IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ タレスの特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-11-13
(45)【発行日】2024-11-21
(54)【発明の名称】メタ二次レーダ
(51)【国際特許分類】
   G01S 13/78 20060101AFI20241114BHJP
   H01Q 25/02 20060101ALI20241114BHJP
   H01Q 21/08 20060101ALI20241114BHJP
【FI】
G01S13/78
H01Q25/02
H01Q21/08
【請求項の数】 11
【外国語出願】
(21)【出願番号】P 2021064569
(22)【出願日】2021-04-06
(65)【公開番号】P2021170000
(43)【公開日】2021-10-28
【審査請求日】2024-03-15
(31)【優先権主張番号】2003806
(32)【優先日】2020-04-16
(33)【優先権主張国・地域又は機関】FR
(73)【特許権者】
【識別番号】511148123
【氏名又は名称】タレス
(74)【代理人】
【識別番号】110001173
【氏名又は名称】弁理士法人川口國際特許事務所
(72)【発明者】
【氏名】フィリップ・ビヨー
(72)【発明者】
【氏名】シルバン・コリン
(72)【発明者】
【氏名】フィリップ・ジョリー
【審査官】東 治企
(56)【参考文献】
【文献】国際公開第2020/043825(WO,A1)
【文献】特開2019-109228(JP,A)
【文献】欧州特許出願公開第3273262(EP,A1)
【文献】仏国特許出願公開第3019905(FR,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01S 7/00-7/42
G01S 13/00-13/95
H01Q 3/00-3/46
H01Q 21/00-25/04
(57)【特許請求の範囲】
【請求項1】
アンテナ(1)を含む二次レーダであって、前記アンテナ(1)が、SUMと指定される総和チャネルを形成する放射パターンと、DIFFと指定される差チャネルを形成する放射パターンと、CONTと指定される制御チャネルを形成するパターンとを有し、第1の送信及び受信チェーン(4)が、前記SUMチャネルと関連付けられ、第2の送信及び受信チェーン(4’)が、前記CONTチャネルと関連付けられ、受信チェーン(4”)が、前記DIFFチャネルと関連付けられ、
- 前記送信及び受信チェーン(4、4’)の各々が、送信と受信を同時に行うことができ、前記チェーンが互いに独立して動作するような方法で、前記送信チェーン(401)が、1090MHzで送信された信号をフィルタ処理するフィルタリング動作(4A、4B)を含み、前記受信チェーン(402)が、1030MHzで送信された信号をフィルタ処理するフィルタリング動作(4C、4D)を含み、前記DIFFチャネルと関連付けられた前記受信チェーン(4”)が、1030MHzで送信された信号をフィルタ処理するフィルタリング動作(4C、4D)を含み、前記受信側の信号レベルが、同期質問送信の間は変わらないままであり、
- 処理手段(6)が、受信側の周波数帯域を使用されるトランザクションプロトコルの各々の特性と整合させることを含み、
- 前記SUM、DIFF及びCONTのチャネルの前記受信チェーンがそれぞれ、前記SUM、DIFF及びCONTのパターンのそれぞれを介してターゲット機から受信された信号を同期及び非同期モードで同時に聴取することができ、同期及び非同期モードで聴取する前記動作が、互いに独立したものであり、前記受信側の信号レベルが、同期質問送信の間は変わらないままである
ことを特徴とする、二次レーダ。
【請求項2】
前記CONTパターンが、CONT_Frontと指定されるチャネルを形成する前面放射パターンと、CONT_Backと指定されるチャネルを形成する背面放射パターンから構成され、前記CONT_Front及びCONT_Backのパターンが、前記送信及び受信チェーン(401、402)の各々が前記CONT_Frontチャネル及び前記CONT_Backチャネルに適用されるような方法で別々に処理されることを特徴とする、請求項1に記載の二次レーダ。
【請求項3】
前記CONT_Backチャネルの前記放射パターンを拡張するためのキットを含むことを特徴とする、請求項2に記載の二次レーダであって、前記キットが、前記アンテナ(1)の背面に配置され、前記キットが、
- 無信号円錐域と呼ばれる仰角方向の検出穴を埋めるための第1のパッチ(81)、
- 方位角90°における前記検出穴を埋めるための第2のパッチ(82)、
- 方位角-90°における前記検出穴を埋めるための第3のパッチ(83)
の3つの放射パッチを含む、二次レーダ。
【請求項4】
前記送信チェーンの各々が、1090MHzで送信された寄生信号の拒否専用のフィルタリング動作(4A、4B)を含むことを特徴とする、請求項1~3のいずれか一項に記載の二次レーダ。
【請求項5】
前記受信チェーンの各々が、前記送信チャネルから発信された1030MHzの寄生信号の拒否専用のフィルタリング動作(4C、4D)を含むことを特徴とする、請求項1~4のいずれか一項に記載の二次レーダ。
【請求項6】
ミッションATC監視(23)として有することにより、同期トランザクションとは無関係に、ADS-Bスキッタに対して前記パターンを介して別々に、同時聴取動作を実行することを特徴とする、請求項1~5のいずれか一項に記載の二次レーダ。
【請求項7】
ミッションIFF識別として有することにより、同期SSR及びモードSトランザクションとは無関係に、同期IFF検出を実行することを特徴とする、請求項1~6のいずれか一項に記載の二次レーダ。
【請求項8】
ミッションIFF識別として有することにより、同期トランザクションとは無関係に、モード5レベル2スキッタに対して前記パターンを介して別々に、同時聴取動作を実行することを特徴とする、請求項1~7のいずれか一項に記載の二次レーダ。
【請求項9】
航空環境(25)のミッションコントロールとして有することにより、同期トランザクションとは無関係に、いかなるタイプの二次応答に対しても前記パターンを介して別々に、同時聴取動作を実行することを特徴とする、請求項1~8のいずれか一項に記載の二次レーダ。
【請求項10】
オールコール質問期間及びロールコール質問期間に連続して送信することを特徴とする、請求項1~9のいずれか一項に記載の二次レーダであって、前記ロールコール質問(63)が、前記オールコール質問期間に開始される、二次レーダ。
【請求項11】
オールコール質問期間及びロールコール質問期間に連続して送信することを特徴とする、請求項1~10のいずれか一項に記載の二次レーダであって、オールコール期間に開始されたオールコール聴取動作(71)が、ロールコール期間に入っても続く、二次レーダ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、航空交通管制(ATC)の分野に関する。
【背景技術】
【0002】
現在、航空管制は主に、二次レーダに基づくものであり、その検出信頼性は広く認識されている。二次レーダは、SSR及びモードSプロトコルによる航空機の同期モード監視を保証する。その上、地上ATCでは、航空機に搭載された衝突回避(TCAS:航空機衝突防止警報装置)を保証するために提供される拡張ADS-B(放送型自動従属監視)スキッタの非同期受信が活用され、従って、対話型監視システムの一部分が提供される。
【0003】
この監視は、IFF(敵味方識別装置)タイプの監視と併用することができ、IFFインタロゲータ(質問機)は、様々な軍事プロトコルによる航空機の識別を保証する。
【0004】
これらのセンサをまとめた単一の構造内では、これらの様々な活動の運用上の利用において、以下が同時に必要とされる。
- 二次レーダ及びIFFインタロゲータの同時聴取(IFFインタロゲータが使用される場合)。これらのモードは、時間をおいて別々に、
・ ユーザによって従来方式で必要とされるように、飛行機1機あたり2~3つのBDS(commBデータセレクタ)レジスタが次々と抽出される、SSRだがモードSでもあるターゲット機に対するATC監視、
・ 任意選択により、プロトコルによるIFF識別(その主要な軍事的な保護は、距離に関連する持続時間に加えて、応答に長時間可変遅延を導入することにあり、従って、本来的に、長時間ターゲット機放射が必要とされる)
を保証するために、ターゲット機のドウェルタイム(dwell time)の制限に悩まされる。
- 民間ADS-Bスキッタ又は軍事モード5スキッタの非同期モードでの聴取。この聴取動作は、
・ 同期モードの質問送信によって特に汚染され、その送信は、特にモードSで多く(飛行機1機あたり少なくとも2つ及び3つの質問)、
・ 非同期モード聴取動作は本来的には無指向性であるため、方位角選択性の欠如による多くのターゲット機の存在下での低い検出及び解読確率と関連付けられる。
【0005】
例として、アンテナ一回転あたり1200機の飛行機が存在し、ターゲット機1機あたり2つのBDSが抽出され、再質問率が約1.5である、すなわち、約20μs間に3600の質問がある(ガーブル応答、トランスポンダの占有、ターゲット機の動きなどの様々な外部要因に関連する)と考慮すると(持続時間は、ICAO Annex 10 Vol IVから取り入れられる)、同期質問にのみ起因するガーブル現象の持続時間は、拡張モードS応答に対して約140μsであり、すなわち、4秒間のアンテナ一回転あたり504ミリ秒が汚染され、これは、聴取動作の持続時間の約13%に相当する。具体的には、その同期モード動作のため、二次レーダは、その送信チェーンとその受信チェーンとの間の隔離を必要としないが、その理由は、それらが異なる時間に動作するためであり、その結果、従来方式では、送信の漏れは、受信チェーンにおいて、飛行機から通常予期される最大の大きさの応答に近いレベルを有し、従って、質問の持続時間の間の同時聴取動作が不可能になる。従って、既存のレーダでは、同期送信による摂動により、必然的に、ADS-Bスキッタの検出の確率が87%未満に制限される(この最大値は、応答及びADS-Bスキッタガーブル現象、マルチパスなど、非検出に対する他の考えられる環境関連の理由のすべてを考慮しているわけではない)。
【0006】
それに加えて、ATC二次レーダアンテナは、同期モードで動作するように設計されており、ターゲット機は、エアリアルの主要なパネルに垂直な平面に存在し、その結果、非同期モードでの聴取に必要なその360度の電磁波覆域は制限を有し、その制限については、以下で詳細に説明する。
【0007】
これらの問題を回避するため、例えば、仏国特許出願公開第3019905A1号明細書及び仏国特許出願公開第2658967A1号明細書の文献において開示される先行技術は、考えられる最高の性能を保証するため、これらの様々な活動を別々にし、アーキテクチャは、各活動の特異性と整合する。従って、従来のADS-B受信は、単一の360°の無指向性アンテナより優れた検出を保証するために、2つの独立した受信機と関連付けられた2つの背中合わせの180°のアンテナからなる場合が多く、それらのアンテナは、同じ場所に位置する際は、レーダアンテナとは別個のものである。それに加えて、大抵の場合は、IFF識別は、アンテナ回転における及びIFF識別に関係するセクタにおけるモードS監視を犠牲にして行われるが、それは、IFF識別に必要な方位角で2つを同時に実行するためのドウェルタイムの欠如が原因である。
【0008】
結果的に、これらの監視及び識別活動をすべて実施することにより、高い運用維持費が生まれる。特に、購入費、インフラ費、所有費及びネットワーク接続費を考慮する必要がある。
【先行技術文献】
【特許文献】
【0009】
【文献】仏国特許出願公開第3019905号明細書
【文献】仏国特許出願公開第2658967号明細書
【発明の概要】
【課題を解決するための手段】
【0010】
本発明の目的の1つは、特に、独立したシステムにほぼ匹敵する性能を提供する低コストの統合された質問及び監視システムを得ることである。この目的のため、本発明の対象は、アンテナを含む二次レーダであって、アンテナが、SUMと指定される総和チャネルを形成する放射パターンと、DIFFと指定される差チャネルを形成する放射パターンと、CONTと指定される制御チャネルを形成するパターンとを有し、第1の送信及び受信チェーンが、SUMチャネルと関連付けられ、第2の送信及び受信チェーンが、CONTチャネルと関連付けられ、受信チェーンが、DIFFチャネルと関連付けられ、
- 前記送信及び受信チェーンの各々が、送信と受信を同時に行うことができ、前記チェーンが互いに独立して動作するような方法で、送信チェーンが、1090MHzで送信された信号をフィルタ処理するフィルタリング動作を含み、受信チェーンが、1030MHzで送信された信号をフィルタ処理するフィルタリング動作を含み、DIFFチャネルと関連付けられた前記受信チェーンが、1030MHzで送信された信号をフィルタ処理するフィルタリング動作を含み、受信側の信号レベルが、同期質問送信の間は変わらないままであり、
- 処理手段が、受信側の周波数帯域を使用されるトランザクションプロトコルの各々の特性と整合させることを含み、
- SUM、DIFF及びCONTのチャネルの前記受信チェーンがそれぞれ、SUM、DIFF及びCONTのパターンのそれぞれを介してターゲット機から受信された信号を同期及び非同期モードで同時に聴取することができ、同期及び非同期モードで聴取する前記動作が、互いに独立したものであり、受信側の信号レベルが、同期質問送信の間は変わらないままである、二次レーダである。
【0011】
特定の一実施形態では、前記CONTパターンは、CONT_Frontと指定されるチャネルを形成する前面放射パターンと、CONT_Backと指定されるチャネルを形成する背面放射パターンから構成され、前記CONT_Front及びCONT_Backのパターンは、前記送信及び受信チェーンの各々がCONT_Frontチャネル及びCONT_Backチャネルに適用されるような方法で別々に処理される。
【0012】
前記レーダは、例えば、CONT_Backチャネルの放射パターンを拡張するためのキットを含み、キットは、前記アンテナの背面に配置され、前記キットは、
- 無信号円錐域(cone of silence)と呼ばれる仰角方向の検出穴(欠陥)を埋めるための第1のパッチ、
- 方位角90°における検出穴を埋めるための第2のパッチ、
- 方位角-90°における検出穴を埋めるための第2のパッチ
の3つの放射パッチを含む。
【0013】
前記送信チェーンの各々は、例えば、1090MHzで送信された寄生信号の拒否専用のフィルタリング動作を含む。
【0014】
前記受信チェーンの各々は、例えば、送信チャネルから発信された1030MHzの寄生信号の拒否専用のフィルタリング動作を含む。
【0015】
ミッションATC監視として有する事例では、前記レーダは、例えば、同期トランザクションとは無関係に、ADS-Bスキッタに対して前記パターンを介して別々に、同時聴取動作を実行する。
【0016】
ミッションIFF識別として有する事例では、前記レーダは、例えば、同期SSR及びモードSトランザクションとは無関係に、同期IFF検出を実行する。
【0017】
ミッションIFF識別として有する事例では、前記レーダは、例えば、同期トランザクションとは無関係に、モード5レベル2スキッタに対して前記パターンを介して別々に、同時聴取動作を実行する。
【0018】
航空環境のミッションコントロールとして有する事例では、前記レーダは、例えば、同期トランザクションとは無関係に、いかなるタイプの二次応答に対しても前記パターンを介して別々に、同時聴取動作を実行する。
【0019】
前記レーダは、オールコール質問期間及びロールコール質問期間に連続して送信し、ロールコール質問は、例えば、オールコール質問期間に開始される。
【0020】
前記レーダは、オールコール質問期間及びロールコール質問期間に連続して送信し、オールコール期間に開始されたオールコール聴取動作は、例えば、ロールコール期間に入っても続く。
【0021】
本発明の他の特徴及び利点は、添付の図面に関連して行われる以下に続く説明を用いることで、明らかになるであろう。
【図面の簡単な説明】
【0022】
図1a】従来の二次レーダの例示的な実施形態の図である。
図1b】本発明によるレーダの例示的な実施形態の図である。
図2a】本発明の実装形態の考えられるステップである。
図2b】先行技術によるレーダによって実行されるトランザクションのシーケンスの例である。
図2c】本発明によるレーダによって実行されるトランザクションのシーケンスの例である。
図3】前述のステップのうちの1つの図解である。
図4a】+/-180°間の方位角の関数としてのアンテナのSUM、CONT_Front及びCONT_Backの3つのパターンの利得の提示である。
図4b】本発明による、方位角におけるCONT_Backパターンの拡張の寄与の提示である。
図4c】-60°~+180°の仰角の関数としてのアンテナのSUM、CONT_Front及びCONT_Backの3つのパターンの利得の提示である。
図4d】本発明による、仰角におけるCONT_Backパターンの拡張の寄与の提示である。
図5】先行技術による、オールコール及びロールコールトランザクションの管理である。
図6】本発明による、レーダにおけるオールコール及びロールコールトランザクションの管理の一例である。
図7】本発明による、レーダにおけるトランザクションの管理の別の例である。
図8a】ATC二次アンテナのCONT_Backパターンを拡張するためのキットの図である。
図8b】ATC二次アンテナにおいてCONT_Backパターンを拡張するためのキットの実装形態の原理である。
【発明を実施するための形態】
【0023】
序文で言及した様々なコストを削減するため、本発明は、全二重メタ二次センサと呼ばれる所定のシステムを提案し、そのシステムは、
- SSR及びモードSプロトコルによって航空機の同期モード監視を保証する従来の二次レーダ、
- モード4及びモード5プロトコルによって航空機の識別を保証するIFFインタロゲータ、
- 拡張ADS-Bスキッタの非同期受信機(DF17/18)、
- モード5レベル2スキッタの非同期受信機
のような地上センサのすべての活動をまとめる一方で、同じ架空構造物(回転、アンテナ、モータ、回転継手、ケーブルなど)及び同じインフラをさらに活用する。
【0024】
従って、本発明によって提供される解決法は、メタ二次センサ内におけるこれらの様々な活動に共通なリソースの文脈において、それらの活動を直交させるためにこれらの活動の特異性を活用することである。「直交させる(orthogonalize)」が意味するものは、互いに独立させることであり、従って、その各々に対して、単独で動作しているか又はすべてが同時に起動しているかにかかわらず、同じ性能を得ることである。
【0025】
従って、メタセンサは、
- 様々な信号の送信と受信を同時に行い、二次レーダの特性である二周波数側面(1030MHzでの送信及び1090MHzでの受信)を活用することによって、送信タスクと受信タスクの完全な独立性を保証し(以下では、「全二重」という用語は、送信及び受信が同時であるような動作モードを指すために使用される)、
- 採用されたプロトコルの各々の特性に整合するフィルタリング動作(すなわち、図1bに示されるように、有効信号を含む周波数帯域の処理のみを可能にするフィルタリング動作(以下で説明する))を行い、
- ATC監視(SSR及びモードS)とIFF識別(軍事暗号化モード)を同時に実行する目的のために、同期モードで聴取し、
- 様々な物理的に利用可能なアンテナパターンを介して(すなわち、エアリアルのアーキテクチャに依存する)、非同期モードで聴取するが、高い仰角でのより優れた覆域及び方位角におけるほぼ100%の時間的な聴取動作を保証するために、非同期モード聴取動作のみに対するレーダの放射特性の改善も行う。
【0026】
従って、本発明による「全二重」動作は、
- 同期放射による摂動に悩まされることなく、非同期モード聴取動作を実行すること(ADS-B又はモード5レベル2スキッタ)を可能にし、
- モードSプロトコル内で、ロールコールトランザクションのシーケンスの持続時間(いわゆるロールコール期間(RC))を最適化すること、従って、ターゲット機のドウェルタイムの下限を低下させること(これは、この事例のみとは限らないが、高回転速度のレーダの事例において(典型的には、例えば、アンテナ一回転あたり4秒という速度が空港構成では従来の方式である)、特に重要である)を可能にし(図6を参照)、
- RCの最適化とは無関係に、レーダの動作性能を妨害することなく、すなわち、この目的専用のオールコール期間の持続時間を修正することなく、ターゲット機がレーダの電磁範囲に進入した際にそれを検出すること(これにより、このレーダのUF11質問に続いてそれらのターゲット機が生成するDF11応答を取り除くために、進入したこれらのターゲット機を早い段階でロックアウトすることができる)を可能にするが(図7を参照)、
・ そうでなければ、それらの応答電位が不必要に消費され、
・ そうでなければ、汚染が発生する、すなわち、これらの応答は、他のレーダ(特に、ターゲット機に最も近いもの)への汚染を構成する。
【0027】
採用された各プロトコルと整合するフィルタリング動作により、受信機において、必要な限り広く、且つ、各プロトコルの有効信号帯域と整合するこれらのフィルタリング動作によって完成するものである分析帯域を得ることができ(すなわち、その変調のスペクトルとトランスポンダのキャリアの周波数安定性の両方のため)、これにより、雑音レベルを減少することができ、従って、より弱い信号の処理延いてはさらなる範囲の改善を目的として、検出閾値の低下が可能になる。
【0028】
従って、従来のACTアンテナの3つ又は4つのパターンを介する同時聴取の独立した非同期モード動作により、
- 受信側において、SUM、DIFF、CONT_Front及びCONT_Backのパターンを独立して処理することによって、
・ 同期モード聴取動作に対して中距離で約75%の時間的な覆域を保証すること(図4aを参照)、
・ スキッタの非検出の原因である応答の重複度(かなり長い(120μs))を減少させるために、同時スキッタのオフボアサイト角における差(存在する場合)を活用することによって、同時スキッタをより良好に検出すること、
- それに加えて、その非同期モード検出機能に対してレーダのATC二次アンテナの放射パターンを完成させることによって、
・ 無信号円錐域(Cos)における覆域を保証すること(図4dを参照)、
・ ADS-BとIFFの両方において最大距離にわたる100%の時間的な覆域を保証すること(図4bを参照)
が可能になる。
【0029】
上記で提示される本発明の特徴及び利点は、図を参照して、以下で説明する。
【0030】
図1aは、思い出されようが、モードS及びSSRの同期モード動作のみが期待される従来のATC監視レーダの図を示す。送信及び受信チェーン401、402は、処理キャビネットの出力における無限のSWRの事例における非破壊の保証にちょうど十分な隔離レベルを所有する。ATC二次アンテナのCONT_Front及びCONT_Backのパターンは、エアリアル1、2(CONTパターン)によってマージされるが、その理由は、厳密にアンテナの軸(すなわち、SUMの軸)上にあるとは言い難い信号が、前面から来たものか又は背面から来たものかにかかわらず、単純に拒否されるためである。
【0031】
図1bは、本発明によるデバイスの図を示す。提案されるアーキテクチャを介し、上記で提示された「全二重」メタ二次センサのプロパティが得られる。具体的には、このアーキテクチャは、プロトコル間でほとんど影響を及ぼすことなく、様々な二次プロトコルの同時動作を保証する。従って、それにより、各プロトコルに対して、他のプロトコルと同時に動作する際に、他のプロトコルが非アクティブ状態のセンサのアンテナ構造で達成可能なものと同じ性能が達成されることが保証される。図1bのアーキテクチャは、図1aに示される二次レーダの従来のアーキテクチャを進化させたものである。以下の説明のいくつかは、図1aの従来のレーダに既に存在するコンポーネントを説明する。追加の要素については、極太線を使用してハイライトしている。
【0032】
その従来の動作構成では、二次レーダは、同期モードで動作する。すなわち、二次レーダは、質問を放ち、それと一致する応答を待ち、それにより、測定(方位角及び距離の観点から)を通じた位置付けや、ターゲット機の識別(典型的には、モードSプロトコルのアドレスを介して)が可能になる。
【0033】
このタスクを効果的に実行するため、レーダには、多数のパターン11、12、13、14を有するアンテナ1が装備され、その役割は、従来方式では、
- ターゲット機への質問及びターゲット機の同期応答の検出を行うための総和パターン11(以下では、SUMと示される)、
- SUMビームでターゲット機を正確に位置付けるための差パターン12(DIFFと示される)、
- 有利には、本発明の1つのオプションの文脈において2つのパターン、すなわち、
・ アンテナに面するターゲット機からやって来る且つ主要なSUMビームには存在しない応答を阻止及び拒否するための、第1の制御パターン13(CONT_Frontと示される)、
・ アンテナの背面のターゲット機からやって来る応答(従って、必ずしも主要なSUMビームに存在するとは限らない)を阻止及び拒否するための、第2の制御パターン14(CONT_Backと示される)
に分割することができる(従って、このオプションは、アンテナの3つ又は4つのパターンの別個の処理を採用することができる)制御パターン(CONTと示される)(図1aを参照)
である。
本発明の残りの部分では、CONT_Front及びCONT_Backのパターンを使用するこの構成が考慮され、これらの2つのパターンは、可能性としては、別々に処理される。CONTチャネルへの言及は、可能性としては、図1bの例に関して、CONT_Front及びCONT_Backのチャネルを含む。
【0034】
回転アンテナ用の回転継手2及びアンテナダウンケーブルは、
- レーダの回転部分と固定部分との間で、4つのパターン(SUM、DIFF、CONT_Front及びCONT_Back)に対して独立して、1030MHzで送信された信号と1090MHzで受信された信号のRF結合、
- アンテナのメインローブの軸の方位角位置201の分布
を保証する。
【0035】
デュプレクサ3は、4つのパターンに対して独立して、1030MHzで送信された信号と1090MHzで受信された信号のRF結合を保証する。この目的のため、デュプレクサ3は、各チャネルと関連付けられたサーキュレータを含む。図1bの例では、3つのサーキュレータ311、313、314は、SUM、CONT_Front及びCONT_Backのチャネルのそれぞれの1030MHzでの送信と1090MHzでの受信を減結合する。純粋な同期動作では、聴取動作は、SUM及びDIFFチャネルにわたる送信段階の後、レーダのメインローブを介して(すなわち、SUM及びDIFFのチャネルを介して)のみ実行される。DIFFチャネルは受信においてのみ動作するため、サーキュレータ312は一方向にのみ動作し、アンテナを介して得られた受信信号のルーティングのみを行う(サーキュレータはオプションであり、DIFFにおけるその使用は、角度誤差の測定を目的としてSUMとDIFFとの間の信号を平衡化すること以外の目的は有さない)。同期モードでは、CONTチャネルを介する聴取の動作は、CONTパターンに次いでSUMパターンにおいてより多くのエネルギーで受信された応答を拒否すること以外の目的は有さない。
【0036】
フィルタ311’、313’、314’は、SUM、CONT_Front及びCONT_Backのチャネルのサーキュレータの上流に配置される。これらのフィルタは、送信信号の高調波をフィルタ処理するために、主に、送信の下流において使用される。また、受信においても、二次レーダの有効帯域(すなわち、約1020~1100MHz)外の周波数から保護するために同じフィルタが役に立つ。
【0037】
従って、SUM及びCONTのチャネルは、送信と受信の両方に対して使用される。読み易くするため、図1b(及び図1a)では、SUMチャネルの送信及び受信回路4のみが示されており(CONTチャネルに対する回路又はCONT_Front及びCONT_Backチャネルに対する回路は同じである)、
- CONTチャネル(図1a)及びCONT_Front/CONT_Backチャネル(図1b)の送信及び受信回路4’のアーキテクチャは、SUMのものとそれぞれ類似しており、
- DIFFチャネルの回路4”は示されておらず、SUMの受信のものと同一である。
【0038】
時空管理5は、様々な二次プロトコル(IFF、SSR及びモードSプロトコル)の質問期間及び関連聴取期間のリアルタイムでの管理を保証する。特定のプロトコル単位の信号処理6は、SUM、DIFF、CONT_Front及びCONT_Backの様々なパターンを介して得られた信号を別々に活用する。
【0039】
再び図1bを参照すると、ここでは、SUMチャネルと関連付けられ、デュプレクサのサーキュレータ311と時空管理5及び信号処理6との間に位置する送信及び受信部分4について説明する。この送信/受信部分4は、本発明に特有の適応性を含む。具体的には、1030MHzで送信するSUM送信チェーン401は、追加のフィルタリング動作4A、4Bを組み込み、追加のフィルタリング動作4A、4Bは、結合311後の残留雑音のレベルを受信機の雑音レベルに維持するための、送信雑音減少専用であり、より具体的には、1090MHzの寄生信号の拒否専用である。送信チェーンは、第1の増幅を実行する第1の増幅器8を含み、その後には、第1のフィルタ4Aが続く。第1のフィルタ4Aの後には、第2の増幅器8’が続き、第2の増幅器8’は、電力増幅器であり、送信信号を伝達するものであり、この増幅器の後には、第2のフィルタ4Bが続く。
【0040】
1090MHzで動作するSUM受信チェーン402は、従来方式では、低雑音増幅器9及びアナログ/デジタル変換器(ADC)9’を含む。また、SUM受信チェーン402は、送信チェーンと同様に、本発明に特有の適応性を含む。具体的には、追加のフィルタリング動作4C、4Dを含み、追加のフィルタリング動作4C、4Dは、サーキュレータにおける(又はエアリアルのSWRに起因する)結合レベル及びベースバンドエイリアシングを受信機の雑音レベルに維持するために、送信チャネルから発信された1030MHzの寄生信号の拒否専用である。具体的には、受信チャネルは、低雑音増幅器9の上流に入力フィルタ4Cを含む。バンドパスフィルタであるこのフィルタは、
- 約1090MHzの周波数帯域の受信信号を選択すること、
- 送信チェーンから発信された約1030MHzの周波数帯域を強く拒否すること
が意図される。
図1bのセットアップは、送信チャネル401と受信チャネル402との間で共有される局部発振器(LO)10(1030MHzで発振する)を含む特定の例示的な一実施形態である。
【0041】
送信チャネルの第1の増幅器8の上流では、送信信号は、局部発振器10の周波数で(すなわち、1030MHzで)変調器12によって変調される。フィルタ4Eは、発振器と変調器との間に挿入され、1090MHzの雑音をフィルタ処理することが意図される。受信チャネルのアナログ/デジタル変換9’の前では、受信信号は、混合器11によって局部発振器の信号と混合され、次いで、バンドパスフィルタ13によってフィルタ処理される。フィルタ4Dは、1030MHzの信号をフィルタ処理するために、ADC 9’の出力側に配置される。
【0042】
受信においてのみ動作するDIFFチャネルは、SUMチャネルの受信チェーン402と類似した受信チェーンを含み、具体的には、1030MHzで送信された信号をフィルタ処理するフィルタリング動作4C、4Dを含む。SUM、DIFF及びCONT送信及び/又は受信チェーンはすべて、互いに独立して動作する。
【0043】
民間ATCアンテナの4つのパターンは、別々に処理され、それにより、1つの4チャネル受信機(又は、CONT_Front及びCONT_Backが、通例であり図1aに示されるような単一のCONTにマージされる場合は、3チャネル受信機)が必要とされる。
【0044】
応答のいかなる解読の前にも、各信号処理動作6は、その分析帯域を、その応答が検出されるプロトコルの特性と独立して整合させる。使用された各プロトコルと整合するこのフィルタリング動作により、雑音レベルを減少することによってより優れた性能を得ることができ、従って、より弱い信号を処理するために、各プロトコルに対して独立して検出閾値の低下が可能になる。
【0045】
図2aは、本発明の実装形態のステップを示す。この実装形態には、少なくとも2つのステップが必要である。
【0046】
第1のステップ21は、従来のモードS二次レーダを本発明による「全二重」メタ二次センサに変換できるようにする。このステップ21では、様々なプロトコルを直交させ、レーダを非同期受信に適したものにする。ここでの直交化は、プロトコルの処理動作を完全に独立させるものである。実際には、プロトコルの直交化は、
- 211における、1090MHz受信チェーンにおいて、図1bのフィルタ4C、4Dによって示されるような1090MHzチェーンの雑音レベルに対する1030MHzの質問の拒否を介して、
- 212における、1030MHz送信チェーンにおいて、図1bのフィルタ4A、4Bによって示されるような1090MHz受信の雑音を下回る1090MHzで送信された信号の拒否を介して、
- 受信側において、具体的には、
・ BW_IFF>BW_SSR>BW_MS>BW_ADS-B(BW_IFF、BW_SSR、BW_MS及びBW_ADS-Bはそれぞれ、IFF、SSR、モードS及びADS-Bの帯域幅である)
となるように、分析帯域(BeamWidth_BW)を採用されたプロトコルの特性と整合させること(213)によって、
- 非同期モードで、
・ 二次レーダに存在する最多数の独立パターンを介して、
同時に聴取することによって達成され、
・ 任意選択により、CONT_Front及びCONT_Backのパターンを別々に処理すること(214)ができ、
・ また、任意選択により、高い仰角でのRF覆域、及びそのRF覆域が360°の方位角にわたって完成することを保証するために、受信側のみのCONT_backパターンを拡張するためのキット215を採用することができる。
【0047】
第2のステップ22では、動作上、
- 民間航空管制23又はATC監視のフィールドにおいて、
・ 同期活動とは無関係に、ADS-Bスキッタに対して3つ又は4つのパターンを介して別々に、非同期モードで同時に聴取することによって、
・ 「応答ガーブル現象」を回避するための聴取期間の非重複や、質問の非重複(本来的には、単一の送信機が理由で達成される)以外の主要な制約なしで、ロールコールトランザクションのシーケンスの持続時間を最適化することによって(そうすることで、ロールコール聴取期間がオールコール送信期間と同時に起こる)、
- 軍事航空管制24又はIFF識別のフィールドにおいて、
・ IFFインタロゲータ(唯一の制限としてSSR/モードS監視と共有される送信リソースにアクセスして、その識別トランザクションを実行する)を介して、
・ 同期活動とは無関係に、モード5レベル2スキッタに対して3つ又は4つのパターンを介して別々に、同時に聴取することによって、
- 航空環境25の管制のフィールドにおいて、
・ 同期活動とは無関係に、いかなるタイプの二次応答(FRUIT(False Replies Unsynchonized In Time)と呼ばれる非同期混信妨害を含む)に対しても3つ又は4つのパターンを介して別々に、同時に聴取することによって、
プロトコルの直交化が活用される。
【0048】
図2b及び2cは、先行技術によるレーダ及び本発明によるレーダに対するIFF及びSSR/モードS質問のシークエンシングをそれぞれ示す。従って、図2bは、以下の3つの連続期間のシークエンシングの例を介して、先行技術による従来の動作を示す。
- 期間N+2:オールコールSSR及びモードSトランザクション専用のオールコール(AC)
- 期間N+3:ロールコールモードSトランザクション専用のロールコール(RC)
- 期間N+1:軍事モード専用のIFF
ターゲット機のドウェルタイムに余裕がある場合は、レーダは、最良の状態では、上記の図2bに示されるシークエンシングに従って、期間をインタリーブすることができる。
ドウェルタイムに余裕がない場合、すなわち、アンテナの回転速度が高い場合(最も一般的な事例)は、レーダは、民間監視を犠牲にして軍事IFF識別を実行し、3つの期間は、利用可能なドウェルタイムには起こり得ない。
【0049】
図2cは、本発明による動作の例を示す。この事例では、トランザクションは、ある期間から次の期間へと重複させることができ、具体的には、IFF識別を期間N+2及びN+3にまたがらせることができる。特に、本発明によるレーダは、依然としてSSRモード及びモードS専用のものであるAC及びRC期間とは無関係に、それら自体の特有のレート(SSR及びモードSトランザクションのレートとは完全に異なる)でIFFトランザクションを実行する。この機能上の直交化(図2aを参照)は、送信及び受信のRF隔離を活用し(図2bを参照)、それにより、
- 多くのモードS送信にもかかわらず、IFF検出(図2cの期間N+1及びN+3を参照)と、
- 少数のIFF送信にもかかわらず、モードS検出(図2cの期間N+1及びN+2を参照)と
の両方が可能になる。これにより、レーダの回転速度が高くとも、IFF軍事識別と民間監視の同時実行が可能になる。
【0050】
図3は、上記で説明されるステップ23による動作上の活用の一例を示し、それは、ATC監視を最適化するものである。この活用例は、本発明によるレーダの環境に存在する3機の航空機31、32、33に対して示される。ADS_Bスキッタは、レーダのSUMパターンを介して、DIFFパターンを介して、CONT_Frontパターンを介して及びCONT_Backパターンを介して、同時に聴取される。これらの同時聴取動作は、異なるオフボアサイト角に位置するターゲット機の非同期応答の重複の回避を可能にし、従って、その検出及び解読が改善される。航空機は、非同期ADS-B応答を全方向に放送する(30)。従って、第1の航空機31の応答は、SUMパターンを介して受信され、第2の航空機32の応答は、CONT_Frontパターンを介して受信され、第3の航空機33の応答は、CONT_Backパターンを介して受信される。従って、この例では、アンテナのパターン単位の独立したADS-B受信は、時間的に同時であっても、これらの3つのスキッタの検出を可能にする。
【0051】
図4aは、方位角の関数としての、図1aの従来のATC二次アンテナのパターンの利得を示す。より正確には、図4aは、360°(アンテナに関して+/-180°)にわたるプロットを介して、レーダのアンテナの軸40に対するその方位角に応じて、所定のターゲット機から受信された信号の振幅を定量化する。レーダの同期動作では、優位パターンはSUMであり、それにより、有効質問の送信及び有効応答の受信が保証されるのに対して、CONT_Front及びCONT_Backパターンの役割は、SUMパターンのより高いサイドローブであること、すなわち、レーダの誤検出(軸上にないターゲット機からの)を回避するために相対利得を提供することを保証することである。
対照的に、ADS-B及びIFFスキッタの非同期モード受信では、CONT_Front及びCONT_Backの役割の方が優位であり、それらの絶対利得は、ADS-B受信機の範囲を定義し、その360°覆域は、スキッタに対する聴取動作の時間的な覆域に反映されている。中距離ADS-Bでは、CONT_Front及びCONT_Backを介して実行される聴取動作の時間的な覆域のクラスは75%のものであり、これは、従来のATC二次アンテナの設計の結果であり、その結果、
- その主平面(すなわち、方位角における+90°及び-90°)において、放射はゼロであり、これにより、このアンテナの平面に垂直なレーダの同期動作が不利になることは全くなく、
- アンテナの軸上において、CONT_Frontの利得は、同期モードにおいて意図的に減衰される。このCONT_Frontの利得の意図的な降下は、同期モードにおけるそれ自体とレーダビームとの間の方位角における明確な区別を保証するために提供されるものである。
【0052】
従って、CONT_Frontを介する聴取に加えて、SUMを介する(又はDIFFを介してさえも)聴取は、アンテナの平面に垂直なCONT_Frontパターンの利得の降下を補うことによって、約5%の時間的な覆域を保証できるようにする。全体的には、2つ又は3つのアンテナパターン(SUM、CONT又はSUM、CONT_Front、CONT_Back)を介する、非同期モードでの独立した延いては同時の聴取は、非同期モード聴取動作が、中距離ADS-Bにおいて約80%の時間的な覆域を有することや、最大距離ADS-Bにおいて少なくとも50%にとどまることを保証できるようにする。
図4bは、本発明による、CONT_Backパターンの方位角方向放射41の相補性を示す。その目的は、CONTの覆域全体にわたって同等レベルを有する1090MHzの受信側の放射パターンを保証することである。従って、100%の聴取動作の時間的な覆域で、最大距離ADS-B及びIFFまで、ADS-B及びIFFスキッタの受信が保証される。
図4cは、仰角の機能としての、図1aの従来のATC二次アンテナのパターンの利得を示す。SUM、CONT_Front及びCONT_Backのパターンが示されており、その各々は、それらの最大方位角に対するものであり、
- 従来方式で、SUMのパターンは、CONT_Frontより約15~20dB高い最大値を有し(図4aを参照)、
- アンテナの平面に垂直な方向とは逆方向のフロントパネルのSUMパターンの漏れ42は、従来方式で、-35dBより低い。
設計により、ATC二次アンテナは、高い仰角(すなわち、50°を超える仰角)で、非常に大きな利得降下を呈することが分かる。結果的に、二次レーダは、従来方式で、45°の仰角から拡張される無信号円錐域(CoS)内では検出しない。レーダに統合されたADS-B機能は、同じアンテナを使用すると、同じタイプのCoSを呈する。
図4dは、本発明による、CONT_Backパターンの仰角方向放射43の相補性を示す。その目的は、非常に高い仰角(>85°)でさえも、1090MHzの受信側の放射パターンが存在することを保証することであり、それにより、この高い仰角へのCONT_Backパターンの拡張を介して、ADS-B及びIFFスキッタの受信が可能になる。
【0053】
図5及び6は、ロールコール及びオールコールトランザクションのシークエンシングに関する本発明の利点を示す。より明確には、図5は、先行技術によるレーダで採用された従来のシークエンシングを示し、図6は、図2aを参照して説明される第2のステップ22に関連して、本発明によるレーダで最適化されたシークエンシングを示す。
【0054】
図5では、オールコール(AC)トランザクション及びロールコール(RC)トランザクションの期間は、レート51、52で連続して交互に続いている。例として、図5は、AC及びRC期間に連続して対応する、レーダのアンテナローブのドウェルタイムの間のm、m+1、m+2、m+3の順の4つの連続期間を示す。これらのAC及びRC期間は、含まれる送信及び受信段階のように別個のものである。
【0055】
本発明によるレーダに対応する、図6に示されるAC及びRC質問のレート61、62は異なり、RC期間は、より短くなる。具体的には、本発明は、ロールコール又はオールコール聴取段階の間にロールコール送信を送信することも送信しないことも可能であるため、有利には、ロールコールトランザクションのシーケンスの持続時間の最適化を可能にする。より具体的には、本発明は、
- RC期間の持続時間の減少、
- AC期間とRC期間のインタリーブ(AC期間におけるRC開始のための選択的な聴取動作)
を可能にし、従って、ターゲット機のドウェルタイムの下限の低下を可能にする。ここでは、アンテナローブは、7つのAC又はRC段階(m~m+6)をカバーする。
【0056】
図7は、本発明によるレーダに対するAC及びRC期間のシークエンシングに関する別の可能性を示す。AC及びRC期間のシークエンシングは、例えば、図5の事例と同じである。飛行機がレーダの運用覆域に進入する前に、飛行機を管理できるようにするため、AC期間に開始されるRC聴取動作71は、RCトランザクション段階が開始しても続き、それは、必然的に、質問から始まり(同期モード)、従って、運用覆域に存在するターゲット機に関して、ドウェルタイムが失われることはない。
ここでの目的は、先行するRC期間の最適化(図6を参照)とは無関係に、レーダの動作範囲外(ただし、その電磁範囲内)のターゲット機を検出し、このレーダの質問に応答してこれらのターゲット機が生成するDF11応答の数を減少することである。多くのDF11応答は、
- それらの応答電位を不必要に消費し、
- それらの応答によって、他のレーダ(特に、ターゲット機に最も近いもの)が汚染される。
【0057】
図8aは、例として提示される3パターンアンテナ構成において、方位角(約-90°及び+90°)と仰角(50°を超える仰角)の両方において、1090MHzの受信側のCONT_backパターン(図2aを参照)を拡張するためのキット215の図を示す。このキット215は、アンテナ1の従来の構造に追加され、アンテナ1は、
- 前面のP行N列の放射ダイポールセット80(SUM、DIFF及びCONT_Frontのパターンを形成する)と、
- 背面のCONT_Backパターンを形成するP行1列の放射ダイポール90
から構成される。
当該技術分野で周知の分配回路800は、SUM、DIFF及びCONT(CONT_FrontとCONT_Back)のチャネルに信号を分配する。
CONT_Backパターンを拡張するためのこのキットは、以下で説明されるように、特に図4a~4dに示される検出穴を埋めることが意図される。
レーダの同期動作を妨害しないために、パターン拡張215は、要件(すなわち、ADS-B及びIFFスキッタの受信に関するもの)に限定される。拡張は、図8bに示される例示的な実施形態が示すように、フロントパネルの反対側に導入され、従って、CONT_Backを拡張する。拡張キットの放射部分は、平面において、
- その方向平面が約110°の仰角方向傾きを有する、方位角180°における無信号円錐域を埋めるための第1の方向パッチ81、
- その方向平面が約0°の仰角方向傾きを有する、方位角90°における右側の検出穴を埋めるための第2の方向パッチ82、
- その方向平面が約0°の仰角方向傾きを有する、方位角-90°における左側の検出穴を埋めるための第3の方向パッチ83
の3つの方向パッチ81、82、83に分割される(例えば、+/-35°程度のローブで)。
信号は、分配回路とP行1列の放射ダイポール90と3つのパッチ81、82、83との間でルーティングされ(従来のCONT_Back)、サーキュレータ、カプラ及び加算器のセットによって従来の方法で実行される。
【0058】
図8bは、本発明による、従来のATC二次アンテナ1上のこれらの放射素子81、82、83の考えられる一構成を示す。「右側」のパッチ82及び「左側」のパッチ83の各々は、アンテナの平面の後端部に配置される。無信号円錐域に割り当てられたパッチ81は、アンテナの平面の後方の中央に配置される。
【符号の説明】
【0059】
1 アンテナ
2 回転継手
3 デュプレクサ
4 第1の送信及び受信チェーン
4’ 第2の送信及び受信チェーン
4” 受信チェーン
4A フィルタリング動作
4B フィルタリング動作
4C フィルタリング動作
4D フィルタリング動作
4E フィルタリング動作
5 時空管理
6 処理手段
8 第1の増幅器
8’ 第2の増幅器
9 低雑音増幅器
9’ アナログ/デジタル変換器
10 局部発振器
11 混合器
11 パターン
12 変調器
12 パターン
13 バンドパスフィルタ
13 パターン
14 パターン
31 航空機
32 航空機
33 航空機
40 軸
41 方位角方向放射
42 漏れ
43 仰角方向放射
51 レート
52 レート
61 レート
62 レート
63 ロールコール質問
71 ロールコール聴取動作
80 ATC二次アンテナ
81 第1のパッチ
82 第2のパッチ
83 第3のパッチ
90 ATCアンテナ
201 方位角
215 キット
311 サーキュレータ
312 サーキュレータ
313 サーキュレータ
314 サーキュレータ
311’ LPフィルタ
313’ LPフィルタ
314’ LPフィルタ
401 送信チェーン
402 受信チェーン
800 分配回路
図1a
図1b
図2a
図2b
図2c
図3
図4a
図4b
図4c
図4d
図5
図6
図7
図8a
図8b