(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-11-06
(45)【発行日】2024-11-14
(54)【発明の名称】既設管更生用の位置測定システムおよび方法
(51)【国際特許分類】
F16L 55/48 20060101AFI20241107BHJP
F16L 55/40 20060101ALI20241107BHJP
F16L 1/028 20060101ALI20241107BHJP
G01B 11/00 20060101ALI20241107BHJP
【FI】
F16L55/48
F16L55/40
F16L1/028 Z
G01B11/00 B
(21)【出願番号】P 2021031391
(22)【出願日】2021-03-01
【審査請求日】2023-12-13
(31)【優先権主張番号】P 2020162965
(32)【優先日】2020-09-29
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000002174
【氏名又は名称】積水化学工業株式会社
(74)【代理人】
【識別番号】100085556
【氏名又は名称】渡辺 昇
(74)【代理人】
【識別番号】100115211
【氏名又は名称】原田 三十義
(74)【代理人】
【識別番号】100153800
【氏名又は名称】青野 哲巳
(72)【発明者】
【氏名】久保 善央
【審査官】広瀬 雅治
(56)【参考文献】
【文献】特開2018-087625(JP,A)
【文献】特開2005-274563(JP,A)
【文献】特開2007-122507(JP,A)
【文献】特開平11-063989(JP,A)
【文献】特開2010-190634(JP,A)
【文献】特開2014-224790(JP,A)
【文献】特開2007-263638(JP,A)
【文献】米国特許出願公開第2017/0108155(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
F16L 55/48
F16L 55/40
F16L 1/028
G01B 11/00
(57)【特許請求の範囲】
【請求項1】
既設管内、又は前記既設管の内壁に沿う更生管内を移動可能な移動体と、
前記既設管の管端又は前記管端に連なるマンホール内の固定位置と、前記移動体のいずれか一方に設置され、前記既設管の管軸と直交する平坦な反射面を有する反射体と、
前記固定位置と前記移動体の他方に設置され、レーザー光を前記既設管の管軸に沿って前記反射体に発射し、前記反射体の前記反射面で反射されたレーザー光を受光することによって、前記反射面までの距離を測定するレーザー距離測定手段と、
前記レーザー距離測定手段の距離測定データを処理する演算制御手段と、
を備えた既設管更生用の位置測定システムにおいて、
前記演算制御手段は、前記レーザー距離測定手段の光軸の角度を所定の走査軌跡に沿って変化させ、この角度変化の過程で得られる複数の距離測定値のうち所定の許容差内に収まる複数の距離測定値が設定数以上存在することを条件として、この設定数以上の距離測定値に基づき、前記反射面までの距離を決定し、
前記設定数は、測定距離が短いほど多く、測定距離が長いほど少ないことを特徴
とする既設管更生用の位置測定システム。
【請求項2】
既設管内、又は前記既設管の内壁に沿う更生管内を移動可能な移動体と、
前記既設管の管端又は前記管端に連なるマンホール内の固定位置と、前記移動体のいずれか一方に設置され、前記既設管の管軸と直交する平坦な反射面を有する反射体と、
前記固定位置と前記移動体の他方に設置され、レーザー光を前記既設管の管軸に沿って前記反射体に発射し、前記反射体の前記反射面で反射されたレーザー光を受光することによって、前記反射面までの距離を測定するレーザー距離測定手段と、
前記レーザー距離測定手段の距離測定データを処理する演算制御手段と、
を備えた既設管更生用の位置測定システムにおいて、
前記演算制御手段は、前記レーザー距離測定手段の光軸の角度を所定の走査軌跡に沿って変化させ、この角度変化の過程で得られる複数の距離測定値のうち所定の許容差内に収まる複数の距離測定値が設定数以上存在することを条件として、この設定数以上の距離測定値に基づき、前記反射面までの距離を決定し、
前記光軸の前記距離測定毎の角度変化幅は、測定距離が短いほど広く、測定距離が長いほど狭いことを特徴
とする既設管更生用の位置測定システム。
【請求項3】
既設管内、又は前記既設管の内壁に沿う更生管内を移動可能な移動体と、
前記既設管の管端又は前記管端に連なるマンホール内の固定位置と、前記移動体のいずれか一方に設置され、前記既設管の管軸と直交する平坦な反射面を有する反射体と、
前記固定位置と前記移動体の他方に設置され、レーザー光を前記既設管の管軸に沿って前記反射体に発射し、前記反射体の前記反射面で反射されたレーザー光を受光することによって、前記反射面までの距離を測定するレーザー距離測定手段と、
前記レーザー距離測定手段の距離測定データを処理する演算制御手段と、
を備えた既設管更生用の位置測定システムにおいて、
前記演算制御手段は、前記レーザー距離測定手段の光軸の角度を所定の走査軌跡に沿って変化させ、この角度変化の過程で得られる複数の距離測定値のうち所定の許容差内に収まる複数の距離測定値が設定数以上存在することを条件として、この設定数以上の距離測定値に基づき、前記反射面までの距離を決定し、
前記所定の許容差は、測定距離が長いほど大きいことを特徴
とする既設管更生用の位置測定システム。
【請求項4】
既設管内、又は前記既設管の内壁に沿う更生管内を移動可能な移動体と、
前記既設管の管端又は前記管端に連なるマンホール内の固定位置と、前記移動体のいずれか一方に設置され、前記既設管の管軸と直交する平坦な反射面を有する反射体と、
前記固定位置と前記移動体の他方に設置され、レーザー光を前記既設管の管軸に沿って前記反射体に発射し、前記反射体の前記反射面で反射されたレーザー光を受光することによって、前記反射面までの距離を測定するレーザー距離測定手段と、
前記レーザー距離測定手段の距離測定データを処理する演算制御手段と、
を備えた既設管更生用の位置測定システムにおいて、
前記演算制御手段は、前記レーザー距離測定手段の光軸の角度を所定の走査軌跡に沿って変化させ、この角度変化の過程で得られる複数の距離測定値のうち所定の許容差内に収まる複数の距離測定値が設定数以上存在することを条件として、この設定数以上の距離測定値に基づき、前記反射面までの距離を決定し、
前記演算制御手段は、前記所定の走査軌跡で前記所定の許容差内の測定距離値を前記設定数得られない場合に、前記光軸を別の走査軌跡に沿って角度変化させることを特徴
とする既設管更生用の位置測定システム。
【請求項5】
前記演算制御手段は、前記レーザー距離測定手段の光軸の角度を第1方向に延びる走査軌跡に沿って変化させる過程で得られた複数の距離測定値が、前記所定の許容差内に収まる前記設定数以上の距離測定値を含まない場合には、前記レーザー距離測定手段の光軸の角度を前記第1方向と直交する第2方向に所定角度分ずらした後、再び前記レーザー距離測定手段の光軸の角度を前記第1方向に延びる他の走査軌跡に沿って変化させ、この角度変化の過程で得られる複数の距離測定値のうち前記所定の許容差内に収まる前記設定数以上の距離測定値に基づき、前記反射面までの距離を決定することを特徴とする請求項
4に記載の既設管更生用の位置測定システム。
【請求項6】
前記演算制御手段は、前記レーザー距離測定手段の光軸の角度を第1方向に延びる走査軌跡に沿って変化させる過程で得られた複数の距離測定値が、前記所定の許容差内に収まる前記設定数以上の距離測定値を含まない場合には、前記レーザー距離測定手段の光軸の角度を、前記第1方向と交差する第2方向に延びる他の走査軌跡に沿って変化させ、この角度変化の過程で得られる複数の距離測定値のうち前記所定の許容差内に収まる前記
設定数以上の距離測定値に基づき、前記反射面までの距離を決定することを特徴とする請求項
4に記載の既設管更生用の位置測定システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、既設管の更生に用いる位置測定システムおよび方法に関し、より具体的には、既設管における分岐管のための接続口の位置、又は既設管の内壁に沿う更生管における穿孔位置を、レーザーを用いて測定するシステムおよび方法に関する。
【背景技術】
【0002】
下水道管等の既設管の上壁には接続口が形成され、この接続口に分岐管が接続されている。既設管が老朽化した時には、既設管を更生管でライニングすることによって更生することは公知である。更生管をライニングすると既設管の接続口が更生管で塞がれるため、更生管に接続口と合致した連通口を形成する必要がある。
更生管の内側から連通口を形成する場合には、更生管をライニングする前に接続口の位置を特定し、ライニング後に、更生管において上記の特定された位置に対応する箇所を穿孔して連通口を形成する。
【0003】
特許文献1は、レーザー距離計と走行体を用いた位置測定システムを開示している。簡単に説明すると、レーザー距離計が既設管の端またはマンホール内に設置される。走行体にはビデオカメラと反射体が搭載されている。遠隔操作により走行体を既設管に沿って走行させ、ビデオカメラで接続口を確認した時に停止させる。この時、レーザー距離計からレーザー光を反射体に向けて発射し、反射体からの戻りレーザー光を受けて反射体までの距離を測定し、この測定距離に基づいて接続口の位置を特定する。
【0004】
更生管のライニングが終了した後、更生管に連通口を形成する際には、穿孔機と反射体を装備した走行体が用いられる。レーザー距離計は上記と同様にして設置される。走行体を更生管に沿って走行させ、接続口に近い位置で走行体を停止させる。この時、レーザー距離計で反射体までの距離を測定し、この測定距離と予め測定された接続口の位置の情報に基づいて、穿孔機が接続口に対向する位置まで走行体を移動させる。最後に穿孔機を接続口に向けて移動させて更生管を穿孔し、既設管の接続口と合致した連通口を形成する。
【先行技術文献】
【特許文献】
【0005】
【発明の概要】
【発明が解決しようとする課題】
【0006】
特許文献1の位置測定システムでは、レーザー距離計と反射体の距離が長い場合に、レーザー光が反射体から外れて、走行体等に当たり、正確に接続口の位置や連通口の穿孔位置を測定できないことがある。
【課題を解決するための手段】
【0007】
前記課題を解決するため、本発明は、既設管内、又は前記既設管の内壁に沿う更生管内を移動可能な移動体と、前記既設管の管端又は前記管端に連なるマンホール内の固定位置と、前記移動体のいずれか一方に設置され、前記既設管の管軸と直交する平坦な反射面を有する反射体と、前記固定位置と前記移動体の他方に設置され、レーザー光を前記既設管の管軸に沿って前記反射体に発射し、前記反射体の前記反射面で反射されたレーザー光を受光することによって、前記反射面までの距離を測定するレーザー距離測定手段と、前記レーザー距離測定手段の距離測定データを処理する演算制御手段と、を備えた既設管更生用の位置測定システムにおいて、
前記演算制御手段は、前記レーザー距離測定手段の光軸の角度を所定の走査軌跡に沿って変化させ、この角度変化の過程で得られる複数の距離測定値のうち所定の許容差内に収まる複数の距離測定値に基づき、前記反射面までの距離を決定することを特徴とする。
【0008】
上記構成によれば、レーザー距離測定手段と反射体までの距離を正確に測定でき、ひいては、既設管の接続口の位置や更生管の連通口の穿孔位置等を正確に特定することができる。
【0009】
好ましくは、前記所定の許容差内に収まる複数の距離測定値が、前記レーザー距離測定手段の光軸の角度変化の過程で連続して得られる距離測定値である。
上記構成によれば、レーザー距離測定手段と反射体までの距離をより確実に測定できる。
【0010】
好ましくは、前記演算制御手段は、前記所定の許容差内に収まる複数の距離測定値の平均値を、前記反射面までの距離とする。
上記構成によれば、距離演算を簡略化することができる。
【0011】
好ましくは、前記演算制御手段は、前記所定の許容差内に収まる距離測定値が設定数または設定数以上であることを条件として、この設定数または設定数以上の距離測定値に基づき、前記反射面までの距離を決定する。
上記構成によれば、レーザー距離測定手段と反射体までの距離をより確実に測定できる。
【0012】
好ましくは、前記設定数を、測定距離が短いほど多く、測定距離が長いほど少なくする。
この構成は、反射面から外れた箇所例えば移動体等に、既設管や更生管の管軸と直交する平坦面(ただし反射面に比べて著しく狭い)が存在する可能性を考慮したものである。測定距離が短いと、光軸の角度変化の過程において、反射面以外の平坦面でも所定の許容差内に収まる距離測定値が設定数獲得されて、誤測定される可能性が生じる。そこで、測定距離が短い場合には設定数を多くすることにより、この誤測定を回避することができる。測定距離が長くなると、反射面での測定点が減じられるとともに反射面以外の平坦面での測定点が減じられる。そこで、測定距離が長い場合には、設定数を少なくすることにより、前記反射面での距離測定を確実に行うことができる。
同様の理由により、前記光軸の前記距離測定毎の角度変化幅を、測定距離が短いほど広く、測定距離が長いほど狭くしてもよい。
【0013】
前記所定の許容差は、測定距離が長いほど大きくしてもよいし、測定距離と無関係に絶対値により定めていてもよい。
【0014】
好ましくは、前記演算制御手段は、前記所定の走査軌跡で前記所定の許容差内の測定距離値を前記設定数得られない場合に、前記光軸を別の走査軌跡に沿って角度変化させる。
上記構成によれば、レーザー光の光軸を自動的に反射面にアライメントさせることができ、距離測定作業を効率良く行うことができる。
【0015】
より具体的態様では、前記演算制御手段は、前記レーザー距離測定手段の光軸の角度を第1方向に延びる走査軌跡に沿って変化させる過程で得られた複数の距離測定値が、前記所定の許容差内に収まる前記設定数以上の距離測定値を含まない場合には、前記レーザー距離測定手段の光軸の角度を前記第1方向と直交する第2方向に所定角度分ずらした後、再び前記レーザー距離測定手段の光軸の角度を前記第1方向に延びる他の走査軌跡に沿って変化させ、この角度変化の過程で得られる複数の距離測定値のうち前記所定の許容差内に収まる前記設定数または設定数以上の距離測定値に基づき、前記反射面までの距離を決定する。
上記構成によれば、最初にレーザー距離測定手段の光軸の角度を第1方向に延びる走査軌跡に沿って変化させる過程で反射面までの距離を測定できなくても、第2方向に光軸の角度をずらした後に、再び光軸の角度を第1方向に延びる他の走査軌跡に沿って変化させる過程で、反射面までの距離を測定することができる。
【0016】
別の具体的態様では、前記演算制御手段は、前記レーザー距離測定手段の光軸の角度を第1方向に延びる走査軌跡に沿って変化させる過程で得られた複数の距離測定値が、前記所定の許容差内に収まる前記設定数以上の距離測定値を含まない場合には、前記レーザー距離測定手段の光軸の角度を、前記第1方向と交差する第2方向に延びる他の走査軌跡に沿って変化させ、この角度変化の過程で得られる複数の距離測定値のうち前記所定の許容差内に収まる前記設定数または設定数以上の距離測定値に基づき、前記反射面までの距離を決定する。
上記構成によれば、最初にレーザー距離測定手段の光軸の角度を第1方向に延びる走査軌跡に沿って変化させる過程で反射面までの距離を測定できなくても、光軸の角度を第2方向に延びる他の走査軌跡に沿って変化させる過程で、反射面までの距離を測定することができる。
【0017】
前記所定の走査軌跡が測定開始点を中心とする渦巻を描くようにしてもよい。これによれば、所定の許容差内に収まる設定数以上の距離測定値を確実に得られる。
【0018】
前記移動体が走行体からなり、前記走行体は、前記既設管に形成された分岐管接続のための接続口を撮像する撮像手段を搭載しており、前記既設管に沿って走行する。これにより、反射体までの測定距離に基づいて接続口の位置を特定することができる。
【0019】
前記移動体が走行体からなり、前記走行体は、前記更生管において前記既設管の前記接続口に対応する連通口を形成するための穿孔手段を搭載しており、前記更生管に沿って走行する。これによれば、更生管を既設管内にライニングした後、反射体までの測定距離に基づいて更生管における穿孔すべき位置を特定でき、正確に連通口を形成することができる。
【0020】
本発明の他の態様は、既設管更生用の位置測定方法であって、前記既設管内、又は前記既設管の内壁に沿う更生管内を移動可能な移動体と、前記既設管の管端又は前記管端に連なるマンホール内の固定位置と、前記移動体のいずれか一方に設置され、前記既設管の管軸と直交する平坦な反射面を有する反射体と、前記固定位置と前記移動体の他方に設置され、レーザー光を前記既設管の管軸に沿って前記反射体に発射し、前記反射体の前記反射面で反射されたレーザー光を受光することによって、前記反射面までの距離を測定するレーザー距離測定手段と、を用意し、前記レーザー距離測定手段の光軸の角度を所定の走査軌跡に沿って変化させ、この角度変化の過程で得られる複数の距離測定値のうち所定の許容差内に収まる複数の距離測定値に基づき、前記反射面までの距離を決定することを特徴とする。
【発明の効果】
【0021】
本発明によれば、レーザー距離測定手段と反射体までの距離を正確に測定でき、ひいては、既設管の接続口の位置や更生管の連通口の穿孔位置を、正確に特定することができる。
【図面の簡単な説明】
【0022】
【
図1】本発明に係る第1位置測定システムを用いて既設管の接続口の位置を特定する前半の工程を示す概略縦断面図である。
【
図2】既設管の接続口の位置を測定する後半の工程を示す概略縦断面図である。
【
図3】既設管を更生管でライニングした後、本発明に係る第2位置測定システムを用いて、更生管に連通口を形成するための穿孔位置を特定する工程を示す概略縦断面図である。
【
図4】連通口の形成が完了した状態を示す概略縦断面図である。
【
図5】(A)~(D)は、レーザー光による走査の第1の態様を場合分けして示す正面図である。
【
図7】レーザー光による走査の第2の態様を示す正面図である。
【
図8】レーザー光による走査の第3の態様を示す正面図である。
【
図9】レーザー光による走査の第4の態様を示す正面図である。
【
図10】本発明に係る第3位置測定システムを用いて、製管途中の更生管における連通口の穿孔位置を特定する工程を示す概略縦断面図である。
【発明を実施するための形態】
【0023】
以下、本発明の一実施形態を図面にしたがって説明する。
既設管の更生工程の概略
図1、
図2に示すように、更生対象の既設管1は、例えば、地中の老朽化した下水道管である。既設管1の内径は、人が直に入れない大きさであり、例えば800mm以下である。既設管1の中途部には、1又は複数の接続口2が形成されており、各接続口2には分岐管3が接続されている。既設管1の両端はマンホール4に連なっている。
【0024】
図3に示すように、既設管1の内壁に、更生管5がライニングされる。更生管5は、例えば合成樹脂製の帯状部材を螺旋状に巻き、隣接する巻き部分の縁どうしを嵌合することにより構成される。更生管5は、種々の態様が可能であり、環状の帯板を連ねることにより構成してもよいし、形状記憶性を有する樹脂チューブであってもよい。既設管1の接続口2は、更生管5をライニングすることにより塞がれる。
【0025】
更生管5のライニングの後、更生管5を既設管1の接続口2に対応した位置で穿孔することにより、
図4に示すように接続口2に連なる連通口6が形成される。これにより、分岐管3が、更生管5の内部と連通される。
【0026】
第1位置測定システムの構成
上記更生管5のライニングに先立ち、第1位置測定システムを用いて接続口2の位置データを取得しておく。
図2に示すように、第1位置測定システムは、移動撮像装置10と、レーザー距離測定装置20(レーザー距離測定手段)と、地上またはマンホール4内に配置されたパソコン等を含む遠隔制御装置30と、を備えている。
【0027】
移動撮像装置10は、走行体11と、走行体11の前部において既設管1の管軸方向に延びる軸線を中心に回動可能に支持されたアーム12と、アーム12の先端部に搭載されたビデオカメラ13(撮像手段)と、ビデオカメラ13またはアーム12に設けられた傾斜センサ14と、走行体11の後部に搭載された反射体15とを有している。反射体15は、例えば正方形の板により形成され、既設管1の管軸と直交する平坦な反射面15aを有している。反射板の形状は矩形以外に半円形、幌型(馬蹄形)等を採用することができる。
【0028】
レーザー距離測定装置20は、本体21と、本体21の前面に設けられた受発光部22と、本体21の角度を互いに直交する3軸を中心として調節する角度調節機構23と、受発光部22と角度調節機構23を制御するとともに距離演算を行う演算制御部24(演算制御手段)とを有している。
【0029】
第1位置測定システムによる接続口の位置測定工程
上記第1位置測定システムを用いて接続口2の位置データを取得する工程について、詳述する。
〈前半の工程〉
図1に示すように、既設管1の管端1aに平坦な反射板9を設置した後、操作者は遠隔制御装置30の操作により、レーザー距離測定装置20の演算制御部24に測定指令を出し、受発光部22から反射板9に向けてレーザー光を出射させる。反射板9には既設管1の管軸に相当する位置に印が付されており、この印にレーザー光が当たるように、レーザー距離測定装置20の位置を微調節するか受発光部22の光軸25の方向を微調整する。これにより、光軸25が既設管1の管軸と略一致する。
上記反射板9から反射されたレーザー光を受発光部22で受け、演算制御部24でレーザー距離測定装置20から反射板9までの距離を演算する。この距離測定値が遠隔制御装置30に送られ記録される。
【0030】
<後半の工程>
図2に示すように、操作者は、遠隔制御装置30の遠隔操作により、移動撮像装置10を既設管1に沿って走行させながらビデオカメラ13によって既設管1の上壁面を撮像する。この既設管1の映像は、リアルタイムで遠隔制御装置30のモニター31に表示される。やがて、接続口2がモニター31に映し出される。ビデオカメラ13が接続口2に対応する位置に達した時に、移動撮像装置10を停止させる。さらに、ビデオカメラ13の光軸が接続口2を向くように(接続口2の映像がモニター31の画面の中央に位置するように)、アーム12を回動させる。この時の傾斜センサ14で検出される傾斜角は、接続口2の周方向の角度位置を示している。この傾斜角の情報は遠隔制御装置30に送られ、記録される。
【0031】
移動撮像装置10を停止させた状態で、レーザー距離測定装置20から移動撮像装置10の反射体15までの距離を測定する。上記のように光軸25を粗調節することにより、レーザー距離測定装置20と反射体15の間の距離が短い場合には、レーザー距離測定装置20からのレーザー光を反射体15の反射面15aに当てることができ、反射面15aまでの距離を正確に測定することができるが、レーザー距離測定装置20と反射体15の間の距離が長くなると、上記粗調節ではレーザー光を反射面15aに当てることができず、走行体11等に当たり、距離を誤測定してしまうことがある。そこで、操作者は遠隔制御装置30からの指令により、レーザー距離測定装置20の演算制御部24に自動測定モードを実行させる。
【0032】
以下、レーザー距離測定装置20の演算制御部24により実行される自動測定モードについて説明する。自動測定モードは、光軸25を所定の走査軌跡に沿って回転させることにより反射面15aに合わせること(オートアライメント)と、反射面15aまでの距離を演算することを含む。
【0033】
図5に示す第1の走査態様では、演算制御部24は角度調節機構23を制御して、本体21を垂直軸を中心に回転させることにより、光軸25を水平(第1方向)の走査線(走査軌跡)に沿って回転させ、この回転の過程(走査の過程)で距離を測定する。例えば回転速度は1度/秒、測定回数は1秒当たり20点(角度に換算すると0.05度ごとに1点)である。すなわち、レーザー距離測定装置20の光軸25が測定毎に変化する角度幅は、一定である。1回の走査での回転角度には上限があり、光軸25の測定開始点(初期位置)から最大1°とする。
【0034】
図5(A)、(B)に示すように、水平の走査線L1が、反射体15の反射面15aを通る場合には、レーザー距離測定装置20は反射面15aまでの距離を測定することができる。光軸25の測定開始点Sが反射面15aにある場合はもちろんのこと、反射面15aから外れていても反射面15aまでの距離を測定することができる。以下、詳述する。
【0035】
図5(A)に示すように光軸25の測定開始点Sが反射面15aより左側に外れている場合には、最初の距離測定値は大きいが、光軸25が右側に移動することにより反射面15aに当たる。光軸25が反射面15aに当たっている過程では、距離測定値は略一定であり、反射面15aから外れると測定距離値が再び増大する。演算制御部24は、距離測定値から、上記略一定の距離測定値すなわち所定の許容差内の距離測定値が連続して設定数(複数)以上存在すると判断した時には、その平均値を、反射面15aまでの距離として決定する。
【0036】
図5(B)に示すように、光軸25の測定開始点Sが反射面15aの右側に外れている場合には、1回目に光軸25が右側に移動しても、距離測定値が大きく、略一定の距離測定値を得られない。最大回転角(1°)まで回転しても許容差内に設定数以上の距離測定値を得られない場合には、光軸25を測定開始点Sに戻してから、左方向に移動する。これにより光軸25が反射面15aに当たるので略一定の距離測定値が連続して得られる。このようにして、設定数以上の略一定の距離測定値に基づき反射面15aまでの距離を決定することができる。
【0037】
上記許容差は例えば測定距離の0.1%とする。例えば測定距離が50mの場合、許容差は50mmであり、50mmの範囲にある距離測定値が設定数以上存在する場合には、その平均値を反射面15aまでの距離として決定する。
なお、許容差を測定距離とは無関係に絶対値例えば20mm(すなわち±10mm)で設定してもよい。これによれば、測定距離が遠くても高精度に反射面15aまでの距離を測定することができる。
【0038】
上述したように測定毎の回転角度幅が一定の場合、上記設定数は測定距離に応じて変えてもよい。すなわち、測定距離が短いほど多く、測定距離が長いほど少なくする。例えば、30m以上の場合には2点、15m以上30m未満の場合は3点、15m未満の場合には6点とする。
反射面15aから外れた箇所例えば走行体11やその付属物等に、既設管1の管軸と直交する平坦面が存在する可能性がある。ただしこの平坦面は反射面15aに比べて著しく狭く、例えば50mm未満である。測定距離が短いと、光軸25の角度変化の過程において、反射面15a以外の平坦面でも許容差内に収まる距離測定値が複数獲得される可能性がある。しかし、測定距離が短い場合に設定数を多くすることにより、この誤測定を回避することができる。測定距離が長くなると、反射面15aでの測定点が減じられるとともに反射面15a以外の平坦面での測定点も減じられる。そこで、測定距離が長い場合には、設定数を少なくすることにより、前記反射面15aでの距離測定を確実に行うことができる。
【0039】
測定距離が長くなるほど測定毎の回転角度幅を小さくしてもよい。例えば10m未満では0.28°、10~20mで0.14°、20~30mで0.09°、30~40mで0.07°、40~50mで0.05°とする。この場合には、測定距離に拘わらず設定数を一定例えば3としてもよい。
また、測定距離が長くなるほど、測定毎の回転角度幅を小さくするとともに設定数を少なくしてもよい。
さらに、測定距離とは無関係に測定毎の回転角度幅を一定にし、設定数を一定にしてもよい。
【0040】
平均値は、上記許容差内の距離測定値を単純に平均してもよいし、距離測定値の数が多い場合には、許容差よりさらに絞った範囲にある距離測定値を平均してもよい。また、他の公知の演算法を用いて反射面15aまでの距離を演算してもよい。
【0041】
光軸25の走査において、許容差内の距離測定値が設定数に達した時点で、走査を終了してもよい。この場合、設定数の距離測定値に基づいて反射面15aまでの距離を演算する。後述の走査についても同様である。
【0042】
上記走査線L1が反射面15aを通らない場合には、上記のように測定開始点Sから最大1°右方向に走査し、さらに測定開始点Sに戻って最大1°左方向に走査しても、距離測定値がばらつき、略一定の距離測定値が連続して設定数以上測定することができない。この場合には、レーザー距離測定装置20の演算制御部24は、走査線L1が反射面15aを通っていないと判断し、光軸25が走査すべき走査線を変える。以下、例示する。
【0043】
演算制御部24は光軸25を上下に角度調節する。本実施形態では最初に所定角度分αだけ光軸25を上方にずらす(角度調節する)。これにより、
図5(C)に示すように、走査線L2は上方に移動する。最初の走査線L1が反射面15aから下方に僅かに外れている場合には、上方に変位した走査線L2が反射面15aを通ることになり、上述と同様にして反射面15aまでの距離を測定することができる。
【0044】
演算制御部24は、反射面15aをレーザー光の走査線が通るまで、すなわち略一定の距離測定値が連続して設定数以上得られるまで、光軸25の走査線を上下に角度幅を広げながら変更する。例えば
図5(D)の例では、1回目の走査線L1は反射面15aから上方に外れている。この場合、上述と同様に光軸25を上方に所定角度α(例えば0.14°)だけ角度調節しても、2回目の走査線L2は反射面15aを通らない。次に、光軸25を1回目の角度位置から下方に所定角度αだけ角度調節しても、3回目の走査線L3は反射面15aを通らない。次に、光軸25を1回目の角度位置から上方に所定角度αの2倍だけ角度調節しても、4回目の走査線L4は反射面15aを通らない。次に、光軸25を1回目の角度位置から下方に所定角度αの2倍だけ角度調節すると、5回目の走査線L5が反射面15aを通る。この5回目の走査線L5に沿う距離測定値に基づき、上述と同様にして反射面15aまでの距離を決定する。
上記のように上下に交互に角度調節し、調節角度を所定角度αずつ増やすことにより、レーザー光が反射面15aに到達する光軸25の角度を探し当てるのである。
【0045】
上述のようにして、レーザー距離測定装置20の演算制御部24は自動的に光軸25を反射面15aに当てるように制御し(オートアライメント機能)、反射面15aまでの距離を測定することができる。この距離情報は遠隔制御装置30に送られ、記録される。
【0046】
遠隔制御装置30では、反射面15aまでの測定距離から、前半工程で測定した反射板9までの距離を差し引くことにより、既設管1の管端1aから反射面15aまでの距離D1を演算する。接続口2の位置すなわち既設管1の管端1aから接続口2の中心までの距離Daは、この演算距離D1に、反射面15aからビデオカメラ13(すなわち接続口2)までの距離D2を加算することにより、決定することができる。
【0047】
第2位置測定システムの構成
更生管5のライニング工程が終了した後、
図3に示す第2位置測定システムを用いて連通口6の穿孔を行なう。本実施形態では、第2位置測定システムは、第1位置測定システムと共通のレーザー測定装置20、遠隔制御装置30を備えるとともに、移動穿孔装置50を備えている。
【0048】
図6に示すように、移動穿孔装置50は、走行体51と、走行体51に設けられた定着ジャッキ52と、走行体51の前部に支持されたアーム53と、アーム53に支持された穿孔機54(穿孔手段)と、走行体51の後部に設けられた反射体55と、を備えている。定着ジャッキ52は、X字状になっており、上下に伸縮可能である。アーム53は、管軸方向に延びる軸線を中心に回動可能であり、好ましくは前後方向に伸縮可能である。アーム53には傾斜センサ56が設けられている。穿孔機54は上下方向に伸縮可能である。反射体55は前述した反射体15と同様に既設管1の管軸と直交する平坦な反射面55aを有している。
【0049】
第2位置測定システムによる削孔位置の測定工程
レーザー測定装置20は,接続口2の位置測定工程と同様にマンホール4の底部に設置される。レーザー測定装置20の設置位置を変える場合には、接続口2の位置測定工程の前半工程と同様にして、既設管1の管端1aに設置された反射板9までの距離を測定しておく。
【0050】
移動穿孔装置50を更生管5内に入れた状態で、遠隔制御装置30の遠隔操作により走行させる。例えば移動穿孔装置50の走行距離と上述のようにして決定された距離Daに基づき、穿孔機54が接続口2に近い位置に達するまで移動穿孔装置50を走行させる。
【0051】
移動穿孔装置50の停止後に、遠隔制御装置30の操作により、レーザー距離測定装置20の演算制御部24に自動測定モードを実行するよう指令する。すなわち、演算制御部24は、光軸25を回転走査しながら距離測定を実行する。この自動測定モードは前述と同様であるから説明を省略する。
【0052】
上記のようにして得られたレーザー距離測定装置20と反射体55の反射面55aとの間の測定距離から、レーザー距離測定装置20と既設管1の管端1aまでの距離(反射板9までの測定距離)を差し引くことにより、管端1aと反射面55a間の距離D3を演算する。さらに、この演算距離D3に反射面55aから穿孔機54までの距離D4を加算した距離、すなわち既設管1の管端1aから穿孔機54までの距離(D3+D4)が、予め求められていた管端1aから接続口2までの距離Daと一致するように、穿孔機54を位置決めする。この穿孔機54の位置決めは、アーム53の前後方向の伸縮または移動穿孔装置50の移動により行う。移動穿孔装置50を移動させた後、再度距離測定を実行してもよい。
【0053】
自動測定モードおよび穿孔機54の位置決めが終了した後、操作者は遠隔制御手段30の遠隔操作により、定着ジャッキ52を伸長させて更生管5の頂壁に突き当てることによって、移動穿孔装置50を更生管5ひいては既設管1に定着させる。さらに、予め求められていた接続口2の周方向角度位置に穿孔機54が向くように、傾斜センサ56からの傾斜角度信号に基づきアーム53を回動制御する。最後に、穿孔機54を更生管5に向けて移動し、穿孔することによって、更生管5に連通口6を形成する。この穿孔は、移動穿孔装置50の前方に配置された移動撮像装置(図示しない)またはアーム53に設けられたビデオカメラ(図示しない)からの映像をモニター31で見ながら実行することができる。
【0054】
次に、光軸25の回転走査の他の態様について説明する。
図7に示す第2の態様では、光軸25を水平方向(第1方向)に延びる走査線L1に沿って走査する過程で得られた複数の距離測定値が、許容差内に収まる設定数以上の連続した距離測定値を含まない場合に、光軸25を測定開始点Sに戻した後、垂直方向(第2方向)に延びる走査線L2に沿って走査し、この走査の過程で得られる距離測定値のうち許容差内に収まる設定数以上の距離測定値に基づき、反射面15aまでの距離を決定する。
【0055】
図8に示す第3の態様では、水平軸と垂直軸に対して45°傾斜した2つの走査線L1,L2を設定する。光軸25を走査線L1に沿って走査する過程で得られた複数の距離測定値が、許容差内に収まる設定数以上の連続した距離測定値を含まない場合に、光軸25を測定開始点Sに戻した後、走査線L2に沿って走査し、この走査の過程で得られる距離測定値のうち許容差内に収まる設定数以上の距離測定値に基づき、反射面15aまでの距離を決定する。
第3の態様において、走査線L1,L2は、互いに直交しなくてもよい。例えば走査線L1,L2は、水平軸との角度が45°未満であってもよい。
【0056】
図9に示すように、光軸は、測定開始点を中心とする渦巻形状の走査線に沿って走査してもよい。これによれば、確実に光軸を反射面にアライメントすることができる。
【0057】
図10は、第3位置測定システムを示す。この第3位置測定システムは、前述した第1位置測定システムで既設管1の接続口2の位置を測定した後、更生管5’を製管する過程で用いられるものであり、第1位置測定システムと同じレーザー距離測定装置20と遠隔制御装置30(いずれも
図10において図示を省略する)を備えている。
【0058】
更生管5’は一方(左側)のマンホール4において製管される。すなわち、製管機60を用いて帯状部材を螺旋状に巻き、隣接する巻き部分の縁どうしを嵌合することにより製管される。この製管作業と同時に、更生管5’の先端部5aは他方(右側)のマンホール4近傍の地上に設置されたウインチにより、ワイヤ61を介して牽引され、右側のマンホール4に向かって移動する。
【0059】
本実施形態では、製管途中の更生管5’の先端部5aが、第3位置測定システムの移動体として提供される。更生管5’の先端部5aの頂部には反射体65が取り付けられており、底部には傾斜センサ66が取り付けられている。左側のマンホール4に設置されたレーザー距離測定装置により、前述の位置測定システムと同様にして反射体65の反射面までの距離が測定される。
【0060】
第1位置測定システムにより求められた既設管1の左側の管端と接続口2との間の距離および既設管1の全長に基づいて,既設管1の右側の管端と接続口2との距離が、予め求められている。この距離は、更生管5の先端部5aと更生管5における連通口6の穿孔予定箇所との間の距離に相当している。
【0061】
第3位置測定システムで測定された距離と、上記のようにして演算された先端部5aと連通口6の穿孔予定箇所との間の距離に基づいて、左側のマンホール4での更生管5’への穿孔位置を決定し、連通口6を形成する。これにより、更生管5’の先端部が既設管1の右端に達して製缶作業が完了した状態で、連通口6を接続口2と一致させることができる。
【0062】
本発明は、上記実施形態に限定されるものではなく、その趣旨を逸脱しない範囲において種々の改変をなすことができる。
第2位置測定システムの移動穿孔装置にビデオカメラ等の撮像手段を設ける場合、穿孔機を取り外すことにより、第1位置測定システムの移動撮像装置として兼用することもできる。
レーザー距離装置は、その固定位置として、前記実施形態では更生対象の既設管に連なるマンホールの底部に設置したが、更生対象の既設管の管端に支持装置を介して設置してもよい。また、マンホール4を挟んで更生対象の既設管と隣接する他の既設管の管端に設置してもよい。
【0063】
レーザー距離測定装置に、互いの光軸が平行になるようにビデオカメラを付設してもよい。この場合、距離測定に先立ち、ビデオカメラによる映像をモニターで見ながら、既設管の中心がモニターの画面の中心に位置するように、ビデオカメラの光軸、ひいてはレーザー距離測定装置の光軸の角度を粗調整することができる。
上記実施形態では、レーザー距離装置を上記固定位置に設置し、反射体を走行体に設置したが、これとは逆に、反射体を固定位置に設置し、レーザー距離装置を走行体に設置してもよい。
オートアライメント、距離演算の機能の少なくとも一部を、遠隔制御装置が担ってもよい。
既設管は、下水道管に限られず、上水道管、農業用水管、ガス管等であってもよい。
【産業上の利用可能性】
【0064】
本発明は、例えば老朽化した下水道管の更生施工に適用できる。
【符号の説明】
【0065】
1 既設管
2 接続口
3 分岐管
5 更生管
5’製管途中の更生管
5a 製管途中の更生管の先端部(移動体)
6 連通口
11 走行体
12 ビデオカメラ(撮像手段)
15 反射体
15a 反射面
20 レーザー距離測定装置(レーザー距離測定手段)
24 演算制御部(演算制御手段)
51 走行体
54 穿孔機
55、65 反射体
55a 反射面