネルギーギャップより大きなエネルギーギャップを有する物質を、一種もしくは複数種選択して用いることができる。
【0349】
蛍光発光物質と組み合わせて用いる有機化合物としては、一重項励起状態のエネルギー準位が大きく、三重項励起状態のエネルギー準位が小さい有機化合物を用いるのが好ましい。
【0350】
一部上記の具体例と重複するが、発光物質(蛍光発光物質、燐光発光物質)との好ましい組み合わせという観点から、以下に有機化合物の具体例を示す。
【0351】
蛍光発光物質と組み合わせて用いることができる有機化合物としては、アントラセン誘導体、テトラセン誘導体、フェナントレン誘導体、ピレン誘導体、クリセン誘導体、ジベンゾ[g,p]クリセン誘導体等の縮合多環芳香族化合物が挙げられる。
【0352】
蛍光発光物質と組み合わせて用いる有機化合物(ホスト材料)の具体例としては、9-フェニル-3-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール(略称:PCzPA)、3,6-ジフェニル-9-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール(略称:DPCzPA)、3-[4-(1-ナフチル)-フェニル]-9-フェニル-9H-カルバゾール(略称:PCPN)、9,10-ジフェニルアントラセン(略称:DPAnth)、N,N-ジフェニル-9-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール-3-アミン(略称:CzA1PA)、4-(10-フェニル-9-アントリル)トリフェニルアミン(略称:DPhPA)、YGAPA、PCAPA、N,9-ジフェニル-N-{4-[4-(10-フェニル-9-アントリル)フェニル]フェニル}-9H-カルバゾール-3-アミン(略称:PCAPBA)、N-(9,10-ジフェニル-2-アントリル)-N,9-ジフェニル-9H-カルバゾール-3-アミン(略称:2PCAPA)、6,12-ジメトキシ-5,11-ジフェニルクリセン、N,N,N’,N’,N’’,N’’,N’’’,N’’’-オクタフェニルジベンゾ[g,p]クリセン-2,7,10,15-テトラアミン(略称:DBC1)、9-[4-(10-フェニル-9-アントラセニル)フェニル]-9H-カルバゾール(略称:CzPA)、7-[4-(10-フェニル-9-アントリル)フェニル]-7H-ジベンゾ[c,g]カルバゾール(略称:cgDBCzPA)、6-[3-(9,10-ジフェニル-2-アントリル)フェニル]-ベンゾ[b]ナフト[1,2-d]フラン(略称:2mBnfPPA)、9-フェニル-10-{4-(9-フェニル-9H-フルオレン-9-イル)-ビフェニル-4’-イル}-アントラセン(略称:FLPPA)、9,10-ビス(3,5-ジフェニルフェニル)アントラセン(略称:DPPA)、9,10-ジ(2-ナフチル)アントラセン(略称:DNA)、2-tert-ブチル-9,10-ジ(2-ナフチル)アントラセン(略称:t-BuDNA)、9,9’-ビアントリル(略称:BANT)、9,9’-(スチルベン-3,3’-ジイル)ジフェナントレン(略称:DPNS)、9,9’-(スチルベン-4,4’-ジイル)ジフェナントレン(略称:DPNS2)、1,3,5-トリ(1-ピレニル)ベンゼン(略称:TPB3)、5,12-ジフェニルテトラセン、5,12-ビス(ビフェニル-2-イル)テトラセン、9-(1-ナフチル)-10-[4-(2-ナフチル)フェニル]アントラセン(略称:αN-βNPAnth)などが挙げられる。
【0353】
燐光発光物質と組み合わせて用いる有機化合物としては、発光物質の三重項励起エネルギー(基底状態と三重項励起状態とのエネルギー差)よりも三重項励起エネルギーの大きい有機化合物を選択すればよい。
【0354】
励起錯体を形成させるべく複数の有機化合物(例えば、第1のホスト材料、及び第2のホスト材料(またはアシスト材料)等)を発光物質と組み合わせて用いる場合は、これらの複数の有機化合物を燐光発光物質(特に有機金属錯体)と混合して用いることが好ましい。
【0355】
このような構成とすることにより、励起錯体から発光物質へのエネルギー移動であるExTET(Exciplex-Triplet Energy Transfer)を用いた発光を効率よく得ることができる。なお、複数の有機化合物の組み合わせとしては、励起錯体を形成しやすいものがよく、正孔を受け取りやすい化合物(正孔輸送性材料)と、電子を受け取りやすい化合物(電子輸送性材料)とを組み合わせることが特に好ましい。発光物質の最も低エネルギー側の吸収帯の波長と重なるような発光を呈する励起錯体を形成するような組み合わせを選択することで、エネルギー移動がスムーズとなり、効率よく発光を得ることができる。なお、正孔輸送性材料及び電子輸送性材料の具体例については、本実施の形態で示す材料を用いることができる。この構成により、発光デバイスの高効率、低電圧駆動、長寿命を同時に実現できる。
【0356】
励起錯体を形成する材料の組み合わせとしては、正孔輸送性材料のHOMO準位が電子輸送性材料のHOMO準位以上の値であると好ましい。正孔輸送性材料のLUMO準位(最低空軌道準位)が電子輸送性材料のLUMO準位以上の値であると好ましい。材料のLUMO準位及びHOMO準位は、サイクリックボルタンメトリ(CV)測定によって測定される材料の電気化学特性(還元電位及び酸化電位)から導出することができる。
【0357】
励起錯体の形成は、例えば正孔輸送性材料の発光スペクトル、電子輸送性材料の発光スペクトル、及びこれら材料を混合した混合膜の発光スペクトルを比較し、混合膜の発光スペクトルが、各材料の発光スペクトルよりも長波長シフトする(または長波長側に新たなピークを持つ)現象を観測することにより確認することができる。または、正孔輸送性材料の過渡フォトルミネッセンス(PL)、電子輸送性材料の過渡PL、及びこれら材料を混合した混合膜の過渡PLを比較し、混合膜の過渡PL寿命が、各材料の過渡PL寿命よりも長寿命成分を有する、または遅延成分の割合が大きくなるなどの過渡応答の違いを観測することにより、確認することができる。また、上述の過渡PLは過渡エレクトロルミネッセンス(EL)と読み替えても構わない。すなわち、正孔輸送性材料の過渡EL、電子輸送性材料の過渡EL、及びこれらの混合膜の過渡ELを比較し、過渡応答の違いを観測することによっても、励起錯体の形成を確認することができる。
【0358】
燐光発光物質と組み合わせて用いることができる有機化合物としては、芳香族アミン(芳香族アミン骨格を有する化合物)、カルバゾール誘導体(カルバゾール骨格を有する化合物)、ジベンゾチオフェン誘導体(チオフェン誘導体)、ジベンゾフラン誘導体(フラン誘導体)、亜鉛やアルミニウム系の金属錯体、オキサジアゾール誘導体、トリアゾール誘導体、ベンゾイミダゾール誘導体、キノキサリン誘導体、ジベンゾキノキサリン誘導体、ピリミジン誘導体、トリアジン誘導体、ピリジン誘導体、ビピリジン誘導体、フェナントロリン誘導体等が挙げられる。
【0359】
正孔輸送性の高い有機化合物である芳香族アミン、カルバゾール誘導体、ジベンゾチオフェン誘導体、ジベンゾフラン誘導体の具体例としては、以下の物質が挙げられる。
【0360】
カルバゾール誘導体としては、ビカルバゾール誘導体(例えば、3,3’-ビカルバゾール誘導体)、カルバゾリル基を有する芳香族アミン等が挙げられる。
【0361】
ビカルバゾール誘導体(例えば、3,3’-ビカルバゾール誘導体)としては、具体的には、3,3’-ビス(9-フェニル-9H-カルバゾール)(略称:PCCP)、9,9’-ビス(1,1’-ビフェニル-4-イル)-3,3’-ビ-9H-カルバゾール、9,9’-ビス(1,1’-ビフェニル-3-イル)-3,3’-ビ-9H-カルバゾール、9-(1,1’-ビフェニル-3-イル)-9’-(1,1’-ビフェニル-4-イル)-9H,9’H-3,3’-ビカルバゾール(略称:mBPCCBP)、9-(2-ナフチル)-9’-フェニル-9H,9’H-3,3’-ビカルバゾール(略称:βNCCP)などが挙げられる。
【0362】
カルバゾリル基を有する芳香族アミンとしては、具体的には、PCBA1BP、N-(4-ビフェニル)-N-(9,9-ジメチル-9H-フルオレン-2-イル)-9-フェニル-9H-カルバゾール-3-アミン(略称:PCBiF)、PCBBiF、PCBBi1BP、PCBANB、PCBNBB、4-フェニルジフェニル-(9-フェニル-9H-カルバゾール-3-イル)アミン(略称:PCA1BP)、N,N’-ビス(9-フェニルカルバゾール-3-イル)-N,N’-ジフェニルベンゼン-1,3-ジアミン(略称:PCA2B)、N,N’,N’’-トリフェニル-N,N’,N’’-トリス(9-フェニルカルバゾール-3-イル)ベンゼン-1,3,5-トリアミン(略称:PCA3B)、9,9-ジメチル-N-フェニル-N-[4-(9-フェニル-9H-カルバゾール-3-イル)フェニル]フルオレン-2-アミン(略称:PCBAF)、PCBASF、3-[N-(9-フェニルカルバゾール-3-イル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzPCA1)、3,6-ビス[N-(9-フェニルカルバゾール-3-イル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzPCA2)、3-[N-(1-ナフチル)-N-(9-フェニルカルバゾール-3-イル)アミノ]-9-フェニルカルバゾール(略称:PCzPCN1)、3-[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzDPA1)、3,6-ビス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzDPA2)、3,6-ビス[N-(4-ジフェニルアミノフェニル)-N-(1-ナフチル)アミノ]-9-フェニルカルバゾール(略称:PCzTPN2)、2-[N-(9-フェニルカルバゾール-3-イル)-N-フェニルアミノ]スピロ-9,9’-ビフルオレン(略称:PCASF)、N-[4-(9H-カルバゾール-9-イル)フェニル]-N-(4-フェニル)フェニルアニリン(略称:YGA1BP)、N,N’-ビス[4-(カルバゾール-9-イル)フェニル]-N,N’-ジフェニル-9,9-ジメチルフルオレン-2,7-ジアミン(略称:YGA2F)、4,4’,4’’-トリス(カルバゾール-9-イル)トリフェニルアミン(略称:TCTA)などが挙げられる。
【0363】
カルバゾール誘導体としては、上記に加えて、3-[4-(9-フェナントリル)-フェニル]-9-フェニル-9H-カルバゾール(略称:PCPPn)、PCPN、1,3-ビス(N-カルバゾリル)ベンゼン(略称:mCP)、4,4’-ジ(N-カルバゾリル)ビフェニル(略称:CBP)、3,6-ビス(3,5-ジフェニルフェニル)-9-フェニルカルバゾール(略称:CzTP)、1,3,5-トリス[4-(N-カルバゾリル)フェニル]ベンゼン(略称:TCPB)、CzPA等が挙げられる。
【0364】
チオフェン誘導体(チオフェン骨格を有する化合物)及びフラン誘導体(フラン骨格を有する化合物)としては、具体的には、4,4’,4’’-(ベンゼン-1,3,5-トリイル)トリ(ジベンゾチオフェン)(略称:DBT3P-II)、2,8-ジフェニル-4-[4-(9-フェニル-9H-フルオレン-9-イル)フェニル]ジベンゾチオフェン(略称:DBTFLP-III)、4-[4-(9-フェニル-9H-フルオレン-9-イル)フェニル]-6-フェニルジベンゾチオフェン(略称:DBTFLP-IV)などのチオフェン骨格を有する化合物、4-{3-[3-(9-フェニル-9H-フルオレン-9-イル)フェニル]フェニル}ジベンゾフラン(略称:mmDBFFLBi-II)等が挙げられる。
【0365】
芳香族アミンとしては、具体的には、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(略称:NPBまたはα-NPD)、N,N’-ビス(3-メチルフェニル)-N,N’-ジフェニル-[1,1’-ビフェニル]-4,4’-ジアミン(略称:TPD)、4,4’-ビス[N-(スピロ-9,9’-ビフルオレン-2-イル)-N-フェニルアミノ]ビフェニル(略称:BSPB)、BPAFLP、mBPAFLP、N-(9,9-ジメチル-9H-フルオレン-2-イル)-N-{9,9-ジメチル-2-[N’-フェニル-N’-(9,9-ジメチル-9H-フルオレン-2-イル)アミノ]-9H-フルオレン-7-イル}フェニルアミン(略称:DFLADFL)、N-(9,9-ジメチル-2-ジフェニルアミノ-9H-フルオレン-7-イル)ジフェニルアミン(略称:DPNF)、2-[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]スピロ-9,9’-ビフルオレン(略称:DPASF)、2,7-ビス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]-スピロ-9,9’-ビフルオレン(略称:DPA2SF)、4,4’,4’’-トリス[N-(1-ナフチル)-N-フェニルアミノ]トリフェニルアミン(略称:1’-TNATA)、4,4’,4’’-トリス(N,N-ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’-トリス[N-(3-メチルフェニル)-N-フェニルアミノ]トリフェニルアミン(略称:m-MTDATA)、N,N’-ジ(p-トリル)-N,N’-ジフェニル-p-フェニレンジアミン(略称:DTDPPA)、4,4’-ビス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]ビフェニル(略称:DPAB)、4,4’-ビス(N-{4-[N’-(3-メチルフェニル)-N’-フェニルアミノ]フェニル}-N-フェニルアミノ)ビフェニル(略称:DNTPD)、1,3,5-トリス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]ベンゼン(略称:DPA3B)等が挙げられる。
【0366】
正孔輸送性の高い有機化合物としては、ポリ(N-ビニルカルバゾール)(略称:PVK)、ポリ(4-ビニルトリフェニルアミン)(略称:PVTPA)、ポリ[N-(4-{N’-[4-(4-ジフェニルアミノ)フェニル]フェニル-N’-フェニルアミノ}フェニル)メタクリルアミド](略称:PTPDMA)、ポリ[N,N’-ビス(4-ブチルフェニル)-N,N’-ビス(フェニル)ベンジジン](略称:Poly-TPD)などの高分子化合物を用いることもできる。
【0367】
電子輸送性の高い有機化合物である、亜鉛やアルミニウム系の金属錯体の具体例としては、トリス(8-キノリノラト)アルミニウム(III)(略称:Alq)、トリス(4-メチル-8-キノリノラト)アルミニウム(III)(略称:Almq3)、ビス(10-ヒドロキシベンゾ[h]キノリナト)ベリリウム(II)(略称:BeBq2)、ビス(2-メチル-8-キノリノラト)(4-フェニルフェノラト)アルミニウム(III)(略称:BAlq)、ビス(8-キノリノラト)亜鉛(II)(略称:Znq)など、キノリン骨格またはベンゾキノリン骨格を有する金属錯体等が挙げられる。
【0368】
この他、ビス[2-(2-ベンゾオキサゾリル)フェノラト]亜鉛(II)(略称:ZnPBO)、ビス[2-(2-ベンゾチアゾリル)フェノラト]亜鉛(II)(略称:ZnBTZ)などのオキサゾール系、チアゾール系配位子を有する金属錯体なども用いることができる。
【0369】
電子輸送性の高い有機化合物である、オキサジアゾール誘導体、トリアゾール誘導体、ベンゾイミダゾール誘導体、キノキサリン誘導体、ジベンゾキノキサリン誘導体、フェナントロリン誘導体の具体例としては、2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール(略称:PBD)、1,3-ビス[5-(p-tert-ブチルフェニル)-1,3,4-オキサジアゾール-2-イル]ベンゼン(略称:OXD-7)、9-[4-(5-フェニル-1,3,4-オキサジアゾール-2-イル)フェニル]-9H-カルバゾール(略称:CO11)、3-(4-ビフェニリル)-4-フェニル-5-(4-tert-ブチルフェニル)-1,2,4-トリアゾール(略称:TAZ)、3-(4-tert-ブチルフェニル)-4-(4-エチルフェニル)-5-(4-ビフェニリル)-1,2,4-トリアゾール(略称:p-EtTAZ)、2-{4-[9,10-ジ(ナフタレン-2-イル)-2-アントリル]フェニル}-1-フェニル-1H-ベンゾイミダゾール(略称:ZADN)、2,2’,2’’-(1,3,5-ベンゼントリイル)トリス(1-フェニル-1H-ベンゾイミダゾール)(略称:TPBI)、2-[3-(ジベンゾチオフェン-4-イル)フェニル]-1-フェニル-1H-ベンゾイミダゾール(略称:mDBTBIm-II)、4,4’-ビス(5-メチルベンゾオキサゾール-2-イル)スチルベン(略称:BzOs)、バソフェナントロリン(略称:Bphen)、バソキュプロイン(略称:BCP)、2,9-ビス(ナフタレン-2-イル)-4,7-ジフェニル-1,10-フェナントロリン(略称:NBphen)、2-[3-(ジベンゾチオフェン-4-イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:2mDBTPDBq-II)、2-[3’-(ジベンゾチオフェン-4-イル)ビフェニル-3-イル]ジベンゾ[f,h]キノキサリン(略称:2mDBTBPDBq-II)、2-[3’-(9H-カルバゾール-9-イル)ビフェニル-3-イル]ジベンゾ[f,h]キノキサリン(略称:2mCzBPDBq)、2-[4-(3,6-ジフェニル-9H-カルバゾール-9-イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:2CzPDBq-III)、7-[3-(ジベンゾチオフェン-4-イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:7mDBTPDBq-II)、及び6-[3-(ジベンゾチオフェン-4-イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:6mDBTPDBq-II)などが挙げられる。
【0370】
電子輸送性の高い有機化合物である、ジアジン骨格を有する複素環化合物、トリアジン骨格を有する複素環化合物、ピリジン骨格を有する複素環化合物の具体例としては、4,6-ビス[3-(フェナントレン-9-イル)フェニル]ピリミジン(略称:4,6mPnP2Pm)、4,6-ビス[3-(4-ジベンゾチエニル)フェニル]ピリミジン(略称:4,6mDBTP2Pm-II)、4,6-ビス[3-(9H-カルバゾール-9-イル)フェニル]ピリミジン(略称:4,6mCzP2Pm)、2-{4-[3-(N-フェニル-9H-カルバゾール-3-イル)-9H-カルバゾール-9-イル]フェニル}-4,6-ジフェニル-1,3,5-トリアジン(略称:PCCzPTzn)、9-[3-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェニル]-9’-フェニル-2,3’-ビ-9H-カルバゾール(略称:mPCCzPTzn-02)、2-[3’-(9,9-ジメチル-9H-フルオレン-2-イル)-1,1’-ビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジン(略称:mFBPTzn)、2-[(1,1’-ビフェニル)-4-イル]-4-フェニル-6-[9,9’-スピロビ(9H-フルオレン)-2-イル]-1,3,5-トリアジン(略称:BP-SFTzn)、2-{3-[3-(ベンゾ[b]ナフト[1,2-d]フラン-8-イル)フェニル]フェニル}-4,6-ジフェニル-1,3,5-トリアジン(略称:mBnfBPTzn)、2-{3-[3-(ベンゾ[b]ナフト[1,2-d]フラン-6-イル)フェニル]フェニル}-4,6-ジフェニル-1,3,5-トリアジン(略称:mBnfBPTzn-02)、3,5-ビス[3-(9H-カルバゾール-9-イル)フェニル]ピリジン(略称:35DCzPPy)、1,3,5-トリ[3-(3-ピリジル)フェニル]ベンゼン(略称:TmPyPB)などが挙げられる。
【0371】
電子輸送性の高い有機化合物としては、ポリ(2,5-ピリジンジイル)(略称:PPy)、ポリ[(9,9-ジヘキシルフルオレン-2,7-ジイル)-co-(ピリジン-3,5-ジイル)](略称:PF-Py)、ポリ[(9,9-ジオクチルフルオレン-2,7-ジイル)-co-(2,2’-ビピリジン-6,6’-ジイル)](略称:PF-BPy)のような高分子化合物を用いることもできる。
【0372】
TADF材料とは、S1準位(一重項励起状態のエネルギー準位)とT1準位(三重項励起状態のエネルギー準位)との差が小さく、逆項間交差によって三重項励起エネルギーから一重項励起エネルギーへエネルギーを変換することができる機能を有する材料である。そのため、三重項励起エネルギーをわずかな熱エネルギーによって一重項励起エネルギーにアップコンバート(逆項間交差)が可能で、一重項励起状態を効率よく生成することができる。また、三重項励起エネルギーを発光に変換することができる。熱活性化遅延蛍光が効率良く得られる条件としては、S1準位とT1準位のエネルギー差が0eV以上0.2eV以下、好ましくは0eV以上0.1eV以下であることが挙げられる。また、TADF材料における遅延蛍光とは、通常の蛍光と同様のスペクトルを持ちながら、寿命が著しく長い発光をいう。その寿命は、10-6秒以上、好ましくは10-3秒以上である。
【0373】
2種類の物質で励起状態を形成する励起錯体は、S1準位とT1準位との差が極めて小さく、三重項励起エネルギーを一重項励起エネルギーに変換することが可能なTADF材料としての機能を有する。
【0374】
T1準位の指標としては、低温(例えば77Kから10K)で観測される燐光スペクトルを用いればよい。TADF材料としては、その蛍光スペクトルの短波長側の裾において接線を引き、その外挿線の波長のエネルギーをS1準位とし、燐光スペクトルの短波長側の裾において接線を引き、その外挿線の波長のエネルギーをT1準位とした際に、そのS1とT1の差が0.3eV以下であることが好ましく、0.2eV以下であることがさらに好ましい。
【0375】
TADF材料は、ゲスト材料として用いてもよく、ホスト材料として用いてもよい。
【0376】
TADF材料としては、例えば、フラーレンやその誘導体、プロフラビン等のアクリジン誘導体、エオシン等が挙げられる。また、マグネシウム(Mg)、亜鉛(Zn)、カドミウム(Cd)、スズ(Sn)、白金(Pt)、インジウム(In)、もしくはパラジウム(Pd)等を含む金属含有ポルフィリンが挙げられる。金属含有ポルフィリンとしては、例えば、プロトポルフィリン-フッ化スズ錯体(略称:SnF2(Proto IX))、メソポルフィリン-フッ化スズ錯体(略称:SnF2(Meso IX))、ヘマトポルフィリン-フッ化スズ錯体(略称:SnF2(Hemato IX))、コプロポルフィリンテトラメチルエステル-フッ化スズ錯体(略称:SnF2(Copro III-4Me))、オクタエチルポルフィリン-フッ化スズ錯体(略称:SnF2(OEP))、エチオポルフィリン-フッ化スズ錯体(略称:SnF2(Etio I))、オクタエチルポルフィリン-塩化白金錯体(略称:PtCl2OEP)等が挙げられる。
【0377】
その他にも、2-(ビフェニル-4-イル)-4,6-ビス(12-フェニルインドロ[2,3-a]カルバゾール-11-イル)-1,3,5-トリアジン(略称:PIC-TRZ)、PCCzPTzn、2-[4-(10H-フェノキサジン-10-イル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(略称:PXZ-TRZ)、3-[4-(5-フェニル-5,10-ジヒドロフェナジン-10-イル)フェニル]-4,5-ジフェニル-1,2,4-トリアゾール(略称:PPZ-3TPT)、3-(9,9-ジメチル-9H-アクリジン-10-イル)-9H-キサンテン-9-オン(略称:ACRXTN)、ビス[4-(9,9-ジメチル-9,10-ジヒドロアクリジン)フェニル]スルホン(略称:DMAC-DPS)、10-フェニル-10H,10’H-スピロ[アクリジン-9,9’-アントラセン]-10’-オン(略称:ACRSA)、4-(9’-フェニル-3,3’-ビ-9H-カルバゾール-9-イル)ベンゾフロ[3,2-d]ピリミジン(略称:4PCCzBfpm)、4-[4-(9’-フェニル-3,3’-ビ-9H-カルバゾール-9-イル)フェニル]ベンゾフロ[3,2-d]ピリミジン(略称:4PCCzPBfpm)、9-[3-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェニル]-9’-フェニル-2,3’-ビ-9H-カルバゾール(略称:mPCCzPTzn-02)等のπ電子過剰型複素芳香環及びπ電子不足型複素芳香環を有する複素環化合物を用いることができる。該複素環化合物は、π電子過剰型複素芳香環及びπ電子不足型複素芳香環を有するため、電子輸送性及び正孔輸送性が共に高く、好ましい。なお、π電子不足型複素芳香環の代わりに、シアノ基のような電子吸引基が結合した芳香環を用いてもよい。また、π電子不足型複素芳香環の代わりに、π電子不足型骨格を用いることができる。同様に、π電子過剰型複素芳香環の代わりに、π電子過剰型骨格を用いることができる。
【0378】
π電子不足型複素芳香環を有する骨格のうち、ピリジン骨格、ジアジン骨格(ピリミジン骨格、ピラジン骨格、ピリダジン骨格)、及びトリアジン骨格は、安定で信頼性が良好なため好ましい。特に、ベンゾフロピリミジン骨格、ベンゾチエノピリミジン骨格、ベンゾフロピラジン骨格、ベンゾチエノピラジン骨格は電子受容性が高く、信頼性が良好なため好ましい。
【0379】
π電子過剰型複素芳香環を有する骨格のうち、アクリジン骨格、フェノキサジン骨格、フェノチアジン骨格、フラン骨格、チオフェン骨格、及びピロール骨格は、安定で信頼性が良好なため、当該骨格の少なくとも一つを有することが好ましい。特に、ジベンゾフラン骨格、ジベンゾチオフェン骨格、インドール骨格、カルバゾール骨格、インドロカルバゾール骨格、ビカルバゾール骨格、3-(9-フェニル-9H-カルバゾール-3-イル)-9H-カルバゾール骨格が好ましい。
【0380】
なお、π電子過剰型複素芳香環とπ電子不足型複素芳香環とが直接結合した物質は、π電子過剰型複素芳香環のドナー性とπ電子不足型複素芳香環のアクセプター性が共に強くなり、一重項励起状態と三重項励起状態のエネルギー差が小さくなるため、特に好ましい。
【0381】
π電子過剰型骨格として、芳香族アミン骨格、フェナジン骨格等を用いることができる。π電子不足型骨格として、キサンテン骨格、チオキサンテンジオキサイド骨格、オキサジアゾール骨格、トリアゾール骨格、イミダゾール骨格、アントラキノン骨格、フェニルボランやボラントレン等の含ホウ素骨格、ベンゾニトリルまたはシアノベンゼン等のニトリル基またはシアノ基を有する芳香環や複素芳香環、ベンゾフェノン等のカルボニル骨格、ホスフィンオキシド骨格、スルホン骨格等を用いることができる。
【0382】
なお、発光物質としてTADF材料を用いる場合、他の有機化合物と組み合わせて用いることもできる。特に、上述したホスト材料(正孔輸送性材料、電子輸送性材料)と組み合わせることができる。TADF材料を用いる場合、ホスト材料のS1準位はTADF材料のS1準位より高い方が好ましい。また、ホスト材料のT1準位はTADF材料のT1準位より高いことが好ましい。
【0383】
また、TADF材料をホスト材料に用い、蛍光発光物質をゲスト材料に用いてもよい。TADF材料をホスト材料として用いると、TADF材料で生成した三重項励起エネルギーが、逆項間交差によって一重項励起エネルギーに変換され、さらに発光物質へエネルギー移動することで、発光デバイスの発光効率を高めることができる。このとき、TADF材料がエネルギードナーとして機能し、発光物質がエネルギーアクセプターとして機能する。従って、ホスト材料としてTADF材料を用いることは、ゲスト材料として蛍光発光物質を用いる場合に非常に有効である。また、このとき、高い発光効率を得るためには、TADF材料のS1準位は、蛍光発光物質のS1準位より高いことが好ましい。また、TADF材料のT1準位は、蛍光発光物質のS1準位より高いことが好ましい。従って、TADF材料のT1準位は、蛍光発光物質のT1準位より高いことが好ましい。
【0384】
また、蛍光発光物質の最も低エネルギー側の吸収帯の波長と重なるような発光を呈するTADF材料を用いることが好ましい。そうすることで、TADF材料から蛍光発光物質への励起エネルギーの移動がスムーズとなり、効率よく発光が得られるため、好ましい。
【0385】
また、効率よく三重項励起エネルギーから逆項間交差によって一重項励起エネルギーが生成されるためには、TADF材料でキャリア再結合が生じることが好ましい。また、TADF材料で生成した三重項励起エネルギーが蛍光発光物質の三重項励起エネルギーに移動しないことが好ましい。そのためには、蛍光発光物質は、蛍光発光物質が有する発光団(発光の原因となる骨格)の周囲に保護基を有すると好ましい。該保護基としては、π結合を有さない置換基が好ましく、飽和炭化水素が好ましく、具体的には炭素数3以上10以下のアルキル基、置換もしくは無置換の炭素数3以上10以下のシクロアルキル基、炭素数3以上10以下のトリアルキルシリル基が挙げられ、保護基が複数あるとさらに好ましい。π結合を有さない置換基は、キャリアを輸送する機能に乏しいため、キャリア輸送やキャリア再結合に影響をほとんど与えずに、TADF材料と蛍光発光物質の発光団との距離を遠ざけることができる。ここで、発光団とは、蛍光発光物質において発光の原因となる原子団(骨格)を指す。発光団は、π結合を有する骨格が好ましく、芳香環を含むことが好ましく、縮合芳香環または縮合複素芳香環を有すると好ましい。縮合芳香環または縮合複素芳香環としては、フェナントレン骨格、スチルベン骨格、アクリドン骨格、フェノキサジン骨格、フェノチアジン骨格等が挙げられる。特にナフタレン骨格、アントラセン骨格、フルオレン骨格、クリセン骨格、トリフェニレン骨格、テトラセン骨格、ピレン骨格、ペリレン骨格、クマリン骨格、キナクリドン骨格、ナフトビスベンゾフラン骨格を有する蛍光発光物質は蛍光量子収率が高いため好ましい。
【0386】
<電子輸送層>
電子輸送層124は、陰極102から注入された電子を発光層123に輸送する層である。
【0387】
電子輸送層124は、電子輸送性材料と、第1の物質と、を有する。
【0388】
電子輸送性材料は、正孔よりも電子の輸送性が高い。
【0389】
電子輸送層124に用いる電子輸送性材料は、最高被占有軌道準位(HOMO準位)が-6.0eV以上であることが好ましい。
【0390】
電子輸送層124に用いる電子輸送性材料は、電界強度[V/cm]の平方根が600における電子移動度が、1×10-7cm2/Vs以上1×10-5cm2/Vs以下であることが好ましく、1×10-7cm2/Vs以上5×10-5cm2/Vs以下であることがさらに好ましい。
【0391】
電子輸送層124に用いる電子輸送性材料の電界強度[V/cm]の平方根が600における電子移動度が発光層123のホスト材料の電界強度[V/cm]の平方根が600における電子移動度よりも小さいことが好ましい。電子輸送層124における電子輸送性を低くすることにより発光層123への電子の注入量を制御することができ、発光層123が電子過多の状態になることを防ぐことができる。
【0392】
電子輸送層124に用いる電子輸送性材料は、アントラセン骨格を有することが好ましく、アントラセン骨格と複素環骨格とを有することがさらに好ましい。当該複素環骨格としては、含窒素5員環骨格が好ましい。当該含窒素5員環骨格としては、ピラゾール環、イミダゾール環、オキサゾール環、チアゾール環のように2つの複素原子を環に含む含窒素5員環骨格を有することが特に好ましい。
【0393】
その他、上記ホスト材料に用いることが可能な電子輸送性材料の一部、及び、上記蛍光発光物質に組み合わせてホスト材料として用いることが可能な材料として挙げた物質を電子輸送層124に用いることができる。
【0394】
電子輸送層124に用いる電子輸送性材料としては、例えば、2-{4-[9,10-ジ(ナフタレン-2-イル)-2-アントリル]フェニル}-1-フェニル-1H-ベンゾイミダゾール(略称:ZADN)、9-(1-ナフチル)-10-[4-(2-ナフチル)フェニル]アントラセン(略称:αN-βNPAnth)、9-[4-(10-フェニル-9-アントラセニル)フェニル]-9H-カルバゾール(略称:CzPA)、7-[4-(10-フェニル-9-アントリル)フェニル]-7H-ジベンゾ[c,g]カルバゾール(略称:cgDBCzPA)などが挙げられる。
【0395】
その他、電子輸送層124に用いる電子輸送性材料としては、上記発光層に用いることができる電子輸送性材料、及び、蛍光発光物質と組み合わせて用いることができる有機化合物(ホスト材料)等を用いることができる。
【0396】
第1の物質は、金属、金属塩、金属酸化物、または有機金属塩である。
【0397】
金属としては、アルカリ金属、アルカリ土類金属、及び希土類金属が挙げられる。具体的には、Li、Na、K、Rb、Cs、Mg、Ca、Sr、Baなどが挙げられる。
【0398】
金属塩としては、例えば、上記金属のハロゲン化物、及び上記金属の炭酸塩が挙げられる。具体的には、LiF、NaF、KF、RbF、CsF、MgF2、CaF2、SrF2、BaF2、LiCl、NaCl、KCl、RbCl、CsCl、MgCl2、CaCl2、SrCl2、BaCl2、Li2CO3、Cs2CO3などが挙げられる。
【0399】
金属酸化物としては、例えば、上記金属の酸化物が挙げられる。具体的には、Li2O、Na2O、Cs2O、MgO、CaOなどが挙げられる。
【0400】
有機金属塩としては、例えば、有機金属錯体が挙げられる。
【0401】
第1の物質は、アルカリ金属またはアルカリ土類金属を有する、有機金属錯体であることが好ましい。
【0402】
第1の物質は、窒素及び酸素を有する配位子と、アルカリ金属またはアルカリ土類金属と、を有する有機金属錯体であることが好ましい。
【0403】
第1の物質は、キノリノール配位子と、アルカリ金属またはアルカリ土類金属と、を有する有機金属錯体であることが好ましい。
【0404】
上記有機金属錯体としては、8-キノリノラトリチウム(略称:Liq)、8-キノリノラトナトリウム(略称:Naq)、8-キノリノラトカリウム(略称:Kq)、ビス(8-キノリノラト)マグネシウム(略称:Mgq2)、ビス(8-キノリノラト)亜鉛(略称:Znq2)などが挙げられる。
【0405】
第1の物質としては、特に、Liqが好ましい。
【0406】
図18(D)に示すように、電子輸送層124は、発光層123側の電子輸送層124aと、陰極102側の電子輸送層124bを有していてもよい。電子輸送層124aと電子輸送層124bとは、電子輸送性材料と第1の物質の濃度比が異なることが好ましい。例えば、電子輸送層124aは、電子輸送層124bよりも、第1の物質の濃度が高いことが好ましい。
【0407】
<電子注入層>
電子注入層125は、陰極102からの電子の注入効率を高める層である。陰極102の材料の仕事関数の値と、電子注入層125に用いる材料のLUMO準位の値と、の差は、小さい(0.5eV以内)ことが好ましい。
【0408】
電子注入層125には、リチウム、セシウム、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF2)、8-キノリノラトリチウム(略称:Liq)、2-(2-ピリジル)フェノラトリチウム(略称:LiPP)、2-(2-ピリジル)-3-ピリジノラトリチウム(略称:LiPPy)、4-フェニル-2-(2-ピリジル)フェノラトリチウム(略称:LiPPP)、リチウム酸化物(LiOx)、炭酸セシウム等のようなアルカリ金属、アルカリ土類金属、またはそれらの化合物を用いることができる。また、フッ化エルビウム(ErF3)のような希土類金属化合物を用いることができる。また、電子注入層にエレクトライドを用いてもよい。エレクトライドとしては、例えば、カルシウムとアルミニウムの混合酸化物に電子を高濃度添加した物質等が挙げられる。なお、上述した電子輸送層を構成する物質を用いることもできる。
【0409】
また、電子注入層に、電子輸送性材料とドナー性材料(電子供与性材料)とを含む複合材料を用いてもよい。このような複合材料は、電子供与体によって有機化合物に電子が発生するため、電子注入性及び電子輸送性に優れている。この場合、有機化合物としては、発生した電子の輸送に優れた材料であることが好ましく、具体的には、例えば上述した電子輸送性材料(金属錯体や複素芳香族化合物等)を用いることができる。電子供与体としては、有機化合物に対し電子供与性を示す物質であればよい。具体的には、アルカリ金属やアルカリ土類金属や希土類金属が好ましく、リチウム、セシウム、マグネシウム、カルシウム、エルビウム、イッテルビウム等が挙げられる。また、アルカリ金属酸化物やアルカリ土類金属酸化物が好ましく、リチウム酸化物、カルシウム酸化物、バリウム酸化物等が挙げられる。また、酸化マグネシウムのようなルイス塩基を用いることもできる。また、テトラチアフルバレン(略称:TTF)等の有機化合物を用いることもできる。
【0410】
<電荷発生層>
電荷発生層104は、陽極101と陰極102との間に電圧を印加したときに、EL層103aに電子を注入し、EL層103bに正孔を注入する機能を有する。
【0411】
電荷発生層104は、正孔輸送性材料とアクセプター性材料とを含む構成であっても、電子輸送性材料とドナー性材料とを含む構成であってもよい。このような構成の電荷発生層104を形成することにより、EL層が積層された場合における駆動電圧の上昇を抑制することができる。
【0412】
正孔輸送性材料、アクセプター性材料、電子輸送性材料、及びドナー性材料は、それぞれ上述の材料を用いることができる。
【0413】
なお、本実施の形態の発光デバイスの作製には、蒸着法などの真空プロセスや、スピンコート法やインクジェット法などの溶液プロセスを用いることができる。蒸着法を用いる場合には、スパッタ法、イオンプレーティング法、イオンビーム蒸着法、分子線蒸着法、真空蒸着法などの物理蒸着法(PVD法)や、化学蒸着法(CVD法)等を用いることができる。特にEL層に含まれる機能層(正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層)については、蒸着法(真空蒸着法等)、塗布法(ディップコート法、ダイコート法、バーコート法、スピンコート法、スプレーコート法等)、印刷法(インクジェット法、スクリーン(孔版印刷)法、オフセット(平版印刷)法、フレキソ(凸版印刷)法、グラビア法、マイクロコンタクト法等)などの方法により形成することができる。
【0414】
発光デバイスを構成する機能層の材料は、それぞれ、上述の材料に限定されない。例えば、機能層の材料として、高分子化合物(オリゴマー、デンドリマー、ポリマー等)、中分子化合物(低分子と高分子の中間領域の化合物:分子量400乃至4000)、無機化合物(量子ドット材料等)等を用いてもよい。なお、量子ドット材料としては、コロイド状量子ドット材料、合金型量子ドット材料、コア・シェル型量子ドット材料、コア型量子ドット材料などを用いることができる。
【0415】
[発光デバイスにおける発光モデル]
本実施の形態の発光デバイスにおける発光モデルについて説明する。
【0416】
ここでは、
図18(A)に示す正孔輸送層122、発光層123、及び電子輸送層124を用いて、発光デバイスの発光モデルを説明する。発光デバイスは
図18(A)の構成に限定されず、他の構成においても当該発光モデルを適用することができる。
【0417】
発光層123が電子過多の状態になると、
図19(A)に示すように、発光層123内の局所的な領域に発光領域123-1が形成される。別言すると、発光層123内における発光領域123-1の幅が狭い。そのため、発光層123の局所的な領域において、集中的に電子(e
-)とホール(h
+)との再結合が行われ、劣化が促進されてしまう。また、発光層123において再結合できなかった電子が、発光層123を通過することで、寿命、または発光効率が低下する場合がある。
【0418】
一方で、本発明の一態様の発光デバイスでは、電子輸送層124における電子輸送性を低くすることにより、発光層123における発光領域123-1の幅を広げることができる(
図19(B)、
図19(C))。発光領域123-1の幅を広げることによって、発光層123における電子とホールとの再結合領域を分散させることができる。従って、寿命が長く発光効率の良好な発光デバイスを提供することができる。
【0419】
図19(B)に示すように、本発明の一態様の発光デバイスは、駆動初期において、再結合領域が電子輸送層124側まで広がる場合がある。
図19(B)では、電子輸送層124中の再結合領域を、領域124-1として示す。具体的には、本発明の一態様の発光デバイスでは、駆動初期では正孔の注入障壁が小さいこと、及び電子輸送層124の電子輸送性が比較的低いことにより、発光領域123-1(すなわち再結合領域)が発光層123全体に形成され、かつ、電子輸送層124にも再結合領域が形成されることがある。
【0420】
また、電子輸送層124に含まれる電子輸送性材料のHOMO準位が-6.0eV以上と比較的高いことから、正孔の一部が電子輸送層124まで達し、電子輸送層124でも再結合が起こる場合がある。なお、この現象は、発光層123に含まれるホスト材料(またはアシスト材料)と、電子輸送層124に含まれる電子輸送性材料と、のHOMO準位の差が0.2eV以内である場合にも起こることがある。
【0421】
図19(C)に示すように、本発明の一態様の発光デバイスは、駆動時間が経過することによって、キャリアバランスが変化し、電子輸送層124での再結合が生じにくくなる。発光層123全体に発光領域123-1が形成されたまま、電子輸送層124での再結合が抑制されることによって、再結合したキャリアのエネルギーを有効に発光に寄与させることができる。そのため、駆動初期と比較して輝度が上昇しうる。この輝度上昇が発光デバイスの駆動初期に現れる急激な輝度低下、いわゆる初期劣化を相殺することで、初期劣化が小さく、また駆動寿命の長い発光デバイスを提供できる。なお、本明細書等において、上記の発光デバイスをRecombination-Site Tailoring Injection構造(ReSTI構造)と呼称する場合がある。
【0422】
ここで、
図19(D)を用いて、本実施の形態の発光デバイス及び比較用の発光デバイスにおける時間経過に伴う規格化輝度を説明する。
図19(D)において、太い実線及び太い一点鎖線は、本実施の形態の発光デバイスの規格化輝度の劣化曲線であり、太い破線は、比較用の発光デバイスの規格化輝度の劣化曲線である。
【0423】
図19(D)に示すように、本実施の形態の発光デバイスと、比較用の発光デバイスとは、規格化輝度の劣化曲線の傾きが互いに異なる。具体的には、本実施の形態の発光デバイスの劣化曲線の傾きθ2は、比較用の発光デバイスの劣化曲線の傾きθ1よりも小さい。
【0424】
図19(D)に示すように、本発明の一態様の発光デバイスは、電流密度一定の条件における駆動試験によって得られる輝度の劣化曲線において、極大値を有する場合がある(太い実線)。すなわち、本発明の一態様の発光デバイスは、時間の経過に伴って輝度が上昇する挙動を示すことがある。当該挙動は、駆動初期の急激な劣化(いわゆる初期劣化)を相殺することができる。ただし、本発明の一態様の発光デバイスは、上記に限定されず、例えば、
図19(D)に太い一点鎖線で示すように、輝度の極大値を有さない、別言すると、輝度上昇を発生させずに劣化曲線の傾きを小さくすることができる。従って、発光デバイスを、当該挙動を示す構成とすることで、発光デバイスの初期劣化を小さくし、かつ駆動寿命を非常に長くすることができる。
【0425】
なお、極大値を有する劣化曲線の微分を取ると、その値が0となる部分が存在する。従って、劣化曲線の微分に0となる部分が存在する発光デバイスを、本発明の一態様の発光デバイスと言い換えることができる。
【0426】
本発明の一態様の発光デバイスにおいて、電子輸送層124は、厚さ方向において、電子輸送性材料と第1の物質との混合比(濃度)が異なる部分を有することが好ましい。具体的には、電子輸送性材料と、金属、金属塩、金属酸化物、または有機金属錯体と、の混合比(濃度)が異なる部分を有することが好ましい。
【0427】
電子輸送層124における、第1の物質の濃度は、飛行時間型二次イオン質量分析(ToF-SIMS:Time-of-flight secondary ion mass spectrometry)で得られる原子や分子の検出量により推察できる。同じ二種類の材料で構成され、混合比が互いに異なる部分において、ToF-SIMS分析によってそれぞれ検出された値の大小は、注目する原子や分子の存在量の大小に相当する。そのため、電子輸送性材料及び有機金属錯体の検出量を比較することによって、混合比の大小の見当をつけることができる。
【0428】
電子輸送層124における第1の物質の含有量は、陽極101側に比べて、陰極102側の方が少ないことが好ましい。つまり、第1の物質の濃度が、陰極102側から陽極101側に向かって上昇するように、電子輸送層124が形成されることが好ましい。すなわち、電子輸送層124は、電子輸送性材料の濃度が高い部分よりも発光層123側に電子輸送性材料の濃度が低い部分を有する。換言すると、電子輸送層124は、第1の物質の濃度が低い部分よりも発光層123側に第1の物質の濃度が高い部分を有する。
【0429】
電子輸送層124において、電子輸送性材料の濃度が高い部分(第1の物質の濃度が低い部分)における電子移動度は、電界強度[V/cm]の平方根が600において1×10-7cm2/Vs以上5×10-5cm2/Vs以下であることが好ましい。
【0430】
例えば、電子輸送層124における第1の物質の含有量(濃度)は、
図20(A)~
図20(D)に示す構成とすることができる。なお、
図20(A)、
図20(B)は、電子輸送層124内に明確な境界がない場合を表し、
図20(C)、
図20(D)は、電子輸送層124内に明確な境界がある場合を表している。
【0431】
電子輸送層124内に明確な境界が無い場合、電子輸送性材料と第1の物質との濃度は、
図20(A)、
図20(B)に示すように連続的に変化する。また、電子輸送層124内に明確な境界がある場合、電子輸送性材料と第1の物質との濃度は、
図20(C)、
図20(D)に示すように階段状に変化する。なお、電子輸送性材料と第1の物質との濃度が階段状に変化する場合、電子輸送層124は、複数の層により構成されていると示唆される。例えば、
図20(C)は、電子輸送層124が2層の積層構造である場合を表し、
図20(D)は、電子輸送層124が3層の積層構造である場合を表す。なお、
図20(C)、
図20(D)において、破線は、複数の層の境界の領域を表す。
【0432】
本発明の一態様の発光デバイスにおけるキャリアバランスの変化は、電子輸送層124の電子移動度の変化によってもたらされると考えられる。
【0433】
本発明の一態様の発光デバイスは、電子輸送層124内部に、第1の物質の濃度差が存在する。電子輸送層124は、当該第1の物質の濃度が低い領域と発光層123との間に、当該第1の物質の濃度が高い領域を有する。すなわち、第1の物質の濃度が低い領域が高い領域よりも陰極102側に位置する構成を有する。
【0434】
以上のような構成を有する本発明の一態様の発光デバイスは、寿命が非常に長い。特に、初期輝度を100%とした場合、輝度が95%になるまでの時間(LT95ともいう)を極めて長くすることができる。
【0435】
本実施の形態は、他の実施の形態と適宜組み合わせることができる。
【0436】
(実施の形態3)
本実施の形態では、本発明の一態様の表示装置について、
図21及び
図22を用いて説明する。
【0437】
[画素回路の例1]
本発明の一態様の表示装置は、表示部に、受光デバイスを有する第1の画素回路と、発光デバイスを有する第2の画素回路と、を有する。第1の画素回路と第2の画素回路は、それぞれ、マトリクス状に配置される。
【0438】
図21(A)に、受光デバイスを有する第1の画素回路の一例を示し、
図21(B)に、発光デバイスを有する第2の画素回路の一例を示す。
【0439】
図21(A)に示す画素回路PIX1は、受光デバイスPD、トランジスタM1、トランジスタM2、トランジスタM3、トランジスタM4、及び容量C1を有する。ここでは、受光デバイスPDとして、フォトダイオードを用いた例を示している。
【0440】
受光デバイスPDは、カソードが配線V1と電気的に接続し、アノードがトランジスタM1のソースまたはドレインの一方と電気的に接続する。トランジスタM1は、ゲートが配線TXと電気的に接続し、ソースまたはドレインの他方が容量C1の一方の電極、トランジスタM2のソースまたはドレインの一方、及びトランジスタM3のゲートと電気的に接続する。トランジスタM2は、ゲートが配線RESと電気的に接続し、ソースまたはドレインの他方が配線V2と電気的に接続する。トランジスタM3は、ソースまたはドレインの一方が配線V3と電気的に接続し、ソースまたはドレインの他方がトランジスタM4のソースまたはドレインの一方と電気的に接続する。トランジスタM4は、ゲートが配線SEと電気的に接続し、ソースまたはドレインの他方が配線OUT1と電気的に接続する。
【0441】
配線V1、配線V2、及び配線V3には、それぞれ定電位が供給される。受光デバイスPDを逆バイアスで駆動させる場合には、配線V2に、配線V1の電位よりも低い電位を供給する。トランジスタM2は、配線RESに供給される信号により制御され、トランジスタM3のゲートに接続するノードの電位を、配線V2に供給される電位にリセットする機能を有する。トランジスタM1は、配線TXに供給される信号により制御され、受光デバイスPDに流れる電流に応じて上記ノードの電位が変化するタイミングを制御する機能を有する。トランジスタM3は、上記ノードの電位に応じた出力を行う増幅トランジスタとして機能する。トランジスタM4は、配線SEに供給される信号により制御され、上記ノードの電位に応じた出力を配線OUT1に接続する外部回路で読み出すための選択トランジスタとして機能する。
【0442】
図21(B)に示す画素回路PIX2は、発光デバイスEL、トランジスタM5、トランジスタM6、トランジスタM7、及び容量C2を有する。ここでは、発光デバイスELとして、発光ダイオードを用いた例を示している。特に、発光デバイスELとして、有機ELデバイスを用いることが好ましい。
【0443】
トランジスタM5は、ゲートが配線VGと電気的に接続し、ソースまたはドレインの一方が配線VSと電気的に接続し、ソースまたはドレインの他方が、容量C2の一方の電極、及びトランジスタM6のゲートと電気的に接続する。トランジスタM6のソースまたはドレインの一方は配線V4と電気的に接続し、他方は、発光デバイスELのアノード、及びトランジスタM7のソースまたはドレインの一方と電気的に接続する。トランジスタM7は、ゲートが配線MSと電気的に接続し、ソースまたはドレインの他方が配線OUT2と電気的に接続する。発光デバイスELのカソードは、配線V5と電気的に接続する。
【0444】
配線V4及び配線V5には、それぞれ定電位が供給される。発光デバイスELのアノード側を高電位に、カソード側をアノード側よりも低電位にすることができる。トランジスタM5は、配線VGに供給される信号により制御され、画素回路PIX2の選択状態を制御するための選択トランジスタとして機能する。また、トランジスタM6は、ゲートに供給される電位に応じて発光デバイスELに流れる電流を制御する駆動トランジスタとして機能する。トランジスタM5が導通状態のとき、配線VSに供給される電位がトランジスタM6のゲートに供給され、その電位に応じて発光デバイスELの発光輝度を制御することができる。トランジスタM7は配線MSに供給される信号により制御され、トランジスタM6と発光デバイスELとの間の電位を、配線OUT2を介して外部に出力する機能を有する。
【0445】
受光デバイスPDのカソードが電気的に接続される配線V1と、発光デバイスELのカソードが電気的に接続される配線V5は、同一の層、同一の電位とすることができる。
【0446】
ここで、画素回路PIX1が有するトランジスタM1、トランジスタM2、トランジスタM3、及びトランジスタM4、並びに、画素回路PIX2が有するトランジスタM5、トランジスタM6、及びトランジスタM7には、それぞれチャネルが形成される半導体層に金属酸化物(酸化物半導体)を用いたトランジスタを適用することが好ましい。
【0447】
シリコンよりもバンドギャップが広く、かつキャリア密度の小さい金属酸化物を用いたトランジスタは、極めて小さいオフ電流を実現することができる。そのため、その小さいオフ電流により、トランジスタと直列に接続された容量に蓄積した電荷を長期間に亘って保持することが可能である。そのため、特に容量C1または容量C2に直列に接続されるトランジスタM1、トランジスタM2、及びトランジスタM5には、酸化物半導体が適用されたトランジスタを用いることが好ましい。また、これ以外のトランジスタも同様に酸化物半導体を適用したトランジスタを用いることで、作製コストを低減することができる。
【0448】
また、トランジスタM1乃至トランジスタM7に、チャネルが形成される半導体にシリコンを適用したトランジスタを用いることもできる。特に単結晶シリコンや多結晶シリコンなどの結晶性の高いシリコンを用いることで、高い電界効果移動度を実現することができ、より高速な動作が可能となるため好ましい。
【0449】
また、トランジスタM1乃至トランジスタM7のうち、一以上に酸化物半導体を適用したトランジスタを用い、それ以外にシリコンを適用したトランジスタを用いる構成としてもよい。
【0450】
なお、
図21(A)、
図21(B)において、トランジスタをnチャネル型のトランジスタとして表記しているが、pチャネル型のトランジスタを用いることもできる。
【0451】
画素回路PIX1が有するトランジスタと画素回路PIX2が有するトランジスタは、同一基板上に並べて形成されることが好ましい。特に、画素回路PIX1が有するトランジスタと画素回路PIX2が有するトランジスタとを1つの領域内に混在させて周期的に配列する構成とすることが好ましい。
【0452】
また、受光デバイスPDまたは発光デバイスELと重なる位置に、トランジスタ及び容量の一方又は双方を有する層を1つまたは複数設けることが好ましい。これにより、各画素回路の実効的な占有面積を小さくでき、高精細な受光部または表示部を実現できる。
【0453】
[画素回路の例2]
図22(A)に画素のブロック図を示す。
図22(A)に示す画素は、スイッチングトランジスタ(Switching Tr)、駆動トランジスタ(Driving Tr)、発光デバイス(OLED)に加えて、メモリ(Memory)を有する。
【0454】
メモリには、データData_Wが供給される。表示データDataに加えて、データData_Wが画素に供給されることで、発光デバイスに流れる電流が大きくなり、表示装置は高い輝度を表現することができる。
【0455】
本発明の一態様の表示装置による撮像は、発光デバイスが発した光を光源に用いて、撮像物からの反射光を受光デバイスで検出することにより行う。当該光源に用いる発光デバイスを、表示データData及びデータData_Wに基づいて駆動させることで、高い輝度で発光デバイスを発光させることができる。発光デバイスの輝度が高いほど、S/N比の向上を図ることができる。これにより、受光デバイスによる光検出の感度を高めることができる。
【0456】
【0457】
図22(B)に示す画素は、トランジスタM1、トランジスタM2、トランジスタM3、トランジスタM4、容量Cs、容量Cw、及び発光デバイスELを有する。
【0458】
トランジスタM1のソースまたはドレインの一方は、容量Cwの一方の電極と電気的に接続される。容量Cwの他方の電極は、トランジスタM4のソースまたはドレインの一方と電気的に接続される。トランジスタM4のソースまたはドレインの一方は、トランジスタM2のゲートと電気的に接続される。トランジスタM2のゲートは、容量Csの一方の電極と電気的に接続される。容量Csの他方の電極は、トランジスタM2のソースまたはドレインの一方と電気的に接続される。トランジスタM2のソースまたはドレインの一方は、トランジスタM3のソースまたはドレインの一方と電気的に接続される。トランジスタM3のソースまたはドレインの一方は、発光デバイスELの一方の電極と電気的に接続される。
図22(B)に示す各トランジスタは、ゲートと電気的に接続されたバックゲートを有するが、バックゲートの接続はこれに限定されない。また、トランジスタにバックゲートを設けなくてもよい。
【0459】
ここで、容量Cwの他方の電極、トランジスタM4のソースまたはドレインの一方、トランジスタM2のゲート、及び容量Csの一方の電極が接続されるノードをノードNMとする。また、容量Csの他方の電極、トランジスタM2のソースまたはドレインの一方、トランジスタM3のソースまたはドレインの一方、及び発光デバイスELの一方の電極が接続されるノードをノードNAとする。
【0460】
トランジスタM1のゲートは、配線G1と電気的に接続される。トランジスタM3のゲートは、配線G1と電気的に接続される。トランジスタM4のゲートは、配線G2に電気的に接続される。トランジスタM1のソースまたはドレインの他方は、配線DATAと電気的に接続される。トランジスタM3のソースまたはドレインの他方は、配線V0と電気的に接続される。トランジスタM4のソースまたはドレインの他方は、配線DATA_Wと電気的に接続される。
【0461】
トランジスタM2のソースまたはドレインの他方は、配線ANODE(高電位側)と電気的に接続される。発光デバイスELの他方の電極は、配線CATHODE(低電位側)と電気的に接続される。
【0462】
配線G1及び配線G2は、トランジスタの動作を制御するための信号線としての機能を有することができる。配線DATAは、画素に画像信号を供給する信号線としての機能を有することができる。配線DATA_Wは、記憶回路MEMにデータを書き込むための信号線としての機能を有することができる。配線DATA_Wは、画素に補正信号を供給する信号線としての機能を有することができる。配線V0は、トランジスタM4の電気特性を取得するためのモニタ線としての機能を有する。また、配線V0からトランジスタM3を介して容量Csの他方の電極に特定の電位を供給することにより、画像信号の書き込みを安定化させることもできる。
【0463】
トランジスタM2、トランジスタM4、及び容量Cwは、記憶回路MEMを構成する。ノードNMは記憶ノードであり、トランジスタM4を導通させることで、配線DATA_Wに供給された信号をノードNMに書き込むことができる。トランジスタM4に極めてオフ電流が低いトランジスタを用いることで、ノードNMの電位を長時間保持することができる。
【0464】
トランジスタM4には、例えば、金属酸化物をチャネル形成領域に用いたトランジスタ(以下、OSトランジスタ)を用いることができる。これにより、トランジスタM4のオフ電流を極めて低くすることができ、ノードNMの電位を長時間保持することができる。このとき、画素を構成するその他のトランジスタにも、OSトランジスタを用いることが好ましい。金属酸化物の具体例は、実施の形態1を参照できる。
【0465】
OSトランジスタはエネルギーギャップが大きいため、極めて低いオフ電流特性を示す。また、OSトランジスタは、インパクトイオン化、アバランシェ降伏、及び短チャネル効果などが生じないなどSiをチャネル形成領域に有するトランジスタ(以下、Siトランジスタ)とは異なる特徴を有し、信頼性の高い回路を形成することができる。
【0466】
また、トランジスタM4に、Siトランジスタを適用してもよい。このとき、画素を構成するその他のトランジスタにも、Siトランジスタを用いることが好ましい。
【0467】
Siトランジスタとしては、アモルファスシリコンを有するトランジスタ、結晶性のシリコン(代表的には、低温ポリシリコン)を有するトランジスタ、単結晶シリコンを有するトランジスタなどが挙げられる。
【0468】
また、1つの画素は、OSトランジスタとSiトランジスタとの両方を有していてもよい。
【0469】
画素において、ノードNMに書き込まれた信号は、配線DATAから供給される画像信号と容量結合され、ノードNAに出力することができる。なお、トランジスタM1は、画素を選択する機能を有することができる。
【0470】
すなわち、ノードNMに所望の補正信号を格納しておけば、供給した画像信号に当該補正信号を付加することができる。なお、補正信号は伝送経路上の要素によって減衰することがあるため、当該減衰を考慮して生成することが好ましい。
【0471】
画像信号と補正信号を用いて発光デバイスを発光させることで、発光デバイスに流れる電流を大きくすることができ、高い輝度を表現できる。ソースドライバの出力電圧以上の電圧を駆動トランジスタのゲート電圧として印加できるため、ソースドライバの消費電力を削減することができる。高い輝度の光を光源に用いることができるため、センサの感度を高めることができる。
【0472】
本実施の形態は、他の実施の形態と適宜組み合わせることができる。
【0473】
(実施の形態4)
本実施の形態では、本発明の一態様の電子機器について、
図23~
図25を用いて説明する。
【0474】
本実施の形態の電子機器は、本発明の一態様の表示装置を有する。例えば、電子機器の表示部に、本発明の一態様の表示装置を適用することができる。本発明の一態様の表示装置は、光を検出する機能を有するため、表示部で生体認証を行うこと、または、タッチもしくはニアタッチを検出することができる。つまり、本発明の一態様の表示装置が有する受光デバイスは、タッチセンサまたはタッチパネルの一部として機能することができる。これにより、電子機器の機能性や利便性などを高めることができる。
【0475】
電子機器としては、例えば、テレビジョン装置、デスクトップ型もしくはノート型のパーソナルコンピュータ、コンピュータ用などのモニタ、デジタルサイネージ、パチンコ機などの大型ゲーム機などの比較的大きな画面を備える電子機器の他、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機、携帯型ゲーム機、携帯情報端末、音響再生装置、などが挙げられる。
【0476】
本実施の形態の電子機器は、センサ(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を測定する機能を含むもの)を有していてもよい。
【0477】
本実施の形態の電子機器は、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)を実行する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出す機能等を有することができる。
【0478】
図23(A)に示す電子機器6500は、スマートフォンとして用いることのできる携帯情報端末機である。
【0479】
電子機器6500は、筐体6501、表示部6502、電源ボタン6503、ボタン6504、スピーカ6505、マイク6506、カメラ6507、及び光源6508等を有する。表示部6502はタッチパネル機能を備える。
【0480】
表示部6502に、本発明の一態様の表示装置を適用することができる。
【0481】
図23(B)は、筐体6501のマイク6506側の端部を含む断面概略図である。
【0482】
筐体6501の表示面側には透光性を有する保護部材6510が設けられ、筐体6501と保護部材6510に囲まれた空間内に、表示パネル6511、光学部材6512、タッチセンサパネル6513、プリント基板6517、バッテリ6518等が配置されている。
【0483】
保護部材6510には、表示パネル6511、光学部材6512、及びタッチセンサパネル6513が接着層(図示しない)により固定されている。
【0484】
表示部6502よりも外側の領域において、表示パネル6511の一部が折り返されており、当該折り返された部分にFPC6515が接続されている。FPC6515には、IC6516が実装されている。FPC6515は、プリント基板6517に設けられた端子に接続されている。
【0485】
表示パネル6511には本発明の一態様のフレキシブルディスプレイを適用することができる。そのため、極めて軽量な電子機器を実現できる。また、表示パネル6511が極めて薄いため、電子機器の厚さを抑えつつ、大容量のバッテリ6518を搭載することもできる。また、表示パネル6511の一部を折り返して、画素部の裏側にFPC6515との接続部を配置することにより、狭額縁の電子機器を実現できる。
【0486】
図24(A)にテレビジョン装置の一例を示す。テレビジョン装置7100は、筐体7101に表示部7000が組み込まれている。ここでは、スタンド7103により筐体7101を支持した構成を示している。
【0487】
表示部7000に、本発明の一態様の表示装置を適用することができる。
【0488】
図24(A)に示すテレビジョン装置7100の操作は、筐体7101が備える操作スイッチや、別体のリモコン操作機7111により行うことができる。または、表示部7000にタッチセンサを備えていてもよく、指等で表示部7000に触れることでテレビジョン装置7100を操作してもよい。リモコン操作機7111は、当該リモコン操作機7111から出力する情報を表示する表示部を有していてもよい。リモコン操作機7111が備える操作キーまたはタッチパネルにより、チャンネル及び音量の操作を行うことができ、表示部7000に表示される映像を操作することができる。
【0489】
なお、テレビジョン装置7100は、受信機及びモデムなどを備えた構成とする。受信機により一般のテレビ放送の受信を行うことができる。また、モデムを介して有線または無線による通信ネットワークに接続することにより、一方向(送信者から受信者)または双方向(送信者と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である。
【0490】
図24(B)に、ノート型パーソナルコンピュータの一例を示す。ノート型パーソナルコンピュータ7200は、筐体7211、キーボード7212、ポインティングデバイス7213、外部接続ポート7214等を有する。筐体7211に、表示部7000が組み込まれている。
【0491】
表示部7000に、本発明の一態様の表示装置を適用することができる。
【0492】
図24(C)、
図24(D)に、デジタルサイネージの一例を示す。
【0493】
図24(C)に示すデジタルサイネージ7300は、筐体7301、表示部7000、及びスピーカ7303等を有する。さらに、LEDランプ、操作キー(電源スイッチ、または操作スイッチを含む)、接続端子、各種センサ、マイクロフォン等を有することができる。
【0494】
図24(D)は円柱状の柱7401に取り付けられたデジタルサイネージ7400である。デジタルサイネージ7400は、柱7401の曲面に沿って設けられた表示部7000を有する。
【0495】
図24(C)、
図24(D)において、表示部7000に、本発明の一態様の表示装置を適用することができる。
【0496】
表示部7000が広いほど、一度に提供できる情報量を増やすことができる。また、表示部7000が広いほど、人の目につきやすく、例えば、広告の宣伝効果を高めることができる。
【0497】
表示部7000にタッチパネルを適用することで、表示部7000に画像または動画を表示するだけでなく、ユーザーが直感的に操作することができ、好ましい。また、路線情報もしくは交通情報などの情報を提供するための用途に用いる場合には、直感的な操作によりユーザビリティを高めることができる。
【0498】
また、
図24(C)、
図24(D)に示すように、デジタルサイネージ7300またはデジタルサイネージ7400は、ユーザーが所持するスマートフォン等の情報端末機7311または情報端末機7411と無線通信により連携可能であることが好ましい。例えば、表示部7000に表示される広告の情報を、情報端末機7311または情報端末機7411の画面に表示させることができる。また、情報端末機7311または情報端末機7411を操作することで、表示部7000の表示を切り替えることができる。
【0499】
また、デジタルサイネージ7300またはデジタルサイネージ7400に、情報端末機7311または情報端末機7411の画面を操作手段(コントローラ)としたゲームを実行させることもできる。これにより、不特定多数のユーザーが同時にゲームに参加し、楽しむことができる。
【0500】
図25(A)乃至
図25(F)に示す電子機器は、筐体9000、表示部9001、スピーカ9003、操作キー9005(電源スイッチ、または操作スイッチを含む)、接続端子9006、センサ9007(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を測定する機能を含むもの)、マイクロフォン9008、等を有する。
【0501】
図25(A)乃至
図25(F)に示す電子機器は、様々な機能を有する。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)によって処理を制御する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出して処理する機能、等を有することができる。なお、電子機器の機能はこれらに限られず、様々な機能を有することができる。電子機器は、複数の表示部を有していてもよい。また、電子機器にカメラ等を設け、静止画や動画を撮影し、記録媒体(外部またはカメラに内蔵)に保存する機能、撮影した画像を表示部に表示する機能、等を有していてもよい。
【0502】
図25(A)乃至
図25(F)に示す電子機器の詳細について、以下説明を行う。
【0503】
図25(A)は、携帯情報端末9101を示す斜視図である。携帯情報端末9101は、例えばスマートフォンとして用いることができる。なお、携帯情報端末9101は、スピーカ9003、接続端子9006、センサ9007等を設けてもよい。また、携帯情報端末9101は、文字や画像情報をその複数の面に表示することができる。
図25(A)では3つのアイコン9050を表示した例を示している。また、破線の矩形で示す情報9051を表示部9001の他の面に表示することもできる。情報9051の一例としては、電子メール、SNS、電話などの着信の通知、電子メールやSNSなどの題名、送信者名、日時、時刻、バッテリの残量、アンテナ受信の強度などがある。または、情報9051が表示されている位置にはアイコン9050などを表示してもよい。
【0504】
図25(B)は、携帯情報端末9102を示す斜視図である。携帯情報端末9102は、表示部9001の3面以上に情報を表示する機能を有する。ここでは、情報9052、情報9053、情報9054がそれぞれ異なる面に表示されている例を示す。例えばユーザーは、洋服の胸ポケットに携帯情報端末9102を収納した状態で、携帯情報端末9102の上方から観察できる位置に表示された情報9053を確認することもできる。ユーザーは、携帯情報端末9102をポケットから取り出すことなく表示を確認し、例えば電話を受けるか否かを判断できる。
【0505】
図25(C)は、腕時計型の携帯情報端末9200を示す斜視図である。携帯情報端末9200は、例えばスマートウォッチとして用いることができる。また、表示部9001はその表示面が湾曲して設けられ、湾曲した表示面に沿って表示を行うことができる。また、携帯情報端末9200は、例えば無線通信可能なヘッドセットと相互通信することによって、ハンズフリーで通話することもできる。また、携帯情報端末9200は、接続端子9006により、他の情報端末と相互にデータ伝送を行うことや、充電を行うこともできる。なお、充電動作は無線給電により行ってもよい。
【0506】
図25(D)乃至
図25(F)は、折り畳み可能な携帯情報端末9201を示す斜視図である。また、
図25(D)は携帯情報端末9201を展開した状態、
図25(F)は折り畳んだ状態、
図25(E)は
図25(D)と
図25(F)の一方から他方に変化する途中の状態の斜視図である。携帯情報端末9201は、折り畳んだ状態では可搬性に優れ、展開した状態では継ぎ目のない広い表示領域により表示の一覧性に優れる。携帯情報端末9201が有する表示部9001は、ヒンジ9055によって連結された3つの筐体9000に支持されている。例えば、表示部9001は、曲率半径0.1mm以上150mm以下で曲げることができる。
【0507】
本実施の形態は、他の実施の形態と適宜組み合わせることができる。
【0508】
<参考例>
本参考例では、本発明の一態様の表示装置における、有機化合物のHOMO準位、LUMO準位、及び電子移動度の算出方法について説明する。
【0509】
HOMO準位及びLUMO準位はサイクリックボルタンメトリ(CV)測定を元に算出することができる。
【0510】
本参考例では、測定装置として、電気化学アナライザー(ビー・エー・エス(株)製、型番:ALSモデル600Aまたは600C)を用いた。CV測定における溶液は、溶媒として脱水ジメチルホルムアミド(DMF)((株)アルドリッチ製、99.8%、カタログ番号;22705-6)を用い、支持電解質である過塩素酸テトラ-n-ブチルアンモニウム(n-Bu4NClO4)((株)東京化成製、カタログ番号;T0836)を100mmol/Lの濃度となるように溶解させ、さらに測定対象を2mmol/Lの濃度となるように溶解させて調製した。作用電極としては白金電極(ビー・エー・エス(株)製、PTE白金電極)を、補助電極としては白金電極(ビー・エー・エス(株)製、VC-3用Ptカウンター電極(5cm))を、参照電極としてはAg/Ag+電極(ビー・エー・エス(株)製、RE7非水溶媒系参照電極)をそれぞれ用いた。測定は、室温(20~25℃)で行った。CV測定時のスキャン速度は、0.1V/secに統一し、参照電極に対する酸化電位Ea[V]及び還元電位Ec[V]を測定した。Eaは酸化-還元波の中間電位とし、Ecは還元-酸化波の中間電位とした。ここで、本参考例で用いる参照電極の真空準位に対するポテンシャルエネルギーは、-4.94eVであることが分かっているため、HOMO準位[eV]=-4.94-Ea、LUMO準位[eV]=-4.94-Ecという式から、HOMO準位及びLUMO準位をそれぞれ求めることができる。
【0511】
電子移動度はインピーダンス分光法(Impedance Spectroscopy:IS法)により測定することが可能である。
【0512】
EL材料のキャリア移動度の測定は、過渡光電流法(Time-of-flight:TOF法)や空間電荷制限電流(Space-charge-limited current:SCLC)のI-V特性から求める方法(SCLC法)などが古くから知られている。TOF法は実際の有機ELデバイスと比較してかなり厚い膜厚の試料が必要となる。SCLC法ではキャリア移動度の電界強度依存性が得られないなどの欠点がある。IS法では、測定に必要とする有機膜の膜厚が数百nm程度と薄いため、比較的少量のEL材料でも成膜することが可能であり、実際の有機ELデバイスに近い膜厚で移動度を測定できることが特徴であり、キャリア移動度の電界強度依存性も得ることができる。
【0513】
IS法では、ELデバイスに微小正弦波電圧信号(V=V0[exp(jωt)])を与え、その応答電流信号(I=I0exp[j(ωt+φ)])の電流振幅と入力信号との位相差より、ELデバイスのインピーダンス(Z=V/I)を求める。微小正弦波電圧信号を、高周波電圧から低周波電圧まで変化させてELデバイスに印加することで、インピーダンスに寄与する様々な緩和時間を有する成分を分離、測定することができる。
【0514】
ここで、インピーダンスの逆数であるアドミタンスY(=1/Z)は、下記式(1)のようにコンダクタンスGとサセプタンスBで表すことができる。
【0515】
【0516】
さらに、単一電荷注入(single injection)モデルにより、それぞれ下記式(2)及び(3)を算出することができる。ここで、g(式(4))は微分コンダクタンスである。なお、式中Cは静電容量(キャパシタンス)、θはωTであり走行角、ωは角周波数を表す。Tは走行時間である。解析には電流の式、ポアソンの式、電流連続の式を用い、拡散電流及びトラップ準位の存在を無視している。
【0517】
【0518】
静電容量の周波数特性から移動度を算出する方法が-ΔB法である。また、コンダクタンスの周波数特性から移動度を算出する方法がωΔG法である。
【0519】
実際には、まず、電子移動度を求めたい材料の電子オンリーデバイスを作製する。電子オンリーデバイスとは、キャリアとして電子のみが流れるように設計されたデバイスである。本明細書では、静電容量の周波数特性から移動度を算出する方法(-ΔB法)を説明する。
【0520】
測定用に作製した電子オンリーデバイスの構造を
図26に示し、具体的な構成を表1に示す。本参考例で作製した電子オンリーデバイスは、第1の電極901(陽極)と第2の電極902(陰極)との間に、第1の層910、第2の層911、及び第3の層912を有する。電子移動度を求めたい材料は第2の層911の材料として用いればよい。本参考例では、2-{4-[9,10-ジ(ナフタレン-2-イル)-2-アントリル]フェニル}-1-フェニル-1H-ベンゾイミダゾール(略称:ZADN)と8-キノリノラトリチウム(略称:Liq)の1:1(重量比)の共蒸着膜について、その電子移動度を測定した。また、本参考例では、7-[4-(10-フェニル-9-アントリル)フェニル]-7H-ジベンゾ[c,g]カルバゾール(略称:cgDBCzPA)、及び、2-[3’-(ジベンゾチオフェン-4-イル)ビフェニル-3-イル]ジベンゾ[f,h]キノキサリン(略称:2mDBTBPDBq-II)についても電子移動度を測定した。
【0521】
【0522】
ZADNとLiqの共蒸着膜を第2の層911として作製した電子オンリーデバイスの電流密度-電圧特性を
図27に示す。
【0523】
インピーダンス測定は、5.0V~9.0Vの範囲で直流電圧を印加しながら、交流電圧が70mV、周波数が1Hz~3MHzの条件で測定を行った。ここで得られたインピーダンスの逆数であるアドミタンス(前述の(1)式)からキャパシタンスを算出する。印加電圧7.0Vにおける算出されたキャパシタンスCの周波数特性を
図28に示す。
【0524】
キャパシタンスCの周波数特性は、微小電圧信号により注入されたキャリアによる空間電荷が微小交流電圧に完全には追従できず、電流に位相差が生じることにより得られる。ここで、膜中のキャリアの走行時間は、注入されたキャリアが対向電極に到達する時間Tで定義され、以下の式(5)で表される。
【0525】
【0526】
負サセプタンス変化(-ΔB)は、静電容量変化-ΔCに角周波数ωを乗じた値(-ωΔC)に対応する。その最も低周波側のピーク周波数f’max(=ωmax/2π)と走行時間Tとの間には、式(3)より、以下の式(6)の関係があることが導出される。
【0527】
【0528】
上記測定から算出した(すなわち直流電圧が7.0Vの時の)-ΔBの周波数特性を
図29に示す。
図29より求まる最も低周波側のピーク周波数f’
maxは、図中の矢印で示した。
【0529】
以上の測定及び解析から得られるf’maxから、走行時間Tが求まるため(式(6))、上記式(5)より、今回で言えば電圧7.0Vにおける電子移動度を求めることができる。同様の測定を、直流電圧5.0V~9.0Vの範囲で行うことで、各電圧(電界強度)での電子移動度が算出できるため、移動度の電界強度依存性も測定できる。
【0530】
以上のような算出法により最終的に得られた、各有機化合物の電子移動度の電界強度依存性を
図30に示し、図から読み取った、電界強度[V/cm]の平方根が600[V/cm]
1/2の時の電子移動度の値を表2に示す。
図30において、正方形はcgDBCzPAの結果、三角は2mDBTBPDBq-IIの結果、菱形はZADNとLiqの共蒸着膜の結果を示す。
【0531】
【0532】
以上のように電子移動度を算出することが可能である。なお、詳しい測定方法に関しては、Takayuki Okachi 他 ”Japanese Journal of Applied Physics” Vol. 47, No. 12, 2008, pp. 8965-8972を参照することができる。
【符号の説明】
【0533】
C1 容量
C2 容量
G1 配線
G2 配線
L1 最短距離
L2 最短距離
L3 厚さ
L4 和
M1 トランジスタ
M2 トランジスタ
M3 トランジスタ
M4 トランジスタ
M5 トランジスタ
M6 トランジスタ
M7 トランジスタ
OUT1 配線
OUT2 配線
PIX1 画素回路
PIX2 画素回路
V0 配線
V1 配線
V2 配線
V3 配線
V4 配線
V5 配線
10 表示装置
10A 表示装置
10B 表示装置
10C 表示装置
10D 表示装置
10E 表示装置
10F 表示装置
10G 表示装置
10H 表示装置
10J 表示装置
10K 表示装置
10L 表示装置
10M 表示装置
10N 表示装置
10P 表示装置
10Q 表示装置
21 発光
21B 光
21G 光
21R 光
22 光
23 光
23a 迷光
23b 迷光
23c 迷光
23d 迷光
24 反射光
41 トランジスタ
42 トランジスタ
42B トランジスタ
42G トランジスタ
42R トランジスタ
50A 表示装置
50B 表示装置
51 基板
52 指
53 受光デバイスを有する層
55 トランジスタを有する層
57 発光デバイスを有する層
59 基板
100A 表示装置
100B 表示装置
100C 表示装置
101 陽極
102 陰極
103 EL層
103a EL層
103b EL層
104 電荷発生層
110 受光デバイス
112 共通層
113 発光層
114 共通層
115 共通電極
116 保護層
116a 無機絶縁層
116b 有機絶縁層
116c 無機絶縁層
121 正孔注入層
122 正孔輸送層
122a 正孔輸送層
122b 正孔輸送層
123 発光層
123-1 発光領域
124 電子輸送層
124-1 領域
124a 電子輸送層
124b 電子輸送層
125 電子注入層
142 接着層
143 空間
146 レンズアレイ
149 レンズ
151 基板
152 基板
153 基板
154 基板
155 接着層
156 接着層
157 絶縁層
158 遮光層
159 樹脂層
159p 開口
160 空隙
162 表示部
164 回路
165 配線
166 導電層
167 導電層
168 導電層
169B 導電層
169G 導電層
169R 導電層
172 FPC
173 IC
181 画素電極
182 バッファ層
183 活性層
184 バッファ層
190 発光デバイス
190B 発光デバイス
190G 発光デバイス
190R 発光デバイス
191 画素電極
191B 画素電極
191G 画素電極
191R 画素電極
192 バッファ層
193 発光層
193B 発光層
193G 発光層
193R 発光層
194 バッファ層
197 光学調整層
197B 光学調整層
197G 光学調整層
201 トランジスタ
202 トランジスタ
203 トランジスタ
204 接続部
205 トランジスタ
206 トランジスタ
207 トランジスタ
208 トランジスタ
209 トランジスタ
210 トランジスタ
211 絶縁層
212 絶縁層
213 絶縁層
214 絶縁層
214a 絶縁層
214b 絶縁層
215 絶縁層
216 隔壁
217 隔壁
219a 遮光層
219b スペーサ
219c 側壁
220 間隙
221 導電層
222a 導電層
222b 導電層
223 導電層
225 絶縁層
228 領域
230 領域
231 半導体層
231i チャネル形成領域
231n 低抵抗領域
242 接続層
901 電極
902 電極
910 第1の層
911 第2の層
912 第3の層
6500 電子機器
6501 筐体
6502 表示部
6503 電源ボタン
6504 ボタン
6505 スピーカ
6506 マイク
6507 カメラ
6508 光源
6510 保護部材
6511 表示パネル
6512 光学部材
6513 タッチセンサパネル
6515 FPC
6516 IC
6517 プリント基板
6518 バッテリ
7000 表示部
7100 テレビジョン装置
7101 筐体
7103 スタンド
7111 リモコン操作機
7200 ノート型パーソナルコンピュータ
7211 筐体
7212 キーボード
7213 ポインティングデバイス
7214 外部接続ポート
7300 デジタルサイネージ
7301 筐体
7303 スピーカ
7311 情報端末機
7400 デジタルサイネージ
7401 柱
7411 情報端末機
9000 筐体
9001 表示部
9003 スピーカ
9005 操作キー
9006 接続端子
9007 センサ
9008 マイクロフォン
9050 アイコン
9051 情報
9052 情報
9053 情報
9054 情報
9055 ヒンジ
9101 携帯情報端末
9102 携帯情報端末
9200 携帯情報端末
9201 携帯情報端末