(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-11-07
(45)【発行日】2024-11-15
(54)【発明の名称】量子コンピューティング・デバイスを冷却するための筐体内の熱化材料の使用
(51)【国際特許分類】
H10N 60/81 20230101AFI20241108BHJP
F25B 9/12 20060101ALI20241108BHJP
【FI】
H10N60/81
F25B9/12
(21)【出願番号】P 2022513897
(86)(22)【出願日】2020-08-27
(86)【国際出願番号】 EP2020073941
(87)【国際公開番号】W WO2021043659
(87)【国際公開日】2021-03-11
【審査請求日】2023-01-20
(32)【優先日】2019-09-05
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】390009531
【氏名又は名称】インターナショナル・ビジネス・マシーンズ・コーポレーション
【氏名又は名称原語表記】INTERNATIONAL BUSINESS MACHINES CORPORATION
【住所又は居所原語表記】New Orchard Road, Armonk, New York 10504, United States of America
(74)【代理人】
【識別番号】100112690
【氏名又は名称】太佐 種一
(72)【発明者】
【氏名】ハート、シーン
(72)【発明者】
【氏名】ボゴリン、ダニエラ、フロレンティーナ
(72)【発明者】
【氏名】ブロン、ニコラス、トーレイフ
(72)【発明者】
【氏名】グマン、パトリク
(72)【発明者】
【氏名】オリヴァデーセ、サルヴァトーレ、ベルナルド
【審査官】志津木 康
(56)【参考文献】
【文献】米国特許出願公開第2019/0042968(US,A1)
【文献】特表2011-524026(JP,A)
【文献】特開平04-132299(JP,A)
【文献】国際公開第2019/163978(WO,A1)
【文献】GREEN, Michael A,The integration of liquid cryogen cooling and cryocoolers with superconducting electronic systems,Superconductor Science and Technology,GREEN,2003年,Vol. 16,p. 1349-1355
(58)【調査した分野】(Int.Cl.,DB名)
H10N 60/81
F25B 9/12
(57)【特許請求の範囲】
【請求項1】
量子コンピューティング・デバイスを冷却するためのシステムであって、
量子コンピューティング・デバイスと、
前記量子コンピューティング・デバイスが内部に配置された筐体と、
前記筐体内に配置された熱化材料とを備え、前記熱化材料が、極低温デバイスを前記量子コンピューティング・デバイスに熱的に連結するように適応され
、
前記熱化材料が固体熱化材料を含み、前記熱化材料が前記量子コンピューティング・デバイスに接触することによって、前記熱化材料が、前記極低温デバイスを前記量子コンピューティング・デバイスに熱的に連結するように適応される、システム。
【請求項2】
前記筐体が前記極低温デバイスに結合される、請求項1に記載のシステム。
【請求項3】
前記極低温デバイスが希釈冷凍機であり、前記筐体が前記希釈冷凍機の混合室プレートに結合される、請求項2に記載のシステム。
【請求項4】
前記筐体が前記極低温デバイスの一部である、請求項1に記載のシステム。
【請求項5】
前記筐体が漏れ止めされており、前記熱化材料が液体熱化材料を含む、請求項1ないし4のいずれかに記載のシステム。
【請求項6】
前記熱化材料が、前記量子コンピューティング・デバイスを前記熱化材料に浸すことによって前記極低温デバイスを前記量子コンピューティング・デバイスに熱的に連結するように適応される、請求項5に記載のシステム。
【請求項7】
前記液体熱化材料が超流動ヘリウムである、請求項5または6のいずれかに記載のシステム。
【請求項8】
量子コンピューティング・デバイスを冷却するためのシステムであって、
量子コンピューティング・デバイスと、
前記量子コンピューティング・デバイスが内部に配置された筐体と、
前記筐体内に配置された熱化材料とを備え、前記熱化材料が、極低温デバイスを前記量子コンピューティング・デバイスに熱的に連結するように適応され、
前記筐体が、前記熱化材料を供給することを容易にするための筐体開口部を備える
、システム。
【請求項9】
流体経路を定める一体構造の中空体と、
前記一体構造の中空体に結合されたバルブとをさらに備え、前記筐体開口部が前記バルブを備え、前記流体経路が前記極低温デバイスの複数の段階を横断する、請求項
8に記載のシステム。
【請求項10】
前記バルブが、前記一体構造の中空体からの過剰な熱化材料の排出を促進するために、
前記筐体開口部を塞ぐことを容易にする、請求項
9に記載のシステム。
【請求項11】
前記筐体が、前記量子コンピューティング・デバイスと情報をやりとりするための接続を備える、請求項1ないし
10のいずれかに記載のシステム。
【請求項12】
前記接続が、前記量子コンピューティング・デバイスに結合された、前記筐体への密封されたマイクロ波フィードスルーを含む、請求項
11に記載のシステム。
【請求項13】
前記接続が、前記量子コンピューティング・デバイスに結合された、前記筐体への直流フィードスルーを含む、請求項
11に記載のシステム。
【請求項14】
量子コンピューティング・デバイスを冷却するための方法であって、
筐体を形成することと、
量子コンピューティング・デバイスを前記筐体内に配置することと、
前記量子コンピューティング・デバイスを含む前記筐体に熱化材料を供給することとを含み、前記熱化材料が、極低温デバイスを前記量子コンピューティング・デバイスに熱的に連結するように適応され
、
前記熱化材料が固体熱化材料を含み、前記熱化材料が前記量子コンピューティング・デバイスに接触することによって、前記熱化材料が、前記極低温デバイスを前記量子コンピューティング・デバイスに熱的に連結するように適応される、方法。
【請求項15】
前記筐体を前記極低温デバイスに結合することをさらに含む、請求項
14に記載の方法。
【請求項16】
量子コンピューティング・デバイスを冷却するための方法であって、
筐体を形成することと、
量子コンピューティング・デバイスを前記筐体内に配置することと、
前記量子コンピューティング・デバイスを含む前記筐体に熱化材料を供給することとを含み、前記熱化材料が、極低温デバイスを前記量子コンピューティング・デバイスに熱的に連結するように適応され、
流体経路を定める一体構造の中空体を前記筐体内の開口部に配置されたバルブに結合することをさらに含み、前記熱化材料を前記筐体に前記供給することが、前記一体構造の中空体および開いた状態での前記バルブを使用することによって、前記熱化材料を前記筐体に供給することを含む
、方法。
【請求項17】
閉じた状態になるように前記バルブを変更することと、
過剰な熱化材料を前記一体構造の中空体から排出することとをさらに含む、請求項
16に記載の方法。
【請求項18】
前記一体構造の中空体が前記極低温デバイスの複数の温度段階を横断し、前記過剰な熱化材料を前記一体構造の中空体から前記排出することによって、前記複数の温度段階のうちの2つ以上の間の熱短絡を防ぐ、請求項
17に記載の方法。
【請求項19】
前記筐体への極低温コネクタを介して、マイクロ波源を前記量子コンピューティング・デバイスに接続することをさらに含む、請求項
14ないし
18のいずれかに記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、量子コンピューティング・デバイスに関連しており、より詳細には、量子コンピューティング・デバイスの冷却に関連している。
【背景技術】
【0002】
量子コンピューティングは、一般に、計算機能および情報処理機能を実行する目的での、量子力学的現象の使用であり、例えば、量子コンピューティングは、トランジスタに基づく2値デジタル技術ではなく、量子物理学を使用して情報をエンコードし、処理することができる。すなわち、古典的コンピュータは、0または1のいずれかであるビット値に対して動作することができるが、量子コンピュータは、0と1の両方の重ね合わせを含むことができる量子ビット(quantum bits)(量子ビット(qubit))に対して動作し、複数の量子ビットをもつれさせ、干渉を使用して他の量子ビットに影響を与えることができる。量子コンピューティングは、計算の複雑さに起因して、古典的コンピュータによって全く、または事実上解くことができない問題を、解く可能性がある。
【0003】
量子物理学の重ね合わせの原理は、量子ビットが「1」の値と「0」の値の両方を同時に部分的に表す状態になることを許容することを、促進することができる。量子物理学のエンタングルメント原理は、量子ビットの組み合わさった状態が個別の量子ビット状態に影響を与えることができないように、量子ビットが互いに相関関係を持つことを許容することを、促進することができる。例えば、第1の量子ビットの状態は、第2の量子ビットの状態に依存することがある。そのため、量子回路は、量子ビットを採用し、トランジスタに基づく2進デジタル手法とは著しく異なることがある方法で情報をエンコードして処理することができる。
【0004】
量子ビットの熱化は、コヒーレンス時間を制限する。コヒーレンスは、量子ゲートを実行するために必要とされる。量子ビットの冷却は、室温の電子機器への外部接続を可能にしたままで、最大化する必要がある。現在の量子プロセッサ・チップは、銅およびプリント基板のアセンブリにパッケージ化される。従来技術の解決策では、量子ビットを含んでいるチップの上部が、低温貯蔵器への直接の連結を有していない。
【0005】
加えて、チップの下部が、アセンブリの銅の部分に効率的に接触しないことがある。熱化は、チップを含んでいるシリコンによって制限される力に依存する可能性がある。熱化は、エポキシ樹脂、被覆、界面の不完全性などにも依存するか、または影響を受ける可能性がある。既知の解決策は、熱化のためにチップの全表面積を利用せず、したがって、制限されている。
【0006】
したがって、当技術分野において、前述の問題に対処する必要がある。
【発明の概要】
【0007】
第1の態様から見ると、本発明は、量子コンピューティング・デバイスと、量子コンピューティング・デバイスが内部に配置された筐体と、筐体内に配置された熱化材料(thermalizing material)とを備えているシステムを提供し、熱化材料は、極低温デバイスを量子コンピューティング・デバイスに熱的に連結するように適応される。
【0008】
第1の態様から見ると、本発明は、筐体を形成することと、量子コンピューティング・デバイスを筐体内に配置することと、熱化材料を、量子コンピューティング・デバイスを含む筐体に供給することとを含んでいる方法を提供し、熱化材料は、極低温デバイスを量子コンピューティング・デバイスに熱的に連結するように適応される。
【0009】
以下に、本発明の1つまたは複数の実施形態の基本的理解を可能にするための概要を示す。この概要は、主要な要素または重要な要素を特定するよう意図されておらず、特定の実施形態の範囲または特許請求の範囲を正確に説明するよう意図されていない。この概要の唯一の目的は、後で提示されるより詳細な説明のための前置きとして、概念を簡略化された形態で提示することである。本明細書に記載された1つまたは複数の実施形態では、量子コンピューティング・デバイスを冷却するために筐体内で熱化材料を使用することを容易にすることができるデバイス、システム、方法、およびコンピュータ実装方法が説明される。
【0010】
実施形態によれば、システムは、筐体内に配置された量子コンピューティング・デバイスを備えることができる。システムは、筐体内にさらに配置された熱化材料をさらに備えることができ、熱化材料は、極低温デバイスを量子コンピューティング・デバイスに熱的に連結するように適応されることができる。
【0011】
実施形態によれば、システム内で、熱化材料および量子コンピューティング・デバイスを含んでいる筐体が、極低温デバイスに結合されることができる。代替の実施形態では、システム内で、筐体は、極低温デバイスに貼り付けられる代わりに、極低温デバイスであることができ、例えば、極低温プレートの一部として形成されることができる。一部の実装では、極低温デバイスはクライオスタットであることができる。
【0012】
このシステムでは、筐体は、液体熱化材料(liquid thermalizing material)を格納するために、漏れないように密封されることができる。さらに、一部の実装では、液体熱化材料は、量子コンピューティング・デバイスを液体熱化材料に浸すことによって極低温デバイスを量子コンピューティング・デバイスに熱的に連結するように適応されることができる。1つまたは複数の実施形態によって使用されることができる例示的な液体熱化材料は、超流動ヘリウムである。
【0013】
代替の実施形態では、熱化材料は、量子コンピューティング・デバイスに接触することによって極低温デバイスを量子コンピューティング・デバイスに熱的に連結するように適応された固体熱化材料(solid thermalizing material)であることができる。1つまたは複数の実施形態によって使用されることができる、以下で説明される例示的な固体熱化材料は、加圧ヘリウムである。
【0014】
システムの一部の追加の実施形態では、筐体は、筐体への熱化材料の供給を容易にするための開口部を含むことができる。1つまたは複数の実施形態によって使用されることができる、この供給を容易にするための1つの方法は、一体構造の中空体(例えば、パイプ)を使用して、筐体への流体経路を定めることができる。この供給をさらに容易にするために、本開示において開口部に配置されたバルブが、一体構造の中空体に結合されることができる。
【0015】
1つまたは複数の実施形態では、一体構造の中空体によって定められた流体経路は、極低温デバイスの複数の段階を横断し、例えば、室温の環境から熱化材料を筐体に追加することを容易にすることができる。さらに、十分な熱化材料が追加された後に、バルブを閉じることができ、過剰な熱化材料を一体構造の中空体から除去することができ、例えば、室温の環境に除去することができる。
【0016】
システムの実施形態の別の特徴では、筐体は、量子コンピューティング・デバイスと情報をやりとりするための接続を備えることができる。例えば、一部の実装では、この接続は、筐体への密封されたマイクロ波フィードスルーであることができる。代替または追加の実施形態では、接続は、量子コンピューティング・デバイスとの直流(DC:direct current)接続であることができる。
【0017】
別の実施形態では、方法は、筐体を形成することと、量子コンピューティング・デバイスを筐体内に配置することとを含むことができる。この方法は、量子コンピューティング・デバイスを含む筐体に熱化材料を供給することをさらに含むことができ、熱化材料は、極低温デバイスを量子コンピューティング・デバイスに熱的に連結するように適応されることができる。この方法のさらなる実施形態は、筐体を極低温デバイスに結合することを含むことができる。
【0018】
これらの実施形態では、この方法は、流体経路を定める一体構造の中空体を筐体内の開口部に配置されたバルブに結合することをさらに含むことができ、熱化材料を筐体に供給することは、一体構造の中空体および開いた状態でのバルブを使用する。追加の実施形態では、この方法は、バルブを閉じた状態に変更することと、過剰な熱化材料を一体構造の中空体から排出することとを含むことができる。この方法は、一体構造の中空体が極低温デバイスの複数の温度段階を横断することができる構成をさらに含むことができ、過剰な熱化材料を一体構造の中空体から排出することによって、この横断に基づく可能性がある、複数の温度段階のうちの2つ以上の間の熱短絡を防ぐことができる。
【0019】
量子コンピューティング・デバイスへのアクセスを容易にするために、この方法は、筐体への極低温コネクタを介して、マイクロ波源を量子コンピューティング・デバイスに接続することを、さらに含むことができる。追加または代替の実施形態では、この方法は、筐体へのフィードスルーを介して、直流源を量子コンピューティング・デバイスに接続することを、さらに含むことができる。
【0020】
以下では、次の図に示された好ましい実施形態を単に例として参照し、本発明が説明される。
【図面の簡単な説明】
【0021】
【
図1】本明細書に記載された1つまたは複数の実施形態に従って、量子コンピューティング・デバイスの動作のための環境の安定性の側面を確立して維持することができる例示的な非限定的デバイスの側面図を示す図である。
【
図2】本明細書に記載された1つまたは複数の実施形態に従って、量子コンピューティング・デバイスの動作のための環境の安定性の側面を確立して維持することができる例示的な非限定的デバイスの側面図を示す図である。
【
図3】本明細書に記載された1つまたは複数の実施形態に従って、量子コンピューティング・デバイスを冷却するために筐体内で熱化材料を使用することを容易にすることができる例示的な非限定的デバイスの側面図を示す図である。
【
図4】本明細書に記載された1つまたは複数の実施形態に従って、量子コンピューティング・デバイスを冷却するために筐体内で熱化材料を使用することを容易にすることができる例示的な非限定的デバイスの側面図を示す図である。
【
図5】本明細書に記載された1つまたは複数の実施形態に従って、量子コンピューティング・デバイスを冷却するために筐体内で熱化材料を使用することを容易にすることができる例示的な非限定的デバイスの側面図を示す図である。
【
図6】本明細書に記載された1つまたは複数の実施形態に従って、量子コンピューティング・デバイスを冷却するために熱化材料を筐体に供給することを容易にすることができる例示的な非限定的デバイスの側面図を示す図である。
【
図7】本明細書に記載された1つまたは複数の実施形態に従って、量子コンピューティング・デバイスを冷却するために熱化材料を筐体から放出することを容易にすることができる例示的な非限定的デバイスの側面図を示す図である。
【
図8】本明細書に記載された1つまたは複数の実施形態に従って、筐体の外部から筐体の内部の量子コンピューティング・デバイスへの信号線の確立を容易にすることができる例示的な非限定的システムの上面図を示す図である。
【
図9】本明細書に記載された1つまたは複数の実施形態に従って、量子コンピューティング・デバイスの筐体内で熱化材料を使用することを容易にすることができる例示的な非限定的コンピュータ実装方法のフロー図を示す図である。
【
図10】本明細書に記載された1つまたは複数の実施形態を容易にすることができる例示的な非限定的動作環境のブロック図を示す図である。
【発明を実施するための形態】
【0022】
以下の詳細な説明は、例にすぎず、実施形態、または実施形態の適用もしくは使用、あるいはその両方を制限するよう意図されていない。さらに、先行する「背景技術」または「発明の概要」のセクション、あるいは「発明を実施するための形態」のセクションで提示された、いずれかの明示されたか、または暗示された情報によって制約されるという意図はない。
【0023】
ここで、図面を参照して1つまたは複数の実施形態が説明され、図面全体を通じて、類似する参照番号が、類似する要素を参照するために使用されている。以下の説明では、説明の目的で、1つまたは複数の実施形態を十分に理解できるように、多数の特定の詳細が示されている。しかし、これらの特定の詳細がなくても、さまざまな事例において、1つまたは複数の実施形態が実践され得るということは明らかである。本出願の図面が例示の目的でのみ提供されており、そのため、各図面が一定の縮尺で描かれていないということに注意する。
【0024】
本明細書で開示されたさまざまな図に示されている本開示の実施形態が、単に説明のためであり、そのため、そのような実施形態のアーキテクチャが本明細書に示されているシステム、デバイス、またはコンポーネント、あるいはその組み合わせに限定されないということが、理解されるべきである。
【0025】
図1は、本明細書に記載された1つまたは複数の実施形態に従って、量子コンピューティング・デバイス140の動作のための環境180の安定性の側面を確立して維持することができる例示的な非限定的デバイス100の側面図を示している。各実施形態で採用されている類似する要素またはプロセスあるいはその両方の説明の繰り返しは、簡潔にするために省略されている。1つまたは複数の実施形態では、デバイス100は、量子コンピューティング・デバイス140の動作のための環境180の温度条件を確立して維持することができる極低温デバイス105を含むことができる。一部の実施形態では、極低温デバイス105は、層150A~Eを含むことができ、層150Eが極低温プレート110に結合されている。他の層は、
図1に示されていないが、極低温プレートに結合されてもよい。実施形態では、環境180の温度は、極低温プレート110への熱的暴露によって変更されることができる。
【0026】
前述したように、量子コンピューティング・デバイス140の一部の実装は、動作のために、環境180の特定の条件が維持されることを必要とする可能性があり、それらの条件のうちの1つは、極低温環境である。例えば、低温環境は、量子コンピューティング・デバイス140の量子ビット状態の励起に基づく不要な不安定性を低減することができる。
【0027】
複数の実施形態によれば、量子コンピューティング・デバイス140は、量子コンピュータ、量子プロセッサ、量子シミュレータ、量子ハードウェア、量子チップ(例えば、半導体デバイス上に組み立てられた超伝導回路)、量子チップの1つまたは複数の量子ビット、または別の量子コンピューティング・デバイス、あるいはその組み合わせを含むが、これらに限定されない、1つまたは複数の量子コンピューティング・デバイスを含むことができる。不安定な熱環境内の量子コンピューティング・デバイス140は、例えば、デバイスの量子ビットのコヒーレンス時間を制限することによって、デバイスの動作を制限する可能性がある。下でさらに説明されるように、1つまたは複数の実施形態は、デバイスの熱的安定性を改善することによって、量子コンピューティング・デバイスの動作を改善することができる。これらの利点を実現するために1つまたは複数の実施形態によって使用されることができる1つの方法は、例えば、量子コンピューティング・デバイス140を、熱伝導材料で満たされた筐体に取り付けることによって、極低温冷却への量子ビットの暴露を増やすことができる。
【0028】
本明細書において使用されるとき、極低温デバイス105は、さまざまな方法で量子コンピューティング・デバイス140の動作のための極低温環境180を提供できる可能性がある現在および将来のデバイスに関する一般用語である。1つまたは複数の実施形態によって使用されることができる例示的な極低温デバイス105は、クライオスタット・デバイス、極低温冷凍機デバイス、および希釈冷凍機デバイスを含むことができるが、これらに限定されない。
【0029】
一部の実装では、極低温デバイス105は、量子コンピューティング・デバイス140を熱化するために使用されることができる極低温環境180をある層(例えば、層150E)で得ることができるまで環境を漸進的に冷却するために、結合されることができる冷却要素の2つ以上の層を備えることができる(例えば、層150Aから150Eに横断するときに、より低温になる(160))。図に示されているような例では、最も低温の層150Eが極低温プレート110に隣接し、熱的に結合される。一部の実施形態では、極低温プレート110は、国際標準化機構(ISO:International Organization for Standardization)100のプレートを含むことができる。一部の実施形態では、
図2に示されているように、極低温デバイス105が希釈冷凍機を備えている場合、最も低温の層150Eは混合室を備えることができ、極低温プレート110は混合室プレートを備えることができる。
【0030】
図2は、本明細書に記載された1つまたは複数の実施形態に従って、量子コンピューティング・デバイス140の動作のための環境180の安定性の側面を確立して維持することができる例示的な非限定的デバイス200の側面図を示している。各実施形態で採用されている類似する要素またはプロセスあるいはその両方の説明の繰り返しは、簡潔にするために省略されている。1つまたは複数の実施形態では、デバイス100は、量子コンピューティング・デバイス・マウント270に結合された希釈冷凍機290を含むことができる。
【0031】
希釈冷凍機290の一部の実装では、混合室プレート210は、極低温プレート110に類似する特性を有する。複数の実施形態では、量子コンピューティング・デバイス140に冷却を提供するために、量子コンピューティング・デバイス・マウント270が、混合室プレート210に取り付けられるように適応されることができる。量子コンピューティング・デバイス・マウント270の異なる実装の例が、
図3~6を使用して以下で説明される。
【0032】
この例を続けると、1つまたは複数の実施形態では、混合室プレート210への量子コンピューティング・デバイス・マウント270の取り付けは、量子コンピューティング・デバイス・マウント270を混合室プレート210に熱的に連結し、混合室295にさらに熱的に連結することができる。この例では、層150Eは、極低温プレート110を熱化することができ、次に、極低温プレート110に配置された要素(例えば、量子コンピューティング・デバイス・マウント270)を熱化することができる。以下で説明される実施形態例では、極低温プレート110は、層150Eの動作によって10ミリケルビン(mK)に維持されることができる。
【0033】
熱化プロセスをさらに詳細に検討すると、1つまたは複数の実施形態では、熱的影響155Aによって示されているように、混合室295は混合室プレート210を冷却することができる。混合室プレート210の熱伝導率に基づいて、熱的影響155Bによって示されているように、混合室プレート210は、量子コンピューティング・デバイス・マウント270に熱的に影響を与えることができる。1つの例では、このマウントは、混合室プレート210に貼り付けられた銅製の底面カバーから成ることができる。量子コンピューティング・デバイス140は、一部の実装では、銅製の底面に取り付けられることができる。以下の実施形態では、他の種類のマウントが説明される。
【0034】
熱化プロセスに戻ると、1つまたは複数の実施形態では、混合室プレート210の温度が、量子コンピューティング・デバイス・マウント270から熱を除去することができ、最終的に、これらのコンポーネントの温度を等しくする(例えば、コンポーネントが熱平衡状態になる)。しかし、量子コンピューティング・デバイス・マウント270を選択された温度にすることは、量子コンピューティング・デバイス・マウント270内に取り付けられた量子コンピューティング・デバイス140が同じ温度になることを保証しないということに、注意するべきである。以下の
図2~5は、1つまたは複数の実施形態に従って、層150Eを量子コンピューティング・デバイスに熱的に連結するための異なる方法を示している。
【0035】
図3は、本明細書に記載された1つまたは複数の実施形態に従って、量子コンピューティング・デバイス140の動作のための環境180の安定性の側面を確立して維持することができる例示的な非限定的デバイス300の側面図を示している。各実施形態で採用されている類似する要素またはプロセスあるいはその両方の説明の繰り返しは、簡潔にするために省略されている。1つまたは複数の実施形態では、デバイス100は、混合室プレート210に貼り付けられた筐体320を含むことができる。一部の実施形態では、筐体320は、量子コンピューティング・デバイス140および熱化材料360を取り囲むことができる。
【0036】
本明細書に記載された1つまたは複数の実施形態では、筐体320は混合室プレートに貼り付けられるとして説明されているが、この特徴付けは非限定的であり、結合、熱的結合、接着、締め付け、取り付け、および機械的結合を含むが、これらに限定されない多くの方法によって、これらの要素が近接して配置され得るということに、注意するべきである。これらの方法の多くが、筐体320の構造が混合室プレート210の一部として形成される実施形態を含んでいる
図4を使用して、以下で説明される。筐体320が極低温デバイス105に貼り付けられるため、1つまたは複数の実施形態では、筐体320が極低温筐体と呼ばれることもできるということに、さらに注意するべきである。
【0037】
一般的に言えば、
図3に示されているように、1つまたは複数の実施形態は、量子コンピューティング・デバイス140を筐体320内で取り囲み、筐体320を低温貯蔵器(例えば、混合室プレート210)に貼り付けることによって、量子コンピューティング・デバイス140の動作のための安定した環境180を維持することができる。筐体320は、熱化材料360が量子コンピューティング・デバイス140および筐体320に接触するように、熱化材料360で満たされることができる。量子コンピューティング・デバイス140を熱化することができるプロセスにおいて、1つまたは複数の実施形態では、混合テーブル・プレート210が、筐体320と接触する低温貯蔵器として、この筐体320から熱を除去することができ、次に、熱化材料360から熱を除去し、その後、量子コンピューティング・デバイス140から直接熱を除去する。
【0038】
この方法は、筐体320の内部の熱化材料360と量子コンピューティング・デバイス140の間の接触に少なくとも基づいて、量子コンピューティング・デバイス140の熱化を向上させることができる。追加の詳細およびこの一般的方法の変形が、
図4~5を使用して以下で説明される。熱化材料360を筐体320に供給する実施形態例が、
図6~7を使用して以下で説明され、
図8の説明は、筐体320内の量子コンピューティング・デバイス140への信号線を確立するための例示的な方法を示している。
【0039】
図4~5は、前述した一般的方法のより詳細な説明を示しており、
図4は筐体320および熱化材料360の詳細に重点を置いており、
図5は量子コンピューティング・デバイス・マウント430の1つまたは複数の実施形態を説明しており、このマウントは、筐体320の内部の量子コンピューティング・デバイス140を熱化材料360と接触して有利に方向付けるように複数の方法で適応されている。
【0040】
図4は、本明細書に記載された1つまたは複数の実施形態に従って、量子コンピューティング・デバイスの動作のための環境180の安定性の側面を確立して維持することができる例示的な非限定的デバイス400の側面断面図を示している。各実施形態で採用されている類似する要素またはプロセスあるいはその両方の説明の繰り返しは、簡潔にするために省略されている。1つまたは複数の実施形態では、デバイス400は、締め具470A~Bによって混合室プレート210に貼り付けられた筐体320、および筐体320を密封するためのカバー425を含むことができる。多くの実施形態では、筐体320は、筐体320の内部の量子コンピューティング・デバイス140を固定する量子コンピューティング・デバイス・マウント430を含むことができる。
図5は、量子コンピューティング・デバイス140を固定する量子コンピューティング・デバイス・マウント430の1つまたは複数の実施形態を、量子コンピューティング・デバイス・マウント430の異なる実施形態の詳細と共に示している。
【0041】
図4に示されているように、1つまたは複数の実施形態では、混合室プレート210から熱的影響を受け取るために、筐体320は、混合室プレート210に貼り付けられることができる。締め具470A~Bが示されているが、筐体320を混合室プレート210に貼り付けるために、接着剤または3つ以上の締め具の使用を含む他の方法が使用され得るということが理解されるべきである。代替の実施形態では、筐体320は、混合室プレート210から分離したデバイスである代わりに、混合室プレート210の一部として一体的に形成されることができる。
【0042】
一部の実施形態では、本明細書において説明されたか、または図に示されたさまざまな実施形態の1つまたは複数の要素は、さまざまな材料を使用して製造されることができる。例えば、本明細書において説明されたか、または図に示された筐体320、量子コンピューティング・デバイス140、量子コンピューティング・デバイス・マウント270、およびこれらのコンポーネントのさまざまな実施形態は、導電材料、半導体材料、超伝導材料、誘電体材料、ポリマー材料、有機材料、無機材料、非導電材料、または筐体320に関して前述した技術のうちの1つまたは複数で利用され得る別の材料、あるいはその組み合わせに加えて、以下で説明されるその他の要素を含むが、これらに限定されない1つまたは複数の異なる材料区分の材料を使用して製造されることができる。
【0043】
1つまたは複数の実施形態では、筐体320はさまざまな材料から成ることができ、これらの材料は、熱化材料360として選択された材料を格納するための容量、材料の熱伝導率、および量子コンピューティング・デバイス140に必要な動作環境180の条件下での材料の特性を含むが、これらに限定されない要因に基づいて選択される。1つまたは複数の実施形態で使用され得る例示的な材料は銅であるが、これは非限定的であり、その他の材料が選択されることができる。
【0044】
次に、熱化材料360の特性および組成について検討すると、1つまたは複数の実施形態では、量子コンピューティング・デバイス140から熱を除去するために、さまざまな種類およびさまざまな量の熱化材料360が筐体320の内部に配置されることができる。1つまたは複数の実施形態では、熱化材料360は、極低温デバイスを量子コンピューティング・デバイス140に熱的に連結するように適応されることができる。例えば、混合室プレート210は、極低温デバイス105(例えば、希釈冷凍機290)からの低温の貯蔵器として、量子コンピューティング・デバイス・マウント270に取り付けられた量子コンピューティング・デバイス140に熱的に影響を与えることができる。熱化材料360と量子コンピューティング・デバイス140の間の相互作用を含む、この熱的影響を説明する異なる実施形態が、以下の
図5の説明と共に含まれる。
【0045】
当業者は、本明細書における説明を前提として、異なる材料が熱化材料360として使用され得るということを理解するであろう。超流動ヘリウムは、本明細書に記載された1つまたは複数の実施形態によって使用され得る熱化材料360の一例である。3He、4He、または3He/4He混合物を含むが、これらに限定されない、さまざまな組成の超流動ヘリウムが使用されることができる。本明細書における説明を前提として、材料の熱伝導率、および量子コンピューティング・デバイス140に必要な動作環境180の条件下での材料の特性を含むが、これらに限定されない要因に基づいて、1つまたは複数の実施形態で使用するための熱化材料360が選択され得るということが、当業者によって理解されるであろう。前述の超流動ヘリウムの種類に加えて、個別に、または組み合わせて熱化材料360として使用されることもできる材料は、アルゴン、キセノン、窒素、および非超流動ヘリウムを含むことができるが、これらに限定されない。当業者は、さまざまな熱化材料が、さまざまな種類の極低温デバイス105での使用に適しているということを理解するであろう。
【0046】
熱化材料360として使用できる材料は、液体状態および固体状態を含むさまざまな状態で、材料を幅広く含むこともできる。本明細書に記載された実施形態のさまざまな要素が、熱化材料360が使用される状態に基づいて熱化材料360を追加、格納、および除去するように変更され、適応されるということが、さらに理解されるであろう。
【0047】
熱化材料360が液体状態である例の場合、当業者は、本明細書における説明を前提として、液体熱化材料360を格納することを容易にするために、選択された状態で熱化材料360を維持するために必要な圧力の下で耐えることができる漏れ止めシールを使用して筐体320が密封され得るということを理解するであろう。加えて、選択された方法は、液体熱化材料360を筐体320に供給するため、および筐体320から放出するために、使用されることができる。以下の
図6~7は、1つまたは複数の実施形態によって使用されることができる熱化材料360を処理するための異なる方法の詳細な例を示している。
【0048】
代替の例では、固体熱化材料360が使用されることができる。固体熱化材料として使用されることができる材料は、加圧4Heまたは3Heを含むが、これらに限定されない。1つまたは複数の実施形態では、固体熱化材料360は、筐体320内に配置されることができ、筐体320の衝撃または移動に基づいて移動されることができない。代替の実施形態では、液体熱化材料360は、1つまたは複数の実施形態において、液体熱化材料360の大きい移動を防ぐことができるように、筐体320を満たすことができる。
【0049】
図4の説明に戻り、1つまたは複数の実施形態では、カバー425によって筐体320が閉じられ、密封されることができ、カバー425は、一部の実施形態では、筐体320のために選択された材料(例えば、銅)に類似する熱伝導材料から成る。カバー425は、筐体320に貼り付けられるように、一部の実施形態では、締め具(例えば、締め具426)を使用して固定されることができる。加えて、前述したように、熱化材料360を異なる状態で格納するために、筐体320を密封し、漏れないようにする必要があることがある。筐体320上でカバー425を密封するためのさまざまな方法が使用されることができ、その非限定的な例はインジウム・シール475である。説明の便宜のために、筐体320に不規則に貼り付けられたインジウム・シール475が示されていることに注意するべきである。好ましい実施形態では、インジウム・シール475は、連続的な環を形成することができ、筐体320の表面とカバー425の表面の間で圧縮されることができる。1つまたは複数の実施形態では、カバー425は、円形であることができ、筐体320のいずれかの面のうちの1つまたは複数を密封するためにさらに使用されることができる。
【0050】
図5は、本明細書に記載された1つまたは複数の実施形態に従って、量子コンピューティング・デバイス140の動作のための環境180の安定性の側面を確立して維持することができる例示的な非限定的デバイス500の側面図を示している。各実施形態で採用されている類似する要素またはプロセスあるいはその両方の説明の繰り返しは、簡潔にするために省略されている。1つまたは複数の実施形態では、デバイス400は、量子コンピューティング・デバイス140が固定されている量子コンピューティング・デバイス・マウント430を含むことができる。
【0051】
量子コンピューティング・デバイス・マウント430は、ホルダー545A~B、回路基板の一部540A~B、および量子コンピューティング・デバイス140を含むことができる。ホルダー545A~Bおよび回路基板540A~Bのうちの1つまたは両方が量子コンピューティング・デバイス140の端を包み込むことができ、デバイス400の2次元断面がこれらの部分を描いていないということが、理解されるべきである。
【0052】
1つまたは複数の実施形態では、量子コンピューティング・デバイス・マウント430の設計の特定の態様は、量子コンピューティング・デバイス140と混合室プレート210の間の熱的連結を改善するように適応される。特に、1つまたは複数の実施形態は、2つの材料間の界面の面積に反比例して変化するカピッツァ抵抗を減らすように適応されることができる。この例では、材料間の熱抵抗がさらに減らされた2つの材料が、1つまたは複数の実施形態に従って、材料360および量子コンピューティング・デバイス140を熱化する。この目的で、1つまたは複数の実施形態では、量子コンピューティング・デバイス・マウント430および熱化材料360の使用は、以下で説明される複数の有用な特性を有する。
【0053】
熱化材料360が液体状態である実施形態例では、量子コンピューティング・デバイス140が液体熱化材料に部分的または完全に浸されるように、液体が筐体320を満たすことができる。示された実施形態では、量子コンピューティング・デバイス・マウント430が、液体熱化材料360への暴露を最大化するように形成されるということに注目することができる。例えば、量子コンピューティング・デバイス140の両面がさらされるということが、理解されることができる。これは、量子コンピューティング・デバイス140が、片面のみがさらされて混合室プレート210に取り付けられる、
図2を使用して上で説明された方法とは対照的であり、例えば、
図5の方法は、量子コンピューティング・デバイス140のさらされる表面積をほぼ2倍にすることによって、カピッツァ抵抗をかなり減らす。
【0054】
このための別の特徴は、他の方法(例えば、
図2を使用して上で説明された例)と比較して、量子コンピューティング・デバイス140を固定するために必要な表面積の量が減らされるように、ホルダー545A~Bおよび回路基板540A~Bが形成されることである。例えば、ラベル580は、量子コンピューティング・デバイス140のごく一部の暴露が、このデバイスを固定するために遮られている、量子コンピューティング・デバイス・マウント430の一部を強調している。
【0055】
図4~5の方法によって容易にされ得る1つまたは複数の実施形態の別の態様は、量子コンピューティング・デバイス140のさらされた表面上の量子ビット(例えば、量子ビット590)が、液体熱化材料360に直接接触することができるということである。一部の環境では、量子ビット590とのこの直接接触が、量子ビットの熱化を促進することができる。
【0056】
図6は、本明細書に記載された1つまたは複数の実施形態に従って、筐体320および熱化材料360を使用し、量子コンピューティング・デバイス140の動作のための環境180の安定性の側面を確立して維持することができる例示的な非限定的デバイス600の側面図を示している。各実施形態で採用されている類似する要素またはプロセスあるいはその両方の説明の繰り返しは、簡潔にするために省略されている。デバイス600は、混合室プレート210に貼り付けられた筐体320を含むことができる。
【0057】
筐体320は、量子コンピューティング・デバイス・マウント430および熱化材料360を含んでおり、液体の流れを制御できるバルブ630付きの開口部を含んでいる。バルブ630で筐体320に結合された一体構造の中空体620は、混合室プレート210を通る流体経路を定める。1つまたは複数の実施形態では、熱化液体360は、中空体620を介して筐体320に供給され、筐体320から放出されることができ、バルブ630が、筐体320の内外への材料の横断を容易にする。したがって、追加の熱化材料360を筐体320に最初に満たすか、または追加するために、バルブ630が開かれることができ、熱化材料360がラベル670で追加されることができる。1つまたは複数の実施形態では、室温の環境内で、中空体620を介して熱化材料が追加され、除去されることができるということに注意するべきである。1つまたは複数の実施形態では、中空体620は、筐体320内の圧力を制御するためにさらに使用されることができる。
【0058】
熱化材料360の供給および放出に関して、熱化材料の材料および状態が、中空体620を通過することができなくてよく、異なる方法(例えば、上で説明された筐体320のカバー425の除去)が使用されることができるということに注意するべきである。
図7は、本明細書に記載された1つまたは複数の実施形態に従って、筐体320および熱化材料360を使用し、量子コンピューティング・デバイス140の動作のための環境180の安定性の側面を確立して維持することができる例示的な非限定的デバイス700の側面図を示している。各実施形態で採用されている類似する要素またはプロセスあるいはその両方の説明の繰り返しは、簡潔にするために省略されている。デバイス600は、希釈冷凍機290に取り付けられ混合室プレート210に貼り付けられた筐体320を含むことができる。筐体320は、量子コンピューティング・デバイス・マウント430および熱化材料360を含んでいる。
図1を使用して上で説明されたように、希釈冷凍機290は層150A~Eを含んでおり、層150Eに向かう横断が、より低温(160)の環境に関連付けられている。
【0059】
図7は、本明細書に記載された1つまたは複数の実施形態に従って、筐体320および熱化材料360を使用し、量子コンピューティング・デバイス140の動作のための環境180の安定性の側面を確立して維持することができる例示的な非限定的デバイス700の側面図を示している。各実施形態で採用されている類似する要素またはプロセスあるいはその両方の説明の繰り返しは、簡潔にするために省略されている。デバイス600は、希釈冷凍機290に取り付けられ混合室プレート210に貼り付けられた筐体320を含むことができる。筐体320は、量子コンピューティング・デバイス・マウント430および熱化材料360を含んでいる。
図1を使用して上で説明されたように、希釈冷凍機290は層150A~Eを含んでおり、層150Eに向かう横断が、より低温(160)の環境に関連付けられている。
【0060】
図6を使用して上で説明されたように、1つまたは複数の実施形態では、筐体320は、液体の流れを制御できるバルブ630付きの開口部を含むことができる。バルブ630で筐体320に結合された一体構造の中空体620は、流体経路を定めることができる。この例では、中空体620は、室温775にある開口部770から層150A~Eを横断する。
【0061】
図6を使用して上で説明されたように、熱化材料760が開口部770で追加されるときに、一部の環境では、筐体320が熱化材料360で満たされていることまたは別の理由に起因して、熱化材料760が中空体620を満たす可能性がある。例では、材料の高さ720は、この例では中空体620を満たしている熱化材料760の量に対応する。さらにこの例では、希釈冷凍機290は、正常状態で動作しており、例えば混合室層150Eが、混合室プレート210の温度を量子コンピューティング・デバイス140の動作温度に低下させる。
【0062】
1つまたは複数の実施形態では、熱化材料760は高い熱伝導率を有しているため、熱化材料760が材料の高さ720で中空体620内に残された場合、これによって、より暖かい層(例えば、層150C)からの熱が、より低温(160)の層(例えば、層150E)の材料によって熱的に影響を受けることを可能にすることがある。希釈冷凍機290の高さ間のこの熱相互作用は、熱短絡730と呼ばれ、希釈冷凍機290の動作に悪影響を与える可能性がある。1つまたは複数の実施形態がこの熱短絡730を防ぐことができる1つの方法は、バルブ630を使用して熱化材料760が筐体360から放出されるのを防いだ後に、例えば吸引または任意のその他の同等の方法によって、過剰な熱化材料760を中空体620から除去することである。
【0063】
筐体320、量子コンピューティング・デバイス140、量子コンピューティング・デバイス・マウント270、およびこれらのコンポーネントを含む、本明細書において説明された要素のさまざまな実施形態が、技術的改良を、上で識別されたさまざまな技術に関連付けられたシステム、デバイス、コンポーネント、動作ステップ、または処理ステップ、あるいはその組み合わせに提供できるということに、注意するべきである。例えば、前述したように、量子コンピューティング・デバイス140を熱化材料360に浸すことによって、1つまたは複数の実施形態は、熱化材料360と接触する量子コンピューティング・デバイス140の表面積を増やすことができる。さらされる表面積におけるこの増加は、熱抵抗の減少などの要因によって、熱化プロセスを改善することができる。
【0064】
図8は、本明細書に記載された1つまたは複数の実施形態に従って、筐体320の外部から筐体320の内部の量子コンピューティング・デバイス140への信号線810A~Cの確立を容易にすることができる例示的な非限定的システム800の上面図を示している。各実施形態で採用されている類似する要素またはプロセスあるいはその両方の説明の繰り返しは、簡潔にするために省略されている。システム800は、混合室プレート210と、熱化材料360および量子コンピューティング・デバイス・マウント430を含む筐体320とを含んでいる。1つまたは複数の実施形態では、筐体320はフィードスルー・アクセス・ポイント(feedthrough access points)820A~Cを含むことができ、信号線810A~Cおよび内部アクセス線830A~Cが、接続ポイント840で回路基板540Aに接続している。単に説明の目的で、3つの信号線810A~Cおよび3つのアクセス・ポイント820A~Cが示されているが、筐体320への4つ以上の信号線およびアクセス・ポイントを含むことが可能である。
【0065】
1つまたは複数の実施形態は、本明細書に記載されたさまざまな方法を、室温の電子コンポーネントへの外部接続も可能にしながら、量子ビットの冷却を最大化しようとする構成で実装することができる。一部の実施形態では、筐体320が密封されることができるため、これらの方法を使用して、外部コンポーネント(例えば、室温の電子機器)と密封された筐体320の内部の過冷却された量子コンピュータ140との間の信号線を確立することができる。
【0066】
1つまたは複数の実施形態によって使用され得る例示的な種類の信号は、直流(DC)でエンコードされた信号およびマイクロ波信号を含むが、これらに限定されない。いくつかの実施形態において、信号線810A~Cおよび内部アクセス線830A~Cは、電流または電気信号あるいはその両方が流れることができる導電性コンポーネントを備えることができる。例えば、信号線810A~Cおよび内部アクセス線830A~Cは、ワイヤ、トレース、伝送線、共振バス、導波路、または電流が流れることができるその他のコンポーネント、あるいはその組み合わせを含むが、これらに限定されない、導電性コンポーネントを備えることができる。一部の実施形態では、信号線810A~Cおよび内部アクセス線830A~Cは、銅、銅合金(例えば、銅ニッケル)、金、プラチナ、パラジウム、金合金(例えば、金パラジウム)、真ちゅう、あるいは例えば、交流電流、直流電流、もしくは電気信号(例えば、マイクロ波信号)、またはその組み合わせが中継され得る、任意の導電性金属または合金を含むが、これらに限定されない材料を使用して、製造されることができる。
【0067】
1つまたは複数の実施形態によって採用される一部の方法は、極低温フィードスルーを使用して、信号線を筐体320に運ぶことができる。例えば、マイクロ波通信が実装される場合、密封されたマイクロ波フィードスルー820A~Cが使用されることができる。1つまたは複数の実施形態によって使用され得る例示的なコンポーネントは、密封された極低温フィードスルー・コネクタである。
【0068】
一部の実施形態では、本明細書に記載された1つまたは複数の実施形態のさまざまな方法は、さまざまな技術に関連付けられることができる。例えば、本明細書に記載されたさまざまな実施形態は、極低温技術、極低温冷凍機技術、マイクロ波信号搬送波技術、半導体製造技術、プリント基板技術、量子コンピューティング・デバイス技術、量子回路技術、量子ビット技術、回路量子電気力学(回路QED:circuit quantum electrodynamics)技術、量子コンピューティング技術、拡張可能な量子コンピューティング・アーキテクチャ技術、表面符号アーキテクチャ技術、表面符号誤り訂正アーキテクチャ技術、量子ハードウェア技術、またはその他の技術、あるいはその組み合わせに関連付けられることができる。
【0069】
本明細書に記載された1つまたは複数の実施形態によって提供され得るその他の技術的改良は、量子ビット・コヒーレンスの領域、すなわち、量子コンピューティング・デバイス140の量子ビットにおいて、できるだけ長くコヒーレンスを維持することにある。上の
図5の説明で述べたように、量子コンピューティング・デバイス・アセンブリの一部の実施形態の開いた設計、および筐体320内の熱化材料360の作用のため、量子論理を使用してプログラムされた1つまたは複数の量子ビット590が、熱化材料と接触することができる。代替の方法では、量子ビット590は、例えば、量子コンピューティング・デバイス・マウント270および量子コンピューティング・デバイス140の構造材料を介して量子ビット590を熱化する、追加の構造および材料を介して、場合によっては予測できないほどの熱化を受けた。
【0070】
さらに、一部の実施形態では、
図8を使用して以下で説明される量子コンピューティング・デバイスと通信するための方法は、量子コンピューティング・デバイス(例えば、量子プロセッサ、量子ハードウェアなど)、回路QEDシステム、または超伝導量子回路、あるいはその組み合わせに関連する非量子処理ユニットに対する技術的改良を実現することができる。例えば、前述したように、1つまたは複数の実施形態は、マイクロ波信号を量子コンピューティング・デバイス140に送信するために利用され得る独立したマイクロ波信号送信経路(例えば、フィードスルー820A~C)の量の増加を実現することができる。この例では、そのような量子コンピューティング・デバイスは量子プロセッサを備えることができ、そのような量子プロセッサに送信され得る独立したマイクロ波信号を提供することによって、本開示のデバイスは、そのような量子プロセッサの性能向上(例えば、誤り訂正の改善、処理時間の改善など)を促進することができる。一部の実施形態では、従来のコンピュータのハードウェアおよびソフトウェアに接続された筐体320内の量子コンピューティング・デバイス140のさまざまな実装は、抽象的ではない、人間による一連の精神的活動として実行され得ない本質的に高度に技術的な問題を解決することができる。例えば、前述したように、上記の有線および無線のフィードスルーの方法は、本明細書に記載された実施形態に従って、マイクロ波信号およびDC信号を量子コンピューティング・デバイス140に送信することを容易にする。
【0071】
本明細書に記載された1つまたは複数の実施形態が、人間の知性において再現され得ず、人間によって実行され得ない電気的コンポーネント、機械的コンポーネント、および回路のさまざまな組み合わせを利用できるということが、理解されるべきである。例えば、マイクロ波信号を量子コンピューティング・デバイス140の量子ビット590に送信することは、人間の知性の能力を超えている。例えば、
図8で説明された方法を使用して送信されるデータの量、そのようなデータを送信する速度、または送信されるデータの型、あるいはその組み合わせは、同じ期間にわたって人間の知性によって送信され得る量より多いか、速度より速いか、またはデータ型とは異なるデータ型であるか、あるいはその組み合わせであることができる。
【0072】
図9は、本明細書に記載された1つまたは複数の実施形態に従って、量子コンピューティング・デバイスの筐体内で熱化材料を使用することを容易にすることができる例示的な非限定的コンピュータ実装方法900のフロー図を示している。各実施形態で採用されている類似する要素またはプロセスあるいはその両方の説明の繰り返しは、簡潔にするために省略されている。
【0073】
一部の実施形態では、902で、コンピュータ実装方法900が、筐体を形成することを含むことができる。1つの例では、本明細書において説明されたように、筐体(例えば、筐体320)が、例えば、量子コンピューティング・デバイス140の動作環境180内で機能することができる熱伝導材料(例えば、銅)から形成されることができる。
【0074】
一部の実施形態では、904で、コンピュータ実装方法900が、量子コンピューティング・デバイスを筐体内に配置することを含むことができる。1つの例では、量子コンピューティング・デバイス140は、筐体320の内部に配置されることができる。さらなる実施形態では、熱化を促進するために、量子コンピューティング・デバイス140が、量子コンピューティング・デバイス・マウント430にしっかりと取り付けられることができる。
【0075】
一部の実施形態では、906で、コンピュータ実装方法900が、量子コンピューティング・デバイスを含む筐体に熱化材料を供給することを含むことができ、熱化材料は、極低温デバイスを量子コンピューティング・デバイスに熱的に連結するように適応される。1つの例では、熱化材料360は、開口部770で中空体620に追加され、中空体620を通過して、筐体320に入ることができる。この例では、熱化剤(熱導体)が、量子コンピューティング・デバイス140を浸し、希釈冷凍機の混合室プレート210に熱的に結合された筐体320と接触するように筐体320を満たすため、量子コンピューティング・デバイス140と極低温デバイスの間で、熱的連結が確立された。
【0076】
一部の実施形態では、方法900は、コンピューティング・システム(例えば、
図10に示されており、下で説明される動作環境1000)またはコンピューティング・デバイス(例えば、
図10に示されており、下で説明されるコンピュータ1012)によって実施され得る。非限定的な実施形態例では、そのようなコンピューティング・システム(例えば、動作環境1000)またはそのようなコンピューティング・デバイス(例えば、コンピュータ1012)は、1つまたは複数のプロセッサと、実行可能な命令を格納することができる1つまたは複数のメモリ・デバイスとを備えることができ、これらの命令は、1つまたは複数のプロセッサによって実行されたときに、
図9に示されている方法900の非限定的な動作を含む、本明細書に記載された動作の実行を容易にすることができる。非限定的な例として、1つまたは複数のプロセッサは、本明細書に記載された動作(例えば、方法900)を実行するよう機能する1つまたは複数のシステムまたは機器あるいはその両方を管理すること、または制御すること、あるいはその両方によって、そのような動作の実行を容易にすることができる。
【0077】
説明を簡単にするために、一連の動作としてコンピュータ実装方法が示され、説明される。本革新技術が、示された動作によって、または動作の順序によって、あるいはその両方によって制限されず、例えば動作が、本明細書において提示されておらず、説明されていない他の動作と共に、さまざまな順序で、または同時に、あるいはその両方で発生できるということが、理解されるべきである。さらに、開示される対象に従ってコンピュータ実装方法を実装するために、示されているすべての動作が必要でなくてもよい。加えて、当業者は、コンピュータ実装方法が、代替として、状態図を介して相互に関連する一連の状態またはイベントとして表され得るということを理解するであろう。そのようなコンピュータ実装方法をコンピュータに輸送または転送するのを容易にするために、以下および本明細書全体を通じて開示されたコンピュータ実装方法を製品に格納できるということが、さらに理解されるべきである。製品という用語は、本明細書において使用されるとき、任意のコンピュータ可読デバイスまたはコンピュータ可読ストレージ媒体からアクセスできるコンピュータ・プログラムを包含するよう意図されている。
【0078】
図10は、開示される対象のさまざまな態様の例示的な背景を示しており、例えば、この図および以下の説明は、1つまたは複数の実施形態に従って、開示される対象のさまざまな態様が実装され得る適切な環境の概要を示すよう意図されている。各実施形態で採用されている類似する要素またはプロセスの説明の繰り返しは、簡潔にするために省略されている。
【0079】
図10は、本明細書に記載された1つまたは複数の実施形態を容易にすることができる例示的な非限定的動作環境のブロック図を示している。本明細書に記載の他の実施形態で使用している同様の要素の繰り返しの説明は、簡潔さのために省略する。
【0080】
図10を参照すると、本開示のさまざまな態様を実装するための適切な動作環境1000は、コンピュータ1012を含むこともできる。コンピュータ1012は、処理ユニット1014、システム・メモリ1016、およびシステム・バス1018を含むこともできる。システム・バス1018は、システム・メモリ1016を含むが、これに限定されないシステム・コンポーネントを、処理ユニット1014に結合する。処理ユニット1014は、さまざまな使用可能なプロセッサのいずれかであることができる。デュアル・マイクロプロセッサおよびその他のマルチプロセッサ・アーキテクチャが、処理ユニット1014として採用されてもよい。システム・バス1018は、ISA(Industrial Standard Architecture)、MCA(Micro-Channel Architecture)、EISA(Enhanced ISA)、IDE(Intelligent Drive Electronics)、VESAローカル・バス(VLB:VESA Local Bus)、PCI(Peripheral Component Interconnect)、カードバス、ユニバーサル・シリアル・バス(USB:Universal Serial Bus)、AGP(Advanced Graphics Port)、Firewire(IEEE 1394)、および小型コンピュータ・システム・インターフェイス(SCSI:Small Computer Systems Interface)を含むが、これらに限定されない、任意のさまざまな使用可能なバス・アーキテクチャを使用する、メモリ・バスもしくはメモリ・コントローラ、ペリフェラル・バスもしくは外部バス、またはローカル・バス、あるいはその組み合わせを含む、複数の種類のバス構造のいずれかであることができる。
【0081】
システム・メモリ1016は、揮発性メモリ1020および不揮発性メモリ1022を含むこともできる。起動中などにコンピュータ1012内の要素間で情報を転送するための基本ルーチンを含んでいる基本入出力システム(BIOS:basic input/output system)が、不揮発性メモリ1022に格納される。コンピュータ1012は、取り外し可能/取り外し不可能な揮発性/不揮発性のコンピュータ・ストレージ媒体を含むこともできる。例えば
図10は、ディスク・ストレージ1024を示している。ディスク・ストレージ1024は、磁気ディスク・ドライブ、フロッピー(R)・ディスク・ドライブ、テープ・ドライブ、Jazドライブ、Zipドライブ、LS-100ドライブ、フラッシュ・メモリ・カード、またはメモリ・スティックなどの、ただしこれらに限定されない、デバイスを含むこともできる。ディスク・ストレージ1024は、ストレージ媒体を、別々に、または他のストレージ媒体と組み合わせて、含むこともできる。システム・バス1018へのディスク・ストレージ1024の接続を容易にするために、インターフェイス1026などの、取り外し可能または取り外し不可能なインターフェイスが通常は使用される。
図10は、ユーザと、適切な動作環境1000において説明された基本的なコンピュータ・リソースとの間の仲介として機能するソフトウェアも示している。そのようなソフトウェアは、例えば、オペレーティング・システム1028を含むこともできる。ディスク・ストレージ1024に格納できるオペレーティング・システム1028は、コンピュータ1012のリソースを制御し、割り当てるように動作する。
【0082】
システムのアプリケーション1030は、例えばシステム・メモリ1016またはディスク・ストレージ1024のいずれかに格納されたプログラム・モジュール1032およびプログラム・データ1034を介して、オペレーティング・システム1028によるリソースの管理を利用する。さまざまなオペレーティング・システムまたはオペレーティング・システムの組み合わせを使用して本開示が実装され得るということが、理解されるべきである。ユーザは、入力デバイス1036を介して、コマンドまたは情報をコンピュータ1012に入力する。入力デバイス1036は、マウス、トラックボール、スタイラス、タッチ・パッド、キーボード、マイクロホン、ジョイスティック、ゲーム・パッド、衛星放送受信アンテナ、スキャナ、TVチューナー・カード、デジタル・カメラ、デジタル・ビデオ・カメラ、Webカメラなどのポインティング・デバイスを含むが、これらに限定されない。これらおよびその他の入力デバイスは、インターフェイス・ポート1038を介してシステム・バス1018を通り、処理ユニット1014に接続する。インターフェイス・ポート1038は、例えば、シリアル・ポート、パラレル・ポート、ゲーム・ポート、およびユニバーサル・シリアル・バス(USB)を含む。出力デバイス1040は、入力デバイス1036と同じ種類のポートの一部を使用する。このようにして、例えば、USBポートを使用して、入力をコンピュータ1012に提供し、コンピュータ1012から出力デバイス1040に情報を出力できる。出力アダプタ1042は、特殊なアダプタを必要とする出力デバイス1040の中でも特に、モニタ、スピーカ、およびプリンタのような何らかの出力デバイス1040が存在することを示すために提供される。出力アダプタ1042の例としては、出力デバイス1040とシステム・バス1018の間の接続の手段を提供するビデオ・カードおよびサウンド・カードが挙げられるが、これらに限定されない。リモート・コンピュータ1044などの、その他のデバイスまたはデバイスのシステムあるいはその両方が、入力機能および出力機能の両方を提供するということに、注意するべきである。
【0083】
コンピュータ1012は、リモート・コンピュータ1044などの1つまたは複数のリモート・コンピュータへの論理接続を使用して、ネットワーク環境内で動作できる。リモート・コンピュータ1044は、コンピュータ、サーバ、ルータ、ネットワークPC、ワークステーション、マイクロプロセッサベースの機器、ピア・デバイス、またはその他の一般的なネットワーク・ノードなどであることができ、通常は、コンピュータ1012に関連して説明された要素の多くまたはすべてを含むこともできる。簡潔にするために、メモリ・ストレージ・デバイス1046のみが、リモート・コンピュータ1044と共に示されている。リモート・コンピュータ1044は、ネットワーク・インターフェイス1048を介してコンピュータ1012に論理的に接続されてから、通信接続1050を介して物理的に接続される。ネットワーク・インターフェイス1048は、ローカル・エリア・ネットワーク(LAN:local-area networks)、広域ネットワーク(WAN:wide-area networks)、セルラー・ネットワークなどの、有線通信ネットワークまたは無線通信ネットワークあるいはその両方を包含する。LAN技術は、光ファイバ分散データ・インターフェイス(FDDI:Fiber Distributed Data Interface)、銅線分散データ・インターフェイス(CDDI:Copper Distributed Data Interface)、イーサネット(R)、トークン・リングなどを含む。WAN技術は、ポイントツーポイント・リンク、総合デジタル通信網(ISDN:Integrated Services Digital Networks)およびその変形などの回路交換網、パケット交換網、およびデジタル加入者回線(DSL:Digital Subscriber Lines)を含むが、これらに限定されない。通信接続1050は、ネットワーク・インターフェイス1048をシステム・バス1018に接続するために採用されたハードウェア/ソフトウェアのことを指す。通信接続1050は、説明を明確にするために、コンピュータ1012内に示されているが、コンピュータ1012の外部に存在することもできる。ネットワーク・インターフェイス1048に接続するためのハードウェア/ソフトウェアは、単に例示の目的で、通常の電話の等級のモデム、ケーブル・モデム、およびDSLモデムを含むモデム、ISDNアダプタ、ならびにイーサネット(R)・カードなどの、内部および外部の技術を含むこともできる。
【0084】
本発明は、任意の可能な統合の技術的詳細レベルで、システム、方法、装置、またはコンピュータ・プログラム製品、あるいはその組み合わせであってよい。コンピュータ・プログラム製品は、プロセッサに本発明の態様を実行させるためのコンピュータ可読プログラム命令を含んでいるコンピュータ可読ストレージ媒体を含むことができる。コンピュータ可読ストレージ媒体は、命令実行デバイスによって使用するための命令を保持および格納できる有形のデバイスであることができる。コンピュータ可読ストレージ媒体は、例えば、電子ストレージ・デバイス、磁気ストレージ・デバイス、光ストレージ・デバイス、電磁ストレージ・デバイス、半導体ストレージ・デバイス、またはこれらの任意の適切な組み合わせであることができるが、これらに限定されない。コンピュータ可読ストレージ媒体のさらに具体的な例の非網羅的リストは、ポータブル・コンピュータ・ディスケット、ハード・ディスク、ランダム・アクセス・メモリ(RAM:random access memory)、読み取り専用メモリ(ROM:read-only memory)、消去可能プログラマブル読み取り専用メモリ(EPROM:erasable programmable read-only memoryまたはフラッシュ・メモリ)、スタティック・ランダム・アクセス・メモリ(SRAM:static random access memory)、ポータブル・コンパクト・ディスク読み取り専用メモリ(CD-ROM:compact disc read-only memory)、デジタル・バーサタイル・ディスク(DVD:digital versatile disk)、メモリ・スティック、フロッピー(R)・ディスク、パンチカードまたは命令が記録されている溝の中の隆起構造などの機械的にエンコードされるデバイス、およびこれらの任意の適切な組み合わせを含むこともできる。本明細書において使用されるとき、コンピュータ可読ストレージ媒体は、それ自体が、電波またはその他の自由に伝搬する電磁波、導波管またはその他の送信媒体を伝搬する電磁波(例えば、光ファイバ・ケーブルを通過する光パルス)、あるいはワイヤを介して送信される電気信号などの一過性の信号であると解釈されるべきではない。
【0085】
本明細書に記載されたコンピュータ可読プログラム命令は、コンピュータ可読ストレージ媒体から各コンピューティング・デバイス/処理デバイスへ、またはネットワーク(例えば、インターネット、ローカル・エリア・ネットワーク、広域ネットワーク、または無線ネットワーク、あるいはその組み合わせ)を介して外部コンピュータまたは外部ストレージ・デバイスへダウンロードされ得る。このネットワークは、銅伝送ケーブル、光伝送ファイバ、無線送信、ルータ、ファイアウォール、スイッチ、ゲートウェイ・コンピュータ、またはエッジ・サーバ、あるいはその組み合わせを備えることができる。各コンピューティング・デバイス/処理デバイス内のネットワーク・アダプタ・カードまたはネットワーク・インターフェイスは、コンピュータ可読プログラム命令をネットワークから受信し、それらのコンピュータ可読プログラム命令を各コンピューティング・デバイス/処理デバイス内のコンピュータ可読ストレージ媒体に格納するために転送する。本発明の動作を実行するためのコンピュータ可読プログラム命令は、アセンブラ命令、命令セット・アーキテクチャ(ISA:instruction-set-architecture)命令、マシン命令、マシン依存命令、マイクロコード、ファームウェア命令、状態設定データ、集積回路のための構成データ、あるいは、Smalltalk(R)、C++などのオブジェクト指向プログラミング言語、および「C」プログラミング言語または同様のプログラミング言語などの手続き型プログラミング言語を含む1つまたは複数のプログラミング言語の任意の組み合わせで記述されたソース・コードまたはオブジェクト・コードであることができる。コンピュータ可読プログラム命令は、ユーザのコンピュータ上で全体的に実行すること、ユーザのコンピュータ上でスタンドアロン・ソフトウェア・パッケージとして部分的に実行すること、ユーザのコンピュータ上およびリモート・コンピュータ上でそれぞれ部分的に実行すること、あるいはリモート・コンピュータ上またはサーバ上で全体的に実行することができる。後者のシナリオでは、リモート・コンピュータは、ローカル・エリア・ネットワーク(LAN)または広域ネットワーク(WAN)を含む任意の種類のネットワークを介してユーザのコンピュータに接続することができ、または接続は、(例えば、インターネット・サービス・プロバイダを使用してインターネットを介して)外部コンピュータに対して行われ得る。一部の実施形態では、本発明の態様を実行するために、例えばプログラマブル論理回路、フィールドプログラマブル・ゲート・アレイ(FPGA:field-programmable gate arrays)、またはプログラマブル・ロジック・アレイ(PLA:programmable logic arrays)を含む電子回路は、コンピュータ可読プログラム命令の状態情報を利用することによって、電子回路をカスタマイズするためのコンピュータ可読プログラム命令を実行することができる。
【0086】
本発明の態様は、本明細書において、本発明の実施形態に従って、方法、装置(システム)、およびコンピュータ・プログラム製品のフローチャート図またはブロック図あるいはその両方を参照して説明される。フローチャート図またはブロック図あるいはその両方の各ブロック、ならびにフローチャート図またはブロック図あるいはその両方に含まれるブロックの組み合わせが、コンピュータ可読プログラム命令によって実装され得るということが理解されるであろう。これらのコンピュータ可読プログラム命令は、コンピュータまたはその他のプログラム可能なデータ処理装置のプロセッサを介して実行される命令が、フローチャートまたはブロック図あるいはその両方のブロックに指定される機能/動作を実施する手段を作り出すべく、汎用コンピュータ、専用コンピュータ、または他のプログラム可能なデータ処理装置のプロセッサに提供されてマシンを作り出すものであることができる。これらのコンピュータ可読プログラム命令は、命令が格納されたコンピュータ可読ストレージ媒体がフローチャートまたはブロック図あるいはその両方のブロックに指定される機能/動作の態様を実施する命令を含んでいる製品を備えるように、コンピュータ可読ストレージ媒体に格納され、コンピュータ、プログラム可能なデータ処理装置、または他のデバイス、あるいはその組み合わせに特定の方式で機能するように指示できるものであることもできる。コンピュータ可読プログラム命令は、コンピュータ上、その他のプログラム可能な装置上、またはその他のデバイス上で実行される命令が、フローチャートまたはブロック図あるいはその両方のブロックに指定される機能/動作を実施するように、コンピュータ、その他のプログラム可能なデータ処理装置、またはその他のデバイスに読み込むこともでき、それによって、一連の操作可能な動作を、コンピュータ上、その他のプログラム可能な装置上、またはコンピュータ実装プロセスを生成するその他のデバイス上で実行させる。
【0087】
図内のフローチャートおよびブロック図は、本発明のさまざまな実施形態に従って、システム、方法、およびコンピュータ・プログラム製品の可能な実装のアーキテクチャ、機能、および動作を示す。これに関連して、フローチャートまたはブロック図内の各ブロックは、規定された論理機能を実装するための1つまたは複数の実行可能な命令を含んでいる、命令のモジュール、セグメント、または部分を表すことができる。一部の代替の実装では、ブロックに示された機能は、図に示された順序とは異なる順序で発生することができる。例えば、連続して示された2つのブロックは、実際には、含まれている機能に応じて、実質的に同時に実行されるか、または場合によっては逆の順序で実行され得る。ブロック図またはフローチャート図あるいはその両方の各ブロック、ならびにブロック図またはフローチャート図あるいはその両方に含まれるブロックの組み合わせは、規定された機能または動作を実行するか、または専用ハードウェアとコンピュータ命令の組み合わせを実行する専用ハードウェアベースのシステムによって実装され得るということにも注意する。
【0088】
上記では、1つのコンピュータまたは複数のコンピュータあるいはその両方で実行されるコンピュータ・プログラム製品のコンピュータ実行可能命令との一般的な関連において、対象が説明されたが、当業者は、本開示がその他のプログラム・モジュールと組み合わせられるか、またはその他のプログラム・モジュールと組み合わせて実装され得るということを認識するであろう。
【0089】
通常、プログラム・モジュールは、特定のタスクを実行するか、または特定の抽象データ型を実装するか、あるいはその両方を行うルーチン、プログラム、コンポーネント、データ構造などを含む。さらに、当業者は、本発明のコンピュータ実装方法が、シングルプロセッサ・コンピュータ・システムまたはマルチプロセッサ・コンピュータ・システム、ミニコンピューティング・デバイス、メインフレーム・コンピュータ、コンピュータ、ハンドヘルド・コンピューティング・デバイス(例えば、PDA、電話)、マイクロプロセッサベースまたはプログラム可能な家庭用電化製品または産業用電子機器などを含む、その他のコンピュータ・システム構成を使用して実践され得るということを理解するであろう。示された態様は、通信ネットワークを介してリンクされたリモート処理デバイスによってタスクが実行される、分散コンピューティング環境内で実践されてもよい。ただし、本開示の態様の全部ではないとしても一部は、スタンドアロン・コンピュータ上で実践され得る。分散コンピューティング環境において、プログラム・モジュールは、ローカルおよびリモートの両方のメモリ・ストレージ・デバイスに配置され得る。
【0090】
本出願において使用されるとき、「コンポーネント」、「システム」、「プラットフォーム」、「インターフェイス」などの用語は、1つまたは複数の特定の機能を含むコンピュータ関連の実体または操作可能なマシンに関連する実体を指すことができるか、またはそれらの実体を含むことができるか、あるいはその両方が可能である。本明細書で開示された実体は、ハードウェア、ハードウェアとソフトウェアの組み合わせ、ソフトウェア、または実行中のソフトウェアのいずれかであることができる。例えば、コンポーネントは、プロセッサ上で実行されるプロセス、プロセッサ、オブジェクト、実行ファイル、実行のスレッド、プログラム、またはコンピュータ、あるいはその組み合わせであることができるが、これらに限定されない。例として、サーバ上で実行されるアプリケーションおよびサーバの両方が、コンポーネントであることができる。1つまたは複数のコンポーネントが、プロセス内または実行のスレッド内あるいはその両方に存在することができ、コンポーネントは、1つのコンピュータ上に局在するか、または2つ以上のコンピュータ間で分散されるか、あるいはその両方が可能である。別の例では、各コンポーネントは、さまざまなデータ構造が格納されているさまざまなコンピュータ可読媒体から実行できる。コンポーネントは、1つまたは複数のデータ・パケット(例えば、ローカル・システム内または分散システム内の別のコンポーネントと情報をやりとりするか、またはインターネットなどのネットワークを経由して、信号を介して他のシステムと情報をやりとりするか、あるいはその両方によって情報をやりとりする、1つのコンポーネントからのデータ)を含んでいる信号などに従って、ローカルまたはリモートあるいはその両方のプロセスを介して通信できる。別の例として、コンポーネントは、電気または電子回路によって操作される機械的部品によって提供される特定の機能を有する装置であることができ、プロセッサによって実行されるソフトウェア・アプリケーションまたはファームウェア・アプリケーションによって操作される。そのような場合、プロセッサは、装置の内部または外部に存在することができ、ソフトウェア・アプリケーションまたはファームウェア・アプリケーションの少なくとも一部を実行できる。さらに別の例として、コンポーネントは、機械的部品を含まない電子コンポーネントを介して特定の機能を提供する装置であることができ、それらの電子コンポーネントは、電子コンポーネントの機能の少なくとも一部を与えるソフトウェアまたはファームウェアを実行するためのプロセッサまたはその他の手段を含むことができる。1つの態様では、コンポーネントは、例えばクラウド・コンピューティング・システム内で、仮想マシンを介して電子コンポーネントをエミュレートすることができる。
【0091】
加えて、「または」という用語は、排他的論理和ではなく、包含的論理和を意味するよう意図されている。すなわち、特に指定されない限り、または文脈から明らかでない限り、「XがAまたはBを採用する」は、自然な包含的順列のいずれかを意味するよう意図されている。すなわち、XがAを採用するか、XがBを採用するか、またはXがAおよびBの両方を採用する場合、「XがAまたはBを採用する」が、前述の事例のいずれかにおいて満たされる。さらに、本明細書および添付の図面において使用される冠詞「a」および「an」は、単数形を対象にすることが特に指定されない限り、または文脈から明らかでない限り、「1つまたは複数」を意味すると一般に解釈されるべきである。本明細書において使用されるとき、「例」または「例示的」あるいはその両方の用語は、例、事例、または実例となることを意味するために使用される。誤解を避けるために、本明細書で開示された対象は、そのような例によって制限されない。加えて、「例」または「例示的」あるいはその両方として本明細書に記載された任意の態様または設計は、他の態様または設計よりも好ましいか、または有利であると必ずしも解釈されず、当業者に知られている同等の例示的な構造および技術を除外するよう意図されていない。
【0092】
本明細書において使用されるとき、「プロセッサ」という用語は、シングルコア・プロセッサと、ソフトウェアのマルチスレッド実行機能を備えるシングルプロセッサと、マルチコア・プロセッサと、ソフトウェアのマルチスレッド実行機能を備えるマルチコア・プロセッサと、ハードウェアのマルチスレッド技術を備えるマルチコア・プロセッサと、並列プラットフォームと、分散共有メモリを備える並列プラットフォームとを含むが、これらに限定されない、実質的に任意の計算処理ユニットまたはデバイスを指すことができる。さらに、プロセッサは、集積回路、特定用途向け集積回路(ASIC:application specific integrated circuit)、デジタル信号プロセッサ(DSP:digital signal processor)、フィールド・プログラマブル・ゲート・アレイ(FPGA:field programmable gate array)、プログラマブル・ロジック・コントローラ(PLC:programmable logic controller)、複合プログラム可能論理デバイス(CPLD:complex programmable logic device)、個別のゲートまたはトランジスタ論理、個別のハードウェア・コンポーネント、あるいは本明細書に記載された機能を実行するように設計されたこれらの任意の組み合わせを指すことができる。さらに、プロセッサは、空間利用を最適化し、ユーザ機器の性能を向上するために、分子および量子ドットベースのトランジスタ、スイッチ、およびゲートなどの、ただしこれらに限定されない、ナノスケール・アーキテクチャを利用することができる。プロセッサは、計算処理ユニットの組み合わせとして実装されてもよい。本開示では、コンポーネントの動作および機能に関連する「ストア」、「ストレージ」、「データ・ストア」、「データ・ストレージ」、「データベース」、および実質的に任意のその他の情報格納コンポーネントなどの用語は、「メモリ・コンポーネント」、「メモリ」内に具現化された実体、またはメモリを備えているコンポーネントを指すために使用される。本明細書に記載されたメモリまたはメモリ・コンポーネントあるいはその両方が、揮発性メモリまたは不揮発性メモリのいずれかであることができ、あるいは揮発性メモリおよび不揮発性メモリの両方を含むことができるということが、理解されるべきである。不揮発性メモリの例としては、読み取り専用メモリ(ROM:read only memory)、プログラマブルROM(PROM:programmable ROM)、電気的プログラマブルROM(EPROM:electrically programmable ROM)、電気的消去可能ROM(EEPROM:electrically erasable ROM)、フラッシュ・メモリ、または不揮発性ランダム・アクセス・メモリ(RAM:random access memory)(例えば、強誘電体RAM(FeRAM:ferroelectric RAM))が挙げられるが、これらに限定されない。揮発性メモリは、例えば外部キャッシュ・メモリとして機能できる、RAMを含むことができる。例えばRAMは、シンクロナスRAM(SRAM)、ダイナミックRAM(DRAM)、シンクロナスDRAM(SDRAM:synchronous DRAM)、ダブル・データ・レートSDRAM(DDR SDRAM:double data rate SDRAM)、拡張SDRAM(ESDRAM:enhanced SDRAM)、シンクリンクDRAM(SLDRAM:Synchlink DRAM)、ダイレクト・ラムバスRAM(DRRAM:direct Rambus RAM)、ダイレクト・ラムバス・ダイナミックRAM(DRDRAM:direct Rambus dynamic RAM)、およびラムバス・ダイナミックRAM(RDRAM:Rambus dynamic RAM)などの、ただしこれらに限定されない、多くの形態で利用可能である。さらに、本明細書において開示されたシステムまたはコンピュータ実装方法のメモリ・コンポーネントは、これらおよび任意のその他の適切な種類のメモリを含むが、これらに限定されない、メモリを含むよう意図されている。
【0093】
前述した内容は、システムおよびコンピュータ実装方法の単なる例を含んでいる。当然ながら、本開示を説明する目的で、コンポーネントまたはコンピュータ実装方法の考えられるすべての組み合わせについて説明することは不可能であるが、当業者は、本開示の多くのその他の組み合わせおよび並べ替えが可能であるということを認識できる。さらに、「含む」、「有する」、「所有する」などの用語が、発明を実施するための形態、特許請求の範囲、付録、および図面において使用される範囲では、それらの用語は、「備えている」が特許請求における暫定的な用語として使用されるときに解釈されるような、用語「備えている」と同様の方法で、包含的であるよう意図されている。
【0094】
さまざまな実施形態の説明は、例示の目的で提示されているが、網羅的であることは意図されておらず、開示された実施形態に制限されない。説明された実施形態の範囲から逸脱することなく多くの変更および変形が可能であることは、当業者にとって明らかであろう。本明細書で使用された用語は、実施形態の原理、実際の適用、または市場で見られる技術を超える技術的改良を最も適切に説明するため、または他の当業者が本明細書で開示された実施形態を理解できるようにするために選択されている。