IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社オータマの特許一覧

特許7589610磁気シールド装置および磁気シールド方法
<>
  • 特許-磁気シールド装置および磁気シールド方法 図1
  • 特許-磁気シールド装置および磁気シールド方法 図2
  • 特許-磁気シールド装置および磁気シールド方法 図3
  • 特許-磁気シールド装置および磁気シールド方法 図4
  • 特許-磁気シールド装置および磁気シールド方法 図5
  • 特許-磁気シールド装置および磁気シールド方法 図6
  • 特許-磁気シールド装置および磁気シールド方法 図7
  • 特許-磁気シールド装置および磁気シールド方法 図8
  • 特許-磁気シールド装置および磁気シールド方法 図9
  • 特許-磁気シールド装置および磁気シールド方法 図10
  • 特許-磁気シールド装置および磁気シールド方法 図11
  • 特許-磁気シールド装置および磁気シールド方法 図12
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-11-18
(45)【発行日】2024-11-26
(54)【発明の名称】磁気シールド装置および磁気シールド方法
(51)【国際特許分類】
   H05K 9/00 20060101AFI20241119BHJP
   H01F 1/16 20060101ALI20241119BHJP
   G01R 33/02 20060101ALI20241119BHJP
【FI】
H05K9/00 H
H01F1/16
G01R33/02 W
【請求項の数】 6
(21)【出願番号】P 2021046924
(22)【出願日】2021-03-22
(65)【公開番号】P2022146117
(43)【公開日】2022-10-05
【審査請求日】2023-10-19
(73)【特許権者】
【識別番号】595104574
【氏名又は名称】株式会社オータマ
(74)【代理人】
【識別番号】100100077
【弁理士】
【氏名又は名称】大場 充
(74)【代理人】
【識別番号】100136010
【弁理士】
【氏名又は名称】堀川 美夕紀
(74)【代理人】
【識別番号】100130030
【弁理士】
【氏名又は名称】大竹 夕香子
(74)【代理人】
【識別番号】100203046
【弁理士】
【氏名又は名称】山下 聖子
(72)【発明者】
【氏名】小田原 峻也
(72)【発明者】
【氏名】▲榊▼原 満
【審査官】中島 亮
(56)【参考文献】
【文献】特開2014-060270(JP,A)
【文献】特開2012-033795(JP,A)
【文献】特開平11-223697(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H05K 9/00
H01F 1/16
G01R 33/02
(57)【特許請求の範囲】
【請求項1】
軟磁性材料から構成される磁気的なシールド体と、
前記シールド体に巻き回される電磁コイルと、
前記電磁コイルに電流を供給する電源と、
前記電源から前記電磁コイルに供給される前記電流の電流値を設定するコントローラと、
外部磁界を検出する磁界センサと、を備え、
前記コントローラは、
前記電流が供給される前記電磁コイルによって発生する第1生成磁界が、前記外部磁界と同じ向きであって、かつ、前記シールド体の周囲に還流するように発生する第2生成磁界が前記外部磁界の強度を弱くするように、
前記シールド体が配置される環境において前記磁界センサから取得する前記外部磁界に基づいて前記電流値を設定する、
ことを特徴とする磁気シールド装置。
【請求項2】
前記コントローラは、
前記第2生成磁界と前記外部磁界の強度が一致するように、前記電流値を設定する、
請求項に記載の磁気シールド装置。
【請求項3】
前記シールド体は、
板状、ブロック状、箱状および筒状のいずれか一種からなる、
請求項1または請求項に記載の磁気シールド装置。
【請求項4】
外部磁界が印加される領域において、軟磁性材料から構成されるシールド体を用いて磁気シールドする方法であって、
前記外部磁界が印加されることにより、前記シールド体が周囲に第2生成磁界を発生させるとともに、前記シールド体の内部に反磁界が発生しているのに対して、
前記第2生成磁界に加えて、前記シールド体の周囲に電流を流すことで前記シールド体の内部に第1生成磁界を発生させ、
前記シールド体の周囲に流す前記電流の電流値は、
前記電流が供給される電磁コイルが発生する前記第1生成磁界、前記外部磁界と同じ向きであって、かつ、前記シールド体の周囲に還流するように発生する前記第2生成磁界が前記外部磁界の強度を弱くするように前記外部磁界に基づいて設定されることを特徴とするパッシブ型の磁気シールド方法。
【請求項5】
前記第2生成磁界と前記外部磁界の強度が一致するように、前記電流値が設定される、
請求項4に記載の磁気シールド方法。
【請求項6】
前記電流は、
前記シールド体の周囲に巻き回される電磁コイルを介して供給される、
請求項4または請求項5に記載の磁気シールド方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、周囲に発生させる逆方向磁界を増幅する機能を有する、パッシブシールドに基づく磁気シールド装置に関する。
【背景技術】
【0002】
磁気ノイズに敏感な装置は、外部から印加される磁界を低減するための磁気シールドを必要とする。磁気シールドは、軟磁性材料を用いるパッシブシールドと磁界発生装置を用いるアクティブシールドとの2つに区分される。
パッシブシールドは、用いる軟磁性材料の透磁率が大きいほど高いシールド効果を得ることができる。また、材料の投入量、例えば厚さを増やすことによっても高い磁気シールド効果を得ることができる。
アクティブシールドは、1つあるいは向かい合った1対のコイルに同じ向きの電流を流してその中心付近に一様な平行磁界を作り出し、外部磁界とは逆向きに磁界強度を合わせることで磁気シールド効果を発現させる。
パッシブシールドとアクティブシールドを併用して用いられることもできる。
【0003】
パッシブシールドには、純鉄、電磁鋼板、パーマロイ(鉄-ニッケル合金)等の軟磁性材料が用いられている。磁気特性が調整されたこれらの材料は一般的に高価であるが、高い磁気シールド効果が必要な場合には、より透磁率の高い高価な軟磁性材料、例えば特許文献1に開示されるように非晶質金属材料を選ぶか、低い透磁率の材料を多く投入するか、あるいはこの両方で対応する必要がある。そのため、結果的に高コストな磁気シールドとなってしまう。また、投入量を増やすと重量が増加するめに、磁気シールドの支持構造の強度や、設置場所の床耐荷重の補強といった対策でさらなるコスト増を招くこともある。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2018-13313号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
本発明は、高価な材料を用いるのを避けるとともに、材料投入量の増加を避けことのできる磁気シールド装置を提供することを目的とする。
【課題を解決するための手段】
【0006】
本発明の磁気シールド装置は、軟磁性材料から構成される磁気的なシールド体と、シールド体に巻き回される電磁コイルと、電磁コイルに電流を供給する電源と、電源から電磁コイルに供給される電流の電流値を設定するコントローラと、を備える。
本発明におけるコントローラは、シールド体が配置される環境における外部磁界に基づいて、電流値を設定する。
【0007】
本発明に係る磁気シールド装置は、好ましくは、外部磁界を検出する磁界センサを備え、コントローラは、磁界センサから取得する外部磁界に基づいて、電流値を設定する。
【0008】
本発明に係るコントローラは、好ましくは、電流値は、電流が供給される電磁コイルが発生する第1生成磁界が、外部磁界と同じ向きであって、かつシールド体の周囲に還流するように発生する第2生成磁界が外部磁界の強度を弱くするように、電流値を設定する。
【0009】
本発明に係る磁気シールド装置において、好ましくは、コントローラは、第2生成磁界と外部磁界の強度が一致するように、電流値を設定する。
【0010】
本発明に係る磁気シールド装置において、好ましくは、シールド体は、板状、ブロック状、箱状および筒状のいずれか一種からなる。
【0011】
本発明は、外部磁界が印加される領域において、軟磁性材料から構成されるシールド体を用いて磁気シールドする方法を提供する。
この磁気シールドする方法は、外部磁界が印加されることにより、シールド体は周囲に第2生成磁界を発生させるとともに、シールド体の内部に反磁界が生じているのに対して、第2生成磁界に加えて、シールド体の周囲に電流を流すことでシールド体の内部に第1生成磁界を発生させる。
【0012】
本発明の磁気シールド方法において、好ましくは、シールド体の周囲に流す電流の電流値は、外部磁界に基づいて設定される。
【0013】
本発明の磁気シールド方法において、好ましくは、電流が供給される電磁コイルが発生する第1生成磁界が、外部磁界と同じ向きであって、かつ、シールド体の周囲に還流するように発生する第2生成磁界が外部磁界の強度を弱くするように、電流値が設定される。
【0014】
本発明の磁気シールド方法において、好ましくは、第2生成磁界と外部磁界の強度が一致するように、電流値が設定される。
【0015】
本発明の磁気シールド方法において、好ましくは、電流は、シールド体の周囲に巻き回される電磁コイルを介して供給される。
【発明の効果】
【0016】
本発明によれば、高価な材料を用いるのを避けるとともに、材料投入量の増加を避けことのできる磁気シールド装置を提供できる。
【図面の簡単な説明】
【0017】
図1】本発明の実施形態に係る磁気シールド装置を示す斜視図である。
図2】本実施形態に係る磁気シールド装置を示し、(a)は平面図、(b)は底面図、(c)は側面図である。
図3】本実施形態に係る磁気シールド装置の作用および効果を説明する図であり、(a)は電磁コイルを備えない場合の磁界の様子を示し、(b)は電磁コイルに通電したときの磁界の様子を示す図である。
図4】電磁コイルが1系統の場合において、(a)は本実施形態に係る磁気シールド装置により磁界が弱くなる領域の例を示し、(b)は(a)の要旨を示す図である。
図5】電磁コイルが2系統の場合において、(a)は本実施形態に係る磁気シールド装置により磁界が弱くなる領域の例を示し、(b)は(a)の要旨を示す図である。
図6】(a)は本実施形態に係る磁気シールド装置の位置Pにおいて測定された、供給電流と磁界強度の関係を示すグラフ、(b)は本実施形態に係る磁気シールド装置の位置Qにおいて測定された、供給電流と磁界強度の関係を示すグラフである。
図7】本実施形態に係る磁気シールド装置の他の形態例を示す平面図である。
図8】本実施形態に係る磁気シールド装置の他の形態例を示し、(a)は線状のシールド体に適用される例、(b)はブロック状のシールド体に適用される例を示す。
図9】本実施形態に係る磁気シールド装置の他の形態例を示し、(a)および(b)はともに、箱状のシールド体に適用される例を示す。
図10】本実施形態に係る磁気シールド装置の他の形態例を示し、(a)および(b)はともに筒状のシールド体に適用される例を示す。
図11】本実施形態に係る磁気シールド装置の他の形態例を示し、(a)は2枚の板状のシールド体が平行に配置されるものに適用される例を示し、(b-1)および(b-2)はL字状のシールド体に適用される例を示し、(c-1)および(c-2)はコ字状のシールド体に適用される例を示す。
図12】本実施形態に係る磁気シールド装置の他の形態例を示し、(a)は4角筒のシールド体と円筒のシールド体を組み合わせに適用される例を示し、(b)は6角筒のシールド体と2枚の板状のシールド体の組み合わせに適用される例を示す。
【発明を実施するための形態】
【0018】
以下、添付図面を参照しながら、本発明の磁気シールド装置および磁気シールド方法の実施形態について説明する。
本実施形態に係る磁気シールド装置1は、図1および図2に示すように、シールド体10Aが偏平な板状の形態を有している。
磁気シールド装置1は、シールド体10Aと、シールド体10Aの周囲に巻き回される電磁コイル20Aと、シールド体10Aの周囲の磁界を検出する磁界センサ30と、を備える。また、磁気シールド装置1は、磁界センサ30で検出される磁界に応じて電磁コイル20Aに流す電流を調整するコントローラ40と、コントローラ40の指示に基づいて電磁コイル20Aに電流を供給する電源50と、を備える。
以下、磁気シールド装置1の各要素について説明した後に、磁気シールド装置1の動作、作用・効果に言及する。さらにその後に、磁気シールド装置1に関して行った実験例を紹介する。
【0019】
[シールド体10A:図1図2
シールド体10Aは、パッシブシールドを担う部材であり、軟磁性材料、例えば純鉄、電磁鋼板、パーマロイ(鉄-ニッケル合金)、非晶質合金(Fe系またはCo系)、ソフトフェライトなどを用いることができる。これら材料を単体としてシールド体10Aを構成しもよいが、同じ材料を積層してシールド体10Aを構成してもよいし、異なる材料を積層してシールド体10Aを構成してもよい。さらに、特許文献1に開示されるように、以上の軟磁性材料と非磁性金属材料とを例えば交互に積層してシールド体10Aを構成してもよい。この特許文献1の軟磁性材料としては非晶質合金が用いられ、非磁性金属材料としてはアルミニウムまたはアルミニウム合金、もしくは、マグネシウムまたはマグネシウム合金が用いられる。
【0020】
シールド体10Aの寸法は任意であり、具体的な用途に応じて定められればよい。
また、板状のシールド体10Aの平面視した形状は矩形であるが、これも具体的な用途に応じて定められればよく、例えば平面視して五角形、六角形などの多角形、円形などの形状を採用できる。
【0021】
シールド体10Aは、その素材が表面に剥き出しで用いられてもよいが、塗膜、化粧壁などで表面が覆われていてもよい。
【0022】
[電磁コイル20A:図1図2図3
電磁コイル20Aは、電源50から供給される電流が流れることにより、シールド体10Aの内部に第1生成磁界F1(図3を参照)を発生させる。この第1生成磁界F1を発生させることにより、シールド体10Aの周囲に還流するように発生する第2生成磁界F2を増幅させ外部磁界Heを打ち消すような働きで軟磁性材料からなるシールド体10Aのシールド効果を増幅する。
電磁コイル20Aは、一例として、図1および図2に示すように、シールド体10Aの長手方向Lの中央に配置される。ここに配置される電磁コイル20Aは、シールド体10Aの幅方向Wの周囲に巻き回される。ここでは2回程度の巻き回しの例が示されているが、巻き回しの回数は任意であり、発生させる第1生成磁界F1の強度などに応じて定められればよい。また、ここでは1系統の電磁コイル20Aの例を示しているが、後述するように複数系統の電磁コイルを設けることもできるし、具体的な図示を省略するが、シールド体10Aの長手方向Lの全域に亘るようにソレノイド状の電磁コイル20Aとすることもできる。
また、電磁コイル20Aを構成する材料も任意であるが、一例として、銅、銅合金などの導電率の高い導電体からなる芯線と、芯線の周囲を覆う電気的な絶縁体からなる被覆と、を備える電線が用いられる。さらに、電磁コイル20Aを構成する電線、特に芯線の線径についても任意であり、発生させる第1生成磁界F1の強度などに応じて定められればよい。
【0023】
[磁界センサ30:図1
磁界センサ30は、シールド体10Aおよび電磁コイル20Aが置かれる環境の外部磁界Heを検出する。検出するのは、外部磁界Heの磁界の向きD2と強度H2である。検出された外部磁界Heの磁界の向きD2と強度H2は、コントローラ40に提供される。
磁界センサ30は、外部磁界Heが一定の例えば地磁気の場合には、コントローラ40で電流値Iをコントローラ40で設定すれば、その後はその電流値Iを利用できる。したがって、その後、磁界センサ30を用いなくてもよい。
適用される磁界センサ30の種類は任意であり、典型的には、例えばフラックスゲートセンサ、MIセンサ、サーチコイル、ホール素子および磁気抵抗素子のいずれかを用いたセンサが適用される。
【0024】
[コントローラ40:図1
コントローラ40は、磁界センサ30から提供される外部磁界Heの向きD2と強度H2に対応する電流値Iを算出する。コントローラ40は、算出された電流値Iに相当する電流が電磁コイル20Aに流れるように、電源50を制御する。
外部磁界Heが一定の例えば地磁気の場合には、コントローラ40は算出された電流値Iを記憶し、以後はその記憶された電流値Iを用いて電源50を制御する。
【0025】
[磁気シールド装置1の作用・効果:図3
以上の構成要素を備える磁気シールド装置1の作用および効果を、図3を参照して説明する。
はじめに、電磁コイル20Aを備えていない図3(a)を参照して説明する。
シールド体10Aに外部磁界Heが印加されると、図3(a)に示すように、シールド体10Aは同じ向きに磁化する。この磁化は図3(a)において右向きの白抜矢印で示されている。この磁化の程度はシールド体10Aを構成する軟磁性材料の磁気特性(透磁率)とシールド体10Aの形状によって異なる。
【0026】
この外部磁界Heによる磁化によりシールド体10Aはその左右の両端部のそれぞれにN極とS極の磁極を持つことになり、そのためシールド体10Aの内部に磁化に比例した図中の左向きの反磁界Hdが生じ、外部磁界Heによる磁化を減じさせる。これは自己減磁と称される。また、外部磁界Heの印加を受けて磁極を持ったシールド体10Aの周囲には、一方の磁極から出て他方の磁極に戻るような磁界分布Mdが生じる。シールド体10Aの中央部においては磁界分布Mdと外部磁界Heは向きが完全に逆となり磁気シールド効果を生じる。この磁気シールド効果は、シールド体10Aの両端部の磁極の強さに依存する。
【0027】
次に、電磁コイル20Aを備え、電磁コイル20Aに電流を流した時の図3(b)について説明する。
電磁コイル20Aにより外部磁界Heと同じ向き、つまり反磁界Hdを打ち消す向きに磁界を印加すると、シールド体10Aの磁化Mが、図3(a)のときよりも強くなる。このときの磁化を第1生成磁界F1という。したがって、第1生成磁界F1によって周囲に生じる逆向きの磁界を強め、外部磁界Heを打ち消す効果、つまり磁気シールド効果が高くなる。この逆向きの強い磁界を第2生成磁界F2と称する。電磁コイル20Aに供給される電流値Iは、この反磁界Hdを打ち消して、シールド体10Aの磁化を強め、ある位置における外部磁界と逆向きでかつ同じ大きさの磁界、つまり第2生成磁界F2をシールド体10Aの周囲に還流するように作るように定められる。
【0028】
以上の磁界の制御方法は、アクティブシールドのように、外部磁界Heと逆向きの磁界を直接的に発生させる方法とは異なる。また、磁気シェイキングのようにパッシブシールドに一定周期の振動磁界を与えて磁壁の運動エネルギを上げて見かけ上の透磁率を増加させる方法とも異なる。
【0029】
<シールド効果が生じる領域の例:図4図5
次に、図4を参照して、磁気シールド装置1によりシールド効果が生じる領域について説明する。この結果は、電磁コイル20Aが1系統の磁気シールド装置1について行われたシミュレーションに基づいている。
【0030】
図4(a)に示すように、磁気シールド装置1のシールド体10Aに対して外部磁界Heが長手方向Lに生じているのに対して、電磁コイル20Aに電流を流すことにより、磁界(第2生成磁界F2)を生じさせる。そうすると、図4(a)に特に磁界を弱くするシールド効果領域SAが生じる。シールド効果領域SAは、シールド体10Aの表裏に配置される電磁コイル20Aに対応してシールド体10Aの表裏のそれぞれに生じる。シールド効果領域SAは、長手方向Lについては、電磁コイル20Aとシールド体10Aとの位置関係によって決まり、たとえば電磁コイル20Aがシールド体10Aの中央に位置していれば、シールド効果領域SAは中央となる。電磁コイル20Aがシールド体10Aの中央に位置していなければ、シールド効果領域SAはシールド体10Aの中央から電磁コイル20Aの向きにずれる。また、鉛直方向Vについては、電磁コイル20Aを中心にしてシールド体10Aの反対側に生じる。このシールド効果領域SAは、図4(b)に示すように、シールド体10Aの周りを周回する。なお、図4(b)に付される符号20Aの線は、電磁コイル20Aが配置される位置を示している。図5も同様である。
【0031】
電磁コイル20Aが1系統の磁気シールド装置1においては、電磁コイル20Aに供給する電流値Iの大小によって、シールド効果領域SAは、電磁コイル20Aからの距離を制御できる。つまり、シールド効果領域SAは、電流値Iが大きければ破線で示すように電磁コイル20Aから遠くに生じる、逆に、電流値Iが小さければ電磁コイル20Aから近くに生じる。電磁コイル20Aが1系統の磁気シールド装置1においては、このようにシールド効果領域SAを電磁コイル20Aの近辺から遠方まで及ぼすことができる。
【0032】
次に、図5を参照して、電磁コイル20A1,20A2が2系統の磁気シールド装置1について行われたシミュレーションに基づく結果を説明する。
電磁コイル20Aが2系統の場合のシールド効果領域SAが生じる位置は以下の通りである。長手方向Lについては、電磁コイル20A1と電磁コイル20A2の間にシールド効果領域SAが生じる。また、鉛直方向Vについては、電磁コイル20A1,20A2の近傍に生ずる。
電磁コイル20A1,20A2が2系統の場合には、図5(b)に示すように、シールド効果領域SAが長手方向Lの広い範囲に生じる。また、電磁コイル20A1,20A2が2系統の場合にも、電磁コイル20Aに供給する電流値Iの大小によって、シールド効果領域SAの鉛直方向Vの位置を制御できる。ただし、制御できる範囲は、電磁コイル20Aが一系統の場合に比べると狭い。
なお、図4(b)と図5(b)は、電磁コイルの系統数が異なるだけで、他の条件は供給する総電流値も含めて一致する。
【0033】
[実験例]
以下、本実施形態に基づいて行った実験例を説明する。
図1に示す磁気シールド装置1を用い、シールド体10Aをパーマロイ(JIS PCパーマロイ)で構成し、シールド体10Aの長手方向Lの中央に電磁コイル20Aを120回だけ巻き回した。
シールド体10Aの表面と平行方向に10μT(マイクロテスラ)の外部磁界Heをシールド体10Aに加え、かつ、電磁コイル20Aに電量を供給してシールド体10Aの周囲における磁界強度HP,の変化を計測した。
計測位置は、図1に示される位置Pおよび位置Qである。位置Pはシールド体10Aの表面であって幅方向Wおよび長手方向Lの中央から垂直に立ち上がる第1仮想線3の上に設けられる。位置Qは長手方向Lの中央から幅方向Wに延びる第2仮想線5の上に設けられる。第1仮想線3と第2仮想線5は直交する。
位置Pおよび位置Qを基準位置Oからそれぞれ以下に示す範囲で変化させ、かつ、電磁コイル20Aに供給する電流値Iも以下に示す範囲で変化させて、磁界強度HP,を求めた。その結果を図3に示す。
位置Pおよび位置Q(図1中のhおよびd):40,60,80,100,120mm
電流値I:0~2.4A
【0034】
位置Pの測定結果を示す図6(a)において、例えばh=40mmの場合には、電流値Iが0(ゼロ)で磁界強度Hはおよそ2.7A/mであるが、電流値Iを増やしていくと磁界強度Hが低くなる。そして、電流値Iが0.5ATよりも少し小さい値において、磁界強度Hをゼロにすることができる。電流値Iがこれを得ると、磁界強度Hは高くなる。
以上の傾向は、h=60,80,100,120mmの何れにおいても現れる。もっとも、位置Pが電磁コイル20Aから遠くなり、hが大きくなるのにつれて、磁界強度Hをゼロにするために供給する電流値Iは高くなる。
以上のことは、位置Qの測定結果を示す図6(b)においても同様に認められる。
【0035】
以上の図6(a),(b)に示される結果は、さらに以下のことを示唆している。
h=40,60,80,100,120mmの何れにおいても磁界強度Hをゼロにすることができる。
したがって、電流値Iを変化させることで、磁界強度Hをゼロにできるシールド体10Aからの距離を変化させることができる。例えば、電流値Iを大きくすると磁界強度Hがゼロになる位置をシールド体10Aから遠くにずらすことができる。
また、ある位置で計測した磁場強度を基に電流値Iを制御し、計測した位置から離れた位置における磁気ノイズをゼロにすることができる。したがって、磁場強度を計測する磁界センサ30の位置は任意でよい。
【0036】
[他の形態]
以上では、一例として、長手方向Lの中央に一系統の電磁コイル20Aを配置する例を示したが、本発明における磁気シールド装置はこれに限らない。以下、本発明に適用されるシールド体および電磁コイルの他の形態を説明する。
<電磁コイルが複数系統の例>
例えば、図7(a)に示すように、2系統の電磁コイル20Aをシールド体10Aの長手方向Lの両端部に設けてもよい。この場合、二つの電磁コイル20A,20Aは、シールド体10Aの長手方向Lを2等分する中心線Cを基準にして対称の位置に巻き回されることが好ましい。そうすることにより、シールド体10Aの表面に対して、均等に磁化させることができる。
また、図7(b)に示すように、3系統の電磁コイル20Aをシールド体10Aの長手方向Lの両端部および中央部に設けてもよい。この場合は、長手方向Lの中央部に設けられる電磁コイル20Aは中心線Cの上に設けられるとともに、長手方向Lの両端部に設けられる電磁コイル20A,20Aは、中心線Cを基準にして対称の位置に巻き回されることが好ましい。
【0037】
さらに、電磁コイル20Aを同一方向に巻き回して設けるだけでなく、電磁コイル20Aを異なる方向に巻き回して設けることもできる。図7(c)は、一例として、2系統の電磁コイル20A1,20A1と2系統の電磁コイル20A2,20A2とを交差するように設けることもできる。このように、異なる方向に複数系統の電磁コイル20A1,20A2を設けることにより、複数方向の磁気ノイズに対応できる。つまり、電磁コイル20A1,20A1により生ずる第2生成磁界F2の向きと電磁コイル20A2,20A2により生ずる第2生成磁界Fの向きとは異なるため、それぞれで生ずるシールド効果領域SAは直交し向きが異なる。
ここでは、異なる向きの2系統同士の組み合わせの形態が示されているが、異なる向きの1系統同士の組み合わせ、または、異なる向きの3系統以上同士の組み合わせであってもよい。
【0038】
<シールド体が板状以外の中実体の例:図8
また、以上では、板状のシールド体10Aの例を示したが、本発明はこれに限らない。例えば、図8(a)に示すように、線状または棒状のシールド体10Bに電磁コイル20Bを巻き回してもよいし、図8(b)に示すように、ブロック状のシールド体10Cに電磁コイル20Cを巻き回してもよい。
【0039】
<シールド体が中空部分を有する例:図9図10
さらに、図9(a),(b)に示すように、内部に空間を有する箱状のシールド体10Dを対象にすることもできる。
図9(a)の形態は、シールド体10Dを構成するシールド壁11A,11B,11C、11Dの外周に沿って電磁コイル20Dを図中の反時計回りに這わせる。そして、シールド壁11Dとシールド壁11Aの境界近傍のシールド壁11Dにおいて、電磁コイル20Dを貫通させ、シールド壁11D,11C,11B,11Aの内周に沿って電磁コイル20Dを図中の時計回りに這わせる。さらに、シールド壁11Dを貫通させて、電磁コイル20Dをシールド体10Dの外側に引き出す。なお、電磁コイル20Dが貫通する位置を符号THで示している。以下も同様である。
また、図9(b)に示すようにシールド体10Dを構成するシールド壁11A,11Cのそれぞれの周囲に電磁コイル20D,20Dを巻き回してもよい。
【0040】
図9のように内部に空間を有するシールド体10Dの場合には、シールド体10Dの内部にのみ磁界を発生させるように電磁コイル20Dを設けており、当該空間に磁界を発生させるのを避ける。次に説明する図10の形態も同様である。
【0041】
さらにまた、図10(a),(b)に示すように、内部に空間を有する筒状のシールド体10Eを対象にすることもできる。
図10(a)の形態は、シールド体10Eを構成する円弧状のシールド壁11Eの外周に沿って電磁コイル20Eをほぼ一周に渡って這わせるとともに、そこでシールド壁11Eを貫通させる。シールド壁11Eを貫通した電磁コイル20Eは、そこからシールド壁11Eの内周に沿って、ほぼ一周に渡って這わせられる。そして、電磁コイル20Eをシールド壁11Eの内周から外周に向けて電磁コイル20Eを貫通させて、電磁コイル20Eをシールド体10Eの外側に引き出す。
また、図10(b)に示すようにシールド体10Eを構成するシールド壁11Eの周囲に電磁コイル20Eを巻き回してもよい。
【0042】
<複数の板状のシールド体を用いる例:図11
次に、複数の板状のシールド体を用いる例について図11を参照して説明する。
図11(a)に示すように、2つの板状のシールド体10F,10Fを平行に配置する形態に適用できる。図11(a)の形態においては、シールド体10F,10Fのそれぞれについて電磁コイル20F,20Fが配置される。電磁コイル20F,20Fのそれぞれに図示の向きに電流を流したとする。そうすると、第2生成磁界F2が図示の白抜き矢印の向きに生ずることで、磁気シールド効果を生じさせる。
【0043】
図11(b-1),(b-2)に示すように、2枚のシールド体10G1,10G2をL字状に配列することもできる。この中で、図11(b-1)は、シールド体10G1に対応する電磁コイル20G1と、シールド体10G2に対応する電磁コイル20G2と、を個別に設けている。電磁コイル20G1の折り返し部分がシールド体10G2を貫通し、電磁コイル20G2の折り返し部分がシールド体10G1を貫通する。なお、ここでは2枚のシールド体10G1,10G2を用いてL字状に形成したが、1枚のシールド体を折り曲げてL字状に形成してもよい。また、図11(b-2)は、シールド体10Gの周囲を1系統の電磁コイル20G1が巻き回されている。
【0044】
図11(c-1),(c-2)に示すように、3枚のシールド体10H1,10H2,10H3をコ字状に配列することもできる。この中で、図11(c-1)は、シールド体10H1に対応する電磁コイル20H1と、シールド体10H2に対応する電磁コイル20H2と、シールド体10H3に対応する電磁コイル20H3と、を個別に設けている。電磁コイル20H1の折り返し部分がシールド体10H2を貫通し、電磁コイル20H2の折り返し部分がシールド体10H1を貫通し、電磁コイル20H3の折り返し部分がシールド体10H2を貫通する。なお、ここでは3枚のシールド体10H1,10H2,10H3を用いてコ字状に形成したが、1枚のシールド体を折り曲げてコ字状に形成してもよい。また、図11(C-2)は、シールド体10H1,H2,H3の周囲を1系統の電磁コイル20Hが巻き回されている。
【0045】
<複数種類のシールド体の組み合わせの例:図12
次に、複数種類のシールド体を組み合わせて用いる例について図12を参照して説明する。
図12(a)は4角筒状の第1シールド体10J1と円筒状の第2シールド体10J2の組み合わせを用いる。
第1シールド体10J1に対応する電磁コイル20J1は、第1シールド体10J1を構成するシールド壁12A,12B,12C、12Dの外周に沿って電磁コイル20J1を図中の時計回りに這わせる。そして、シールド壁12Dとシールド壁12Aの境界近傍のシールド壁12Dにおいて、電磁コイル20Dを貫通させるとともに折り返し、それから先はシールド壁12D,12C,12B,12Aの内周に沿って電磁コイル20Dを図中の反時計回りに這わせる。さらに、シールド壁12Dを貫通させて、電磁コイル20J1を第1シールド体10J1の外側に引き出す。
【0046】
第2シールド体10J2に対応する電磁コイル20J2は、第2シールド体10J2を構成するシールド壁12Eの外周に沿って電磁コイル20J1をほぼ一周に渡って図中の時計回りに這わせ、そこでシールド壁12Eを貫通させるとともに、折り返す。シールド壁11Eを貫通した電磁コイル20J2は、そこからシールド壁12Eの内周に沿って、ほぼ一周に渡って図中の反時計回りに這わせられる。そして、電磁コイル20J2をシールド壁12Eの内周から外周に向けて貫通させて、電磁コイル20J2を第2シールド体10J2の外側に引き出す。
【0047】
図12(b)は6角筒状の第1シールド体10K1と2枚の板状の第2シールド体10K2,10K2とを組み合わせる。
第1シールド体10K1に対応する電磁コイル20K1は、第1シールド体10K1を構成するシールド壁13A,13B,13C,13D,13E,13Fの外周に沿って電磁コイル20K1を図中の時計回りに這わせる。そして、シールド壁13Fとシールド壁13Aの境界近傍のシールド壁13Fにおいて、電磁コイル20K1を貫通させるとともに折り返し、それから先はシールド壁13F,13E,13D,13C,13B,13Aの内周に沿って電磁コイル20K1を図中の反時計回りに這わせる。さらに、シールド壁13Fを貫通させて、電磁コイル20K1を第1シールド体10K1の外側に引き出す。
【0048】
第2シールド体10K2に対応する電磁コイル20K2は、第2シールド体10K2のおもて面に沿ってほぼ一周に渡って這わせられる。
【0049】
以上、本発明の好ましい実施形態を説明したが、本発明の主旨を逸脱しない限り、上記実施形態で挙げた構成を取捨選択したり、他の構成に適宜変更したりすることができる。
【符号の説明】
【0050】
1 磁気シールド装置
3 第1仮想線
5 第2仮想線
10A,10B,10C,10D,10E,10F,10G,10G1,10G2,
10H,10H1,10H2,10H3,10J1,10J2,10K1,10K2
シールド体
11A,11B,11C,11D,11E,12A,12B,12C,12D,12E,13A,13B,13C,13D,13E,13F シールド壁
20A,20A1,20A1,20B,20C,20D,20E,20F,20G1,
20G2,20H,20H1,20H2,20H3,20J1,20J2,20K1,
20K2 電磁コイル
30 磁界センサ
40 コントローラ
50 電源
C 中心線
F1 第1生成磁界
F2 第2生成磁界
He 外部磁界
Hd 反磁界
SA シールド効果領域
I 電流値
L 長手方向
V 鉛直方向
W 幅方向
O 基準位置
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12