IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ヒタチ・エナジー・リミテッドの特許一覧

特許7584680大規模グリッドエネルギー貯蔵システムのグリッド統合のための制御プラットフォームアーキテクチャ
<>
  • 特許-大規模グリッドエネルギー貯蔵システムのグリッド統合のための制御プラットフォームアーキテクチャ 図1
  • 特許-大規模グリッドエネルギー貯蔵システムのグリッド統合のための制御プラットフォームアーキテクチャ 図2
  • 特許-大規模グリッドエネルギー貯蔵システムのグリッド統合のための制御プラットフォームアーキテクチャ 図3
  • 特許-大規模グリッドエネルギー貯蔵システムのグリッド統合のための制御プラットフォームアーキテクチャ 図4a
  • 特許-大規模グリッドエネルギー貯蔵システムのグリッド統合のための制御プラットフォームアーキテクチャ 図4b
  • 特許-大規模グリッドエネルギー貯蔵システムのグリッド統合のための制御プラットフォームアーキテクチャ 図5
  • 特許-大規模グリッドエネルギー貯蔵システムのグリッド統合のための制御プラットフォームアーキテクチャ 図6
  • 特許-大規模グリッドエネルギー貯蔵システムのグリッド統合のための制御プラットフォームアーキテクチャ 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-11-07
(45)【発行日】2024-11-15
(54)【発明の名称】大規模グリッドエネルギー貯蔵システムのグリッド統合のための制御プラットフォームアーキテクチャ
(51)【国際特許分類】
   H02J 3/18 20060101AFI20241108BHJP
   H02J 3/38 20060101ALI20241108BHJP
   H02J 3/16 20060101ALI20241108BHJP
   H02J 3/32 20060101ALI20241108BHJP
【FI】
H02J3/18
H02J3/38 110
H02J3/16
H02J3/32
【請求項の数】 14
(21)【出願番号】P 2023563023
(86)(22)【出願日】2021-04-14
(65)【公表番号】
(43)【公表日】2024-03-12
(86)【国際出願番号】 EP2021059602
(87)【国際公開番号】W WO2022218514
(87)【国際公開日】2022-10-20
【審査請求日】2023-12-11
【早期審査対象出願】
(73)【特許権者】
【識別番号】523380173
【氏名又は名称】ヒタチ・エナジー・リミテッド
【氏名又は名称原語表記】HITACHI ENERGY LTD
(74)【代理人】
【識別番号】110001195
【氏名又は名称】弁理士法人深見特許事務所
(72)【発明者】
【氏名】カルレビ,ペア
(72)【発明者】
【氏名】ハルマンス,ダニエル
(72)【発明者】
【氏名】モン,ローシュエン
(72)【発明者】
【氏名】ベルレフォス,マリア
【審査官】大濱 伸也
(56)【参考文献】
【文献】欧州特許出願公開第03703241(EP,A1)
【文献】米国特許出願公開第2020/0176983(US,A1)
【文献】国際公開第2017/168518(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H02J 3/16
H02J 3/18
H02J 3/32
H02J 3/38
H02J 7/35
(57)【特許請求の範囲】
【請求項1】
交流(alternating current、AC)電力伝送システムのためのサポートシステム(100)であって、
複数の相互接続された貯蔵ユニット(112)を備えるエネルギー貯蔵装置(110)であって、前記エネルギー貯蔵装置は、前記AC電力伝送システムに電力を出力し、前記AC電力伝送システムからの電力で前記貯蔵ユニットを充電するように構成される、エネルギー貯蔵装置(110)と、
前記エネルギー貯蔵装置の動作を制御するように構成された主コントローラ(120)と
を備え、
前記複数の貯蔵ユニットの各貯蔵ユニットは、少なくとも3つの制御信号接続(113a、113b、113c)と、前記貯蔵ユニットの動作を制御するように構成された貯蔵ユニットコントローラ(114)とを備え、前記少なくとも3つの制御信号接続は、前記貯蔵ユニットコントローラに接続され、
前記貯蔵ユニットの各々は、前記制御信号接続を介して少なくとも3つの貯蔵エンティティから制御信号を受信するように構成され、
前記貯蔵エンティティの各々は、前記主コントローラまたは隣接する貯蔵ユニットの貯蔵ユニットコントローラのいずれかであり、
前記貯蔵ユニットの各々は、前記制御信号接続のうちの第1のものを介して受信された制御信号を、前記制御信号接続のうちの残りのものを介して接続されたすべての隣接する貯蔵ユニットに転送するように配置され、
前記サポートシステムは、
前記エネルギー貯蔵装置と前記AC電力伝送システムとの間に機能的に配置されて静的同期補償器(static synchronous compensator、STATCOM)として作用するように構成された複数の相互接続されたコンバータユニット(212)を備えるコンバータ装置(210)と、
前記コンバータ装置の動作を制御するように構成されたコンバータ装置コントローラ(220)と
をさらに備え、
各コンバータユニットは、少なくとも3つの制御信号接続(213a、213b、213c)と、前記コンバータユニットの動作を制御するように構成されたコンバータユニットコントローラ(214)とを備え、
各コンバータユニットは、前記制御信号接続を介して少なくとも3つのコンバータエンティティから制御信号を受信するように構成され、
前記コンバータエンティティの各々は、前記コンバータ装置コントローラまたは隣接するコンバータユニットのコンバータユニットコントローラのいずれかであり、
各コンバータユニットは、前記制御信号接続のうちの第1のものを介して受信された制御信号を、前記制御信号接続のうちの残りのものを介して接続されたすべての隣接するコンバータユニットに転送するように配置される、サポートシステム(100)。
【請求項2】
各貯蔵ユニットの前記少なくとも3つの制御信号接続は、メッシュトポロジで前記貯蔵ユニットを接続するように構成される、請求項1に記載のサポートシステム。
【請求項3】
各貯蔵ユニットの前記制御信号接続のうちの第1および第2のものは、前記貯蔵ユニットをデイジーチェーンで接続するように構成され、前記制御信号接続のうちの第3のものは、前記デイジーチェーンをショートカットするように構成される、請求項1または2に記載のサポートシステム。
【請求項4】
前記デイジーチェーンは、線形トポロジまたはリングトポロジに従って配置される、請求項3に記載のサポートシステム。
【請求項5】
前記貯蔵ユニットのうちの第1のものは、前記主コントローラに直接接続される、請求項1~4のいずれかに記載のサポートシステム。
【請求項6】
前記制御信号接続の各々は、双方向接続である、請求項1~5のいずれかに記載のサポートシステム。
【請求項7】
前記制御信号接続の各々は、光通信チャネルを介して通信するように構成される、請求項1~6のいずれかに記載のサポートシステム。
【請求項8】
各貯蔵ユニットは、前記制御信号に含まれる高優先度メッセージを検出し、前記制御信号を完全に復号することなく前記高優先度メッセージを転送するように構成される、請求項1~7のいずれかに記載のサポートシステム。
【請求項9】
各貯蔵ユニットは、エネルギー貯蔵ラックを形成する複数のエネルギー貯蔵セル(115)を備える、請求項1~8のいずれかに記載のサポートシステム。
【請求項10】
前記貯蔵ユニットコントローラは、前記エネルギー貯蔵ラックの各エネルギー貯蔵セルを直接制御するように構成される、請求項9に記載のサポートシステム。
【請求項11】
前記貯蔵ユニットコントローラは、ラック内部制御システム(116)とのインターフェースを形成するように構成される、請求項9に記載のサポートシステム。
【請求項12】
前記ラック内部制御システムは、電池管理システム(battery management system、BMS)(116)を備える、請求項11に記載のサポートシステム。
【請求項13】
前記複数の貯蔵ユニットのうちの少なくとも1つは、前記貯蔵ユニットコントローラによって制御されるように構成された電圧源コンバータ(130)をさらに備える、請求項1~12のいずれかに記載のサポートシステム。
【請求項14】
前記主コントローラおよび前記コンバータ装置コントローラを制御するように構成された協調コントローラ(20)をさらに備える、請求項1~13のいずれかに記載のサポートシステム。
【発明の詳細な説明】
【技術分野】
【0001】
技術分野
本発明は、電力伝送システムの分野に関し、特に、そのような電力システムで使用するためのエネルギー貯蔵器に関する。
【背景技術】
【0002】
背景
電力システムは、電力を確実に提供する必要がある。したがって、そのような技術は、電圧または周波数の変動を相殺し、不足などを補償するためのサポートシステムを備えることが多い。一般に、サポートシステムは、電力伝送システムにエネルギーを出力し、そこから電池セルを充電するために双方向に動作するいくつかの直列および/または並列接続された電池セルまたはスーパーキャパシタを有するエネルギー貯蔵バンクを備えるエネルギー貯蔵システムを利用し得る。さらに、静的同期補償器(static synchronous compensator、STATCOM)が、電力伝送ネットワークへの無効AC電力のソースまたはシンクとして採用され得る。
【0003】
エネルギー貯蔵バンクの電池セル、ならびにSTATCOMの電圧源コンバータセルは、一般に、サポートシステムが適切に機能し、必要なサポートを電力伝送システムに供給するために、中央コントローラから制御信号を受信する必要がある。本サポートシステムの比較的多数の構成要素は、それらを監視および制御することを比較的複雑かつ困難にし、さらにより大きく、よりスケーラブルなサポートシステムを目指して努力することは、効率的で信頼性の高い制御技術に対する要求を増大させる。したがって、サポートシステムに含まれる構成要素の改善された監視および制御のための技術を提供することが有益であろう。
【発明の概要】
【発明が解決しようとする課題】
【0004】
概要
したがって、上述の欠点を克服する、または少なくとも軽減するサポートシステムを達成することが有利であろう。特に、改善された性能、冗長性、および耐障害性を可能にするサポートシステムを提供することが望ましい。
【課題を解決するための手段】
【0005】
これらの目的は、とりわけ、添付の独立請求項に記載のサポートシステムによって達成され得る。
【0006】
したがって、一態様によれば、交流(alternating current、AC)電力伝送システムのためのサポートシステムが提供される。システムは、複数の相互接続された貯蔵ユニットを備えるエネルギー貯蔵装置を備える。エネルギー貯蔵装置は、AC電力伝送システムに電力を出力し、AC電力伝送システムからの電力で貯蔵ユニットを充電するように構成される。システムは、エネルギー貯蔵装置の動作を制御するように構成された主コントローラをさらに備える。貯蔵ユニットの少なくともいくつかは、少なくとも3つの制御信号接続と、貯蔵ユニットの動作を制御するように構成された貯蔵ユニットコントローラとを備え、少なくとも3つの制御信号接続は、貯蔵ユニットコントローラに接続される。したがって、貯蔵ユニットは、少なくとも3つの制御信号接続を介して少なくとも3つの貯蔵エンティティから制御信号を受信するように構成される。少なくとも3つの貯蔵エンティティの各々は、主コントローラまたは隣接する貯蔵ユニットの貯蔵ユニットコントローラのいずれかであり、貯蔵ユニットの各々は、少なくとも3つの制御信号接続のうちの第1のものを介して受信された制御信号を、少なくとも3つの制御信号接続のうちの残りのものを介して接続されたすべての隣接する貯蔵ユニットに転送するように配置される。
【0007】
本態様は、主コントローラからの制御信号がエネルギー貯蔵ユニットの装置を通じて異なる方法で中継されることを可能にする。少なくとも3つの制御信号接続を備える第1の貯蔵ユニットは、主コントローラから制御信号を受信し、装置の少なくとも2つの他の貯蔵ユニットに制御信号を転送し得る。それら2つの貯蔵ユニットの一方または両方は、次に、制御信号を1つまたは2つのさらなる貯蔵ユニットなどに転送してもよい。したがって、貯蔵ユニットは、メッシュで配置されていると考えられてもよく、これは制御信号が装置を通るいくつかの異なる経路に沿って中継されることを可能にする。
【0008】
第1の制御ユニットは、主コントローラに直接接続され、主制御ユニットに直接接続されていない少なくとも2つの他の制御ユニットに制御信号を転送するように構成されてもよい。このようにして、主制御ユニットからの制御信号は、主制御ユニットが貯蔵ユニットのうちの1つまたは2つのみに接続されている場合でも、エネルギー貯蔵装置の貯蔵ユニットを効率的にフラッディングし得る。貯蔵ユニットの一部または全部に設けられた少なくとも3つの制御信号接続は、制御信号が装置を通る異なる経路をとることを可能にし、その結果、いくつかの貯蔵ユニットのうちの1つの故障の場合にも伝搬されることを可能にする。したがって、本態様は、特に貯蔵ユニット間のポイントツーポイント通信または厳密な直列接続に依存する技術と比較した場合に、貯蔵ユニットの1つまたは複数に影響を及ぼし得る冗長性および障害耐性を向上させる。さらに、サポートシステムは、上記の制御信号接続によって形成されるネットワークトポロジにより多くのノードを追加することによって、エネルギー貯蔵ユニットまたはSTATCOMデバイスなどのより多くの構成要素によって比較的容易に拡張されることができる。サポートシステムを補完するために、追加の制御ユニットもまた追加され得る。
【0009】
貯蔵ユニットの各々、または少なくともいくつかは、受信された制御信号をすべての接続された隣接する貯蔵ユニット(および、制御信号接続のうちの1つに接続されている場合には、主制御ユニット)に転送するように構成されてもよい。さらに、貯蔵ユニットは、外部制御なしで自律的に制御信号を転送するこのアクションを実行するように構成されてもよい。
【0010】
「隣接する」貯蔵ユニットとは、本出願の文脈では、互いに直接通信可能に結合された、すなわち、制御信号が隣接する貯蔵ユニット間で通過しなければならない中間貯蔵ユニットがない貯蔵ユニットであると理解されてもよい。言い換えれば、隣接する貯蔵ユニットは、制御信号が最初に別の貯蔵ユニットを通過する必要なしに、互いに制御信号を交換することが可能であり得る。「隣接する(adjacent)」、「近隣の(neighbouring)」、および「次の(next)」は、制御信号が中間貯蔵ユニットを通過することなく貯蔵ユニット間を直接通過することが可能とされるように通信可能に接続された2つの貯蔵ユニットの配置を記述するために、本開示において互換的に使用され得る。
【0011】
サポートシステム内で制御信号を受信および転送する構成要素(主コントローラ、貯蔵ユニット、および任意選択的に、STATCOMコンバータユニットなど)は、制御信号接続を介してリンクされた通信ネットワークのノードとして理解され得る。そのようなネットワークの物理トポロジは、サポートシステムの貯蔵ユニットおよび他の構成要素の実際の配置を指してもよいが、論理トポロジまたはネットワークトポロジは、サポートシステム内でデータがどのように流れるかを記述してもよい。制御信号接続の構成に関する以下の説明では、例は、一般に、物理的なそれではなく論理トポロジを指す。
【0012】
サポートシステムは、1つのみ、または2つのみの制御信号接続を備え得る追加の貯蔵ユニットを備え得ることが理解されよう。したがって、サポートシステムは、各々の貯蔵ユニットが正確に3つの制御信号接続、または3つを超える制御信号接続を備える装置に限定されなくてもよい。むしろ、サポートシステムは、正確に1つの他の貯蔵ユニット(またはノード)に接続された1つまたは複数の貯蔵ユニット(またはノード)、または正確に2つの他の貯蔵ユニットに接続された1つまたは複数の貯蔵ユニット、ならびに4つ以上の他の貯蔵ユニットに接続された1つまたは複数の貯蔵ユニットをさらに備え得る。したがって、いくつかの例では、サポートシステムの貯蔵ユニットのうちの1つまたはいくつかは、4つまたは5つ以上の制御信号接続を備え得る。
【0013】
したがって、制御信号接続は、サポートシステムのノードがメッシュ型トポロジに配置されることを可能にしてもよく、これにより、ルーティング技術、またはより好ましくはそれが到達したものを除くすべての制御信号接続を介して受信信号が送信されるフラッディング技術のいずれかを使用して制御信号が中継されることが可能になる。
【0014】
したがって、一実施形態によれば、複数の貯蔵ユニットの各々の少なくとも3つの制御信号接続のうちの第1および第2のものは、複数の貯蔵ユニットを直列接続またはデイジーチェーンで接続するように構成されてもよい。さらに、少なくとも3つの制御信号接続のうちの第3のものは、デイジーチェーンをショートカットするように、すなわち、デイジーチェーンにおいて近接または隣接していない貯蔵ユニットに貯蔵ユニットを接続するように構成されてもよい。デイジーチェーン内の貯蔵ユニットの1つまたはいくつかをショートカットすることは、制御信号の遅延を低減することを可能にし得る。貯蔵ユニットを通過することは一般に遅延に関連付けられ、制御信号を中継するときに1つまたはいくつかの貯蔵ユニットを省略することによって、それに応じて総遅延が低減され得る。これは、例えばブロッキングメッセージまたはトリップメッセージなどの高優先度メッセージを中継するときに特に重要であり得る。さらに、ショートカットは、デイジーチェーンの貯蔵ユニットにおける障害の場合に、制御信号が別の経路を介して伝搬されることを可能にし得る。
【0015】
一実施形態によれば、デイジーチェーンは、線形トポロジまたはリングトポロジに従って配置され得る。リングトポロジは、制御信号がリングの2つの異なる方向に送信され得るという点で有利であり得る。
【0016】
一実施形態によれば、貯蔵ユニットのうちの第1のものは、主コントローラに直接接続されてもよい。言い換えれば、貯蔵ユニットのうちの第1のものは、中間貯蔵ユニットによって中継されていない制御信号を主コントローラから受信するように構成されてもよい。貯蔵ユニットのうちの第1のものは、いくつかの例では、2つの隣接する貯蔵ユニットのみに接続されてもよく、主コントローラに直接接続されていない貯蔵ユニットは、そのような例では、3つ以上の隣接する貯蔵ユニットに接続されてもよい。
【0017】
一実施形態によれば、制御信号接続のうちの少なくとも一部または各々は、双方向接続であってもよい。
【0018】
一実施形態によれば、制御信号接続は、光ファイバを備える通信チャネルなどの光通信チャネルを介して通信するように構成されてもよい。
【0019】
一実施形態によれば、複数の貯蔵ユニットの各々は、制御信号に含まれる高優先度メッセージを検出し、制御信号を完全に復号することなく高優先度メッセージを転送するように構成され得る。高優先度メッセージは、制御信号接続に供給される他のメッセージとは別に制御信号接続に供給されるメッセージであってもよい。高優先度メッセージは、例えば、特定の貯蔵ユニットまたはすべての貯蔵ユニットを切断させるトリッピング命令またはブロック命令を含み得る。高優先度メッセージを別個に検出することにより、完全な通常のメッセージ復号が使用される場合よりも速く高優先度メッセージが検出されることができる。これは、高優先度メッセージがより迅速に中継され、したがって、より迅速にすべての貯蔵ユニットに伝搬することを可能にする。
【0020】
貯蔵ユニットは、例えば、達成されるべき所望の電圧に応じて、互いに直列および/または並列に動作可能に接続されてもよい。貯蔵ユニットは、1つまたはいくつかのエネルギー貯蔵セルを備えてもよく、例えば、電池セルまたはコンデンサセルから形成されてもよい。貯蔵ユニットは、いくつかの例では、単一のエネルギー貯蔵セルと同一であってもよく、他の例では、エネルギー貯蔵ラックを形成する複数のエネルギー貯蔵セルを備えてもよい。「エネルギー貯蔵セル」という用語は、一般に、電気エネルギーを受け取り、電気エネルギーを貯蔵し、電気エネルギーを放出することが可能なデバイスと理解され得る。したがって、エネルギー貯蔵セルは、繰り返し(再)充電されることが可能なデバイスを指してもよい。そのようなデバイスの例は、スーパーキャパシタ、フライホイール、および電池を含む。
【0021】
相互接続されたエネルギー貯蔵ユニットのグループはエネルギー貯蔵ストリングと呼ばれてもよく、複数のストリングはエネルギー貯蔵バンクにグループ化されてもよい。したがって、エネルギー貯蔵ユニットおよびエネルギー貯蔵セルの様々な構成および組合せが、特許請求の範囲内で考えられることに留意されたい。
【0022】
一実施形態によれば、貯蔵ユニットコントローラは、ラックの内部にあり得る制御システムへのインターフェースを形成するように構成されてもよい。ラック内部制御システムは、ラックのエネルギー貯蔵セルを制御するように構成されてもよい。代替的または追加的に、貯蔵ユニットコントローラは、エネルギー貯蔵ラックの各エネルギー貯蔵セルを直接制御するように構成されてもよい。
【0023】
一実施形態によれば、1つまたは複数の貯蔵ユニット、特にユニットのエネルギー貯蔵セルを管理するための電池管理制御システム(battery management control system、BMS)が提供されてもよい。BMSは、例えば、セルをそれらの安全動作領域外で動作することから保護し、それらの状態を監視し、セルの動作のバランスをとるために提供され得る。本実施形態によれば、貯蔵ユニットコントローラは、BMSを制御するように構成されてもよい。いくつかの例では、上述のラック内部制御システムはBMSを備えてもよい。
【0024】
一実施形態によれば、複数の貯蔵ユニットの一部または各々は、貯蔵ユニットコントローラによって制御され得る電圧源コンバータ(VSC)などの電力コンバータを備え得る。電力コンバータは、エネルギー貯蔵ユニットのうちの1つまたはいくつかから電力伝送システムに電力を出力し、電力伝送システムからの電力で貯蔵モジュールを充電するように構成されてもよい。したがって、電力コンバータは双方向コンバータであってもよい。貯蔵ユニットコントローラは、電力コンバータに動作可能に接続されてもよく、したがって、受信された制御信号に基づいて電力コンバータの動作を制御してもよい。貯蔵ユニットコントローラは、貯蔵ユニットをエネルギー貯蔵装置の他の貯蔵ユニットから切断するようにさらに構成されてもよい。
【0025】
一実施形態によれば、サポートシステムは、エネルギー貯蔵装置とAC電力伝送システムとの間に機能的に配置されて静的同期補償器、STATCOMとして作用するように構成された複数の相互接続されたコンバータユニットを備えるコンバータ装置をさらに備え得る。サポートシステムは、コンバータ装置の動作を制御するように構成されたコンバータ装置コントローラをさらに備え得る。コンバータ装置は、前述の実施形態のいずれかを参照して上述したエネルギー貯蔵装置と同様の方法で制御され得る。したがって、複数のコンバータユニットの各コンバータユニットは、少なくとも3つの制御信号接続と、コンバータユニットの動作を制御するように構成されたコンバータユニットコントローラとを備えてもよく、複数のコンバータユニットの各コンバータユニットは、少なくとも3つの制御信号接続を介して少なくとも3つのコンバータエンティティから制御信号を受信するように構成されてもよい。少なくとも3つのコンバータエンティティの各々は、コンバータ装置コントローラまたは隣接するコンバータユニットのコンバータユニットコントローラのいずれかであってもよく、複数のコンバータユニットの各コンバータユニットは、少なくとも3つの制御信号接続のうちの第1のものを介して受信された制御信号を、少なくとも3つの制御信号接続のうちの残りのものを介して接続されたすべての隣接するコンバータユニットに転送するように配置されてもよい。
【0026】
したがって、本実施形態によるコンバータ装置は、コンバータ装置コントローラからの制御信号が、前述の実施形態および実施例のいずれかによるエネルギー貯蔵ユニットの配置を通じて伝搬され得る方法と同様に、コンバータユニットの配置を通じて異なる方法で中継されることを可能にし得ることが理解されよう。したがって、コンバータ装置コントローラから制御信号を受信する第1のコンバータユニットは、制御信号を装置の少なくとも2つの他のコンバータユニットに中継し得る。それらのコンバータユニットの一方または両方は、次に、制御信号を少なくとも2つのさらなるコンバータユニットなどに転送してもよい。したがって、コンバータ装置の制御信号接続は、エネルギー貯蔵装置の貯蔵ユニットと同様に、コンバータユニットがメッシュに配置されることを可能にし、コンバータ装置コントローラからの制御信号がコンバータ装置のコンバータユニットを効率的にフラッディングすることを可能にし得る。
【0027】
サポートシステムは、1つのみ、または2つのみの制御信号接続を備え得る追加のコンバータユニットを備え得ることが理解されよう。したがって、サポートシステムは、各々のコンバータユニットが正確に3つの制御信号接続、または3つを超える制御信号接続を備えるコンバータ装置に限定されなくてもよい。むしろ、コンバータ装置は、正確に1つの他のコンバータユニット(またはノード)に接続された1つまたは複数のコンバータユニット(またはノード)、または正確に2つの他のコンバータユニットに接続された1つまたは複数のコンバータユニット、ならびに4つ以上の他のコンバータユニットに接続された1つまたは複数のコンバータユニットをさらに備え得る。したがって、いくつかの例では、サポートシステムのコンバータユニットのうちの1つまたはいくつかは、4つまたは5つ以上の制御信号接続を備え得る。
【0028】
一実施形態によれば、サポートシステムは、主コントローラおよびコンバータ装置コントローラを制御するように構成された協調コントローラを備え得る。協調コントローラは、主コントローラおよび/またはコンバータ装置コントローラとは構造的に異なっていてもよい。他の例では、主コントローラおよび/またはコンバータ装置コントローラのタスクは、協調コントローラによって実行されてもよく、したがって、主コントローラおよび/またはコンバータ装置コントローラは、協調コントローラと構造的に統合されてもよい。
【0029】
コンバータ装置は、例えば、モジュール式マルチレベルチェーンリンクコンバータ(modular multilevel chain-link converter、MMC)装置、または2もしくは3レベルコンバータ装置を備えてもよい。
【0030】
エネルギー貯蔵機能とSTATCOM機能の両方を提供する上記のような複合サポートシステムは、有利には、サポートシステムとAC電力伝送システムとの間の電力潮流の改善された制御を可能にする。STATCOM機能は無効電力を補償するが、エネルギー貯蔵機能は、STATCOMとAC電力伝送システムとの間の有効電力潮流の制御を可能にする。したがって、グリッドからの/への有効および無効電力の吸収および注入は、同じサポートシステムによって可能とされる。複合サポートシステムは、エネルギー貯蔵装置を形成する構成要素と、STATCOM機能を提供するコンバータ装置との改善された共同制御をさらに可能にする。
【0031】
「制御ユニット」または「コントローラ」という用語は、本明細書に開示されているエネルギー貯蔵装置および/またはSTATCOM装置の条件、状態もしくは動作または構成要素に関する情報を受信すること、および/またはそのような構成要素の動作を制御するための命令を出力することが可能なデバイスとして理解され得る。制御ユニットは、エネルギー貯蔵装置またはSTATCOM装置に構造的に一体化されてもよく、またはこれらの装置から物理的に離れて配置されてもよい。
【0032】
「AC電力伝送システム」によって、一般に、電力の伝送および/または配電のための構造が意味される。AC電力伝送システムは、いくつかの例では、電力伝送ネットワーク、伝送ネットワーク、パワーグリッド、またはグリッドと呼ばれ得る。
【0033】
本発明の実施形態および実施例は、特許請求の範囲に記載の特徴のすべての可能な組合せに関することに留意されたい。さらに、エネルギー貯蔵装置について説明した様々な実施形態は、STATCOM装置について説明した実施形態と組み合わされ得ることが理解されよう。
【0034】
図面の簡単な説明
ここで、添付の図面を参照して、本発明の概念を例として説明する。
【図面の簡単な説明】
【0035】
図1】一実施形態によるエネルギー貯蔵装置を備えるサポートシステムを示す概略図である。
図2】一実施形態によるエネルギー貯蔵装置および電力コンバータを備えるサポートシステムを示す概略図である。
図3】一実施形態によるエネルギー貯蔵装置の貯蔵ユニットを示す概略図である。
図4a】一実施形態による貯蔵ユニット間の通信可能な結合を示す概略図である。
図4b】一実施形態による貯蔵ユニット間の通信可能な結合を示す概略図である。
図5】一実施形態によるSTATCOM装置を示す概略図である。
図6】一実施形態によるSTATCOM装置のコンバータユニットを示す概略図である。
図7】一実施形態によるエネルギー貯蔵装置およびSTATCOM装置を備えるサポートシステムを示す概略図である。
【発明を実施するための形態】
【0036】
すべての図は概略図であり、必ずしも縮尺通りではなく、一般に実施形態を解明するのに必要な部分のみを示しており、他の部分は省略または単に示唆されてもよい。同様の参照番号は、説明を通じて同様の要素を指す。
【0037】
詳細な説明
本発明の概念は、現在好ましい実施形態が示されている添付の図面を参照して以下でより完全に説明される。
【0038】
ここで、主コントローラ120によって制御されるエネルギー貯蔵装置110を示す、図1を参照して、AC電力伝送システムのためのサポートシステム100が説明される。エネルギー貯蔵装置110は、複数の相互接続されたエネルギー貯蔵ユニット112を備えてもよく、それらは、AC電力伝送システムから供給される電気エネルギーによって充電され、貯蔵されたエネルギーをAC電力伝送システム(グリッドとも呼ばれる)に放電するように構成され得る。電力コンバータ(図2に示される)は、貯蔵ユニット112とグリッドとの間で電力を伝送するように、貯蔵ユニット112とグリッドとの間に配置されてもよい。エネルギー貯蔵装置110は、例えばHVDC接続を形成し得る正のDC端子および負のDC端子を備え得る。
【0039】
図2は、図1に開示されるサポートシステムと同様に構成され得るサポートシステム100の一例を示す。図2は、上述のエネルギー貯蔵装置110と、DCをACに、およびその逆に変換するための絶縁ゲートバイポーラトランジスタ(IGBT)などのトランジスタを採用する電圧源コンバータ(VSC)などの電力コンバータ130とを備えるサポートシステム100の概略図である。したがって、電力コンバータ130は、エネルギー貯蔵装置110に結合されたDC側と、AC電力伝送システムに結合されたAC側とを有し得る。電力コンバータ130の動作は、主コントローラ120によって制御されてもよく、それは、したがって、エネルギー貯蔵装置110と電力コンバータ130の両方に動作可能に結合され得る。
【0040】
図1および図2に示されるエネルギー貯蔵装置110の貯蔵ユニット112は、図3に示されるように、例えば電池またはキャパシタを備える1つまたは複数のエネルギー貯蔵セル115を備え得る。エネルギー貯蔵セル115は、ラックを形成するために並列または直列に接続されてもよく、ラックは、ストリングに相互接続されてもよい。エネルギー貯蔵装置110内のエネルギー貯蔵ユニット112またはエネルギー貯蔵セル115を相互接続および編成するいくつかの異なる方法があり、貯蔵ユニットコントローラ114は、エネルギー貯蔵セル115および/またはエネルギー貯蔵ユニット112のうちの1つまたはいくつかを制御するように構成されてもよいことが理解されよう。
【0041】
図3は、貯蔵ユニット112の内部の制御システム116をさらに示す。制御システムは、例えば、貯蔵ユニット112の1つまたはいくつかのセル115を管理するために設けられてもよい電池管理システム(BMS)116を備えてもよい。さらに、いくつかの例によれば、BMS116は、2つ以上のエネルギー貯蔵ユニット112を管理するように構成されてもよい。いくつかの例では、制御システム116は、複数の相互接続された貯蔵セル115によって形成されたラックに共通であってもよい。したがって、そのような制御システム116は、ラック内部制御システム116と称されてもよい。BMS116などの制御システムは、セル115をそれらの安全動作領域外で動作することから保護し、それらの状態を監視し、セル115の動作のバランスをとるために提供され得る。貯蔵ユニットコントローラ114は、いくつかの例では、BMS116などの内部制御システムとのインターフェースを形成し、インターフェースを介してそのようなシステムを制御するように構成されてもよい。
【0042】
貯蔵ユニット112は、貯蔵ユニットコントローラ114に通信可能に接続され得る少なくとも3つの制御信号接続113a、113b、113cをさらに備え得る。貯蔵ユニット112は、少なくとも3つの制御信号接続113a、113b、113cを介して少なくとも3つの貯蔵エンティティから制御信号を受信するように構成され得る。少なくとも3つの貯蔵エンティティの各々は、主コントローラ120または隣接する貯蔵ユニット112の貯蔵ユニットコントローラ114のいずれかであってもよい。これにより、貯蔵ユニット112は、制御信号接続113a、113b、113cのうちの第1のものを介して制御信号を受信し、制御信号接続113a、113b、113cのうちの残りのものを介して隣接する貯蔵ユニット112に制御信号を中継することが可能となる。制御信号接続は、光通信チャネルを介して通信し、エネルギー貯蔵装置110の隣接する貯蔵ユニット112を相互接続し、さらにエネルギー貯蔵装置110を主コントローラ120に接続するように構成されてもよい。
【0043】
制御信号接続113a、113b、113cは、双方向に制御信号を送信することが可能な双方向接続であってもよい。制御信号は、エネルギー貯蔵装置110の動作および監視に関する情報を伝達してもよい。制御信号に含まれる情報の例は、例えば、貯蔵ユニット112に供給されるかまたは貯蔵ユニット112から放電される電力の特性、貯蔵セルの温度、トリップコマンドなどに関してもよい。貯蔵ユニット112は、追加の外部制御なしで、受信された制御信号を自律的に中継するように構成されてもよい。さらに、貯蔵ユニット112は、受信された制御信号に含まれる高優先度メッセージを検出し、制御信号を完全に復号することなく高優先度メッセージを転送するように構成され得る。
【0044】
少なくとも3つの制御信号接続113a、113b、113cは、貯蔵ユニット112がメッシュ型トポロジで通信可能に相互接続されることを可能にし、これにより、制御信号がルーティング技術を使用して中継されることが可能になり、制御信号は、貯蔵エンティティ(貯蔵ユニット112および主コントローラ120など)によって形成されたネットワークノードの現在の状態に応じて変化し得る異なる経路を介して転送されることができ、またはより好ましくは、それが到達したものを除くすべての制御信号接続を介して送信されるフラッディング技術を使用して中継されることが可能になる。
【0045】
図4aおよび図4bは、先の図のいずれかを参照して説明されたものと同様に構成され得る、いくつかの実施形態によるエネルギー貯蔵装置110の複数の貯蔵ユニット112a~z(集合的に112nと呼ばれる)間の通信結合を示す概略図である。図4aにおいて、各貯蔵ユニット112nの制御信号接続113a、113bのうちの2つは、デイジーチェーントポロジを有するアレイ内で貯蔵ユニット112nを直列接続するように構成される。本図に示されるように、アレイ内の最初の貯蔵ユニット112aおよび最後の貯蔵ユニット112zは、主コントローラ120およびアレイ内の隣接する貯蔵ユニット112nに接続されてもよく、残りの貯蔵ユニット112nは、アレイ内の2つの隣接する貯蔵ユニットに接続されてもよい。直列接続アレイは、バックボーンネットワークとも呼ばれ得る。
【0046】
さらに、貯蔵ユニット112nのうちのいくつかは、デイジーチェーンをショートカットするように構成された第3の制御信号接続113cを備えてもよく、したがって、制御信号が隣接していない貯蔵ユニット112nに中継されることを可能にしてもよい。図4aに示される例では、貯蔵ユニット112aは、貯蔵ユニット112cへのショートカット接続を提供する第3の制御信号接続113cを備え、制御信号は、デイジーチェーンの中間貯蔵ユニット112bを通過することなく貯蔵ユニット112cに直接中継されることができる。同様の第3の制御信号接続が貯蔵ユニット112bに提供され、貯蔵ユニット112bを隣接していない貯蔵ユニット112dに直接接続する。貯蔵ユニット112nは、必ずしも3つの制御信号接続113a、113b、113に限定されないことが理解されよう。貯蔵ユニット112nのうちのいくつかは、貯蔵ユニット112dについて示されるような第4の制御信号接続などのさらなる制御信号接続を備えてもよい。
【0047】
図4bは、図4aと同様の配置を示しているが、貯蔵ユニット112nがバックボーンネットワークにおいて直列接続されていない点が異なる。代わりに、メッシュ型トポロジが提供され、第1の貯蔵ユニット112aは(第1の制御信号接続113aを介して)主コントローラ120に接続され、第2および第3の制御信号接続113b、113cを介して他の2つの貯蔵ユニット、すなわち第2の貯蔵ユニット112bおよび第3の貯蔵ユニット112cに接続される。さらに、第2の貯蔵ユニット112bは、第2の貯蔵ユニット112bを第1の貯蔵ユニット112aおよび追加のコントローラ122に接続する2つの制御信号接続のみを備える。追加のコントローラ122は、配置の冗長性を高めるために設けられてもよく、例えば、主コントローラ120または一次コントローラの故障の場合に追加のコントローラ122が引き継ぐことを可能にするホットスタンバイモードで動作してもよい。したがって、追加のコントローラ122は、主コントローラのバックアップとして機能し得る。貯蔵ユニット112nからのデータは、主コントローラ120と追加のコントローラ122との間でリアルタイムにミラーリングされることが好ましい。
【0048】
図5は、エネルギー貯蔵装置110とAC電力伝送システムとの間に機能的に配置されてSTATCOMとして機能するように構成された複数の相互接続されたコンバータユニット212を備える、モジュール式マルチレベルコンバータ(modular multilevel converter、MMC)装置210などのコンバータ装置を示す概略図である。さらに、MMC装置コントローラ220が、MMC装置210の動作を制御するために設けられてもよい。エネルギー貯蔵装置110に関する上記の実施形態と同様に、コンバータユニット212のうちの少なくともいくつかは、それを介してコンバータユニット212が少なくとも3つのコンバータエンティティから制御信号を受信し得る少なくとも3つの制御信号接続213a、213b、213cと、コンバータユニット212の動作を制御するためのコンバータユニットコントローラ214とを備えてもよい。少なくとも3つのコンバータエンティティの各々は、MMC装置コントローラ220または隣接するコンバータユニット212のコンバータユニットコントローラ214のいずれかであってもよい。貯蔵ユニット112と同様に、コンバータユニット212は、制御信号接続213a、213b、213cのうちの第1のものを介して受信された制御信号を、制御信号接続213a、213b、213cのうちの残りのものを介して接続されたすべての隣接するコンバータユニット212に転送するように構成されてもよい。
【0049】
MMC装置210は、図1図4のいずれかを参照して上述されたようにエネルギー貯蔵装置110の対応する端子に電気的に結合されるように構成された正のDC端子および負のDC端子を備えるDC側、ならびにAC電力伝送システムに電気的に結合されるように構成されたAC側を備え得る。
【0050】
MMC装置コントローラ220は、AC電力伝送システムへの接続点における無効電力を補償することによって過渡安定性を改善するためのSTATCOMとしてMMC装置を動作させるように構成されてもよい。スイッチングセルとも呼ばれ得るコンバータユニット212は、例えばハーフブリッジ構造またはフルブリッジ構造を備えてもよく、能動的に制御される構成要素は、例えば絶縁ゲートバイポーラトランジスタ(IGBT)、絶縁ゲート転流サイリスタ(IGCT)、ゲートターンオフサイリスタ(GTOS)などのスイッチであってもよい。
【0051】
図6は、制御可能バルブ215などのコンバータユニット212の能動構成要素215に動作可能に結合されたコンバータユニットコントローラ214を備える、図5のMMC装置210のコンバータユニット212の概略図である。本例のコンバータユニット212は、バルブ215を動作させるための命令をコンバータユニットコントローラ214に提供するために、コンバータユニットコントローラ214に接続され得る少なくとも3つの制御信号接続213a、213b、213cを備える。コンバータユニット212は、図5に関連して上で概説されたように、制御信号接続113a、113b、113cのうちの第1のものを介して制御信号を受信し、制御信号を隣接する貯蔵ユニット112またはMMC装置コントローラ220に中継するように構成され得る。
【0052】
エネルギー貯蔵装置10と同様に、コンバータユニット212のうちの少なくともいくつかの少なくとも3つの制御信号接続213a、213b、213cは、制御信号が、コンバータエンティティ(コンバータユニット212およびMMC装置コントローラ220など)によって形成されたネットワークノードの現在の状態に応じて変化し得る異なる経路を介して転送され得るルーティング技術、またはそれが到達したものを除くすべての制御信号接続を介して送信されるフラッディング技術のいずれかを使用して、複数のコンバータユニット212を介して制御信号が中継されることを可能にする。図4aおよび図4bを参照して説明されたのと同様のネットワークトポロジが適用され得る。
【0053】
図7は、エネルギー貯蔵装置110によって給電されるコンバータ装置210(STATCOMとも呼ばれる)を備える、一実施形態によるサポートシステム100の概要を示す図である。コンバータ装置210およびエネルギー貯蔵装置110は、前の図に関連して上述された実施形態のいずれかと同様に構成され得る。サポートシステム100は、協調コントローラ20をさらに備えてもよく、それは、STATCOM機能210およびエネルギー貯蔵機能110の両方の動作を制御するように構成されてもよい。協調コントローラ20は、いくつかの例では、前の実施形態に関連して説明されたように、主コントローラ120および/またはコンバータ装置コントローラ220などの中間コントローラを介して制御を実行し得る。主コントローラ120およびコンバータ装置コントローラ220は、本図に示されるように、協調コントローラ20に通信可能に接続されてもよい。あるいは、主コントローラ120および/またはコンバータ装置コントローラ220は省略されてもよく、その結果、協調コントローラ20は、エネルギー貯蔵装置110および/またはコンバータ装置210を共同で直接制御する。本サポートシステム100は、STATCOM機能およびエネルギー貯蔵機能の利点を組み合わせ得る。したがって、図7に示される複合システム100は、協調コントローラ20がサポートシステム100とAC電力伝送システムとの間の無効電力および有効電力の両方の潮流を制御することを可能にするためにエネルギー貯蔵システムによってサポートされるSTATCOMとして動作し得る。
図1
図2
図3
図4a
図4b
図5
図6
図7