(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-11-13
(45)【発行日】2024-11-21
(54)【発明の名称】建設機械及び作業現場適応システム
(51)【国際特許分類】
E02F 9/20 20060101AFI20241114BHJP
E02F 3/43 20060101ALI20241114BHJP
E02F 9/26 20060101ALI20241114BHJP
【FI】
E02F9/20 C
E02F3/43 C
E02F9/26 B
(21)【出願番号】P 2021116913
(22)【出願日】2021-07-15
【審査請求日】2024-03-08
(73)【特許権者】
【識別番号】000005522
【氏名又は名称】日立建機株式会社
(74)【代理人】
【識別番号】110002572
【氏名又は名称】弁理士法人平木国際特許事務所
(72)【発明者】
【氏名】北山 晃
(72)【発明者】
【氏名】佐圓 真
(72)【発明者】
【氏名】小野 豪一
【審査官】山口 剛
(56)【参考文献】
【文献】特開2002-073112(JP,A)
【文献】特開2017-075500(JP,A)
【文献】特開2020-159056(JP,A)
【文献】米国特許出願公開第2018/0210454(US,A1)
【文献】特開2020-128695(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
E02F 9/20
E02F 3/43
E02F 9/26
(57)【特許請求の範囲】
【請求項1】
作業装置及び前記作業装置を駆動する駆動装置を有する車体と、
前記作業装置の状態及び前記駆動装置の状態を検出する複数のセンサと、
前記駆動装置を駆動するための制御信号を生成するコントローラと、を備え、
前記コントローラは、
前記コントローラの外部から入力される施工指示と、前記複数のセンサから出力されるセンサ情報とに従って前記駆動装置の制御指示を決定する計画部と、
複数の地盤特性ごとに最適化された複数の制御パラメータ設定値のうち、施工対象の施工領域の地盤特性に最も近い前記地盤特性に対応する前記制御パラメータ設定値を選択する現場適応処理部と、
前記計画部により決定された前記制御指示と、前記センサ情報と、前記現場適応処理部により選択された前記制御パラメータ設定値とに基づいて、前記制御信号を生成する制御部と、を有することを特徴とする建設機械。
【請求項2】
前記コントローラは、前記選択された前記制御パラメータ設定値を一時的に記憶する記憶装置をさらに備え、
前記現場適応処理部は、
前記複数の制御パラメータ設定値を格納するライブラリと、
前記制御パラメータ設定値を選択し、前記記憶装置に記憶させるパラメータ管理部と、を有することを特徴とする請求項1に記載の建設機械。
【請求項3】
前記計画部は、前記作業装置の駆動時における前記センサ情報に基づいて、施工後の施工面を算出し、前記施工面と前記制御指示とを比較して施工結果を算出し、
前記現場適応処理部は、前記施工結果に応じて前記制御パラメータ設定値の選択基準を更新することを特徴とする請求項1に記載の建設機械。
【請求項4】
前記複数の制御パラメータ設定値は、それぞれ、前記施工領域の地盤特性、前記車体の直下の領域の地盤特性及び前記車体の姿勢の組み合わせの条件ごとに対応することを特徴とする請求項1に記載の建設機械。
【請求項5】
前記計画部は、
前記作業装置の駆動時における前記センサ情報に基づいて、施工時の前記作業装置の軌道を算出し、
前記施工時の前記作業装置の軌道と、前記制御指示に含まれる前記作業装置の軌道の指示値と、を比較して前記作業装置の軌道の誤差を算出し、
前記現場適応処理部は、
前記複数の制御パラメータ設定値を格納するライブラリと、
前記計画部から前記作業装置の軌道の誤差を受信し、前記誤差の特徴量を算出する軌道特徴量計算部と、
前記特徴量と、前記施工領域の前記地盤特性と、に基づいて、前記選択された前記制御パラメータ設定値を調整し、前記ライブラリに追加又は更新するパラメータ更新部と、を備えることを特徴とする請求項1に記載の建設機械。
【請求項6】
前記コントローラは、ユーザインタフェースをさらに有し、
前記現場適応処理部は、前記複数の制御パラメータ設定値を前記ユーザインタフェースに出力し、前記建設機械のオペレータによる前記制御パラメータ設定値の選択を受け付けることを特徴とする請求項1に記載の建設機械。
【請求項7】
請求項1に記載の建設機械と、
前記複数の制御パラメータ設定値を記憶する外部サーバと、を備える作業現場適応システムであって、
前記建設機械の前記コントローラは、前記外部サーバと通信可能に構成された通信インタフェースをさらに備え、
前記コントローラは、前記通信インタフェースを介して前記外部サーバから前記制御パラメータ設定値を取得することを特徴とする作業現場適応システム。
【請求項8】
前記コントローラは、前記外部サーバに記憶された前記複数の制御パラメータ設定値のすべてを取得する、請求項7に記載の作業現場適応システム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、建設機械及び作業現場適応システムに関する。
【背景技術】
【0002】
情報化施工に対応した建設機械(例えば、油圧ショベル)では、油圧機器(ポンプ、バルブ、シリンダ)及び作業を行うアタッチメント(ブーム、アーム、バケット)に、動作状態を計測するためのセンサが取付けられており、センサ情報を用いることで、建設機械の自動制御や、オペレータの操作アシストを行っている。
【0003】
このような建設機械では、製造ばらつきによる制御特性の違いを補正するために、製造・出荷時に制御パラメータのキャリブレーションが行われている。キャリブレーション処理では、複数の異なるテストパタンで建設機械を動作させて得られたセンサ情報をもとに制御パラメータを調整する。
【0004】
しかし、実行すべきテストパタンの数と、調整すべき制御パラメータの数が多いことから、キャリブレーションには長時間を要する。そのため、キャリブレーションにかけられるコストと達成すべき機能・性能とのバランスを考慮すると、全てのユースケースにおいて完全に調整することは現実的ではない。例えば、油圧ショベルにおいては、掘削対象の地盤の特性が平均的な硬さ及び平均的な粘度であることを前提としてキャリブレーションされている。すなわち、硬い地盤及び軟らかい地盤に対しては、出荷時に調整した制御パラメータを使用しても精度の高い制御を提供することが難しい。
【0005】
これに対して、例えば、特許文献1には、「掘削対象地面を考慮して適切に掘削できるショベルを提供すること」を課題として、「姿勢検出装置M3からの出力を用い、掘削の進展に応じてバケット爪先角度αを制御する」という技術が開示されている(特許文献1の要約参照)。
【先行技術文献】
【特許文献】
【0006】
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、従来の技術ではフィードバック制御となるために、建設機械のように1次遅れ又は2次遅れの制御系では、刃先制御の速度を上げることが難しい。
【0008】
また、地盤特性に対する補正の最適値は、建設機械の製造ばらつきによって異なるために、個体ごとに最適化されるべきである。しかし、これを実現するためには、前述の通り地盤特性ごとにキャリブレーションを実施する必要があるため、人員コストが増加したり、キャリブレーションに必要な時間が増加したりしてしまう。
【0009】
そこで、本開示は、様々な地盤特性の施工領域において精度の高い施工が可能な建設機械を提供する。
【課題を解決するための手段】
【0010】
上記課題を解決するために、本開示の建設機械は、作業装置及び前記作業装置を駆動する駆動装置を有する車体と、前記作業装置の状態及び前記駆動装置の状態を検出する複数のセンサと、前記駆動装置を駆動するための制御信号を生成するコントローラと、を備え、前記コントローラは、前記コントローラの外部から入力される施工指示と、前記複数のセンサから出力されるセンサ情報とに従って前記駆動装置の制御指示を決定する計画部と、複数の地盤特性ごとに最適化された複数の制御パラメータ設定値のうち、施工対象の施工領域の地盤特性に最も近い前記地盤特性に対応する前記制御パラメータ設定値を選択する現場適応処理部と、前記計画部により決定された前記制御指示と、前記センサ情報と、前記現場適応処理部により選択された前記制御パラメータ設定値とに基づいて、前記制御信号を生成する制御部と、を有することを特徴とする。
【0011】
本開示に関連する更なる特徴は、本明細書の記述、添付図面から明らかになるものである。また、本開示の態様は、要素及び多様な要素の組み合わせ及び以降の詳細な記述と添付される特許請求の範囲の様態により達成され実現される。本明細書の記述は典型的な例示に過ぎず、本開示の特許請求の範囲又は適用例を如何なる意味に於いても限定するものではない。
【発明の効果】
【0012】
本開示の建設機械によれば、様々な地盤特性の施工領域において精度の高い施工が可能である。上記以外の課題、構成及び効果は、以下の実施の形態の説明により明らかにされる。
【図面の簡単な説明】
【0013】
【
図1】第1の実施形態に係る油圧ショベルの側面図である。
【
図2】第1の実施形態に係る油圧ショベルの機能ブロック図である。
【
図3】制御パラメータライブラリに格納される制御パラメータ設定の一例を示す図である。
【
図4】第1の実施形態に係るコントローラにより実行される施工動作の一例を示すフローチャートである。
【
図5】第2の実施形態に係る油圧ショベルの機能ブロック図である。
【
図6】第2の実施形態に係るコントローラにより実行される施工動作の一例を示すフローチャートである。
【
図7】制御パラメータ設定の更新処理の一例を示すフローチャートである。
【
図8】第2の実施形態の変形例に係る現場適応処理部の機能ブロック図である。
【
図9】制御パラメータ設定の推定確度の分布の例を示す図である。
【
図10】制御パラメータ設定の推定確度の分布の例を示す図である。
【
図11】第3の実施形態に係る作業現場適応システムの機能ブロック図である。
【発明を実施するための形態】
【0014】
以下、本開示の技術を具体的な実施形態により図面を用いて説明する。図面に示す各構成要素の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本開示の技術は、必ずしも、図面に開示された位置、大きさ、形状、範囲などに限定されない。
【0015】
同一あるいは同様の機能を有する構成要素が複数ある場合には、同一の符号に異なる添字を付して説明する場合がある。また、これらの複数の構成要素を区別する必要がない場合には、添字を省略して説明する場合がある。
【0016】
実施形態において、プログラムを実行して行う処理について説明する場合がある。ここで、計算機は、プロセッサ(例えばCPU、GPU)によりプログラムを実行し、記憶資源(例えばメモリ)やインターフェースデバイス(例えば通信ポート)等を用いながら、プログラムで定められた処理を行う。そのため、プログラムを実行して行う処理の主体を、プロセッサとしてもよい。
【0017】
プログラムを実行して行う処理の主体は、プロセッサを有するコントローラ、プロセッサを有する装置、プロセッサを有するシステム、プロセッサを有する計算機、プロセッサを有するノード等であってもよい。プログラムを実行して行う処理の主体は、演算部であれば良く、特定の処理を行う専用回路を含んでいてもよい。ここで、専用回路とは、例えばFPGA(Field Programmable Gate Array)、ASIC(Application Specific Integrated Circuit)、CPLD(Complex Programmable Logic Device)等である。
【0018】
プログラムは、プログラムソースから計算機にインストールされてもよい。プログラムソースは、例えば、プログラム配布サーバ又は計算機が読み取り可能な記憶メディアであってもよい。プログラムソースがプログラム配布サーバの場合、プログラム配布サーバはプロセッサと配布対象のプログラムを記憶する記憶資源とを含んでもよく、プログラム配布サーバのプロセッサが配布対象のプログラムを他の計算機に配布してもよい。また、実施形態における2以上のプログラムが1つのプログラムとして実現されてもよいし、実施形態における1つのプログラムが2以上のプログラムとして実現されてもよい。
【0019】
なお、以下の実施形態では本開示の技術を油圧ショベルに適用した例について説明するが、本開示の技術は、油圧ショベルに限定されず、クレーンやホイールローダなどの建設機械に広く適用することができる。また、以下の説明において、各図において共通する各装置や機器には同一の符号(番号)を用いる場合があり、すでに説明した各装置や機器の説明を省略する場合がある。
【0020】
[第1の実施形態]
<油圧ショベルの構成例>
図1は、実施形態に係る油圧ショベル100の側面図である。油圧ショベル100は、走行体102及び旋回体103(車体)を備える。走行体102は、左右側部のそれぞれに設けられる履帯を駆動させて走行する。走行体102には、右走行モータ115a及び左走行モータ115bが設置されている。これらの走行モータ115a及び115bの駆動により、左右の履帯が駆動し、油圧ショベル100が走行する。
【0021】
旋回体103は、走行体102上に旋回可能に設けられる。旋回体103の中央部には旋回モータ114が設置されており、旋回モータ114の駆動により、走行体102に対して旋回体103が回転する。
【0022】
旋回体103は、運転室104、機械室105、カウンタウェイト106及び作業機107を有する。運転室104は、旋回体103の前部の左側部に設けられている。運転室104には、オペレータが操作する操作レバー(
図1には不図示)が備えられている。操作レバーは、作業機107や旋回体103の駆動を指令する。機械室105は、運転室104の後方に設けられている。機械室105の内部には、油圧ポンプ、油圧バルブ及びエンジンなどの駆動装置(
図1には不図示)が設置されている。カウンタウェイト106は、機械室105の後方、すなわち旋回体103の後端部に設けられている。
【0023】
作業機107は、運転室104の右側方であって旋回体103の前部の中央に設けられている。作業機107は、ブーム108、アーム109、バケット110、ブームシリンダ111、アームシリンダ112及びバケットシリンダ113を有する。ブーム108の基端部は、ブームピンを介して、旋回体103の前部に回動可能に取り付けられている。アーム109の基端部は、アームピンを介して、ブーム108の先端部に回動可能に取り付けられている。バケット110の基端部は、バケットピンを介して、アーム109の先端部に回動可能に取り付けられている。ブームシリンダ111と、アームシリンダ112と、バケットシリンダ113とはそれぞれ作動油によって駆動される油圧シリンダである。ブームシリンダ111はブーム108を駆動する。アームシリンダ112はアーム109を駆動する。バケットシリンダ113はバケット110を駆動する。以下、ブーム108、アーム109及びバケット110を総称して作業装置120という場合がある。また、ブームシリンダ111、アームシリンダ112、バケットシリンダ113、油圧ポンプ及び油圧バルブを総称して駆動装置という場合がある。
【0024】
<コントローラの機能>
図2は、油圧ショベル100の機能ブロック図である。油圧ショベル100は、コントローラ1と、コントローラ1により制御される車体101とを備える。コントローラ1は、公知のコンピュータを使用して実現することができる。コントローラ1の各機能は、コントローラ1内部のメモリに記憶したプログラムをプロセッサ(CPU、GPUなど)が実行することにより実現することができる。
【0025】
車体101は、作業装置120、姿勢センサ121、駆動装置130、油圧センサ131を備える。コントローラ1は、駆動装置130の駆動を制御するための制御信号を出力する。駆動装置130は作業装置120を駆動する。
【0026】
作業装置120は、ブーム108、アーム109及びバケット110から構成される。姿勢センサ121は、ブーム108、アーム109及びバケット110のそれぞれの位置、向き、角度等の姿勢を検出する。駆動装置130は、ブームシリンダ111、アームシリンダ112及びバケットシリンダ113などのアクチュエータと、油圧ポンプ及び油圧バルブなどの、アクチュエータに作業油を供給する油圧部品と、から構成される。油圧センサ131は、油圧部品の状態を検出する。油圧部品の状態とは、油圧部品のある場所における圧力や、油圧バルブの流量等を含む。油圧センサ131は、例えば、油圧バルブ内に設置された圧力センサ、バルブの開口具合を間接的に監視するストロークセンサ、作動油の温度センサ、制御信号の制御電流センサ等を含む。姿勢センサ121の検出信号及び油圧センサ131の検出信号は、センサ情報としてコントローラ1に入力される。
【0027】
コントローラ1は、機能モジュールとして、計画部11、制御部12、制御パラメータ記憶部13、現場適応処理部14及びユーザインタフェース15を有する。
【0028】
計画部11は、オペレータのレバー操作による施工指示又は施工管理システムから入力される施工指示と、姿勢センサ121により検出された作業装置120の現在の状態及び油圧センサ131により検出された駆動装置130の現在の状態を示すセンサ情報とに応じて、次にどのように駆動装置130を制御するかを指示する制御指示を出力する。施工管理システムから入力される施工指示とは、例えば、油圧ショベル100の位置(座標)から求められる、作業装置120による施工の目標面に関する情報である。また、計画部11は、センサ情報から施工時の刃先軌道を算出し、算出した施工時の刃先軌道と、施工指示に含まれる刃先軌道の指示値と、を比較して、施工時の刃先軌道の施工指示に対する誤差(差分)を算出し、刃先軌道の誤差情報として、現場適応処理部14に出力する。なお、刃先軌道とは主に油圧ショベルにおけるバケットの刃先の軌道を指す。ただし、本開示の技術を他の情報化施工に対応した建設機械に適用する場合は、コントローラによる自動制御又は制御アシストの制御対象となる作業装置の軌道が刃先軌道に対応する。
【0029】
制御部12は、計画部11が出力した制御指示と、センサ情報とに基づいて、駆動装置130を制御するための制御信号を出力する。制御部12における入力(制御指示及びセンサ情報)に対する出力(制御信号)の関係は、制御パラメータ記憶部13に格納されている制御パラメータにより調整することができる。制御パラメータは、油圧ショベル100の製造・出荷時のキャリブレーション工程において、油圧ショベル100の個体ごとに調整される。制御パラメータは、例えば油圧ショベル100個々の製造ばらつき又は経年劣化による制御特性のずれを補正するために変更可能である。制御パラメータは、例えば、油圧バルブの開口制御において用いられる、バルブの開口を制御する電流と開口面積の関係を示す数式モデルの係数や、テーブルの値そのものに相当する。
【0030】
制御パラメータのより具体的な例を以下に示す。例えば制御信号として油圧バルブの流量Qoを計算する場合は、制御部12は、油圧バルブ内の圧力センサ、油圧バルブの開口具合を間接的に監視するストロークセンサ、作動油の温度センサ、制御信号の制御電流センサ等のセンサの値を用いる。流量Qoを決定する演算ロジックは、例えば次の式1で示される。
【0031】
Qo=C・Av(x)・√{ΔP/(2ρ)} … (式1)
【0032】
ここで、Cは流量係数を表し、Avはバルブの開口面積を表し、ΔPはバルブの一次側と二次側との圧力差を表し、ρは作動油の密度を表す。Avはバルブのストローク量xの関数である。Av(x)、C及びρは制御パラメータに含まれ、制御パラメータ記憶部13に格納されている。実際の油圧ショベル100では、油圧バルブが複数備えられているとともに、エンジン制御及びポンプ制御に用いられる制御パラメータ、フィードバック制御及びフィードフォワード制御に用いられるゲインなどのパラメータも、制御パラメータに含まれる。以下では、このような複数の制御パラメータをひとまとめにした意味で「制御パラメータ設定」と呼ぶこととする。また、「制御パラメータ設定値」とは、制御パラメータ設定に含まれる各制御パラメータの値を意味することとする。
【0033】
制御部12は、計画部11からの制御指示及び制御パラメータ記憶部13に格納されている制御パラメータ設定に基づき、上記式1を用いて流量Qoを算出する。そして、制御部12は、算出された流量Qoと、油圧バルブの流量センサにより検出された流量とに基づいて制御信号を算出し、フィードバック制御を行う。すなわち、制御部12は、算出された流量Qoと、流量センサにより検出された流量との差を小さくするように油圧バルブのストローク量xを決定し、このストローク量xを実現するように制御信号を算出する。制御信号は、例えば制御電流によって表される。制御信号を駆動装置130に出力することにより、作業装置120の姿勢が制御される。
【0034】
現場適応処理部14は、パラメータ管理部141及び制御パラメータライブラリ142を備える。制御パラメータライブラリ142は、地盤特性の条件ごとに適した制御パラメータ設定140を格納する。制御パラメータ設定140は、それぞれ、複数の制御パラメータ設定値を含む。制御パラメータ設定140は例えば、油圧ショベル100の製造時に、既知の様々な地盤特性における最適な制御パラメータ設定の値を算出しておき、制御パラメータライブラリ142に記憶させておくことにより用意される。
【0035】
パラメータ管理部141は、外部のデータベースなどから次に施工する領域(次の施工領域)の地盤特性を取得し、次に施工する領域の地盤特性に応じて、制御パラメータライブラリ142に格納されている制御パラメータ設定140を選択する。具体的には、次の施工領域の地盤特性に最も近い地盤特性に関する制御パラメータ設定140を選択する。施工領域の地盤特性の取得方法については特に限定はないが、例えば、パラメータ管理部141は、作業現場の2次元又は3次元の地図情報データベースや地盤マップを参照して、地盤特性を取得することができる。あるいは、施工領域において試し掘りを実施し、そのときに検出される反力から地盤特性を推定してもよい。なお、本明細書において「施工領域」とは、バケット110により切削される領域のことを意味する。
【0036】
パラメータ管理部141は、選択した制御パラメータ設定140を制御パラメータ記憶部13に読み出す。これにより、制御部12は地盤特性に最適な制御パラメータ設定を用いて制御信号を算出できるため、様々な現場の地盤特性に対応して高い精度で施工を実施することが可能となる。なお、パラメータ管理部141により選択された制御パラメータ設定140は、制御パラメータ記憶部13を介さずに制御部12に直接出力されてもよい。
【0037】
ユーザインタフェース15は、例えば、ディスプレイ、スピーカ、タッチパネルなどの出力装置と、操作レバー、キーボード、タッチパネルなどの入力装置により実現することができる。
【0038】
図3は、制御パラメータライブラリ142に格納される制御パラメータ設定140の一例を示す図である。
図3に示すように、制御パラメータ設定140は、一例として、地盤の硬さをM段階、粘度をN段階に分けて(M、Nは自然数)、マトリクス状に格納される。地盤特性の指標(地盤の粘度、硬さなど)の定義は設計者が任意に指定可能である。地盤特性の指標の数が増えると、制御パラメータライブラリ142に格納されるマトリクスの次元が増えることととなる。また、硬さや粘度などの地盤特性に対する、制御パラメータ設定の関係を数式などでモデル化して、制御パラメータライブラリ142に格納しておいてもよい。さらに、制御パラメータ設定140には、施工領域の地盤特性だけでなく、車体101の直下の地盤特性や、車体101自身の姿勢(傾き具合)などが指標として含まれていてもよい。
【0039】
<施工動作>
図4は、コントローラ1により実行される施工動作の一例を示すフローチャートである。
【0040】
(ステップS101)
パラメータ管理部141は、地図情報データベースや地盤マップなどの外部のデータベースから、次に施工する領域に関する地盤情報を取得する。地盤情報は、地盤特性及び地形に関する情報を含む。地盤特性は、上述のように、外部データベースから取得するか、あるいは、試し掘りにおけるセンサの応答値から推定することができる。
【0041】
(ステップS102)
パラメータ管理部141は、制御パラメータライブラリ142を参照し、次の施工領域の地盤特性に最も近い地盤特性に関する制御パラメータ設定140を読み出し、制御パラメータ記憶部13に記憶させる。地盤特性は上述の通り、センサ情報から間接的に算出した値、又は地図データなどから取得した値であるため、連続的な値であることが想定される。一方で、制御パラメータライブラリ142には、離散値で定義した地盤特性に応じて制御パラメータ設定140が格納されている。したがって、本ステップにおいて、パラメータ管理部141は、取得した地盤特性に最も近い制御パラメータ設定140を選択する。
【0042】
(ステップS103)
計画部11は、コントローラ1外部から施工指示の入力を受け付け、姿勢センサ121及び油圧センサ131からセンサ情報を取得する。計画部11は、施工指示と、センサ情報とに基づいて制御指示を決定し、制御部12に出力する。制御部12は、制御パラメータ記憶部13に記憶された制御パラメータ設定140を読み出し、センサ情報と、計画部11により決定された制御指示とに基づいて制御信号を生成し、駆動装置130に出力して作業装置120を駆動する。これにより、施工領域の施工を実施する。
【0043】
(ステップS104)
計画部11は、ステップS103における施工時に姿勢センサ121及び油圧センサ131から出力されるセンサ情報を取得し、当該センサ情報から実際の施工により得られた施工面を求め、当該施工面と、目標とする施工面(目標面)との差(施工誤差)を評価する。施工誤差は、施工会社の要求や車体の仕様など、ケースバイケースで異なるものである。施工誤差が目標値以下の場合、施工が良好であったと判断され、処理はステップS105に移行する。施工誤差が目標値より大きい場合、施工が不良であったと判断され、処理はステップS106に移行する。例えば施工誤差の目標値が10cmであった場合、施工誤差が10cm以下の場合は、次の施工領域の施工に進むために、ステップS105の後ステップS101に戻り、次の施工領域の地盤特性を取得する。
【0044】
(ステップS105)
制御部12は、施工自体が終了したか否かを判断する。施工が終了した場合(Yes)、処理は終了する。施工が終了していない場合(No)、処理はステップS101に戻る。施工が終了したかどうかは、施工指示に含まれるすべての作業が終了したかどうか、あるいは、カメラなどのセンサにより建設現場の画像を取得し、すべての施工領域が作業されているかどうかなどにより判別することができる。
【0045】
(ステップS106)
ステップS104において施工面の施工誤差が目標値(10cm)よりも大きいと判断された場合は、選択した制御パラメータ設定140が、施工領域の地盤特性に対して最適ではなかったことを意味する。そこで、パラメータ管理部141は、制御パラメータ設定の選択基準を更新する。選択基準の更新の一例としては、取得した地盤情報にオフセットをかける手法などが挙げられる。具体的には、例えば、取得した地盤情報のうち硬さが3に相当するものであった場合に、硬さ3の制御パラメータ設定140を選択したものの、施工時に思うように掘り切れなかった(硬さ3よりも硬かった)ために、施工誤差が+10cmを超えてしまった場合は、その施工領域に対する地盤特性が硬さ4に相当するとして、判断基準を補正する。そして、次の施工以降、硬さ4の地盤特性の制御パラメータ設定を選択するようにする。
【0046】
このように選択基準を更新しても制御精度が向上しない場合は、パラメータ管理部141は、その地盤特性に対して対応ができない旨を示す通知をユーザインタフェース15に出力し、オペレータや現場監督などに通知するようにしてもよい。これにより、上述のようにパラメータ管理部141により自動的に制御パラメータ設定を選択する機能を備えていても対応できない施工領域であることをオペレータや現場監督が把握することができる。結果として、その施工領域の施工をマニュアル作業に切り替える等の対策を行うことができる。
【0047】
上述の各ステップのタイミングについて、例えば施工開始の姿勢になるまでにステップS101及びS102を実施し、施工(ステップS103)ののち、次の施工開始の姿勢になるまでにステップS104、S106、S101及びS102を実施することができる。これにより、無駄のない制御パラメータ設定が可能となる。
【0048】
<第1の実施形態のまとめ>
第1の実施形態に係る油圧ショベル100は、作業装置120及び駆動装置130を有する車体101と、作業装置120の状態を検出する姿勢センサ121及び駆動装置130の状態を検出する油圧センサ131と、駆動装置130を駆動するための制御信号を生成するコントローラ1と、を備える。コントローラ1は、コントローラ1の外部から入力される施工指示と、センサ情報とに従って駆動装置130の制御指示を決定する計画部11と、複数の地盤特性ごとに最適化された複数の制御パラメータ設定140のうち、施工対象の施工領域の地盤特性に最も近い地盤特性に対応する制御パラメータ設定140を選択する現場適応処理部14と、計画部11により決定された制御指示と、センサ情報と、現場適応処理部14により選択された制御パラメータ設定140とに基づいて、制御信号を生成する制御部12と、を有する。
【0049】
このように、地盤特性に適した制御パラメータ設定を選択して、制御パラメータ設定を用いて制御信号を生成することにより、様々な地盤特性の施工領域を含む現場での作業をする場合に、施工の精度を高めることができる。また、地盤特性ごとの制御パラメータのキャリブレーションが不要であるため、キャリブレーションに必要な時間とコストを削減できる。
【0050】
<第1の実施形態の変形例>
パラメータ管理部141で自動的に制御パラメータ設定を選択する機能だけでなく、ディスプレイに表示されるGUI画面などのユーザインタフェースを介して、オペレータが制御パラメータライブラリ142内の制御パラメータ設定140を任意に選択できるようにしてもよい。これにより、個々のオペレータの操作感覚に対して馴染みやすい作業アシストが可能となり、作業効率の向上効果が見込まれる。
【0051】
[第2の実施形態]
上述した第1の実施形態では、制御パラメータライブラリ142に格納される制御パラメータ設定140は、地盤特性に最適な制御パラメータ設定が予め分かっているもののみであった。このため、いずれの制御パラメータ設定にも対応しない地盤特性の施工領域を施工する場合は、制御パラメータ設定140を利用することができない。
【0052】
そこで、第2の実施形態においては、制御パラメータライブラリ142に新たな制御パラメータ設定を追加する構成を提案する。第2の実施形態の説明では、第1の実施形態との相違点を中心に説明し、すでに説明した内容については省略するか、又は簡単な説明に留める。
【0053】
<コントローラの機能>
図5は、第2の実施形態に係る油圧ショベル200の機能ブロック図である。
図5に示すように、第2の実施形態の油圧ショベル200においては、現場適応処理部14が軌道特徴量計算部143及び制御パラメータ更新部144をさらに備える点で、第1の実施形態の油圧ショベル100と異なっている。
【0054】
軌道特徴量計算部143は、計画部11から出力される刃先軌道の誤差(差分)の特徴量を算出し、制御パラメータ更新部144に出力する。特徴量の算出方法については後述する。
【0055】
制御パラメータ更新部144は、軌道特徴量計算部143から受信した刃先軌道の誤差の特徴量と、施工領域の地盤特性と、施工時に使用した制御パラメータ設定とを用いて、刃先軌道の誤差が小さくなるように制御パラメータ設定を調整する。制御パラメータ更新部144は、例えば機械学習モデルを用いることにより、制御パラメータ設定を調整することができる。制御パラメータ更新部144は、調整した制御パラメータ設定をパラメータ管理部141に出力する。
【0056】
<施工動作>
図6は、第2の実施形態に係るコントローラ1により実行される施工動作の一例を示すフローチャートである。本実施形態では、上述のステップS106の代わりにステップS107が実行される。ステップS101~S105については、第1の実施形態と同様である。
【0057】
(ステップS107)
ステップS104において施工面の施工誤差が目標値よりも大きいと判断された場合は、制御パラメータ更新部144は、ステップS102で選択した制御パラメータ設定を、施工誤差が小さくなるように調整する。そして、パラメータ管理部141は、調整後の制御パラメータ設定を制御パラメータライブラリ142に追加する。
【0058】
<制御パラメータ設定の調整・更新>
図7は、ステップS107における制御パラメータ設定の更新処理の一例を示すフローチャートである。
【0059】
(ステップS111)
軌道特徴量計算部143は、計画部11においてセンサ情報から換算された実際の施工時の刃先軌道の情報と、計画部11で決定された刃先軌道の指示値(制御指示)とを比較して、振幅の差や制御遅延などの、刃先軌道の誤差の特徴量を計算する。ここで、特徴量とは、刃先軌道の波形そのものの形を特徴づけられるものであればよく、波形の最大値又は最小値、誤差仕様を逸脱した部分の面積の総和、波形の周波数成分をFFTなどで抽出した値でもよい。また、上記で抽出した複数次元の特徴量を主成分分析により低次元の特徴量に変換する手段を用いてもよい。
【0060】
(ステップS112)
制御パラメータ更新部144は、軌道特徴量計算部143で算出された特徴量と、施工した施工領域の地盤特性と、施工時に使用した制御パラメータ設定とに基づいて、刃先軌道の誤差が小さくなるように制御パラメータ設定の調整モデルの学習率を更新する。更新のための手段として、最急降下法、ベイズ最適化又は強化学習などの最適化アルゴリズムを用いることができる。最適化のための反復にあたり、制御パラメータ設定の変化幅(学習率)には、製造ばらつき又は地盤特性を反映してもよい。すなわち、油圧ショベル100の個体Aの制御特性が、個体Bに対して制御パラメータ設定の変化に対する感度が高い場合は、個体Aのパラメータ調整における学習率は小さい値から始めてもよい。また、地盤が軟らかい場合は硬い場合に比べて学習率を大きい値として始めるようにしてもよい。
【0061】
(ステップS113)
制御パラメータ更新部144は、位置ごと(施工領域ごと)の施工誤差と、センサ情報から算出される刃先速度とを調整モデルの入力とし、調整モデルにより制御パラメータ設定を調整する。すなわち、調整モデルの出力は、調整された(調整後の)制御パラメータ設定である。その後、制御パラメータ更新部144は、調整された制御パラメータ設定を、パラメータ管理部141に入力する。
【0062】
(ステップS114)
パラメータ管理部141は、制御パラメータ更新部144から受信した調整後の制御パラメータ設定の地盤特性の条件が、制御パラメータライブラリ142にあるかないか(既知であるか否か)を判定する。制御パラメータライブラリ142に入力された調整後の制御パラメータ設定の地盤特性の条件がある場合(Yes)、処理はステップS115に移行する。調整後の制御パラメータ設定の地盤特性の条件がない場合(No)、処理はステップS116に移行する。
【0063】
(ステップS115)
パラメータ管理部141は、調整後の制御パラメータ設定が制御パラメータライブラリ142にある場合(過去に経験したことがある地盤特性の場合)は、その制御パラメータ設定を上書き更新する。
【0064】
(ステップS116)
パラメータ管理部141は、地盤特性に該当する制御パラメータ設定が制御パラメータライブラリ142にない場合(初めて経験する地盤特性の場合)は、制御パラメータライブラリ142に制御パラメータ設定を新規に追加登録する。
【0065】
<第2の実施形態の変形例>
製造・出荷後すぐの油圧ショベルは、施工を経験した地盤特性が少ないため、制御パラメータライブラリ142に格納された地盤特性の条件が少ない。そこで、制御パラメータ設定140の初期値は、全ての条件で同一としてもよい。あるいは、制御パラメータ設定140の初期値は、硬さや粘度に対する制御パラメータ設定の最適値をある数式モデルで仮定して、その数式モデルを用いて決定してもよい。これにより、初めて経験する地盤特性における制御パラメータ設定の初期値を、ある程度最適値に近い値に設定でき、制御パラメータ設定の更新回数を削減できることが期待される。
【0066】
<第2の実施形態の他の変形例>
図8は、第2の実施形態の変形例に係る現場適応処理部14の機能ブロック図である。本変形例の現場適応処理部14は、軌道特徴量計算部143及び制御パラメータ更新部144の代わりに、パラメータ補完部145を有する。
【0067】
パラメータ補完部145は、経験済みの地盤特性の条件の制御パラメータ設定を用いて、未経験の地盤特性の条件における制御パラメータ設定を推定する。具体的には、パラメータ補完部145は、制御パラメータライブラリ142の更新に用いられた地盤特性の条件(すなわち、経験済みの地盤特性の条件)に従って、未経験の地盤特性の条件における最適な制御パラメータ設定を推定する。このとき用いられる推定アルゴリズムは、例えば、上述した地盤特性に対する制御パラメータ設定の傾向及び特性を反映した数式モデルであってもよいし、当該数式モデルを少ない実測値から推定するようなベイズ推定アルゴリズムであってもよい。パラメータ補完部145は、推定した制御パラメータ設定をパラメータ管理部141に出力する。パラメータ管理部141は、推定された制御パラメータ設定を制御パラメータライブラリ142に追加することにより、制御パラメータライブラリ142を更新する。
【0068】
図9は、制御パラメータ設定の推定確度の分布の例を示す図である。
図9においては、硬さ1、粘度1の地盤条件は測定済みであり、他の地盤条件は未測定であるときの制御パラメータ設定の推定確度の分布が示されている。例えば、硬さ2、粘度1の条件と、硬さ1、粘度2の条件では、測定済みの条件と近いために、推定確度が高い。これに対して、硬さ1、粘度3の条件、硬さ2、粘度2の条件、硬さ3、粘度1の条件は測定済みの条件から離れているために、推定確度が下がっている。
【0069】
図10は、制御パラメータ設定の推定確度の分布の他の例を示す図である。
図10においては、複数の条件で測定済みとなった場合が示されている。測定済みの条件と近い条件の推定確度の領域が
図9よりも増えていることがわかる。このように、測定済みの条件が増えるほど、推定確度が高い制御パラメータ設定が増える。
【0070】
このように、パラメータ管理部141は、次の施工領域の地盤特性が完全に未経験の地盤条件であっても、経験済みの地盤特性に近しい地盤条件における制御パラメータ設定を選択することができるため、次の施工領域の地盤特性により早く対応して施工することができる。
【0071】
<第2の実施形態のまとめ>
第2の実施形態に係る油圧ショベル200において、現場適応処理部14は、制御パラメータ設定を施工結果及び地盤特性に合わせて調整し、制御パラメータライブラリ142を更新する。このように、施工を経験するごとに制御パラメータ設定をより最適値に近づくように調整し、調整された制御パラメータ設定を用いて施工することにより、様々な地盤特性においてより精度の高い施工を実現することができる。
【0072】
[第3の実施形態]
第1及び第2の実施形態では、油圧ショベルのコントローラに設けられた制御パラメータライブラリ142に制御パラメータ設定140が格納され、施工動作時に読み出されることを説明した。第1及び第2の実施形態の場合、一台の油圧ショベルで蓄積した制御パラメータライブラリ142の制御パラメータ設定140は、その油圧ショベルのみでしか使用できない。これに対し、制御パラメータ設定140は、油圧ショベル外部のサーバ装置等に記憶されていてもよく、複数台の油圧ショベルにより読み出し可能に構成してもよい。そこで、第3の実施形態においては、油圧ショベルと、制御パラメータ設定140を記憶する外部のサーバ装置とにより構成される作業現場適応システムについて説明する。
【0073】
<作業現場適応システムの構成例>
図11は、第3の実施形態に係る作業現場適応システムの機能ブロック図である。作業現場適応システムは、複数の油圧ショベル300a、300b、…、300n(以下「油圧ショベル300」と総称する場合がある)と、管理サーバ500とを備える。油圧ショベル300のコントローラ1は、通信インタフェース16をさらに備える点で、第1の実施形態と異なっている。通信インタフェース16は、管理サーバ500と情報の送受信を行うように構成される。なお、油圧ショベル300のコントローラ1の構成として、第2の実施形態と同様の構成を採用することもできる。
【0074】
管理サーバ500は、制御パラメータライブラリ501と、通信インタフェース502とを備える。制御パラメータライブラリ501は、制御パラメータ設定140を記憶する。管理サーバ500は、油圧ショベル300の外部のサーバ装置(コンピュータデバイス)であり、例えば、施工会社のオフィスなど、油圧ショベル300が存在する現場とは離れた場所に設置される。
【0075】
通信インタフェース502は、油圧ショベル300と情報の送受信を行うように構成される。このように、各油圧ショベル300のコントローラ1と、管理サーバ500とは互いに通信可能である。
【0076】
<施工動作>
油圧ショベル300のコントローラ1は、第1又は第2の実施形態と同様の方法で作業現場の地盤特性に応じて施工を実施する。ただし、上述のステップS102において、通信インタフェース16が管理サーバ500の通信インタフェース502と通信して、制御パラメータライブラリ501に記憶された制御パラメータ設定140をダウンロードし、制御パラメータライブラリ142に格納する。このとき、制御パラメータライブラリ501に記憶された全ての制御パラメータ設定140をダウンロードしてもよいし、一部の制御パラメータ設定140のみをダウンロードしてもよい。全ての制御パラメータ設定140をダウンロードすることにより、施工動作ごとにリアルタイムに管理サーバ500と通信する必要がなくなる。一方、一部の制御パラメータ設定140のみをダウンロードすることにより、油圧ショベル300における記憶装置(制御パラメータライブラリ142)の記憶容量を削減することができる。例えば、現場の地盤特性が事前に分かっている場合は、想定される地盤特性についての制御パラメータ設定のみをダウンロードすればよい。
【0077】
制御パラメータ設定140のダウンロードのタイミングは、施工を開始する直前まで(ステップS103の前)であれば特に限定はない。また、第2の実施形態のように、制御パラメータ設定140の調整を行い、制御パラメータライブラリ501にアップロード(制御パラメータライブラリ501を更新)することがある。このアップロードのタイミングは、未対応の地盤特性に対応するための制御パラメータ設定の調整工程が完了した後(ステップS113の後)でもよいし、一日の作業の終了のタイミングに、更新があれば必要に応じてアップロードしてもよい。
【0078】
<第3の実施形態の変形例>
通信インタフェース502は、さらに管理者が所有する管理端末や、油圧ショベル300のオペレータが所有するユーザ端末と情報の送受信ができるように構成されていてもよい。管理端末及びユーザ端末は、油圧ショベル300と通信可能に構成されたコンピュータデバイスである。この場合、管理者及びオペレータは、管理端末及びユーザ端末から管理サーバ500の制御パラメータライブラリ501にアクセスして、GUI画面を介して、油圧ショベル300に送信すべき制御パラメータ設定140を選択することができる。
【0079】
<第3の実施形態のまとめ>
第3の実施形態に係る作業現場適応システムは、複数台の油圧ショベル300と、管理サーバ500とを備え、油圧ショベル300と管理サーバ500とは通信可能に構成されている。管理サーバ500の制御パラメータライブラリ501には、制御パラメータ設定140が格納されている。このように、複数台の油圧ショベル300で地盤特性ごとの制御パラメータ設定を取得したり、調整した制御パラメータ設定を追加及び更新したりすることで、一台の油圧ショベルで制御パラメータライブラリ142を更新して現場適応性を高めるよりも、多様な現場の地盤特性において、刃先の自動制御やアシスト制御の精度を高めることができる。
【0080】
[変形例]
本開示は、上述した実施形態に限定されるものでなく、様々な変形例を含んでいる。例えば、上述した実施形態は、本開示を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備える必要はない。また、ある実施形態の一部を他の実施形態の構成に置き換えることができる。また、ある実施形態の構成に他の実施形態の構成を加えることもできる。また、各実施形態の構成の一部について、他の実施形態の構成の一部を追加、削除又は置換することもできる。
【符号の説明】
【0081】
1…コントローラ、100、200、300…油圧ショベル、101…車体、120…作業装置、121…姿勢センサ、130…駆動装置、131…油圧センサ、11…計画部、12…制御部、13…制御パラメータ記憶部、14…現場適応処理部、140…制御パラメータ設定、141…パラメータ管理部、142…制御パラメータライブラリ、143…軌道特徴量計算部、144…制御パラメータ更新部、145…パラメータ補完部、15…ユーザインタフェース、16…通信インタフェース、500…管理サーバ(外部サーバ)、501…制御パラメータライブラリ、502…通信インタフェース