(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-11-12
(45)【発行日】2024-11-20
(54)【発明の名称】自律走行車ポリシーを動的にキュレーションする方法及びシステム
(51)【国際特許分類】
G08G 1/16 20060101AFI20241113BHJP
G08G 1/09 20060101ALI20241113BHJP
【FI】
G08G1/16 A
G08G1/09 V
(21)【出願番号】P 2022580347
(86)(22)【出願日】2021-07-01
(86)【国際出願番号】 US2021040125
(87)【国際公開番号】W WO2022006418
(87)【国際公開日】2022-01-06
【審査請求日】2023-02-10
(32)【優先日】2020-07-01
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】521106164
【氏名又は名称】メイ モビリティー,インコーポレイテッド
【氏名又は名称原語表記】MAY MOBILITY,INC.
(74)【代理人】
【識別番号】110001302
【氏名又は名称】弁理士法人北青山インターナショナル
(72)【発明者】
【氏名】フェアリー,スチュアート
(72)【発明者】
【氏名】ランジャン,アシーシュ
(72)【発明者】
【氏名】コトバウアー,メリンダ
(72)【発明者】
【氏名】パテル,サジャン
(72)【発明者】
【氏名】ヴーレイス,トム
(72)【発明者】
【氏名】ステルニアク,ジェフ
(72)【発明者】
【氏名】オルソン,エドウィン ビー.
【審査官】武内 俊之
(56)【参考文献】
【文献】米国特許出願公開第2020/0026286(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G08G 1/16
G08G 1/09
(57)【特許請求の範囲】
【請求項1】
エージェントが利用可能なポリシーのセットを動的にキュレーションする方法であって、前記方法は、選択サイクルの各選択ステップで、
センサ入力のセットを受信するステップと、
前記エージェントの位置を決定するステップと、
ラベル付きマップを用いて、前記位置に基づいてポリシーのセットを決定するステップと、
(a)前記ラベル付きマップ及び前記センサ入力のセットに基づいてデータベースを取得し、かつ、前記データベースに基づいて前記ポリシーのセットを改善するステップ;
および、
(b)分類モジュールを用いて、前記センサ入力のセットに基づいて前記エージェントのシナリオを特徴付け、かつ、前記シナリオに基づいて
さらに、前記ポリシーのセットを改善するステップ
であって、前記シナリオを特徴付けることに応じて、
シナリオベースのポリシーを取得すること;
前記シナリオベースのポリシーを検証のためにテレオペレータに送信すること;および、
前記テレオペレータから前記シナリオベースのポリシーの検証を受信することに応じて、改善された前記ポリシーのセットに前記シナリオベースのポリシーを含めること;を含むポリシーのセットを改善するステップ;
に基づいて前記ポリシーのセットを改善するステップと、
マルチポリシー意思決定モジュールを用いて、改善された前記ポリシーのセットからポリシーを選択するステップと、
前記エージェントの制御システムで前記ポリシーを実装するステップと、
を含み、
前記選択サイクルの第1の選択ステップにおいて、前記テレオペレータから前記シナリオベースのポリシーの検証を受信したことに応じて、当該方法が、前記シナリオベースのポリシーを改善された前記ポリシーのセットに含めるステップを含み、
前記シナリオベースのポリシーの拒絶を受信したことに応じて、当該方法が、前記シナリオベースのポリシーを改善された前記ポリシーのセットから除外するステップを含む、方法。
【請求項2】
前記データベースに基づいて前記ポリシーのセットを改善するステップは、前記エージェントのカメラのセット及びlidarのセットのうちの少なくとも1つに関連付けれた視野に基づいて前記ポリシーのセットのサブセットを排除するステップを含む、請求項1に記載の方法。
【請求項3】
前記ポリシーを選択するステップは、前記マルチポリシー意思決定モジュールで前記ポリシーのセットのポリシーごとに複数のシミュレーションのセットを実行するステップを含む、請求項1に記載の方法。
【請求項4】
前記エージェントの環境内で監視オブジェクトのセットに関連付けられたポリシーの第2セットを予測するステップをさらに含み、前記複数のシミュレーションのセットは前記ポリシーの第2セットに基づいてさらに実行される、請求項3に記載の方法。
【請求項5】
前記ポリシーの第2セット、及び、前記監視オブジェクトのセットに関連付けられた情報のセットのうちの少なくとも1つに摂動を加えるステップをさらに含み、前記監視オブジェクトのセットに関連付けられた前記情報のセットは、位置のセット、速度のセット及びセマンティックデータのセットのうちの少なくとも1つを含み、前記シミュレーションのセットは、摂動を加えられた前記ポリシーの第2セット、及び、前記監視オブジェクトのセットに関連付けられた、摂動を加えられた前記情報のセットのうちの少なくとも1つに基づいてさらに実行される、請求項4に記載の方法。
【請求項6】
前記シナリオに基づいて前記ポリシーのセットを改善するステップは、前記シナリオを特徴づけることに応答して、
シナリオベースのポリシーを取得するステップであって、前記シナリオベースのポリシーは前記ポリシーのセットとは別個で区別される、ステップと、
検証のためにテレオペレータに前記シナリオベースのポリシーを送信するステップと、を含む、請求項1に記載の方法。
【請求項7】
前記テレオペレータから前記シナリオベースのポリシーのための検証を受信することに応答して、前記方法は、改善された前記ポリシーのセットに前記シナリオベースのポリシーを含めるステップをさらに含む、請求項6に記載の方法。
【請求項8】
前記シナリオベースのポリシーの拒絶を受信することに応答して、前記方法は、改善された前記ポリシーのセットに前記シナリオベースのポリシーを追加することを控えるステップをさらに含む、請求項6に記載の方法。
【請求項9】
前記エージェントの環境内で監視オブジェクトのセットごとに、監視された前記エージェントに関連付けられたポリシーの第2セットを決定するステップであって、前記マルチポリシー意思決定モジュールは前記ポリシーの第2セットに基づいて実装される、ステップをさらに含む、請求項1に記載の方法。
【請求項10】
前記ポリシーの第2セットに基づいて前記オブジェクトの監視されたセットについて意図推定プロセスを実行するステップをさらに含む、請求項9に記載の方法。
【請求項11】
前記意図推定プロセスに基づいて決定された意図のセットに基づいてシミュレーションのセットを実行するステップをさらに含む、請求項10に記載の方法。
【請求項12】
前記センサ入力のセットは、前記エージェントの環境内に配列されたインフラストラクチャデバイスのセットからさらに受信される、請求項1に記載の方法。
【請求項13】
エージェントが利用可能なポリシーのセットを動的にキュレーションするシステムであって、前記システムは、
前記エージェントの制御サブシステムと、
前記エージェントに搭載されたセンササブシステムと、
ラベル付きマップと、
前記制御サブシステム、
テレオペレータプラットフォーム、前記センササブシステム及び前記ラベル付きマップと通信するコンピューティングサブシステムであって、前記コンピューティングサブシステムは、
前記センササブシステムからセンサ入力のセットを受信し、
前記エージェントの位置を決定し、
前記位置及び前記ラベル付きマップに基づいて、前記エージェントに関連付けられたポリシーのセットを決定し、
(a)前記ラベル付きマップ及び前記センサ入力のセットに基づいてデータベースを
取得して、前記ポリシーのセットを前記データベースに基づいて改善すること、および、
(b)分類モジュールを用いて、前記センサ入力のセットに基づいて
前記エージェントのシナリオを特徴づけて、前記シナリオに基づいて前記ポリシーのセットを改善することであって、前記シナリオを特徴づけることに応じて、
シナリオベースのポリシーを、検証のために前記テレオペレータプラットフォームのテレオペレータに送信すること、および
前記テレオペレータプラットフォームから受信した前記テレオペレータの検証に応じて、前記シナリオベースのポリシーを、改善された前記ポリシーのセットに含めるまたは除外すること、を含む前記ポリシーのセットを改善すること、
に基づいて前記ポリシーのセットを改善し、
マルチポリシー意思決定モジュールを用いて、改善された前記ポリシーのセットからポリシーを選択し、
前記エージェントの制御システムで前記ポリシーを実装する、コンピューティングサブシステムと、を備える、システム。
【請求項14】
前記ユーザの環境内に配列されたインフラストラクチャデバイスのセットをさらに備え、前記センサ入力のセットは、前記インフラストラクチャデバイスのセットに搭載されて配置された第2センササブシステムからさらに受信される、請求項13に記載のシステム。
【請求項15】
前記データベースに基づいて前記ポリシーのセットを改善することは、
前記エージェントに搭載されて配置されたカメラのセット、前記エージェントに搭載されて配置されたlidarのセット、及び、前記インフラストラクチャデバイスのセットのうちのインフラストラクチャデバイスに搭載されて配置されたセンサのセットからのセンサデータのうちの少なくとも1つに関連付けられた視野に基づいて前記ポリシーのセットのサブセットを排除すること、
前記インフラストラクチャデバイスに搭載されて配置された前記センサのセットからの前記センサ情報に基づいて前記ポリシーのセットのサブセットを改善すること、のうちの少なくとも1つを含む、請求項14に記載のシステム。
【請求項16】
前記ポリシーを選択することは、前記マルチポリシー意思決定モジュールで前記ポリシーのセットのポリシーごとに複数のシミュレーションのセットを実行することを含む、請求項13に記載のシステム。
【請求項17】
前記マルチポリシー意思決定モジュールは、前記エージェントの環境内の監視オブジェクトのセットに関連付けられた意図のセットをさらに決定し、前記複数のシミュレーションのセットは前記意図のセットに基づいて実行される、請求項16に記載のシステム。
【請求項18】
前記マルチポリシー意思決定モジュールは、前記意図のセット、及び、前記監視オブジェクトのセットに関連付けられた情報のセットのうちの少なくとも1つに摂動をさらに加え、前記監視オブジェクトのセットに関連付けられた前記情報のセットは、位置のセット、速度のセット及びセマンティックデータのセットのうちの少なくとも1つを含み、前記シミュレーションのセットは、摂動を加えられた前記意図のセット、及び、前記監視オブジェクトのセットに関連付けられた、摂動を加えられた前記情報のセットのうちの少なくとも1つに基づいてさらに実行される、請求項17に記載のシステム。
【請求項19】
前記コンピューティングサブシステムは、テレオペレータプラットフォームとさらに通信し、前記シナリオに基づいて前記ポリシーのセットを改善することは、前記シナリオを特徴づけることに応答して、
シナリオベースのポリシーを取得することであって、前記シナリオベースのポリシーは前記ポリシーのセットとは別個で区別される、取得することと、
検証のために前記テレオペレータプラットフォームのテレオペレータに前記シナリオベースのポリシーを送信することと、を含む、請求項13に記載のシステム。
【請求項20】
前記テレオペレータから前記シナリオベースのポリシーのための検証を受信することに応答して、前記コンピューティングサブシステムは、改善された前記ポリシーのセットに前記シナリオベースのポリシーを含め、かつ、
前記シナリオベースのポリシーの拒絶を受信することに応答して、前記コンピューティングサブシステムは、改善された前記ポリシーのセットに前記シナリオベースのポリシーを追加することを控える、請求項19に記載のシステム。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願への相互参照
[0001] 本願は、2020年7月1日に出願された米国仮出願第63/046,842号の利益を主張し、当該出願の全体がこの参照によって組み込まれる。
【0002】
[0002] 本発明は、概して、自律走行車の分野に関し、より具体的には、自律走行車の分野における自律エージェントの行動ポリシーを動的にキュレーションするための新規で有用なシステム及び方法に関する。
【背景技術】
【0003】
[0003] 最先端の車両自動化により、車両が、自律状態及び/又は半自律状態で効果的かつ安全に動作することが可能となった。将来の時点での自律エージェントのための複数の候補ポリシーをシミュレーションし、それによって、シミュレーション結果に基づいて最適なポリシーが選択されることを可能にするマルチポリシー意思決定プロセスを通じて、本発明者らはこれを可能にした。
【0004】
[0004] しかしながら、発生する技術的な問題は、車両が選択可能な潜在的なポリシーが豊富に存在する可能性があることであり、これにより、(例えば、安全性、乗り手の楽しみ、目的地への効率的な到達などのため)最適なポリシーをシミュレーションして最終的に選択するには大規模なコンピューティング資源を必要とする。これらのコンピューティング要件により、すべての候補ポリシーをシミュレーションすることができなくなり、はるかに大規模なコンピューティング資源を必要とし、ポリシーの選択と実行との間の待ち時間を増加させ、及び/又は、その他の影響を生じさせる可能性がある。
【0005】
[0005] 本発明者らは、以下で説明される、これらのポリシーを動的にキュレーションする新規で有用なシステム及び方法を発見した。
【図面の簡単な説明】
【0006】
【
図1】[0006] 動的ポリシーキュレーションシステムの概略図である。
【
図2】[0007] 動的ポリシーキュレーション方法の概略図である。
【
図3】[0008] インフラストラクチャデバイスによって情報が収集され、かつ、利用可能なポリシーを決定する際に情報が使用される、検出範囲検知領域を規定するインフラストラクチャデバイスを実装するシステム及び方法の変形例を示している。
【
図4】[0009] 任意選択的なポリシーを選択する前にマルチポリシー意思決定プロセスでシミュレーションされる、自律エージェントに利用可能な例示のポリシーのセットを示している。
【
図5A】[0010] マップ内に規定されたさまざまな領域のオプションを有する例示のマップを示しており、各領域は、利用可能なポリシーの決定に関連付けられた利用可能なポリシーの特定のセット及び/又はルールに関連付けられる。
【
図5B】[0010] マップ内に規定されたさまざまな領域のオプションを有する例示のマップを示しており、各領域は、利用可能なポリシーの決定に関連付けられた利用可能なポリシーの特定のセット及び/又はルールに関連付けられる。
【
図6A】[0011] シナリオ決定及び/又はテレオペレータ入力に基づく動的ポリシーキュレーションの概略的な変形例を示している。
【
図6B】[0011] シナリオ決定及び/又はテレオペレータ入力に基づく動的ポリシーキュレーションの概略的な変形例を示している。
【
図6C】[0011] シナリオ決定及び/又はテレオペレータ入力に基づく動的ポリシーキュレーションの概略的な変形例を示している。
【
図7】[0012] 動的ポリシーキュレーション方法に含まれる入力及び出力のセットの概略的な変形例を示している。
【発明を実施するための形態】
【0007】
[0013] 本発明の好ましい実施形態の以下の説明は、本発明をこれらの好ましい実施形態に限定することを意図するものではなく、当業者が本発明を作成及び使用することを可能にすることを意図している。
【0008】
1.概要
[0014]
図1に示すように、動的ポリシーキュレーションシステム100は、コンピューティングシステムを含み、かつ、自律エージェントと連動する。システム100は:インフラストラクチャデバイスのセット、通信インタフェース、テレオペレータプラットフォーム、センサシステム、測位システム、誘導システム及び/又は任意の他の適切なコンポーネントのいずれか若しくはすべてをさらに含み得る、及び/又は、それらと連動することができる。追加又は代替として、システムは、2019年7月17日に出願された米国出願第16/514,624号、2019年7月8日に出願された米国出願第16/505,372号、2019年8月14日に出願された米国出願第16/540,836号及び2020年2月17日に出願された米国出願第16/792,780号に記載されたシステム、コンポーネント、実施形態及び具体例のすべてを含み得、これらの出願の各々の全体がこの参照によって組み込まれる。
【0009】
[0015]
図2に示すように、動的ポリシーキュレーション方法200は、入力のセットを収集するステップS210と;入力のセットを処理するステップS220と;入力のセットを処理するステップに基づいて利用可能なポリシーのセットを決定するステップS230と、を含む。追加又は代替として、方法200は、1以上のポリシーに関連付けられたリスクを決定するステップ;利用可能なポリシーが多すぎることを決定し、かつ、利用可能なポリシーの数を減らすステップ;ポリシーを実装するステップS240;及び/又は、任意の他の適切なプロセスのいずれか又はすべてを含み得る。
【0010】
[0016] さらに追加又は代替として、方法は、2019年7月17日に出願された米国出願第16/514,624号、2019年7月8日に出願された米国出願第16/505,372号、2019年8月14日に出願された米国出願第16/540,836号及び2020年2月17日に出願された米国出願第16/792,780号に記載された方法、プロセス、実施形態及び具体例のすべてを含み得、これらの出願の各々の全体がこの参照によって組み込まれる。
【0011】
2.利点
[0017] 自律走行車ポリシーを動的にキュレーションするシステム及び方法は、現在のシステム及び方法に対していくつかの利点をもたらすことができる。
【0012】
[0018] 第1変形例では、システム及び/又は方法は、自律走行車のポリシー(本明細書では同等に行動ポリシーともいう)を選択するために必要なコンピューティング資源を削減又は最小化するという利点をもたらす。これは:ポリシーの選択及び/又は実行における待ち時間の短縮;失敗した又はあまり成功していないポリシーの実装の発生の最小化;及び/又は、任意の適切な機能のいずれか又はすべてをさらに可能にすることができる。具体例では、自律エージェントが利用可能な多くのポリシーの数が、任意の数の条件に基づいて動的かつインテリジェントに調整され、任意の数の条件は、エージェントが考慮すべき最も重要なポリシーに優先順位を付け、かつ、優先度の低いポリシー又は成功率の低いことが予測されるポリシーを排除するように機能する。
【0013】
[0019] 第1変形例の追加又は代替となる第2変形例では、システム及び/又は方法は、多くのポリシーを自律エージェントが広く利用可能であるようにする一方で、各選択サイクルで考慮するサブセットに優先順位を付けるという利点をもたらす。具体例では、自律エージェントが利用可能なポリシーのセットは、膨大であり、任意の数の条件及びパラメータに基づいて、車両が利用可能なサブセットを動的にキュレーションすることによって管理される。
【0014】
[0020] 上述した変形例の追加又は代替となる第3変形例では、システム及び/又は方法は、動的ポリシーキュレーションの特定の例において遠隔の人間のオペレータ(例えば、テレオペレータ)からの入力を活用する利点をもたらす。具体例では、テレオペレータ入力は:エージェントが考慮するポリシーの追加及び/又は承認;エージェントが考慮するポリシーの削除;選択ステップにおけるポリシー及び/又はポリシー選択プロセスのオーバーライド;及び/又は、任意の他の適切なアクションの有効化のいずれか又はすべてに使用され得る。
【0015】
[0021] 上述した変形例の追加又は代替となる第4変形例では、システム及び/又は方法は、エージェントが利用可能なポリシーの選択を通知することができる自律エージェントの環境に配列された車外検知装置のセット(本明細書では同等に、路側ユニット及び/又はインフラストラクチャデバイスともいう)からの情報を活用する利点をもたらす。
【0016】
[0022] 追加又は代替として、システム及び方法は任意の他の利点をもたらすことができる。
【0017】
3.システム100
[0023] システム100は、車両の環境が動的に変化する際に、自律エージェントが利用可能なポリシーをキュレーションして選択するように機能する。追加又は代替として、システム100は、自律エージェントに最適なポリシーを選択し、ポリシーを実行し、及び/又は、任意の他の適切な機能を実行するように機能することができる。
【0018】
[0024] システム100は、コンピューティングシステムを含み、かつ、自律エージェントと連動する。システム100はさらに、複数のインフラストラクチャデバイス、通信インタフェース、テレオペレータプラットフォーム及び/又は任意の他の適切なコンポーネントのいずれか又はすべてを含み得る及び/又はそれらと連動することができる。
【0019】
[0025] 本明細書では同等に自律走行車(例えば、無人自動車、無人シャトル、無人自動車グレード車両など)及び/又は自エージェントともいう自律エージェントは、好ましくは、完全自律走行車であるが、追加又は代替として、任意の半自律又は完全自律走行車(例えば、ボート、無人航空機、無人自動車など)であり得る。さらに追加又は代替として、自律エージェントは、半自律状態と完全自律状態(又は完全有人状態)との間で切り替わる車両であり得、及びしたがって、自律エージェントは、自律エージェントの状態に応じて半自律車両と完全自律車両との両方の属性を有し得る。自律車両に対する追加又は代替として、自律エージェントは、任意のタイプの自律機械、自律デバイス、自律ロボット及び/又は任意の他の適切なデバイスを含み得る。
【0020】
[0026] コンピューティングシステムは、車両のポリシーの動的キュレーションに関連する情報を収集するように機能する。追加又は代替として、コンピューティングシステムは、実装されるべきポリシーを選択し、ポリシーを実行するように機能し得る、及び/又は、任意の他の適切な機能を実行することができる。
【0021】
[0027] ポリシーは、好ましくは、エージェントに関連付けられた行動及び/又はアクション及び/又は動作を参照する。具体例では、例えば、ポリシーは、車線変更、車線維持(例えば、直進)、合流、駐車、方向転換(例えば、右折、左折など)、路肩への乗り入れ、停止、発進、制動、加速及び/又は任意の他の行動のいずれか又はすべてなどのエージェントの特定の行動を参照し得るが、これらに限定されない。追加又は代替として、ポリシーは、特定の速度又は速度のセット、前方車両に対する特定の車間距離、特定の制動距離、特定の加速及び/又は減速、及び/又は、任意の他のパラメータのいずれか又はすべてを有する行動などの特定のパラメータのセットに関連付けられた行動及び/又はアクション及び/又は動作を参照し得る。具体例では、例えば、ポリシーは、行動に関連付けられた特定のパラメータのセット(例えば、既定の速度で直進する、既定の制動距離で制動する、既定の減速度で制動する、既定の加速度及び/又は速度で加速するなど)に関連付けられた行動を参照する。追加又は代替として、ポリシーは、任意の他の情報を含み得る及び/又は参照し得る。
【0022】
[0028] 追加又は代替として、自エージェントの環境において、本明細書では監視オブジェクトとして同等に参照される任意の他のオブジェクト(例えば、他の車両、歩行者、動物、自転車乗り、動的オブジェクト、静的オブジェクトなど)が1以上のポリシーに関連付けられ得る(例えば、割り当てられ得る)。好ましい変形例では、これらのポリシーは、シミュレーションのセットでこれらのオブジェクトの意図推定などにおいて、自エージェントのためのポリシーとともに(例えば、後述するような)MPDMモジュールで使用される。追加又は代替として、監視オブジェクトのポリシーは他の方法で使用され得る。
【0023】
[0029] コンピューティングシステムは、好ましくは、自律エージェントに搭載されて配置された(例えば、自律エージェント内に統合された)オンボードコンピューティングシステムを含む。追加又は代替として、コンピューティングシステムは:リモートコンピューティングシステム(例えば、オンボードコンピューティングシステムに代えて、クラウドコンピューティングシステム、オンボードコンピューティングシステムと通信するリモートコンピューティングなど)、補助デバイスに統合されたコンピューティングシステム(例えば、モバイルデバイス、ユーザデバイスなど)、モバイルコンピューティングデバイスを含むエッジデバイス、及び/又は、任意の他の適切なコンピューティングシステム及びデバイスのいずれか又はすべてを含み得る。ある変形例では、例えば、自律エージェントは、ユーザデバイス(例えば、携帯電話、ラップトップなど)、リモートサーバ、クラウドサーバ、又は、車両から遠隔の任意の他の適切なローカル及び/又は分散コンピューティングシステムを含み得るリモート又は分散コンピューティングシステムと通信するように動作可能である。リモートコンピューティングシステムは、1以上のデータ接続(例えば、チャネル)を通じて自律エージェントの1以上のシステムに接続され得るが、代替として、任意の適切な方法で車両システムと通信することができる。
【0024】
[0030] コンピューティングシステムは、好ましくは、処理システム(例えば、グラフィック処理ユニットすなわちGPU、中央処理ユニットすなわちCPU、又は、任意の適切な処理回路)及びメモリを含むが、追加又は代替として、任意の他の適切なコンポーネントを含み得る。メモリは、短期記憶(例えば、揮発性、不揮発性、ランダムアクセスメモリ又はRAMなど)及び/又は長期記憶(例えば、フラッシュメモリ、ハードディスクなど)であり得る。ある変形例では、例えば、オンボードコンピューティングシステムは、本明細書に記載の識別されたコンポーネント又はモジュールのうちのいずれか又は1以上と相互作用及び/又は動作可能に制御するように動作する。例えば、オンボードコンピューティングシステムは、マルチポリシー決定モジュール、同期化モジュールなどを実装するためのコンピュータ命令を実装及び/又は実行するように機能し得る。具体例では、処理システム及びメモリは集合的に機能して、この参照によってその全体が本明細書に組み込まれる2019年7月17日に出願された米国出願第16/514,624号に記載されたもののように、マルチポリシー意思決定フレームワークのフレームワーク内の自律エージェントが利用可能なポリシーのセット(例えば、方法200に基づいて決定される)を動的に管理する。追加又は代替として、処理システム及びメモリ及び/又は任意の他の適切なコンポーネントは任意の他の適切な機能に使用され得る。
【0025】
[0031] コンピューティングシステム(例えば、オンボードコンピューティングシステム)は、好ましくは、自律エージェントを制御し、かつ、自律エージェントの動作環境における自律エージェントの状態及び/又は複数のエージェントの状態を決定するため、自律エージェント及び/又は他のセンサ(例えば、インフラストラクチャデバイスから)のセンサスイート(例えば、コンピュータビジョンシステム、LIDAR、フラッシュLIDAR、車輪速度センサ、GPSなど)から検出されたデータを処理するように機能する。動作環境における自律エージェント及び/又は複数のエージェントの状態及びプログラム命令に基づいて、オンボードコンピューティングシステムは、好ましくは、ポリシーの選択などを通じて、自律エージェントの行動を変更又は制御する。追加又は代替として、コンピューティングシステムは、コンピューティングシステムが実行して自律エージェントの行動を制御することができる、ポリシーを生成し、かつ、ポリシーを選択する(例えば、車線変更する、合流する、現在の車線を維持する、左折する、右折する、停車する、減速する、加速する、信号で停止する、一時停止標識で停止する、道を譲るなど)ように機能するマルチポリシー意思決定モジュールを含み得る。
【0026】
[0032] 第1セットの変形例では、コンピューティングシステムは、車両制御システム及びセンサシステムとのI/O通信に適合されたオンボード汎用コンピュータを含むが、追加又は代替として、任意の適切なコンピューティングデバイスであってもよい。オンボードコンピューティングシステムは、好ましくは、無線接続を介して(例えば、セルラー方式のリンク又は接続を介して)インターネットに接続される。追加又は代替として、オンボードコンピューティングシステムは、任意の数の無線通信システム又は有線通信システムに結合され得る。
【0027】
[0033] システム100は、好ましくは、コンピューティングシステムと通信する通信インタフェースを含み、通信インタフェースは、(例えば、インフラストラクチャデバイスから、リモートコンピューティングシステム及び/又はリモートサーバから、テレオペレータプラットフォームから、別の自律エージェント又は他の車両などからの)情報が受信されること、かつ、コンピューティングシステム(例えば、リモートコンピューティングシステム及び/又はリモートサーバへ、テレオペレータプラットフォームへ、インフラストラクチャデバイスへ、別の自律エージェント又は他の車両などへ)情報が送信されることを可能にするように機能する。通信インタフェースは、好ましくは、無線通信システム(例えば、Wi−Fi、Bluetooth、セルラー3G、セルラー4G、セルラー5G、多入力多出力又はMIMO、1以上の無線、又は、任意の他の適切な無線通信システム若しくはプロトコル)を含むが、追加又は代替として:有線通信システム(例えば、変調電力線データ転送、イーサネット、又は、任意の他の適切な有線データ通信システム又はプロトコル)、データ転送バス(例えば、CAN、FlexRay)及び/又は任意の他の適切なコンポーネントのいずれか又はすべてを含み得る。
【0028】
[0034] システム100は、環境の1以上の態様及び/又は特徴を観察し、かつ、環境の1以上の態様及び/又は特徴に関する観察データを収集するように機能するインフラストラクチャデバイスのセットを含み得る。好ましい変形例では、インフラストラクチャデバイスは追加として、観察に関連付けられたデータを収集し、かつ、収集されたデータ及び/又は収集されたデータの処理された派生物を自律エージェントに送信するように機能する。追加又は代替として、インフラストラクチャデバイスは、データを収集してテレオペレータプラットフォームに送信するように機能することができ、テレオペレータは、データを使用して、ポリシーを含めるかどうか、及び/又は、自律エージェントのコンピューティングシステムによる考慮からポリシーを除外するかどうかなど、テレオペレータの意思決定を通知することができる。具体例では、例えば、インフラストラクチャデバイスは、自律エージェントによって(道路が方向転換のために空いていることを確認することによって)方向転換ポリシーが考慮されることを可能にするためにテレオペレータが使用することができる車両のコーナ周りの視野を見ることを可能にする。
【0029】
[0035] 第1セットの変形例では、例えば、インフラストラクチャデバイスは、自律エージェントとインタラクティブに通信する及び/又は自律エージェントの1以上の機能を制御するように動作する自律走行車サービス及び/又はリモートプラットフォーム(例えば、分散コンピューティングシステムのネットワークを介して実装される)に、収集された観察データを転送する。
【0030】
[0036] インフラストラクチャデバイスは、本明細書では同等に路側ユニットとして参照され、路側ユニットは、好ましくは、自律エージェントの動作位置の直近及び/又は近接又は短距離通信近接内にあるデバイスを含み、かつ、自律エージェントを取り囲む及び自律エージェントの動作ゾーンに近接する領域内の状況に関するデータを収集するように機能することができる。ある実施形態では、路側ユニットは、フラッシュLIDAR、熱画像装置(熱カメラ)、静止画又は動画撮影装置(例えば、画像カメラ及び/又はビデオカメラなど)、全地球測位システム、レーダシステム、マイクロ波システム、慣性測定ユニット(IMU)、及び/又は、任意の他の適切な検出デバイス又は検出デバイスの組み合わせを含むオフボード検出装置のうちの1以上を含む。
【0031】
[0037] インフラストラクチャデバイスは、処理回路を介したコンピューティング機能と、自律エージェントのコンピューティングシステム、リモートコンピューティングシステム、テレオペレータプラットフォーム及び/又は任意の他の適切なコンポーネント若しくはコンポーネントの組み合わせのいずれか又はすべてとインフラストラクチャデバイスが通信することを可能にする通信インタフェースと、を含み得る。
【0032】
[0038] 自律エージェントの動作のゾーンは、任意選択的に、自律エージェント110が位置決めされる及び/又は動作している(例えば、走行している)構造化経路に沿った任意の地点における自律エージェントの構造化及び/又は非構造化経路に沿って事前に規定された半径(例えば、100フィート、50フィート~100フィート、50フィート未満、100フィート~200フィート、200フィート超など)として規定され得る。構造化及び/又は事前に規定された自律エージェント経路の具体例では、自律エージェントの動作の近接ゾーンは、構造化経路に沿った任意の地点から100フィートである又は地点に沿っている。
【0033】
[0039] インフラストラクチャデバイスの実装によって達成される技術的利点には、自律エージェントの観察可能範囲を越えて状況(例えば、角を曲がったところ、下る直角の道路など)を観察する機能が含まれ得、自律エージェントは、続けて、エージェントが利用可能な1以上のポリシーのキュレーションにおいて機能することができる。所定の例において後に、例えば、所定の環境の1以上の側面の観察が自律エージェントによって行われ得、かつ、所定の環境の1以上の異なる及び/又は重複する側面の観察が、所定の環境に配置されて動作する1以上のインフラストラクチャデバイスによって異なる視点から行われ得る。そのような実施形態では、そこからの観察データを含むインフラストラクチャデバイスの視点は、自律エージェントの動作環境の包括的な視点を生成するため、及び/又は、テレオペレータプラットフォームの1以上のテレオペレータに追加の視点を提供するため、自律エージェントの視点からの観察データに増強される。これにより、動作環境の予測を改善し、かつ、動作環境内で(オンボードの人間のオペレータから)独立して安全に動作する自律エージェントによって選択及び/又は実行されるポリシー決定を改善することを可能にする。
【0034】
[0040] ある変形例では、自律エージェントは、インフラストラクチャデバイス(例えば、路側ユニット)からの追加の観察を用いて、(例えば、後述するような)オンボードセンサスイートによって導出されたデータを増強及び/又は融合して、自律エージェントによるポリシーのキュレーション及び/又は選択を改善することができる。
【0035】
[0041] 追加又は代替として、インフラストラクチャデバイスは、ビデオカメラ又はレーダなどを用いて、動作環境で任意のタイプ又は種類のエージェントを検出及び追跡することができる。ある変形例では、例えば、ビデオカメラは、エージェントの検出、並びに、エージェントタイプのセマンティック分類、並びに、道路を横断しようとしている歩行者又は左折しようとしている車、車のドアを開けて車両から降りようとしている運転手、自転車専用レーンを走行している自転車運転者、及び/又は、任意の他の適切な情報などの、エージェントの考えられる意図を提供するように機能することができる。
【0036】
[0042] さらに追加又は代替として、インフラストラクチャデバイスのいずれか又はすべては、環境で動作する交通管理デバイス(例えば、交通センサ、交通信号、歩行者信号など)などを含み得、交通管理デバイスは:他のインフラストラクチャデバイス(例えば、路側ユニット)のいずれか又はすべてと通信し:インフラストラクチャデバイスの動作状態(例えば、赤信号又は青信号)及び/又は任意の他の情報に関して、インフラストラクチャデバイスによって収集及び/又は検出されたデータのいずれか又はすべてに関して、自律エージェントと直接;テレオペレータプラットフォームで直接通信するように機能し得る;及び/又は、任意の他の適切な方法で通信し得る。具体例では、信号機は、自律走行車又は自律走行車と動作可能に通信し得る路側ユニットと直接通信するように機能し得る、自律走行車を取り囲む環境内のインフラストラクチャデバイスであり得る。この例では、信号機は、信号機が投影している光の色などの動作状態情報、又は、信号機による光の変化のタイミングなどの他の情報を共有及び/又は通信するように機能することができる。
【0037】
[0043] 好ましい変形例では、通信インタフェースは、自律エージェントが、自律エージェントの外部のシステム、ネットワーク及び/又はデバイスと通信及び/又はデータ交換することを可能にする。この通信インタフェース及び/又は別個の通信インタフェースはさらに好ましくは、1以上のインフラストラクチャデバイスが、自律エージェント及び/又はリモートコンピューティングシステム及び/又はテレオペレータプラットフォームと直接通信することを可能にする。通信インタフェースは、好ましくは、セルラーシステム(又は任意の適切な長距離通信システム)、直接短波無線、又は、任意の他の適切な短距離通信システムのうちの1以上を含む。
【0038】
[0044] システム100は、好ましくは、自律走行車に搭載されたセンサを含むセンサスイート(例えば、コンピュータビジョンシステム、LIDAR、RADAR、車輪速度センサ、GPS、カメラなど)を含み、センサスイートは、オンボードコンピューティングシステムと通信し、かつ、自律エージェントが利用可能なポリシーを動的にキュレーションするための情報を収集するように機能する。追加又は代替として、センサスイートは、自律エージェント動作(自動運転など)、自律エージェントを取り巻く状況に関するデータ収集、自律エージェントの動作に関するデータ収集、(例えば、エンジン診断センサ、外部圧力センサストリップ、センサヘルスセンサなどを通じた)自律エージェントのメンテナンスの必要性の検出、自律エージェント内部の清浄度基準の検出(例えば、内部カメラ、アンモニアセンサ、メタンセンサ、アルコール蒸気センサ)を可能にするように機能し得る、及び/又は、任意の他の適切な機能を実行することができる。
【0039】
[0045] システムは、1以上のコンピューティングシステムによって生成されたコマンドに基づいて自律エージェントの自律動作及び/又はアクションを制御するように機能する、1以上のコントローラ及び/又は制御システムを任意選択的に含み得る。追加又は代替として、1以上のコントローラは、特徴検出/分類、障害物軽減、経路トラバーサル、マッピング、センサ統合、グラウンドトゥルース判定などのコントローラの機能を支援する、及び/又は、任意の他の適切な機能を有効化する、機械学習技術を実装するように機能することができる。コントローラは、自律エージェントのルーティング目標及び自律エージェントの選択されたポリシーに従って、自律エージェントを制御するための制御信号を生成するために利用される任意の適切なソフトウェア及び/又はハードウェアコンポーネント(例えば、プロセッサ及びコンピュータ可読記憶装置)を含み得る。
【0040】
[0046] ある変形例では、制御システムは、この参照によってその全体が本明細書に組み込まれる2019年8月14日に出願された米国出願第16/540,836号に記載された専用アービタ(例えば、アービタ回路)のいずれかなどの自律エージェントの1以上のより低いレベルの運転機構に1以上の制御信号を選択的に渡す制御信号の専用アービタを含む。アービタは、追加又は代替として、後述する方法などを通じて、ポリシーを管理及び/又は実装するように機能することができる。
【0041】
[0047] 追加又は代替として、システムは、センサ融合システム、測位システム(例えば、センサシステムの位置センサを含む)、誘導システム及び/又は任意の適切なコンポーネントのいずれか又はすべてを含み得る。ある変形例では、例えば、センサ融合システムは、センサデータを合成及び処理し、かつ、マルチポリシー決定モジュールとともに、オブジェクトの存在、位置、分類及び/又は経路並びに自律エージェントの環境の特徴を予測する。さまざまな実施形態では、センサ融合システムは、これらに限定されないが、カメラ、LIDAR、レーダ、インフラストラクチャデバイス、リモートデータフィード(インターネットベースのデータフィード)及び/又は任意の数の他のタイプのセンサを含む、複数のセンサ及び/又はデータソースからのデータを組み込むように機能し得る。
【0042】
[0048] 測位システムは、センサデータを他のデータとともに処理して、環境に対する自律エージェントの位置(例えば、マップに対するローカル位置、道路の車線に対する正確な位置、車両の進行方向、速度など)を決定し、これによって、(例えば、後述するように)どのようなポリシーが自律エージェントによって利用可能であるかを決定するために機能することができる。誘導システムは、センサデータを他のデータとともに処理して、車両が辿るべき経路を決定することができる。
【0043】
[0049] システムは、任意選択的に、1以上の遠隔テレオペレータ及び関連のコンポーネントを参照するテレオペレータプラットフォーム(例えば、自律エージェント、コンピューティングシステム、自律エージェント及び/又はインフラストラクチャデバイスからテレオペレータに情報を表示するための出力デバイス、テレオペレータからの命令/コマンドを受信するための入力デバイスとの通信インタフェースなど)と連動することができる。テレオペレータプラットフォームは、テレオペレータからの入力を受信するように機能することができ、これは、車両のキュレーションされたポリシーの決定において少なくとも部分的に使用され得る。
【0044】
[0050] 追加又は代替として、システム100は任意の他の適切なコンポーネントを含み得る。
【0045】
4.方法200
[0051]
図2に示すように、動的ポリシーキュレーション方法200は、入力のセットを収集するステップS210と;入力のセットを処理するステップS220と;入力のセットを処理するステップに基づいて利用可能なポリシーのセットを決定するステップS230と、を含む。追加又は代替として、方法200は、1以上のポリシーに関連付けられたリスクを決定するステップ;利用可能なポリシーが多すぎることを決定し、利用可能なポリシーの数を減らすステップ;ポリシーを実装するステップS240;及び/又は、任意の他の適切なプロセスのいずれか又はすべてを含み得る。
【0046】
[0052] 方法200は、どのポリシーが自律エージェントに利用可能であるかを動的に決定するように機能し、これにより、続いて、ポリシーを選択するために必要なコンピューティング資源の削減;車両によって選択されたポリシーが自律エージェントの環境に最適であることの確保;自律エージェントが利用可能な多様で多数の一般的なポリシーのセットの可用性;及び/又は、任意の他の適切な機能の実行、のいずれか又はすべてを可能にする。
【0047】
[0053] 方法200は、好ましくは、自律エージェントのすべての選択ステップ(例えば、すべての意思決定ステップ)など、自律エージェントの動作全体にわたって連続的に実行される。追加又は代替として、方法200は、トリガに応答して(例えば、テレオペレータ入力に基づく、自律エージェント環境の変化の検出、自律エージェントのマップ領域の遷移の検出、自律エージェントの動作条件の変化の検出など);ランダムな時間間隔で;及び/又は、任意の他の適切な時点に、既定の頻度で実行され得る。
【0048】
[0054] 具体例では、方法200は、既定の頻度(例えば、毎秒4回、毎秒1回、毎秒2回、毎秒3回、毎秒5回、毎秒1~5回、毎秒1~10回、毎秒10~50回、毎秒50回超えなど)に関連付けられた選択サイクルに従って実行される。追加又は代替として、選択サイクルは、ランダムな間隔に基づいて規定され得る、及び/又は、他の方法で規定され得る。さらに追加又は代替として、方法200は他の方法で実行され得る。
【0049】
[0055] 方法200は、好ましくは、上述したようなシステム100によって実行されるが、追加又は代替として、任意の適切なシステムによって実行され得る。
【0050】
[0056] 方法200を実行することは、好ましくは、マルチポリシー意思決定プロセスのコンテキスト内などで、1以上のルールベースのプロセスを実装するステップを含むが、追加又は代替として、ディープラーニングプロセス(例えば、ニューラルネットワーク、畳み込みニューラルネットワークなど)及び/又は任意の他の適切なプロセスを含むがこれらに限定されない1以上の機械学習プロセスなどを通じて、他の方法で実装され得る。
【0051】
4.1 方法-入力のセットを収集するステップS210
[0057] 方法200は、入力のセットを収集するステップS210を含み、このステップは、どのようなポリシーが自律エージェントに利用可能であるかを適切に決定及び/又は優先順位付けするように機能する。追加又は代替として、S210は、ポリシーを選択し、意思決定に使用するために1以上のエンティティ(例えば、テレオペレータプラットフォーム)に情報を提供し、及び/又は、任意の他の適切な機能を実行するように機能することができる。
【0052】
[0058] S210は、好ましくは、方法200で最初に実行され、かつ任意選択的に、連続的に、既定の頻度で(例えば、各選択サイクルで)、既定の間隔のセットで、ランダムな間隔のセットで、及び/又は、任意の他の時点に、のいずれか又はすべてなどで、自律エージェントの動作中に複数回実行される。追加又は代替として、S210は、トリガに応答して、方法200中に1回、方法200の別のプロセスに応答して、方法200の別のプロセスと並行して、及び/又は、任意の他の時点に実行され得る。
【0053】
[0059] 好ましい変形例のセットでは、例えば、入力のセットは、車両移動全体で(例えば、自エージェントの選択サイクルの各選択ステップで)連続的に収集されるが、追加又は代替として、上述した時点のいずれかで収集され得る。
【0054】
[0060] 入力は、好ましくは、自律エージェントの少なくともセンサシステム(例えば、車両の位置センサ、車両に搭載されたカメラのセット、車両に搭載されたレーダセンサのセット、車両に搭載されたlidarセンサのセットなど)から収集されるが、追加又は代替として、インフラストラクチャデバイスのセンサシステム、テレオペレータプラットフォーム、サードパーティセンサ、1以上のデータベース(例えば、サードパーティデータベース、気象データベース、交通データベースなど)のいずれか又はすべてから、及び/又は、任意の他の適切なソースから収集され得る。
【0055】
[0061] 好ましい変形例では、入力には、(例えば、連続的に収集された)車両の位置が含まれ、この車両の位置は、後述する1以上のマップ内で車両の位置を特定するために使用され、かつその後、エージェントの位置に基づいてエージェントのポリシーを動的にキュレーションするために使用される。車両の位置は、位置座標(例えば、GPS座標)の形式であることが好ましく、位置座標はその後に(例えば、後述するような)1以上のマップを用いて参照されるが、追加又は代替として、任意の他の適切な位置情報が含まれ得る。追加又は代替として、車両の位置は他のセンサ情報(例えば、カメラ情報、他の情報(例えば、路面の垂直特性))に基づいて決定され得る、及び/又は、車両の位置は任意の他の適切な方法で決定され得る。
【0056】
[0062] 追加又は代替として、動作情報(例えば、エージェント速度及び/又はスピード、エージェント加速度);方向情報(例えば、エージェントのヨー角、姿勢など);一時的な情報(例えば、時計から、車両が昼及び夜のどちらで走行しているかを決定するため、車両がラッシュアワー中に走行しているかどうかを決定するためなど);環境情報(例えば、1以上のカメラ及び/又はレーダセンサ及び/又はlidarセンサから);及び/又は、任意の他の適切な情報のいずれか又はすべてなどの任意の他の適切なセンサ情報が収集され得る。
【0057】
[0063] エージェントの環境条件(例えば、照明、雨など)に関連する1以上の入力が、さらに好ましくは、(例えば、連続的に)収集され、これは、エージェントの状況認識を定義し、かつ、考慮のためにポリシーを組み込み、ポリシーを考慮から除外し、及び/又は、エージェントが利用可能なポリシーのセットをキュレーション及び/又は優先順位付けするように機能することができる。具体例では、例えば、環境条件に基づいて(例えば、まぶしいので、照明条件が不十分であるので、豪雨により、雪に覆われたので、視野を遮るオブジェクトに基づいてなど)1以上のセンサ(例えば、光学センサ、カメラ、レーダセンサ、lidarセンサなど)の視野が遮られていることを決定することは、いくつかの行動ポリシーが考慮から除外されるべきかどうか(例えば、右カメラが遮られている場合の右折)、いくつかのポリシーが考慮に追加されるべきかどうか(例えば、障害物を排除するポリシー、まぶしさを軽減するための車線変更など)、(例えば、テレオペレータから)他の入力が受信されるべきかどうかを決定するために使用され、及び/又は、これらの入力は別の方法で使用され得る。これらの入力(及び本明細書で説明する任意の他の入力)は:センサシステム;サードパーティツール(例えば、クライアントアプリケーション)、サイト及び/又はデータベース(例えば、オンラインの天気情報、リアルタイムの交通情報など);ユーザ入力(例えば、集約されたユーザ入力、テレオペレータ入力、オンボードオペレータ入力など);履歴情報;及び/又は、任意の他の適切なソースで収集された情報、のいずれか又はすべてから収集され得る。
【0058】
[0064] 追加又は代替として、(例えば、上述したような)監視オブジェクトの特性(例えば、位置、速度、予測された特性など);自エージェントに対する監視オブジェクトの近接性(例えば、周囲の車両、近くの歩行者など);自エージェントに対する潜在的な障害物;道路ランドマーク(例えば、信号機、車線の境界など)への自エージェントの近接性;インフラストラクチャデバイスから収集された入力;及び/又は、任意の他の適切な入力などの、車両の周囲に関する1以上の入力が収集され得る。
【0059】
[0065] ある変形例では、例えば、自エージェントの環境において監視オブジェクト(例えば、車両、歩行者、他のオブジェクトなど)に関連付けられた1以上の特徴を決定するために使用される入力が収集される。特徴は、好ましくは、監視オブジェクトに関連付けられた位置及び速度を含むが、追加又は代替として、方向(例えば、方位、姿勢など)、加速度及び/又は任意の他の特徴のいずれか又はすべてを含み得る。特徴は、実際の特徴、推定された特徴、予測された特徴(例えば、将来の監視オブジェクトの特徴など)及び/又は任意の他の特徴のいずれか又はすべてを含み得る。監視オブジェクトに関連付けられた入力は、好ましくは、自エージェントのセンサシステム(例えば、カメラ、レーダセンサ、lidarセンサ、近接センサなど)から収集されるが、追加又は代替として、(例えば、インフラストラクチャデバイスに搭載された、監視オブジェクト自体に搭載されたなど)別のセンサシステム、データベースを用いて収集され得る、監視オブジェクト自体から受信される、及び/又は、他の方法で任意の他の適切なソースから受信され得る。
【0060】
[0066] 具体例のセットでは、自エージェントに最適なポリシーを選択するために(例えば、MPDMモジュールで実行されるシミュレーションのセット内の監視オブジェクトの意図推定を通じて)、監視オブジェクトに関連付けられた特徴が、(例えば、後述するような)MPDMモジュールで最終的に使用される。
【0061】
[0067] この参照によってその全体が本明細書に組み込まれる2019年7月8日に出願された米国出願第16/505,372号に記載された1以上のヘルスモニタなどからの(例えば、自律エージェントの、インフラストラクチャデバイスなどの)センサヘルスに関する情報;自律エージェントのコンポーネント(例えば、制動システム、ステアリングシステム、制御システムなど)及び/又はインフラストラクチャデバイスに関連付けられた性能特性;及び/又は、任意の他の適切な情報のいずれか又はすべてなどの、車両コンポーネントのヘルスに関する1以上の入力が追加又は代替として収集され得る。
【0062】
[0068] (例えば、上述したような)ある変形例では、1以上のインフラストラクチャデバイス(例えば、路側ユニット)のセンサが使用されて:特定の信号機の状態に関する知識;エージェント状態及びエージェントの周囲又は潜在的な周囲の知識(例えば、エージェントがオンボードセンサから検出することができない角の周りの視野);及び/又は任意の他の適切な情報のいずれか又はすべての情報を通信することができる。ポリシーを動的にキュレーションすることの一部として、ポリシーを動的にキュレーションすることに加えて及び/又はポリシーを動的にキュレーションすることの代替として、インフラストラクチャデバイスは、潜在的なポリシーに関連付けられたリスクを評価するように機能することができる。これは、キュレーションされたポリシーのセット内に特定のポリシーを残し、キュレーションされたポリシーのセットからポリシーを削除し、テレオペレータの入力がトリガされるべきかどうかを決定し、及び/又は、任意の他の適切な機能を実行することを可能にするように機能することができる。具体例の第1セットでは、インフラストラクチャデバイスは、(例えば、MPDMモジュールでの)自エージェントによる考慮のためにキュレーションされたセットから1以上のポリシーを追加、保持及び/又は削除するように機能することができる。一例では、例えば、自エージェントのカメラの視野が遮られたためにセットから排除された可能性のあるポリシーは、インフラストラクチャデバイスのカメラが、遮られた領域の視野を有している場合に考慮のために残り得る(例えば、遮られた領域に監視オブジェクトが存在しないことを示す)。別の例では、例えば、セットに含まれていた可能性のあるポリシーは、インフラストラクチャデバイスが、エージェントがそのポリシーを実装する(例えば、右折する)際に遭遇するある領域の交通渋滞又はその他の遅延(例えば、建設区域)があることを検出することに基づいて、考慮から除外され得る。追加又は代替として、インフラストラクチャデバイスが他の方法で使用されてポリシーのいずれか又はすべてを通知することもできる。
【0063】
[0069] 入力は、任意選択的に、安全ドライバなどのオンボードオペレータ及び/又はテレオペレータなどのリモートオペレータからの1以上のコマンド又は他の情報を含み得る。これには、例えば、リスクの高いポリシー及び/又はそうでなければまれなポリシーなど、エージェントがそれ自体を選択することができない又は選択しないポリシーを考慮及び/又は選択するためのエージェントのための許可が含まれ得る。具体例では、例えば、テレオペレータは、エージェントがそうすることが安全であると決定した場合に、エージェントが、その前方をゆっくりと移動する車両を追い越すことができるという入力を提供する。オペレータから受信されたコマンド及び/又は許可は、好ましくは、方法のその後のプロセス及び/又はシステムのマルチポリシー意思決定モジュール(例えば、他の利用可能なポリシーでシミュレーションされる)で、他の利用可能なポリシーを用いて処理されるが、追加又は代替として、さらなる処理がなくても(例えば、オーバーライド方式で)選択され得る。
【0064】
[0070] ある変形例では、(例えば、後述するような)分類モジュールなどを用いて、特定のシナリオの検出に応答してテレオペレータに警告が送信され、テレオペレータの入力が要求される。
【0065】
[0071] 入力のセットは、追加又は代替として、(例えば、上述したような)1以上のコンピューティングシステムからの入力、履歴情報(例えば、学習したフリートの知識、集約された情報など)、1以上のサーバ及び/又はデータベース(例えば、ルックアップテーブル)からの情報及び/又は任意の他の適切な入力のいずれか又はすべてを含み得る。
【0066】
[0072] 第1変形例では、S210は、自エージェントに搭載されたセンサシステムからセンサ入力のセットを受信するステップを含み、センサ入力のセットは、自エージェントに関連付けられた位置情報を少なくとも含み、この位置情報は、(例えば、マップに基づいて)エージェントが利用可能なポリシーのセットを決定する方法の後続のプロセスで使用され得る。
【0067】
[0073] 入力のセットは、追加又は代替として、任意の他のセンサシステム(例えば、インフラストラクチャデバイスのセットのセンサ、他のエージェントからのセンサなど)、情報ソース(例えば、データベース、サードパーティシステムなど)、テレオペレータ及び/又は任意の他の情報ソースから受信され得る。
【0068】
[0074] 入力のセットは、追加又は代替として、速度情報、加速度情報及び/又は任意の他の動作情報などの自エージェントに関連付けられた動作情報;方向情報(例えば、方位、姿勢など);センサヘルス情報;履歴情報;及び/又は任意の他の情報のいずれか又はすべてをさらに含み得る。
【0069】
[0075] 入力のセットは、さらに追加又は代替として、自エージェントの環境内の1以上の監視オブジェクトに関連付けられた情報(例えば、位置情報、方向情報、動作情報など)を決定するための入力を含み得る。監視オブジェクトに関連付けられた入力は、好ましくは、自エージェントに搭載されたセンサシステムで少なくとも部分的に収集されるが、追加又は代替として、インフラストラクチャデバイス、監視オブジェクトに搭載されたセンサ、及び/又は、任意の他のコンポーネントから受信され得る。
【0070】
[0076] 第1変形例の具体例では、S210は、自エージェントのセンサのセットからセンサ入力のセットを収集するステップを含み、センサのセットは、自エージェントに搭載されて配置された(例えば、自エージェントの外部に取り付けられた、自エージェントの内部に取り付けられた、その両方に取り付けられたなどの)カメラのセット、及び任意選択的に、エージェントに搭載された任意の他のセンサ(例えば、位置センサ、速度計、加速度計、慣性計測装置など)を含み、センサ入力は、方法の後続のプロセスで自エージェントに関連付けられたポリシーのセットを決定するために使用される。
【0071】
[0077] 追加又は代替として、S210は任意の他の適切なプロセスを含み得る。
【0072】
4.2 方法:入力のセットを処理するステップS220
[0078] 方法200は、入力のセットを処理するステップS220を含み、このステップは、エージェントがどのポリシーを利用可能であるかを決定するように機能する。追加又は代替として、S220は、(例えば、テレオペレータからの)さらなる情報の収集をトリガするように機能することができ、及び/又は、任意の他の機能を実行することができる。
【0073】
[0079] S220は、好ましくは、S210に応答してかつS210に基づいて実行されるが、追加又は代替として、方法200の任意の他のプロセスに応答して、方法200の任意のプロセスの前に、方法200の任意の他のプロセスと並行して及び/又は任意の他の適切な時点に、実行され得る。さらに追加又は代替として、S220は、トリガに応答して、及び/又は、任意の他の時点に、自エージェントの動作中に複数回(例えば、既定の選択サイクルで、S210の各反復に応答して、連続的に、既定の頻度で、ランダムな間隔で、など)実行され得る。
【0074】
[0080] S220は、好ましくは、(例えば、上述したような)エージェントのオンボードコンピューティングシステム及び/又は処理システムを用いて実行されるが、追加又は代替として、他の適切なコンピューティングシステム(例えば、リモートコンピューティングシステム)、テレオペレータ又はオンボードオペレータによって実行され得る、及び/又は、任意の他の適切なコンポーネントを用いて実行され得る。
【0075】
[0081] S220は、S210で受信された入力のセットを処理して、自エージェント、監視オブジェクトのセット、環境条件のセット及び/又は任意の他の特徴及び/又はパラメータのいずれか又はすべてに関連付けられた特徴及び/又はパラメータのセットを決定するステップを含み得る。これには、例えば、未加工のセンサデータを処理して、上述した情報(例えば、動作情報、位置情報など)及び/又は任意の他の特徴又はパラメータのいずれか又はすべてを決定する(例えば、導出する、方程式のセット及び/又はアルゴリズムに基づいて計算する、モデルのセットを用いて決定するなどの)ステップが含まれる。入力は、方程式(例えば、動的方程式)のセット、アルゴリズム、ルール、モデル、ルックアップテーブル及び/又はデータベース及び/又は任意の他のツールのいずれか又はすべてを用いて処理され得る。
【0076】
[0082] S220は、好ましくは、入力のセット(及び/又は入力のセットに基づいて決定された特徴又はパラメータ)をルールのセットを用いて処理するステップを含み、ルールのセットは、エージェントがどのポリシーを利用可能であるか及び/又はエージェントがどのポリシーを利用可能でないかを規定する。ルールは、マッピングのセット(例えば、ルックアップテーブル及び/又はデータベースのセットに従って使用される)、決定木、方程式及び/又は任意の他のコンポーネントのいずれか又はすべてを含み得る。追加又は代替として、入力は、モデルのセット(例えば、ディープラーニングモデル、機械学習モデル、訓練済みモデルなど)、アルゴリズム及び/又は任意の他のツールを用いて処理され得る。
【0077】
[0083] 好ましい変形例のセットでは、ルールのセットを用いて入力及び/又は特徴又はパラメータのセットを処理するステップは、自エージェントの位置を1以上のマップのセットと比較するステップを含み、マップは、その位置に応じてエージェントがどのポリシーを利用可能であるかを規定する。エージェントが利用可能なこれらのポリシーは、他の入力又は後述する情報(例えば、テレオペレータの許可、時刻及び/又はエージェントの周囲及び/又は天候などの状況情報など)に基づいて、さらに改善(例えば、縮小される、拡張される、など)され得る、及び/又は、他の方法でさらにキュレーションされ得る。
【0078】
[0084] 追加又は代替として、方向情報及び/又は任意の他の情報などの、(例えば、上述したような)任意の他の入力がマップと比較され得る。
【0079】
[0085] マップは、好ましくは、手作業でラベル付けされたマップであり、マップ内の領域のセットの各々に対してポリシーのセットが(例えば、マップに対応するルックアップテーブルで)規定される。領域に対して規定されたポリシーのセットは、任意選択的に、以下のいずれか又はすべてに基づいて決定され得る:領域内の車線のタイプ(例えば、内側車線、外側車線、4車線高速道路の左端車線、4車線高速道路の右端車線、4車線高速道路の左中央車線、4車線高速道路の右中央車線)、領域内の車線に関連付けられた車線区分線(例えば、実線の車線、破線の車線、黄色の車線、白色の車線など)、領域に関連付けられた交通標識(例えば、信号機、交通標識、一時停止標識、譲れ標識など)、領域に関連付けられた交通法(例えば、制限速度)、領域に関連付けられた道路の特徴(例えば、道路の曲率、ラウンドアバウトなど)、領域に関連付けられたゾーン(例えば、文教地区、病院地区、住宅地区など)及び/又は領域に関連付けられた任意の他の特徴。
【0080】
[0086] 追加又は代替として、マップに関連付けられたポリシーのいずれか又はすべてが(例えば、訓練済みモデルのセットを用いて)動的に決定され得る。
【0081】
[0087] 追加又は代替として、ポリシーのセットは、その位置及び/又は同様の状況(例えば、同様の時刻、同様の天気など)における他の車両の行動に基づいて決定され得る。ある変形例では、例えば、他の車両がその領域で現在どのように走行しているかに基づいて、及び/又は、他の車両がその領域で過去にどのように走行してきたかに基づいて、ポリシー(例えば、行動、行動に関連付けられたパラメータなど)が選択され得る。
【0082】
[0088] マップに基づいてポリシーを決定するステップは、任意選択的に、1以上のジオフェンシングプロセスを実装するステップを含み得、特定のポリシーのセットに関連付けられた領域に入るのに応答して、かつ、車両の位置に基づいて、エージェントが利用可能なポリシーを動的に調整するステップが実行される。追加又は代替として、自エージェントが特定の領域内に配置されたことを検出するために、任意の他のプロセスが実装され得る。さらに追加又は代替として、各選択サイクルで自エージェントについて位置が決定され得、その位置は、その後にマップと比較され、かつ、利用可能なポリシーのセットを決定するために使用される。
【0083】
[0089] 方法は、任意選択的に、履歴情報に基づいて、訓練されたモデルのセットに基づいて、ラベル付けプロセスに基づいて、及び/又は、任意の他のプロセスに基づいて、マップのセット及び関連付けられたポリシー割り当てを決定するステップを含み得る。
【0084】
[0090] S220は、任意選択的に、自エージェントに関連付けられた状況認識(本明細書では同等に状況及び/又は環境認識ともいう)を決定するために、入力のセットのいずれか又はすべてを処理するステップを含み得、これは、自エージェント及び/又は(例えば、後述するような)他のエージェント又はオブジェクトが利用可能なポリシーのセットを改善する(例えば、より利用可能なポリシーを追加する、ポリシーを削除する、ポリシーを切り替えるなど)、及び/又は、他の方法で決定するために使用され得る。状況認識は、好ましくは、センサ情報、さらに好ましくは、自エージェントに搭載されたセンサからの少なくともセンサ情報に関連付けられる(例えば、それに基づいて決定される)が、追加又は代替として、インフラストラクチャデバイスからのセンサ情報、他のエージェントで収集されたセンサ情報及び/又は任意の他のセンサ情報に基づいて決定され得る。追加又は代替として、エージェントの状況認識は、センサヘルス情報、環境情報(例えば、気象情報、時刻など)及び/又は任意の他の情報に基づいて決定され得る。
【0085】
[0091] ある変形例では、例えば、エージェントの状況認識は:自エージェントに搭載されたカメラのセット、自エージェントに搭載されたレーダセンサのセット、自エージェントに搭載されたlidarセンサのセット及び/又は任意の他のセンサのいずれか又はすべてなどからの、エージェントの視野を示す。追加又は代替として、自エージェントの視野は、インフラストラクチャデバイスのセットに搭載されたセンサ(例えば、カメラ)から収集された情報に基づいて(例えば、補足されて)、及び/又は、任意の他の情報に基づいて決定され得る。具体例の第1セットでは、例えば、エージェントの状況認識は、(例えば、別のエージェント又はオブジェクトによって、太陽からのまぶしさによって、大雨によって、光の不足によって、など)エージェントの視野が遮られていることを示し得、これは、その後、(例えば、後述するように)エージェントが利用可能なポリシーの改善につながり得る。
【0086】
[0092] 変形例の第2セットでは、第1変形例の追加又は代替として、エージェントの状況認識は、センサヘルス情報(例えば、センサヘルス状態、センサ較正状態、センサ使用年数、オン/オフ状態などのセンサ動作状態など)に基づいて示すことができ、センサヘルス情報は、1以上のセンサから収集されたデータを信頼することができない自エージェントのセンサに関連付けられ(例えば、センサが誤動作している、センサが故障している、センサが較正されていない、など)、これは、その後にエージェントが利用可能なポリシーの改善をもたらし得る(例えば、そのセンサの実行を必要とするポリシーを削除する、そのセンサなしで実行すると危険なポリシーを削除する、など)。
【0087】
[0093] 上述したものの追加又は代替としての変形例の第3セットでは、状況認識は、自エージェントの環境に関連付けられた環境情報に基づいて決定され得、これは、例えば、以下のいずれか又はすべてを含み得る:自エージェントが走行している時刻;時刻(例えば、光の量、周囲の明るさ、交通量など)に関連付けられた(例えば、履歴情報に基づいて、気象データベースに基づいて、など)特徴;気象条件(例えば、雨、雪、みぞれ、霧、曇天、晴天など);交通状況(例えば、交通量が多い、交通量が少ない、など);及び/又は、任意の他の情報。環境情報のいずれか又はすべては、(例えば、動的に更新されたルックアップテーブルに基づいて、動的に更新されたデータベースに基づいて、サードパーティのウェブサイト及び/又はセンサ及び/又はデータベースに基づいて、センサ情報に基づいて、など)動的に決定され得る、(例えば、既定のルックアップテーブル、データセット及び/又はルールのセットなどに基づいて)事前に決定され得る、及び/又は、任意の組み合わせであり得る。
【0088】
[0094] 追加又は代替として、自エージェントの状況認識は任意の適切な情報に基づいて他の方法で決定され得る。
【0089】
[0095] S220は、任意選択的に追加又は代替として、(例えば、後述するような)自エージェント及び/又は任意の他のエージェント又はオブジェクトに利用可能なポリシーのセットを改善及び/又は他の方法で決定するために使用され得る、自エージェントに関連付けられたシナリオを決定するために入力のセットを処理するステップをさらに含み得る。本明細書におけるシナリオ(本明細書では同等にシーン及び/又はコンテキストともいう)は、エージェントの特定の環境の識別など、エージェントの環境の特定の評価(例えば、分類、カテゴリー分類、割り当てなど)を参照する。シナリオは、例えば、エージェントが、自エージェントがナビゲートするのは困難である、標準的でない及び/又はやや危険であり得るシーン内にある及び/又は近位にいること(例えば、自エージェントの、既定の距離しきい値内、既定の時間内に近づいている、固定経路に沿って、など)を示し得る。シナリオは、好ましくは、以下のいずれか又はすべてなど、(例えば、自エージェントからの、他のエージェントからの、インフラストラクチャデバイスなどからの)センサ情報に基づいて識別される:(例えば、コンピューティングサブシステムの認識モジュールで、コンピューティングサブシステムの予測モジュールで、など)既定のしきい値を超えるセンサ情報に関連付けられた不確定メトリック;センサ情報に基づく1以上の特定のオブジェクト(例えば、建設機械、大勢の歩行者、パレードフロート、車道の大型動物、交通バリケード、発煙筒などの未知及び/又はまれなオブジェクト)の識別;分類子を用いたセンサ情報のシナリオ分類;人間による入力(例えば、テレオペレータによる識別、オンボードオペレータによる識別など);及び/又は任意の他の情報。シナリオの具体例には、以下のいずれか又はすべてが含まれるが、これらに限定されない:建設区域(例えば、建設車両が後退している)、大勢の歩行者(例えば、抗議のために道路に集まっている、大規模なグループで道路を横断している、など)、横断歩道の外側の車道の歩行者、予期しない車線閉鎖、壊れた/電源が入っていない信号機、倒された交通標識、車道の大型動物、路上のオブジェクト(例えば、ショッピングカート、パレードフロートなど)、及び/又は、任意の他のシナリオ。
【0090】
[0096] 好ましい変形例のセットでは、自エージェントに関連付けられたシナリオは、自エージェントのコンピューティングサブシステムの分類モジュールを用いて決定され、分類モジュールは、好ましくは、1以上の分類子(例えば、パーセプトロン分類子、ナイーブベイズ分類子、決定木分類子、ロジスティック回帰分類子、k近傍分類子、ニューラルネットワーク分類子、人工ニューラルネットワーク分類子、ディープラーニング分類子、サポートベクタマシン分類子など)、さらに好ましくは1以上の訓練済み分類子(例えば、機械学習分類子、ディープラーニング分類子など)を含む。追加又は代替として、シナリオは、1以上の訓練されていない分類子、モデル(例えば、機械学習モデル、ディープラーニングモデルなど)、アルゴリズム、決定木及び/又は任意の他のツールを用いて決定され得る。
【0091】
[0097] 例えば、第1セットの例では、自エージェントに搭載された少なくとも1セットのカメラから収集されたセンサ情報の1以上のストリームが、シナリオが存在するかどうかを検出するコンピューティングサブシステムの分類モジュール(例えば、分類子、複数の分類子のセットなど)を用いて(例えば、各選択サイクルで、トリガに応答して、など)処理される。追加又は代替の例では、1以上のインフラストラクチャデバイスからの情報が使用されて(例えば、分類モジュールを用いて)シナリオを分類することができる。具体例では、これは、(例えば、自エージェントの現在の視野の外側で、固定経路及び/又は現在計画されている経路及び/又は自エージェントの潜在的な経路に沿って、など)シナリオが自エージェントの先にあることを検出するように機能することができ、これは、例えば、自エージェントを再ルーティングする、及び/又は、他の方法で自エージェントが利用可能なポリシーのセットを改善する、及び/又は、他の方法で他のプロセスを促進する(例えば、テレオペレータからの入力の要求、自エージェントの環境内の1以上のオブジェクトに関連付けられた特定のポリシーの選択、など)ように機能することができる。
【0092】
[0098] 追加又は代替として、シナリオは、状況情報、(例えば、S210で説明したような)任意の他の入力及び/又は任意の他の情報に基づいて決定され得る。
【0093】
[0099] 追加又は代替として、S220は任意の他の適切なプロセスを含み得る。
【0094】
4.3 方法:入力のセットを処理するステップに基づいて、利用可能なポリシーのセットを決定するステップS230
[00100] 方法200は、入力のセットを処理するステップに基づいて利用可能なポリシーのセットを決定するステップS230を含み、このステップは、自律エージェントがポリシーを選択する際(例えば、マルチポリシー意思決定プロセス)にさらに考慮すべきすべてのポリシーのサブセットを決定及び/又は改善する(例えば、反復して改善する)ように機能する。S230は、追加又は代替として、車両によって考慮されるべきポリシーの数を最小化及び/又は削減するように機能し、それによって、コンピューティング資源及び/又はコンピューティングに関連付けられた待ち時間を最小化し;MPDMモジュールで各ポリシーに対して実行可能なシミュレーションの数を最大化し(例えば、それによって、リスクの最も低い及び/又はそうでなければ最適なポリシーが最終的に選択されることを保証する);及び/又は、任意の他の利益をもたらす。さらに追加又は代替として、S230は、任意の他の適切な機能を実行することができる。
【0095】
[00101] S230は、好ましくは、S220に応答して及びS220に基づいて、かつ、任意選択的に、自エージェントの動作中に複数回実行される。追加又は代替として、S230は、方法200の別のプロセスに応答して、S240及び/又は方法200の任意の他のプロセスの前に、方法200の任意の他のプロセスと並行して及び/又はその一部として、及び/又は、任意の他の時点に、実行され得る。
【0096】
[00102] S230は、好ましくは、利用可能なポリシーの少なくとも一部を決定するために、(例えば、上述したセンサシステムを用いて動的に決定される)エージェント位置に基づいて1以上のマップのセットを参照するステップを含む。マップは、好ましくは、マップのセットで規定された領域のセットの各々に対応するポリシー割り当てのセットを含む。領域は、好ましくは、境界のセット(例えば、ジオフェンスされた境界に対応する、ジオフェンスされた境界がないなど)によって規定され、境界は、任意選択的に、エージェントによって駆動された(例えば、シャトルとして動作する自エージェントについて、固定配送経路を走行する自エージェントについて、など)1以上の潜在的な経路(例えば、既定の経路、動的に決定された経路)に基づいて規定され得る。領域は、独立(例えば、エージェントは一度に1つの領域にのみ存在する)、重複(例えば、エージェントは一度に複数の領域に存在可能であり、領域は、ポリシーごとに決定され、かつ、複数のポリシーが利用可能である場合に重複する)及び/又は任意の組み合わせのいずれか又はすべてであり得る。追加又は代替として、領域は、自エージェントの経路なしで規定され得る(例えば、ライドシェアリング用途のために)及び/又は他の方法で規定され得る。
【0097】
[00103] 変形例の好ましいセットでは、例えば、自エージェントが走行している車線に基づいて、及び任意選択的に、周囲の車線に基づいて1以上の領域が決定される。ある変形例では、各領域は、道路セグメントに沿った単一の車線を含み(例えば、経路セグメントの一部を含む、経路全体を含む、など)、その領域で利用可能なポリシーは、特定の車線及び周囲の車線を考慮に入れる。具体例では、例えば、領域が右車線を含む場合、右折及び左車線変更が、利用可能なポリシーに含まれ、左車線を含む領域では、左折及び右車線変更が、利用可能なポリシーに含まれる。さらに、領域には、信号機、交通標識(例えば、一時停止標識、譲れ標識、一方通行標識、速度制限標識など)、道路の特徴(例えば、スピードバンプ、くぼみ、高速道路の路肩、一方通行道路、双方向通行道路、ラウンドアバウトなど)などのいくつも道路ランドマークが含まれ得、利用可能なポリシーは、これらの道路ランドマークに基づいてさらに決定される(例えば、割り当てられる)。追加又は代替として、領域は、ゾーニング情報(例えば、文教地区、病院地区、住宅地区、商業地区など)及び/又は任意の他の情報を考慮に入れることができる。
【0098】
[00104] ある変形例では、道路セグメントの車線ごとに別個の領域が規定され(例えば、固定経路全体、固定経路の一部、動的に決定された経路のモジュラーコンポーネントなど)、各領域に割り当てられたポリシーが、少なくとも部分的に、その車線の特徴及び周囲に基づいて決定される。具体例では、隣接する車線に方向転換するポリシーは、一方通行道路、複数車線の高速道路又は双方向通行道路の内側車線、右車線領域の左車線、左車線領域の右車線に、及び/又は、任意の他の適切な領域のいずれか又はすべてを含む領域内で利用可能である。
【0099】
[00105] インフラストラクチャデバイスを含む変形例では、マップ割り当ては、任意選択的に追加又は代替として、インフラストラクチャデバイスへの近接性及び/又はインフラストラクチャデバイスによって収集された情報、インフラストラクチャデバイスの状態/ヘルス、及び/又は、任意の他の適切な情報に基づいて決定され得る。ある例では、例えば、1以上のインフラストラクチャデバイスのセットに近接している及び/又は1以上のインフラストラクチャデバイスのセットによって表示可能な位置で自エージェントが利用可能なポリシーのセットは、インフラストラクチャデバイスから離れている及び/又はインフラストラクチャデバイスによって表示不可能な同様の位置よりも潜在的に大きい可能性がある。
【0100】
[00106] 追加又は代替として、境界のいずれか又はすべては、既定の境界(例えば、郡の境界線、市が規定した境界など)に基づいて決定され得る。
【0101】
[00107] マップ内の境界は、好ましくは、(例えば、経路計画中に)静的に決定されるが、追加又は代替として、動的に決定され得る。
【0102】
[00108] ポリシー割り当ては、任意選択的に、(例えば、自律エージェントが、固定経路を走行する自律シャトルとして動作する実装において)エージェント用に計画された1以上の固定経路のセットを考慮することができる。追加又は代替として、自律エージェントは、(例えば、自律ライドシェアの実施形態、自律タクシーの実施形態において、など)非固定経路を走行することができる。
【0103】
[00109] 追加又は代替として、ポリシー割り当ては、過去にエージェントによってどのポリシーが実行されたか、及び、どのポリシーが、成功したか、失敗したか、必要なオンボードオペレータの引き継ぎ、必要なテレオペレータの引き継ぎ、及び/又は、任意の他の適切な情報のデータなどの、集合データ及び/又は履歴データに基づいて決定され得る。
【0104】
[00110] さらに追加又は代替として、ポリシー割り当ては、自エージェントが利用可能なポリシーが道路上の他のエージェントの走行と同様である(例えば、模倣する)ように、その位置及び/又は同様の位置(例えば、同じ車線タイプ、同じ地区タイプ、同じ速度制限など)での他のエージェントの行動に基づいて決定(例えば、選択、改善など)され得る。これらの他のエージェントは、自エージェントとともに道路上にいるエージェント(例えば、自エージェントを取り囲む)、自エージェントよりも前に道路上にいるエージェント(例えば、エージェントのセットから集約された履歴情報に基づいて、自エージェントで収集された履歴情報に基づいて、同じ時刻及び/又は同じ状況で収集されたデータに基づいてなど)、自エージェントと同様の道路上のエージェント、及び/又は、任意の他のエージェントを参照し得る。ある例では、例えば、(例えば、速度制限及び/又は制動距離及び/又は加速などの特定のパラメータセットを用いて)その位置又は同様の位置での他のドライバの行動に基づいてポリシーが選択及び/又は設計される。
【0105】
[00111] マップの各領域には、任意選択的に、他の領域と数が同じである、(例えば、コンピューティング資源に基づいて、待ち時間要件などに基づいて)既定のしきい値を下回る、(例えば、少なくとも1つのポリシーを含む、少なくとも2つのポリシーを含むなど)既定のしきい値を超える、任意の適切な数のポリシーを有する、及び/又は、他の方法で決定される、のいずれか又はすべてのポリシー割り当てが含まれ得る。
【0106】
[00112] S230は、任意選択的に、エージェントが利用可能なポリシーを決定する場合に(例えば、上述したような)1以上の状況特徴をさらに考慮することができる。状況特徴は、好ましくは、エージェントの状況認識に基づいて決定され、これは、エージェントのセンサシステム、インフラストラクチャデバイスセンサシステム、テレオペレータ入力、オンボードオペレータ入力及び/又は任意の他の適切な情報のいずれか又はすべてによって有効にされ得る。これには、例えば、:どんな他の車両エージェントを取り囲んでいるか(例えば、それらが1以上のセンサからエージェントの視野を遮っているかどうか、周囲の車両がどのように走行しているか、など)、エージェントを取り巻く又はエージェントを取り巻くことが予測される環境条件(例えば、照明条件、気象条件、交通状況、時刻など)、及び/又は、(例えば、上述したような)任意の他の適切な環境の特徴のいずれか又はすべての認識が含まれ得る。
【0107】
[00113] ある変形例では、例えば、利用可能なポリシーの第1セットは、マップと車両の位置とに基づいて決定され、利用可能なポリシーは、エージェントの状況認識に基づいてさらに絞り込まれ及び/又は拡張される。具体例では、ポリシーのサブセットは、悪い環境条件(例えば、悪天候、十分な光の不足など)に基づいて(例えば、この選択サイクルでの)考慮のために除外され、及び/又は、ポリシーのセットが、テレオペレータ入力(例えば、エージェントのマルチポリシー意思決定モジュールで考慮するためのリスクの高いポリシーの選択)及び/又はインフラストラクチャデバイス(例えば、自エージェントの前方の道路が空いていることの確認が、妨げられた視野を有している)に基づく利用可能なポリシーのセットに追加される。追加又は代替として、任意の他の情報に基づいてポリシーが追加及び/又は削除され得る。
【0108】
[00114] 状況に関連付けられたポリシーは、好ましくは、ルックアップテーブル(例えば、データベース)に基づいて決定されるが、追加又は代替として、モデル、アルゴリズム、ルールのセット、決定木及び/又は任意の他のツールに基づいて決定され得る。マップに関連付けられたルックアップテーブルに基づいて利用可能なポリシーの第1セットが決定される変形例では、状況情報に関連付けられたルックアップテーブルは:マップルックアップテーブルの一部、マップルックアップとは別個で区別されるもの(例えば、かつ、マップルックアップテーブルに基づいて取得されるもの)、及び/又は、そうでなければ、マップルックアップテーブルに関連する又は独立しているもののいずれか又はすべてであり得る。具体例のセットでは、例えば、マップ内の自エージェントの位置に基づいて自エージェントのポリシーの第1セットが選択され、ポリシーの第1セットは、その環境の自エージェントの認識の信頼性を低下させる状況情報に基づいて、(例えば、同じルックアップテーブル内、別のルックアップテーブル内など)のポリシーの第1セットのサブセットに減らされる。追加又は代替として、ルックアップテーブル以外のツール(例えば、モデル、方程式、決定木など)を用いて、ポリシーのいずれか又はすべてが決定され得る。
【0109】
[00115] S230は、任意選択的に追加又は代替として、自エージェントに関連付けられたシナリオに基づいて、自エージェントが利用可能なポリシーのセットを決定及び/又は改善するステップを含み得る。自エージェントの環境で識別された特定のシナリオは、例えば、セットにポリシーを追加する(例えば、自エージェントがシナリオをナビゲートするのに役立つポリシーを追加する、自エージェントがその特定のシナリオのみを実装するポリシーを追加する、そのシナリオ外の交通規則及び/又は交通条約に違反するポリシーを追加する、など)、セットからポリシーを削除する、まったく新規なポリシーのセットを決定する、及び/又は、エージェントが使用可能なポリシーを他の方法で決定する、ために使用され得る。
【0110】
[00116] S230は、任意選択的に追加又は代替として、エージェントが利用可能なポリシーをキュレーションするために使用され得る任意の種類のユーザ入力を受信することができる。ある変形例では、例えば、エージェントは、自エージェントから離れて配置されたテレオペレータから入力を受信して、利用可能なポリシーのいずれか又はすべてを決定することができる。追加又は代替として、リモートコンピューティングシステムに格納されたディープラーニングモデルの出力などから、人間以外の入力が受信され得る。
【0111】
[00117] 好ましい変形例では、ユーザ入力は、自エージェントによって、自エージェントによる考慮のためのポリシーを承認するために使用され(例えば、システムが人間に許可を求める、リスクの高いポリシーなど)、すなわち、言い換えると、利用可能なポリシーのセットにポリシーを追加するために使用される。追加又は代替として、ユーザ入力は:車両が選択するポリシーを選択すること、選択されたポリシーをオーバーライドすること、(例えば、異常な条件に基づいて)自エージェントによる考慮からポリシーを除外することのいずれか又はすべでのために使用され得る、及び/又は、任意の他の適切な方法で使用され得る。
【0112】
[00118] ある変形例では、例えば、テレオペレータからのユーザ入力の要求は、自エージェントに関連付けられたシナリオ(例えば、任意のシナリオ、特定のシナリオなど)を検出することに応答してトリガされる。具体例では、ユーザ入力の要求は、テレオペレータからの承認を有する自エージェントのみが考慮することができる提案されたポリシーの形式である。追加又は代替として、ユーザ入力の要求には、センサデータ(例えば、テレオペレータが表示するカメラストリーム)、テレオペレータが考慮のために除外する提案されたポリシー(例えば、自エージェントが考慮するポリシーが多すぎる場合)、及び/又は、任意の他の要求が含まれ得る。
【0113】
[00119] 利用可能なポリシーは、好ましくは、S230で少なくとも部分的に、1以上のマップ(例えば、状況認識を説明するためにセンサ値を考慮に入れる)及び/又はマップによって参照されるルックアップテーブルに割り当てられる(例えば、コード化される)ポリシーの既定のセットに基づいて決定される。追加又は代替として、ポリシーを決定するステップには:ルールのセットを評価する、決定木を評価する;(例えば、状況認識に基づいて、既定の重みに基づいて、動的に決定された重みに基づいて、アルゴリズムを用いて、など)入力のセットのいずれか又はすべてを重み付けする;1以上のアルゴリズム又はモデルを実装する、1以上の確率論的及び/又は統計的手法(例えば、ベイズ法)を実装する;のいずれか又はすべてが含まれ、及び/又は、利用可能なポリシーは任意の他のツールを用いて決定され得る。
【0114】
[00120] S230は、任意選択的に、利用可能なポリシーを減らす及び/又は優先順位付けするように機能することができる、1以上のポリシーに関連付けられたリスクを決定するステップ(例えば、ルックアップテーブルから参照する、計算する、など)を含み得る。ある変形例では、例えば、ポリシーについてリスクが計算及び/又は参照され、既定のしきい値を超えるリスクを有するポリシーは利用可能なポリシーのセットから除外される。追加又は代替として、リスクが既定のしきい値を超える場合、テレオペレータは、リスクがしきい値を超えるポリシーを有効にするための入力を受信するように促され得る。
【0115】
[00121] S230は、任意選択的に、(例えば、コンピューティング資源に基づいて、既定のしきい値に基づいて、など)エージェントが利用可能なポリシーが多すぎること、及び/又は、1以上のポリシーのリスクが高すぎることを決定するステップを含み得、1以上のポリシーはその後、考慮から除外される。ポリシーは、計算されたリスク値、ユーザ入力、履歴データ、ランク付けされたポリシーのリスト、ランダムな除外プロセス、各ポリシーに関連付けられたコンピューティング要件いずれか又はすべてに基づいて、及び/又は、任意の他の特徴に基づいて、除外され得る。
【0116】
[00122] さらに追加又は代替として、ポリシー割り当てのいずれか又はすべては、1以上の機械学習モデル、ディープラーニングモデル、予測アルゴリズム及び/又は任意の他の適切なツールに基づいて決定され得る。
【0117】
[00123] S230は、任意選択的に、自エージェントの環境内の監視オブジェクトのセットのいずれか又はすべてに関連付けられたポリシーのセットを決定する(例えば、予測する)ステップを含み得る。これらのポリシーはその後、例えば、(例えば、後述するように)MPDMモジュールに従って利用可能なポリシーのセットの各々に関連付けられたシミュレーションを実行する際に使用され得る。具体例では、例えば、自エージェントの環境内の監視オブジェクト(例えば、自エージェントによって知覚可能なすべてのオブジェクト、既定の距離しきい値内にあるすべてのオブジェクトなど)のセットの各々にポリシーを割り当てるステップは、MPDMモジュールのシミュレーションで使用される意図推定プロセスの一部であり得る。
【0118】
[00124] 追加又は代替として、(例えば、監視オブジェクトに関連付けられた位置及び/又は速度情報のみを用いて)割り当てられたポリシーがなくても意図推定が実行され得る、MPDMモジュールは他の適切な方法で実装され得る、方法は、MPDMモジュールがなくても実行され得る、及び/又は、方法は、他の方法で適切に実行され得る。
【0119】
[00125] 追加又は代替として、S230は、任意の他の適切なプロセスを含み得る。
【0120】
[00126] 第1変形例では、S230は、エージェントの動的に決定された位置に基づいてマップのセットを参照するステップであって、位置は、エージェントが配置されるマップの領域を指定する、ステップと;領域に基づいて、エージェントが利用可能なポリシーのセットを決定するステップであって、利用可能なポリシーは、ルールベースのアプローチに基づいて決定され、ルックアップテーブルから参照される及び/又は他の方法で決定される、のいずれか又はすべてであり得る、ステップと;エージェントの状況認識に基づいて(例えば、エージェントのセンサシステムに基づいて、インフラストラクチャデバイスのセンサシステムに基づいて、テレオペレータの入力に基づいて、など)利用可能なポリシーをさらにキュレーションするステップと;自エージェントの環境における特定のシナリオの検出に基づいて利用可能なポリシーをさらにキュレーションするステップと;任意選択的に、ポリシーの数が多すぎる場合、利用可能なポリシーの数を減らすステップと;かつ任意選択的に、1以上の利用可能なポリシー及び/又はエージェントが現在利用不可能な高リスクポリシーに関するテレオペレータの入力を受信するステップであって、利用可能なポリシーのセットはテレオペレータ入力に基づいてさらに改善され得る、ステップと、を含む。
【0121】
[00127] 具体例では(例えば、
図5A及び
図5Bに示すように)、マップは、領域A~Gのいずれか又はすべてなど、任意の適切な領域又は領域の組み合わせを含み得る。各領域で利用可能なポリシーは、以下のいずれか又はすべてに基づいて決定され得る:(その領域内に配置されている車両に基づいてポリシーのセットを統計的に割り当てる;領域内の車両の特定の位置及びルールのセットに基づいてポリシーのセットを動的に割り当てる;ルールのセット及び/又はアルゴリズムを割り当てる、など)ルックアップテーブルを参照するステップ;(例えば、車両の位置を含む入力のセットに基づいて;マップの各領域のポリシーのハードコーディングなどに基づいて)ルールのセット及び/又はアルゴリズムを評価するするステップ;モデルのセット(例えば、ディープラーニングモデル)を評価するステップ;エージェントの環境認識及び/又は状況認識に基づいて利用可能なポリシーのセットを決定及び/又は調整するステップ;テレオペレータ入力に基づいてポリシーを促進し、決定し及び/又は更新するステップ;及び/又は、任意の他の適切な方法で利用可能なポリシーを決定するステップ。
【0122】
[00128] 追加又は代替の具体例では、S230は、自エージェントの環境内の監視オブジェクトのセットのいずれか又はすべてにポリシーを割り当てるステップを含み得る。これらの監視オブジェクトに割り当てられたポリシーは、好ましくは、監視オブジェクトに関連付けられた位置、速度及び/又はセマンティック(例えば、オブジェクト分類)情報に基づいて決定され、かつ、自エージェント及び/又はインフラストラクチャデバイスから収集されたセンサ情報に基づいて決定される。
【0123】
[00129] 第1変形例に対する追加又は代替としての第2変形例では、S230は、自エージェントに関連付けられた状況認識に基づいて自エージェントの位置に関連付けられた(例えば、マップに割り当てられた)ポリシーのセットを改善するステップを含み、状況認識は、好ましくは、自エージェントのセンサ及び/又はシステムに関連付けられた他のセンサ(例えば、インフラストラクチャデバイスのセンサ)に関連付けられるが、追加又は代替として、1以上のデータベース(例えば、サードパーティデータベース)及び/又は任意の他の情報ソースに関連付けられ得る。具体例では、自エージェントに搭載されたカメラ及び/又はレーダ及び/又はlidarセンサに関連付けられた視野が使用されて、自エージェントの視野に障害物があるか否かを決定し(例えば、その視野を遮る別のオブジェクト、可視性を低下させる気象条件、可視性を低下させる照明条件など)、及び存在する場合、障害物に基づいてポリシーを改善する(例えば、この視野を必要とするポリシーを削除する)。追加又は代替の具体例では、時刻及び/又は(例えば、交通データベース、気象データベースなどからの)他の情報が使用されてポリシーを改善することができる(例えば、夜間に実行されると危険なポリシーを削除する、交通量の多さに関連付けられた時間帯の既定のしきい値を超える速度に関連付けられたポリシーを削除する、交通量の多さに関連付けられた時間帯の既定のしきい値を下回る速度に関連付けられたポリシーを追加する)。
【0124】
[00130] 追加又は代替として、状況認識が使用されて、エージェントの位置及び/又はマップがない場合にポリシーを決定することができ、状況認識が使用されて、状況認識に関連付けられた特定のマップを取得することができ、状況認識が任意の他の情報に基づいて決定され得、状況認識が使用されて新しいポリシーのセットを決定することができ(例えば、位置及び/又はマップに関連付けられたポリシーに関して)、及び/又は、ポリシーは他の方法で決定され得る。
【0125】
[00131] 第3変形例では、第1変形例及び第2変形例の追加又は代替として、S230は、自エージェントの環境で検出されたシナリオに基づいて(例えば、分類子のセットを用いて)ポリシーのセットを改善するステップを含む。場合によっては、例えば、マップ内の自エージェントの位置に基づいてポリシーの第1セットが決定され得、このポリシーの第1セットはその後、自エージェントに関連付けられた状況認識に基づいて任意選択的に改善され、かつその後、シナリオに基づいて(例えば、再び)改善される。追加又は代替として、ポリシーは、別の順序で改善される(例えば、シナリオ及びその後に状況認識に基づいて、状況認識に基づいて規定され、かつその後に位置及びその後にシナリオに基づいて改善されるなど)、この情報のいずれかなしで決定される(例えば、状況認識なしで、位置なしで、シナリオなしでなど)、情報のタイプごとに個別に決定され(例えば、位置対状況認識対シナリオ)、及びその後に、(例えば、すべてのセットにそれらのポリシーのみを含めるために)利用可能なポリシーのセットを決定するために集計される、及び/又は、ポリシーは他の方法で決定され得る。
【0126】
[00132] 第3変形例の具体例において(例えば、
図6A~
図6Cに示すように)では、建設区域のシナリオが、コンピューティングサブシステムに実装された分類子のセットと、自エージェントに搭載されたセンサから及び/又はインフラストラクチャデバイスのセットから収集されたセンサストリームのセットと、を用いて検出される。例えば、分類子は、監視オブジェクトとしての建設機械の不規則な挙動を検出する場合があり、挙動には、例えば、車道で後退する車両、車線に沿っていない方向に走行する車両、車線に沿っていない方向を向けられた車両、人の動き、トラフィックコーンの存在、及び/又は、シナリオに関連付けられた任意の他の兆候などである。シナリオを検出すると、テレオペレータにアラートが送信され、テレオペレータが承認及び/又は拒否することができる自エージェントに対するポリシーが提示され、テレオペレータがポリシーを承認した場合、自エージェントが考慮に利用可能なポリシーのセットにポリシーが追加される。追加又は代替として、テレオペレータは、シナリオを検出及び/又は分類し、及び/又は、そうでなければ1以上のポリシーに関連付けられたフィードバックを提供することができる。
【0127】
[00133] 別の具体例では、S230は、例えば、(例えば、後述するような)MPDMモジュールで使用可能なシナリオに関連付けられた監視オブジェクトに割り当てられた1以上のポリシーを決定及び/又は調整するステップを含み得る。例えば、建設区域のシナリオの場合、建設車両には:その移動のためのより多くのスペース(例えば、より大回り)、後退に関連付けられたより長い距離、その移動のためのより低い速度、及び/又は、任意の他のポリシーのいずれか又はすべてを規定するポリシーが割り当てられ得る。
【0128】
[00134] 別の具体例では、歩行者の大規模なグループが広い横断歩道に存在することを示すシナリオが(例えば、分類子のセットを用いて)検出される。このシナリオの結果として、(例えば、テレオペレータ入力に基づいて、テレオペレータ入力なしでなど)通常許容される人々のより小さい隙間を通って(例えば、横断歩道が完全にクリアである必要はない)自エージェントが移動することを可能にする利用可能なポリシーのセットにポリシーが追加され得、これは、自エージェントが横断歩道でかなりの時間にわたって停止するのを防ぐように機能することができる。
【0129】
[00135] 追加又は代替として、S230は、任意の他のプロセスを含み得る、及び/又は、他の方法で適切に実行され得る。
【0130】
4.4 方法:ポリシーを実装するステップS240
[00136] 方法200は、任意選択的に、選択されたポリシーを自律エージェントが実装することを規定するように機能するポリシーを実装するステップS240を含み得る。S240は、好ましくは、S230に応答して及びS230に基づいて実行され、かつ、任意選択的に、自エージェントの動作中に複数回実行される。追加又は代替として、S240は、方法の任意の他のプロセスに応答して、方法の任意の他のプロセスの前に、方法の任意の他のプロセスと並行して及び/又は方法の任意の他のプロセス中に、方法200中の任意の他の時点に、実行され得る。さらに追加又は代替として、方法200は、S240なしで実行され得る。
【0131】
[00137] S240は、好ましくは、マルチポリシー意思決定(MPDM)モジュールを用いて、S230で決定された利用可能なポリシーのセットからポリシーを選択するステップを含み、MPDMモジュールは、(例えば、シミュレーションのセットを通じて)利用可能なポリシーのセットの各々を評価して、自エージェントによって(例えば、自エージェントの制御システムで)実装されるべきポリシーを選択する。MPDMモジュールは、好ましくは、各ポリシーに関連付けられた1以上のシナリオのセットをシミュレーションすることによって、利用可能なポリシーのセットの各々を考慮する。ポリシーごとのシミュレーションに基づいて、そのポリシーについてスコア又は他のメトリックが決定され得、選択された最終的なポリシーは、そのスコア/メトリック(例えば、安全性の最大スコア、リスクの最小スコアなど)に基づいて選択される。追加又は代替として、MPDMモジュールは、他の方法で、利用可能なポリシーのセットを評価することができる。
【0132】
[00138] さらに追加又は代替として、利用可能なポリシーのセットは、モデルのセット(例えば、機械学習モデル、ディープラーニングモデル、ニューラルネットワークなど)、アルゴリズム、ルールベースのプロセス、決定木、優先リスト、他のスコア及び/又は任意の他のツールのいずれか又はすべてを用いて評価され得る。
【0133】
[00139] 自エージェントとその環境内の監視オブジェクトのシミュレーションを含む変形例では、シミュレーションは、好ましくは、監視オブジェクトのセットに関連付けられた意図推定プロセスに基づいて実行され、意図推定プロセスは、監視オブジェクトに関連付けられた意図(例えば、現在のポリシー、将来のポリシー、現在及び/又は将来のオブジェクトに関連付けられた速度及び/又は位置などのパラメータのセット、他の仮説など)を予測するように機能する。ある変形例では、例えば、MPDMモジュールは、自律エージェントを取り囲む及び/又はインフラストラクチャデバイスを取り囲むエージェントの各々の意図を推測及び/又は識別して、これらのエージェントについて1以上の潜在的な意図を生成するステップを含む。各シミュレーションにおける自エージェントの意図は、好ましくは、そのシミュレーションに対応する利用可能なポリシーのセット内の利用可能なポリシーに対応し、S240は、ポリシーの利用可能なセット内のポリシーごとにシミュレーションのセットを実行するステップを含むが、追加又は代替として、他の方法で決定され得る。
【0134】
[00140] 具体例では、例えば、MPDMモジュールは、自律エージェントによって実行可能な利用可能なポリシーのセットの各々とともに自エージェントの動作環境で識別されたエージェントの各々について、将来の(すなわち、時間を進める)行動ポリシー(動作又はアクション)の影響を推定するように機能するシミュレータ又は同様のマシン若しくはシステムを含む。シミュレーションは、例えば、自エージェントと監視オブジェクトとの間の位置、動き情報及び/又は潜在的な相互関係(例えば、相対位置、相対速度、相対加速度、潜在的な衝突など)に関するデータを提供してもよい。
【0135】
[00141] シミュレーションは、追加又は代替として、監視オブジェクトのセットに関連付けられた予測情報(例えば、意図及び/又は位置及び/又は動き及び/又はセマンティック分類情報のセット)に摂動を加える(perturbing)ステップなど、入力のセットのいずれか又はすべてに摂動を加えるステップを含み得、このステップは、監視オブジェクトが挙動し得るさまざまな方法を考慮に入れるように機能し、それによって、これらの状況のいずれかに照らして安全なポリシーが自エージェントについて選択されることを可能にする。例えば、最小リスクを有するシミュレーションの集合セットに基づいて自エージェントについてポリシーが選択されてもよい(例えば、平均リスクは、他のポリシーのシミュレーションと比較して最小であり、最大リスクシミュレーションは、他のポリシーの最大リスクよりも小さいなど)。追加又は代替として、任意の他の特性(例えば、安全性、目的地までの時間、効率、自エージェントに搭乗している乗客への最小の障害、道路上の他の車両への最小の障害など)が最適化され得る。
【0136】
[00142] シミュレーションの具体例は、2019年7月17日に出願された米国出願第16/514,624号及び2018年3月16日に出願された米国出願第15/923,577号に記載されており、当該出願の各々の全体がこの参照によって本明細書に組み込まれる。
【0137】
[00143] シミュレーションのセットは、好ましくは、利用可能なポリシーのセットのポリシーごとに実行される。シミュレーションのセットは、任意選択的に、複数のシミュレーションを含み得、複数のシミュレーションは、好ましくは、監視オブジェクトのセットについてどのポリシー及び/又は意図が推定されるかにおいて異なるが、追加又は代替として、監視オブジェクトのセットに関連付けられた予測パラメータ(例えば、位置、速度など)において異なり得る、及び/又は、任意の他の点で異なる得る。具体例では、利用可能な各ポリシーは同じ数のシミュレーションを通じて評価されるが、ポリシーは、追加又は代替として、各々に対して実行されるシミュレーションの数で異なり得る、シミュレーションを実行するのに同じ時間を有し得る、シミュレーションを実行するのに異なる時間を有し得る、及び/又は、他の方法で評価され得る。セット内の利用可能な各ポリシーは、好ましくは、ポリシーを選択する前に評価される。追加又は代替として、ポリシーは、優先順位付けされた方法で評価され得る(例えば、自エージェントがポリシーを選択する時間がなくなった場合)、及び/又は、他の方法で評価され得る。
【0138】
[00144] 利用可能なポリシーのセットのうちの1つを選択するステップは、好ましくは、1以上の既定の又は動的な選択基準に基づいて潜在的なポリシーのうちの1つを選択するように機能する。選択基準は、自エージェントの動作に先立って描写され得る任意の適切なポリシー選択要因に基づき得る、又は、自エージェントの動作環境又は動作モードに関する1以上の特徴に動的に基づき得る。例えば、選択基準は、安全に実行される可能性が最も高いポリシーを選択するように自エージェントが機能するように、予め決定及び/又は設定されてもよい。別の例では、自律走行車の動作環境に緊急事態が含まれる場合、選択基準は、動的であってもよく、かつ、自律エージェントが動作の効率と安全性などとの間の(重み付けされた)バランスを必要とする行動ポリシーの扱いやすいセットから行動ポリシーを選択するように機能するように設定されてもよい。追加又は代替として、ポリシーは他の方法で適切に選択され得る。
【0139】
[00145] 追加又は代替として、S240は、2019年7月17日に出願された米国出願第16/514,624号及び2018年3月16日に出願された米国出願第15/923,577号のいずれか又はすべてに記載されるような方法、プロセス、実施形態及び実施例のいずれか又はすべてを含み得及び/又は相互作用し得、当該出願の各々の全体がこの参照によって本明細書に組み込まれ、かつ、利用可能なポリシーの各々を用いた予測シミュレーションに基づいて最適なポリシーを選択するように機能することができる。
【0140】
[00146] 第1変形例では、S240は、上述したように、利用可能なポリシーのセットからポリシーを選択して実装するためのマルチポリシー意思決定プロセスを実装するステップを含む。
【0141】
[00147] 追加又は代替として、S240は他の方法で実行され得る。
【0142】
5.変形例
[00148] (例えば、
図7に示すような)方法200の第1変形例では、方法は:エージェントのセンサシステムで入力のセットを収集し、かつ任意選択的に、路側ユニット又は他のインフラストラクチャデバイス、ユーザ(例えば、テレオペレータ)のいずれか又はすべてから、及び/又は、任意の適切なソースから入力のセットを収集するステップ;(例えば、入力に関連付けられたパラメータを決定するために)入力のセットを処理するステップ;動的に決定されたエージェントの位置に基づいてマップのセットを参照するステップであって、位置は、エージェントが配置されているマップの領域を特定する、ステップ;領域に基づいてエージェントが利用可能なポリシーのセットを決定するステップであって、利用可能なポリシーは:ルールベースのアプローチに基づいて決定される、ルックアップテーブルから参照されるなどのいずれか又はすべてであり得る、ステップ;任意選択的に、エージェントの状況認識に基づいて(例えば、エージェントのセンサシステムに基づいて、インフラストラクチャデバイスのセンサシステムに基づいて、テレオペレータ入力に基づいてなど)及び/又は検出されたシナリオに基づいて、利用可能なポリシーをさらにキュレーションするステップ;任意選択的に、(例えば、検出されたシナリオに基づいて)1以上の利用可能なポリシー及び/又はエージェントが現在利用可能でないリスクの高いポリシーに関するテレオペレータ入力を受信するステップ;任意選択的に、(例えば、ポリシーの数が多すぎる場合)利用可能なポリシーの数を減らすステップ;任意選択的に、エージェントのマルチポリシー意思決定モジュールを用いて利用可能なポリシーの各々を処理して、利用可能なポリシーのセットからポリシーを選択するステップ;(例えば、マルチポリシー意思決定モジュールに基づいて)利用可能なポリシーのセットから選択されたポリシーを実装するステップ、のいずれか又はすべてを含む。
【0143】
[00149] 方法200の第2変形例では、第1変形例の追加又は代替として、方法は:エージェントのセンサシステムで入力のセットを収集し、かつ任意選択的に、路側ユニット又は他のインフラストラクチャデバイス、ユーザ(例えば、テレオペレータ)のいずれか又はすべてから、及び/又は、任意の適切なソースから入力のセットを収集するステップ;(例えば、入力に関連付けられたパラメータを決定するために)入力のセットを処理するステップ;動的に決定されたエージェントの位置に基づいてマップのセットを参照するステップであって、位置は、エージェントが配置されているマップの領域を特定する、ステップ;領域に基づいてエージェントが利用可能なポリシーのセットを決定するステップであって、利用可能なポリシーは:ルールベースのアプローチに基づいて決定される、ルックアップテーブルから参照される、モデルを用いて決定される、及び/又は、他の方法で決定される、のいずれか又はすべてであり得る、ステップ;エージェントの状況認識に基づいて(例えば、エージェントのセンサシステムに基づいて、インフラストラクチャデバイスのセンサシステムに基づいて、テレオペレータ入力に基づいてなど)、及び/又は、検出されたシナリオ及び/又はテレオペレータの入力に基づいて、ポリシーのセットに関連付けられた重みのセットを決定するステップ;重みのセットに基づいてポリシーのセットを改善するステップ(例えば、既定のしきい値を下回る重みに関連付けられたポリシーを排除する、重みに基づいてポリシーを順序付けするなど);任意選択的に、(例えば、ポリシーの数が多すぎる場合)利用可能なポリシーの数を減らすステップ;任意選択的に、エージェントのマルチポリシー意思決定モジュールを用いて利用可能なポリシーの各々を処理して、利用可能なポリシーのセットからポリシーを選択するステップ;(例えば、マルチポリシー意思決定モジュールに基づいて)利用可能なポリシーのセットから選択されたポリシーを実装するステップのいずれか又はすべてを含む。
【0144】
[00150] 方法200の第3変形例では、上述した第1変形例及び第2変形例の追加又は代替として、方法は:エージェントのセンサシステムで入力のセットを収集し、かつ任意選択的に、路側ユニット又は他のインフラストラクチャデバイス、ユーザ(例えば、テレオペレータ)のいずれか又はすべてから、及び/又は、任意の適切なソースから入力のセットを収集するステップ;(例えば、入力に関連付けられたパラメータを決定するために)入力のセットを処理するステップ;動的に決定されたエージェントの位置に基づいてマップのセットを参照するステップであって、位置は、エージェントが配置されているマップの領域を特定する、ステップ;領域に基づいてエージェントが利用可能なポリシーのセットを決定するステップであって、利用可能なポリシーは:ルールベースのアプローチに基づいて決定される、ルックアップテーブルから参照されるのいずれか又はすべてであり得る、ステップ;任意選択的に、エージェントの状況認識に基づいて(例えば、エージェントのセンサシステムに基づいて、インフラストラクチャデバイスのセンサシステムに基づいて、テレオペレータ入力に基づいてなど)、及び/又は、検出されたシナリオの入力に基づいて、利用可能なポリシーをさらにキュレーションするステップ;任意選択的に、(例えば、検出されたシナリオに基づいて)1以上の利用可能なポリシー及び/又はエージェントに現在利用可能でない高いリスクのポリシーに関してテレオペレータ入力を受信するステップ;任意選択的に、(例えば、ポリシーの数が多すぎる場合)利用可能なポリシーの数を減らすステップ;自エージェントの環境内で監視オブジェクトのいずれか又はすべてに関連付けられた予測されたポリシーのセットを決定するステップ;任意選択的に、マルチポリシー意思決定モジュールを用いて、監視オブジェクトの予測されたポリシーとともに利用可能なポリシーの各々を処理して、自エージェントのための利用可能なポリシーのセットからポリシーを選択するステップ;(例えば、マルチポリシー意思決定モジュールに基づいて)利用可能なポリシーのセットからの選択されたポリシーを実装するステップのいずれか又はすべてを含む。
【0145】
[00151] 追加又は代替として、方法200は、任意の適切な順序で実行される任意の他の適切なプロセスを含み得る。
【0146】
[00152] 簡潔にするために省略したが、好ましい実施形態は、さまざまなシステムコンポーネント及びさまざまな方法プロセスのすべての組み合わせ及び順列を含み、方法プロセスは、任意の適切な順序で、順次又は同時に実行され得る。
【0147】
[00153] 当業者は、前述の詳細な説明から並びに図面及び特許請求の範囲から認識するように、以下の特許請求の範囲で定義される本発明の範囲から逸脱することなく、本発明の好ましい実施形態に対して修正及び変更が行われ得る。