(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-11-11
(45)【発行日】2024-11-19
(54)【発明の名称】充放電装置および分散電源システム
(51)【国際特許分類】
H02J 3/32 20060101AFI20241112BHJP
H02J 3/38 20060101ALI20241112BHJP
H02J 7/00 20060101ALI20241112BHJP
【FI】
H02J3/32
H02J3/38 110
H02J3/38 180
H02J7/00 B
H02J7/00 302C
(21)【出願番号】P 2021099177
(22)【出願日】2021-06-15
【審査請求日】2023-12-08
(73)【特許権者】
【識別番号】000004606
【氏名又は名称】ニチコン株式会社
(74)【代理人】
【識別番号】110000475
【氏名又は名称】弁理士法人みのり特許事務所
(72)【発明者】
【氏名】由井 俊二郎
(72)【発明者】
【氏名】豊田 一穂
【審査官】杉田 恵一
(56)【参考文献】
【文献】特開平11-89096(JP,A)
【文献】特開2014-212659(JP,A)
【文献】特開2016-039759(JP,A)
【文献】特開2016-096661(JP,A)
【文献】特開2018-152970(JP,A)
【文献】特開2021-078266(JP,A)
【文献】米国特許出願公開第2019/0013676(US,A1)
【文献】国際公開第2013/073126(WO,A1)
【文献】国際公開第2015/107706(WO,A1)
【文献】国際公開第2018/078683(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H02J 3/32
H02J 3/38
H02J 7/00
H02J 9/06
H02M 7/48
(57)【特許請求の範囲】
【請求項1】
系統連系運転と自立出力運転とを行う充放電装置であって、
系統連系端子と、
自立出力端子と、
AC/DC変換動作を行う双方向インバータ部と、
蓄電池に接続され、前記蓄電池の充放電を行う双方向DC/DCコンバータ部と、
前記双方向インバータ部と前記双方向DC/DCコンバータ部とを接続するDCバス部と、
前記系統連系運転の時に前記双方向インバータ部を前記系統連系端子に接続する一方、前記自立出力運転の時に前記双方向インバータ部を前記自立出力端子に接続する接続切換部と、
前記双方向インバータ部および前記双方向DC/DCコンバータ部を制御する制御部と、
を備え、
前記制御部は、
前記自立出力運転の開始時に、前記DCバス部を流れるDCバス電流が前記双方向DC/DCコンバータ部から前記双方向インバータ部の方向に流れるように、前記双方向インバータ部から出力される自立出力電圧を所定の最大電圧値に制御する第1処理と、
前記自立出力運転の時に、前記DCバス電流がゼロまたは所定の最小値になるように、前記自立出力電圧を前記最大電圧値よりも小さい第1電圧値に制御する第2処理と、
前記自立出力運転の時に、前記DCバス電流が前記双方向インバータ部から前記双方向DC/DCコンバータ部の方向に流れるように、前記自立出力電圧を前記第1電圧値よりも小さい第2電圧値に制御する第3処理と、を実行する
ことを特徴とする充放電装置。
【請求項2】
前記制御部は、前記第1処理において前記自立出力電圧を前記最大電圧値に所定時間維持する制御を行った後に、前記第2処理を実行する
ことを特徴とする請求項1に記載の充放電装置。
【請求項3】
前記制御部は、前記第2処理において前記自立出力電圧を前記第1電圧値に維持する制御を行い、前記蓄電池の残容量が所定値以下になった場合に前記第3処理を実行する
ことを特徴とする請求項1または2に記載の充放電装置。
【請求項4】
前記制御部は、前記第3処理において前記蓄電池が満充電状態になった場合、前記第2処理を実行する
ことを特徴とする請求項1~3のいずれか一項に記載の充放電装置。
【請求項5】
請求項1~4のいずれか一項に記載の複数の充放電装置を含む分散電源システムであって、
前記複数の充放電装置のうちの一の充放電装置は、電力系統の停電時に自立出力運転を行う一方、前記複数の充放電装置の残りの充放電装置は、前記停電時に前記一の充放電装置から出力される自立出力電圧に同期した系統連系運転を行い、
前記一の充放電装置が前記自立出力運転を行っているときに、前記一の充放電装置に接続された蓄電池の残容量が所定値以下になった場合、
前記一の充放電装置が、前記残りの充放電装置の少なくとも1つが放電動作を行うことにより生成された放電電力により、前記蓄電池の充電を行う
ことを特徴とする分散電源システム。
【請求項6】
請求項1~4のいずれか一項に記載の複数の充放電装置と、
発電電力を生成する発電装置と、
を含む分散電源システムであって、
前記複数の充放電装置のうちの一の充放電装置は、電力系統の停電時に自立出力運転を行う一方、前記複数の充放電装置の残りの充放電装置および前記発電装置は、前記停電時に前記一の充放電装置から出力される自立出力電圧に同期した系統連系運転を行い、
前記一の充放電装置が前記自立出力運転を行っているときに、前記一の充放電装置に接続された蓄電池の残容量が所定値以下になった場合、
前記一の充放電装置が、前記発電電力により前記蓄電池の充電を行うことを特徴とする分散電源システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、充放電装置および分散電源システムに関する。
【背景技術】
【0002】
地球温暖化等の環境問題への対策として、再生可能エネルギーを利用した発電(例えば、太陽光発電)が注目されている。これに伴い、電力系統への電力の過剰供給が生じて電力ネットワークが不安定になるという問題が生じる。また、それとは逆に、特定の時間帯(例えば、夕刻)に負荷が急増して、電力系統の電力が不足するという問題が生じる。これらの問題に対応すべく、柔軟かつ最適に電力系統の電力の需給調整を行う仮想電力プラント、いわゆるVPP(Virtual Power Plant)へのニーズが高まっている。一方で、BCP(Business Continuity Planning)の観点から、電力系統の停電時において非常用電源の確保を可能とする電源システムへのニーズも高まっている。これら2つのニーズを満たすのが、マイクログリッドやスマートグリッドであり、小規模エリア単位の分散電源システムである。
【0003】
従来から、産業地域や大型施設向けの大規模な分散電源システムが存在している。しかしながら、大規模な分散電源システムは、大型の蓄電池が必要になり設備コストが高額になるため、産業地域においてインフラ設備の普及が進まず、大型施設においても普及が進んでいない。また、大規模な分散電源システムにおいて太陽光発電装置の併設が注目されているものの、太陽光発電装置も大型のものが必要になるため、その普及も進んでいない。
【0004】
一方で、近年は電気自動車(EV)の普及が進んでおり、電気自動車用の充放電装置を含む一般家庭用としてのV2H(Vehicle to Home)システムが浸透してきている。電気自動車は、蓄電容量が大きいだけでなく、信頼性が高く、二酸化炭素の排出が少ないことから、その用途を一般家庭用としてだけでなく、産業地域や大型施設まで広げることが望まれている。すなわち、V2G(Vehicle to Grid)システムやV2B(Vehicle to Building)システムが望まれている。V2Gシステムとは、電気自動車を電力系統に連系し、電気自動車と電力系統との間で電力の相互供給を行うシステムである。V2Bシステムとは、電気自動車とビルとの間で電力の相互供給を行うシステムである。V2H、V2G、V2Bを総称して、V2Xという。
【0005】
また、一般家庭用の太陽光発電装置に関して、再生可能エネルギー固定価格買取制度(FIT)が終了することから、定置型蓄電池用の充放電装置を含む一般家庭用としてのESS(Energy Storage System)システムも浸透してきている。
【0006】
一般家庭用のV2HやESSは、小規模の分散電源システムとして広く普及してきているが、大規模な分散電源システムの用途としては普及が進んでいない。大規模な分散電源システムとして活用するためには、V2XやESSに含まれる充放電装置を複数台連系させることが不可欠であるが、複数台連系させるには技術的課題も多く、まだその最適解は得られていない。
【0007】
電気設備技術基準では、電気自動車に搭載された蓄電池からの放電は充放電装置1台当たり最大10[kW]までと規定されているため、数十~数百[kW]の電力の需給調整には、どうしても複数台の充放電装置が必要とされる。EV化社会の到来が見えてきている社会情勢の中、産業地域や大型施設において充放電装置を複数台連系させた分散電源システムのニーズは今後急激に高まってくることが予想される。
【0008】
ところで、従来のV2XやESSにおける充放電装置は、電力系統への逆潮流ができない逆潮流防止型の構造であるため、当該充放電装置を複数台連系させた分散電源システムでは、電力系統の正常時に、電力系統側からみて各充放電装置よりも下流側の負荷電力(負荷の消費電力)以上の電力を、需給調整用の電力として有効に活用することができない。すなわち、各充放電装置の合計の定格出力電力が下流の負荷電力より十分大きい場合であっても、需給調整用の電力は負荷電力に制限されてしまう。
【0009】
需給調整用の電力の最大化を図るためには、電力系統への逆潮流ができる逆潮流型の構造が必要となる。各充放電装置を逆潮流型の構造とすることで、理論上、需給調整用の電力は各充放電装置の合計の定格出力電力となる。しかしながら、各充放電装置を逆潮流型の構造にした場合、電力系統の停電時における連系制御には、重要な課題が残される。例えば、低圧幹線にマスター機である充放電装置と、スレーブ機である充放電装置と、発電装置(例えば、太陽光発電装置)が接続されている場合、停電時において、発電装置からマスター機である充放電装置への逆潮流は通常許容されない。このため、発電装置の余剰電力を有効に活用することができない。
【0010】
上記のとおり、充放電装置を複数台連系させた分散電源システムでは、電力系統の正常時に需給調整用の電力の最大化が可能であること、電力系統の停電時に余剰電力を有効に活用することで非常用電源として長時間の電力供給が可能であることが課題となる。
【0011】
従来の分散電源システムとしては、例えば、特許文献1~4に記載のものが知られている。特許文献1に記載の分散電源システムでは、電力系統から解列された複数の発電装置を自立出力運転させる際に、各発電装置のいずれか1つを基準の発電装置とし、自立出力の電圧制御を行い、交流電圧源を形成する。残りの発電装置は、基準の発電装置の出力電圧に同期してそれぞれ電流制御を行い、交流電圧源に同期した交流電流源をそれぞれ形成する。これにより、発電装置間で出力電力や出力電流等の情報をやりとりして同期をとることなく、各発電装置を並列同期運転することができる。しかしながら、特許文献1に記載の分散電源システムは、V2XやESSの充放電装置を含まないシステムである。
【0012】
特許文献2に記載の分散電源システムは、複数の電気自動車の蓄電池の各々を施設における分散電源として用いるシステムである。このシステムでは、複数の電気自動車用の充放電装置に対して、マスター機およびスレーブ機の役割を設定する制御を簡易なロジックで行うことができる。しかしながら、そのためにアンシラリーサービス(電力品質に関わる電圧や周波数等の調整)を提供する専用のマスター電源と、マスター電源および充放電装置に電力供給を開始させる専用のマイクログリッド制御部が必要になるため、システム全体のコストが増大する。また、特許文献2に記載の分散電源システムは、電力系統の停電時に余剰電力を有効に活用するシステムとは無関係である。
【0013】
特許文献3に記載の分散電源システムは、自立出力運転を行う第1の(太陽電池の)パワーコンディショナと、第1のパワーコンディショナの出力電力を補う第2の(燃料電池の)パワーコンディショナと、第1のパワーコンディショナの出力を制御する第1の制御部と、第2のパワーコンディショナの出力を制御する第2の制御部を備える。このシステムでは、種別の異なるパワーコンディショナにより、安定した電力を負荷に供給することができる。しかしながら、特許文献3に記載の分散電源システムでは、第1の制御部と第2の制御部とが相互に通信しながらパワーコンディショナの出力を制御するため、高速度で通信可能な通信インターフェースが必要になり、コストが増大する。さらに、第1のパワーコンディショナから負荷に供給される供給電力が、当該負荷が必要とする電力以上である場合、第1の制御部は第1のパワーコンディショナの出力電圧を制御して余剰電力を抑制するので、余剰電力を有効に活用することができない。
【0014】
特許文献4に記載の分散電源システムは、直流発電装置と、直流発電装置の電力を負荷に供給する第1電力変換装置と、直流蓄電装置と、直流蓄電装置の充放電を行う第2電力変換装置とを備える。このシステムでは、負荷と電力系統とが切り離されたときに、有効電力が消費電力よりも大きく、直流蓄電装置が充電可能である場合、有効電力と消費電力との差分(余剰電力)を直流蓄電装置に充電することができる。しかしながら、特許文献4に記載の分散電源システムでは、第1電力変換装置と第2電力変換装置とが相互に通信しながら出力電力を制御するため、高速度で通信可能な通信インターフェースが必要になり、コストが増大する。
【先行技術文献】
【特許文献】
【0015】
【文献】特開平11-89096号公報
【文献】特開2014-212659号公報
【文献】特許5721855号公報
【文献】WO2018/078683号公報
【発明の概要】
【発明が解決しようとする課題】
【0016】
本発明は上記事情に鑑みてなされたものであって、その課題とするところは、コストの増大を招くことなく、電力系統の正常時における需給調整用の電力の最大化と、電力系統の停電時における長時間の電力供給とを可能にする充放電装置および分散電源システムを提供することにある。
【課題を解決するための手段】
【0017】
上記課題を解決するために、本発明に係る充放電装置は、
系統連系運転と自立出力運転とを行う充放電装置であって、
系統連系端子と、
自立出力端子と、
AC/DC変換動作を行う双方向インバータ部と、
蓄電池に接続され、前記蓄電池の充放電を行う双方向DC/DCコンバータ部と、
前記双方向インバータ部と前記双方向DC/DCコンバータ部とを接続するDCバス部と、
前記系統連系運転の時に前記双方向インバータ部を前記系統連系端子に接続する一方、前記自立出力運転の時に前記双方向インバータ部を前記自立出力端子に接続する接続切換部と、
前記双方向インバータ部および前記双方向DC/DCコンバータ部を制御する制御部と、
を備え、
前記制御部は、
前記自立出力運転の開始時に、前記DCバス部を流れるDCバス電流が前記双方向DC/DCコンバータ部から前記双方向インバータ部の方向に流れるように、前記双方向インバータ部から出力される自立出力電圧を所定の最大電圧値に制御する第1処理と、
前記自立出力運転の時に、前記DCバス電流がゼロまたは所定の最小値になるように、前記自立出力電圧を前記最大電圧値よりも小さい第1電圧値に制御する第2処理と、
前記自立出力運転の時に、前記DCバス電流が前記双方向インバータ部から前記双方向DC/DCコンバータ部の方向に流れるように、前記自立出力電圧を前記第1電圧値よりも小さい第2電圧値に制御する第3処理と、を実行することを特徴とする。
【0018】
この構成では、自立出力運転時の制御部は、DCバス電流に基づいて自立出力電圧を制御し、蓄電池の充放電を行う。すなわち、この構成では、自立出力電圧を制御するための通信インターフェースが不要となるので、コストの増大を招くことなく、電力系統の正常時における需給調整用の電力の最大化と、電力系統の停電時における長時間の電力供給とを可能にする。
【0019】
前記充放電装置において、
前記制御部は、前記第1処理において前記自立出力電圧を前記最大電圧値に所定時間維持する制御を行った後に、前記第2処理を実行するよう構成できる。
【0020】
前記充放電装置において、
前記制御部は、前記第2処理において前記自立出力電圧を前記第1電圧値に維持する制御を行い、前記蓄電池の残容量が所定値以下になった場合に前記第3処理を実行するよう構成できる。
【0021】
前記充放電装置において、
前記制御部は、前記第3処理において前記蓄電池が満充電状態になった場合、前記第2処理を実行するよう構成できる。
【0022】
上記課題を解決するために、本発明に係る分散電源システムは、
前記複数の充放電装置を含む分散電源システムであって、
前記複数の充放電装置のうちの一の充放電装置は、電力系統の停電時に自立出力運転を行う一方、前記複数の充放電装置の残りの充放電装置は、前記停電時に前記一の充放電装置から出力される自立出力電圧に同期した系統連系運転を行い、
前記一の充放電装置が前記自立出力運転を行っているときに、前記一の充放電装置に接続された蓄電池の残容量が所定値以下になった場合、
前記一の充放電装置が、前記残りの充放電装置の少なくとも1つが放電動作を行うことにより生成された放電電力により、前記蓄電池の充電を行うことを特徴とする。
【0023】
また、上記課題を解決するために、本発明に係る分散電源システムは、
前記複数の充放電装置と、
発電電力を生成する発電装置と、
を含む分散電源システムであって、
前記複数の充放電装置のうちの一の充放電装置は、電力系統の停電時に自立出力運転を行う一方、前記複数の充放電装置の残りの充放電装置および前記発電装置は、前記停電時に前記一の充放電装置から出力される自立出力電圧に同期した系統連系運転を行い、
前記一の充放電装置が前記自立出力運転を行っているときに、前記一の充放電装置に接続された蓄電池の残容量が所定値以下になった場合、
前記一の充放電装置が、前記発電電力により前記蓄電池の充電を行うことを特徴とする。
【発明の効果】
【0024】
本発明によれば、コストの増大を招くことなく、電力系統の正常時における需給調整用の電力の最大化と、電力系統の停電時における長時間の電力供給とを可能にする充放電装置および分散電源システムを提供することができる。
【図面の簡単な説明】
【0025】
【
図1】本発明に係る分散電源システムを示す図である。
【
図2】本発明に係る充放電装置のブロック図である。
【
図3】本発明に係る充放電装置の双方向インバータ部、双方向DC/DCコンバータ部、DCバス部の回路図である。
【
図4】本発明に係る充放電装置のフィードバック制御を示すフロー図である。
【
図5】本発明に係る充放電装置の出力特性と負荷変動特性を示す図である。
【
図6】本発明に係る充放電装置の充電動作と放電動作の切り替えを示す図である。
【発明を実施するための形態】
【0026】
以下、添付図面を参照して、本発明に係る充放電装置および分散電源システムの実施形態について説明する。
【0027】
図1に、本発明の一実施形態に係る分散電源システム1を示す。分散電源システム1は、需要家の電気設備(受電設備)の低圧幹線Lに接続された、逆潮流型の複数の充放電装置100A~100Cと、太陽光発電装置200とを含む。
【0028】
低圧幹線Lは、本実施形態では、単相三線式の送電線であり、変圧器2を介して電力系統に接続される。電力系統から見て変圧器2の上流側に第1遮断器3が介装され、変圧器2の下流側に第2遮断器4に介装される。変圧器2は、電力系統の電圧を降圧して低圧幹線Lに供給する。第1遮断器3および第2遮断器4は、電力系統の正常時に閉状態となる一方、電力系統の非常時(停電時)に開状態となって分散電源システム1を電力系統から切り離す。また、低圧幹線Lには、電化製品等の負荷5が接続される。
【0029】
充放電装置100Aは、系統連系線L1、自立出力線L2、切替器10A、漏電遮断器11Aを介して低圧幹線Lに接続され、系統連系運転と自立出力運転を行う。充放電装置100Aは、電気自動車(EV)に搭載された蓄電池300Aに接続され、蓄電池300Aの充電と放電を行う。また、充放電装置100Aは、逆潮流検出用の電流センサ12Aから逆潮流電流の電流値に関する信号を取得する。充放電装置100Aおよび蓄電池300Aは、V2X(V2X:V2H、V2G、V2Bの総称)システムとして機能する。
【0030】
充放電装置100Bは、系統連系線L1、自立出力線L2、切替器10B、漏電遮断器11Bを介して低圧幹線Lに接続され、系統連系運転と自立出力運転を行う。充放電装置100Bは、電気自動車(EV)に搭載された蓄電池300Bに接続され、蓄電池300Bの充電と放電を行う。また、充放電装置100Bは、逆潮流検出用の電流センサ12Bから逆潮流電流の電流値に関する信号を取得する。充放電装置100Bおよび蓄電池300Bは、V2Xシステムとして機能する。
【0031】
充放電装置100Cは、系統連系線L1、自立出力線L2、切替器10C、漏電遮断器11Cを介して低圧幹線Lに接続され、系統連系運転と自立出力運転を行う。充放電装置100Cは、設置型の蓄電池300Cに接続され、蓄電池300Cの充電と放電を行う。また、充放電装置100Cは、逆潮流検出用の電流センサ12Cから逆潮流電流の電流値に関する信号を取得する。充放電装置100Cおよび蓄電池300Cは、ESSシステムとして機能する。
【0032】
太陽光発電装置200は、本発明の「発電装置」に相当し、太陽電池と太陽光パワーコンディショナ装置とを含む。太陽電池は、直流の発電電力を生成し、太陽光パワーコンディショナ装置は、上記直流の発電電力を交流の発電電力に変換して低圧幹線Lに供給する。また、太陽光発電装置200は、逆潮流検出用の電流センサ12Dから逆潮流電流の電流値に関する信号を取得する。
【0033】
電力系統の正常時において、逆潮流型の充放電装置100A~100Cは、電力系統の電圧に同期した系統連系運転を行い、必要に応じて定格出力電力を出力する。すなわち、充放電装置100A~100Cの合計の定格出力電力を需給調整用の電力とすることができるため、需給調整用の電力の最大化が可能となる。
【0034】
電力系統の非常時(停電時)においては、充放電装置100A~100Cのうちの一台(本実施形態では、最上流側の充放電装置100A)がマスター機となり、自立出力運転を行う。残りの充放電装置100B,100Cはスレーブ機となり、マスター機である充放電装置100Aの自立出力電圧を電力系統の電圧として検出し、系統連系運転を行う。系統連系運転時の充放電装置100B,100Cは、充放電装置100Aの自立出力電圧に同期した電力(連系出力電力)を出力する。
【0035】
さらに、分散電源システム1では、マスター機である充放電装置100Aへの逆潮流(蓄電池300Aの充電)を許容することができ、充放電装置100Aにおいて逆潮流電力の大きさを制御することができ、かつスレーブ機である充放電装置100B,100Cにも逆潮流電力を吸収させることができる。
【0036】
図2に、充放電装置100Aのブロック図を示す。充放電装置100Aは、系統連系端子T1と、自立出力端子T2と、パワーコンディショナ部110と、制御部120とを備える。パワーコンディショナ部110は、接続切替部111と、双方向インバータ部112と、双方向DC/DCコンバータ部113と、DCバス部114とを備える。制御部120は、第1制御部121と、第2制御部122と、第3制御部123とを備える。なお、充放電装置100Aの構成は、充放電装置100B,100Cの構成と同じであるため、充放電装置100B,100Cの説明は省略する。
【0037】
接続切替部111は、双方向インバータ部112の交流側の接続先を、系統連系端子T1(系統連系線L1)と自立出力端子T2(自立出力線L2)とで切り替えるよう構成される。接続切替部111は、第1制御部121の制御下で、系統連系運転時に双方向インバータ部112を系統連系線L1に接続する一方、自立出力運転時に双方向インバータ部112を自立出力線L2に接続する。接続切替部111として、例えば、リレーを用いることができる。
【0038】
なお、接続切替部111が系統連系線L1と接続しているときは、切替器10Aも系統連系線L1と接続し、接続切替部111が自立出力線L2と接続しているときは、切替器10Aも自立出力線L2と接続する。本実施形態では、充放電装置100Aがマスター機となる場合について説明しているが、切替器10A~10Cおよび接続切替部111を適宜切り替えることで、充放電装置100Aがスレーブ機となり、かつ充放電装置100Bまたは充放電装置100Cがマスター機となることも可能である。
【0039】
図3に、双方向インバータ部112、双方向DC/DCコンバータ部113およびDCバス部114の回路図を示す。交流電圧Vacの入出力が行われる双方向インバータ部112の交流端は、接続切替部111に接続される。直流電圧の入出力が行われる双方向インバータ部112の直流端は、DCバス部114を介して双方向DC/DCコンバータ部113の第1端に接続される。双方向DC/DCコンバータ部113の第2端は、図示しない接続部(例えば、コネクタ)を介して蓄電池300Aに接続される。双方向DC/DCコンバータ部113の第2端には、蓄電池300Aの充放電電圧Vevが印加される。
【0040】
双方向インバータ部112は、DCバス部114から入力されたDCバス電圧Vbを交流電圧Vacに変換して接続切替部111に出力するDC/AC変換動作と、交流電圧Vacを直流の脈流電圧に変換してDCバス部114に出力するAC/DC変換動作を行う。双方向インバータ部112は、例えば、3つのアームを構成する6つのスイッチング素子で構成される。なお、低圧幹線Lが単相二線式の送電線の場合は、2つのアームを構成する4つのスイッチング素子で構成される。
【0041】
双方向DC/DCコンバータ部113は、蓄電池300Aの充放電を行う。充電動作時の双方向DC/DCコンバータ部113は、DCバス部114から入力されたDCバス電圧Vbを所定の充電電圧Vevに変換して、蓄電池300Aの充電を行う。放電動作時の双方向DC/DCコンバータ部113は、蓄電池300Aの放電を行い、蓄電池300Aの放電電圧Vevを昇圧または降圧してDCバス部114に入力する。双方向DC/DCコンバータ部113は、各種の双方向絶縁回路方式があるが回路方式を特定しない。例えば、1次側フルブリッジ回路と、絶縁トランスと、2次側フルブリッジ回路と、2次側LCフィルタ回路とで構成されるが、シームレスな方向切替が可能な回路方式が望ましい。
【0042】
DCバス部114は、双方向インバータ部112と双方向DC/DCコンバータ部113との接続部分である。DCバス部114には、入力された直流電圧を平滑してDCバス電圧Vbを生成するための平滑用のコンデンサCと、DCバス部114を双方向に流れる直流のDCバス電流Ibを検出するための電流センサ115と、DCバス電圧Vbを検出するための電圧センサ116とが設けられている。電流センサ115が検出したDCバス電流Ibの電流値に関する信号と、電圧センサ116が検出したDCバス電圧Vbの電圧値に関する信号は、制御部120に出力される。
【0043】
制御部120を構成する第1制御部121、第2制御部122および第3制御部123のそれぞれは、アナログ制御回路で構成されていてもよいし、マイクロコントローラ等を使用したデジタル制御回路で構成されていてもよいし、アナログ制御回路とデジタル制御回路とを組み合わせた回路で構成されていてもよい。
【0044】
第1制御部121は、DCバス電流Ibの電流値およびDCバス電圧Vbの電圧値に基づいて、双方向インバータ部112の電力変換の方向および電力の大きさと、双方向DC/DCコンバータ部113の電力変換の方向および電力の大きさを決定する。第1制御部121は、決定した双方向インバータ部112の電力変換の方向および電力の大きさを第2制御部122に出力し、決定した双方向DC/DCコンバータ部113の電力変換の方向および電力の大きさを第3制御部123に出力する。また、第1制御部121は、接続切替部111の制御も行う。
【0045】
第2制御部122は、系統連系運転時に、双方向インバータ部112の出力を電力系統の電圧に同期させる系統連系制御を行う一方、自立出力運転時には、第1制御部121が決定した双方向インバータ部112の電力変換の方向および電力の大きさに基づいて、双方向インバータ部112の出力電圧制御(フィードバック制御)を行う。第2制御部122は、第3制御部123とは独立して動作する。
【0046】
第3制御部123は、系統連系運転時および自立出力運転時に、第2制御部122とは独立して動作し、蓄電池300Aの充放電電力制御を行う。具体的には、第3制御部123は、第1制御部121が決定した双方向DC/DCコンバータ部113の電力変換の方向および電力の大きさに基づいて、双方向DC/DCコンバータ部113を制御するための制御信号Vdcを生成し、当該制御信号Vdcにより双方向DC/DCコンバータ部113のスイッチング素子の制御を行う。
【0047】
図4に、自立出力運転時の出力電圧制御(フィードバック制御)のフロー図を示す。
図4の制御フローは、第1処理部120a~第6処理部120fにより実行される。第1処理部120a~第6処理部120fは、制御部120を構成する第1制御部121および第2制御部122によって構成される。
【0048】
第1処理部120aは、自立出力運転の開始時における自立出力電圧Vacの電圧値VH(本実施形態では、VHは系統連系規程の最大電圧値)と、電圧センサ116が検出したDCバス電圧Vbと、電流センサ115が検出したDCバス電流Ibとに基づいて、双方向インバータ部112の自立出力電圧Vacの目標値を決定する。
【0049】
第2処理部120bは、双方向インバータ部112の自立出力電圧Vacが第1処理部120aで決定した目標値となるように、双方向インバータ部112のスイッチング素子のゲート制御電圧Vcntを設定し、当該ゲート制御電圧Vcntに関する制御信号Vinv(例えば、PWM信号)を生成する。
【0050】
第3処理部120cは、DCバス電圧Vbに異常が発生していないかの判断処理を行う。例えば、DCバス電圧Vbが過電圧になった場合、第3処理部120cは、自立出力電圧Vacを上昇させるか、または双方向インバータ部112のスイッチング動作を停止させる等の保護動作を行う。また、第3処理部120cは、DCバス電圧Vbの電圧値に関する信号を第1処理部120aにフィードバックする。
【0051】
第4処理部120dは、DCバス電流Ibの電流値が所定の制御範囲内に収まっているかの判断処理を行うとともに、DCバス電流Ibの電流値に関する信号を第1処理部120aにフィードバックする。また、第4処理部120dは、適宜、DCバス電流Ibの目標値を設定する。
【0052】
第5処理部120eは、第2処理部120bで生成した制御信号Vinvを出力して、双方向インバータ部112のスイッチング素子の制御(例えば、PWM制御)を行う。第5処理部120eは、第6処理部120fからフィードバックされた自立出力電圧Vacの電圧値に関する信号に基づいて、制御信号Vinvを調整する。
【0053】
第6処理部120fは、自立出力電圧Vacの電圧値が目標値に一致しているかの判断処理を行うとともに、自立出力電圧Vacの電圧値に関する信号を第5処理部120eにフィードバックする。
【0054】
次に、
図5を参照して、電力系統の非常時(停電時)における制御部120の制御について説明する。
図5のグラフaはマスター機の自立出力電圧Vacを示し、グラフbはスレーブ機の連系出力電力を示し、グラフcは負荷5に供給される負荷電流を示し、グラフdはマスター機のDCバス電流Ibを示す。
【0055】
停電が発生すると、分散電源システム1では、充放電装置100A~100Cが交流電圧Vacの異常電圧(電圧低下)を検出するとともに、系統連系規程に基づいて一旦連系を停止させる。このとき、充放電装置100A~100Cでは、接続切替部111は系統連系線L1に接続し、切替部10A~10Cも系統連系線L1に接続している。非常用の電力供給を開始する場合、分散電源システム1では、低圧幹線Lの最上流位置に接続された充放電装置100Aがマスター機となり自立出力運転を開始する一方で、充放電装置100B,100Cおよび太陽光発電装置200は、マスター機である充放電装置100Aの出力電圧を検知し、一定時間後にスレーブ機となり系統連系運転を行う。
【0056】
充放電装置100Aでは、接続切替部111が自立出力線L2と接続した後、制御部120が双方向インバータ部112および双方向DC/DCコンバータ部113の制御を行い、自立出力運転を開始させる。充放電装置100Aの自立出力運転時の制御は、第1処理、第2処理、第3処理を含む。
【0057】
制御部120は、時刻t1において自立出力運転を開始させると、双方向インバータ部112から出力される自立出力電圧(交流電圧Vac)を所定の最大電圧値VHに制御する。本実施形態では、VHは系統連系規程の最大電圧値(例えば、107[V])である。低圧幹線Lに負荷5が接続されていると、負荷5の負荷電流が増加するが、制御部120は、電流センサ115が検出したDCバス電流Ibに基づいて、負荷電流の大きさを認識することができる。
【0058】
自立出力運転の開始時において、自立出力電圧Vacは、負荷電流の突入により一時的に低下するが、制御部120は、DCバス電流Ibを増加させて、自立出力電圧Vacを最大電圧値VHに維持する制御を行う。
【0059】
充放電装置100Aにおいて、自立出力電圧Vacを最大電圧値VHに維持する制御が行われ、一定時間(例えば、数ミリ秒程度)経過するとDCバス電流Ibが安定する。例えば、数秒間、DCバス電流Ibの移動平均偏差率が3%以内になる等の所定の安定条件を満たすと、充放電装置100B,100Cおよび太陽光発電装置200は、充放電装置100Aの自立出力電圧Vacを電力系統の電圧として検出し、一定の規程時間の後に自立出力電圧Vacに同期した系統連系運転を開始する。
【0060】
充放電装置100Aの制御部120は、DCバス電流Ibが上記安定条件を満たしたことを認識すると、自立出力電圧Vacを所定の電圧ステップ(例えば、0.1[V]単位)で所定の第1電圧値V1まで低下させる制御を行う(時刻t2)。この自立出力電圧Vacの制御は、制御信号Vinvにより行う。
【0061】
充放電装置100B,100Cおよび太陽光発電装置200は、充放電装置100Aの自立出力電圧Vacが低下するにしたがって、系統連系規程の電圧上昇抑制制御動作により、出力電力(連系出力電力)を徐々に上昇させる。その結果、出力電圧(連系出力電圧)が上昇する。一方で、充放電装置100AのDCバス電流Ibは徐々に減少する(
図6のX2参照)。これは、分散電源システム1では、負荷5に近いところに接続されたスレーブ機から順に負荷5への電力供給を行うためである。なお、スレーブ機が存在しない場合、充放電装置100AのDCバス電流Ibは、自立出力電圧Vacが低下するにつれて増加するため(
図6のX1参照)、充放電装置100Aの制御部120は、自立出力電圧Vacを最大電圧値VHに戻して維持する制御を行う。
【0062】
充放電装置100Aの制御部120は、自立出力電圧Vacの低下に伴うDCバス電流Ibの減少を検出することで、スレーブ機の存在を認識できる。そして、充放電装置100Aの制御部120は、DCバス電流Ibがゼロまたは所定の最小値になるように、換言すれば自立出力電力が最小になるように、自立出力電圧Vacをフィードバック制御する。このフィードバック制御は、例えば、
図4に示した制御フローで行う。本実施形態では、DCバス電流Ibがゼロになるとき、自立出力電圧Vacは第1電圧値V1になる。
【0063】
充放電装置100Aの制御部120は、自立出力電圧Vacを第1電圧値V1に維持する制御を行う。これにより、充放電装置100Aに接続された蓄電池300Aの消耗は、充放電装置100Aが自立出力電圧Vacを第1電圧値V1に維持するだけの最小容量に抑えられる。ただし、自立出力運転が長時間続くと、蓄電池300Aの残容量(SOC:State of Charge)は徐々に低下していく。
【0064】
ところで、太陽光発電装置200は、不安定な電力源であり、天候の変動で発電電力が大きく下がる場合がある。その場合、負荷5に対して不足の電力は負荷5に近いところに設置された分散電源(本実施形態では、充放電装置100C)から電力が補充されるという連系動作が行われる。これにより、分散電源システム1では、充放電装置100AのDCバス電流Ibに影響を及ぼすことなく、安定した電力供給が継続される。
【0065】
また、太陽光発電装置200が発電していない場合も、負荷5に近いところに設置された分散電源(本実施形態では、充放電装置100C)から電力が補充される。このとき、負荷5の消費電力(負荷電力)がスレーブ機の合計の電力(連系出力電力)よりも大きい場合は、再びマスター機である充放電装置100Aの自立出力電力で補うことになる。すなわち、充放電装置100Aの制御部120は、自立出力電圧Vacが徐々に低下し、バス電流Ibが一定の値に安定化する(例えば、移動平均値で数百ミリ秒の間±3%以内の変動になる)電圧値に戻して維持する制御を行う。なお、負荷5の消費電力が大きすぎる場合、DCバス電流Ibが規定値より増加し、自立出力電圧Vacがさらに低下する場合があるが、この場合は負荷5の消費電力を低下させることを考慮する必要がある。
【0066】
充放電装置100Aの制御部120は、第2処理において自立出力電圧Vacを第1電圧値V1に維持する制御を行い、蓄電池300Aの残容量が所定値以下になった場合、蓄電池300Aの充電を行うために第3処理を開始する(時刻t3)。第3処理において、充放電装置100Aの制御部120は、自立出力電圧Vacを所定の電圧ステップ(例えば、0.1[V]単位)で所定の第2電圧値V2まで低下させる制御を行う。
【0067】
スレーブ機の充放電装置100B,100Cおよび太陽光発電装置200は、充放電装置100Aの自立出力電圧Vacが低下するにしたがって、出力電流を大きくすることで出力電力(連系出力電力)を上昇させる。スレーブ機の連系出力電力がマスター機の自立出力電力よりも大きくなると、充放電装置100Aは、双方向インバータ部112に交流電流が逆流入してくる動作となる。逆流入する交流電流は、双方向インバータ部112で整流されて、DCバス部114に出力される。DCバス部114のDCバス電流Ibは、充電方向すなわちマイナス方向に自動的に増加していく。
【0068】
充放電装置100Aの制御部120は、DCバス電流Ibが蓄電池300Aに充電可能な大きさになるように、自立出力電圧Vacのフィードバック制御を行う。本実施形態では、自立出力電圧Vacが第2電圧値V2(ただし、V2>充放電装置100Aの定格電圧)になると、DCバス電流Ibが蓄電池300Aに充電可能な大きさになる。
【0069】
充放電装置100Aの制御部120は、DCバス電圧VbがDCバス部114のコンデンサCの定格電圧を超えないように、DCバス電圧Vbを常時監視するともに、DCバス電流Ibも常時監視する。充放電装置100Aの制御部120は、自立出力電圧Vacが第2電圧値V2になった時点で、自立出力電圧Vacを第2電圧値V2に維持する制御を行いながら、双方向DC/DCコンバータ部113の制御を放電制御から充電制御にシームレスに(制御を途切れさせることなく)切り替える。これにより、逆潮流を可能とする連系制御が実現され、自立出力運転時に「放電しながら充電」を行うという動作が実現される。なお、DCバス電流Ibの安定化のために、放電制御と充電制御との切り替えに一定時間のヒステリシス特性を持たせてもよい。
【0070】
充放電装置100B,100Cは、低圧幹線Lに対する自己接続点から上流への逆潮流を検知することで、充電動作(充電制御)が可能となる。逆潮流電流は、蓄電池300A~300Cの充電電流の合計値を最大値として制御される。分散電源システム1では、逆潮流制御始動時はマスター機である充放電装置100Aに接続された蓄電池300Aの充電電流で始動されるが、その後、最下流の充放電装置100Cに接続された蓄電池300Cから充電が実行され、下流の充放電装置100Cの充電電流の大きさに従って下流の蓄電池300Cから順次充電動作が実行される。太陽光発電装置200が発電していない場合、スレーブ機の充放電装置100B,100Cに接続された蓄電池300B,300Cの放電が優先され、負荷容量が充放電装置100Bと充放電装置100Cの合計出量電力より小さい場合は、蓄電池300B,300Cの放電電力がマスター機である充放電装置100Aに供給され、充放電装置100Aが充電動作を行うことが可能となる。
【0071】
充放電装置100Aの制御部120は、第3処理により蓄電池300Aが満充電になった時点で、再度第2処理を実行する。第2処理と第3処理との繰り返しにより、充放電装置100Aは、長時間の電力供給を可能にする。
【0072】
結局、充放電装置100Aでは、自立出力電圧Vacを制御するための通信インターフェース(例えば、充放電装置100B,100Cと高速通信を行うための通信インターフェース)が不要となるので、コストの増大を招くことなく、電力系統の正常時における需給調整用の電力の最大化と、電力系統の停電時における長時間の電力供給とを可能にする。特に太陽光発電装置200などの再生可能エネルギー発電装置等の分散電源が設置されている場合は、各分散電源の省エネの観点からも各充放電装置の最適有効利用が可能となる。
【0073】
以上、本発明に係る充放電装置および分散電源システムの実施形態について説明したが、本発明は上記実施形態に限定されるものではない。
【0074】
本発明に係る充放電装置は、系統連系端子と、自立出力端子と、AC/DC変換動作を行う双方向インバータ部と、蓄電池に接続され、蓄電池の充放電を行う双方向DC/DCコンバータ部と、コンデンサを有し、双方向インバータ部と双方向DC/DCコンバータ部とを接続するDCバス部と、系統連系運転の時に双方向インバータ部を系統連系端子に接続する一方、自立出力運転の時に双方向インバータ部を自立出力端子に接続する接続切換部と、双方向インバータ部および双方向DC/DCコンバータ部を制御する制御部と、を備える。
【0075】
本発明の制御部は、自立出力運転の開始時に、DCバス部を流れるDCバス電流が双方向DC/DCコンバータ部から双方向インバータ部の方向に流れるように、双方向インバータ部から出力される自立出力電圧を所定の最大電圧値に制御する第1処理と、自立出力運転の時に、DCバス電流がゼロまたは所定の最小値になるように、自立出力電圧を最大電圧値よりも小さい第1電圧値に制御する第2処理と、自立出力運転の時に、DCバス電流が双方向インバータ部から双方向DC/DCコンバータ部の方向に流れるように、自立出力電圧を第1電圧値よりも小さい第2電圧値に制御する第3処理と、を実行するのであれば適宜構成を変更できる。
【0076】
本発明に係る分散電源システムは、本発明に係る充放電装置を複数備え、複数の充放電装置のうちの一の充放電装置は、電力系統の停電時に自立出力運転を行う一方、複数の充放電装置の残りの充放電装置は、停電時に一の充放電装置から出力される自立出力電圧に同期した系統連系運転を行い、一の充放電装置が自立出力運転を行っているときに、一の充放電装置に接続された蓄電池の残容量が所定値以下になった場合、一の充放電装置が、残りの充放電装置の少なくとも1つが放電動作を行うことにより生成された放電電力により、蓄電池の充電を行うのであれば、適宜構成を変更できる。ここで、一の充放電装置に接続された蓄電池に限らず、他の充放電装置に接続された蓄電池が充電可能な状態にあるときは、放電電力によりそれらも併せて充電してもよい。
【0077】
本発明に係る分散電源システムが発電電力を生成する発電装置を備える場合、一の充放電装置が、発電電力により蓄電池の充電を行うよう構成できる。
【符号の説明】
【0078】
1 分散電源システム
2 変圧器
3 第1遮断器
4 第2遮断器
5 負荷
10A~10C 切替器
11A~11C 漏電遮断器
12A~12D 電流センサ
100A~100C 充放電装置
110 パワーコンディショナ部
111 接続切替部
112 双方向インバータ部
113 双方向DC/DCコンバータ部
114 DCバス部
115 電流センサ
116 電圧センサ
120 制御部
120a 第1処理部
120b 第2処理部
120c 第3処理部
120d 第4処理部
120e 第5処理部
120f 第6処理部
121 第1制御部
122 第2制御部
123 第3制御部
200 太陽光発電装置
300A~300C 蓄電池