(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-11-08
(45)【発行日】2024-11-18
(54)【発明の名称】周波数電圧変換回路、または発振器
(51)【国際特許分類】
H03L 7/085 20060101AFI20241111BHJP
H03L 7/06 20060101ALI20241111BHJP
H01L 29/786 20060101ALI20241111BHJP
H01L 21/8234 20060101ALI20241111BHJP
H01L 27/06 20060101ALI20241111BHJP
H01L 27/088 20060101ALI20241111BHJP
【FI】
H03L7/085
H03L7/06 240
H01L29/78 618B
H01L29/78 613Z
H01L29/78 617N
H01L27/06 102A
H01L27/088 E
H01L27/088 331E
(21)【出願番号】P 2021523131
(86)(22)【出願日】2020-05-19
(86)【国際出願番号】 IB2020054716
(87)【国際公開番号】W WO2020240341
(87)【国際公開日】2020-12-03
【審査請求日】2023-05-08
(31)【優先権主張番号】P 2019102133
(32)【優先日】2019-05-31
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000153878
【氏名又は名称】株式会社半導体エネルギー研究所
(72)【発明者】
【氏名】大嶋 和晃
(72)【発明者】
【氏名】國武 寛司
(72)【発明者】
【氏名】福留 貴浩
【審査官】福田 正悟
(56)【参考文献】
【文献】特開2012-257192(JP,A)
【文献】実開平04-132748(JP,U)
【文献】特開2016-129345(JP,A)
【文献】国際公開第2012/137590(WO,A1)
【文献】特開2004-056561(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H03L 7/085
H03L 7/06
H01L 29/786
H01L 21/8234
H01L 27/088
(57)【特許請求の範囲】
【請求項1】
第1のトランジスタ、第2のトランジスタ、第3のトランジスタ、第1の容量、第2の容量、および機能素子を有し、
前記第1のトランジスタ乃至第3のトランジスタの半導体層は、酸化物半導体を有し、
前記第1のトランジスタのゲート
およびバックゲートは、前記第1のトランジスタのソースまたはドレインの一方と
常に導通し、
前記第1のトランジスタのソースまたはドレインの他方は、前記第2のトランジスタのソースまたはドレインの一方、および前記第1の容量の電極の一方と
常に導通し、
前記第2のトランジスタのソースまたはドレインの他方は、前記第3のトランジスタのソースまたはドレインの一方、および前記第2の容量の電極の一方と
常に導通し、
前記機能素子の電極の一方は、前記第2のトランジスタのゲート、および前記第3のトランジスタのゲートと
常に導通し、
前記第3のトランジスタのソースまたはドレインの他方は、前記第1の容量の他方の電極と常に導通し、
前記第3のトランジスタのソースまたはドレインの他方は、前記第2の容量の他方の電極と常に導通し、
前記第2のトランジスタおよび前記第3のトランジスタのゲートには、前記機能素子を介して交流信号が与えられ、
前記第2のトランジスタのバックゲートおよび前記第3のトランジスタのバックゲートには、第1の電圧が与えられ、
前記第1の電圧を制御することで、前記第1の容量の電極の一方に印加される第2の電圧の大きさを変化させる周波数電圧変換回路。
【請求項2】
請求項1において、
前記酸化物半導体は、InまたはZnの少なくとも一方を含む周波数電圧変換回路。
【請求項3】
請求項1または請求項2に記載の周波数電圧変換回路と、
電圧制御発振回路と、
ループフィルタと、を含
み、
前記電圧制御発振回路の出力端子は、前記機能素子の他方の電極と電気的に接続され、
前記ループフィルタの入力端子は、前記第1のトランジスタのソースまたはドレインの一方と常に導通し、
前記ループフィルタの出力端子は、前記電圧制御発振回路の入力端子と電気的に接続される、発振器。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の一態様は、半導体装置、または半導体装置を含む発振器に関する。
【0002】
なお本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の技術分野は、物、方法、または、製造方法に関するものである。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関するものである。
【0003】
なお、本明細書等において半導体装置とは、半導体特性を利用することで機能しうるもの全般を指す。よって、トランジスタやダイオードなどの半導体素子や、半導体素子を含む回路は半導体装置である。また、表示装置、発光装置、照明装置、電気光学装置、通信装置および電子機器などは、半導体素子や半導体回路を含む場合がある。よって、表示装置、発光装置、照明装置、電気光学装置、撮像装置、通信装置および電子機器なども、半導体装置と呼ばれる場合がある。
【背景技術】
【0004】
スマートフォンやタブレット端末などに代表される持ち運びが容易な情報端末の普及が進んでいる。情報端末の普及に伴い、様々な通信規格が制定されている。例えば、第4世代移動通信システム(4G)と呼ばれるLTE-Advanced規格の運用が開始されている。
【0005】
近年、情報端末以外の電子機器(例えば、車載用電子機器、家庭用電気機械器具、住宅、建物、またはウエアラブル機器など)をインターネットに接続するIoT(Internet of Things)などの情報技術の発展により、電子機器が扱うデータ量は増大する傾向にある。また、情報端末などの電子機器に通信速度の向上が求められている。
【0006】
IoTを実現するには、新たにインターネットに接続される電子機器が増えるため、一度に接続できる電子機器を増やすことが求められる。また、一度に多くの電子機器がインターネットに接続されるため、通信のタイムラグ(遅延と言い換えてもよい)が発生する。したがって、IoTを含む様々な情報技術に対応するため、4Gよりも速い通信速度、多くの同時接続、短い遅延時間などを実現する第5世代移動通信システム(5G)と呼ばれる新たな通信規格が検討されている。5Gでは、3.7GHz帯、4.5GHz帯、および28GHz帯の通信周波数が使用される。
【0007】
特許文献1では、半導体装置の使用する通信周波数が変わった場合、または半導体装置の電源電圧や温度などに変動があっても、高精度なクロック信号を生成する半導体装置が開示されている。
【0008】
5Gに対応する半導体装置は、Siなど1種類の元素を主成分として用いる半導体や、GaとAsなど複数種類の元素を主成分として用いる化合物半導体を用いて作製される。さらに、金属酸化物の一種である酸化物半導体が注目されている。
【0009】
酸化物半導体では、単結晶でも非晶質でもない、CAAC(c-axis aligned crystalline)構造およびnc(nanocrystalline)構造が見出されている(非特許文献1及び非特許文献2参照)。
【0010】
非特許文献1および非特許文献2では、CAAC構造を有する酸化物半導体を用いてトランジスタを作製する技術が開示されている。
【先行技術文献】
【特許文献】
【0011】
【非特許文献】
【0012】
【文献】S.Yamazaki et al.,“SID Symposium Digest of Technical Papers”,2012,volume 43,issue 1,p.183-186
【文献】S.Yamazaki et al.,“Japanese Journal of Applied Physics”,2014,volume 53,Number 4S,p.04ED18-1-04ED18-10
【発明の概要】
【発明が解決しようとする課題】
通信速度を高速化することで電子機器は、発熱することが知られている。電子機器は半導体装置を有し、半導体装置は、高温環境下ではリーク電流が増大し誤動作をする課題がある。また5Gなどでは、スーパーヘテロダイン方式の通信方式を用いることが知られている。スーパーヘテロダイン方式は、混合器(Mixer)を有し、混合器は半導体装置を有する。混合器は、局部発振器として機能する半導体装置を有する。混合器は、アンテナで受信した信号の周波数と、局部発振器が生成する発振周波数と、の差を取り出すことができる。ただし、局部発振器が温度などの影響を受けると、当該周波数の差が正しく検出できなくなる課題がある。
【0013】
本発明の一態様は、安定した周波数を生成する半導体装置などを提供することを課題の一つとする。または、温度依存性が低減される信頼性の良好な半導体装置などを提供することを課題の一つとする。または、生産性が良好な半導体装置などを提供することを課題の一つとする。または、新規な半導体装置などを提供することを課題の一つとする。
【0014】
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はない。なお、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。
【課題を解決するための手段】
【0015】
本発明の一態様は、第1のトランジスタ、第2のトランジスタ、第3のトランジスタ、第1の容量、第2の容量、および機能素子を有する半導体装置である。第1のトランジスタ乃至第3のトランジスタの半導体層は、酸化物半導体を有する。第1のトランジスタのゲートは、第1のトランジスタのソースまたはドレインの一方と電気的に接続される。第1のトランジスタのソースまたはドレインの他方は、第2のトランジスタのソースまたはドレインの一方、および第1の容量の電極の一方と電気的に接続される。第2のトランジスタのソースまたはドレインの他方は、第3のトランジスタのソースまたはドレインの一方、および第2の容量の電極の一方と電気的に接続される。機能素子の電極の一方は、第2のトランジスタのゲート、および第3のトランジスタのゲートと電気的に接続される。第2のトランジスタおよび第3のトランジスタのゲートには、機能素子を介して交流信号が与えられる。第2のトランジスタおよび第3のトランジスタのバックゲートには、第1の電圧が与えられる。第1の電圧を制御することで、第1の容量の電極の一方に印加される第2の電圧を変化させる。
【0016】
詳細に説明すると、第2のトランジスタ、第3のトランジスタ、および第2の容量を用いて、スイッチドキャパシタを構成する。なお、第1のトランジスタ乃至第3のトランジスタの半導体層が、酸化物を有することで、温度依存性を低減することができる。第2のトランジスタのゲートおよび第3のトランジスタのゲートに与えられる交流信号は、スイッチドキャパシタを介することで直流電圧に変換される。なお、直流電圧の大きさは、第2のトランジスタのバックゲートおよび第3のトランジスタのバックゲートに与える電圧の大きさによって調整される。
【0017】
上記構成において、第1のトランジスタ乃至第3のトランジスタが有する酸化物半導体は、InまたはZnの少なくとも一方を含むことが好ましい。
【0018】
上記構成の半導体装置が生成する電圧の大きさによって発振周波数を変化させる電圧制御発振回路を含む発振器であることが好ましい。
【発明の効果】
【0019】
本発明の一態様によれば、消費電力が低減された半導体装置などを提供することができる。または、動作の安定した半導体装置などを提供することができる。または、信頼性の良好な半導体装置などを提供することができる。または、生産性が良好な半導体装置などを提供することができる。または、新規な半導体装置などを提供することができる。
【0020】
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。
【図面の簡単な説明】
【0021】
図1は、無線送受信機の構成例を説明する図である。
図2は、局部発振器を説明するブロック図である。
図3A乃至
図3Cは、半導体装置を説明する回路図である。
図4Aおよび
図4Bは、半導体装置を説明する回路図である。
図5A乃至
図5Cは、半導体装置を説明する回路図である。
図6は、半導体装置の出力特性を説明する図である。
図7は、半導体装置の構成例を示す図である。
図8は、半導体装置の構成例を示す図である。
図9A乃至
図9Cは、トランジスタの構成例を示す図である。
図10A乃至
図10Cは、トランジスタの構成例を示す図である。
図11A乃至
図11Cは、トランジスタの構成例を示す図である。
図12AはIGZOの結晶構造の分類を説明する図である。
図12BはCAAC-IGZO膜のXRDスペクトルを説明する図である。
図12CはCAAC-IGZO膜の極微電子線回折パターンを説明する図である。
図13Aは、半導体ウエハの上面図である。
図13Bは、チップの上面図である。
図14Aは、電子部品の作製工程例を説明するフローチャートである。
図14Bは、電子部品の斜視模式図である。
図15は、電子機器の一例を示す図である。
図16A乃至
図16Fは、電子機器の一例を示す図である。
図17は、IoTネットワークの階層構造と要求仕様の傾向を示す図である。
図18は、ファクトリーオートメーションのイメージ図である。
図19A乃至
図19Cは、遮断周波数の計算に用いたOS-FETの構造を示す図である。
図20は、OS-FETの遮断周波数の計算結果を示す図である。
【発明を実施するための形態】
【0022】
実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。なお、以下に説明する発明の構成において、同一部分または同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その説明の繰り返しは省略する。
【0023】
また、図面等において示す各構成の、位置、大きさ、範囲などは、発明の理解を容易とするため、実際の位置、大きさ、範囲などを表していない場合がある。このため、開示する発明は、必ずしも、図面等に開示された位置、大きさ、範囲などに限定されない。例えば、実際の製造工程において、エッチングなどの処理によりレジストマスクなどが意図せずに目減りすることがあるが、理解を容易とするために図に反映しないことがある。
【0024】
また、上面図(「平面図」ともいう)や斜視図などにおいて、図面をわかりやすくするために、一部の構成要素の記載を省略する場合がある。
【0025】
また、本明細書等において「電極」や「配線」の用語は、これらの構成要素を機能的に限定するものではない。例えば、「電極」は「配線」の一部として用いられることがあり、その逆もまた同様である。さらに、「電極」や「配線」の用語は、複数の「電極」や「配線」が一体となって形成されている場合なども含む。
【0026】
また、本明細書等において、「抵抗」とは、配線の長さによって抵抗値を決める場合がある。または、配線で用いる導電層と、その導電層とは異なる抵抗率を有する導電層とがコンタクトを介して接続することで抵抗が形成される場合もある。または、半導体層に不純物をドーピングすることで抵抗値を決める場合がある。
【0027】
また、本明細書等において、電気回路における「端子」とは、電流の入力または出力、電圧の入力または出力、もしくは、信号の受信または送信が行なわれる部位を言う。よって、配線または電極の一部が端子として機能する場合がある。
【0028】
なお、本明細書等において「上」や「下」の用語は、構成要素の位置関係が直上または直下で、かつ、直接接していることを限定するものではない。例えば、「絶縁層A上の電極B」の表現であれば、絶縁層Aの上に電極Bが直接接して形成されている必要はなく、絶縁層Aと電極Bとの間に他の構成要素を含むものを除外しない。
【0029】
また、ソースおよびドレインの機能は、異なる極性のトランジスタを採用する場合や、回路動作において電流の方向が変化する場合など、動作条件などによって互いに入れ替わるため、いずれがソースまたはドレインであるかを限定することが困難である。このため、本明細書においては、ソースおよびドレインの用語は、入れ替えて用いることができるものとする。
【0030】
また、本明細書等において、「電気的に接続」には、直接接続している場合と、「何らかの電気的作用を有するもの」を介して接続されている場合が含まれる。ここで、「何らかの電気的作用を有するもの」は、接続対象間での電気信号の授受を可能とするものであれば、特に制限を受けない。よって、「電気的に接続する」と表現される場合であっても、現実の回路においては、物理的な接続部分がなく、配線が延在しているだけの場合もある。また、「直接接続」には、異なる導電層によって形成される配線がコンタクトを介して接続し一つの配線として機能する場合が含まれる。
【0031】
また、本明細書などにおいて、「平行」とは、例えば、二つの直線が-10°以上10°以下の角度で配置されている状態をいう。従って、-5°以上5°以下の場合も含まれる。また、「垂直」および「直交」とは、例えば、二つの直線が80°以上100°以下の角度で配置されている状態をいう。従って、85°以上95°以下の場合も含まれる。
【0032】
なお、本明細書などにおいて、計数値および計量値に関して「同一」、「同じ」、「等しい」または「均一」などと言う場合は、明示されている場合を除き、プラスマイナス20%の誤差を含むものとする。
【0033】
また、電圧は、ある電位と、基準の電位(例えば接地電位またはソース電位)との電位差のことを示す場合が多い。よって、電圧と電位は互いに言い換えることが可能な場合が多い。本明細書などでは、特段の明示が無いかぎり、電圧と電位を言い換えることができるものとする。
【0034】
なお、「半導体」と表記した場合でも、例えば、導電性が十分低い場合は「絶縁体」としての特性を有する。よって、「半導体」を「絶縁体」に置き換えて用いることも可能である。この場合、「半導体」と「絶縁体」の境界は曖昧であり、両者の厳密な区別は難しい。したがって、本明細書に記載の「半導体」と「絶縁体」は、互いに読み換えることができる場合がある。
【0035】
また、「半導体」と表記した場合でも、例えば、導電性が十分高い場合は「導電体」としての特性を有する。よって、「半導体」を「導電体」に置き換えて用いることも可能である。この場合、「半導体」と「導電体」の境界は曖昧であり、両者の厳密な区別は難しい。したがって、本明細書に記載の「半導体」と「導電体」は、互いに読み換えることができる場合がある。
【0036】
なお、本明細書等における「第1」、「第2」等の序数詞は、構成要素の混同を避けるために付すものであり、工程順または積層順など、なんらかの順番や順位を示すものではない。また、本明細書等において序数詞が付されていない用語であっても、構成要素の混同を避けるため、特許請求の範囲において序数詞が付される場合がある。また、本明細書等において序数詞が付されている用語であっても、特許請求の範囲において異なる序数詞が付される場合がある。また、本明細書等において序数詞が付されている用語であっても、特許請求の範囲などにおいて序数詞を省略する場合がある。
【0037】
なお、本明細書等において、トランジスタの「オン状態」とは、トランジスタのソースとドレインが電気的に短絡しているとみなせる状態(「導通状態」ともいう。)をいう。また、トランジスタの「オフ状態」とは、トランジスタのソースとドレインが電気的に遮断しているとみなせる状態(「非導通状態」ともいう。)をいう。
【0038】
また、本明細書等において、「オン電流」とは、トランジスタがオン状態の時にソースとドレイン間に流れる電流をいう場合がある。また、「オフ電流」とは、トランジスタがオフ状態である時にソースとドレイン間に流れる電流をいう場合がある。
【0039】
また、本明細書等において、高電源電圧VDD(以下、単に「VDD」、「H電圧」、または「H」ともいう)とは、低電源電圧VSS(以下、単に「VSS」、「L電圧」、または「L」ともいう)よりも高い電圧の電源電圧を示す。また、VSSとは、VDDよりも低い電圧の電源電圧を示す。また、接地電圧(以下、単に「GND」、または「GND電圧」ともいう)をVDDまたはVSSとして用いることもできる。例えばVDDが接地電圧の場合には、VSSは接地電圧より低い電圧であり、VSSが接地電圧の場合には、VDDは接地電圧より高い電圧である。
【0040】
また、本明細書等において、ゲートとは、ゲート電極およびゲート配線の一部または全部のことをいう。ゲート配線とは、少なくとも一つのトランジスタのゲート電極と、別の電極や別の配線とを電気的に接続させるための配線のことをいう。
【0041】
また、本明細書等において、ソースとは、ソース領域、ソース電極、およびソース配線の一部または全部のことをいう。ソース領域とは、半導体層のうち、抵抗率が一定値以下の領域のことをいう。ソース電極とは、ソース領域に接続される部分の導電層のことをいう。ソース配線とは、少なくとも一つのトランジスタのソース電極と、別の電極や別の配線とを電気的に接続させるための配線のことをいう。
【0042】
また、本明細書等において、ドレインとは、ドレイン領域、ドレイン電極、及びドレイン配線の一部または全部のことをいう。ドレイン領域とは、半導体層のうち、抵抗率が一定値以下の領域のことをいう。ドレイン電極とは、ドレイン領域に接続される部分の導電層のことをいう。ドレイン配線とは、少なくとも一つのトランジスタのドレイン電極と、別の電極や別の配線とを電気的に接続させるための配線のことをいう。
【0043】
また、図面などにおいて、配線および電極などの電圧をわかりやすくするため、配線および電極などに隣接してH電圧を示す“H”、またはL電圧を示す“L”を付記する場合がある。また、電圧変化が生じた配線および電極などには、“H”または“L”を囲み文字で付記する場合がある。また、トランジスタがオフ状態である場合、当該トランジスタに重ねて“×”記号を付記する場合がある。
【0044】
(実施の形態1)
本発明の一態様に係る半導体装置について、図面を用いて説明する。
図1は、半導体装置の一種である無線送受信機900の構成を示すブロック図である。
【0045】
なお、本明細書などで例示する半導体装置の構成は一例であり、全ての構成要素を含む必要はない。半導体装置は、本明細書などに示す構成要素のうち必要な構成要素を有していればよい。また本明細書などに示す構成要素以外の構成要素を有していてもよい。
【0046】
無線送受信機900は、低ノイズアンプ901(LNA:Low Noise Amplifier)、バンドパスフィルタ902(BPF:Band Pass Filter)、混合器903(MIX:Mixer)、バンドパスフィルタ904、復調器905(DEM:Demodulator)、パワーアンプ911(PA:Power Amplifier)、バンドパスフィルタ912、混合器913、バンドパスフィルタ914、変調器915(MOD:Modulator)、共用器921(DUP:Duplexer)、局部発振器922(LO:local Oscillator)、およびアンテナ931を有する。
【0047】
<受信>
他の半導体装置または基地局などから送信された信号941は、アンテナ931および共用器921を介して、受信信号として低ノイズアンプ901に入力される。共用器921は、無線信号の送信と受信を1つのアンテナで実現する機能を有する。
【0048】
低ノイズアンプ901は、微弱な受信信号を無線送受信機900で処理可能な強度の信号に増幅する機能を有する。低ノイズアンプ901で増幅された信号941は、バンドパスフィルタ902を介して混合器903に供給される。
【0049】
バンドパスフィルタ902は、信号941に含まれる周波数成分の中から、必要な周波数帯域外の周波数成分を減衰させて、必要な周波数帯域を通過させる機能を有する。
【0050】
混合器903は、バンドパスフィルタ902を通過した信号941と、局部発振器922で生成された信号943を、スーパーヘテロダイン方式で混合する機能を有する。混合器903は、信号941と信号943を混合し、両者の差の周波数成分と和の周波数成分を持つ信号をバンドパスフィルタ904に供給する。
【0051】
バンドパスフィルタ904は、2つの周波数成分のうち、一方の周波数を通過させる機能を有する。例えば、差の周波数成分を通過させる。また、バンドパスフィルタ904は、混合器903で生じたノイズ成分を除去する機能も有する。バンドパスフィルタ904を通過した信号は、復調器905に供給される。復調器905は、供給された信号を制御信号やデータ信号などに変換し、出力する機能を有する。復調器905から出力された信号は、様々な処理装置(演算装置、記憶装置など)に供給される。
【0052】
<送信>
変調器915は、制御信号やデータ信号などを無線送受信機900から他の半導体装置または基地局などに送信するために基本信号を生成する機能を有する。基本信号は、バンドパスフィルタ914を介して混合器913に供給される。
【0053】
バンドパスフィルタ914は、変調器915で基本信号を生成する際に生じるノイズ成分を除去する機能を有する。
【0054】
混合器913は、バンドパスフィルタ914を通過した基本信号と、局部発振器922で生成された信号944を、スーパーヘテロダイン方式で混合する機能を有する。混合器913は、基本信号と信号944を混合し、両者の差の周波数成分と和の周波数成分を持つ信号をバンドパスフィルタ912に供給する。
【0055】
バンドパスフィルタ912は、2つの周波数成分のうち、一方の周波数を通過させる機能を有する。例えば、和の周波数成分を通過させる。また、バンドパスフィルタ912は、混合器913で生じたノイズ成分を除去する機能も有する。バンドパスフィルタ912を通過した信号は、パワーアンプ911に供給される。
【0056】
パワーアンプ911は、供給された信号を増幅して信号942を生成する機能を有する。信号942は、共用器921を介してアンテナ931から外部に放射される。
【0057】
<局部発振器>
図2は、局部発振器922に用いることができる半導体装置100のブロック図である。半導体装置100は、周波数電圧変換回路10、ループフィルタ11、および電圧制御発振回路12を有する。
【0058】
周波数電圧変換回路10の出力は、ループフィルタ11に与えられる。ループフィルタ11の出力は電圧制御発振回路12に与えられる。電圧制御発振回路12の出力は、周波数電圧変換回路10に与えられる。なお、
図1では、出力信号FOUTが混合器903に与える信号943、または混合器913に与える信号944に相当する。
【0059】
半導体装置100は、周波数電圧変換回路10に与えられる入力信号から直流電圧を生成する。ループフィルタ11は、直流電圧に含まれる周波数成分を除去する。ループフィルタ11によってノイズ成分が除去された直流電圧は、電圧制御発振回路12に与えられる。電圧制御発振回路12は、入力する直流電圧の電圧値に応じて出力信号FOUTの発振周波数を変更することができる。さらに、半導体装置100は、周波数電圧変換回路10に出力信号FOUTが与えられることでフィードバックループを構成する。したがって、出力信号FOUTは、安定した発振周波数を得ることができる。なお、ループフィルタ11は、ローパスフィルタを用いることができる。
【0060】
周波数電圧変換回路10は、入力する信号に対し出力する電圧の変動が少ない構成が好ましい。一例として、周波数電圧変換回路10は、スイッチおよびコンデンサを組み合わせて構成されるスイッチドキャパシタを構成に含む。スイッチドキャパシタは、可変抵抗のように電流または電圧を制御することができる。電力を熱として放出する抵抗器と異なり、使用する電力を少なくし、且つ、発熱を抑制することができる。
【0061】
例えば、スイッチには、トランジスタを用いることができる。当該トランジスタの半導体層は、酸化物半導体を有することが好ましい。なお、トランジスタのチャネルが形成される半導体層に金属酸化物の一種である酸化物半導体(Oxide Semiconductor:OS)を含むトランジスタを「OSトランジスタ」または「OS-FET」と呼ぶ。なお、OSトランジスタは、温度変化による電気的特性の変動が小さいことが知られている。また、容量は、抵抗よりも温度変化による電気的特性の変動が少ないことが知られている。したがって、温度変化による電気的特性の変動が小さいスイッチおよび容量を用いて構成するスイッチドキャパシタは、温度依存性を低減することができる。また、OSトランジスタは半導体層のエネルギーギャップが大きいため、数yA/μm(チャネル幅1μmあたりの電流値)という極めて低いオフ電流特性を示すことができる。したがって、OSトランジスタは、容量に保持された電荷からのリークを抑えることができる。よって、スイッチドキャパシタに与えられる入力信号は、リークによる損失を抑え効率よく直流電圧に変換することができる。
【0062】
図3Aは、周波数電圧変換回路10を説明する回路図である。
図3Bおよび
図3Cは、機能素子26を説明する図である。
【0063】
まず、
図3Aを用いて周波数電圧変換回路10について説明する。周波数電圧変換回路10は、トランジスタ21、トランジスタ22、トランジスタ23、容量24、容量25、および機能素子26を有する。
【0064】
機能素子26の電極の一方は、電圧制御発振回路12と電気的に接続される。機能素子26の電極の他方は、トランジスタ21のゲートおよびトランジスタ22のゲートと電気的に接続される。トランジスタ21のソース又はドレインの一方は、トランジスタ22のソース又はドレインの一方と、容量24の電極の一方と電気的に接続される。トランジスタ21のソース又はドレインの他方は、トランジスタ23のソース又はドレインの一方、容量25の電極の一方、およびループフィルタ11と電気的に接続される。配線31は、トランジスタ23のソース又はドレインの他方、トランジスタ23のゲートおよびバックゲートと電気的に接続される。配線32は、トランジスタ22のソース又はドレインの他方、容量24の電極の他方、および容量25の電極の他方と電気的に接続される。配線33は、トランジスタ21のバックゲートと電気的に接続される。配線34は、トランジスタ22のバックゲートと電気的に接続される。以降、容量25の電極の一方をノードNET1と言い換えて説明する
【0065】
なお、トランジスタ21乃至トランジスタ23は、OSトランジスタである。トランジスタ21、トランジスタ22、および容量24は、スイッチドキャパシタ30として機能する。なお、配線31には、半導体装置100の電源電圧が与えられ、配線32には、半導体装置100の接地電圧が与えられる。
【0066】
次に、機能素子26の一態様について、
図3Bを用いて説明する。一例として、
図3Bで示す機能素子26は、バッファの機能を有する。当該バッファには、インバータ回路を用いることができる。当該インバータ回路は、pチャネル型のトランジスタ51と、nチャネル型のトランジスタ52を有する。なお、インバータ回路の動作については、説明を省略する。
【0067】
電圧制御発振回路12は、トランジスタ51のゲートおよびトランジスタ52のゲートと電気的に接続される。トランジスタ51のソース又はドレインの一方は、配線31と電気的に接続される。トランジスタ51のソース又はドレインの他方は、トランジスタ52のソース又はドレインの一方と、スイッチドキャパシタ30と電気的に接続される。トランジスタ52のソース又はドレインの他方は、配線32と電気的に接続される。
【0068】
次に、
図3Cは、
図3Bと異なる機能素子26について説明する。一例として、
図3Cで示す機能素子26は、トランスファーゲートとして機能するトランジスタ53を有する。トランジスタ53は、OSトランジスタを用いることができる。当該OSトランジスタは、スイッチドキャパシタ30が有するトランジスタ21及びトランジスタ22のゲート容量を充電した信号が反射波となって電圧制御発振回路12に影響を与えることを抑えることができる。反射波の生成を低減することで、電圧制御発振回路12は、ジッター成分が少ない良好な発振周波数を出力することができる。なお、配線37には、トランジスタ53をオン状態またはオフ状態にする制御信号が与えられる。
【0069】
再び、
図3Aの説明に戻る。一例として、配線33および配線34に第1の電圧が与えられる場合、トランジスタ21およびトランジスタ22の閾値電圧が変化する。当該第1の電圧が小さくなる場合、トランジスタ21およびトランジスタ22の閾値電圧はプラス側にシフトする。もしくは、第1の電圧が大きくなる場合、トランジスタ21およびトランジスタ22の閾値電圧はマイナス側にシフトする。
【0070】
したがって、第1の電圧が小さくなる場合、ノードNET1の電圧は大きくなる。容量24に保持される電荷が、トランジスタ22を介して放電する量が少なくなるためである。なお、ノードNET1の電圧は、スイッチドキャパシタ30と、ダイオード接続されたトランジスタ23と、のインピーダンス比によって決定される。
【0071】
異なる例として、第1の電圧が大きくなる場合、ノードNET1の電圧は小さくなる。容量24に保持される電荷が、トランジスタ22を介して放電する量が多くなるためである。なお、ノードNET1の電圧は、スイッチドキャパシタ30と、ダイオード接続されたトランジスタ23と、のインピーダンス比によって決定される。
【0072】
なお、配線33または配線34に与えられる電圧は異なっていてもよい。例えば、配線33に与える電圧は、トランジスタ21の閾値電圧を制御する。したがって、トランジスタ21を介して容量24への電荷の注入量を制御することができる。また、配線34に与える電圧は、トランジスタ22の閾値電圧を制御する。したがって、トランジスタ22を介して容量24から電荷の放電量を制御することができる。トランジスタ21が、トランジスタ22と異なる閾値電圧で動作する場合、ノードNET1の電圧を細かく制御することができる。
【0073】
周波数電圧変換回路10が、温度変化による影響を低減することで無線送受信機900は、安定した信号の受信と、信号の送信と、をすることができる。
【0074】
図4Aおよび
図4Bは、
図3と異なる周波数電圧変換回路10を説明する回路図である。なお、以下に説明する発明の構成において、同一部分または同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。
【0075】
図4Aは、抵抗27を有する点が
図3と異なっている。抵抗27の一方は、配線31と電気的に接続される。抵抗27の他方は、トランジスタ21のソース又はドレインの他方、容量25の電極の一方、およびループフィルタ11と電気的に接続される。
【0076】
図4Aで示す周波数電圧変換回路10では、ノードNET1の電圧が抵抗27とスイッチドキャパシタのインピーダンス比によって決定される。したがって、ノードNET1の電圧は、抵抗27を用いることで線形性を確保することができる。
【0077】
図4Bは、トランジスタ28およびトランジスタ29を有する点が
図3と異なっている。トランジスタ28のゲートは、トランジスタ29のゲートおよび配線36と電気的に接続される。トランジスタ28のソース又はドレインの一方は、トランジスタ23のソース又はドレインの一方、およびトランジスタ21のソース又はドレインの他方と電気的に接続される。トランジスタ28のソース又はドレインの他方は、容量25の電極の一方およびループフィルタ11と電気的に接続される。トランジスタ29のソース又はドレインの一方は、配線31と電気的に接続される。トランジスタ29のソース又はドレインの他方は、トランジスタ23のソース又はドレインの他方、トランジスタ23のゲートおよびバックゲートと電気的に接続される。
【0078】
図4Bで示す周波数電圧変換回路10では、ノードNET1を、トランジスタ28によってスイッチドキャパシタと分離することができる。トランジスタ28は、オフ電流の小さなOSトランジスタを用いることが好ましい。トランジスタ28にOSトランジスタを用いることで、容量25、すなわちノードNET1に保持された電圧値の劣化を抑制することができる。
【0079】
半導体装置100が、低電力モードに移行する場合、トランジスタ28をオフ状態にすることで、周波数電圧変換回路10を低電力モードに移行させることができる。なお、トランジスタ28は、配線36に与えられる信号によってオン状態またはオフ状態が制御される。
【0080】
ただし、機能素子26には、当該低電力モード中も電圧制御発振回路12から出力信号FOUTが与えられる。したがって、スイッチドキャパシタ30は電力を消費する。対策として、周波数電圧変換回路10が低電力モードに移行した場合、周波数電圧変換回路10は、スイッチドキャパシタ30への電流の供給を止めることでスイッチドキャパシタ30の動作を停止させ電力の消費を低減する。
【0081】
一例として、配線31とトランジスタ23の間にトランジスタ29を設ける。トランジスタ29は、トランジスタ28と同時刻にオン状態またはオフ状態が制御されることが好ましい。トランジスタ28およびトランジスタ29が同時刻にオフ状態になることで、ノードNET1の電圧は保持され、半導体装置100は、安定した出力信号FOUTを出力する。スイッチドキャパシタ30は、機能素子26を介して出力信号FOUTが与えられたとしてもトランジスタ29がオフ状態のためスイッチドキャパシタ30の動作が停止する。したがって、半導体装置100は、周波数電圧変換回路10が低電力モードに移行した場合でも安定した出力信号FOUTを出力する。
【0082】
図5A、
図5B、および
図5Cは、ループフィルタ11を説明する回路図である。
図5Aで示すループフィルタ11は、抵抗41および容量42で構成される一次のローパスフィルタである。
【0083】
周波数電圧変換回路10の出力は、抵抗41の電極の一方に与えられる。抵抗41の電極の他方は、容量42の電極の一方と電気的に接続され、さらに電圧制御発振回路12と電気的に接続される。容量42の電極の他方は、配線32と電気的に接続される。なお配線32には、接地電圧が与えられる。
【0084】
図5Bは、
図5Aと異なり、さらに抵抗43を有するローパスフィルタである。
図5Bで示すループフィルタ11は、2次のローパスフィルタの一例である。特徴は、ローパスフィルタによって一度遅れた入力信号の位相が再び戻る点が特徴である。
【0085】
周波数電圧変換回路10の出力は、抵抗41の電極の一方と電気的に接続される。抵抗41の電極の他方は、抵抗43の電極の一方と、電圧制御発振回路12と電気的に接続される。抵抗43の電極の他方は、容量42の電極の一方と電気的に接続される。容量42の電極の他方は、配線32と電気的に接続される。なお配線32には、接地電圧が与えられる。
【0086】
図5Cは、オペアンプを利用するループフィルタ11を説明する回路図である。
図5Cに示すループフィルタ11は、位相を微調整するためのオフセット調整のための電圧を与える端子OFAを有するリプル除去特性が向上したローパスフィルタである。
【0087】
図5Cで示すループフィルタ11は、オペアンプ40、抵抗44、抵抗45、抵抗46、容量47、容量48、及び容量49を有する。なお、オペアンプ40は、反転入力端子、非反転入力端子、および出力端子を有する。
【0088】
周波数電圧変換回路10の出力は、抵抗44の電極の一方と電気的に接続される。抵抗44の電極の他方は、オペアンプ40の反転入力端子と、容量47の電極の一方と電気的に接続される。容量47の電極の他方は、抵抗45の電極の一方と、容量48の電極の一方と電気的に接続される。オペアンプ40の出力端子は、抵抗45の電極の他方と、容量48の電極の他方と、電圧制御発振回路12と電気的に接続される。端子OFAは、抵抗46の電極の一方と電気的に接続される。抵抗46の電極の他方は、容量49の電極の一方と、オペアンプ40の非反転入力端子と電気的に接続される。容量49の電極の他方は、配線32と電気的に接続される。なお配線32には、接地電圧が与えられる。
【0089】
図6は、周波数電圧変換回路10に、一定周波数の出力信号FOUTが与えられた場合のノードNET1の電位の変化をグラフに示している。縦軸は、ノードNET1の電位(V
NET1)の変化を示し、横軸は、時間(Time)の経過を示している。
【0090】
特性V(a)は、トランジスタ21およびトランジスタ22のバックゲートに、-10Vを与えた場合のVNET1の変化である。特性V(b)は、トランジスタ21およびトランジスタ22のバックゲートに、-5Vを与えた場合のVNET1の変化である。特性V(c)は、トランジスタ21およびトランジスタ22のバックゲートに、0Vを与えた場合のVNET1の変化である。
【0091】
したがって、周波数電圧変換回路10が有するスイッチドキャパシタ30が有するトランジスタ21およびトランジスタ22のバックゲートに与える電圧によってノードNET1に印加される電圧の大きさを制御することができる。言い換えると、トランジスタ21およびトランジスタ22のバックゲートに与える電圧によって半導体装置100の出力信号FOUTの発振周波数を調整することができる。さらに、周波数電圧変換回路10はOSトランジスタを用いることで温度特性の変化を受けにくい特徴を有する。
【0092】
例えば、5Gのような周波数帯域の高い信号を扱うIC(または集積回路)は、発熱しやすい。発熱したICなどが周辺に存在する場合、温度変化を電圧に変換し、当該電圧をトランジスタ21およびトランジスタ22のバックゲートに与えることで、発振周波数を調整することができる。よって無線送受信機は、正確にデータの受信および送信をすることができる。
【0093】
なお、本発明の一態様である半導体装置は、無線送受信機の適用に限定されない。ロボティクス、車載機器、ドローン、生産設備などの産業用機器に適用することができる。
【0094】
ここで、OSトランジスタを用いた記憶素子について説明する。一例として、
図4Bで説明した周波数電圧変換回路10は、トランジスタ28および容量25による記憶素子の構成を有するということができる。特に、トランジスタ28にOSトランジスタを用いた場合、当該記憶素子を「OSメモリ」と呼ぶことができる。
【0095】
OSメモリは、電力の供給を停止しても、1年以上、さらには10年以上の期間で書き込まれた情報を保持することができる。よって、OSメモリを不揮発性メモリと見なすこともできる。
【0096】
また、OSメモリはOSトランジスタを介してノードに電荷を書き込む方式であるため、従来のフラッシュメモリで必要であった高電圧が不要であり、高速な書き込み動作も実現できる。また、フローティングゲートまたは電荷捕獲層への電荷注入および引き抜きも行われないため、OSメモリは実質的に無制限回のデータの書き込みおよび読み出しが可能である。OSメモリは、従来のフラッシュメモリと比較して劣化が少なく、高い信頼性が得られる。
【0097】
また、OSメモリは磁気メモリあるいは抵抗変化型メモリなどのように原子レベルでの構造変化を伴わない。よって、OSメモリは、磁気メモリおよび抵抗変化型メモリよりも書き換え耐性に優れている。
【0098】
ループフィルタ11の前段に当該OSメモリを設けることで、ループフィルタ11に電圧を供給し続ける必要が無くなる。よって、半導体装置100の消費電力を低減できる。
【0099】
OSトランジスタは高温環境下でもオフ電流がほとんど増加しない。具体的には室温以上200℃以下の環境温度下でもオフ電流がほとんど増加しない。また、高温環境下でもオン電流が低下しにくい。また、OSトランジスタは、ソースとドレイン間の絶縁耐圧が高い。半導体装置を構成するトランジスタにOSトランジスタを用いることで、高温環境下においても動作が安定し、信頼性の良好な半導体装置が実現できる。
【0100】
ここでOSトランジスタのバックゲートについて説明する。バックゲートは、ゲートとバックゲートで半導体層のチャネル形成領域を挟むように配置される。バックゲートはゲートと同様に機能させることができる。また、バックゲートの電圧を変化させることで、トランジスタのしきい値電圧を変化させることができる。バックゲートの電圧は、ゲートと同電圧としてもよく、GNDもしくは任意の電圧としてもよい。
【0101】
また、一般に、ゲートとバックゲートは導電層で形成されるため、トランジスタの外部で生じる電場が、チャネルが形成される半導体層に作用しないようにする機能(特に静電気に対する静電遮蔽機能)も有する。すなわち、静電気などの外部の電場の影響による、トランジスタの電気特性の変動を防ぐことができる。
【0102】
本実施の形態に示す構成、構造、方法などは、他の実施の形態および実施例などに示す構成、構造、方法などと適宜組み合わせて用いることができる。
【0103】
(実施の形態2)
本実施の形態では、上記実施の形態で説明した半導体装置に適用可能なトランジスタの構成について説明する。一例として、異なる電気特性を有するトランジスタを積層して設ける構成について説明する。当該構成とすることで、半導体装置の設計自由度を高めることができる。また、異なる電気特性を有するトランジスタを積層して設けることで、半導体装置の集積度を高めることができる。
【0104】
半導体装置の断面構造の一部を
図7に示す。
図7に示す半導体装置は、トランジスタ550と、トランジスタ500と、容量600と、を有している。
図9Aはトランジスタ500のチャネル長方向の断面図であり、
図9Bはトランジスタ500のチャネル幅方向の断面図であり、
図9Cはトランジスタ550のチャネル幅方向の断面図である。例えば、トランジスタ500は上記実施の形態に示したトランジスタ21に相当し、トランジスタ550はトランジスタ22に相当する。また、容量600は容量24に相当する。なお、配線2001は、配線2002と接続することができる。
【0105】
トランジスタ500は、OSトランジスタである。トランジスタ500は、オフ電流が極めて少ない。よって、トランジスタ500を介して記憶ノードに書き込んだデータ電圧あるいは電荷を長期間保持することが可能である。つまり、記憶ノードのリフレッシュ動作頻度を低減、あるいは、リフレッシュ動作を必要としないため、半導体装置の消費電力を低減することができる。
【0106】
図7では、トランジスタ500はトランジスタ550の上方に設けられ、容量600はトランジスタ550、およびトランジスタ500の上方に設けられている。
【0107】
トランジスタ550は、基板311上に設けられ、導電体316、絶縁体315、基板311の一部からなる半導体領域313、ソース領域またはドレイン領域として機能する低抵抗領域314a、および低抵抗領域314bを有する。
【0108】
図9Cに示すように、トランジスタ550は、半導体領域313の上面およびチャネル幅方向の側面が絶縁体315を介して導電体316に覆われている。このように、トランジスタ550をFin型とすることにより、実効上のチャネル幅が増大することによりトランジスタ550のオン特性を向上させることができる。また、ゲート電極の電界の寄与を高くすることができるため、トランジスタ550のオフ特性を向上させることができる。
【0109】
なお、トランジスタ550は、pチャネル型、あるいはnチャネル型のいずれでもよい。
【0110】
半導体領域313のチャネルが形成される領域、その近傍の領域、ソース領域、またはドレイン領域となる低抵抗領域314a、および低抵抗領域314bなどにおいて、シリコン系半導体などの半導体を含むことが好ましく、単結晶シリコンを含むことが好ましい。または、Ge(ゲルマニウム)、SiGe(シリコンゲルマニウム)、GaAs(ガリウムヒ素)、GaAlAs(ガリウムアルミニウムヒ素)などを有する材料で形成してもよい。結晶格子に応力を与え、格子間隔を変化させることで有効質量を制御したシリコンを用いた構成としてもよい。またはGaAsとGaAlAs等を用いることで、トランジスタ550をHEMT(High Electron Mobility Transistor)としてもよい。
【0111】
低抵抗領域314a、および低抵抗領域314bは、半導体領域313に適用される半導体材料に加え、ヒ素、リンなどのn型の導電性を付与する元素、またはホウ素などのp型の導電性を付与する元素を含む。
【0112】
ゲート電極として機能する導電体316は、ヒ素、リンなどのn型の導電性を付与する元素、もしくはホウ素などのp型の導電性を付与する元素を含むシリコンなどの半導体材料、金属材料、合金材料、または金属酸化物材料などの導電性材料を用いることができる。
【0113】
なお、導電体の材料によって仕事関数が決まるため、当該導電体の材料を選択することで、トランジスタのしきい値電圧を調整することができる。具体的には、導電体に窒化チタンや窒化タンタルなどの材料を用いることが好ましい。さらに導電性と埋め込み性を両立するために導電体にタングステンやアルミニウムなどの金属材料を積層として用いることが好ましく、特にタングステンを用いることが耐熱性の点で好ましい。
【0114】
トランジスタ550は、SOI(Silicon on Insulator)基板などを用いて形成してもよい。
【0115】
また、SOI基板としては、鏡面研磨ウエハに酸素イオンを注入した後、高温加熱することにより、表面から一定の深さに酸化層を形成させるとともに、表面層に生じた欠陥を消滅させて形成されたSIMOX(Separation by Implanted Oxygen)基板や、水素イオン注入により形成された微小ボイドの熱処理による成長を利用して半導体基板を劈開するスマートカット法、ELTRAN法(登録商標:Epitaxial Layer Transfer)などを用いて形成されたSOI基板を用いてもよい。単結晶基板を用いて形成されたトランジスタは、チャネル形成領域に単結晶半導体を有する。
【0116】
なお、
図7に示すトランジスタ550は一例であり、その構成に限定されず、回路構成や駆動方法に応じて適切なトランジスタを用いればよい。例えば、半導体装置をOSトランジスタのみの単極性回路(nチャネル型トランジスタのみ、などと同極性のトランジスタを意味する)とする場合、
図8に示すように、トランジスタ550の構成を、トランジスタ500と同様の構成にすればよい。なお、トランジスタ500の詳細については後述する。
【0117】
トランジスタ550を覆って、絶縁体320、絶縁体322、絶縁体324、および絶縁体326が順に積層して設けられている。
【0118】
絶縁体320、絶縁体322、絶縁体324、および絶縁体326として、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、窒化アルミニウムなどを用いればよい。
【0119】
なお、本明細書中において、酸化窒化シリコンとは、その組成として窒素よりも酸素の含有量が多い材料を指し、窒化酸化シリコンとは、その組成として、酸素よりも窒素の含有量が多い材料を示す。また、本明細書中において、酸化窒化アルミニウムとは、その組成として窒素よりも酸素の含有量が多い材料を指し、窒化酸化アルミニウムとは、その組成として、酸素よりも窒素の含有量が多い材料を示す。
【0120】
絶縁体322は、その下方に設けられるトランジスタ550などによって生じる段差を平坦化する平坦化膜としての機能を有していてもよい。例えば、絶縁体322の上面は、平坦性を高めるために化学機械研磨(CMP)法等を用いた平坦化処理により平坦化されていてもよい。
【0121】
また、絶縁体324には、基板311、またはトランジスタ550などから、トランジスタ500が設けられる領域に、水素や不純物が拡散しないようなバリア性を有する膜を用いることが好ましい。
【0122】
水素に対するバリア性を有する膜の一例として、例えば、CVD法で形成した窒化シリコンを用いることができる。ここで、トランジスタ500等の酸化物半導体を有する半導体素子に、水素が拡散することで、当該半導体素子の特性が低下する場合がある。したがって、トランジスタ500と、トランジスタ550との間に、水素の拡散を抑制する膜を用いることが好ましい。水素の拡散を抑制する膜とは、具体的には、水素の脱離量が少ない膜とする。
【0123】
水素の脱離量は、例えば、昇温脱離ガス分析法(TDS)などを用いて分析することができる。例えば、絶縁体324の水素の脱離量は、TDS分析において、膜の表面温度が50℃から500℃の範囲において、水素原子に換算した脱離量が、絶縁体324の面積当たりに換算して、10×1015atoms/cm2以下、好ましくは5×1015atoms/cm2以下であればよい。
【0124】
なお、絶縁体326は、絶縁体324よりも誘電率が低いことが好ましい。例えば、絶縁体326の比誘電率は4未満が好ましく、3未満がより好ましい。また例えば、絶縁体326の比誘電率は、絶縁体324の比誘電率の0.7倍以下が好ましく、0.6倍以下がより好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。
【0125】
また、絶縁体320、絶縁体322、絶縁体324、および絶縁体326には容量600、またはトランジスタ500と接続する導電体328、および導電体330等が埋め込まれている。なお、導電体328、および導電体330は、プラグまたは配線としての機能を有する。また、プラグまたは配線としての機能を有する導電体は、複数の構成をまとめて同一の符号を付与する場合がある。また、本明細書等において、配線と、配線と接続するプラグとが一体物であってもよい。すなわち、導電体の一部が配線として機能する場合、および導電体の一部がプラグとして機能する場合もある。
【0126】
各プラグ、および配線(導電体328、導電体330等)の材料としては、金属材料、合金材料、金属窒化物材料、または金属酸化物材料などの導電性材料を、単層または積層して用いることができる。耐熱性と導電性を両立するタングステンやモリブデンなどの高融点材料を用いることが好ましく、タングステンを用いることが好ましい。または、アルミニウムや銅などの低抵抗導電性材料で形成することが好ましい。低抵抗導電性材料を用いることで配線抵抗を低くすることができる。
【0127】
絶縁体326、および導電体330上に、配線層を設けてもよい。例えば、
図7では、絶縁体350、絶縁体352、および絶縁体354が順に積層して設けられている。また、絶縁体350、絶縁体352、および絶縁体354には、導電体356が形成されている。導電体356は、トランジスタ550と接続するプラグ、または配線としての機能を有する。なお導電体356は、導電体328、および導電体330と同様の材料を用いて設けることができる。
【0128】
なお、例えば、絶縁体350は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体356は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体350が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ550とトランジスタ500とは、バリア層により分離することができ、トランジスタ550からトランジスタ500への水素の拡散を抑制することができる。
【0129】
なお、水素に対するバリア性を有する導電体としては、例えば、窒化タンタル等を用いるとよい。また、窒化タンタルと導電性が高いタングステンを積層することで、配線としての導電性を保持したまま、トランジスタ550からの水素の拡散を抑制することができる。この場合、水素に対するバリア性を有する窒化タンタル層が、水素に対するバリア性を有する絶縁体350と接する構成であることが好ましい。
【0130】
絶縁体354、および導電体356上に、配線層を設けてもよい。例えば、
図7では、絶縁体360、絶縁体362、および絶縁体364が順に積層して設けられている。また、絶縁体360、絶縁体362、および絶縁体364には、導電体366が形成されている。導電体366は、プラグまたは配線としての機能を有する。なお導電体366は、導電体328、および導電体330と同様の材料を用いて設けることができる。
【0131】
なお、例えば、絶縁体360は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体366は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体360が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ550とトランジスタ500とは、バリア層により分離することができ、トランジスタ550からトランジスタ500への水素の拡散を抑制することができる。
【0132】
絶縁体364、および導電体366上に、配線層を設けてもよい。例えば、
図7では、絶縁体370、絶縁体372、および絶縁体374が順に積層して設けられている。また、絶縁体370、絶縁体372、および絶縁体374には、導電体376が形成されている。導電体376は、プラグまたは配線としての機能を有する。なお導電体376は、導電体328、および導電体330と同様の材料を用いて設けることができる。
【0133】
なお、例えば、絶縁体370は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体376は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体370が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ550とトランジスタ500とは、バリア層により分離することができ、トランジスタ550からトランジスタ500への水素の拡散を抑制することができる。
【0134】
絶縁体374、および導電体376上に、配線層を設けてもよい。例えば、
図7では、絶縁体380、絶縁体382、および絶縁体384が順に積層して設けられている。また、絶縁体380、絶縁体382、および絶縁体384には、導電体386が形成されている。導電体386は、プラグまたは配線としての機能を有する。なお導電体386は、導電体328、および導電体330と同様の材料を用いて設けることができる。
【0135】
なお、例えば、絶縁体380は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体386は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体380が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ550とトランジスタ500とは、バリア層により分離することができ、トランジスタ550からトランジスタ500への水素の拡散を抑制することができる。
【0136】
上記において、導電体356を含む配線層、導電体366を含む配線層、導電体376を含む配線層、および導電体386を含む配線層、について説明したが、本実施の形態に係る半導体装置はこれに限られるものではない。導電体356を含む配線層と同様の配線層を3層以下にしてもよいし、導電体356を含む配線層と同様の配線層を5層以上にしてもよい。
【0137】
絶縁体384上には絶縁体510、絶縁体512、絶縁体514、および絶縁体516が、順に積層して設けられている。絶縁体510、絶縁体512、絶縁体514、および絶縁体516のいずれかは、酸素や水素に対してバリア性のある物質を用いることが好ましい。
【0138】
例えば、絶縁体510、および絶縁体514には、例えば、基板311、またはトランジスタ550を設ける領域などから、トランジスタ500を設ける領域に、水素や不純物が拡散しないようなバリア性を有する膜を用いることが好ましい。したがって、絶縁体324と同様の材料を用いることができる。
【0139】
水素に対するバリア性を有する膜の一例として、CVD法で形成した窒化シリコンを用いることができる。ここで、トランジスタ500等の酸化物半導体を有する半導体素子に、水素が拡散することで、当該半導体素子の特性が低下する場合がある。したがって、トランジスタ500と、トランジスタ550との間に、水素の拡散を抑制する膜を用いることが好ましい。水素の拡散を抑制する膜とは、具体的には、水素の脱離量が少ない膜とする。
【0140】
また、水素に対するバリア性を有する膜として、例えば、絶縁体510、および絶縁体514には、酸化アルミニウム、酸化ハフニウム、酸化タンタルなどの金属酸化物を用いることが好ましい。
【0141】
特に、酸化アルミニウムは、酸素、およびトランジスタの電気特性の変動要因となる水素、水分などの不純物、の両方に対して膜を透過させない遮断効果が高い。したがって、酸化アルミニウムは、トランジスタの作製工程中および作製後において、水素、水分などの不純物のトランジスタ500への混入を防止することができる。また、トランジスタ500を構成する酸化物からの酸素の放出を抑制することができる。そのため、トランジスタ500に対する保護膜として用いることに適している。
【0142】
また、例えば、絶縁体512、および絶縁体516には、絶縁体320と同様の材料を用いることができる。また、これらの絶縁体に、比較的誘電率が低い材料を適用することで、配線間に生じる寄生容量を低減することができる。例えば、絶縁体512、および絶縁体516として、酸化シリコン膜や酸化窒化シリコン膜などを用いることができる。
【0143】
また、絶縁体510、絶縁体512、絶縁体514、および絶縁体516には、導電体518、およびトランジスタ500を構成する導電体(例えば、導電体503)等が埋め込まれている。なお、導電体518は、容量600、またはトランジスタ550と接続するプラグ、または配線としての機能を有する。導電体518は、導電体328、および導電体330と同様の材料を用いて設けることができる。
【0144】
特に、絶縁体510、および絶縁体514と接する領域の導電体518は、酸素、水素、および水に対するバリア性を有する導電体であることが好ましい。当該構成により、トランジスタ550とトランジスタ500とは、酸素、水素、および水に対するバリア性を有する層で、分離することができ、トランジスタ550からトランジスタ500への水素の拡散を抑制することができる。
【0145】
絶縁体516の上方には、トランジスタ500が設けられている。
【0146】
図9Aおよび
図9Bに示すように、トランジスタ500は、絶縁体514および絶縁体516に埋め込まれるように配置された導電体503と、絶縁体516および導電体503の上に配置された絶縁体520と、絶縁体520の上に配置された絶縁体522と、絶縁体522の上に配置された絶縁体524と、絶縁体524の上に配置された酸化物530aと、酸化物530aの上に配置された酸化物530bと、酸化物530b上に互いに離れて配置された導電体542aおよび導電体542bと、導電体542aおよび導電体542b上に配置され、導電体542aと導電体542bの間に重畳して開口が形成された絶縁体580と、開口の底面および側面に配置された絶縁体545と、絶縁体545の形成面に配置された導電体560と、を有する。
【0147】
また、
図9Aおよび
図9Bに示すように、酸化物530a、酸化物530b、導電体542a、および導電体542bと、絶縁体580の間に絶縁体544が配置されることが好ましい。また、
図9Aおよび
図9Bに示すように、導電体560は、絶縁体545の内側に設けられた導電体560aと、導電体560aの内側に埋め込まれるように設けられた導電体560bと、を有することが好ましい。また、
図9Aおよび
図9Bに示すように、絶縁体580、導電体560、および絶縁体545の上に絶縁体574が配置されることが好ましい。
【0148】
なお、本明細書などにおいて、酸化物530a、および酸化物530bをまとめて酸化物530という場合がある。
【0149】
なお、トランジスタ500では、チャネルが形成される領域と、その近傍において、酸化物530a、および酸化物530bの2層を積層する構成について示しているが、本発明はこれに限られるものではない。例えば、酸化物530bの単層、または3層以上の積層構造であってもよい。
【0150】
また、トランジスタ500では、導電体560を2層の積層構造として示しているが、本発明はこれに限られるものではない。例えば、導電体560が、単層構成であってもよいし、3層以上の積層構造であってもよい。また、
図7、
図8、および
図9Aに示すトランジスタ500は一例であり、その構成に限定されず、回路構成や駆動方法などに応じて適切なトランジスタを用いればよい。
【0151】
ここで、導電体560は、トランジスタのゲート電極として機能し、導電体542aおよび導電体542bは、それぞれソース電極またはドレイン電極として機能する。上記のように、導電体560は、絶縁体580の開口、および導電体542aと導電体542bに挟まれた領域に埋め込まれるように形成される。導電体560、導電体542aおよび導電体542bの配置は、絶縁体580の開口に対して、自己整合的に選択される。つまり、トランジスタ500において、ゲート電極を、ソース電極とドレイン電極の間に、自己整合的に配置させることができる。よって、導電体560を位置合わせのマージンを設けることなく形成することができるので、トランジスタ500の占有面積の縮小を図ることができる。これにより、半導体装置の微細化、高集積化を図ることができる。
【0152】
さらに、導電体560が、導電体542aと導電体542bの間の領域に自己整合的に形成されるので、導電体560は、導電体542aまたは導電体542bと重畳する領域を有さない。これにより、導電体560と導電体542aおよび導電体542bとの間に形成される寄生容量を低減することができる。よって、トランジスタ500のスイッチング速度を向上させ、高い周波数特性を有せしめることができる。
【0153】
導電体560は、第1のゲート(トップゲートともいう)電極として機能する場合がある。また、導電体503は、第2のゲート(ボトムゲートともいう)電極として機能する場合がある。その場合、導電体503に印加する電圧を、導電体560に印加する電圧と、連動させず、独立して変化させることで、トランジスタ500のしきい値電圧を制御することができる。特に、導電体503に負の電圧を印加することにより、トランジスタ500のしきい値電圧を0Vより大きくし、オフ電流を低減することが可能となる。したがって、導電体503に負の電圧を印加したほうが、印加しない場合よりも、導電体560に印加する電圧が0Vのときのドレイン電流を小さくすることができる。
【0154】
導電体503は、酸化物530、および導電体560と、重なるように配置する。これにより、導電体560、および導電体503に電圧を印加した場合、導電体560から生じる電界と、導電体503から生じる電界と、がつながり、酸化物530に形成されるチャネル形成領域を覆うことができる。
【0155】
本明細書等において、一対のゲート電極(第1のゲート電極、および第2のゲート電極)の電界によって、チャネル形成領域を電気的に取り囲むトランジスタの構成を、surrounded channel(S-channel)構成とよぶ。また、本明細書等において、surrounded channel(S-channel)構成は、ソース電極およびドレイン電極として機能する導電体542aおよび導電体542bに接する酸化物530の側面および周辺が、チャネル形成領域と同じくI型であるといった特徴を有する。また、導電体542aおよび導電体542bに接する酸化物530の側面および周辺は、絶縁体544と接しているため、チャネル形成領域と同様にI型となりうる。なお、本明細書等において、I型とは後述する、高純度真性と同様として扱うことができる。また、本明細書等で開示するS-channel構成は、Fin型構成およびプレーナ型構成とは異なる。S-channel構成を採用することで、短チャネル効果に対する耐性を高める、別言すると短チャネル効果が発生し難いトランジスタとすることができる。
【0156】
また、導電体503は、導電体518と同様の構成であり、絶縁体514および絶縁体516の開口の内壁に接して導電体503aが形成され、さらに内側に導電体503bが形成されている。なお、トランジスタ500では、導電体503aおよび導電体503bを積層する構成について示しているが、本発明はこれに限られるものではない。例えば、導電体503は、単層、または3層以上の積層構造として設ける構成にしてもよい。
【0157】
ここで、導電体503aは、水素原子、水素分子、水分子、銅原子などの不純物の拡散を抑制する機能を有する(上記不純物が透過しにくい。)導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する(上記酸素が透過しにくい。)導電性材料を用いることが好ましい。なお、本明細書において、不純物、または酸素の拡散を抑制する機能とは、上記不純物、または上記酸素のいずれか一または、すべての拡散を抑制する機能とする。
【0158】
例えば、導電体503aが酸素の拡散を抑制する機能を持つことにより、導電体503bが酸化して導電率が低下することを抑制することができる。
【0159】
また、導電体503が配線の機能を兼ねる場合、導電体503bは、タングステン、銅、またはアルミニウムを主成分とする、導電性が高い導電性材料を用いることが好ましい。なお、本実施の形態では導電体503を導電体503aと導電体503bの積層で図示したが、導電体503は単層構成であってもよい。
【0160】
絶縁体520、絶縁体522、および絶縁体524は、第2のゲート絶縁膜としての機能を有する。
【0161】
ここで、酸化物530と接する絶縁体524は、化学量論的組成を満たす酸素よりも多くの酸素を含む絶縁体を用いることが好ましい。当該酸素は、加熱により膜中から放出されやすい。本明細書などでは、加熱により放出される酸素を「過剰酸素」と呼ぶ場合がある。つまり、絶縁体524には、過剰酸素を含む領域(「過剰酸素領域」ともいう。)が形成されていることが好ましい。このような過剰酸素を含む絶縁体を酸化物530に接して設けることにより、酸化物530中の酸素欠損(VO:oxygen vacancyともいう)を低減し、トランジスタ500の信頼性を向上させることができる。なお、酸化物530中の酸素欠損に水素が入った場合、当該欠陥(以下、VOHと呼ぶ場合がある。)はドナーとして機能し、キャリアである電子が生成されることがある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成する場合がある。従って、水素が多く含まれている酸化物半導体を用いたトランジスタは、ノーマリーオン特性となりやすい。また、酸化物半導体中の水素は、熱、電界などのストレスによって動きやすいため、酸化物半導体に多くの水素が含まれると、トランジスタの信頼性が悪化する恐れもある。本発明の一態様においては、酸化物530中のVOHをできる限り低減し、酸化物530を高純度真性または実質的に高純度真性にすることが好ましい。このように、VOHが十分低減された酸化物半導体を得るには、酸化物半導体中の水分、水素などの不純物を除去すること(「脱水」または「脱水素化処理」ともいう。)と、酸化物半導体に酸素を供給して酸素欠損を補填すること(「加酸素化処理」ともいう。)が重要である。VOHなどの不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
【0162】
過剰酸素領域を有する絶縁体として、具体的には、加熱により一部の酸素が脱離する酸化物材料を用いることが好ましい。加熱により酸素を脱離する酸化物とは、TDS(Thermal Desorption Spectroscopy)分析にて、酸素原子に換算しての酸素の脱離量が1.0×1018atoms/cm3以上、好ましくは1.0×1019atoms/cm3以上、さらに好ましくは2.0×1019atoms/cm3以上、または3.0×1020atoms/cm3以上である酸化物膜である。なお、上記TDS分析時における膜の表面温度としては100℃以上700℃以下、または100℃以上400℃以下の範囲が好ましい。
【0163】
また、上記過剰酸素領域を有する絶縁体と、酸化物530と、を接して加熱処理、マイクロ波処理、またはRF処理のいずれか一または複数の処理を行っても良い。当該処理を行うことで、酸化物530中の水、または水素を除去することができる。例えば、酸化物530において、VoHの結合が切断される反応が起きる、別言すると「VOH→Vo+H」という反応が起きて、脱水素化することができる。このとき発生した水素の一部は、酸素と結合してH2Oとして、酸化物530、または酸化物530近傍の絶縁体から除去される場合がある。また、水素の一部は、導電体542aおよび/または導電体542bにゲッタリングされる場合がある。
【0164】
また、上記マイクロ波処理は、例えば、高密度プラズマを発生させる電源を有する装置、または、基板側にRFを印加する電源を有する装置を用いると好適である。例えば、酸素を含むガスを用い、且つ高密度プラズマを用いることより、高密度の酸素ラジカルを生成することができ、基板側にRFを印加することで、高密度プラズマによって生成された酸素ラジカルを、効率よく酸化物530、または酸化物530近傍の絶縁体中に導入することができる。また、上記マイクロ波処理は、圧力を133Pa以上、好ましくは200Pa以上、さらに好ましくは400Pa以上とすればよい。また、マイクロ波処理を行う装置内に導入するガスとしては、例えば、酸素と、アルゴンとを用い、酸素流量比(O2/(O2+Ar))が50%以下、好ましくは10%以上30%以下で行うとよい。
【0165】
また、トランジスタ500の作製工程中において、酸化物530の表面が露出した状態で、加熱処理を行うと好適である。当該加熱処理は、例えば、100℃以上450℃以下、より好ましくは350℃以上400℃以下で行えばよい。なお、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気、または酸化性ガスを10ppm以上、1%以上、もしくは10%以上含む雰囲気で行う。例えば、加熱処理は酸素雰囲気で行うことが好ましい。これにより、酸化物530に酸素を供給して、酸素欠損(VO)の低減を図ることができる。また、加熱処理は減圧状態で行ってもよい。または、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気で加熱処理した後に、脱離した酸素を補うために、酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で行ってもよい。または、酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で加熱処理した後に、連続して窒素ガスもしくは不活性ガスの雰囲気で加熱処理を行っても良い。
【0166】
なお、酸化物530に加酸素化処理を行うことで、酸化物530中の酸素欠損を、供給された酸素により修復させる、別言すると「Vo+O→null」という反応を促進させることができる。さらに、酸化物530中に残存した水素に供給された酸素が反応することで、当該水素をH2Oとして除去する(脱水化する)ことができる。これにより、酸化物530中に残存していた水素が酸素欠損に再結合してVOHが形成されるのを抑制することができる。
【0167】
また、絶縁体524が、過剰酸素領域を有する場合、絶縁体522は、酸素(例えば、酸素原子、酸素分子など)の拡散を抑制する機能を有する(上記酸素が透過しにくい)ことが好ましい。
【0168】
絶縁体522が、酸素や不純物の拡散を抑制する機能を有することで、酸化物530が有する酸素は、絶縁体520側へ拡散することがなく、好ましい。また、導電体503が、絶縁体524や、酸化物530が有する酸素と反応することを抑制することができる。
【0169】
絶縁体522は、例えば、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO3)、または(Ba,Sr)TiO3(BST)などのいわゆるhigh-k材料を含む絶縁体を単層または積層で用いることが好ましい。トランジスタの微細化、および高集積化が進むと、ゲート絶縁膜の薄膜化により、リーク電流などの問題が生じる場合がある。ゲート絶縁膜として機能する絶縁体にhigh-k材料を用いることで、物理膜厚を保ちながら、トランジスタ動作時のゲート電圧の低減が可能となる。
【0170】
特に、不純物、および酸素などの拡散を抑制する機能を有する(上記酸素が透過しにくい)絶縁性材料であるアルミニウム、ハフニウムの一方または双方の酸化物を含む絶縁体を用いるとよい。アルミニウム、ハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。このような材料を用いて絶縁体522を形成した場合、絶縁体522は、酸化物530からの酸素の放出や、トランジスタ500の周辺部から酸化物530への水素等の不純物の混入を抑制する層として機能する。
【0171】
または、これらの絶縁体に、例えば、酸化アルミニウム、酸化ビスマス、酸化ゲルマニウム、酸化ニオブ、酸化シリコン、酸化チタン、酸化タングステン、酸化イットリウム、酸化ジルコニウムを添加してもよい。またはこれらの絶縁体を窒化処理してもよい。上記の絶縁体に酸化シリコン、酸化窒化シリコンまたは窒化シリコンを積層して用いてもよい。
【0172】
また、絶縁体520は、熱的に安定していることが好ましい。例えば、酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため、好適である。また、high-k材料の絶縁体を酸化シリコン、または酸化窒化シリコンと組み合わせることで、熱的に安定かつ比誘電率の高い積層構造の絶縁体520を得ることができる。
【0173】
なお、
図9Aおよび
図9Bのトランジスタ500では、3層の積層構造からなる第2のゲート絶縁膜として、絶縁体520、絶縁体522、および絶縁体524が図示されているが、第2のゲート絶縁膜は、単層、2層、または4層以上の積層構造を有していてもよい。その場合、同じ材料からなる積層構造に限定されず、異なる材料からなる積層構造でもよい。
【0174】
トランジスタ500は、チャネル形成領域を含む酸化物530に、酸化物半導体として機能する金属酸化物を用いる。なお、酸化物半導体は、InまたはZnの少なくとも一方が含まれることが好ましい。例えば、酸化物530として、In-M-Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種)等の金属酸化物を用いるとよい。
【0175】
酸化物半導体として機能する金属酸化物の形成は、スパッタリング法で行なってもよいし、ALD(Atomic Layer Deposition)法で行なってもよい。なお、酸化物半導体として機能する金属酸化物については、他の実施の形態で詳細に説明する。
【0176】
また、酸化物530においてチャネル形成領域として機能する金属酸化物は、バンドギャップが2eV以上、好ましくは2.5eV以上のものを用いることが好ましい。このように、バンドギャップの大きい金属酸化物を用いることで、トランジスタのオフ電流を低減することができる。
【0177】
酸化物530は、酸化物530b下に酸化物530aを有することで、酸化物530aよりも下方に形成された構成物から、酸化物530bへの不純物の拡散を抑制することができる。
【0178】
なお、酸化物530は、各金属原子の原子数比が異なる複数の酸化物層の積層構造を有することが好ましい。具体的には、酸化物530aに用いる金属酸化物において、構成元素中の元素Mの原子数比が、酸化物530bに用いる金属酸化物における、構成元素中の元素Mの原子数比より、大きいことが好ましい。また、酸化物530aに用いる金属酸化物において、Inに対する元素Mの原子数比が、酸化物530bに用いる金属酸化物における、Inに対する元素Mの原子数比より大きいことが好ましい。また、酸化物530bに用いる金属酸化物において、元素Mに対するInの原子数比が、酸化物530aに用いる金属酸化物における、元素Mに対するInの原子数比より大きいことが好ましい。
【0179】
また、酸化物530aの伝導帯下端のエネルギーが、酸化物530bの伝導帯下端のエネルギーより高くなることが好ましい。また、言い換えると、酸化物530a電子親和力が、酸化物530bの電子親和力より小さいことが好ましい。
【0180】
ここで、酸化物530aおよび酸化物530bの接合部において、伝導帯下端のエネルギー準位はなだらかに変化する。換言すると、酸化物530aおよび酸化物530bの接合部における伝導帯下端のエネルギー準位は、連続的に変化または連続接合するともいうことができる。このようにするためには、酸化物530aと酸化物530bとの界面において形成される混合層の欠陥準位密度を低くするとよい。
【0181】
具体的には、酸化物530aと酸化物530bが、酸素以外に共通の元素を有する(主成分とする)ことで、欠陥準位密度が低い混合層を形成することができる。例えば、酸化物530bがIn-Ga-Zn酸化物の場合、酸化物530aとして、In-Ga-Zn酸化物、Ga-Zn酸化物、酸化ガリウムなどを用いるとよい。
【0182】
このとき、キャリアの主たる経路は酸化物530bとなる。酸化物530aを上述の構成とすることで、酸化物530aと酸化物530bとの界面における欠陥準位密度を低くすることができる。そのため、界面散乱によるキャリア伝導への影響が小さくなり、トランジスタ500は高いオン電流を得られる。
【0183】
酸化物530b上には、ソース電極、およびドレイン電極として機能する導電体542a、および導電体542bが設けられる。導電体542a、および導電体542bとしては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンから選ばれた金属元素、または上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いることが好ましい。例えば、窒化タンタル、窒化チタン、タングステン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物などを用いることが好ましい。また、窒化タンタル、窒化チタン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物は、酸化しにくい導電性材料、または、酸素を吸収しても導電性を維持する材料であるため、好ましい。更に、窒化タンタルなどの金属窒化物膜は、水素または酸素に対するバリア性があるため好ましい。
【0184】
また、
図9Aでは、導電体542a、および導電体542bを単層構成として示したが、2層以上の積層構造としてもよい。例えば、窒化タンタル膜とタングステン膜を積層するとよい。また、チタン膜とアルミニウム膜を積層してもよい。また、タングステン膜上にアルミニウム膜を積層する二層構成、銅-マグネシウム-アルミニウム合金膜上に銅膜を積層する二層構成、チタン膜上に銅膜を積層する二層構成、タングステン膜上に銅膜を積層する二層構成としてもよい。
【0185】
また、チタン膜または窒化チタン膜と、そのチタン膜または窒化チタン膜上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にチタン膜または窒化チタン膜を形成する三層構成、モリブデン膜または窒化モリブデン膜と、そのモリブデン膜または窒化モリブデン膜上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にモリブデン膜または窒化モリブデン膜を形成する三層構成等がある。なお、酸化インジウム、酸化錫または酸化亜鉛を含む透明導電材料を用いてもよい。
【0186】
また、
図9Aに示すように、酸化物530の、導電体542a(導電体542b)との界面とその近傍には、低抵抗領域として、領域543a、および領域543bが形成される場合がある。このとき、領域543aはソース領域またはドレイン領域の一方として機能し、領域543bはソース領域またはドレイン領域の他方として機能する。また、領域543aと領域543bに挟まれる領域にチャネル形成領域が形成される。
【0187】
酸化物530と接するように上記導電体542a(導電体542b)を設けることで、領域543a(領域543b)の酸素濃度が低減する場合がある。また、領域543a(領域543b)に導電体542a(導電体542b)に含まれる金属と、酸化物530の成分とを含む金属化合物層が形成される場合がある。このような場合、領域543a(領域543b)のキャリア密度が増加し、領域543a(領域543b)は、低抵抗領域となる。
【0188】
絶縁体544は、導電体542a、および導電体542bを覆うように設けられ、導電体542a、および導電体542bの酸化を抑制する。このとき、絶縁体544は、酸化物530の側面を覆い、絶縁体524と接するように設けられてもよい。
【0189】
絶縁体544として、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、ネオジム、ランタンまたは、マグネシウムなどから選ばれた一種、または二種以上が含まれた金属酸化物を用いることができる。また、絶縁体544として、窒化酸化シリコンまたは窒化シリコンなども用いることができる。
【0190】
特に、絶縁体544として、アルミニウム、またはハフニウムの一方または双方の酸化物を含む絶縁体である、酸化アルミニウム、酸化ハフニウム、アルミニウム、およびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。特に、ハフニウムアルミネートは、酸化ハフニウム膜よりも、耐熱性が高い。そのため、後の工程での熱処理において、結晶化しにくいため好ましい。なお、導電体542a、および導電体542bが耐酸化性を有する材料、または、酸素を吸収しても著しく導電性が低下しない場合、絶縁体544は、必須の構成ではない。求めるトランジスタ特性により、適宜設計すればよい。
【0191】
絶縁体544を有することで、絶縁体580に含まれる水、および水素などの不純物が絶縁体545を介して、酸化物530bに拡散することを抑制することができる。また、絶縁体580が有する過剰酸素により、導電体560が酸化するのを抑制することができる。
【0192】
絶縁体545は、第1のゲート絶縁膜として機能する。絶縁体545は、上述した絶縁体524と同様に、過剰に酸素を含み、かつ加熱により酸素が放出される絶縁体を用いて形成することが好ましい。
【0193】
具体的には、過剰酸素を有する酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素、および窒素を添加した酸化シリコン、空孔を有する酸化シリコンを用いることができる。特に、酸化シリコン、および酸化窒化シリコンは熱に対し安定であるため好ましい。
【0194】
過剰酸素を含む絶縁体を絶縁体545として設けることにより、絶縁体545から、酸化物530bのチャネル形成領域に効果的に酸素を供給することができる。また、絶縁体524と同様に、絶縁体545中の水または水素などの不純物濃度が低減されていることが好ましい。絶縁体545の膜厚は、1nm以上20nm以下とするのが好ましい。
【0195】
また、絶縁体545が有する過剰酸素を、効率的に酸化物530へ供給するために、絶縁体545と導電体560との間に金属酸化物を設けてもよい。当該金属酸化物は、絶縁体545から導電体560への酸素拡散を抑制することが好ましい。酸素の拡散を抑制する金属酸化物を設けることで、絶縁体545から導電体560への過剰酸素の拡散が抑制される。つまり、酸化物530へ供給する過剰酸素量の減少を抑制することができる。また、過剰酸素による導電体560の酸化を抑制することができる。当該金属酸化物としては、絶縁体544に用いることができる材料を用いればよい。
【0196】
なお、絶縁体545は、第2のゲート絶縁膜と同様に、積層構造としてもよい。トランジスタの微細化、および高集積化が進むと、ゲート絶縁膜の薄膜化により、リーク電流などの問題が生じる場合があるため、ゲート絶縁膜として機能する絶縁体を、high-k材料と、熱的に安定している材料との積層構造とすることで、物理膜厚を保ちながら、トランジスタ動作時のゲート電圧の低減が可能となる。また、熱的に安定かつ比誘電率の高い積層構造とすることができる。
【0197】
第1のゲート電極として機能する導電体560は、
図9Aおよび
図9Bでは2層構成として示しているが、単層構成でもよいし、3層以上の積層構造であってもよい。
【0198】
導電体560aは、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(N2O、NO、NO2など)、銅原子などの不純物の拡散を抑制する機能を有する導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する導電性材料を用いることが好ましい。導電体560aが酸素の拡散を抑制する機能を持つことにより、絶縁体545に含まれる酸素により、導電体560bが酸化して導電率が低下することを抑制することができる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、タンタル、窒化タンタル、ルテニウム、または酸化ルテニウムなどを用いることが好ましい。また、導電体560aとして、酸化物530に適用できる酸化物半導体を用いることができる。その場合、導電体560bをスパッタリング法で成膜することで、導電体560aの電気抵抗値を低下させて導電体にすることができる。これをOC(Oxide Conductor)電極と呼ぶことができる。
【0199】
また、導電体560bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、導電体560bは、配線としても機能するため、導電性が高い導電体を用いることが好ましい。例えば、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることができる。また、導電体560bは積層構造としてもよく、例えば、チタン又は窒化チタンと上記導電性材料との積層構造としてもよい。
【0200】
絶縁体580は、絶縁体544を介して、導電体542a、および導電体542b上に設けられる。絶縁体580は、過剰酸素領域を有することが好ましい。例えば、絶縁体580として、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素、および窒素を添加した酸化シリコン、空孔を有する酸化シリコン、または樹脂などを有することが好ましい。特に、酸化シリコン、および酸化窒化シリコンは、熱的に安定であるため好ましい。特に、酸化シリコン、空孔を有する酸化シリコンは、後の工程で、容易に過剰酸素領域を形成することができるため好ましい。
【0201】
絶縁体580は、過剰酸素領域を有することが好ましい。加熱により酸素が放出される絶縁体580を設けることで、絶縁体580中の酸素を酸化物530へと効率良く供給することができる。なお、絶縁体580中の水または水素などの不純物濃度が低減されていることが好ましい。
【0202】
絶縁体580の開口は、導電体542aと導電体542bの間の領域に重畳して形成される。これにより、導電体560は、絶縁体580の開口、および導電体542aと導電体542bに挟まれた領域に、埋め込まれるように形成される。
【0203】
半導体装置を微細化するに当たり、ゲート長を短くすることが求められるが、導電体560の導電性が下がらないようにする必要がある。そのために導電体560の膜厚を大きくすると、導電体560はアスペクト比が高い形状となりうる。本実施の形態では、導電体560を絶縁体580の開口に埋め込むように設けるため、導電体560をアスペクト比の高い形状にしても、工程中に導電体560を倒壊させることなく、形成することができる。
【0204】
絶縁体574は、絶縁体580の上面、導電体560の上面、および絶縁体545の上面に接して設けられることが好ましい。絶縁体574をスパッタリング法で成膜することで、絶縁体545、および絶縁体580へ過剰酸素領域を設けることができる。これにより、当該過剰酸素領域から、酸化物530中に酸素を供給することができる。
【0205】
例えば、絶縁体574として、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、またはマグネシウムなどから選ばれた一種、または二種以上が含まれた金属酸化物を用いることができる。
【0206】
特に、酸化アルミニウムはバリア性が高く、0.5nm以上3.0nm以下の薄膜であっても、水素、および窒素の拡散を抑制することができる。したがって、スパッタリング法で成膜した酸化アルミニウムは、酸素供給源であるとともに、水素などの不純物のバリア膜としての機能も有することができる。
【0207】
また、絶縁体574の上に、層間膜として機能する絶縁体581を設けることが好ましい。絶縁体581は、絶縁体524などと同様に、膜中の水または水素などの不純物濃度が低減されていることが好ましい。
【0208】
また、絶縁体581、絶縁体574、絶縁体580、および絶縁体544に形成された開口に、導電体540a、および導電体540bを配置する。導電体540aおよび導電体540bは、導電体560を挟んで対向して設ける。導電体540aおよび導電体540bは、後述する導電体546、および導電体548と同様の構成である。
【0209】
絶縁体581上には、絶縁体582が設けられている。絶縁体582は、酸素や水素に対してバリア性のある物質を用いることが好ましい。したがって、絶縁体582には、絶縁体514と同様の材料を用いることができる。例えば、絶縁体582には、酸化アルミニウム、酸化ハフニウム、酸化タンタルなどの金属酸化物を用いることが好ましい。
【0210】
特に、酸化アルミニウムは、酸素、およびトランジスタの電気特性の変動要因となる水素、水分などの不純物、の両方に対して膜を透過させない遮断効果が高い。したがって、酸化アルミニウムは、トランジスタの作製工程中および作製後において、水素、水分などの不純物のトランジスタ500への混入を防止することができる。また、トランジスタ500を構成する酸化物からの酸素の放出を抑制することができる。そのため、トランジスタ500に対する保護膜として用いることに適している。
【0211】
また、絶縁体582上には、絶縁体586が設けられている。絶縁体586は、絶縁体320と同様の材料を用いることができる。また、これらの絶縁体に、比較的誘電率が低い材料を適用することで、配線間に生じる寄生容量を低減することができる。例えば、絶縁体586として、酸化シリコン膜や酸化窒化シリコン膜などを用いることができる。
【0212】
また、絶縁体520、絶縁体522、絶縁体524、絶縁体544、絶縁体580、絶縁体574、絶縁体581、絶縁体582、および絶縁体586には、導電体546、および導電体548等が埋め込まれている。
【0213】
導電体546、および導電体548は、容量600、トランジスタ500、またはトランジスタ550と接続するプラグ、または配線としての機能を有する。導電体546、および導電体548は、導電体328、および導電体330と同様の材料を用いて設けることができる。
【0214】
また、トランジスタ500の形成後、トランジスタ500を囲むように開口を形成し、当該開口を覆うように、水素、または水に対するバリア性が高い絶縁体を形成してもよい。上述のバリア性の高い絶縁体でトランジスタ500を包み込むことで、外部から水分、および水素が侵入するのを防止することができる。または、複数のトランジスタ500をまとめて、水素、または水に対するバリア性が高い絶縁体で包み込んでもよい。なお、トランジスタ500を囲むように開口を形成する場合、例えば、絶縁体522または絶縁体514に達する開口を形成し、絶縁体522または絶縁体514に接するように上述のバリア性の高い絶縁体を形成すると、トランジスタ500の作製工程の一部を兼ねられるため、好適である。なお、水素、または水に対するバリア性が高い絶縁体としては、例えば、絶縁体522または絶縁体514と同様の材料を用いればよい。
【0215】
続いて、トランジスタ500の上方には、容量600が設けられている。容量600は、導電体610と、導電体620と、絶縁体630とを有する。
【0216】
また、導電体546、および導電体548上に、導電体612を設けてもよい。導電体612は、トランジスタ500と接続するプラグ、または配線としての機能を有する。導電体610は、容量600の電極としての機能を有する。なお、導電体612、および導電体610は、同時に形成することができる。
【0217】
導電体612、および導電体610には、モリブデン、チタン、タンタル、タングステン、アルミニウム、銅、クロム、ネオジム、スカンジウムから選ばれた元素を含む金属膜、または上述した元素を成分とする金属窒化物膜(窒化タンタル膜、窒化チタン膜、窒化モリブデン膜、窒化タングステン膜)等を用いることができる。または、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの導電性材料を適用することもできる。
【0218】
本実施の形態では、導電体612、および導電体610を単層構成で示したが、当該構成に限定されず、2層以上の積層構造でもよい。例えば、バリア性を有する導電体と導電性が高い導電体との間に、バリア性を有する導電体、および導電性が高い導電体に対して密着性が高い導電体を形成してもよい。
【0219】
絶縁体630を介して、導電体610と重畳するように、導電体620を設ける。なお、導電体620は、金属材料、合金材料、または金属酸化物材料などの導電性材料を用いることができる。耐熱性と導電性を両立するタングステンやモリブデンなどの高融点材料を用いることが好ましく、特にタングステンを用いることが好ましい。また、導電体などの他の構成と同時に形成する場合は、低抵抗金属材料であるCu(銅)やAl(アルミニウム)等を用いればよい。
【0220】
導電体620、および絶縁体630上には、絶縁体640が設けられている。絶縁体640は、絶縁体320と同様の材料を用いて設けることができる。また、絶縁体640は、その下方の凹凸形状を被覆する平坦化膜として機能してもよい。
【0221】
本構成を用いることで、酸化物半導体を有するトランジスタを用いた半導体装置において、微細化または高集積化を図ることができる。
【0222】
本発明の一態様の半導体装置に用いることができる基板としては、ガラス基板、石英基板、サファイア基板、セラミック基板、金属基板(例えば、ステンレス・スチル基板、ステンレス・スチル・ホイルを有する基板、タングステン基板、タングステン・ホイルを有する基板など)、半導体基板(例えば、単結晶半導体基板、多結晶半導体基板、または化合物半導体基板など)SOI(SOI:Silicon on Insulator)基板、などを用いることができる。また、本実施の形態の処理温度に耐えうる耐熱性を有するプラスチック基板を用いてもよい。ガラス基板の一例としては、バリウムホウケイ酸ガラス、アルミノシリケートガラス、またはアルミノホウケイ酸ガラス、またはソーダライムガラスなどがある。他にも、結晶化ガラスなどを用いることができる。
【0223】
または、基板として、可撓性基板、貼り合わせフィルム、繊維状の材料を含む紙、または基材フィルムなどを用いることができる。可撓性基板、貼り合わせフィルム、基材フィルムなどの一例としては、以下のものがあげられる。例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)、ポリテトラフルオロエチレン(PTFE)に代表されるプラスチックがある。または、一例としては、アクリル等の合成樹脂などがある。または、一例としては、ポリプロピレン、ポリエステル、ポリフッ化ビニル、またはポリ塩化ビニルなどがある。または、一例としては、ポリアミド、ポリイミド、アラミド樹脂、エポキシ樹脂、無機蒸着フィルム、または紙類などがある。特に、半導体基板、単結晶基板、またはSOI基板などを用いてトランジスタを製造することによって、特性、サイズ、または形状などのばらつきが少なく、電流能力が高く、サイズの小さいトランジスタを製造することができる。このようなトランジスタによって回路を構成すると、回路の低消費電力化、または回路の高集積化を図ることができる。
【0224】
また、基板として、可撓性基板を用い、可撓性基板上に直接、トランジスタ、抵抗、および/または容量などを形成してもよい。または、基板と、トランジスタ、抵抗、および/または容量などの間に剥離層を設けてもよい。剥離層は、その上に半導体装置を一部あるいは全部完成させた後、基板より分離し、他の基板に転載するために用いることができる。その際、トランジスタ、抵抗、および/または容量などは耐熱性の劣る基板や可撓性の基板にも転載できる。なお、上述の剥離層には、例えば、タングステン膜と酸化シリコン膜との無機膜の積層構造や、基板上にポリイミド等の有機樹脂膜が形成された構成、水素を含むシリコン膜等を用いることができる。
【0225】
つまり、ある基板上に半導体装置を形成し、その後、別の基板に半導体装置を転置してもよい。半導体装置が転置される基板の一例としては、上述したトランジスタを形成することが可能な基板に加え、紙基板、セロファン基板、アラミドフィルム基板、ポリイミドフィルム基板、石材基板、木材基板、布基板(天然繊維(絹、綿、麻)、合成繊維(ナイロン、ポリウレタン、ポリエステル)若しくは再生繊維(アセテート、キュプラ、レーヨン、再生ポリエステル)などを含む)、皮革基板、またはゴム基板などがある。これらの基板を用いることにより、可撓性を有する半導体装置の製造、壊れにくい半導体装置の製造、耐熱性の付与、軽量化、または薄型化を図ることができる。
【0226】
可撓性を有する基板上に半導体装置を設けることで、重量の増加を抑え、且つ破損しにくい半導体装置を提供することができる。
【0227】
<トランジスタの変形例1>
図10A、
図10Bおよび
図10Cに示すトランジスタ500Aは、
図9A、
図9Bに示す構成のトランジスタ500の変形例である。
図10Aはトランジスタ500Aの上面図である。
図10Bは
図10Aに一点鎖線で示すL1-L2部位の断面図、つまりトランジスタ500Aのチャネル長方向の断面図であり、
図10Cは
図10Aに一点鎖線で示すW1-W2部位の断面図、つまりトランジスタ500Aのチャネル幅方向の断面図である。なお、
図10A、
図10Bおよび
図10Cに示す構成は、トランジスタ550等、本発明の一態様の半導体装置が有する他のトランジスタにも適用することができる。
【0228】
図10A、
図10Bおよび
図10Cに示す構成のトランジスタ500Aは、絶縁体552、絶縁体513および絶縁体404を有する点が、
図9A、
図9Bに示す構成のトランジスタ500と異なる。また、導電体540aの側面に接して絶縁体552が設けられ、導電体540bの側面に接して絶縁体552が設けられる点が、
図9A、
図9Bに示す構成のトランジスタ500と異なる。さらに、絶縁体520を有さない点が、
図9A、
図9Bに示す構成のトランジスタ500と異なる。
【0229】
図10A、
図10Bおよび
図10Cに示す構成のトランジスタ500は、絶縁体512上に絶縁体513が設けられる。また、絶縁体574上、および絶縁体513上に絶縁体404が設けられる。
【0230】
図10A、
図10Bおよび
図10Cに示す構成のトランジスタ500では、絶縁体514、絶縁体516、絶縁体522、絶縁体524、絶縁体544、絶縁体580、および絶縁体574がパターニングされており、絶縁体404がこれらを覆う構成になっている。つまり、絶縁体404は、絶縁体574の上面、絶縁体574の側面、絶縁体580の側面、絶縁体544の側面、絶縁体524の側面、絶縁体522の側面、絶縁体516の側面、絶縁体514の側面、絶縁体513の上面とそれぞれ接する。これにより、酸化物530等は、絶縁体404と絶縁体513によって外部から隔離される。
【0231】
絶縁体513および絶縁体404は、水素(例えば、水素原子、水素分子などの少なくとも一)または水分子の拡散を抑制する機能が高いことが好ましい。例えば、絶縁体513および絶縁体404として、水素バリア性が高い材料である、窒化シリコンまたは窒化酸化シリコンを用いることが好ましい。これにより、酸化物530に水素等が拡散することを抑制することができるので、トランジスタ500Aの特性低下を抑制できる。よって、本発明の一態様の半導体装置の信頼性を高めることができる。
【0232】
絶縁体552は、絶縁体581、絶縁体404、絶縁体574、絶縁体580、および絶縁体544に接して設けられる。絶縁体552は、水素または水分子の拡散を抑制する機能を有することが好ましい。たとえば、絶縁体552として、水素バリア性が高い材料である、窒化シリコン、酸化アルミニウム、または窒化酸化シリコン等の絶縁体を用いることが好ましい。特に、窒化シリコンは水素バリア性が高い材料であるので、絶縁体552として用いると好適である。絶縁体552として水素バリア性が高い材料を用いることにより、水または水素等の不純物が、絶縁体580等から導電体540aおよび導電体540bを通じて酸化物530に拡散することを抑制することができる。また、絶縁体580に含まれる酸素が導電体540aおよび導電体540bに吸収されることを抑制することができる。以上により、本発明の一態様の半導体装置の信頼性を高めることができる。
【0233】
<トランジスタの変形例2>
図11A、
図11Bおよび
図11Cを用いて、トランジスタ500Bの構成例を説明する。
図11Aはトランジスタ500Bの上面図である。
図11Bは、
図11Aに一点鎖線で示すL1-L2部位の断面図である。
図11Cは、
図11Aに一点鎖線で示すW1-W2部位の断面図である。なお、
図11Aの上面図では、図の明瞭化のために一部の要素の記載を省略している。
【0234】
トランジスタ500Bはトランジスタ500の変形例であり、トランジスタ500に置き換え可能なトランジスタである。よって、説明の繰り返しを防ぐため、主にトランジスタ500Bのトランジスタ500と異なる点について説明する。
【0235】
第1のゲート電極として機能する導電体560は、導電体560a、および導電体560a上の導電体560bを有する。導電体560aは、水素原子、水素分子、水分子、銅原子などの不純物の拡散を抑制する機能を有する導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する導電性材料を用いることが好ましい。
【0236】
導電体560aが酸素の拡散を抑制する機能を持つことにより、導電体560bの材料選択性を向上することができる。つまり、導電体560aを有することで、導電体560bの酸化が抑制され、導電率が低下することを防止することができる。
【0237】
また、導電体560の上面および側面と絶縁体545の側面を覆うように、絶縁体544を設けることが好ましい。なお、絶縁体544は、水または水素などの不純物、および酸素の拡散を抑制する機能を有する絶縁性材料を用いるとよい。例えば、酸化アルミニウムまたは酸化ハフニウムなどを用いることが好ましい。また、他にも、例えば、酸化マグネシウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジムまたは酸化タンタルなどの金属酸化物、窒化酸化シリコンまたは窒化シリコンなどを用いることができる。
【0238】
絶縁体544を設けることで、導電体560の酸化を抑制することができる。また、絶縁体544を有することで、絶縁体580が有する水、および水素などの不純物がトランジスタ500Bへ拡散することを抑制することができる。
【0239】
トランジスタ500Bは、導電体542aの一部と導電体542bの一部に導電体560が重なるため、トランジスタ500よりも寄生容量が大きくなりやすい。よって、トランジスタ500に比べて動作周波数が低くなる傾向がある。しかしながら、絶縁体580などに開口を設けて導電体560や絶縁体545などを埋めこむ工程が不要であるため、トランジスタ500と比較して生産性が高い。
【0240】
本実施の形態に示す構成、構造、方法などは、他の実施の形態および実施例などに示す構成、構造、方法などと適宜組み合わせて用いることができる。
【0241】
(実施の形態3)
本実施の形態では、金属酸化物の一種である酸化物半導体について説明する。
【0242】
金属酸化物は、少なくともインジウムまたは亜鉛を含むことが好ましい。特にインジウムおよび亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウム、スズなどが含まれていることが好ましい。また、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウム、コバルトなどから選ばれた一種、または複数種が含まれていてもよい。
【0243】
<結晶構造の分類>
まず、酸化物半導体における、結晶構造の分類について、
図12Aを用いて説明を行う。
図12Aは、酸化物半導体、代表的にはIGZO(Inと、Gaと、Znと、を含む金属酸化物)の結晶構造の分類を説明する図である。
【0244】
図12Aに示すように、酸化物半導体は、大きく分けて「Amorphous(無定形)」と、「Crystalline(結晶性)」と、「Crystal(結晶)」と、に分類される。また、「Amorphous」の中には、completely amorphousが含まれる。また、「Crystalline」の中には、CAAC(c-axis-aligned crystalline)、nc(nanocrystalline)、及びCAC(cloud-aligned composite)が含まれる。なお、「Crystalline」の分類には、single crystal、poly crystal、及びcompletely amorphousは除かれる。また、「Crystal」の中には、single crystal、及びpoly crystalが含まれる。
【0245】
なお、
図12Aに示す太枠内の構造は、「Amorphous(無定形)」と、「Crystal(結晶)」との間の中間状態であり、新しい境界領域(New crystalline phase)に属する構造である。すなわち、当該構造は、エネルギー的に不安定な「Amorphous(無定形)」や、「Crystal(結晶)」とは全く異なる構造と言い換えることができる。
【0246】
なお、膜または基板の結晶構造は、X線回折(XRD:X-Ray Diffraction)スペクトルを用いて評価することができる。ここで、「Crystalline」に分類されるCAAC-IGZO膜のGIXD(Grazing-Incidence XRD)測定で得られるXRDスペクトルを
図12Bに示す。横軸は、2θ[deg.]を示し、縦軸は、強度(Intensity)[a.u.]を示す。なお、GIXD法は、薄膜法またはSeemann-Bohlin法ともいう。以降、
図12Bに示すGIXD測定で得られるXRDスペクトルを、単にXRDスペクトルと記す。なお、
図12Bに示すCAAC-IGZO膜の組成は、In:Ga:Zn=4:2:3[原子数比]近傍である。また、
図12Bに示すCAAC-IGZO膜の厚さは、500nmである。
【0247】
図12Bに示すように、CAAC-IGZO膜のXRDスペクトルでは、明確な結晶性を示すピークが検出される。具体的には、CAAC-IGZO膜のXRDスペクトルでは、2θ=31°近傍に、c軸配向を示すピークが検出される。なお、
図12Bに示すように、2θ=31°近傍のピークは、ピーク強度が検出された角度を軸に左右非対称である。
【0248】
また、膜または基板の結晶構造は、極微電子線回折法(NBED:Nano Beam Electron Diffraction)によって観察される回折パターン(極微電子線回折パターンともいう。)にて評価することができる。CAAC-IGZO膜の回折パターンを、
図12Cに示す。
図12Cは、電子線を基板に対して平行に入射するNBEDによって観察される回折パターンである。なお、
図12Cに示すCAAC-IGZO膜の組成は、In:Ga:Zn=4:2:3[原子数比]近傍である。また、極微電子線回折法では、プローブ径を1nmとして電子線回折が行われる。
【0249】
図12Cに示すように、CAAC-IGZO膜の回折パターンでは、c軸配向を示す複数のスポットが観察される。
【0250】
<<酸化物半導体の構造>>
なお、酸化物半導体は、結晶構造に着目した場合、
図12Aとは異なる分類となる場合がある。例えば、酸化物半導体は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、上述のCAAC-OS、及びnc-OSがある。また、非単結晶酸化物半導体には、多結晶酸化物半導体、擬似非晶質酸化物半導体(a-like OS:amorphous-like oxide semiconductor)、非晶質酸化物半導体、などが含まれる。
【0251】
ここで、上述のCAAC-OS、nc-OS、及びa-like OSの詳細について、説明を行う。
【0252】
[CAAC-OS]
CAAC-OSは、複数の結晶領域を有し、当該複数の結晶領域はc軸が特定の方向に配向している酸化物半導体である。なお、特定の方向とは、CAAC-OS膜の厚さ方向、CAAC-OS膜の被形成面の法線方向、またはCAAC-OS膜の表面の法線方向である。また、結晶領域とは、原子配列に周期性を有する領域である。なお、原子配列を格子配列とみなすと、結晶領域とは、格子配列の揃った領域でもある。さらに、CAAC-OSは、a-b面方向において複数の結晶領域が連結する領域を有し、当該領域は歪みを有する場合がある。なお、歪みとは、複数の結晶領域が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。つまり、CAAC-OSは、c軸配向し、a-b面方向には明らかな配向をしていない酸化物半導体である。
【0253】
なお、上記複数の結晶領域のそれぞれは、1つまたは複数の微小な結晶(最大径が10nm未満である結晶)で構成される。結晶領域が1つの微小な結晶で構成されている場合、当該結晶領域の最大径は10nm未満となる。また、結晶領域が多数の微小な結晶で構成されている場合、当該結晶領域の大きさは、数十nm程度となる場合がある。
【0254】
また、In-M-Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、スズ、チタンなどから選ばれた一種、または複数種)において、CAAC-OSは、インジウム(In)、及び酸素を有する層(以下、In層)と、元素M、亜鉛(Zn)、及び酸素を有する層(以下、(M,Zn)層)とが積層した、層状の結晶構造(層状構造ともいう)を有する傾向がある。なお、インジウムと元素Mは、互いに置換可能である。よって、(M,Zn)層にはインジウムが含まれる場合がある。また、In層には元素Mが含まれる場合がある。なお、In層にはZnが含まれる場合もある。当該層状構造は、例えば、高分解能TEM像において、格子像として観察される。
【0255】
CAAC-OS膜に対し、例えば、XRD装置を用いて構造解析を行うと、θ/2θスキャンを用いたOut-of-plane XRD測定では、c軸配向を示すピークが2θ=31°またはその近傍に検出される。なお、c軸配向を示すピークの位置(2θの値)は、CAAC-OSを構成する金属元素の種類、組成などにより変動する場合がある。
【0256】
また、例えば、CAAC-OS膜の電子線回折パターンにおいて、複数の輝点(スポット)が観測される。なお、あるスポットと別のスポットとは、試料を透過した入射電子線のスポット(ダイレクトスポットともいう。)を対称中心として、点対称の位置に観測される。
【0257】
上記特定の方向から結晶領域を観察した場合、当該結晶領域内の格子配列は、六方格子を基本とするが、単位格子は正六角形とは限らず、非正六角形である場合がある。また、上記歪みにおいて、五角形、七角形などの格子配列を有する場合がある。なお、CAAC-OSにおいて、歪み近傍においても、明確な結晶粒界(グレインバウンダリー)を確認することはできない。即ち、格子配列の歪みによって、結晶粒界の形成が抑制されていることがわかる。これは、CAAC-OSが、a-b面方向において酸素原子の配列が稠密でないことや、金属原子が置換することで原子間の結合距離が変化することなどによって、歪みを許容することができるためと考えられる。
【0258】
なお、明確な結晶粒界が確認される結晶構造は、いわゆる多結晶(polycrystal)と呼ばれる。結晶粒界は、再結合中心となり、キャリアが捕獲されトランジスタのオン電流の低下、電界効果移動度の低下などを引き起こす可能性が高い。よって、明確な結晶粒界が確認されないCAAC-OSは、トランジスタの半導体層に好適な結晶構造を有する結晶性の酸化物の一つである。なお、CAAC-OSを構成するには、Znを有する構成が好ましい。例えば、In-Zn酸化物、及びIn-Ga-Zn酸化物は、In酸化物よりも結晶粒界の発生を抑制できるため好適である。
【0259】
CAAC-OSは、結晶性が高く、明確な結晶粒界が確認されない酸化物半導体である。よって、CAAC-OSは、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、酸化物半導体の結晶性は不純物の混入や欠陥の生成などによって低下する場合があるため、CAAC-OSは不純物や欠陥(酸素欠損など)の少ない酸化物半導体ともいえる。従って、CAAC-OSを有する酸化物半導体は、物理的性質が安定する。そのため、CAAC-OSを有する酸化物半導体は熱に強く、信頼性が高い。また、CAAC-OSは、製造工程における高い温度(所謂サーマルバジェット)に対しても安定である。したがって、OSトランジスタにCAAC-OSを用いると、製造工程の自由度を広げることが可能となる。
【0260】
[nc-OS]
nc-OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。別言すると、nc-OSは、微小な結晶を有する。なお、当該微小な結晶の大きさは、例えば、1nm以上10nm以下、特に1nm以上3nm以下であることから、当該微小な結晶をナノ結晶ともいう。また、nc-OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。したがって、nc-OSは、分析方法によっては、a-like OSや非晶質酸化物半導体と区別が付かない場合がある。例えば、nc-OS膜に対し、XRD装置を用いて構造解析を行うと、θ/2θスキャンを用いたOut-of-plane XRD測定では、結晶性を示すピークが検出されない。また、nc-OS膜に対し、ナノ結晶よりも大きいプローブ径(例えば50nm以上)の電子線を用いる電子線回折(制限視野電子線回折ともいう。)を行うと、ハローパターンのような回折パターンが観測される。一方、nc-OS膜に対し、ナノ結晶の大きさと近いかナノ結晶より小さいプローブ径(例えば1nm以上30nm以下)の電子線を用いる電子線回折(ナノビーム電子線回折ともいう。)を行うと、ダイレクトスポットを中心とするリング状の領域内に複数のスポットが観測される電子線回折パターンが取得される場合がある。
【0261】
[a-like OS]
a-like OSは、nc-OSと非晶質酸化物半導体との間の構造を有する酸化物半導体である。a-like OSは、鬆又は低密度領域を有する。即ち、a-like OSは、nc-OS及びCAAC-OSと比べて、結晶性が低い。また、a-like OSは、nc-OS及びCAAC-OSと比べて、膜中の水素濃度が高い。
【0262】
<<酸化物半導体の構成>>
次に、上述のCAC-OSの詳細について、説明を行う。なお、CAC-OSは材料構成に関する。
【0263】
[CAC-OS]
CAC-OSとは、例えば、金属酸化物を構成する元素が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで偏在した材料の一構成である。なお、以下では、金属酸化物において、一つまたは複数の金属元素が偏在し、該金属元素を有する領域が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで混合した状態をモザイク状、またはパッチ状ともいう。
【0264】
さらに、CAC-OSとは、第1の領域と、第2の領域と、に材料が分離することでモザイク状となり、当該第1の領域が、膜中に分布した構成(以下、クラウド状ともいう。)である。つまり、CAC-OSは、当該第1の領域と、当該第2の領域とが、混合している構成を有する複合金属酸化物である。
【0265】
ここで、In-Ga-Zn酸化物におけるCAC-OSを構成する金属元素に対するIn、Ga、およびZnの原子数比のそれぞれを、[In]、[Ga]、および[Zn]と表記する。例えば、In-Ga-Zn酸化物におけるCAC-OSにおいて、第1の領域は、[In]が、CAC-OS膜の組成における[In]よりも大きい領域である。また、第2の領域は、[Ga]が、CAC-OS膜の組成における[Ga]よりも大きい領域である。または、例えば、第1の領域は、[In]が、第2の領域における[In]よりも大きく、且つ、[Ga]が、第2の領域における[Ga]よりも小さい領域である。また、第2の領域は、[Ga]が、第1の領域における[Ga]よりも大きく、且つ、[In]が、第1の領域における[In]よりも小さい領域である。
【0266】
具体的には、上記第1の領域は、インジウム酸化物、インジウム亜鉛酸化物などが主成分である領域である。また、上記第2の領域は、ガリウム酸化物、ガリウム亜鉛酸化物などが主成分である領域である。つまり、上記第1の領域を、Inを主成分とする領域と言い換えることができる。また、上記第2の領域を、Gaを主成分とする領域と言い換えることができる。
【0267】
なお、上記第1の領域と、上記第2の領域とは、明確な境界が観察できない場合がある。
【0268】
例えば、In-Ga-Zn酸化物におけるCAC-OSでは、エネルギー分散型X線分光法(EDX:Energy Dispersive X-ray spectroscopy)を用いて取得したEDXマッピングにより、Inを主成分とする領域(第1の領域)と、Gaを主成分とする領域(第2の領域)とが、偏在し、混合している構造を有することが確認できる。
【0269】
CAC-OSをトランジスタに用いる場合、第1の領域に起因する導電性と、第2の領域に起因する絶縁性とが、相補的に作用することにより、スイッチングさせる機能(On/Offさせる機能)をCAC-OSに付与することができる。つまり、CAC-OSとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。導電性の機能と絶縁性の機能とを分離させることで、双方の機能を最大限に高めることができる。よって、CAC-OSをトランジスタに用いることで、高いオン電流(Ion)、高い電界効果移動度(μ)、および良好なスイッチング動作を実現することができる。
【0270】
酸化物半導体は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a-like OS、CAC-OS、nc-OS、CAAC-OSのうち、二種以上を有していてもよい。
【0271】
<酸化物半導体を有するトランジスタ>
続いて、上記酸化物半導体をトランジスタに用いる場合について説明する。
【0272】
上記酸化物半導体をトランジスタに用いることで、高い電界効果移動度のトランジスタを実現することができる。また、信頼性の高いトランジスタを実現することができる。
【0273】
トランジスタには、キャリア濃度の低い酸化物半導体を用いることが好ましい。例えば、酸化物半導体のキャリア濃度は1×1017cm-3以下、好ましくは1×1015cm-3以下、さらに好ましくは1×1013cm-3以下、より好ましくは1×1011cm-3以下、さらに好ましくは1×1010cm-3未満であり、1×10-9cm-3以上である。なお、酸化物半導体膜のキャリア濃度を低くする場合においては、酸化物半導体膜中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性又は実質的に高純度真性と言う。なお、キャリア濃度の低い酸化物半導体を、高純度真性又は実質的に高純度真性な酸化物半導体と呼ぶ場合がある。
【0274】
また、高純度真性又は実質的に高純度真性である酸化物半導体膜は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。
【0275】
また、酸化物半導体のトラップ準位に捕獲された電荷は、消失するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、トラップ準位密度の高い酸化物半導体にチャネル形成領域が形成されるトランジスタは、電気特性が不安定となる場合がある。
【0276】
従って、トランジスタの電気特性を安定にするためには、酸化物半導体中の不純物濃度を低減することが有効である。また、酸化物半導体中の不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物としては、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。
【0277】
<不純物>
ここで、酸化物半導体中における各不純物の影響について説明する。
【0278】
酸化物半導体において、第14族元素の一つであるシリコンや炭素が含まれると、酸化物半導体において欠陥準位が形成される。このため、酸化物半導体におけるシリコンや炭素の濃度と、酸化物半導体との界面近傍のシリコンや炭素の濃度(二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる濃度)を、2×1018atoms/cm3以下、好ましくは2×1017atoms/cm3以下とする。
【0279】
また、酸化物半導体にアルカリ金属又はアルカリ土類金属が含まれると、欠陥準位を形成し、キャリアを生成する場合がある。従って、アルカリ金属又はアルカリ土類金属が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、SIMSにより得られる酸化物半導体中のアルカリ金属又はアルカリ土類金属の濃度を、1×1018atoms/cm3以下、好ましくは2×1016atoms/cm3以下にする。
【0280】
また、酸化物半導体において、窒素が含まれると、キャリアである電子が生じ、キャリア濃度が増加し、n型化しやすい。この結果、窒素が含まれている酸化物半導体を半導体に用いたトランジスタはノーマリーオン特性となりやすい。または、酸化物半導体において、窒素が含まれると、トラップ準位が形成される場合がある。この結果、トランジスタの電気特性が不安定となる場合がある。このため、SIMSにより得られる酸化物半導体中の窒素濃度を、5×1019atoms/cm3未満、好ましくは5×1018atoms/cm3以下、より好ましくは1×1018atoms/cm3以下、さらに好ましくは5×1017atoms/cm3以下にする。
【0281】
また、酸化物半導体に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸素欠損を形成する場合がある。該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成することがある。従って、水素が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体中の水素はできる限り低減されていることが好ましい。具体的には、酸化物半導体において、SIMSにより得られる水素濃度を、1×1020atoms/cm3未満、好ましくは1×1019atoms/cm3未満、より好ましくは5×1018atoms/cm3未満、さらに好ましくは1×1018atoms/cm3未満にする。
【0282】
不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
【0283】
本実施の形態に示す構成、構造、方法などは、他の実施の形態および実施例などに示す構成、構造、方法などと適宜組み合わせて用いることができる。
【0284】
(実施の形態4)
本実施の形態では上述した半導体装置の応用例について説明する。
【0285】
〔半導体ウエハ、チップ〕
図13Aは、ダイシング処理が行なわれる前の基板711の上面図を示している。基板711としては、例えば、半導体基板(「半導体ウエハ」ともいう。)を用いることができる。基板711上には、複数の回路領域712が設けられている。回路領域712には、本発明の一態様に係る半導体装置や、CPU、RFタグ、またはイメージセンサなどを設けることができる。
【0286】
複数の回路領域712は、それぞれが分離領域713に囲まれている。分離領域713と重なる位置に分離線(「ダイシングライン」ともいう。)714が設定される。分離線714に沿って基板711を切断することで、回路領域712を含むチップ715を基板711から切り出すことができる。
図13Bにチップ715の拡大図を示す。
【0287】
また、分離領域713に導電層や半導体層を設けてもよい。分離領域713に導電層や半導体層を設けることで、ダイシング工程時に生じうるESDを緩和し、ダイシング工程の歩留まり低下を防ぐことができる。また、一般にダイシング工程は、基板の冷却、削りくずの除去、帯電防止などを目的として、炭酸ガスなどを溶解させて比抵抗を下げた純水を切削部に流しながら行なわれる。分離領域713に導電層や半導体層を設けることで、当該純水の使用量を削減することができる。よって、半導体装置の生産コストを低減することができる。また、半導体装置の生産性を高めることができる。
【0288】
分離領域713に設ける半導体層としては、バンドギャップが2.5eV以上4.2eV以下、好ましくは2.7eV以上3.5eV以下の材料を用いることが好ましい。このような材料を用いると、蓄積された電荷をゆっくりと放電することができるため、ESDによる電荷の急激な移動が抑えられ、静電破壊を生じにくくすることができる。
【0289】
〔電子部品〕
チップ715を電子部品に適用する例について、
図14を用いて説明する。なお、電子部品は、半導体パッケージ、またはIC用パッケージともいう。電子部品は、端子取り出し方向や、端子の形状に応じて、複数の規格や名称が存在する。
【0290】
電子部品は、組み立て工程(後工程)において、上記実施の形態に示した半導体装置と該半導体装置以外の部品が組み合わされて完成する。
【0291】
図14Aに示すフローチャートを用いて、後工程について説明する。前工程において上記実施の形態に示した半導体装置を有する素子基板が完成した後、該素子基板の裏面(半導体装置などが形成されていない面)を研削する「裏面研削工程」を行なう(ステップS721)。研削により素子基板を薄くすることで、素子基板の反りなどを低減し、電子部品の小型化を図ることができる。
【0292】
次に、素子基板を複数のチップ(チップ715)に分離する「ダイシング工程」を行う(ステップS722)。そして、分離したチップを個々ピックアップしてリードフレーム上に接合する「ダイボンディング工程」を行う(ステップS723)。ダイボンディング工程におけるチップとリードフレームとの接合は、樹脂による接合や、テープによる接合など、適宜製品に応じて適した方法を選択する。なお、リードフレームに代えてインターポーザ基板上にチップを接合してもよい。
【0293】
次いで、リードフレームのリードとチップ上の電極とを、金属の細線(ワイヤー)で電気的に接続する「ワイヤーボンディング工程」を行う(ステップS724)。金属の細線には、銀線や金線を用いることができる。また、ワイヤーボンディングは、ボールボンディングや、ウェッジボンディングを用いることができる。
【0294】
ワイヤーボンディングされたチップは、エポキシ樹脂などで封止される「封止工程(モールド工程)」が施される(ステップS725)。封止工程を行うことで電子部品の内部が樹脂で充填され、チップに内蔵される回路部やチップとリードを接続するワイヤーを機械的な外力から保護することができ、また水分や埃による特性の劣化(信頼性の低下)を低減することができる。
【0295】
次いで、リードフレームのリードをめっき処理する「リードめっき工程」を行なう(ステップS726)。めっき処理によりリードの錆を防止し、後にプリント基板に実装する際のはんだ付けをより確実に行うことができる。次いで、リードを切断および成形加工する「成形工程」を行なう(ステップS727)。
【0296】
次いで、パッケージの表面に印字処理(マーキング)を施す「マーキング工程」を行なう(ステップS728)。そして外観形状の良否や動作不良の有無などを調べる「検査工程」(ステップS729)を経て、電子部品が完成する。
【0297】
また、完成した電子部品の斜視模式図を
図14Bに示す。
図14Bでは、電子部品の一例として、QFP(Quad Flat Package)の斜視模式図を示している。
図14Bに示す電子部品750は、リード755および半導体装置753を示している。半導体装置753としては、上記実施の形態に示した半導体装置などを用いることができる。
【0298】
図14Bに示す電子部品750は、例えばプリント基板752に実装される。このような電子部品750が複数組み合わされて、それぞれがプリント基板752上で電気的に接続されることで電子部品が実装された基板(実装基板754)が完成する。完成した実装基板754は、電子機器などに用いられる。
【0299】
〔電子機器〕
次に、本発明の一態様に係る半導体装置または上記電子部品を備えた電子機器の例について説明を行う。
【0300】
本発明の一態様に係る半導体装置または電子部品を用いた電子機器として、テレビ、モニタ等の表示装置、照明装置、デスクトップ型或いはノート型のパーソナルコンピュータ、ワードプロセッサ、DVD(Digital Versatile Disc)などの記録媒体に記憶された静止画又は動画を再生する画像再生装置、ポータブルCDプレーヤ、ラジオ、テープレコーダ、ヘッドホンステレオ、ステレオ、置き時計、壁掛け時計、コードレス電話子機、トランシーバ、携帯電話、自動車電話、携帯型ゲーム機、タブレット型端末、パチンコ機などの大型ゲーム機、電卓、携帯可能な情報端末(「携帯情報端末」ともいう。)、電子手帳、電子書籍端末、電子翻訳機、音声入力機器、ビデオカメラ、デジタルスチルカメラ、電気シェーバ、電子レンジ等の高周波加熱装置、電気炊飯器、電気洗濯機、電気掃除機、温水器、扇風機、毛髪乾燥機、エアコンディショナー、加湿器、除湿器などの空調設備、食器洗い器、食器乾燥器、衣類乾燥器、布団乾燥器、電気冷蔵庫、電気冷凍庫、電気冷凍冷蔵庫、DNA保存用冷凍庫、懐中電灯、チェーンソーなどの工具、煙感知器、透析装置などの医療機器などが挙げられる。さらに、誘導灯、信号機、ベルトコンベア、エレベータ、エスカレータ、産業用ロボット、電力貯蔵システム、電力の平準化やスマートグリッドのための蓄電装置などの産業機器が挙げられる。
【0301】
また、蓄電装置からの電力を用いて電動機により推進する移動体なども、電子機器の範疇に含まれるものとする。上記移動体として、例えば、電気自動車(EV)、内燃機関と電動機を併せ持ったハイブリッド車(HEV)、プラグインハイブリッド車(PHEV)、これらのタイヤ車輪を無限軌道に変えた装軌車両、電動アシスト自転車を含む原動機付自転車、自動二輪車、電動車椅子、ゴルフ用カート、小型又は大型船舶、潜水艦、ヘリコプター、航空機、ロケット、人工衛星、宇宙探査機や惑星探査機、宇宙船などが挙げられる。
【0302】
本発明の一態様に係る半導体装置または電子部品は、これらの電子機器に内蔵される通信装置などに用いることができる。
【0303】
電子機器は、センサ(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を測定する機能を含むもの)などを有していてもよい。
【0304】
電子機器は、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)を実行する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出す機能等を有することができる。
【0305】
図15および
図16A乃至
図16Fに、電子機器の一例を示す。
図15において、表示装置8000は、本発明の一態様に係る半導体装置8004を用いた電子機器の一例である。具体的に、表示装置8000は、TV放送受信用の表示装置に相当し、筐体8001、表示部8002、スピーカ部8003、半導体装置8004、蓄電装置8005などを有する。本発明の一態様に係る半導体装置8004は、筐体8001の内部に設けられている。半導体装置8004により、制御情報や、制御プログラムなどを保持することができる。また、半導体装置8004は通信機能を有し、表示装置8000をIoT機器として機能させることができる。また、表示装置8000は、商用電源から電力の供給を受けることもできるし、蓄電装置8005に蓄積された電力を用いることもできる。
【0306】
表示部8002には、液晶表示装置、有機EL素子などの発光素子を各画素に備えた発光表示装置、電気泳動表示装置、DMD(Digital Micromirror Device)、PDP(Plasma Display Panel)、FED(Field Emission Display)などの表示装置を用いることができる。
【0307】
なお、表示装置には、TV放送受信用の他、パーソナルコンピュータ用、広告表示用など、全ての情報表示用表示装置が含まれる。
【0308】
図15において、据え付け型の照明装置8100は、本発明の一態様に係る半導体装置8103を用いた電子機器の一例である。具体的に、照明装置8100は、筐体8101、光源8102、半導体装置8103、蓄電装置8105などを有する。
図15では、半導体装置8103が、筐体8101及び光源8102が据え付けられた天井8104の内部に設けられている場合を例示しているが、半導体装置8103は、筐体8101の内部に設けられていても良い。半導体装置8103により、光源8102の発光輝度などの情報や、制御プログラムなどを保持することができる。また、半導体装置8103は通信機能を有し、照明装置8100を、IoT機器として機能させることができる。また、照明装置8100は、商用電源から電力の供給を受けることもできるし、蓄電装置に蓄積された電力を用いることもできる。
【0309】
なお、
図15では天井8104に設けられた据え付け型の照明装置8100を例示しているが、本発明の一態様に係る半導体装置は、天井8104以外、例えば側壁8405、床8406、窓8407などに設けられた据え付け型の照明装置に用いることもできるし、卓上型の照明装置などに用いることもできる。
【0310】
また、光源8102には、電力を利用して人工的に光を得る人工光源を用いることができる。具体的には、白熱電球、蛍光灯などの放電ランプ、LEDや有機EL素子などの発光素子が、上記人工光源の一例として挙げられる。
【0311】
図15において、室内機8200及び室外機8204を有するエアコンディショナーは、本発明の一態様に係る半導体装置8203を用いた電子機器の一例である。具体的に、室内機8200は、筐体8201、送風口8202、半導体装置8203、蓄電装置8205などを有する。
図15では、半導体装置8203が、室内機8200に設けられている場合を例示しているが、半導体装置8203は室外機8204に設けられていても良い。或いは、室内機8200と室外機8204の両方に、半導体装置8203が設けられていても良い。半導体装置8203により、エアコンディショナーの制御情報や、制御プログラムなどを保持することができる。また、半導体装置8203は通信機能を有し、エアコンディショナーを、IoT機器として機能させることができる。また、エアコンディショナーは、商用電源から電力の供給を受けることもできるし、蓄電装置8205に蓄積された電力を用いることもできる。
【0312】
なお、
図15では、室内機と室外機で構成されるセパレート型のエアコンディショナーを例示しているが、室内機の機能と室外機の機能とを1つの筐体に有する一体型のエアコンディショナーに、本発明の一態様に係る半導体装置を用いることもできる。
【0313】
図15において、電気冷凍冷蔵庫8300は、本発明の一態様に係る半導体装置8304を用いた電子機器の一例である。具体的に、電気冷凍冷蔵庫8300は、筐体8301、冷蔵室用扉8302、冷凍室用扉8303、半導体装置8304、蓄電装置8305などを有する。
図15では、蓄電装置8305が、筐体8301の内部に設けられている。半導体装置8304により、電気冷凍冷蔵庫8300の制御情報や、制御プログラムなどを保持することができる。また、半導体装置8304は通信機能を有し、電気冷凍冷蔵庫8300を、IoT機器として機能させることができる。また、電気冷凍冷蔵庫8300は、商用電源から電力の供給を受けることもできるし、蓄電装置8305に蓄積された電力を用いることもできる。
【0314】
図16Aに、腕時計型の携帯情報端末の一例を示す。携帯情報端末6100は、筐体6101、表示部6102、バンド6103、操作ボタン6105などを備える。また、携帯情報端末6100は、その内部に二次電池と、本発明の一態様に係る半導体装置または電子部品を備える。本発明の一態様に係る半導体装置または電子部品を携帯情報端末6100に用いることで、携帯情報端末6100を、IoT機器として機能させることができる。
【0315】
図16Bは、携帯電話機の一例を示している。携帯情報端末6200は、筐体6201に組み込まれた表示部6202の他、操作ボタン6203、スピーカ6204、マイクロフォン6205などを備えている。
【0316】
また、携帯情報端末6200は、表示部6202と重なる領域に指紋センサ6209を備える。指紋センサ6209は有機光センサであってもよい。指紋は個人によって異なるため、指紋センサ6209で指紋パターンを取得して、個人認証を行うことができる。指紋センサ6209で指紋パターンを取得するための光源として、表示部6202から発せられた光を用いることができる。
【0317】
また、携帯情報端末6200は、その内部に二次電池と、本発明の一態様に係る半導体装置または電子部品を備える。本発明の一態様に係る半導体装置または電子部品を携帯情報端末6200に用いることで、携帯情報端末6200を、IoT機器として機能させることができる。
【0318】
図16Cは、掃除ロボットの一例を示している。掃除ロボット6300は、筐体6301上面に配置された表示部6302、側面に配置された複数のカメラ6303、ブラシ6304、操作ボタン6305、各種センサなどを有する。図示されていないが、掃除ロボット6300には、タイヤ、吸い込み口等が備えられている。掃除ロボット6300は自走し、ゴミ6310を検知し、下面に設けられた吸い込み口からゴミを吸引することができる。
【0319】
例えば、掃除ロボット6300は、カメラ6303が撮影した画像を解析し、壁、家具または段差などの障害物の有無を判断することができる。また、画像解析により、配線などブラシ6304に絡まりそうな物体を検知した場合は、ブラシ6304の回転を止めることができる。掃除ロボット6300は、その内部に二次電池と、本発明の一態様に係る半導体装置または電子部品を備える。本発明の一態様に係る半導体装置または電子部品を掃除ロボット6300に用いることで、掃除ロボット6300を、IoT機器として機能させることができる。
【0320】
図16Dは、ロボットの一例を示している。
図16Dに示すロボット6400は、演算装置6409、照度センサ6401、マイクロフォン6402、上部カメラ6403、スピーカ6404、表示部6405、下部カメラ6406および障害物センサ6407、移動機構6408を備える。
【0321】
マイクロフォン6402は、使用者の話し声及び環境音等を検知する機能を有する。また、スピーカ6404は、音声を発する機能を有する。ロボット6400は、マイクロフォン6402およびスピーカ6404を用いて、使用者とコミュニケーションをとることが可能である。
【0322】
表示部6405は、種々の情報の表示を行う機能を有する。ロボット6400は、使用者の望みの情報を表示部6405に表示することが可能である。表示部6405は、タッチパネルを搭載していてもよい。また、表示部6405は取り外しのできる情報端末であっても良く、ロボット6400の定位置に設置することで、充電およびデータの受け渡しを可能とする。
【0323】
上部カメラ6403および下部カメラ6406は、ロボット6400の周囲を撮像する機能を有する。また、障害物センサ6407は、移動機構6408を用いてロボット6400が前進する際の進行方向における障害物の有無を察知することができる。ロボット6400は、上部カメラ6403、下部カメラ6406および障害物センサ6407を用いて、周囲の環境を認識し、安全に移動することが可能である。本発明の一態様の発光装置は表示部6405に用いることができる。
【0324】
ロボット6400は、その内部に二次電池と、本発明の一態様に係る半導体装置または電子部品を備える。本発明の一態様に係る半導体装置または電子部品をロボット6400に用いることで、ロボット6400を、IoT機器として機能させることができる。
【0325】
図16Eは、飛行体の一例を示している。
図16Eに示す飛行体6500は、プロペラ6501、カメラ6502、およびバッテリ6503などを有し、自律して飛行する機能を有する。
【0326】
例えば、カメラ6502で撮影した画像データは、電子部品6504に記憶される。電子部品6504は、画像データを解析し、移動する際の障害物の有無などを察知することができる。また、電子部品6504によってバッテリ6503の蓄電容量の変化から、バッテリ残量を推定することができる。飛行体6500は、その内部に本発明の一態様に係る半導体装置または電子部品を備える。本発明の一態様に係る半導体装置または電子部品を飛行体6500に用いることで、飛行体6500を、IoT機器として機能させることができる。
【0327】
図16Fは、自動車の一例を示している。自動車7160は、エンジン、タイヤ、ブレーキ、操舵装置、カメラなどを有する。自動車7160は、その内部に本発明の一態様に係る半導体装置または電子部品を備える。本発明の一態様に係る半導体装置または電子部品を自動車7160に用いることで、自動車7160を、IoT機器として機能させることができる。
【0328】
本実施の形態に示す構成、構造、方法などは、他の実施の形態、および実施例に示す構成、構造、方法などと適宜組み合わせて用いることができる。
【0329】
(実施の形態5)
本明細書などに示したOSトランジスタを用いて、ノーマリーオフCPU(「Noff-CPU」ともいう。)を実現することができる。なお、Noff-CPUとは、ゲート電圧が0Vであっても非導通状態(オフ状態ともいう)であるノーマリーオフ型のトランジスタを含む集積回路である。
【0330】
Noff-CPUは、Noff-CPU内の動作不要な回路への電力供給を停止し、当該回路を待機状態にすることができる。電力供給が停止され、待機状態になった回路では電力が消費されない。よって、Noff-CPUは、電力使用量を最小限にすることができる。また、Noff-CPUは、電力供給が停止されても設定条件などの動作に必要な情報を長期間保持することができる。待機状態からの復帰は当該回路への電力供給を再開するだけでよく、設定条件などの再書き込みが不要である。すなわち、待機状態からの高速復帰が可能である。このように、Noff-CPUは、動作速度を大きく落とすことなく消費電力を低減できる。
【0331】
Noff-CPUは、例えば、IoT(Internet of Things)分野のIoT末端機器(「エンドポイントマイコン」ともいう。)803などの小規模システムに好適に用いることができる。
【0332】
図17にIoTネットワークの階層構造と要求仕様の傾向を示す。
図17では、要求仕様として消費電力804と処理性能805を示している。IoTネットワークの階層構造は、上層部であるクラウド分野801と下層部である組み込み分野802に大別される。クラウド分野801には例えばサーバーが含まれる。組み込み分野802には例えば機械、産業用ロボット、車載機器、家電などが含まれる。
【0333】
上層ほど、消費電力の少なさよりも高い処理性能が求められる。よって、クラウド分野801では高性能CPU、高性能GPU、大規模SoC(System on a Chip)などが用いられる。また、下層ほど処理性能よりも消費電力の少なさが求められ、デバイス個数も爆発的に多くなる。本発明の一態様に係る半導体装置は、低消費電力が求められるIoT末端機器の通信装置に好適に用いることができる。
【0334】
なお、「エンドポイント」とは、組み込み分野802の末端領域を示す。エンドポイントに用いられるデバイスとしては、例えば、工場、家電、インフラ、農業などで使用されるマイコンが該当する。
【0335】
図18にエンドポイントマイコンの応用例として、ファクトリーオートメーションのイメージ図を示す。工場884はインターネット回線(Internet)を介してクラウド883と接続される。また、クラウド883は、インターネット回線を介してホーム881およびオフィス882と接続される。インターネット回線は有線通信方式であってもよいし、無線通信方式であってもよい。例えば、無線通信方式の場合は、通信装置に本発明の一態様に係る半導体装置を用いて、第4世代移動通信システム(4G)や第5世代移動通信システム(5G)などの通信規格に沿った無線通信を行なえばよい。また、工場884は、インターネット回線を介して工場885および工場886と接続してもよい。
【0336】
工場884はマスタデバイス(制御機器)831を有する。マスタデバイス831は、クラウド883と接続し、情報の授受を行う機能を有する。また、マスタデバイス831は、IoT末端機器841に含まれる複数の産業用ロボット842と、M2M(Machine to Machine)インターフェイス832を介して接続される。M2Mインターフェイス832としては、例えば、有線通信方式の一種である産業イーサネット(「イーサネット」は登録商標)や、無線通信方式の一種であるローカル5Gなどを用いてもよい。
【0337】
工場の管理者は、ホーム881またはオフィス882から、クラウド883を介して工場884に接続し、稼働状況などを知ることができる。また、誤品・欠品チェック、置き場所指示、タクトタイムの計測などを行うことができる。
【0338】
近年「スマート工場」と銘打って、世界的にIoTの工場への導入が進められている。スマート工場の事例では、エンドポイントマイコンによる単なる検査、監査だけでなく、故障検知や異常予測なども行う事例が報告されている。
【0339】
エンドポイントマイコンなどの小規模システムは、稼働時のシステム全体の消費電力が小さい場合が多いため、Noff-CPUによる待機動作時の電力削減効果が大きくなる。一方で、IoTの組み込み分野では即応性が求められる場合があるが、Noff-CPUを用いることで待機動作時からの高速復帰が実現できる。
【0340】
本実施の形態に示す構成、構造、方法などは、他の実施の形態および実施例などに示す構成、構造、方法などと適宜組み合わせて用いることができる。
【実施例】
【0341】
本実施例では、本発明に用いることができるOS-FETの遮断周波数を、シミュレーションにより求めた結果を説明する。
【0342】
OS-FETの遮断周波数(fT)は、以下の数式1により求められる。
【0343】
【0344】
ここで、Cg、およびgmは、それぞれOS-FETのゲート容量、および相互コンダクタンスである。特定のドレイン電圧における相互コンダクタンスgmは、以下の数式2より求めることができる。
【0345】
【0346】
上記数式2において、Vg、Id、およびVdは、それぞれOS-FETのゲート電圧、ドレイン電流、およびドレイン電圧である。
【0347】
遮断周波数の計算には、Silvaco社デバイスシミュレータAtlas 3Dを用いた。
図19A乃至
図19Cに、計算に用いたOS-FETの構造を示す。
図19Aは、OS-FETのチャネル中央部におけるL長方向断面模式図である。また、
図19Bは、OS-FETのチャネル中央部におけるW幅方向断面模式図である。また、
図19Cは、OS-FETのソース領域、またはドレイン領域におけるW幅方向断面模式図である。
【0348】
図19A乃至
図19Cにおいて、OS-FETは、BGE,BGI1、BGI2、OS1、OS2、SD、TGI、およびTGEを有する。BGEは、バックゲート電極として機能し、TGEは、ゲート電極(トップゲート電極とも呼ぶ)として機能する。OS1、およびOS2は、積層構造の金属酸化物である。SDは、それぞれソース電極、およびドレイン電極として機能する。BGI1、およびBGI2は、BGEとOS1との間に設けられる、積層構造のゲート絶縁膜として機能し、TGIは、OS2とTGEとの間に設けられる、ゲート絶縁膜として機能する。
【0349】
OS1として、In:Ga:Zn=1:3:4[原子数比]の金属酸化物を用いた。また、OS2として、In:Ga:Zn=4:2:3[原子数比]の金属酸化物を用いた。
【0350】
また、
図19AにおけるL、すなわちTGEの幅は、チャネル長を示し、
図19BにおけるW、すなわちOS1、およびOS2の幅は、チャネル幅を示す。
【0351】
次に、表1に計算条件を示す。
【0352】
【0353】
上記条件にて求めた、OS-FETの遮断周波数の計算結果を
図20に示す。
図20において、横軸はOS-FETのドレイン電圧(単位:V)、縦軸は遮断周波数(単位:GHz)である。また、上記計算において、ゲート電圧と、ドレイン電圧は、同じ値としている。また、OS-FETのチャネル長は30nm、チャネル幅は30nmとした。
【0354】
図20の結果をみると、ドレイン電圧が1Vのとき、OS-FETの遮断周波数は38.6GHz、ドレイン電圧が2Vのとき、遮断周波数は71.5GHz、ドレイン電圧が3Vのとき、遮断周波数は104.4GHz、ドレイン電圧が4Vのとき、遮断周波数は132.8GHz、ドレイン電圧が5Vのとき、遮断周波数は160.1GHzであった。ドレイン電圧を3V以上とすることで、100GHz以上の遮断周波数が得られることが計算により確認された。
【0355】
以上の計算結果から、本発明の一態様のトランジスタとして、OS-FETを好適に用いることができることが解った。
【0356】
本実施例に示す構成、構造、方法などは、他の実施の形態および実施例などに示す構成、構造、方法などと適宜組み合わせて用いることができる。
【符号の説明】
【0357】
:NET1:ノード、5G:ローカル、10:周波数電圧変換回路、11:ループフィルタ、12:電圧制御発振回路、21:トランジスタ、22:トランジスタ、23:トランジスタ、24:容量、25:容量、26:機能素子、27:抵抗、28:トランジスタ、29:トランジスタ、30:スイッチドキャパシタ、31:配線、32:配線、33:配線、34:配線、36:信号、37:配線、40:オペアンプ、41:抵抗、42:容量、43:抵抗、44:抵抗、45:抵抗、46:抵抗、47:容量、48:容量、49:容量、51:トランジスタ、52:トランジスタ、53:トランジスタ、100:半導体装置、311:基板、313:半導体領域、314a:低抵抗領域、314b:低抵抗領域、315:絶縁体、316:導電体、320:絶縁体、322:絶縁体、324:絶縁体、326:絶縁体、328:導電体、330:導電体、350:絶縁体、352:絶縁体、354:絶縁体、356:導電体、360:絶縁体、362:絶縁体、364:絶縁体、366:導電体、370:絶縁体、372:絶縁体、374:絶縁体、376:導電体、380:絶縁体、382:絶縁体、384:絶縁体、386:導電体、404:絶縁体、500:トランジスタ、500A:トランジスタ、500B:トランジスタ、503:導電体、503a:導電体、503b:導電体、510:絶縁体、512:絶縁体、513:絶縁体、514:絶縁体、516:絶縁体、518:導電体、520:絶縁体、522:絶縁体、524:絶縁体、526:絶縁体、530:酸化物、530a:酸化物、530b:酸化物、540a:導電体、540b:導電体、542:導電体、542a:導電体、542b:導電体、543a:領域、543b:領域、544:絶縁体、545:絶縁体、546:導電体、548:導電体、550:トランジスタ、552:絶縁体、560:導電体、560a:導電体、560b:導電体、574:絶縁体、580:絶縁体、581:絶縁体、582:絶縁体、586:絶縁体、600:容量、610:導電体、612:導電体、620:導電体、630:絶縁体、640:絶縁体、711:基板、712:回路領域、713:分離領域、714:分離線、715:チップ、750:電子部品、752:プリント基板、753:半導体装置、754:実装基板、755:リード、801:クラウド分野、802:組み込み分野、804:消費電力、805:処理性能、831:マスタデバイス、832:M2Mインターフェイス、841:IoT末端機器、842:産業用ロボット、881:ホーム、882:オフィス、883:クラウド、884:工場、885:工場、886:工場、900:無線送受信機、901:低ノイズアンプ、902:バンドパスフィルタ、903:混合器、904:バンドパスフィルタ、905:復調器、911:パワーアンプ、912:バンドパスフィルタ、913:混合器、914:バンドパスフィルタ、915:変調器、921:共用器、922:局部発振器、931:アンテナ、941:信号、942:信号、943:信号、944:信号、2001:配線、2002:配線、6100:携帯情報端末、6101:筐体、6102:表示部、6103:バンド、6105:操作ボタン、6200:携帯情報端末、6201:筐体、6202:表示部、6203:操作ボタン、6204:スピーカ、6205:マイクロフォン、6209:指紋センサ、6300:掃除ロボット、6301:筐体、6302:表示部、6303:カメラ、6304:ブラシ、6305:操作ボタン、6310:ゴミ、6400:ロボット、6401:照度センサ、6402:マイクロフォン、6403:上部カメラ、6404:スピーカ、6405:表示部、6406:下部カメラ、6407:障害物センサ、6408:移動機構、6409:演算装置、6500:飛行体、6501:プロペラ、6502:カメラ、6503:バッテリ、6504:電子部品、7160:自動車、8000:表示装置、8001:筐体、8002:表示部、8003:スピーカ部、8004:半導体装置、8005:蓄電装置、8100:照明装置、8101:筐体、8102:光源、8103:半導体装置、8104:天井、8105:蓄電装置、8200:室内機、8201:筐体、8202:送風口、8203:半導体装置、8204:室外機、8205:蓄電装置、8300:電気冷凍冷蔵庫、8301:筐体、8302:冷蔵室用扉、8303:冷凍室用扉、8304:半導体装置、8305:蓄電装置、8405:側壁、8406:床、8407:窓