(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-11-06
(45)【発行日】2024-11-14
(54)【発明の名称】容量型加速度計の閉ループ動作の方法、および容量型加速度計
(51)【国際特許分類】
G01P 15/13 20060101AFI20241107BHJP
G01P 15/125 20060101ALI20241107BHJP
【FI】
G01P15/13 B
G01P15/125 V
(21)【出願番号】P 2021015416
(22)【出願日】2021-02-03
【審査請求日】2023-08-04
(32)【優先日】2020-02-07
(33)【優先権主張国・地域又は機関】EP
(73)【特許権者】
【識別番号】508296554
【氏名又は名称】アトランティック・イナーシャル・システムズ・リミテッド
【氏名又は名称原語表記】Atlantic Inertial Systems Limited
【住所又は居所原語表記】Clittaford Road,Southway,Plymouth,Devon PL6 6DE,United Kingdom
(74)【代理人】
【識別番号】100086232
【氏名又は名称】小林 博通
(74)【代理人】
【識別番号】100092613
【氏名又は名称】富岡 潔
(72)【発明者】
【氏名】マルヴァーン,アラン
(72)【発明者】
【氏名】フェル,クリストファー ポール
【審査官】大森 努
(56)【参考文献】
【文献】特表2017-518518(JP,A)
【文献】特表2017-523396(JP,A)
【文献】特開平03-293565(JP,A)
【文献】特開平08-292206(JP,A)
【文献】特開2015-203604(JP,A)
【文献】米国特許出願公開第2016/0341758(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01P 15/00-15/18
G01C 19/56-19/5783
H01L 29/84
B81B 1/00-7/04
B81C 1/00-99/00
(57)【特許請求の範囲】
【請求項1】
容量型加速度計の閉ループ動作方法であって、前記容量型加速度計が、
印加加速度に応答して検知軸に沿って移動可能なプルーフマスと、
前記検知軸に沿って前記プルーフマスの両側に対称的に配置された第1及び第2の固定容量電極であって、ゼロの印加加速度下で前記第1及び第2の固定容量電極のそれぞれと前記プルーフマスとの間に間隙が画定される、前記第1及び第2の固定容量電極とを含み、
前記方法が、
閾加速度値に基づいて大きさV
BのDC電圧を前記プルーフマスに印加することと、
第1の駆動信号V
1を前記第1の固定容量電極に、第2の駆動信号V
2を前記第2の固定容量電極に印加することであって、前記第1及び第2の駆動信号が、それぞれ、ゼロと最大値の間で振幅が変化する周期的波形を有する、前記印加することと、
印加加速度に応答して前記プルーフマスの変位を検知することと、
前記印加加速度が前記閾加速度値よりも大きいかどうかを判定することと、
前記印加加速度が前記閾加速度値よりも大きくないと判定したことに応答して、前記印加加速度の慣性力の釣り合いをとり、前記プルーフマスを中立位置に維持するために前記プルーフマスに対して正味の静電復元力を提供するようにパルス幅変調を可変のマーク/スペース比で前記第1及び第2の駆動信号V
1、V
2に適用することと、
前記印加加速度が前記閾加速度値よりも大きいと判定したことに応答して、パルス幅変調を一定のマーク/スペース比で前記第1及び第2の駆動信号V
1、V
2に適用し、前記印加加速度の前記慣性力の釣り合いをとり、前記プルーフマスを中立位置に維持するために前記プルーフマスに対して正味の静電復元力を提供するように前記プルーフマスに印加された前記DC電圧の前記大きさV
Bを変化させることと、
を含む、前記方法。
【請求項2】
前記閾加速度値より下の印加加速度値に対して前記プルーフマスに印加される前記DC電圧の前記大きさV
Bが、前記第1及び第2の駆動信号V
1、V
2の前記振幅の前記最大値の約半分となるように選定される、請求項1に記載の方法。
【請求項3】
前記プルーフマスに印加される前記DC電圧の前記大きさV
Bを変化させることが、βによって表された電圧オフセットを印加することであって、β=β
0が、前記閾加速度値より下の印加加速度に対して一定であり、βが、前記閾加速度値より上の印加加速度に対して印加加速度に関して線形に増加する、前記印加することを含む、請求項1または2に記載の方法。
【請求項4】
βが、ゼロまたは前記第1及び第2の駆動信号V
1、V
2の前記振幅の前記最大値に等しい前記大きさV
Bを設定することに対応する±1の上限まで印加加速度に関して線形に増加する、請求項3に記載の方法。
【請求項5】
βが、前記印加加速度を決定することと、
前記印加加速度と前記閾加速度値との比を算出して、前記閾加速度値より上の前記印加加速度に関して線形に増加するスケールファクタXを定めることと、
βの結果の値を与えるために前記スケールファクタXを前記定数β
0に適用することと、によって決定される、請求項3または4に記載の方法。
【請求項6】
前記スケールファクタXの前記値が1以上の値に制限される、請求項5に記載の方法。
【請求項7】
βが、
前記マーク/スペース比に関連したパラメータα
Dを決定することと、
前記α
Dの絶対値から閾値α
Thを引くことと、
前記閾加速度値より上で、|α
D|-α
Th
の値をゼロにするようにβ
の値を増加または減少させることと、によって決定される、請求項3または4に記載の方法。
【請求項8】
前記閾加速度値が、1gと5gの間の大きさを有するように選択さ
れる、請求項1~7のいずれかに記載の方法。
【請求項9】
前記印加加速度を示す信号を出力することをさらに含む、請求項1~8のいずれかに記載の方法。
【請求項10】
前記容量型加速度計がシリコンMEMS構造を含み、及び/または前記プルーフマスが実質的に平面である、請求項1~9のいずれかに記載の方法。
【請求項11】
前記プルーフマスが、印加加速度に応答して前記検知軸に沿った平面内で直線的に移動可能となるように可撓性支持脚によって固定基板に取り付けられ、前記第1及び第2の固定容量電極が、前記固定基板において同一平面内に形成される、請求項1~10のいずれかに記載の方法。
【請求項12】
前記プルーフマスが、前記検知軸と実質的に垂直であり、かつ前記検知軸に沿って離間された、前記プルーフマスから延在する第1及び第2の組の可動容量電極指を含み、
前記第1及び第2の固定容量電極が、それぞれ、前記検知軸と実質的に垂直に延在し、かつ前記検知軸に沿って離間された第1及び第2の組の固定容量電極指を含み、
前記第1の組の固定容量電極指が、隣接する固定容量電極指の間の中線から前記検知軸に沿った一方向に第1のオフセットで前記第1の組の可動容量電極指と噛み合うように配置され、前記第2の組の固定容量電極指が、隣接する固定容量電極指の間の中線から前記検知軸に沿った逆方向に第2のオフセットで前記第2の組の可動容量電極指と噛み合うように配置される、請求項1~11のいずれかに記載の方法。
【請求項13】
印加加速度に応答して検知軸に沿って移動可能なプルーフマスと、
前記検知軸に沿って前記プルーフマスの両側に対称的に配置された第1及び第2の固定容量電極であって、ゼロの印加加速度下で前記第1及び第2の固定容量電極のそれぞれと前記プルーフマスとの間に間隙が画定される、前記第1及び第2の固定容量電極と、
閾加速度値に基づいて大きさV
BのDC電圧を前記プルーフマスに印加するように配置されたDCバイアス素子と、
第1の駆動信号V
1を前記第1の固定容量電極に、第2の駆動信号V
2を前記第2の固定容量電極に印加するように配置されたパルス幅変調信号発生器であって、前記第1及び第2の駆動信号が、それぞれ、ゼロと最大値の間で振幅が変化する周期的波形を有する、前記パルス幅変調信号発生器と、
前記プルーフマスの変位から得られた信号を検出し、前記印加加速度が閾加速度値よりも大きくないとき、前記印加加速度の慣性力の釣り合いをとり、前記プルーフマスを中立位置に維持するために前記プルーフマスに対して正味の静電復元力を提供するように可変のマーク:スペース比で前記第1及び第2の駆動信号V
1、V
2を印加するように前記パルス幅変調信号発生器を制御するように配置された第1の閉ループ回路と、
前記マーク:スペース比を一定に保ち、前記印加加速度が閾加速度値よりも大きいとき、前記印加加速度の前記慣性力の釣り合いをとり、前記プルーフマスを中立位置に維持するために前記プルーフマスに対して正味の静電復元力を提供するように前記DCバイアス素子によって前記プルーフマスに印加される前記DC電圧の前記大きさV
Bを変化させるように配置された第2の閉ループ回路と、
を含む、容量型加速度計。
【請求項14】
前記第2の閉ループ回路が、βによって表された電圧オフセットを印加することによって前記プルーフマスに印加される前記DC電圧の前記大きさV
Bを変化させるように配置され、β=β
0が、前記閾加速度値より下の印加加速度に対して一定であり、βが、前記閾加速度値より上の印加加速度に対して印加加速度に関して線形に増加する、請求項13に記載の容量型加速度計。
【請求項15】
シリコンMEMS構造を含み、及び/または
前記プルーフマスが、印加加速度に応答して前記検知軸に沿った平面内で直線的に移動可能となるように可撓性支持脚によって固定基板に取り付けられ、前記第1及び第2の固定容量電極が、前記固定基板において同一平面内に形成され、及び/または
前記プルーフマスが実質的に平面であり、及び/または
前記プルーフマスが、前記検知軸と実質的に垂直であり、かつ前記検知軸に沿って離間された、前記プルーフマスから延在する第1及び第2の組の可動容量電極指を含み、
前記第1及び第2の固定容量電極が、それぞれ、前記検知軸と実質的に垂直に延在し、かつ前記検知軸に沿って離間された第1及び第2の組の固定容量電極指を含み、
前記第1の組の固定容量電極指が、隣接する固定容量電極指の間の中線から前記検知軸に沿った一方向に第1のオフセットで前記第1の組の可動容量電極指と噛み合うように配置され、前記第2の組の固定容量電極指が、隣接する固定容量電極指の間の中線から前記検知軸に沿った逆方向に第2のオフセットで前記第2の組の可動容量電極指と噛み合うように配置される、請求項13~14のいずれかに記載の容量型加速度計。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、容量型加速度計及びその制御方式に関し、特に、主として広範な加速度レンジにわたる、容量型加速度計の閉ループ動作のための方法に関する。
【背景技術】
【0002】
加速度計は、動き及び/または振動による加速力を測定するために広く使用されている電気機械デバイスである。容量型加速度計は、地震検知、振動検知、慣性検知及び傾斜検知を含む用途において利用され得る。容量型加速度計は、通常、微小電気機械システム(MEMS)として実装され、シリコンなどの半導体材料から製造され得る。容量型加速度計のための通常のMEMS検知構造は、支持体に移動可能に取り付けられたプルーフマスを含み、プルーフマスから延在する一組の電極指が、1つ以上の組の固定電極指と互いに噛み合って差動コンデンサを形成するようになっている。検知構造の電極は、好適な駆動及びピックオフ電子回路に接続される。
【0003】
開ループ構成において、電子回路は、正弦波または矩形波信号であり得る任意の適切な波形を用いて固定電極指を駆動するように配置されており、プルーフマスが加速度を受けて移動すると、ピックオフ電圧信号が出力において出現するようになっている。WO 2004/076340は、開ループ加速度計の例を提供する。開ループ構成では、プルーフマス上で検出されたAC信号を使用して、印加加速度を示す信号を発生させることができる。単一の固定電極からのプルーフマス上の検出信号の振幅は、V/d2に比例して変化する。ここで、Vは電極とプルーフマスとの間の差動電圧であり、dは間隙のサイズである。したがって、信号レベルは、間隙に関して二次的に変化し、間隙は、印加加速度に関して線形に変化する。これは、非線形のスケールファクタを与える。高性能を達成するためには、このスケールファクタを後で修正する必要がある。振動整流誤差は、非線形の信号応答のために大きくなり得る。また、小さい間隙サイズ(通常、数ミクロン)は、動き及びしたがってデバイスの動作上のダイナミックレンジを制限する。開ループ加速度計は、帯域幅、線形性及びダイナミックレンジの点で、制限された性能を有し得る。
【0004】
開ループ動作のために設計された加速度検知構造は、可変の静電力を電極に提供して力の釣り合いを達成するために駆動電子回路を使用することにより、閉ループ構成においても使用することができる。閉ループモードにおいて、プルーフマスは、静電力を印加することによって固定位置に常時維持される。次に、印加力によって出力が与えられる。US7267006は、駆動信号のパルス幅変調(PWM)を使用した閉ループ電子制御方式の例を提供する。このような閉ループ構成において、電子回路は、同相及び逆相のAC矩形波電圧信号を用いて固定電極指の対を駆動するように配置される。駆動信号は、ゼロと最大値V
refの間で振幅が変化する波形を有する。V
refは、通常、70gのダイナミックレンジを達成するのに必要とされる力を与えるためには、0Vにバイアスされたプルーフマスに関して30Vである。PWM駆動方式のマーク:スペース比は、プルーフマス及びしたがってフィードバック力に関して各駆動信号の平均DC電圧
【0005】
を変化させるために、印加加速度に応じて調整することができる。したがって、マーク:スペース比は、印加加速度レベルに関して線形に変化する出力信号を発生させるために使用することができる。この設計により、高ダイナミックレンジ、良好な線形性、高帯域及び低い振動整流誤差が与えられることが実証されている。
【0006】
多くの容量型センサの性能を劣化させる可能性がある既知の課題は、DCオフセット電圧の存在下で発生する可能性がある誘電体帯電である。この影響は、電場勾配の存在下での荷電種(電子及びイオン)のマイグレーションにより、電極板面上の薄い誘電体層が帯電することを含む。固定電極と可動電極との間の差動電圧によって高い場の勾配が存在する。これは、US7267006などに記載された閉ループ型加速度計の場合に特に大きい。この種類のデバイスのためのプルーフマス及び電極構造は、通常、深堀りイオンエッチング技術を使用したバルク結晶シリコンから製作される。このような技術は、通常、シリコン表面がエッチングによって露出された後かつデバイスを封止する前に自然に成長する電極表面上の自然酸化物の薄い表面層を生成する。シリコンプルーフマス及び電極構造をカプセル化する上部及び下部のガラスウェーハ層の陽極ボンディングにより、ナトリウム及びリチウムなどの荷電種が存在する。電極上の誘電体表面層にこれらの電荷が蓄積することは、電圧V
refの一部が誘電体層にわたって低下し、間隙dの両端の実効平均電圧
【0007】
が変化することを意味する。したがって、これは、トランスデューサ利得において対応する変化を生じさせる原因となり、これによってデバイスの性能が悪影響を受ける。
【0008】
誘電体帯電は、一定の動作条件下でバイアス及びスケールファクタの遅いシフトを生じさせる原因となることが知られている。電荷マイグレーションが遅いという性質は、電荷が高周波AC電圧変調には応答しないが、固定電圧勾配の存在下でマイグレーションすることを意味する。これらの影響は、通常、イオン移動度が増加する高温でより急速に発生し、時間と共に定常状態に達する傾向がある。しかしながら、一旦電圧が除去されると電荷は消失し、バイアス及びスケールファクタのシフトは、一旦デバイスがオフに切り替えられると当初の開始レベルに向けて戻るように緩和されることが示されている。しかしながら、その後デバイスが再度パワーオンされると、その影響が再発する。
【0009】
出願人の同時係属出願(124468GB01)は、修正されたAC電圧波形を利用して電荷マイグレーションを促す電圧勾配を排除することにより、US7267006に記載された問題となるデバイスのDC電圧オフセットを除去する方法について記載している。しかしながら、この手法は、プルーフマスと電極との間の差動電圧がVrefの所与の値に対して減少するため、デバイスの加速度レンジを大幅に減少させる可能性がある。また、修正された波形は、通常、実装するのに時間及びコストがかかり得るASICの形態である、制御電子回路の大幅な変更を必要とする。
【発明の概要】
【発明が解決しようとする課題】
【0010】
本開示の目的は、上記で概説した欠点の1つ以上を克服することである。
【課題を解決するための手段】
【0011】
本開示の第1の態様によれば、容量型加速度計の閉ループ動作のための方法が提供される。容量型加速度計は、印加加速度に応答して検知軸に沿って移動可能なプルーフマスと、
検知軸に沿ってプルーフマスの両側に対称的に配置された第1及び第2の固定容量電極であって、ゼロの印加加速度下で第1及び第2の固定容量電極のそれぞれとプルーフマスとの間に間隙が画定される、第1及び第2の固定容量電極とを含み、
方法は、
閾加速度値に基づいて大きさVBのDC電圧をプルーフマスに印加することと、
第1の駆動信号V1を第1の固定容量電極に、第2の駆動信号V2を第2の固定容量電極に印加することであって、第1及び第2の駆動信号が、それぞれ、ゼロと最大値の間で振幅が変化する周期的波形を有する、印加することと、
印加加速度に応答してプルーフマスの変位を検知することと、
印加加速度が閾加速度値よりも大きいかどうかを判定することと、
印加加速度が閾加速度値よりも大きくないと判定したことに応答して、印加加速度の慣性力の釣り合いをとり、プルーフマスを中立位置に維持するためにプルーフマスに対して正味の静電復元力を提供するようにパルス幅変調を可変のマーク/スペース比で第1及び第2の駆動信号V1、V2に適用することと、
印加加速度が閾加速度値よりも大きいと判定したことに応答して、パルス幅変調を一定のマーク/スペース比で第1及び第2の駆動信号V1、V2に適用し、印加加速度の慣性力の釣り合いをとり、プルーフマスを中立位置に維持するためにプルーフマスに対して正味の静電復元力を提供するようにプルーフマスに印加されたDC電圧の大きさVBを変化させることとを含む。
【0012】
本明細書において開示されるような方法は、高gレンジにおける動作と既存の制御電子回路との互換性との両方を可能にしつつ誘電体帯電の影響を実質的に減少させる容量型加速度計の最適化された動作を提供する、修正された閉ループ方式を提供する。
【0013】
以下でさらに説明するように、大きさVBのDC電圧をプルーフマスに印加することにより、電極のそれぞれとプルーフマスとの間の平均電圧オフセットを、閾値より下の加速度レベルに対して実質的に減少させる。本明細書において開示されるような方法が適用された加速度計(慣性測定ユニット内で使用されるものなど)は、通常、高加速度レベルをほとんど受けない。
【0014】
電極とプルーフマスとの間の平均電圧オフセットを減少させることにより、閾加速度値より下で動作するときに電荷マイグレーションによって引き起こされる誤差に対するこのような加速度計の感度が減少し、先行技術において通常使用される種類の制御電子回路を実質的に修正する必要がない。本明細書において開示されるような方法が適用される加速度計のプルーフマスに印加されるDC電圧の大きさVBを変化させることにより、高加速度レンジ能力を維持することができる。
【0015】
少なくともいくつかの例において、第1及び第2の駆動信号の周期的波形は、実質的に矩形波であってもよく、他の駆動信号がゼロであるときに最大値にステッピングする波形シーケンスを含む。他の例において、第1及び第2の駆動信号は、このようなシーケンスを有する任意の他の好適な波形、例えば、矩形波ではなく三角波または台形波を含んでもよい。他の例において、第1及び第2の駆動信号は、正弦波ベースの波形を含んでもよい。
【0016】
少なくともいくつかの例において、閾加速度値より下の印加加速度値に対してプルーフマスに印加されるDC電圧の大きさVBは、駆動信号V1、V2の振幅の最大値の約半分となるように選定される。
【0017】
1つ以上の例において、追加的または代替的に、プルーフマスに印加されるDC電圧の大きさVBを変化させることは、βによって表された電圧オフセットを印加することであって、β=β0が、閾加速度値より下の印加加速度に対して一定であり、βが、閾加速度値より上の印加加速度に対して印加加速度に関して線形に増加する、印加することを含む。したがって、βの値がβ0以上の値に制限されることが理解されよう。
【0018】
少なくともいくつかの例において、定数β0は、大きさVBが第1及び第2の駆動信号号V1、V2の振幅の最大値の約半分となるように選定される。
【0019】
少なくともいくつかの例において、追加的または代替的に、βは、ゼロまたは第1及び第2の駆動信号V1、V2の振幅の最大値に等しい大きさVBを設定することに対応する±1の上限まで印加加速度に関して線形に増加する。
【0020】
第1の組の例において、βは、印加加速度を決定することと、印加加速度と閾加速度値との比を算出して、閾加速度値より上の印加加速度に関して線形に増加するスケールファクタXを定めることと、βの結果値を与えるためにスケールファクタXを定数β0に適用することとによって決定される。このような例において、スケールファクタXの値は、1以上の値に制限される。
【0021】
第2の組の例において、βは、マーク/スペース比に関連したパラメータαDを決定することと、αDの絶対値から閾値αThを引くことと、閾加速度値より上で、|αD|-αThの値をゼロにするようにβの値を増加または減少させることとによって決定される。
【0022】
1つ以上の例において、追加的または代替的に、閾加速度値は、1gと5gの間の大きさを有するように選択される。少なくともいくつかの例において、閾加速度値は、約1.5gの大きさを有するように選択される。
【0023】
1つ以上の例において、追加的または代替的に、方法は、印加加速度を示す信号を出力することをさらに含む。
【0024】
1つ以上の例において、追加的または代替的に、容量型加速度計はシリコンMEMS構造を含む。
【0025】
1つ以上の例において、追加的または代替的に、プルーフマスは実質的に平面である。
【0026】
1つ以上の例において、追加的または代替的に、プルーフマスは、印加加速度に応答して検知軸に沿った平面内で直線的に移動可能となるように可撓性支持脚によって固定基板に取り付けられ、第1及び第2の固定容量電極は、固定基板において同一平面内に形成される。
【0027】
1つ以上の例において、追加的または代替的に、プルーフマスは、検知軸と実質的に垂直であり、かつ検知軸に沿って離間された、プルーフマスから延在する第1及び第2の組の可動容量電極指を含み、第1及び第2の固定容量電極は、それぞれ、検知軸と実質的に垂直に延在し、かつ検知軸に沿って離間された第1及び第2の組の固定容量電極指を含み、第1の組の固定容量電極指は、隣接する固定容量電極指の間の中線から検知軸に沿った一方向に第1のオフセットで第1の組の可動容量電極指と噛み合うように配置され、第2の組の固定容量電極指は、隣接する固定容量電極指の間の中線から検知軸に沿った逆方向に第2のオフセットで第2の組の可動容量電極指と噛み合うように配置される。
【0028】
本開示の第2の態様によれば、印加加速度に応答して検知軸に沿って移動可能なプルーフマスと、
検知軸に沿ってプルーフマスの両側に対称的に配置された第1及び第2の固定容量電極であって、ゼロの印加加速度下で第1及び第2の固定容量電極のそれぞれとプルーフマスとの間に間隙が画定される、第1及び第2の固定容量電極と、
閾加速度値に基づいて大きさVBのDC電圧をプルーフマスに印加するように配置されたDCバイアス素子と、
第1の駆動信号V1を第1の固定容量電極に、第2の駆動信号V2を第2の固定容量電極に印加するように配置されたパルス幅変調信号発生器であって、第1及び第2の駆動信号が、それぞれ、ゼロと最大値の間で振幅が変化する周期的波形を有する、パルス幅変調信号発生器と、
プルーフマスの変位から得られた信号を検出し、印加加速度が閾加速度値よりも大きくないとき、印加加速度の慣性力の釣り合いをとり、プルーフマスを中立位置に維持するためにプルーフマスに対して正味の静電復元力を提供するように可変のマーク:スペース比で第1及び第2の駆動信号V1、V2を印加するようにパルス幅変調信号発生器を制御するように配置された第1の閉ループ回路と、
マーク:スペース比を一定に保ち、印加加速度が閾加速度値よりも大きいとき、印加加速度の慣性力の釣り合いをとり、プルーフマスを中立位置に維持するためにプルーフマスに対して正味の静電復元力を提供するようにDCバイアス素子によってプルーフマスに印加されるDC電圧の大きさVBを変化させるように配置された第2の閉ループ回路とを含む、容量型加速度計が提供される。
【0029】
1つ以上の例において、第2の閉ループ回路は、βによって表された電圧オフセットを印加することによってプルーフマスに印加されるDC電圧の大きさVBを変化させるように配置され、β=β0は、閾加速度値より下の印加加速度に対して一定であり、βは、閾加速度値より上の印加加速度に対して印加加速度に関して線形に増加する。上述したように、βの値はβ0以上の値に制限される。
少なくともいくつかの例において、定数β0は、大きさVBが第1及び第2の駆動信号号V1、V2の振幅の最大値の約半分となるように選定される。
【0030】
少なくともいくつかの例において、追加的または代替的に、βは、ゼロまたは第1及び第2の駆動信号V1、V2の振幅の最大値に等しい大きさVBを設定することに対応する±1の上限まで印加加速度に関して線形に増加する。
【0031】
第1の組の例において、βは、印加加速度を決定することと、印加加速度と閾加速度値との比を算出して、閾加速度値より上の印加加速度に関して線形に増加するスケールファクタXを定めることと、βの結果値を与えるためにスケールファクタXを定数β0に適用することとによって決定される。このような例において、スケールファクタXの値は、1以上の値に制限される。
【0032】
第2の組の例において、βは、マーク/スペース比に関連したパラメータαDを決定することと、αDの絶対値から閾値αThを引くことと、閾加速度値より上で、|αD|-αThの値をゼロにするようにβの値を増加または減少させることとによって決定される。
【0033】
1つ以上の例において、追加的または代替的に、閾加速度値は、1gと5gの間の大きさを有するように選択される。少なくともいくつかの例において、閾加速度値は、約1.5gの大きさを有するように選択される。
【0034】
1つ以上の例において、追加的または代替的に、容量型加速度計はシリコンMEMS構造を含む。
【0035】
1つ以上の例において、追加的または代替的に、プルーフマスは、印加加速度に応答して検知軸に沿った平面内で直線的に移動可能となるように可撓性支持脚によって固定基板に取り付けられ、第1及び第2の固定容量電極は、固定基板において同一平面内に形成される。
【0036】
1つ以上の例において、追加的または代替的に、プルーフマスは実質的に平面である。
【0037】
1つ以上の例において、追加的または代替的に、プルーフマスは、検知軸と実質的に垂直であり、かつ検知軸に沿って離間された、プルーフマスから延在する第1及び第2の組の可動容量電極指を含み、第1及び第2の固定容量電極は、それぞれ、検知軸と実質的に垂直に延在し、かつ検知軸に沿って離間された第1及び第2の組の固定容量電極指を含み、第1の組の固定容量電極指は、隣接する固定容量電極指の間の中線から検知軸に沿った一方向に第1のオフセットで第1の組の可動容量電極指と噛み合うように配置され、第2の組の固定容量電極指は、隣接する固定容量電極指の間の中線から検知軸に沿った逆方向に第2のオフセットで第2の組の可動容量電極指と噛み合うように配置される。
【0038】
以下、添付図面を参照して1つ以上の非限定的な例について説明する。
【図面の簡単な説明】
【0039】
【
図1】先行技術による閉ループ容量型加速度計のための既知の電子制御方式を模式的に示す。
【
図2】先行技術による、ゼロの印加加速度条件下で50:50のマーク:スペース比の場合の、電極1及び2に対する印加電圧波形及び結果として生じた静電力を示す。
【
図3】先行技術による、正の印加加速度条件下で25:75のマーク:スペース比の場合の、電極1及び2に対する印加電圧波形及び結果として生じた静電力を示す。
【
図4】本開示の電極1及び電極2の波形に対するパラメータα及びβの定義を示す。
【
図5】本開示の場合の印加加速度に応じたパラメータα及びβの変動を示す。
【
図6】本開示による閉ループ容量型加速度計のための電子制御方式の第1の実施形態を示す。
【
図7】本開示による閉ループ容量型加速度計のための電子制御方式の可変Gループ部の第1の実施形態を示す。
【
図8】本開示による閉ループ容量型加速度計のための電子制御方式の第2の実施形態を示す。
【
図9】本開示による閉ループ容量型加速度計のための電子制御方式の可変Gループ部の第2の実施形態を示す。
【
図10】a及びbは、本開示の例及び先行技術による、ゼロの印加加速度条件下で50:50のマーク:スペース比の場合の、電極1及び2に対する印加電圧波形の比較を示す。
【
図11】a及びbは、本開示の例及び先行技術による、ゼロの印加加速度条件下で50:50のマーク:スペース比の場合の、電極1及び2に対する結果として生じた静電力の比較を示す。
【
図12】本開示の例による、7gの印加加速度条件下で10:90のマーク:スペース比の場合の、電極1及び2に対する印加電圧波形及び結果として生じた静電力を示す。
【
図13】本開示の例による、44gの印加加速度条件下で10:90のマーク:スペース比の場合の、電極1及び2に対する印加電圧波形及び結果として生じた静電力を示す。
【
図14】先行技術による、44gの印加加速度条件下で25:75のマーク:スペース比の場合の、電極1及び2に対する印加電圧波形及び結果として生じた静電力を示す。
【
図15】容量型加速度計内の例示的な電極配置の模式的表現である。
【発明を実施するための形態】
【0040】
図1において概略的に見られるのは、US7267006によって例示された先行技術による閉ループ容量型加速度計のための既知の電子制御方式であり、その内容は、ここで参照によって組み込まれる。パルス幅変調(PWM)信号発生器100は、一定の固定基準電圧V
refを受け、相補的な第1及び第2の駆動電圧V
1及びV
2を第1の電極101及び第2の電極102に供給する。電極101及び102は、通常、当技術分野において周知であるように、プルーフマス103の可動容量電極指と噛み合う第1及び第2の組の固定容量電極指の形態をとる。
【0041】
前置増幅器(プリアンプ)105は、プルーフマス103における出力信号をサンプリングするように配置される。
図1に示されているように、プリアンプ105は、プルーフマス103からの入力が「仮想接地」であるように構成される。ここで「接地」の電圧は0Vであり、これは、抵抗器などのDCバイアス素子104によって達成される。プリアンプ105は、次に、プルーフマスのDCバイアス電圧をDCバイアス素子104によって供給された電圧(例えば、0V)と強制的に同一にし、その一方で、プルーフマス103の移動に応答してプリアンプ105によって周期的信号がピックアップされる。これらの周期的なピックオフ信号は、次に、復調器106によって復調され、制御ループ110を使用した閉ループ動作でパルス幅変調(PWM)信号発生器100にフィードバックされる前にループフィルタ107を通過する。加速度が加速度計に印加されるとき、プルーフマス103の変位によって発生した信号は、PWM駆動信号V
1、V
2のマーク:スペース比を調整する制御ループ110内にフィードバックされる。これは、固定電極101、102とプルーフマス103との間の力を差動的に変化させて、中立位置に戻るようにプルーフマス103を駆動する。印加加速度を示す信号を出力するために、マーク:スペース比は、信号発生器100からブロック108で算出されてもよく、測定された加速度を出力するためにブロック109でフィルタ処理されてもよい。
【0042】
図2は、同様に先行技術から得られたものであり、先行技術による固定電極101及び102に印加された第1及び第2の駆動信号V
1、V
2、ならびに各電極に対する合力を示す。
図2は、第1及び第2の駆動信号V
1、V
2が、ゼロと最大値V
refの間で振幅が変化する標準的な矩形波を有することを示す。V
refは、通常、70gのダイナミックレンジを達成するために必要とされる力を与えるためには30Vである。ゼロの印加加速度の場合、プルーフマス電極103と2つの固定電極101、102のそれぞれとの間の間隙dが名目上等しいとき、波形は、50:50のマーク:スペース比を有する矩形波からなる。各電極101、102について、合力Fは、以下によって与えられる。
【0043】
式中、Cは間隙容量であり、Vは電圧である。50:50のマーク:スペース比の波形の平均電圧レベル
【0044】
は、点線によって示されているようにV
ref/2に等しい。対応する平均力は、したがって、同様にピーク値の半分となり、この平均力も
図2の点線として示される。固定電極101、102がプルーフマス103の両側に位置するため、力は逆方向に作用し、したがって、プルーフマス103に対して作用する正味の力はゼロとなる。これらの波形は、臨界的に制動されるプルーフマス103の機械的共振周波数と比較して非常に高い周波数(例えば、f
mod~100kHz)で便宜的に変調され、したがってこの周波数で有意な動きは発生しない。
【0045】
マーク:スペース比は、0と1の間で変化する値αによって便宜的に定義されてもよく、したがって、50:50のマーク:スペース比は0.5のα値に対応する。正味の力は、以下によって与えられる。
【0046】
式中、d1及びd2は、それぞれ、電極1及び2のコンデンサの間隙を指す。25:75のマーク:スペース比の元となる、例示的な正の加速度に対する波形及び合力を
図3に示す。電極101に印加されるパルス幅が減少すると、結果として平均電圧が減少し、したがって平均力が減少するが、電極102については平均電圧及び平均力が増加する。プルーフマス103に対する平均的な正味の力は、電極101と電極102との間の差力によって与えられる。各駆動信号によって生じる個々の平均力は非線形であるが、2つが共に動作することにより、非線形性がキャンセルされ、マーク:スペース比に関して線形に変化する正味の力を生成する。
【0047】
このような先行技術の容量型加速度計では、固定電極101、102とプルーフマス103との間の平均DC電圧
【0048】
が大きいために誘電体帯電が起きる。これらの電圧レベルはまた、印加加速度レベルに応じて変化し、したがって帯電特性を変化させる。
図1の制御方式では、V
ref用に30Vの電圧レベルを印加すると、結果として固定電極101、102のそれぞれとプルーフマス103との間に15Vの
【0049】
が生じる。これにより、0gが印加されているときでもプルーフマス103上に大きい反力が発生する。平均電圧オフセットは印加gレベルに応じて変化するが、通常、いかなる実際の用途においても常時、大きいオフセットが存在する。
【0050】
【0051】
電圧が大きい(それ故、正味のフィードバック力が大きい)ことによって広範な加速度レンジを提供するという利点を有する。しかしながら、これは、電荷マイグレーションの点で不利である。電荷マイグレーションの影響は、プルーフマス103と隣接電極101、102との間の実効
【0052】
を変えることである。電荷マイグレーションが2つの電極101、102の間で均一である場合、スケールファクタのみが影響を受ける(スケールファクタはフィードバック力に比例する)が、不均一な変化によってバイアス誤差が引き起こされる。
【0053】
US7267006の設計の場合、両方の固定電極101、102に対して大きい力が常時存在する。±70gのダイナミックレンジを達成するためには、電極101、102によってプルーフマスに印加される正味の力は、マーク:スペース比が例えば90:10または10:90の限界値にある(すなわち、1つの電極に対する力の大きさが約77.8gに等しいことが必要である一方、反力が約7.8gである)ときにプルーフマス103を固定位置に維持するのに十分であることが必要である。ゼロg付近で、マーク:スペース比が50:50である場合、平均電圧及びしたがって各電極101、102に対する合力は等しくなり(
図2を参照)、約±38.9gに等しい。したがって、固定電極101、102の実効利得に小さい変化が生じると、結果として駆動力に大きい変化が生じる可能性がある。各電極101、102に対する力は
【0054】
に比例するため、合力及びしたがってバイアスは、電荷マイグレーションによって引き起こされる差動的な変化に対して大きく影響される。バイアス誤差はまた、コンデンサの間隙を差動的に変化させ得る、パッケージ化によって引き起こされる応力及び歪によって引き起こされ得る。
【0055】
電荷マイグレーションの速度及び大きさは、プルーフマス103と固定電極101、102との間の電圧勾配によって大きく影響を受ける。V
ref及びしたがって電極とプルーフマスコンデンサとにわたる間隙の平均電圧
【0056】
を減少させることで、結果として、電荷マイグレーションによって引き起こされるスケールファクタ及びバイアスの変化を減少させることができる。しかしながら、これは、正味のフィードバック力がVref
2に比例して変化するために全体加速度レンジが減少する点で非常に好ましくない。Vrefを減少させることはまた、信号レベルがVrefに比例するために信号対ノイズ性能の点で好ましくない。
【0057】
高性能加速度計は、通常、直交軸に沿って取り付けられた3つの別々の加速度計を有する慣性測定ユニット(IMU)において利用される。このような加速度計は、高い加速度レベルを測定することが可能であり得るが、それらが高い加速度または振動入力を受ける用途でも、これは、一般に比較的短い期間のみであり、IMUは、通常、動きが遙かに少ない環境下にあり、または大部分の時間は静止すらしていてもよい。静止しているとき、地球の重力ベクトルに関するIMUの向きに応じて、任意の加速度計に印加される最大gレベルは±1gとなる。
【0058】
高い加速度レンジ能力に対するこの要件は、高い力フィードバック能力を提供するためにUS7267006に記載されたデバイスのために使用された高いオフセット電圧の使用を必要とする主な要因である。加速度計が低g環境にある期間に平均バイアスオフセット電圧
【0059】
を減少させることにより、高いオフセット電圧(すなわち、電荷マイグレーション及び大きい対向電極力)の好ましくない影響を実質的に減少させることが可能になる。
【0060】
したがって、本開示の例は、ゼロg付近の加速度レベルに対して、例えば、ゼロg付近またはゼロgに比較的近い所定の絶対閾値レベルまで、電極101及び102(それぞれ)とプルーフマス103と間の平均電圧オフセット
【0061】
【0062】
の大きさを大幅に減少させるための手段を提供する。これは、Vref/2の近くにVBの値を設定することによって達成される。便宜的に、閾値は、|1|gよりも大きく、かつ|5|gよりも小さい正または負の加速度値に設定されてもよい。閾加速度値より上で、VBとVref/2の間の電圧オフセットは、加速度レベルの増加と共に最大レベルまで線形に増加する。これは、同一の全体加速度レンジ能力を維持しつつ電荷マイグレーションによって引き起こされる誤差に対するバイアス感度が減少する点でUS7267006の設計と比較して利点を提供する。したがって、これは、全体加速度レンジ能力を損うことなく出願人の同時係属出願(124468GB01)に記載された方式において同様の利点を提供する。
【0063】
便宜的に、本開示の例において利用される波形は、印加加速度レベルに基づいて調整されたVBレベルを有するUS7267006(または他の既知の力をゼロにする制御方式)の波形と同一であってもよい。これは、ASICの形態で通常実装される標準または既存の制御電子回路が、少量の追加外部回路のみの追加を除き、相当な修正を伴わずに使用され得るという重要な利点をさらに有する。VBの値を調整することは駆動利得を変化させるが、デバイスの信号対ノイズ性能を決定する信号利得は影響を受けない。その理由として、信号利得は、固定電極に印加される周期的波形におけるピークトゥピークの変動によって設定されるが、これは不変であるためである。例示的な実施態様の詳細を以下に与える。
【0064】
本開示の例によれば、電極101及び102に印加される周期的電圧波形は、
図4において模式的に示したように便宜的に表現される。マーク:スペース比は、値αによって定義され、V
BとV
ref/2の間のレシオメトリックオフセットは、β=(V
ref/2―V
B)/[V
ref/2]と定義され、これは、±1の間で変化し得る。β=1のとき、バイアス電圧オフセットV
Bは0Vとなり、β=-1のとき、V
Bは最大(=V
ref)となる。上述したように、第1及び第2の駆動信号V
1、V
2は、ゼロと最大値V
refの間で振幅が変化する周期的波形を有する。したがって、βの最大値が±1であることは、ゼロまたは第1及び第2の駆動信号V
1、V
2の振幅の最大値に等しい大きさV
Bを設定することに対応する。
【0065】
次に、プルーフマス103に関する各固定電極101、102の時間平均電圧は、以下によって与えられる。
【0066】
次に、これらの電圧の2乗に比例する発生力は、以下によって与えられる。
【0067】
次に、正味のフィードバック力は、以下によって与えられる。
【0068】
式中、βは、プルーフマス上のDC電圧の大きさVBに印加される電圧オフセットを表し、αは、マーク:スペース比に関連したパラメータである。
【0069】
フィードバック力がαとβとの両方に関して線形に変化することを理解することができる。実際には、βの初期値が設定される(=β
0)。この初期値は、必要な閾加速度値に対応し、この閾加速度値より下では、αは変化し得るが、β
0は一定のままである。この値αより上の印加加速度に対して、αは一定に保持され、βは増加する。力の2乗電圧依存性により、βの極性は、正または負のいずれかであり得、合力の符号が変化するのみであるが、βの負の値のみについては、便宜上後述する。
図5は、±70gのダイナミックレンジを有する例示的なデバイスの場合のβ(実線)及びα(破線)の変動対印加加速度を示す。ここで、β
0の値は、約|4.7|gの閾加速度値を達成するように設定されている。V
ref=30Vの場合、β
0のこの値は、V
ref/2から1Vの電圧オフセットに対応する。これは、V
B=14Vを与える。
【0070】
図1に示された先行技術の従来の電子制御方式において、プルーフマス103は0Vにバイアスされる(すなわち、β=0)。これは、マーク:スペース比のパラメータαが調整されるためにフィードバック力の最大の変動を提供する。この調整は、US7267006において記載されたように、サンプリング前に波形が安定するのに十分な時間を許容するために0.1と0.9の間のα値に制限される。
【0071】
図6は、本開示の例による電子制御方式の第1の実施態様の概略を示す。容量型加速度計は、
図1に見られたものと同一の物理構造を有し、プルーフマス103、ならびに第1及び第2の固定容量電極101、102を含む。機能ブロックの多くは、
図1に示されたUS7267006のデバイスと同一であり、ブロック700及び705~709は、
図1の各ブロック100及び105~109と等価な機能を実行する。第1の閉ループ回路713は、プルーフマス103の変位から得られた信号を検出し、可変のマーク:スペース比で第1及び第2の駆動信号V
1、V
2を印加するようにパルス幅変調信号発生器700を制御するように配置される。
図1のブロック108と同様に、
図6のブロック708は、印加加速度に応じて必要なマーク:スペース比を算出する。マーク:スペース比に関連したパラメータαは、ブロック708から出力され、第2の閉ループ回路715に入力される。閾加速度値より下で動作するとき、
図6の電子制御方式の基本機能は、
図1に示された機能と同様である。
【0072】
この閾値よりも上の動作の場合、本開示の例による電子制御方式は、第2の閉ループ回路715内に可変gレンジ(VGR)ループ711及びG算出ブロック712を追加的に含む。VGRループ711は、印加加速度レベルに基づき、βによって表された適切な電圧オフセット値を決定するために使用される。この実施態様の場合のVGRループ動作を
図7に示す。印加加速度をゼロにするのに必要とされる力フィードバックは、上記の式5で定義される。この力の大きさは、α及びβの値を使用して、G算出ブロック712によって算出される。これは、VGRループ711への入力を提供する。
VGRループ711の出力は、βの値である。これは、第2の閉ループ回路715内のDCバイアスブロック704に入力される。ブロック704は、βによって表された電圧オフセットを印加することによってプルーフマス103に印加される電圧の大きさV
Bを決定する。実際には、βは、例えば、
図4に関連して記載されたように、電圧オフセットを加味してプルーフマス103に印加される電圧の大きさV
Bを調整するためにブロック704において適切にスケール処理されてもよい。
【0073】
図7に見られるように、印加加速度G
Appの絶対値は、ブロック801において予め設定された閾値G
Thで割られる。結果値は、出力X(y軸に示される)を生成するブロック803に適用される。このブロックは、閾値より下の加速度に対して1に等しい値を設定する。Xの値は、点線によって示される閾値より上で印加加速度(x軸に示される)に関して線形に増加する。これは、Xの値が1以上の値に制限されることを意味する。ブロック805において、V
Bの閾値より下の値を設定するβ
0にXを乗じることによって出力を生成する。この出力は、次に、必要なダイナミック応答特性を提供するためにローパスフィルタ807に印加される。
図6に戻ると、修正された出力βは、DCバイアスブロック704に印加される。ここで、前置増幅器705の入力に印加する前に、βは、スケール処理され、V
Bを生成するために基準電圧レベルV
ref/2から引かれる。出力βはまた、閉ループ715内で、α値と共にG算出ブロック712に印加される。ブロック712の出力はまた、出力フィルタ709に供給される。このフィルタは、必要なダイナミック応答を伴う加速度出力を提供するためにスケール処理及びフィルタ処理を適用する。
【0074】
図8は、本開示の例による電子制御方式の代替的な実施態様の概略を示す。容量型加速度計は、
図1に見られたものと同一の物理構造を有し、プルーフマス103、ならびに第1及び第2の固定容量電極101、102を含む。機能ブロックの多くは、
図6のものと同一であり、ブロック900及び905~909は、
図6の各ブロック700及び705~709と等価な機能を実行する。この実施態様では、PWM信号発生器900を駆動するループフィルタ907の出力α
Dが存在する。α
Dの値はまた、VGRループ911及びG算出ブロック912に直接印加される。この実施態様の場合のVGRループ911の動作は、
図7に示された実施態様について記載された動作とは異なり、
図9に示される。
【0075】
図9は、代替的なVGRループ911をより詳細に示す。この実施態様において、ループフィルタの出力α
Dは、VGRループ911に直接印加される。このパラメータα
Dは、印加加速度の慣性力の釣り合いをとり、プルーフマスを中立位置に維持するためにプルーフマスに対して正味の静電復元力を提供するように必要とされるマーク/スペース比を表す。α
Dの値は、正の値と負の値の間で変化する。ここで、最大の正の値は、マーク:スペース比を0.9に設定し、最大の負の値は、マーク:スペース比を0.1に設定する。適切なスケール処理により、α
Dは、±0.4の間で変化するとみなすことができ、α
D=0は、α=0.5の値を与える(すなわち、50:50のマーク:スペース比)。VGRループ911において、α
Dはブロック1001に印加される。このブロックは、α
Th(これは、0.4に設定され得る)をα
Dの絶対値から引く。ブロック1001の出力は誤差信号である。この信号は、|α
D|が0.4よりも大きいときに正であり、|α
D|が0.4よりも小さいときに負である。この出力は、誤差を経時的に蓄積する積分器1002に印加される。このブロック1002の出力は、ブロック1003においてβの値を調整するために使用される。
図9は、ブロック1003において絶対印加gレベル(x軸)に応じたβ(y軸)の変動を示す。ここで破線は、閾加速度値(閾gレベル)を示す。βの値は、正の誤差の場合に増加し、負の誤差の場合に減少する。ここで、常時β≧β
0という制限がある。
【0076】
したがって、VGRループ911の動作は、以下のように理解されてもよい。加速度計が、(例えば、ゼロgの)静止状態において最初にオンに切り替えられる場合、印加加速度が閾値より下であるとき、βは最初β0にあり、αD=0である。閾レベルより下の任意の印加加速度に対して、VGRループ911に印加されたαDの値は、±0.4よりも小さくなり、したがって、ブロック1001の出力は、組み込まれるとき、βの値を減少をもたらす負の数となる。しかしながら、ブロック1003に適用された、β≧β0という制限は、VBがその初期値から不変であることを意味する。印加加速度が閾値を上回るとき、|αD|の値は0.4を一時的に上回る場合があり、ブロック1002の出力は正になる。次に、入力誤差がゼロに押し戻されるまで、ブロック1003においてβの値が増加する。ゼロの位置で、|αD|はその限界値0.4に戻る。印加加速度がさらに増加すると、結果としてβがさらに増加する。ここで|αD|は、一定のままである。同様に、印加加速度が実質的に減少した場合、|αD|の瞬時値は0.4よりも小さくなり、ブロック1002の出力はβの減少をもたらす。
【0077】
急な加速または減速事象の間、|αD|の値が閾加速度値より上で0.4の限界から過渡的に逸脱し得る度合は、VGR制御ループ911のダイナミック応答に依存する。これは主に、1007のループフィルタパラメータによって決定される。実際には、V1及びV2がサンプリングポイント付近で切り替わらないことを保証するために、閾加速度値より上でαDの変動が±5%よりも小さくなるように制限することが望ましい。
【0078】
図8に戻ると、α
D及びβの値は、閉ループ915内のG算出ブロック912に印加される。これは、αがここでは(α
D+0.5)に置き換えられていることを除き、
図6のブロック712と同様に動作する。G算出ブロック912は出力を算出する。この出力は、必要なダイナミック応答を伴う加速度出力を提供するために、出力フィルタ909によってスケール処理及びフィルタ処理される。
【0079】
絶対閾加速度値(すなわち、α=0.1または0.9のとき)はβ0の値によって決定される。上述した先行技術のデバイスの場合、Vref=30VかつプルーフマスバイアスVBが0Vに設定された状態で、これらのαの限界値は、結果として±70gの加速度レンジとなる。プルーフマスが、例えば、VB=13.5V(β0=0.1)にバイアスされた場合、レンジは約±7gに減少する。したがって、好適な閾加速度値は、デバイス用途の要件にしたがって選択されてもよい。通常のIMU用途では、相当の期間、加速度レベルは±1g以下である可能性があり、IMUが取り付けられたプラットフォームは、大部分の時間、静止しているか、または比較的制限された操作を受けている。この例では、|1|g付近、例えば|1.5|gに閾を設定することが可能となる。これは、約14.68VのVB(β0=0.021)に対応し、したがって、0gにおけるバイアスに対する好ましくない影響を最小にする。
【0080】
【0081】
電圧が変動するというさらなる考慮事項が存在する。印加加速度レベルが閾値まで増加した場合、αは限界値(0.1または0.9)に接近し、
【0082】
は上限に達する。これにより、電荷マイグレーションの影響が増大する。閾限界が±7gに設定されたデバイスの場合、1gの印加加速度では、結果として
【0083】
【0084】
の値がそれぞれ-0.214V及び3.214Vとなる。これらは、
図1に示された先行技術のデバイスと比較して低く、電荷マイグレーションのレベルの大幅な減少を呈する。閾が±1.5gに減少した場合、0gオフセットは、0.32Vで非常に低くなるが、1gの印加加速度の場合、
【0085】
【0086】
の値は、それぞれ-7.78V及び7.82Vに増加する。したがって、IMUが静止している期間にV
Aを制限するために、より高いレベルに閾値を設定することが望ましい。便宜的に、閾値は、レンジが±1.5gの印加加速度に対して、
【0087】
【0088】
電圧が±5Vよりも小さいレンジ内に制約されるように設定される。
【0089】
図10a及び
図10bは、本開示によるデバイス(
図10a)及びUS7267006の先行技術のデバイス(
図10b)について、0gの印加加速度に対し、電極101、102とプルーフマス103との間の差動電圧
【0090】
【0091】
の周期的波形を比較したものである。ゼロの加速度で、αの値は0.5であり、本開示によるデバイスの場合、したがって、平均電圧V
A1及びV
A2が
図10aにおいてゼロ付近(1.5V)であることを理解することができる。これは、
図10bの先行技術のデバイスの場合の電圧よりも低く一桁である。
【0092】
図11a及び
図11bは、本開示によるデバイス(
図11a)及びUS7267006の先行技術のデバイス(
図11b)について、0gの印加加速度に対し、各電極101、102で発生した静電力を比較したものである。本開示によるデバイス(
図11a)の各固定電極101、102で発生する平均力は、先行技術のデバイス(
図11b)と比較して約2分の1に減少することも理解することができる。
【0093】
図12は、本開示によるデバイスの場合の7g(α=0.1)の正の加速度閾値における対応する電圧及び力の波形を示す。平均差動電圧
【0094】
【0095】
は、それぞれ-11.625V及び14.625Vである。これは、±7gで13.8V及び16.2V(α=0.46)の同等の先行技術のデバイスの値に匹敵する。これらの電圧オフセットは、実際にはgレベルが増加するにつれて大きくなる。しかしながら、平均反力は、同等の先行技術のデバイスよりも依然として大幅に低い。
【0096】
図13は、本開示によるデバイスの場合の、閾gレベルより上の44g入力に対する電圧及び力の波形を示す。αの値は、V
B=5.645Vで0.1に固定されたままである。先行技術の場合の同等のプロットを
図14に示す。
【0097】
US7267006のデバイスのための制御電子回路は、ASICの形態で作製されている。これは、DCバイアス機能のために必要とされる回路を除き、本開示の例による閉ループ動作を実装するのに必要とされる大部分の機能を提供する。VGRブロック711、911及びG算出ブロック712、912の機能は、ASIC内の制御ソフトウェアでデジタル的に実装されてもよい。βの値は、同様に算出されてもよく、VBを生成するために、外部回路を使用してVrefに関してオフセットされる電圧を提供するためにディスクリートの外部デジタル-アナログ変換器に印加されてもよい。VBは、次に前置増幅器入力をバイアスするために使用される。
【0098】
プルーフマス103及び固定容量電極101、102は、本明細書において概略的に開示されているように容量型加速度計において任意の適切な配置を有してもよい。例えば、プルーフマスは、振子構造またはヒンジ結合された構造で移動可能であってもよい。EP0338688は、シリコンカンチレバーの先端に形成された可動プルーフマス電極及び可動電極に対向するように配置された固定電極の適用可能な例を提供する。しかしながら、いくつかの好適な例において、プルーフマスは、平面であり、第1及び第2の固定容量電極から延在する固定電極指と噛み合う可動電極指を含む。このような噛み合わされた、または櫛状の電極構造は、例えば、US6761069、US6631643またはUS7267006のいずれかにおいて開示されたように当技術分野において周知であり、これらのそれぞれの内容は、ここで参照によって組み込まれる。
【0099】
容量型加速度計1601のための例示的な電極構造を
図15において模式的に示す。これは、US7267006に記載されたものと同様である。この例において、プルーフマス1602は、実質的に平面であり、印加加速度に応答して検知軸に沿った平面において(両方向矢印によって示されるように)直線的に移動可能となるように可撓性支持脚1614によって固定基板(図示せず)に取り付けられる。可撓性支持脚1614は、プルーフマス1602の本体から延在し、固定点1616にて固定基板に固定される。
【0100】
第1及び第2の固定容量電極1604、1606は、固定基板において同一平面内に形成される。プルーフマス1602は、検知軸と実質的に垂直であり、かつ検知軸に沿って離間された、プルーフマス1602から延在する第1及び第2の組の可動容量電極指1608を含む。第1及び第2の固定容量電極1604、1606は、それぞれ、検知軸と実質的に垂直に延在し、かつ検知軸に沿って離間された第1及び第2の組の固定容量電極指1610、1612を含むことも理解され得る。第1の組の固定容量電極指1610は、隣接する固定容量電極指1610の間の中線mから検知軸に沿った一方向に第1のオフセットで第1の組の可動容量電極指1608aと噛み合うように配置され、第2の組の固定容量電極指1612は、隣接する固定容量電極指1612の間の中線mから検知軸に沿った逆方向に第2のオフセットで第2の組の可動容量電極指1608bと噛み合うように配置される。
【0101】
プルーフマス1602は、印加加速度に応答して検知軸に沿った方向に固定電極1604、1606に対して平面内で移動することができる。2つの組の固定電極指1610、1612がプルーフマス指1608a、1608bから逆方向にオフセットされるため、両方向の移動を測定することができる。これらのオフセットは大きさが等しくてもよい。可動指1608a、1608bに対する第1の組の固定電極指1610及び第2の組の固定電極指1612のオフセットの差により、駆動信号(例えば、電圧波形)が第1及び第2の組の固定電極指1610、1612に印加されるときに引力が生じる。
【0102】
開ループ動作において、印加加速度に応答したプルーフマス1602の移動により、プルーフマス指1608a、1608bと固定電極指1610、1612との間のオフセットに変化が生じる。この変化によって差動容量の変化が生じるため、これを使用して加速度を算出することができる。閉ループ動作において、噛み合わされた電極指は、実際には互いに対して移動しない。第1及び第2の固定容量電極1604、1606に印加される第1及び第2の駆動信号にパルス幅変調(PWM)を適用すると、静電復元力がプルーフマス指1608a、1608bに作用する。その結果、加速を受けても、印加加速度の慣性力が正味の静電復元力によって釣り合いがとられていることで、プルーフマス1602は
図16に見られる中立位置から移動しない。
【0103】
本開示はその1つ以上の特定の例を説明することによって示されているが、これらの態様に限定されないことが当業者によって認識されよう。添付された請求項の範囲内で、多くの変形及び修正が可能である。