(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-11-08
(45)【発行日】2024-11-18
(54)【発明の名称】冷却された生成物をリサイクルされた急冷ストリームとして使用することを含む軽質オレフィンを形成するための方法
(51)【国際特許分類】
C07C 5/333 20060101AFI20241111BHJP
C07C 11/04 20060101ALI20241111BHJP
C07C 11/06 20060101ALI20241111BHJP
C07C 11/08 20060101ALI20241111BHJP
C07C 15/46 20060101ALI20241111BHJP
C07B 61/00 20060101ALN20241111BHJP
【FI】
C07C5/333
C07C11/04
C07C11/06
C07C11/08
C07C15/46
C07B61/00 300
(21)【出願番号】P 2021577254
(86)(22)【出願日】2020-06-12
(86)【国際出願番号】 US2020037420
(87)【国際公開番号】W WO2020263599
(87)【国際公開日】2020-12-30
【審査請求日】2023-06-09
(32)【優先日】2019-06-28
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】502141050
【氏名又は名称】ダウ グローバル テクノロジーズ エルエルシー
(74)【代理人】
【識別番号】100092783
【氏名又は名称】小林 浩
(74)【代理人】
【識別番号】100095360
【氏名又は名称】片山 英二
(74)【代理人】
【識別番号】100120134
【氏名又は名称】大森 規雄
(74)【代理人】
【識別番号】100187964
【氏名又は名称】新井 剛
(72)【発明者】
【氏名】プレッツ、マシュー ティー.
(72)【発明者】
【氏名】ワン、ハンヤオ
(72)【発明者】
【氏名】プラーク、アンソニー
(72)【発明者】
【氏名】マクニーリー、アダム エム.
【審査官】澤田 浩平
(56)【参考文献】
【文献】米国特許第05220093(US,A)
【文献】米国特許出願公開第2011/0319692(US,A1)
【文献】米国特許出願公開第2016/0272559(US,A1)
【文献】米国特許出願公開第2004/0025535(US,A1)
【文献】国際公開第2018/236630(WO,A1)
【文献】特表2007-522216(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C07B,C07C
(57)【特許請求の範囲】
【請求項1】
軽質オレフィンを形成するための方法であって、
炭化水素供給原料ストリームを反応器に導入することと
(ここで、前記反応器は、高速流動床、乱流床もしくはバブル床反応器、または希薄相ライザー反応器として動作する少なくとも1つの反応器セクションを含む)、
前記反応器内で、前記炭化水素供給原料ストリームを脱水素触媒と反応させて、高温の脱水素生成物を形成すること
と(ここで、前記脱水素生成物が、接触反応しなかった前記炭化水素供給原料ストリームの少なくとも一部を含む
)、
一次分離デバイス内で、前記脱水素触媒の少なくとも一部を前記高温の脱水素生成物から分離すること
と(ここで、前記一次分離デバイス内の前記脱水素生成物および脱水素触媒の温度が、少なくとも550℃である
)、
前記一次分離デバイスからの高温の脱水素生成物の流出に続いて、前記高温の脱水素生成物を急冷ストリームと組み合わせて前記高温の脱水素生成物を冷却し、中間温度の脱水素生成物を形成すること
と(ここで、前記中間温度の脱水素生成物の温度が、前記高温の脱水素生成物の前記温度よりも低い、少なくとも10℃である
)、
前記中間温度の脱水素生成物を冷却して、冷却された脱水素生成物を形成することと
(ここで、前記冷却された脱水素生成物の一部が、前記急冷ストリームの少なくとも一部として利用される
)、
を含む、方法。
【請求項2】
前記炭化水素供給原料が、プロパン、n-ブタン、イソブタン、エタン、エチルベンゼン、またはそれらの組み合わせを含む、
請求項1に記載の方法。
【請求項3】
前記急冷ストリームが、前記高温の脱水素生成物の前記温度よりも低い、少なくとも300℃である、
請求項1または2に記載の方法。
【請求項4】
接触反応しなかった前記炭化水素供給原料ストリームの前記一部の前記中間温度の脱水素生成物における熱分解速度が、前記高温の脱水素生成物における熱分解速度の90%未満である、
請求項1~3のいずれか一項に記載の方法。
【請求項5】
前記中間温度の生成物を二次分離デバイスに送り、そこで、前記脱水素触媒の残りが、前記中間温度の生成物から除去されることをさらに含む、
請求項1~4のいずれか一項に記載の方法。
【請求項6】
前記冷却された脱水素生成物が、150℃以下の温度を有する、
請求項1~5のいずれか一項に記載の方法。
【請求項7】
熱交換器および/または液体急冷システムが、前記中間温度の脱水素生成物を前記冷却された脱水素生成物に冷却する、
請求項1~6のいずれか一項に記載の方法。
【請求項8】
前記急冷ストリームが、3重量%未満の蒸気を含むか、または、
前記急冷ストリームが、エチレン、プロピレン、またはブテン異性体のうちの1つ以上を含むか、のうちの1つ以上である、
請求項1~7のいずれか一項に記載の方法。
【請求項9】
前記脱水素触媒が、固体であり、また、前記高温の脱水素生成物が、ガスである、
請求項1~8のいずれか一項に記載の方法。
【請求項10】
前記急冷ストリームが、ガスストリームである、
請求項1~9のいずれか一項に記載の方法。
【請求項11】
前記脱水素触媒が、ガリウムおよび/または白金触媒である、
請求項1~10のいずれか一項に記載の方法。
【請求項12】
軽質オレフィンを形成するための方法であって、
炭化水素供給原料ストリームを反応器に導入することと
(ここで、前記反応器は、高速流動床、乱流床もしくはバブル床反応器、または希薄相ライザー反応器として動作する少なくとも1つの反応器セクションを含む)、
前記反応器内で、前記炭化水素供給原料ストリームを脱水素触媒と反応させて、高温の脱水素生成物を形成すること
と(ここで、前記脱水素生成物が、接触反応しなかった前記炭化水素供給原料ストリームの少なくとも一部を含む
)、
一次分離デバイス内で、前記脱水素触媒の少なくとも一部を前記高温の脱水素生成物から分離すること
と(ここで、前記一次分離デバイス内の前記脱水素生成物および脱水素触媒の温度が、少なくとも550℃である
)、
前記一次分離デバイスからの高温の脱水素生成物の流出に続いて、前記高温の脱水素生成物を急冷ストリームと組み合わせて前記高温の脱水素生成物を冷却し、中間温度の脱水素生成物を形成すること
と(ここで、前記中間温度の脱水素生成物の温度が、前記高温の脱水素生成物の前記温度よりも低い、少なくとも10℃である
)、
前記中間温度の生成物を二次分離デバイスに送ること
と(ここで、前記脱水素触媒の残りが、前記中間温度の生成物から除去される
)、
前記中間温度の脱水素生成物を冷却して、冷却された脱水素生成物を形成することと
(ここで、前記冷却された脱水素生成物の一部が、前記急冷ストリームの少なくとも一部として利用される
)、
を含む、方法。
【請求項13】
前記炭化水素供給原料が、プロパン、n-ブタン、イソブタン、エタン、エチルベンゼン、またはそれらの組み合わせを含む、請求項12に記載の方法。
【請求項14】
接触反応しなかった前記炭化水素供給原料ストリームの前記一部の前記中間温度の脱水素生成物における熱分解速度が、前記高温の脱水素生成物における熱分解速度の70%未満である、請求項12または13に記載の方法。
【請求項15】
前記急冷ストリームが、ガスストリームである、請求項12、13、または14に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は、2019年6月28日に出願された米国仮特許出願第62/868,340号に対する優先権を主張するものであり、その全体が参照により組み込まれる。
【背景技術】
【0002】
本開示は、概して、化学処理システムに関し、より具体的には、脱水素化学処理システムに関する。
【0003】
背景技術
軽質オレフィンは、多くの種類の商品および材料を生成するためのベース材料として利用することができる。例えば、エチレンは、ポリエチレン、塩化エチレン、またはエチレンオキシドを製造するために利用することができる。このような生成物は、製品の包装、建設、繊維等に利用することができる。したがって、エチレン、プロピレン、およびブテン等の軽質オレフィンに対する業界の需要がある。軽質オレフィンは、原油の精製作業からの生成物ストリームであってもよい所与の化学供給原料ストリームに応じて、異なる反応プロセスによって生成することができる。多くの軽質オレフィンは、供給原料ストリームを、供給原料ストリームの軽質オレフィンへの変換を促進する流動触媒と接触させる接触脱水素等の触媒プロセスによって生成することができる。このようなシステムでは、軽質オレフィンの反応選択性が全体的なプロセス効率にとって重要であり得る。
【発明の概要】
【0004】
軽質オレフィンを生成するための改善されたシステムおよび方法に対する継続的な必要性が存在する。脱水素生成物ストリームの温度の上昇は、生成物ストリームの望まない熱分解を引き起こす可能性があり、これにより、所望の軽質オレフィンに対するシステム選択性を低下させる可能性があることが観察されている。例えば、生成物ストリーム中の未反応のアルカンおよび/または所望の生成物オレフィンは、生成物ストリームが、例えば、熱交換器によって冷却される前に、反応器システムの触媒分離部および他の下流部で熱分解される可能性がある。この現象を軽減または完全に修正するために、本明細書に開示されるシステムは、例えば、熱交換器によって冷却された後、生成物ストリームの一部をリサイクルする。冷却された生成物のリサイクルストリーム(すなわち、急冷ストリーム)は、高温の生成物ストリームの温度を、望ましくない熱分解速度が低下した中間温度まで低下させる。例えば、本明細書に開示されるいくつかの反応システムでは、冷却された生成物ストリームをリサイクルして、生成物ストリームが生成物ストリームガスから固体触媒の大部分を分離する一次分離デバイスを出た直後に高温の生成物ストリームと接触させる。本明細書で使用するのに好適な固体/ガス分離デバイスの例には、粉末分離デバイス(すなわち、サイクロン)、フィルタ、または固体からガスを分離するのに好適な任意の他のデバイスが含まれるが、これらに限定されない。このような急冷ストリームによる接触は、急冷ストリームと接触する前の生成物ストリームと比較して、熱分解速度が低下した中間温度まで生成物ストリームを冷却する。したがって、熱分解は、少なくとも、リサイクルストリーム(すなわち、急冷ストリーム)が高温の生成物ストリームと接触する点から、生成物ストリームが、例えば、熱交換器によって冷却される点まで低減される。
【0005】
1つ以上の実施形態によれば、軽質オレフィンを形成するための方法は、炭化水素供給原料ストリームを反応器に導入することと、反応器内で、炭化水素供給原料ストリームを脱水素触媒と反応させて高温の脱水素生成物を形成することであって、脱水素生成物が、接触反応しなかった炭化水素供給原料ストリームの少なくとも一部を含む、形成することと、一次分離デバイス内で、脱水素触媒の少なくとも一部を高温の脱水素生成物から分離することと、を含むことができ、一次分離デバイス内の脱水素生成物および脱水素触媒の温度は、少なくとも550℃である。本方法は、一次分離デバイスからの高温の脱水素生成物の流出に続いて、高温の脱水素生成物を急冷ストリームと組み合わせて高温の脱水素生成物を冷却し、中間温度の脱水素生成物を形成することをさらに含むことができ、急冷ストリームがガスストリームであり、中間温度の脱水素生成物の温度は、高温の脱水素生成物の温度よりも低い、少なくとも10℃である。本方法は、中間温度の脱水素生成物を冷却して、冷却された脱水素生成物を形成することをさらに含むことができ、冷却された脱水素生成物の一部は、急冷ストリームの少なくとも一部として利用される。
【0006】
1つ以上の追加の実施形態によれば、軽質オレフィンを形成するための方法は、炭化水素供給原料ストリームを反応器に導入することと、反応器内で、炭化水素供給原料ストリームを脱水素触媒と反応させて高温の脱水素生成物を形成することであって、脱水素生成物が、接触反応しなかった炭化水素供給原料ストリームの少なくとも一部を含む、形成することと、一次分離デバイス内で、脱水素触媒の少なくとも一部を高温の脱水素生成物から分離することと、を含むことができ、一次分離デバイス内の脱水素生成物および脱水素触媒の温度は、少なくとも550℃である。本方法は、一次分離デバイスからの高温の脱水素生成物の流出に続いて、高温の脱水素生成物を急冷ストリームと組み合わせて高温の脱水素生成物を冷却し、中間温度の脱水素生成物を形成することをさらに含むことができ、急冷ストリームがガスストリームであり、中間温度の脱水素生成物の温度は、高温の脱水素生成物の温度よりも低い、少なくとも10℃である。本方法は、中間温度の生成物を二次分離デバイスに送ることであって、そこで、脱水素触媒の残りを中間温度の生成物から除去する、送ることと、中間温度の脱水素生成物を冷却して冷却された脱水素生成物を形成することと、をさらに含むことができ、冷却された脱水素生成物の一部は、急冷ストリームの少なくとも一部として利用される。
【0007】
前述の概要および以下の詳細な説明の両方は、本技術の実施形態を呈しており、また、これらが特許請求される本技術の性質および特徴を理解するための概要または枠組みを提供することを意図していることを理解されたい。添付の図面は、技術のさらなる理解を提供するために含まれ、本明細書に組み込まれ、その一部を構成する。図面は、様々な実施形態を例示し、説明と共に、技術の原則および動作を説明するのに役立つ。さらに、図面および説明は、単なる例示であることを意図し、いかなる様式でも特許請求の範囲を限定することを意図していない。
【0008】
本明細書で開示された技術の追加の特徴および利点は、後続の詳細な説明において記載され、その説明から当業者にとって容易に部分的に明らかになるか、後続の詳細な説明、特許請求の範囲、ならびに添付の図面を含む、本明細書に記載されるような技術を実践することによって、認識されるであろう。
【図面の簡単な説明】
【0009】
本開示の特定の実施形態の以下の詳細な説明は、以下の図面と併せて読むと最も良く理解することができ、これらの図面では、同様の構造体が同様の参照番号で示される。
【0010】
【
図1】本明細書に記載の1つ以上の実施形態による、下流冷却およびリサイクルされた急冷ストリームを有する反応器システムの一般化されたフロー図を示す。。
【
図2】本明細書に記載の1つ以上の実施形態による、反応器システムの一部を概略的に示す。
【
図3】本明細書に記載の1つ以上の実施形態による、反応システムの一部を概略的に示す。
【
図4】本明細書に記載の1つ以上の実施形態による、反応システムの一部を概略的に示す。
【
図5A】1つ以上の実施形態による、温度急冷前の反応速度に対する温度急冷後の反応速度の比率をグラフ化して示す(温度急冷前の反応速度は、各反応物のそれぞれの目標温度における速度を表す)。
【
図5B】1つ以上の実施形態による、温度急冷前の反応速度に対する温度急冷後の反応速度の比率をグラフ化して示す(温度急冷前の反応速度は、各反応物のそれぞれの目標温度における速度を表す)。
【
図6】1つ以上の実施形態による、生成物ストリームを様々な量で急冷するのに必要な生成物ストリームに対する蒸気および粗プロピレンの算出割合(vol/vol)をグラフ化して示す。
【
図7】1つ以上の実施形態による、急冷ストリームと混合した後の温度降下、焼入媒(蒸気または粗プロピレン)、および一次分離デバイスの流出口とガス-ガス熱交換器の流入口との間の滞留時間の関数として算出された累積プロピレン選択性(%)をグラフ化して示す。
【
図8】1つ以上の実施形態による、急冷ストリームと混合した後の温度降下、焼入媒(蒸気または粗プロピレン)、および一次分離デバイスの流出口とガス-ガス熱交換器の流入口との間の滞留時間の関数として算出された累積プロパン転化率(%)をグラフ化して示す。
【0011】
図面は、本質的に概略的であり、限定なしに、温度伝送器、圧力伝送器、流量計、ポンプ、バルブ等の当技術分野で一般的に使用される反応器システムのいくつかの構成要素を含まないことを理解されたい。これらの構成要素は、開示された本実施形態の意図および範囲の内にあることが知られているであろう。しかし、本開示に記載されているもの等の操作的構成要素は、本開示に記載されている実施形態に追加することができる。
【0012】
ここで、様々な実施形態をより詳細に参照し、そのいくつかの実施形態が添付の図面に例示される。可能な場合はいつでも、同じまたは類似の部分を参照するために、図面全体で同じ参照番号が使用されるであろう。
【発明を実施するための形態】
【0013】
現在開示されている技術の実施形態では、いくつかの図に関して説明している。
図1は、現在開示されている1つ以上の実施形態による、反応器システムを表す例示的なフロー図を示している。
図1のシステムの1つ以上の実施形態の多くのプロセスおよび機器の詳細は、
図2~4を参照して本明細書に記載されていることに留意されたい。他の図を鑑みて、
図1の1つ以上の構成要素は、一体型または互いに隣接していてもよく、いくつかのストリームは、材料の移動を表す表現にすぎず、物理的なパイプまたは他の移送手段は、物理的に存在しない場合がある(例えば、ストリームは、互いに隣接する反応器から分離器に直接移る)ことを理解されたい。
【0014】
さらに
図1を参照すると、反応器システム102は、反応器202、分離デバイス220、および触媒処理部300を含むことができる。一般に、脱水素反応等の主な反応は、反応器202内で行われ、図示のシステムの外側からの反応物ストリーム280(本明細書では、炭化水素供給原料ストリームと呼ばれることもある)は、触媒処理部からのストリーム282の再生触媒と組み合わせて反応器202に入る。この反応に続いて、触媒、未反応の化学物質、および生成物の化学物質は、ストリーム284を介して分離デバイス220に転送される。「生成物ストリーム」は、反応生成物および反応物ストリーム280からの未反応構成成分の両方を含むことができることを理解されたい。反応物ストリーム280は、プロパン、n-ブタン、イソブタン、エタン、またはエチルベンゼンのうちの1つ以上を含むことができる。
【0015】
ストリーム284は、本明細書では、高温の脱水素生成物と呼ばれることがある。一般に、ストリーム284は、反応器202内の温度に等しい温度に近い温度を有する。温度は、反応および利用される触媒系に依存し得る。1つ以上の実施形態では、ストリーム284は、少なくとも550℃(少なくとも575℃、少なくとも600℃、少なくとも625℃、少なくとも650℃、少なくとも675℃、少なくとも700℃、またはさらには少なくとも725℃等)の温度を有することができる。例えば、プロパンが脱水素化されるとき、ストリーム284の温度は、おおよそ620℃(600℃~640℃等)であり得る。エチルベンゼンが脱水素化されるとき、ストリーム284の温度は、おおよそ595℃(575℃~615℃等)であり得る。エタンが脱水素化されるとき、ストリーム284の温度は、おおよそ750℃(730℃~770℃等)であり得る。ブタンが脱水素化されるとき、ストリーム284の温度は、おおよそ600℃(580℃~620℃等)であり得る。
【0016】
分離デバイス220は、一次分離デバイス402および二次分離デバイス404を含むことができる。しかしながら、二次分離デバイス404は、いくつかの実施形態では存在しないことを理解されたい。追加の実施形態では、一次分離デバイス402および/または二次分離デバイス404は、限定されるものではないが、サイクロン、フィルタ、または触媒等の固体をガスから分離するための他の好適なデバイスであり得る。一次分離デバイス402でガス相反応物および生成物の化学物質からストリーム284の触媒の少なくとも一部(通常は大部分)を分離した後、触媒は、ストリーム299を介して触媒処理部300に送られ、また、生成物および反応ガス(依然として高温の脱水素生成物と呼ばれることもある)は、ストリーム286を介して一次分離デバイス402から出ることができる。ストリーム286の温度は、ストリーム284の温度とほぼ同等であり得る。
【0017】
1つ以上の実施形態では、一次分離デバイスからのストリーム286を介した高温の脱水素生成物の流出に続いて、高温の脱水素生成物を急冷ストリーム296と組み合わせて、高温の脱水素生成物を冷却し、ストリーム287(中間温度の脱水素生成物と呼ばれることもある)を形成することができる。急冷ストリームは、本明細書で詳細に説明される、ストリーム286の下流部にあるガスストリームであり得る。急冷ストリームは、エチレン、プロピレン、またはブテン異性体(例えば、反応生成物)のうちの1つまたは複数を含むことができる。
【0018】
急冷ストリーム296は、ストリーム286の温度よりも実質的に低い温度を有することができる。例えば、急冷ストリーム296は、125℃未満、100℃未満、75℃未満、またはさらには50℃未満等、150℃未満の温度を有することができる。急冷ストリーム296は、熱交換器406の流出口であるストリーム290とほぼ同じ温度であり得る。1つ以上の実施形態では、急冷ストリーム296の温度は、ストリーム286の温度よりも低い、少なくとも200℃(ストリーム286の温度よりも低い、少なくとも250℃、少なくとも300℃、少なくとも350℃、少なくとも400℃、少なくとも450℃、またはさらには少なくとも500℃等)であり得る。
【0019】
急冷ストリーム296とストリーム286との混合により、ストリーム287で中間温度の脱水素生成物が形成される。ストリーム287の温度は、ストリーム286よりも低い、少なくとも10℃であり得る。例えば、ストリーム287の温度は、ストリーム286よりも低い、少なくとも15℃、20℃、25℃、30℃、35℃、40℃、45℃、50℃、60℃、70℃、80℃、90℃、100℃、110℃、120℃、130℃、140℃、またはさらには150℃であり得る。プロパン、n-ブタン、エタン、またはエチルベンゼンのうちの1つまたは複数、およびそれらの反応生成物の熱分解速度は、ストリーム286と比較して、ストリーム287で低下する可能性がある。例えば、ストリーム287におけるこれらの構成成分の熱分解速度は、温度の低下に少なくとも部分的に起因して、ストリーム286における熱分解速度の90%未満、85%未満、80%未満、75%未満、70%未満、65%未満、60%未満、55%未満、50%未満、45%未満、40%未満、35%未満、30%未満、25%未満、20%未満、15%未満、10%未満、またはさらには5%未満であり得る。
【0020】
二次分離デバイス404は、ストリーム287中の触媒等、残りの固体全てをさらに分離し、それらをライン298を介して触媒処理部300に戻すことができる。ストリーム288には、固体がほとんどまたは全く含まれていない可能性がある。ストリーム288は、ストリーム287とほぼ同じ温度であるため、依然として中間温度の脱水素生成物と呼ぶことができる。次に、ストリーム288は、例えば、熱交換器406を介してその内容物を冷却するように処理される。追加の実施形態では、冷却は、液体急冷システムまたはストリームを冷却する他の既知の手段によって実施することができる。熱交換器406の生成物ストリームは、ストリーム290であり、これは、冷却された脱水素生成物と呼ぶことができる。ストリーム290の温度は、急冷ストリーム296に関して記載された温度とほぼ同じであり得る。ストリーム290および/またはストリーム296は、それらが所望の方向に流れるように圧縮を受けることができることを理解されたい。例えば、ストリーム296は、一般に、移送目的のためにストリーム287の圧力よりも高い圧力を有することができる。
【0021】
急冷ストリーム296を形成するために、ストリーム290の少なくとも一部ビンがリサイクルされてシステムに戻される。ストリーム296の化学物質含有量は、ストリーム286の化学物質含有量と類似または同一であり得ることに留意されたい(すなわち、反応器20内での反応以来、いくらかの残留熱分解以外のさらなる反応は起こらなかった)。急冷ストリーム296との接触によるストリーム286の急冷により、ストリーム286の内容物を、熱分解の反応速度を実質的に低下させる温度まで冷却することができる。ストリーム286は、熱分解が起こる温度にある可能性があり、このような熱分解は、所望の反応生成物の選択性を低下させる可能性がある。
【0022】
急冷ストリームは、任意の相当量の蒸気を含まないことを理解されたい。例えば、急冷ストリームは、3重量%未満(2重量%未満の蒸気、1重量%未満の蒸気、または追加の実施形態では実質的に蒸気を含まない等)の蒸気を含む。以下の実施例に記載されているように、急冷剤としての脱水素生成物ストリームの使用は、蒸気の使用と比較して多くの利点を有することができる。
【0023】
例示的な反応器システムおよびこのような反応器システムの使用に従って化学ストリームを処理するための方法は、ここで、
図2を考慮して詳細に説明される。場合によっては、
図1に関して
図2に同様の番号が利用されているが、
図1の実施形態は、多種多様な反応器の種類を利用することができ、
図2は、このような種類の反応器の一例にすぎないことを理解されたい。本明細書に記載される急冷の実施形態では、本明細書に記載されるような周期的な触媒移動による再生を含まない構成を含む、他の反応器システム構成で使用するのに好適であり得ることを理解されたい。
【0024】
次に、
図2を参照すると、例示的な反応器システム102が概略的に示されている。反応器システム102は、一般に、反応器部200および触媒処理部300等、複数のシステム構成要素を含む。
図2の文脈において本明細書で使用するとき、反応器部200は、一般に、主要なプロセス反応が行われる反応器システム102の一部を指す。例えば、反応器システム102は、反応器システム102の反応器部200において、脱水素触媒の存在下で供給原料ストリームが脱水素化される脱水素システムであり得る。
【0025】
反応器部200は、下流反応器セクション230および上流反応器セクション250を含むことができる反応器202を含む。1つ以上の実施形態によれば、
図2に示すように、反応器部200は、反応器202で形成される化学生成物から触媒を分離する働きをする触媒分離セクション210をさらに含むことができる。また、本明細書で使用するとき、触媒処理部300とは、一般に、触媒が燃焼によって等、何らかの方法で処理される反応器システム102の一部を指す。触媒処理部300は、燃焼器350およびライザー330を含むことができ、任意選択で、触媒分離セクション310を含むことができる。いくつかの実施形態では、触媒は、触媒処理部300で、コークスのような汚染物質を燃やすことによって再生することができる。追加の実施形態では、触媒は、触媒処理部300で加熱することができる。コークスまたは別の可燃材料が触媒上に形成されない場合、または触媒上に形成されたコークスの量が、触媒を所望の温度まで加熱するために燃やすのに十分でない場合、補助燃料を利用して触媒処理部300で触媒を加熱することができる。1つ以上の実施形態では、触媒分離セクション210は、燃焼器350と流体連通することができ(例えば、配水塔426を介して)、また、触媒分離セクション310は、上流反応器セクション250と流体連通することができる(例えば、配水塔424および移送ライザー430を介して)。
【0026】
図2に関して説明したように、供給原料ストリームは、移送ライザー430に入ることができ、生成物ストリームは、パイプ420を介して反応器システム102を出ることができる。1つ以上の実施形態によれば、反応器システム102は、化学供給原料(例えば、供給原料ストリーム中の)および流動触媒を上流反応器セクション250に供給することによって操作することができる。化学供給原料は、上流反応器セクション250内の触媒と接触し、各々が、下流反応器セクション230に上向きに流れ、下流反応器セクション230を通って、化学生成物を生成する。化学生成物および触媒は、下流反応器セクション230から出て触媒分離セクション210内の分離デバイス220に送ることができる。触媒は、分離デバイス220内で化学生成物から分離される。化学生成物は、触媒分離セクション210から出て移送される。分離された触媒は、触媒分離セクション210から燃焼器350に送られる。燃焼器350では、触媒は、例えば、燃焼によって処理することができる。例えば、限定されるものではないが、触媒は、コークス除去することができ、かつ/または補助燃料を燃焼させて、触媒を加熱することができる。次に、触媒は、燃焼器350から出て、ライザー330を通ってライザー終端分離器378に送られ、そこで、ライザー330からのガスおよび固体構成成分が少なくとも部分的に分離される。蒸気および残りの固体は、触媒分離セクション310内の二次分離デバイス320に移送され、そこで、残りの触媒は、触媒処理からのガス(例えば、使用済み触媒または補助燃料の燃焼によって放出されたガス)から分離される。次に、分離された触媒は、配水塔424および移送ライザー430を介して、触媒分離セクション310から上流反応器セクション250に送られ、そこで、さらに触媒反応に利用される。したがって、触媒は、動作中、反応器部200と触媒処理部300との間を循環することができる。一般に、供給原料ストリームおよび生成物ストリームを含む処理された化学ストリームはガス状であり得、また、触媒は流動微粒子固体であり得る。
【0027】
図2に示すように、上流反応器セクション250は、下流反応器セクション230の下方に位置付けることができる。このような構成は、反応器202における上昇流構成と呼ぶことができる。反応器202はまた、上流反応器セクション250を下流反応器セクション230の上方に位置付けることができる下降流反応器であってもよい。他の反応器構成もまた、反応器システム102の反応器部200に対して企図される。
【0028】
本明細書に記載されるように、上流反応器セクション250は、容器、ドラム、バレル、バット、または所与の化学反応に好適な他の入れ物を含むことができる。1つ以上の実施形態では、上流反応器セクション250は、概して円筒形(すなわち、実質的に円形の断面形状を有する)であるか、もしくは、三角形、四角形、五角形、六角形、八角形、楕円形、または他の多角形、あるいは閉曲線状、またはこれらの組み合わせの断面形状を有する角柱状等、非円筒形であってもよい。本開示全体で使用するとき、上流反応器セクション250は、一般に、金属フレームを含むことができ、さらに、金属フレームを保護し、かつ/またはプロセス条件を制御するために利用される耐火物ライニングまたは他の材料を含むことができる。
図2に示すように、上流反応器セクション250は、移送ライザー430の上流反応器セクション250への接続部を画定する、下部反応器部の触媒流入ポート252を含むことができる。
【0029】
上流反応器セクション250は、動作中に、供給原料ストリーム中の処理された触媒および/または反応化学物質を反応器部200に提供することができる移送ライザー430に接続することができる。処理された触媒および/または反応化学物質は、上流反応器セクション250内に収容された分配器260で混合することができる。移送ライザー430を介して上流反応器セクション250に入る触媒は、配水塔424を通って移送ライザー430を通過することができ、したがって、触媒処理部300から到着する。いくつかの実施形態では、触媒は、触媒分離セクション210から配水塔422を介して移送ライザー430に直接入ることができ、そこで、上流反応器セクション250に入る。触媒はまた、配水塔422を介して上流反応器セクション250に直接供給することができる。この触媒は、わずかに不活性化される可能性があるが、それでも依然として、いくつかの実施形態では、上流反応器セクション250内での反応に好適である可能性がある。本明細書で使用するとき、「不活性化」とは、コークス等の物質で汚染された触媒、または所望の温度よりも低い触媒を指すことができる。再生により、コークス等の汚染物質を除去するか、触媒の温度を上げるか、またはそれらの両方を行うことができる。
【0030】
さらに
図2を参照すると、反応器部200は、反応物、生成物、および/または触媒を上流反応器セクション250から触媒分離セクション210に移送する用に作用する下流反応器セクション230を含むことができる。1つ以上の実施形態では、下流反応器セクション230は、概して円筒形(すなわち、実質的に円形の断面形状を有する)であるか、もしくは、三角形、四角形、五角形、六角形、八角形、楕円形、または他の多角形、あるいは閉曲線状、またはこれらの組み合わせの断面形状を有する角柱状等、非円筒形であってもよい。本開示全体で使用するとき、下流反応器セクション230は、一般に、金属フレームを含むことができ、さらに、金属フレームを保護し、かつ/またはプロセス条件を制御するために利用される耐火物ライニングまたは他の材料を含むことができる。
【0031】
いくつかの実施形態によれば、下流反応器セクション230は、外部ライザーセクション232および内部ライザーセクション234を含むことができる。本明細書で使用するとき、「外部ライザーセクション」とは、触媒分離セクション210の外側にあるライザーの一部を指し、また、「内部ライザーセクション」とは、触媒分離セクション210内にあるライザーの一部を指す。例えば、
図2に示す実施形態では、反応器部200の内部ライザーセクション234は、触媒分離セクション210内に位置付けることができ、一方、外部ライザーセクション232は、触媒分離セクション210の外側に位置付けることができる。
【0032】
図2に示すように、上流反応器セクション250は、遷移セクション258を介して下流反応器セクション230に接続することができる。上流反応器セクション250は、一般に、下流反応器セクション230よりも大きな断面積を備えることができる。遷移セクション258は、遷移セクション258が上流反応器セクション250から下流反応器セクション230に向かって内向きに突出するように、上流反応器セクション250の断面の大きさから下流反応器セクション230の断面の大きさにかけて先細になり得る。
【0033】
いくつかの実施形態では、上流反応器セクション250および下流反応器セクション230が同様の断面形状を有するもの等、遷移セクション258は錐台として成形することができる。例えば、円筒形の上流反応器セクション250および円筒形の下流反応器セクション230を含む反応器部200の実施形態では、遷移セクション258は、円錐台として成形することができる。しかしながら、本明細書では、上流反応器セクション250および下流反応器セクション230の様々な形状および大きさを接続する多種多様な上流反応器セクション250の形状が企図されることを理解されたい。
【0034】
1つ以上の実施形態では、上流反応器セクション250および下流反応器セクション230の形状、大きさ、および温度および圧力等の他の処理条件に基づいて、上流反応器セクション250は、高速流動床、乱流床、またはバブル床上昇流反応器等、等温であるかまたは等温に近づく方法で動作することができ、一方、下流反応器セクション230は、ライザー反応器等、より大きなプラグ流方式で動作することができる。例えば、
図2の反応器202は、高速流動床、乱流床、またはバブル床反応器として動作する上流反応器セクション250、および希薄相ライザー反応器として動作する下流反応器セクション230を含むことができ、その結果、平均触媒およびガス流は、同時に上向きに移動する。本明細書で使用する用語として、「平均流」とは、一般に流動粒子の挙動に特有であるように、純流動、すなわち、総上向き流から後退流または逆流を差し引いた流動を指す。本明細書に記載されるように、「高速流動」反応器とは、ガス相の空塔速度が窒息速度よりも大きく、動作中は半密であり得る流動化レジームを利用する反応器を指すことができる。本明細書に記載されるように、「乱流」反応器とは、空塔速度が窒息速度よりも小さく、高速流動化レジームよりも密度が高い流動化レジームを指すことができる。本明細書に記載されるように、「バブル床」反応器とは、高密度床内の明確に定義された気泡が2つの別個の相に存在する流動化レジームを指すことができる。「窒息速度」とは、垂直搬送ラインで固体を希薄相モードに維持するために必要な最小速度を指す。本明細書に記載されるように、「希薄相ライザー」とは、移送速度で動作するライザー反応器を指すことができ、ガスおよび触媒は、希薄相でほぼ同じ速度を有する。
【0035】
1つ以上の実施形態では、反応器202内の圧力は、絶対平方インチ当たり6.0~44.7ポンド(psia、約41.4キロパスカル、kPa~約308.2kPa)の範囲であり得るが、いくつかの実施形態では、15.0psia~35.0psia(約103.4kPa~約241.3kPa)等、より狭い選択範囲を使用することができる。例えば、圧力は、15.0psia~30.0psia(約103.4kPa~約206.8kPa)、17.0psia~28.0psia(約117.2kPa~約193.1kPa)、または19.0psia~25.0psia(約131.0kPa~約172.4kPa)であり得る。本明細書では、標準(非SI)式からメートル(SI)式への単位変換には、変換の結果としてメートル(SI)式に存在し得る切り上げを示す「約」が含まれる。
【0036】
追加の実施形態では、開示されたプロセスの単位時間当たりの重量空間速度(WHSV)は、反応器内の触媒1lb当たり1時間(h)当たり0.1ポンド(lb)~100lbの化学供給原料(lb供給原料/時間/lb触媒)の範囲であり得る。例えば、反応器202が、高速流動床、乱流床、またはバブル床反応器として動作する上流反応器セクション250、および希薄相ライザー反応器として動作する下流反応器セクション230を含む場合、空塔ガス速度は、上流反応器セクション250で2フィート/秒(約0.61m/秒)~10フィート/秒(約3.05m/秒)、また、下流反応器セクション230で30フィート/秒(約9.14m/秒)~70フィート/秒(約21.31)m/秒)の範囲であり得る。追加の実施形態では、完全にライザー種である反応器構成は、単一の高空塔ガス速度で、例えば、いくつかの実施形態では、全体を通して少なくとも30フィート/秒(おおよそ9.15m/秒)で動作することができる。
【0037】
追加の実施形態では、反応器202内の供給原料ストリームに対する触媒の比率は、重量対重量(w/w)ベースで5~100の範囲であり得る。いくつかの実施形態では、比率は、12~36、または12~24等、10~40の範囲であり得る。
【0038】
追加の実施形態では、触媒流動は、上流反応器セクション250で、平方フィート秒当たり1ポンド(lb/ft2秒)(約4.89kg/m2秒)~20lb/ft2秒(約97.7kg/m2秒まで)、また、下流反応器セクション230で、10lb/ft2秒(約48.9kg/m2秒~100lb/ft2秒(約489kg/m2秒)であり得る。
【0039】
引き続き
図2を参照すると、動作中、触媒は、下流反応器セクション230を通って(上流反応器セクション250から)、分離デバイス220内へと上向きに移動することができる。分離された蒸気は、触媒分離セクション210のガス流出ポート216でパイプ420を介して反応器システム102から除去することができる。1つ以上の実施形態によれば、分離デバイス220は、本明細書で一次および二次分離装置と呼ばれる、1つ以上の分離装置を含むことができ、これらは、粉末分離の2つ以上の段階であり得る。
図2では、単一のサイクロンを汎用分離デバイス220として概略的に示していることを理解されたい。しかしながら、
図1に示すように、直列のサイクロンまたはフィルタ等、いくつかの分離デバイスを利用することができる。分離デバイス220が2つ以上の分離デバイスを含む実施形態では、流動ストリームが入る第1の分離デバイスは、一次分離デバイスと呼ばれる。一次分離デバイスからの流動流出物は、さらなる分離のために二次分離デバイスに入ることができる。一次分離デバイスは、例えば、一次サイクロン、およびVSS(UOPから市販されている)、LD2(Stone and Websterから市販されている)、およびRS2(Stone and Websterから市販されている)の名前で市販されているシステムを含むことができる。一次分離デバイスは、例えば、米国特許第4,579,716号、同第5,190,650号、および同第5,275,641号に記載されており、これらは各々、参照によりそれらの全体が本明細書に組み込まれる。一次サイクロンを一次粉末分離デバイスとして利用するいくつかの分離システムでは、1つまたは複数組の追加の分離デバイス(すなわち、二次分離デバイスおよび/または三次分離デバイス)を利用して、生成物ガスから触媒をさらに分離することができる。本発明の実施形態では、任意の一次分離デバイスおよび/または二次分離デバイスを任意の組み合わせで使用できることを理解されたい。
【0040】
さらに
図2を参照すると、急冷ストリーム296は、一次分離デバイスのガス流出物と接触し、中間温度の脱水素生成物を形成することができる。急冷ストリーム296の内容物は、
図1を参照して上記に示され、記載される。
【0041】
いくつかの実施形態によれば、分離デバイス220における蒸気からの分離に続いて、触媒は、一般に、ストリッパー224を通って反応器触媒流出ポート222に移動することができ、そこで、触媒は、配水塔426を介して反応器部200から出て触媒処理部300に転送される。任意選択で、触媒はまた、配水塔422を介して上流反応器セクション250に直接転送されて戻すこともできる。あるいは、触媒は、移送ライザー430で、処理された触媒と予備混合することができる。
【0042】
図2の実施形態に従って詳細に説明されるように、1つ以上の実施形態によれば、触媒は、触媒を反応器202から燃焼器350に送るステップと、補助燃料源または不活性化触媒からのコークスを燃焼器350で燃焼させるステップと、加熱触媒を燃焼器350から反応器202に送るステップと、のうちの1つ以上のステップによって処理することができる。
【0043】
ここで、触媒処理部300を参照すると、
図2に示すように、触媒処理部300の燃焼器350は、1つ以上の下部反応器部の流入ポート352を含むことができ、また、ライザー330と流体連通することができる。燃焼器350は、配水塔426を介して触媒分離セクション210と流体連通することができ、配水塔426は、再生のために使用済み触媒を反応器部200から触媒処理部300に供給することができる。燃焼器350は、空気流入口428を燃焼器350に接続する追加の下部反応器セクションの流入ポート352を含むことができる。空気流入口428は、使用済み触媒または補助燃料と反応して触媒を少なくとも部分的に再生することができる反応性ガスを供給することができる。例えば、触媒は、上流反応器セクション250における反応に続いてコークス化することができ、コークスは、燃焼反応によって触媒から除去することができる(すなわち、触媒を再生する)。例えば、酸化剤(空気等)は、空気流入口428を介して燃焼器350に供給することができる。あるいは、または追加的に、触媒上に相当量のコークスが形成されないとき、補助燃料を燃焼器350に注入することができ、これを燃焼させて触媒を加熱することができる。燃焼に続いて、処理された触媒は、触媒分離セクション310で分離され、配水塔424を介して反応器部200に送達されて戻すことができる。
【0044】
1つ以上の実施形態によれば、反応は、脱水素反応であり得る。このような実施形態によれば、供給原料ストリームは、エタン、プロパン、n-ブタン、i-ブタン、またはエチルベンゼンのうちの1つまたは複数を含むことができる。例えば、反応が脱水素反応である場合、供給原料ストリームは、エタン、プロパン、n-ブタン、i-ブタン、またはエチルベンゼンのうちの1つまたは複数を含むことができる。1つ以上の実施形態を参照すると、供給原料ストリームは、少なくとも50重量%、少なくとも60重量%、少なくとも70重量%、少なくとも80重量%、少なくとも90重量%、少なくとも95重量%、またはさらに少なくとも99重量%のエタンを含むことができる。追加の実施形態では、供給原料ストリームは、少なくとも50重量%、少なくとも60重量%、少なくとも70重量%、少なくとも80重量%、少なくとも90重量%、少なくとも95重量%、またはさらに少なくとも99重量%のプロパンを含むことができる。追加の実施形態では、供給原料ストリームは、少なくとも50重量%、少なくとも60重量%、少なくとも70重量%、少なくとも80重量%、少なくとも90重量%、少なくとも95重量%、またはさらに少なくとも99重量%のn-ブタンまたはi-ブタンを含むことができる。追加の実施形態では、供給原料ストリームは、少なくとも50重量%、少なくとも60重量%、少なくとも70重量%、少なくとも80重量%、少なくとも90重量%、少なくとも95重量%、またはさらに少なくとも99重量%のi-ブタンを含むことができる。追加の実施形態では、供給原料ストリームは、少なくとも50重量%、少なくとも60重量%、少なくとも70重量%、少なくとも80重量%、少なくとも90重量%、少なくとも95重量%、またはさらに少なくとも99重量%のエチルベンゼン、エタン、プロパン、n-ブタン、およびi-ブタンの合計を含むことができる。
【0045】
1つ以上の実施形態では、脱水素反応は、触媒としてガリウムおよび/または白金触媒を利用することができる。このような実施形態では、触媒は、ガリウムおよび/または白金触媒を含むことができる。例えば、反応が脱水素反応である場合、触媒は、ガリウムおよび/または白金触媒を含むことができる。本明細書に記載されるように、ガリウムおよび/または白金触媒は、ガリウム、白金、またはそれらの両方を含む。ガリウムおよび/または白金触媒は、アルミナまたはアルミナシリカ保持体によって運ぶことができ、任意選択でカリウムを含むことができる。このようなガリウムおよび/または白金触媒は、米国特許第8,669,406号に開示されており、これは、参照によりその全体が本明細書に組み込まれる。しかしながら、脱水素反応を実施するために他の好適な触媒を利用することができることを理解されたい。
【0046】
図3は、分離デバイスが一次分離デバイス520を含む、反応容器510と呼ばれることもある、
図2の反応器部200の上部の一実施形態を示している。一次分離デバイス520は、シェル530内に含まれており、本体521、流入口522、流出口524、および固体排出ディプレグ526を有する。流動固体ストリームは、流入口522を通って一次分離デバイス520に入る。一次分離デバイス520では、同伴固体の大部分、例えば、触媒粒子は、流動固体ストリームから分離される。分離された固体は、一次分離デバイス520によって除去されなかった固体、および流体、例えば、ガス生成物を含む、一次分離デバイスの流出物を残して、排出ディプレグ526を通って一次分離デバイスを出る。一次分離デバイスの流出物は、垂直上向きに進み、一次分離デバイス520から出て流出口524を通って二次分離デバイス540に入り、一次分離デバイスの流出チューブ542を通って、次にクロスオーバーダクト570を通る。二次分離デバイス540は、本体541、流出口544、および固体排出ディプレグ546をさらに備える。二次分離デバイス540は、一次分離デバイスの流出物から固体をさらに分離する。二次分離デバイス540で分離された固体は、ディプレグ546を通って下向きに出る。
【0047】
図3に示すように、急冷ストリーム296は、一次分離デバイス520の上方に直接位置付けられた一次分離デバイスの流出チューブ542の上部に入ることができる。このような配置は、急冷ストリームを一次分離デバイス540の流出物と適切に混合し、一次分離デバイス540の出口と急冷ストリーム296との混合との間の滞留時間を短縮するのに望ましいと考えられる。
【0048】
ここで、
図4を参照すると、急冷ストリーム296を一次分離デバイスの流出チューブ542に接続する一実施形態の俯瞰図が示されている。急冷ストリーム296は、パイプまたは他の同様の導管を介して、実質的に垂直な角度で一次分離デバイスの流出チューブ542の上部に直接到達することができる。次に、中間温度の脱水素生成物は、クロスオーバーダクト570を通過して二次分離デバイス540に入ることができる。
【0049】
二次分離デバイスの流出口544は、第2のプレナム550に流体的に接続されている。第2のプレナム550は、円筒形のスカート552、フロア554、および第2のプレナム流出口556を含み、これにより、二次分離デバイスの流出物が第2のプレナムを通って容器510から出ることができる。
図3に示すように、第2のプレナムは、より大きく、より高体積の第1のプレナム560内に収容される。第1のプレナム560は、スカート562およびフロア564を含む。一次分離デバイス520は、第1のプレナム560によって支持することができる。
【0050】
また、
図3に示すように、シェル530は、ライザー535をさらに収容する。流動固体粒子の分離されていないストリームは、プレート536で終端するライザー535を通ってシェルに入る。ライザー535は、流動固体粒子の分離されていないストリームをライザー535から一次分離デバイス520に送ることができるように、一次分離デバイス520と流動的に接続する、すなわち、流動固体粒子の通過を可能にする。3つ以上の分離段階が使用される場合、第2のプレナムに入るのは最終分離段階からの流出物である。
図3では、1つの一次分離デバイスおよび1つの二次分離デバイスのみを概略的に示しているが、追加の一次および二次分離デバイスをライザーの周囲に配設できることを理解されたい。例えば、流出チューブ545は、別の一次分離デバイス(図示せず)に接続することができ、これは、次に、一次分離デバイス520または別の一次分離デバイス(図示せず)のいずれかによって供給される。
【実施例】
【0051】
開示されている本技術の様々な態様を説明することができる、1つ以上の例が提供される。
【0052】
実施例1
モデリングを使用して、プロパン、n-ブタン、エタン、およびエチルベンゼンを含むさまざまな炭化水素供給原料における熱分解の反応速度の低下を決定した。化学反応の生成物にも熱分解が起こる可能性があることは理解されているが、ストリームの未反応部の熱分解は、ストリーム全体の分解について正当な評価を提供し、モデルを単純化する働きをする。また、モデルは、熱分解生成物の化学平衡について、その結果が熱分解の反応速度に対して無視できるため、考慮しなかった。生成物ストリームの温度低下は、ストリーム中の生成物成分および未反応成分の両方の熱分解を低減することを理解されたい。公開文献のべき乗則の速度式を使用して、反応物の熱分解速度を推定した。具体的には、プロパンの反応速度データは、Fromentが「Buekens,A.G.、Froment,G.F.Thermal Cracking of Propane.I&EC Process Design and Development.Vol 7 No 3(1968)435~447」に記載しているLaidler係数から得た。n-ブタンの反応速度データは、「Sagert、N.H.、Laidler,K.J.Kinetics and Mechanisms of the Pyrolysis of n-Butane.Canadian Journal of Chemistry.Vol 41(1963)838~847」から得た。エタンの反応速度データは、「Bartlit,J.R.、Bliss,H.Kinetics of Ethane Pyrolysi.AICHE Journal.Vol 11 No 3(1965)」から得た。エチルベンゼンの反応速度データは、「Domke,S.B.、Pogue,R.F.、Van Neer,F.J.R.、Smith,C.M.、Wojciechowski,B.W.Investigation of the Kinetics of Ethylbenzene Pyrolysis Using a Temperature-Scanning Reactor.Industrial&Engineering Chemistry Research.Vol 40(2001)5878-5884」から得た。
【0053】
全ての速度式は、次の形式を取る。
【数1】
式中、iは反応物であり、r
iは、gmol ft
-3s
-1の反応速度であり、k
iは速度定数であり、nは、反応物に対する反応順序であり、C
iは、gmol ft
-3の反応物のガス相濃度である。k
iの単位は、反応の順序によって異なる。全ての速度式は、速度定数のアレニウス形式を仮定する。
【数2】
式中、A
iは頻度因子であり、E
iは、kcal gmol
-1の活性化エネルギーであり、Tは、ケルビンの絶対温度であり、Rは、kcal gmol
-1K
-1のガス定数である。A
iの単位は、反応の順序によって異なる。表1は、各反応物について上述された速度パラメータの文献値を示している。
【表1】
【0054】
次に、熱分解速度は、各反応物の目標温度と濃度において方程式1~2を使用して推定される。(反応物の分圧は、全ての場合で1.0気圧(14.7psi)と仮定する。)表2に結果を示す。
【表2】
【0055】
最後に、表2に列挙した目標温度に対して、10℃~150℃温度が低下した場合の熱分解速度を推定した。その結果を
図5Aおよび
図5Bに示しており、これらは同じデータを示しているが、y軸に関しては尺度が異なる。結果は、以下の式を使用して、目標温度における熱分解速度に対する温度急冷後の熱分解速度の比率として呈する。
【数3】
式中、T
2は、急冷後の温度(例えば、本明細書では「中間温度の脱水素生成物」として記載される)であり、T
1は、反応物のそれぞれの目標温度(例えば、脱水素反応器内の温度)である。式3は、式1~2から導き出され、活性化エネルギーの知識のみが必要である。10℃の温度急冷後、熱分解速度は、プロパン、n-ブタン、およびエチルベンゼンで約33~35%、エタンで約27%低下する。20℃の温度急冷後、熱分解速度は、プロパン、n-ブタン、およびエチルベンゼンで約55~58%、エタンで約47%低下する。30℃の温度急冷後、熱分解速度は、プロパン、n-ブタン、およびエチルベンゼンで約71~73%、エタンで約61%低下する。
【0056】
実施例2
一次分離デバイスの流出物中の生成物温度を様々な程度に急冷するのに必要な分解ガス生成物ストリームに対する蒸気または粗プロピレンの割合が算出され、
図6に示されており、これは、ストリームを特定の温度低下まで急冷するのに必要な蒸気または粗プロピレンのVol/Vol割合を示している。
図6から分かるように、急冷のための粗プロピレンは、常に、同じ温度低下まで急冷するのに必要な蒸気のおおよそ32%である。例えば、10℃に急冷するには、一次分離デバイスを出る生成物ストリームに対して5.5%(Vol/Vol)の蒸気が必要である。比較として、一次分離デバイスを出る生成物ストリームに対して、1.77%(Vol/Vol)の粗プロピレンのみが必要である。より小さな機器が所望であるとき、粗プロピレンによる急冷に必要な体積流量が少なくて済むので有利である。実施例2の算出では、蒸気は178℃であると仮定し、リサイクルされた粗プロピレンは45℃(急冷ストリーム温度)であると仮定する。急冷前の生成物ストリームの温度(「高温の脱水素生成物」と呼ばれることもある)は、620℃であると仮定する。
【0057】
実施例3
モデリングを利用して、本出願の実施形態で達成されたプロピレン選択性および転化率を説明した。プロパンのプロピレンへの反応について、急冷後の滞留時間、焼入媒、および温度降下の関数としてのプロピレンに対する累積選択性を算出し、
図7に示した。これは、プロセスストリームを急冷せずに、一次分離デバイスの流出口とガス-ガス熱交換器の流入口との間に約数秒以上の滞留時間があれば、熱(非触媒)反応によりプロピレンに対する累積選択性が低下することを示している。例えば、プロセスストリームが急冷されずに一次分離デバイスを出て、ガス-ガス熱交換器に到達するまでの滞留時間が3秒である場合、プロピレンに対する累積選択性は約1.7%減少し、累積選択性の減少は、10℃の急冷後に約1.1%に変化し、20℃の急冷後に約0.7%に変化する。同じ温度降下に対して、蒸気を焼入媒として使用した場合の方が、粗プロピレンを焼入媒として使用した場合と比較して、蒸気が炭化水素の分圧を低下させ、したがってさらなる熱分解反応の駆動力が低下するため、選択性の利点があることに留意されたい。しかしながら、蒸気希釈によるこのさらなる利点は、温度変化による利点と比較したときにはわずかである。
【0058】
一次分離デバイスの流出口におけるプロセスストリームについて、累積プロピレン選択性が96.5%、プロパン転化率が46.4%、温度が620℃、および圧力が19psiaであると仮定した。急冷および生成物ストリームは、瞬時に混合すると仮定し、結果として生じるストリームは、ガス-ガス交換器まで無視できる圧力降下で等温のままであると仮定する。触媒の大部分は一次分離デバイス内で分離されるため、熱(非触媒)反応のみが一次分離デバイスの流出口とガス-ガス交換器の流入口との間で起こると仮定する。熱反応速度は、実施例1のプロパンに対応するべき乗則の式と係数を使用して、利用可能な未反応のプロパンに対して取得される(脱水素生成物であるプロピレンの熱分解に関する仮定は同じ)。実施例2の
図6を参照して、急冷に必要な蒸気または粗プロピレンの量を決定することができる。
【0059】
加えて、同様の方法論を使用して、
図8では、熱交換器の入口におけるプロパン転化率を示している。
図8に示すように、急冷後のより高いプロセスストリーム温度(すなわち、「中間温度の脱水素生成物」)は、熱分解によるプロパンのより大きな転化率に対応していた。
【0060】
本発明を記載および定義する目的で、「約」という用語は、任意の定量的比較、値、測定、または他の表現に起因し得る固有の不確実性の程度を表現するために本明細書で利用されることに留意されたい。用語はまた、問題の主題の基本的な機能に変化をもたらすことなく、定量的表現が記載された基準から変化し得る程度を表現するために本明細書で利用される。
【0061】
以下の特許請求の範囲のうちの1つ以上は、用語「ここで」を移行句として利用していることに留意されたい。本発明を定義する目的で、この用語は、構造の一連の特徴の列挙を導入するために使用される制限のない移行句として特許請求の範囲に導入され、より一般的に使用される制限のないプリアンブル用語「を含む」と同様に解釈されるべきであることに留意されたい。
【0062】
一般に、本明細書に記載される反応器システム102の任意のシステム装置の「流入ポート」および「流出ポート」とは、システム装置の開口部、穴、チャネル、開口、すき間、または他の同様の機械的特徴を指す。例えば、流入ポートは、特定のシステム装置への材料の流入を可能にし、流出ポートは、特定のシステム装置からの材料の流出を可能にする。一般に、流出ポートまたは流入ポートは、パイプ、導管、チューブ、ホース、材料移送ライン、または同様の機械的特徴が取り付けられる反応器システム102のシステム装置の領域、または別のシステム装置が直接取り付けられる、システム装置の一部を画定する。流入ポートおよび流出ポートは、動作中に機能的に本明細書で説明される場合があるが、それらは同様のまたは同一の物理的特徴を有することができ、動作システムにおけるそれらのそれぞれの機能は、それらの物理的構造を制限するものとして解釈されるべきではない。
【0063】
本発明の趣旨および範囲から逸脱することなく、本発明に様々な修正および変更を加え得ることが当業者には明らかであろう。本発明の趣旨および実体を組み込んでいる開示された実施形態の変更の組み合わせ、副組み合わせ、および変形は、当業者に思い付き得るため、本発明は、添付の特許請求の範囲およびそれらの同等物の範囲内の全てを含むと解釈されるべきである。
【0064】
本開示の第1の態様では、軽質オレフィンを形成するための方法は、炭化水素供給原料ストリームを反応器に導入することと、反応器内で、炭化水素供給原料ストリームを脱水素触媒と反応させて、高温の脱水素生成物を形成することと、一次分離デバイス内で、脱水素触媒の少なくとも一部を高温の脱水素生成物から分離することと、高温の脱水素生成物を急冷ストリームと組み合わせて、高温の脱水素生成物を冷却し、一次分離デバイスからの高温の脱水素生成物の流出に続いて、中間温度の脱水素生成物を形成することと、中間温度の脱水素生成物を冷却して、冷却された脱水素生成物を形成することと、を含むことができる。脱水素生成物は、接触反応しなかった炭化水素供給原料ストリームの少なくとも一部を含むことができる。一次分離デバイス内の脱水素生成物および脱水素触媒の温度は、少なくとも550℃であり得る。急冷ストリームは、ガスストリームであり得る。中間体温度の脱水素生成物の温度は、高温の脱水素生成物の温度よりも低い、少なくとも10℃であり得る。冷却された脱水素生成物の一部は、急冷ストリームの少なくとも一部として利用することができる。
【0065】
本開示の第2の態様は、炭化水素供給原料が、プロパン、n-ブタン、イソブタン、エタン、エチルベンゼン、またはそれらの組み合わせを含み得る第1の態様を含むことができる。
【0066】
本開示の第3の態様は、急冷ストリームが高温の脱水素生成物の温度よりも低い、少なくとも300℃であり得る、第1または第2の態様のいずれかを含むことができる。
【0067】
本開示の第4の態様は、接触反応しなかった炭化水素供給原料ストリームの一部の中間温度の脱水素生成物における熱分解速度が、高温の脱水素生成物における熱分解速度の90%未満であり得る、第1~第3の態様のいずれかを含むことができる。
【0068】
本開示の第5の態様は、中間温度の生成物を二次分離デバイスに送り、そこで、脱水素触媒の残りを中間温度の生成物から除去できることをさらに含む、第1~第4の態様のいずれかを含むことができる。
【0069】
本開示の第6の態様は、冷却された脱水素生成物が、150℃以下の温度を有することができる、第1~第5の態様のいずれかを含むことができる。
【0070】
本開示の第7の態様は、熱交換器および/または液体急冷システムが、中間温度の脱水素生成物を冷却された脱水素生成物に冷却することができる、第1~第6の態様のいずれかを含むことができる。
【0071】
本開示の第8の態様は、急冷ストリームが、3重量%未満の蒸気を含み得る、第1~第7の態様のいずれかを含むことができる。
【0072】
本開示の第9の態様は、脱水素触媒が固体であり得、高温の脱水素生成物がガスであり得る、第1~第8の態様のいずれかを含むことができる。
【0073】
本開示の第10の態様は、急冷ストリームが、エチレン、プロピレン、またはブテン異性体のうちの1つまたは複数を含み得る、第1~第9の態様のいずれかを含むことができる。
【0074】
本開示の第11の態様は、脱水素触媒が、ガリウムおよび/または白金触媒であり得る、第1~第10の態様のいずれかを含むことができる。
【0075】
本開示の第12の態様では、軽質オレフィンを形成するための方法は、炭化水素供給原料ストリームを反応器に導入することと、反応器内で、炭化水素供給原料ストリームを脱水素触媒と反応させて、高温の脱水素生成物を形成することと、一次分離デバイス内で、脱水素触媒の少なくとも一部を高温の脱水素生成物から分離することと、高温の脱水素生成物を急冷ストリームと組み合わせて、高温の脱水素生成物を冷却し、一次分離デバイスからの高温の脱水素生成物の流出に続いて、中間温度の脱水素生成物を形成することと、中間温度の生成物を二次分離デバイスに送ることであって、そこで、脱水素触媒の残りが中間温度の生成物から除去される、送ることと、を含むことができる。脱水素生成物は、接触反応しなかった炭化水素供給原料ストリームの少なくとも一部を含むことができる。一次分離デバイス内の脱水素生成物および脱水素触媒の温度は、少なくとも550℃であり得る。急冷ストリームは、ガスストリームであり得る。中間体温度の脱水素生成物の温度は、高温の脱水素生成物の温度よりも低い、少なくとも10℃であり得る。冷却された脱水素生成物の一部は、急冷ストリームの少なくとも一部として利用することができる。
【0076】
本開示の第13の態様は、炭化水素供給原料が、プロパン、n-ブタン、イソブタン、エタン、エチルベンゼン、またはそれらの組み合わせを含み得る第12の態様を含むことができる。
【0077】
本開示の第14の態様は、接触反応しなかった炭化水素供給原料ストリームの一部の中間温度の脱水素生成物における熱分解速度が、高温の脱水素生成物における熱分解速度の70%未満であり得る、第12または第13の態様のいずれかを含むことができる。
【0078】
本開示の第15の態様は、冷却された脱水素生成物が、150℃以下の温度を有することができる、第12~第14の態様のいずれかを含むことができる。
以下に、本願の当初の特許請求の範囲に記載された発明を付記する。
[1] 軽質オレフィンを形成するための方法であって、
炭化水素供給原料ストリームを反応器に導入することと、
前記反応器内で、前記炭化水素供給原料ストリームを脱水素触媒と反応させて、高温の脱水素生成物を形成することであって、前記脱水素生成物が、接触反応しなかった前記炭化水素供給原料ストリームの少なくとも一部を含む、反応させることと、
一次分離デバイス内で、前記脱水素触媒の少なくとも一部を前記高温の脱水素生成物から分離することであって、前記一次分離デバイス内の前記脱水素生成物および脱水素触媒の温度が、少なくとも550℃である、分離することと、
前記一次分離デバイスからの高温の脱水素生成物の流出に続いて、前記高温の脱水素生成物を急冷ストリームと組み合わせて前記高温の脱水素生成物を冷却し、中間温度の脱水素生成物を形成することであって、前記中間温度の脱水素生成物の温度が、前記高温の脱水素生成物の前記温度よりも低い、少なくとも10℃である、形成することと、
前記中間温度の脱水素生成物を冷却して、冷却された脱水素生成物を形成することであって、前記冷却された脱水素生成物の一部が、前記急冷ストリームの少なくとも一部として利用される、形成することと、を含む、方法。
[2] 前記炭化水素供給原料が、プロパン、n-ブタン、イソブタン、エタン、エチルベンゼン、またはそれらの組み合わせを含む、[1]に記載の方法。
[3] 前記急冷ストリームが、前記高温の脱水素生成物の前記温度よりも低い、少なくとも300℃である、[1]または[2]に記載の方法。
[4] 接触反応しなかった前記炭化水素供給原料ストリームの前記一部の前記中間温度の脱水素生成物における熱分解速度が、前記高温の脱水素生成物における熱分解速度の90%未満である、[1]~[3]のいずれかに記載の方法。
[5] 前記中間温度の生成物を二次分離デバイスに送り、そこで、前記脱水素触媒の残りが、前記中間温度の生成物から除去されることをさらに含む、[1]~[4]のいずれかに記載の方法。
[6] 前記冷却された脱水素生成物が、150℃以下の温度を有する、[1]~[5]のいずれかに記載の方法。
[7] 熱交換器および/または液体急冷システムが、前記中間温度の脱水素生成物を前記冷却された脱水素生成物に冷却する、[1]~[6]のいずれかに記載の方法。
[8] 前記急冷ストリームが、3重量%未満の蒸気を含むか、または、
前記急冷ストリームが、エチレン、プロピレン、またはブテン異性体のうちの1つ以上を含むか、のうちの1つ以上である、[1]~[7]のいずれかに記載の方法。
[9] 前記脱水素触媒が、固体であり、また、前記高温の脱水素生成物が、ガスである、[1]~[8]のいずれかに記載の方法。
[10] 前記急冷ストリームが、ガスストリームである、[1]~[9]のいずれかに記載の方法。
[11] 前記脱水素触媒が、ガリウムおよび/または白金触媒である、[1]~[10]のいずれかに記載の方法。
[12] 軽質オレフィンを形成するための方法であって、
炭化水素供給原料ストリームを反応器に導入することと、
前記反応器内で、前記炭化水素供給原料ストリームを脱水素触媒と反応させて、高温の脱水素生成物を形成することであって、前記脱水素生成物が、接触反応しなかった前記炭化水素供給原料ストリームの少なくとも一部を含む、反応させることと、
一次分離デバイス内で、前記脱水素触媒の少なくとも一部を前記高温の脱水素生成物から分離することであって、前記一次分離デバイス内の前記脱水素生成物および脱水素触媒の温度が、少なくとも550℃である、分離することと、
前記一次分離デバイスからの高温の脱水素生成物の流出に続いて、前記高温の脱水素生成物を急冷ストリームと組み合わせて前記高温の脱水素生成物を冷却し、中間温度の脱水素生成物を形成することであって、前記中間温度の脱水素生成物の温度が、前記高温の脱水素生成物の前記温度よりも低い、少なくとも10℃である、形成することと、
前記中間温度の生成物を二次分離デバイスに送ることであって、そこで、前記脱水素触媒の残りが、前記中間温度の生成物から除去される、送ることと、
前記中間温度の脱水素生成物を冷却して、冷却された脱水素生成物を形成することであって、前記冷却された脱水素生成物の一部が、前記急冷ストリームの少なくとも一部として利用される、形成することと、を含む、方法。
[13] 前記炭化水素供給原料が、プロパン、n-ブタン、イソブタン、エタン、エチルベンゼン、またはそれらの組み合わせを含む、[12]に記載の方法。
[14] 接触反応しなかった前記炭化水素供給原料ストリームの前記一部の前記中間温度の脱水素生成物における熱分解速度が、前記高温の脱水素生成物における熱分解速度の70%未満である、[12]または[13]に記載の方法。
[15] 前記急冷ストリームが、ガスストリームである、[12]、[13]、または[14]に記載の方法。