(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-11-18
(45)【発行日】2024-11-26
(54)【発明の名称】イントラ・サブパーティション・コーディング・ツールによって引き起こされるサブパーティション境界のためのデブロッキングフィルタ
(51)【国際特許分類】
H04N 19/117 20140101AFI20241119BHJP
H04N 19/136 20140101ALI20241119BHJP
【FI】
H04N19/117
H04N19/136
【外国語出願】
(21)【出願番号】P 2023114626
(22)【出願日】2023-07-12
(62)【分割の表示】P 2021540216の分割
【原出願日】2020-01-10
【審査請求日】2023-08-14
(32)【優先日】2019-01-10
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】504161984
【氏名又は名称】ホアウェイ・テクノロジーズ・カンパニー・リミテッド
(74)【代理人】
【識別番号】100110364
【氏名又は名称】実広 信哉
(74)【代理人】
【識別番号】100133569
【氏名又は名称】野村 進
(72)【発明者】
【氏名】ビャオ・ワン
(72)【発明者】
【氏名】アナンド・メヘル・コトラ
(72)【発明者】
【氏名】セミフ・エセンリク
(72)【発明者】
【氏名】ハン・ガオ
(72)【発明者】
【氏名】ジエンレ・チェン
【審査官】田中 純一
(56)【参考文献】
【文献】特表2014-526818(JP,A)
【文献】米国特許出願公開第2014/0185689(US,A1)
【文献】Kenneth Andersson, et.al.,CE11: Deblocking for 4 x N, N x 4 and 8 x N and N x 8 block boundaries that not are aligned with 8x8 grid (test 11.2.1), JVET-M JVET-M0299-v1,ITU-T インターネット<URL:http://phenix.it-sudparis.eu/jvet/doc_end_user/documents/13_Marrakech/wg11/JVET-M0299-v1.zip><JVET-M0299-v1.docx>,2019年01月02日,pp.1-7
【文献】Santiago De Luxan Hernandez, et.al.,CE3: Line-based intra coding mode (Tests 2.1.1 and 2.1.2) [online], JVET-L JVET-L0076-v2,ITU-T インターネット<URL:http://phenix.it-sudparis.eu/jvet/doc_end_user/documents/12_Macao/wg11/JVET-L0076-v2.zip/JVET-L0076><JVET-L0076_v2.docx>,2018年09月30日,pp.1-9
【文献】Santiago De-Luxan-Hernandez, et.al.,CE3: Intra Sub-Partitions Coding Mode (Tests 1.1.1 and 1.1.2) [online], JVET-M JVET-M0102-v3,ITU-T インターネット<URL:http://phenix.it-sudparis.eu/jvet/doc_end_user/documents/13_Marrakech/wg11/JVET-M0102-v3.zip/JVET-M0102><JVET-M0102-v3.docx>,2019年01月04日,pp.1-7
(58)【調査した分野】(Int.Cl.,DB名)
H04N 7/12
H04N 19/00 - 19/98
IEEE Xplore
(57)【特許請求の範囲】
【請求項1】
デバイスであって、
1つまたは複数のプロセッサと、
前記1つまたは複数のプロセッサに結合されプログラミング命令を記憶するコンピュータ可読記憶媒体とを含み、前記1つまたは複数のプロセッサは、画像符号化または画像復号プロセスの間、コーディングブロック内のサブパーティション境界をデブロッキングするための動作を前記デバイスに行わせるよう前記プログラミング命令を実行するように構成され、前記コーディングブロックはイントラ予測モードでコーディングされ、前記コーディングブロックは、第1のサブパーティションおよび第2のサブパーティションを含むサブパーティションに分割され、前記第1のサブパーティションは前記第2のサブパーティションに対して水平に隣接し、
前記動作は、
前記第1のサブパーティションの幅が4サンプルであるか、もしくは前記第2のサブパーティションの幅が4サンプルであるとき、前記第1のサブパーティションについての第1の最大フィルタ長が1であることを決定することと、
前記第1の最大フィルタ長に基づいて、前記第1のサブパーティションの1個までのサンプルの値を修正することであって、前記1個までのサンプルの値は、前記第1のサブパーティションと前記第2のサブパーティションとの間の前記サブパーティション境界に対して垂直である前記第1のサブパーティションの行から取得され、前記1個までのサンプルは前記第1のサブパーティションと前記第2のサブパーティションの間の前記サブパーティション境界に隣接する、こととを含む、
デバイス。
【請求項2】
前記コーディングブロックをサブパーティションに分割するイントラ・サブパーティション分割タイプが垂直であり、前記第1のサブパーティションと前記第2のサブパーティションの間の前記サブパーティション境界は、垂直のサブパーティション境界である、請求項1に記載のデバイス。
【請求項3】
前記コーディングブロックをサブパーティションに分割するイントラ・サブパーティション分割タイプが垂直であり、前記第1のサブパーティションは前記第2のサブパーティションの左にあり、前記第2のサブパーティションは前記第1のサブパーティションの再構成された値に基づいてイントラ予測される、請求項1に記載のデバイス。
【請求項4】
前記コーディングブロックにおけるサブパーティションの個数は2個または4個である、請求項1に記載のデバイス。
【請求項5】
前記コーディングブロックの幅が4に等しく前記コーディングブロックの高さが8に等しい場合、または前記コーディングブロックの前記幅が8に等しく前記コーディングブロックの前記高さが4に等しい場合、前記コーディングブロックにおけるサブパーティションの個数は2個であり、
そうでない場合、サブパーティションの個数は4個である、
請求項1に記載のデバイス。
【請求項6】
前記第1のサブパーティションと前記第2のサブパーティションの間の前記サブパーティション境界が4×4サンプルグリッドと重なり合う場合のみ、前記第1のサブパーティションの中の前記1個までのサンプルの値は修正される、請求項1に記載のデバイス。
【請求項7】
前記サブパーティションのサンプルはルマサンプルである、請求項1に記載のデバイス。
【請求項8】
前記サブパーティションは矩形変換ブロックサブパーティションである、請求項1に記載のデバイス。
【請求項9】
前記サブパーティションをイントラ予測する順序は左から右であり、前記コーディングブロックをサブパーティションに分割す
るイントラ・サブパーティション分割タイプが垂直である、請求項1に記載のデバイス。
【請求項10】
前記コーディングブロックは、イントラ・サブパーティション(ISP)ツールを使用してコーディングされ、または前記サブパーティション境界は、イントラ・サブパーティション(ISP)ツールによって引き起こされる、請求項1から9のいずれか一項に記載のデバイス。
【請求項11】
画像符号化または画像復号プロセスの間、コーディングブロック内のサブパーティション境界をデブロッキングするため方法であって、前記コーディングブロックはイントラ予測モードでコーディングされ、前記コーディングブロックは、第1のサブパーティションおよび第2のサブパーティションを含むサブパーティションに分割され、前記第1のサブパーティションは前記第2のサブパーティションに対して水平に隣接し、
前記方法は、
前記第1のサブパーティションの幅が4サンプルであるか、もしくは前記第2のサブパーティションの幅が4サンプルであるとき、前記第1のサブパーティションについての第1の最大フィルタ長が1であることを決定するステップと、
前記第1の最大フィルタ長に基づいて、前記第1のサブパーティションの1個までのサンプルの値を修正するステップであって、前記1個までのサンプルの値は、前記第1のサブパーティションと前記第2のサブパーティションの間の前記サブパーティション境界に対して垂直である前記第1のサブパーティションの行から取得され、前記1個までのサンプルは前記第1のサブパーティションと前記第2のサブパーティションの間の前記サブパーティション境界に隣接する、ステップとを含む、
方法。
【請求項12】
前記コーディングブロックをサブパーティションに分割するイントラ・サブパーティション分割タイプが垂直であり、前記第1のサブパーティションと前記第2のサブパーティションの間の前記サブパーティション境界は、垂直のサブパーティション境界である、請求項11に記載の方法。
【請求項13】
前記コーディングブロックをサブパーティションに分割するイントラ・サブパーティション分割タイプが垂直であり、前記第1のサブパーティションは前記第2のサブパーティションの左にあり、前記第2のサブパーティションは前記第1のサブパーティションの再構成された値に基づいてイントラ予測される、請求項11に記載の方法。
【請求項14】
前記コーディングブロックにおけるサブパーティションの個数は2個または4個である、請求項11に記載の方法。
【請求項15】
前記コーディングブロックの幅が4に等しく前記コーディングブロックの高さが8に等しい場合、または前記コーディングブロックの前記幅が8に等しく前記コーディングブロックの前記高さが4に等しい場合、前記コーディングブロックにおけるサブパーティションの個数は2個であり、
そうでない場合、サブパーティションの個数は4個である、
請求項11に記載の方法。
【請求項16】
前記第1のサブパーティションと前記第2のサブパーティションの間の前記サブパーティション境界が4×4サンプルグリッドと重なり合う場合のみ、前記第1のサブパーティションの中の前記1個までのサンプルの値は修正される、請求項11に記載の方法。
【請求項17】
前記サブパーティションのサンプルはルマサンプルである、請求項11に記載の方法。
【請求項18】
前記サブパーティションは矩形変換ブロックサブパーティションである、請求項11に記載の方法。
【請求項19】
前記サブパーティションをイントラ予測する順序は左から右であり、前記コーディングブロックをサブパーティションに分割す
るイントラ・サブパーティション分割タイプが垂直である、請求項11に記載の方法。
【請求項20】
前記コーディングブロックは、イントラ・サブパーティション(ISP)ツールを使用してコーディングされ、または前記サブパーティション境界は、イントラ・サブパーティション(ISP)ツールによって引き起こされる、請求項
11から19のいずれか一項に記載の方法。
【請求項21】
コンピューティング装置によって実行されると画像符号化または画像復号プロセスにおけるコーディングブロック内のサブパーティション境界をデブロッキングするための動作を前記コンピューティング装置に行わせ、前記コーディングブロックはイントラ予測モードでコーディングされ、前記コーディングブロックは、第1のサブパーティションおよび第2のサブパーティションを含むサブパーティションに分割され、前記第1のサブパーティションは前記第2のサブパーティションに対して水平に隣接する、プログラミング命令を担持する、コンピュータ可読記憶媒体であって、
前記動作は、
前記第1のサブパーティションの幅が4サンプルであるか、もしくは前記第2のサブパーティションの幅が4サンプルであるとき、前記第1のサブパーティションについての第1の最大フィルタ長が1であることを決定することと、
前記第1の最大フィルタ長に基づいて、前記第1のサブパーティションの1個までのサンプルの値を修正することであって、前記1個までのサンプルの前記値は、前記第1のサブパーティションと前記第2のサブパーティションの間の前記サブパーティション境界に対して垂直である前記第1のサブパーティションの行から取得され、前記1個までのサンプルは前記第1のサブパーティションと前記第2のサブパーティションとの間の前記サブパーティション境界に隣接する、こととを含む、
コンピュータ可読記憶媒体。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本特許出願は、2019年1月10日に出願された米国仮特許出願第62/791,003号に基づく優先権を主張する。上述の特許出願の開示は、その全体が参照により本明細書に組み込まれる。
【0002】
本開示の実施形態は、一般に、ピクチャ処理の分野に関し、より詳細には、イントラ・サブパーティション(ISP)コーディングツールによって引き起こされるサブパーティション境界のためのデブロッキングフィルタに関する。
【背景技術】
【0003】
ビデオコーディング(ビデオ符号化およびビデオ復号)は、幅広いデジタルビデオ適用例、たとえば、ブロードキャストデジタルTV、インターネットおよびモバイルネットワークを介したビデオ送信、ビデオチャット、ビデオ会議などの、リアルタイム会話型適用例、DVDおよびBlu-ray(登録商標)ディスク、ビデオコンテンツ収集および編集システム、ならびにセキュリティ適用例のカムコーダにおいて使用される。
【0004】
比較的短いビデオでさえ描くのに必要とされるビデオデータの量はかなりのものでありえ、このことは、帯域幅容量が限定された通信ネットワーク上でデータがストリーミングされるかまたは別の方法で通信されるときに、困難をもたらすことがある。したがって、ビデオデータは、一般に、現代の電気通信ネットワーク上で通信される前に圧縮される。メモリリソースが限られていることがあるので、ビデオが記憶デバイス上に記憶されるときは、ビデオのサイズも問題となり得る。ビデオ圧縮デバイスは、しばしば、送信または記憶の前に、ソースにおいてソフトウェアおよび/またはハードウェアを用いてビデオデータをコーディングし、それによって、デジタルビデオ画像を表現するのに必要とされるデータの量を減らす。圧縮されたデータは、次いで、宛先においてビデオデータを復号するビデオ復元デバイスによって受信される。ネットワークリソースが限定され、かつより高いビデオ品質の需要が増え続けているので、ピクチャ品質の犠牲をほとんど、ないし全く伴わずに圧縮率を改善する、改善された圧縮および復元技術が望ましい。
【0005】
詳細には、イントラ予測のコンテキストでは、(変換ユニット(TU)、予測ユニット(PU)、コーディングユニット(CU)などの)画像ブロックが複数のサブパーティションに分割されるイントラ・サブパーティション(ISP)コーディングツールが最近導入された。しかしながら、イントラ・サブパーティション(ISP)は、サブパーティション境界を横切るサンプル値における不連続性を引き起こし、それによって、望ましくない境界、すなわち、見ている人によって知覚可能なエッジアーティファクトを引き起こすことがある。ブロックベースの画像コーディングにおける目標は、エッジアーティファクトを可視性しきい値未満に低減することである。このことは、デブロッキングフィルタ処理を行うことによって行われる。そのようなデブロッキングフィルタ処理は、一方では、目に見えるエッジアーティファクトを除去するために復号側において行われるが、エッジアーティファクトが画像の中に符号化されるのをまったく防止するために符号化側においても行われる。
【0006】
したがって、イントラ・サブパーティション・コーディング・ツールによって引き起こされるであろうブロックアーティファクトの効率的な除去を行う、改善されたループ内デブロッキングフィルタ装置および方法に対するニーズがある。
【発明の概要】
【課題を解決するための手段】
【0007】
上述の課題に鑑みて、本出願の実施形態は、コーディング効率を改善するように、イントラ・サブパーティション・コーディング・ツールによって引き起こされるであろうブロッキングアーティファクトを軽減し得るか、さらには除去し得る、デブロッキングフィルタ装置、エンコーダ、デコーダ、および対応する方法を提供することを目的とする。
【0008】
本発明の実施形態は独立請求項の特徴によって定義され、本実施形態のさらに有利な実装形態が従属請求項の特徴によって定義される。
【0009】
特定の実施形態は、添付の独立請求項において、他の実施形態は、従属請求項において、概説される。
【0010】
上記および他の目的は、独立請求項の主題によって達成される。さらなる実装形態が、従属請求項、説明、および図から明らかである。
【0011】
本開示の第1の態様によれば、画像符号化および/または画像復号においてコーディングブロック内のサブパーティション境界をデブロッキングするためのデブロッキング方法が提供され、現在コーディングブロックはイントラ予測モードでコーディングされ、現在コーディングブロックは、第1のサブパーティションおよび第1のサブパーティションに隣接する(第2のサブパーティションが第1のサブパーティションの右または下のブロック上にあるような)第2のサブパーティションを含むサブパーティションに分割される。一例では、第2のサブパーティションは、第1のサブパーティションに基づいてイントラ予測され(すなわち、現在コーディングブロックは、イントラ・サブパーティションISPツールを使用してコーディングされ、またはサブパーティション境界は、イントラ・サブパーティションISPツールによって引き起こされ、詳細には、現在コーディングブロックは、ISPコーディングツールによってサブパーティションに分割され、内側のサブパーティションは、左から右または上から下のように1つずつイントラ予測され)、方法は、
第1のサブパーティションの幅が4サンプルであるか、もしくは第2のサブパーティションの幅が4サンプルであるとき、または第1のサブパーティションの高さが4サンプルであるか、もしくは第2のサブパーティションの高さが4サンプルであるとき、第1のサブパーティションに対しての第1の最大フィルタ長が1であること、および/または第2のサブパーティションに対しての第2の最大フィルタ長が1であることを決定するステップと、
第1のサブパーティションの1個までのサンプルの値を修正(すなわち、フィルタ処理)するステップであって、1個までのサンプルは、第1のサブパーティションと第2のサブパーティションとの間のサブパーティション境界に対して垂直であり隣接する、第1のサブパーティションの行もしくは列から取得される、ステップ、および/または
第2のサブパーティションの1個までのサンプルの値を修正(すなわち、フィルタ処理)するステップであって、1個までのサンプルは、第1のサブパーティションと第2のサブパーティションとの間のサブパーティション境界に対して垂直であり隣接する、第2のサブパーティションの行もしくは列から取得される、ステップとを含む。
【0012】
第1のサブパーティションに対しての第1の最大フィルタ長とは、サブパーティション境界に対して垂直であり隣接する各行または各列の中で、第1のサブパーティションに対して修正されることが許容されるサンプルの最大個数を指しうることが理解され得る。第2のサブパーティションに対しての第2の最大フィルタ長とは、サブパーティション境界に対して垂直であり隣接する各行または各列の中で、第2のサブパーティションに対して修正されることが許容されるサンプルの最大個数を指しうる。特定のフィルタ処理決定フェーズに応じて、場合によっては、サンプルが修正されないことがあり、または別の場合には、サブパーティション境界に対して垂直であり隣接する各行もしくは各列の中で1個のサンプルのみが修正されうることが理解され得る。
【0013】
本発明は、垂直のサブパーティション境界と水平のサブパーティション境界の両方に対して動作する。垂直のサブパーティション境界について、第1または第2のサブパーティションの幅は、幅が4サンプルであるかどうかがチェックされる。水平のサブパーティション境界について、第1または第2のサブパーティションの高さは、高さが4サンプルであるかどうかがチェックされる。
【0014】
「ブロック」、「コーディングブロック」、または「画像ブロック」という用語は、本開示において使用され、予測ユニット(PU)、コーディングユニット(CU)などに対して適用され得ることに留意されたい。VVCでは、一般に、変換ユニットおよびコーディングユニットは、TUタイリングまたはサブブロック変換(SBT)またはISPが使用されるときのいくつかのシナリオを除いて、ほとんどの場合は位置合わせされる。「ブロック/画像ブロック/コーディングブロック」という用語が本開示において互いに入れ替えられうることが理解され得る。「サンプル/ピクセル」という用語は、本開示において互いに入れ替えられうる。
【0015】
イントラ・サブパーティション・コーディング・ツールは、イントラ予測ブロック(すなわち、イントラ予測モードでコーディングされる現在コーディングブロックの省略である、イントラコーディングブロック)をサブパーティションに分割し、内側のサブパーティションを1つずつ予測する。サブパーティション境界を横切る不連続性があり得る。これらのサブパーティション境界によって引き起こされるアーティファクトを低減するために、第1もしくは第2のサブパーティションの高さが4サンプルであるとき、または第1もしくは第2のサブパーティションの幅が4サンプルであるとき、1個までのサンプルをフィルタ処理することが第1または第2のサブパーティションの中で行われる、改善されたフィルタ処理プロセスが提案される。このことは、サブパーティション境界における少数のサンプル値を修正することを可能にし、したがって、本方法は、ISPの適用に起因して現在コーディングブロックの中のサブパーティション境界によって引き起こされることがあるブロックアーティファクトを低減することができる。計算負荷の観点から、弱いフィルタ処理が有利である。
【0016】
第1の態様による方法自体の可能な一実装形態では、現在コーディングブロックをサブパーティションに分割するイントラ・サブパーティション分割タイプが水平である場合、第1または第2のサブパーティションの高さが4サンプルであるとき、第1のサブパーティションと第2のサブパーティションとの間の境界に対して垂直であり隣接する、第1または第2のサブパーティションの列から取得される1個までのサンプルは修正される。「1個までのサンプルが修正される」とは、多くとも1個のサンプルが修正されることが許容されることを指してよいことが理解され得る。すなわち、特定のフィルタ処理決定フェーズに応じて、場合によっては、サンプルが修正されないことがあり、または別の場合には、サブパーティション境界に対して垂直であり隣接する各列の中で1個のサンプルのみが修正されることがある。
【0017】
第1の態様による方法自体の可能な一実装形態では、現在コーディングブロックをサブパーティションに分割するイントラ・サブパーティション分割タイプが垂直である場合、第1または第2のサブパーティションの幅が4サンプルであるとき、第1のサブパーティションと第2のサブパーティションとの間の境界に対して垂直であり隣接する、第1または第2のサブパーティションの行から取得される1個までのサンプルは修正される。「1個までのサンプルが修正される」とは、多くとも1個のサンプルが修正されることが許容されることを指してよいことが理解され得る。すなわち、特定のフィルタ処理決定フェーズに応じて、場合によっては、サンプルが修正されないことがあり、または別の場合には、サブパーティション境界に対して垂直であり隣接する各行の中で1個のサンプルのみが修正されることがある。
【0018】
第1の態様の先行する任意の実装形態または第1の態様自体による方法の可能な一実装形態では、現在コーディングブロックをサブパーティションに分割するイントラ・サブパーティション分割タイプが水平である場合、第1のサブパーティションと第2のサブパーティションとの間のサブパーティション境界は水平のサブパーティション境界であり、あるいは、現在コーディングブロックをサブパーティションに分割するイントラ・サブパーティション分割タイプが垂直である場合、第1のサブパーティションと第2のサブパーティションとの間のサブパーティション境界は垂直のサブパーティション境界である。
【0019】
第1の態様の先行する任意の実装形態または第1の態様自体による方法の可能な一実装形態では、現在コーディングブロックをサブパーティションに分割するイントラ・サブパーティション分割タイプが垂直である場合、第1のサブパーティションは第2のサブパーティションの左にあってよく、第2のサブパーティションは第1のサブパーティションの再構成された値(たとえば、再構成されたバージョン)に基づいてイントラ予測されてよく、
現在コーディングブロックをサブパーティションに分割するイントラ・サブパーティション分割タイプが水平である場合、第1のサブパーティションは第2のサブパーティションの上にあってよく、第2のサブパーティションは第1のサブパーティションの再構成された値(たとえば、再構成されたバージョン)に基づいてイントラ予測されてよい。
【0020】
第2のサブパーティションが第1のサブパーティションの再構成されたバージョン(すなわち、再構成された値)に基づいてイントラ予測されることが理解され得る。再構成された第1のサブパーティションは、第2のサブパーティションのイントラ予測のための参照を表す。現在コーディングブロックが属する現在ピクチャが再構成された後、再構成されたピクチャがフィルタ処理プロセスに入力されることに留意されたい。現在ピクチャの再構成の間、現在コーディングブロックの予測ブロック(たとえば、予測される値)を取得するためにISPコーディングツールによって適用される現在コーディングブロックがイントラ予測され、詳細には、現在のイントラコーディングブロックの内側のサブパーティションが1つずつイントラ予測される。
【0021】
第1の態様の先行する任意の実装形態または第1の態様自体による方法の可能な一実装形態では、サブパーティションの個数は2個または4個である。
【0022】
第1の態様の先行する任意の実装形態または第1の態様自体による方法の可能な一実装形態では、
現在コーディングブロックの幅が4に等しくコーディングブロックの高さが8に等しい場合、かつ/または現在コーディングブロックの幅が8に等しく現在コーディングブロックの高さが4に等しい場合、サブパーティションの個数は2個であり、
そうでない場合、サブパーティションの個数は4個である。
【0023】
第1の態様の先行する任意の実装形態または第1の態様自体による方法の可能な一実装形態では、第1のサブパーティションと第2のサブパーティションとの間のサブパーティション境界がn×nサンプルグリッドと重なり合わない場合でも、第1または第2のサブパーティションの中の1個までのサンプルは修正され、nは整数である。
【0024】
n×nグリッドと位置合わせされていないが、ISPによって引き起こされコーディングブロックのサブパーティションの間の内部境界である、ターゲット境界をデブロッキングすることが許容される。
【0025】
第1の態様の先行する任意の実装形態または第1の態様自体による方法の可能な一実装形態では、第1のサブパーティションと第2のサブパーティションとの間のサブパーティション境界がn×nサンプルグリッドと重なり合う場合のみ、第1または第2のサブパーティションの中の1個までのサンプルは修正され、nは整数であり、たとえば、n=4またはn=8である。それによって、計算負荷はなお一層低減され得る。
【0026】
その上、サブパーティションの中の1個までのサンプルのフィルタ処理は、サブパーティションのうちのすべての高さが4サンプルであるとき、またはサブパーティションのうちのすべての幅が4サンプルであるときにのみ行われうる。それによって、全体的なコーディングプロセスの計算負荷はさらに低減され得る。
【0027】
一般に、サブパーティションは矩形変換ブロックサブパーティションであってよい。
【0028】
第1の態様の先行する任意の実装形態または第1の態様自体による方法の可能な一実装形態では、サブパーティションのサンプルはルマサンプルであるか、またはサブパーティションのサンプルはクロマサンプルである。
【0029】
第1の態様の先行する任意の実装形態または第1の態様自体による方法の可能な一実装形態では、現在コーディングブロックをサブパーティションに分割するイントラ・サブパーティション分割タイプが垂直である場合、サブパーティションをイントラ予測する順序は左から右であり、または現在コーディングブロックをサブパーティションに分割するイントラ・サブパーティション分割タイプが水平である場合、サブパーティションをイントラ予測する順序は上から下である。すなわち、サブパーティションへの予測ブロックの分割は、垂直方向において行われ得る。この場合、サブパーティションをイントラ予測する順序は、1つずつ左から右までである。あるいは、サブパーティションへの予測ブロックの分割は、水平方向において行われ得る。この場合、2つのサブパーティションをイントラ予測する順序は、1つずつ上から下までである。
【0030】
本開示では、現在コーディングブロックは、イントラ・サブパーティションISPツールを使用してコーディングされ、またはサブパーティション境界は、イントラ・サブパーティションISPツールによって引き起こされる。
【0031】
概して、コーディングブロックのサブパーティションの間のすべての境界の境界強度は、全体的な処理を簡略化するために、フィルタ処理プロセスの強度を示す一定値(たとえば、2)に設定されてよい。
【0032】
その上、上述の実施形態では、方法は、隣接する2つのサブパーティションに対応するコーディングされたブロックフラグCBF値を取得するステップと、隣接する2つのサブパーティションに対応するCBF値に従って、現在ブロックの隣接する2つのサブパーティションの間の境界の境界強度を決定するステップと、
決定された境界強度に従って、フィルタ処理が行われるか否かというフィルタ処理決定を行うステップとを含み得る。隣接する2つのサブパーティションに対応するCBF値のうちの少なくとも1つは0に等しくなくてよく、ただし、0は、そのサブパーティションの量子化の後に残差データがないことを暗示する。
【0033】
本開示の第2の態様によれば、画像符号化および/または画像復号において画像ブロック間のブロックエッジをデブロッキングするためのデブロッキング方法が提供され、ブロックエッジは、現在コーディングブロック(すなわち、現在のイントラコーディングブロック)の現在のサブパーティションと現在コーディングブロックの近傍ブロックとの間のエッジを含み、現在コーディングブロックはイントラ予測モードでコーディングされ、現在コーディングブロックはサブパーティションに分割され(または、現在コーディングブロックは、イントラ・サブパーティションISPツールを使用してコーディングされ、もしくはサブパーティションは、イントラ・サブパーティションISPツールによって引き起こされ)、方法は、
現在のサブパーティションの幅が4サンプルであるか、または現在のサブパーティションの高さが4サンプルであるとき、現在のサブパーティションについて第3の最大フィルタ長が1であること、および/または近傍ブロックについての第4の最大フィルタ長が1であることを決定するステップと、
現在のサブパーティションの1個までのサンプルの値を修正するステップであって、1個までのサンプルは、現在のサブパーティションと近傍ブロックとの間のエッジに対して垂直であり隣接する、現在のサブパーティションの行もしくは列から取得される、ステップ、および/または
近傍ブロックの1個までのサンプルの値を修正するステップであって、1個までのサンプルは、現在のサブパーティションと近傍ブロックとの間のエッジに対して垂直であり隣接する、近傍ブロックの行もしくは列から取得される、ステップとを含む。
【0034】
第1の態様自体に従って、サブパーティションの個数が2個である場合、現在のサブパーティションは第1のサブパーティションまたは第2のサブパーティションであってよいことに留意されたい。サブパーティションの個数が4個などの、2個よりも多い場合、現在コーディングブロックをサブパーティションに分割するイントラ・サブパーティション分割タイプが垂直である場合、現在のサブパーティションは現在コーディングブロックの内側の一番左のサブパーティションもしくは一番右のサブパーティションであってよく、または現在コーディングブロックをサブパーティションに分割するイントラ・サブパーティション分割タイプが水平である場合、現在のサブパーティションは現在コーディングブロックの内側の一番上のサブパーティションもしくは一番下のサブパーティションであってよい。
【0035】
本開示の第2の態様では、現在のサブパーティションは、上または左から隣接する近傍ブロックに基づいてイントラ予測される。近傍ブロックが、さらなる分割を伴うコーディングブロックではない場合があり、すなわち、おそらく近傍ブロックのサブパーティションがないことに留意されたい。
【0036】
現在のサブパーティションについての第3の最大フィルタ長とは、エッジに対して垂直であり隣接する各行または各列の中で、現在のサブパーティションについて修正されることが許容されるサンプルの最大個数を指しうることが理解され得る。近傍ブロックについての第4の最大フィルタ長とは、エッジに対して垂直であり隣接する各行または各列の中で、近傍ブロックに対して修正されることが許容されるサンプルの最大個数を指してうる。特定のフィルタ処理決定フェーズに応じて、場合によっては、サンプルが修正されないことがあり、または別の場合には、サブパーティション境界に対して垂直であり隣接する各行もしくは各列の中で1個のサンプルのみが修正されることがあることが理解され得る。
【0037】
本発明は、現在のサブパーティションと近傍ブロックとの間の垂直エッジと水平エッジの両方に対して動作する。垂直エッジに対して、現在のサブパーティションまたは近傍ブロックの幅は、幅が4サンプルであるかどうかがチェックされる。水平エッジに対して、現在のサブパーティションまたは近傍ブロックの高さは、高さが4サンプルであるかどうかがチェックされる。
【0038】
ブロックエッジとサブパーティション境界との間の差異は、さらなる説明の中で説明される。サブパーティション境界とは、イントラ・サブパーティション(ISP)コーディングツールを使用するコーディングブロックの内部にあるエッジであり、ブロックエッジ(すなわち、コーディングユニット(CU)エッジまたはコーディングブロックエッジまたはCU境界)とは、2つのコーディングユニットまたは2つのコーディングブロックの間で共有されるエッジである。
【0039】
イントラ・サブパーティション・コーディング・ツールは、イントラ予測ブロック(すなわち、イントラ予測モードでコーディングされる現在コーディングブロックの省略である、イントラコーディングブロック)をサブパーティションに分割し、イントラ予測ブロックの内側のサブパーティションを1つずつ予測する。現在コーディングブロックの現在のサブパーティションと現在コーディングブロックの近傍ブロックとの間のエッジを横切る不連続性があり得る。したがって、そのようなエッジによって引き起こされるアーティファクトを低減するために、現在のサブパーティションの高さが4サンプルであるか、または現在のサブパーティションの幅が4サンプルであるとき、現在のサブパーティションまたは近傍ブロックの中の1個までのサンプルをフィルタ処理する、改善されたフィルタ処理プロセスが提案される。このことは、エッジにおける少数のサンプル値を修正することを可能にし、したがって、本方法は、エッジとサブパーティション境界との間でフィルタ処理が重複することをある程度まで回避しながら、ISPが適用される現在ブロックと近傍ブロックとの間のエッジによって引き起こされることがあるブロックアーティファクトを低減することができる。
【0040】
第2の態様自体による方法の可能な一実装形態では、
現在コーディングブロックをサブパーティションに分割するイントラ・サブパーティション分割タイプが水平である場合、現在のサブパーティションの高さが4サンプルであるとき、現在のサブパーティションと現在のサブパーティションの下または上にある近傍ブロックとの間のエッジに対して垂直であり隣接する、現在のサブパーティションの列から取得される1個までのサンプルは修正される。「1個までのサンプルが修正される」とは、多くとも1個のサンプルが修正されることが許容されることを指してよいことが理解され得る。すなわち、特定のフィルタ処理決定フェーズに応じて、場合によっては、サンプルが修正されないことがあり、または別の場合には、エッジに対して垂直であり隣接する各列の中で1個のサンプルのみが修正されることがある。
【0041】
第2の態様自体による方法の可能な一実装形態では、
現在コーディングブロックをサブパーティションに分割するイントラ・サブパーティション分割タイプが垂直である場合、現在のサブパーティションの幅が4サンプルであるとき、現在のサブパーティションと現在のサブパーティションの左または右にある近傍ブロックとの間のエッジに対して垂直であり隣接する、現在のサブパーティションの行から取得される1個までのサンプルは修正される。「1個までのサンプルが修正される」とは、多くとも1個のサンプルが修正されることが許容されることを指してうることが、理解され得る。すなわち、特定のフィルタ処理決定フェーズに応じて、場合によっては、サンプルが修正されないことがあり、または別の場合には、エッジに対して垂直であり隣接する各行の中で1個のサンプルのみが修正されることがある。
【0042】
第2の態様の先行する任意の実装形態または第2の態様自体による方法の可能な一実装形態では、現在コーディングブロックをサブパーティションに分割するイントラ・サブパーティション分割タイプが垂直である場合、現在のサブパーティションは近傍ブロックの右にあり、現在のサブパーティションは近傍ブロックの再構成された値に基づいてイントラ予測され、
現在コーディングブロックをサブパーティションに分割するイントラ・サブパーティション分割タイプが水平である場合、現在のサブパーティションは近傍ブロックの下にあり、現在のサブパーティションは近傍ブロックの再構成された値に基づいてイントラ予測される。
【0043】
現在のサブパーティションは、コーディングブロックに隣接して配置される別のコーディングブロックに基づいてイントラ予測され得る。この他のコーディングブロックは、コーディングブロックの上またはコーディングブロックの左にあってよい。より正確には、現在のサブパーティションは、隣接するコーディングブロックの再構成されたバージョンに基づいてイントラ予測され得る。
【0044】
第2の態様の先行する任意の実装形態または第2の態様自体による方法の可能な一実装形態では、サブパーティションの個数は2個または4個である。
【0045】
第2の態様の先行する任意の実装形態または第2の態様自体による方法の可能な一実装形態では、
現在コーディングブロックの幅が4に等しくコーディングブロックの高さが8に等しい場合、かつ/または現在コーディングブロックの幅が8に等しく現在コーディングブロックの高さが4に等しい場合、サブパーティションの個数は2個であり、
そうでない場合、サブパーティションの個数は4個である。
【0046】
第2の態様の先行する任意の実装形態または第2の態様自体による方法の可能な一実装形態では、現在のサブパーティションと近傍ブロックとの間のエッジがn×nサンプルグリッドと重なり合わない場合でも、現在のサブパーティションの中または近傍ブロックの中の1個までのサンプルは修正され、nは整数である。たとえば、n=4またはn=8である。
【0047】
第2の態様の先行する任意の実装形態または第2の態様自体による方法の可能な一実装形態では、現在のサブパーティションと近傍ブロックとの間のエッジがn×nサンプルグリッドと重なり合う場合のみ、現在のサブパーティションの中または近傍ブロックの中の1個までのサンプルは修正され、nは整数である。たとえば、n=4またはn=8である。
【0048】
第2の態様の先行する任意の実装形態または第2の態様自体による方法の可能な一実装形態では、サブパーティションのサンプルはルマサンプルであるか、またはサブパーティションのサンプルはクロマサンプルである。
【0049】
第2の態様の先行する任意の実装形態または第2の態様自体による方法の可能な一実装形態では、サブパーティションは矩形変換ブロックサブパーティションである。
【0050】
第2の態様の先行する任意の実装形態または第2の態様自体による方法の可能な一実装形態では、現在コーディングブロックは、イントラ・サブパーティションISPツールを使用してコーディングされる。
【0051】
本開示の第3の態様によれば、コーディングブロック内のサブパーティション境界をデブロッキングするための、画像エンコーダおよび/または画像デコーダにおける使用のためのデバイスが提供され、現在コーディングブロックはイントラ予測モードでコーディングされ、現在コーディングブロックは、第1のサブパーティションおよび第1のサブパーティションに隣接する第2のサブパーティションを含むサブパーティションに分割され、第2のサブパーティションは、第1のサブパーティションに基づいてイントラ予測され、
デバイスは、
第1のサブパーティションの幅が4サンプルであるか、もしくは第2のサブパーティションの幅が4サンプルであるとき、または第1のサブパーティションの高さが4サンプルであるか、もしくは第2のサブパーティションの高さが4サンプルであるとき、第1のサブパーティションについて第1の最大フィルタ長が1であること、および/または第2のサブパーティションについて第2の最大フィルタ長が1であることを決定することと、
第1のサブパーティションの1個までのサンプルの値を修正することであって、1個までのサンプルは、第1のサブパーティションと第2のサブパーティションとの間のサブパーティション境界に対して垂直であり隣接する、第1のサブパーティションの行もしくは列から取得されること、および/または
第2のサブパーティションの1個までのサンプルの値を修正することであって、1個までのサンプルは、第1のサブパーティションと第2のサブパーティションとの間のサブパーティション境界に対して垂直であり隣接する、第2のサブパーティションの行もしくは列から取得されることと
を行うように構成されたデブロッキングフィルタを含む。
【0052】
本開示の第4の態様によれば、画像ブロック間のブロックエッジをデブロッキングするための、画像エンコーダおよび/または画像デコーダにおける使用のためのデバイスが提供され、ブロックエッジは、現在コーディングブロックの現在のサブパーティションと現在コーディングブロックの近傍ブロックとの間のエッジを含み、現在コーディングブロックはイントラ予測モードでコーディングされ、現在コーディングブロックはサブパーティションに分割され、
デバイスは、
現在のサブパーティションの幅が4サンプルであるか、または現在のサブパーティションの高さが4サンプルであるとき、現在のサブパーティションについての第3の最大フィルタ長が1であること、および/または近傍ブロックについての第4の最大フィルタ長が1であることを決定することと、
現在のサブパーティションの1個までのサンプルの値を修正することであって、1個までのサンプルは、現在のサブパーティションと近傍ブロックとの間のエッジに対して垂直であり隣接する、現在のサブパーティションの行もしくは列から取得されること、および/または
近傍ブロックの1個までのサンプルの値を修正することであって、1個までのサンプルは、現在のサブパーティションと近傍ブロックとの間のエッジに対して垂直であり隣接する、近傍ブロックの行もしくは列から取得されることと
を行うように構成されたデブロッキングフィルタを含む。
【0053】
本発明の第1の態様による方法は、本発明の第3の態様による装置によって行われうる。本発明の第3の態様による装置のさらなる特徴および実装形態は、本発明の第1の態様による方法の特徴および実装形態に対応する。
【0054】
本発明の第2の態様による方法は、本発明の第4の態様による装置によって行われうる。本発明の第4の態様による装置のさらなる特徴および実装形態は、本発明の第2の態様による方法の特徴および実装形態に対応する。
【0055】
第5の態様によれば、本発明は、プロセッサおよびメモリを含む、ビデオストリームを復号するための装置に関する。メモリは、第1または第2の態様による方法をプロセッサに実行させる命令を記憶している。
【0056】
第6の態様によれば、本発明は、プロセッサおよびメモリを含む、ビデオストリームを符号化するための装置に関する。メモリは、第1または第2の態様による方法をプロセッサに実行させる命令を記憶している。
【0057】
第7の態様によれば、実行されたとき、ビデオデータをコーディングするように1つまたは複数のプロセッサを構成させる命令を記憶したコンピュータ可読記憶媒体が提案される。命令は、第1もしくは第2の態様または第1もしくは第2の態様の任意の可能な実施形態による方法を、1つまたは複数のプロセッサに実行させる。
【0058】
第8の態様によれば、本発明は、コンピュータ上で実行されたとき、第1もしくは第2の態様または第1もしくは第2の態様の任意の可能な実施形態による方法を行うためのプログラムコードを含む、コンピュータプログラムに関する。
【0059】
第9の態様によれば、本発明は、第1もしくは第2の態様または第1もしくは第2の態様の任意の可能な実施形態による方法を行うための処理回路構成を含む、エンコーダまたはデコーダに関する。
【0060】
本発明の第10の態様によれば、ビデオ符号化装置が提供される。ビデオストリームのピクチャを符号化するためのビデオ符号化装置であって、ビデオ符号化装置は、
ピクチャを再構成するように構成された再構成ユニットであって、ピクチャの再構成は、ピクチャに属する現在コーディングブロックの再構成されたブロックを生成することを含み、現在コーディングブロックはイントラ予測モードでコーディングされ、現在コーディングブロックは、第1のサブパーティションおよび第2のサブパーティションを含むサブパーティションに分割され、第2のサブパーティションは、第1のサブパーティションに基づいてイントラ予測される、再構成ユニットと、
再構成されたピクチャを処理してフィルタ処理済みの再構成されたピクチャにするように構成されたフィルタ処理ユニットであって、フィルタ処理ユニットは、現在のサブパーティションもしくは現在のサブパーティションに隣接する別のサブパーティションの高さが4サンプルであるとき、または現在のサブパーティションもしくは現在のサブパーティションに隣接する別のサブパーティションの幅が4サンプルであるとき、再構成されたブロックの再構成されたサブパーティションの現在のサブパーティションの中の1個までのサンプルをフィルタ処理するように特に構成され、1個までのサンプルは、現在のサブパーティションと現在のサブパーティションに隣接して配置される前記別のサブパーティションとの間の境界に直交する、現在のサブパーティションの行または列の中に配置され、1つのサンプルが境界に隣接し、あるいはフィルタ処理ユニットは、現在のサブパーティションについてのそれぞれの最大フィルタ長および近傍ブロックについてのそれぞれの最大フィルタ長に基づいて、再構成されたブロックの現在のサブパーティションと現在のサブパーティションに隣接する近傍ブロックとの間の境界をフィルタ処理するように特に構成され、現在のサブパーティションの高さが4サンプルであるとき、または現在のサブパーティションの幅が4サンプルであるとき、それぞれの最大フィルタ長は両方とも1である、フィルタ処理ユニットとを含む。
【0061】
このことは、ISPのフレームワークにおいて再構成されたピクチャの品質を効率的に改善することを可能にする。
【0062】
可能な一実装形態では、現在コーディングブロックをサブパーティションに分割するイントラ・サブパーティション分割タイプが水平である場合、第1または第2のサブパーティションの高さが4サンプルであるとき、第1のサブパーティションと第2のサブパーティションとの間の境界に対して垂直であり隣接する、第1または第2のサブパーティションの列から取得される1個までのサンプルは修正される。「1個までのサンプルが修正される」とは、多くとも1個のサンプルが修正されることが許容されることを指してよいことが、理解され得る。すなわち、特定のフィルタ処理決定フェーズに応じて、場合によっては、サンプルが修正されないことがあり、または別の場合には、サブパーティション境界に対して垂直であり隣接する各列の中で1個のサンプルのみが修正されることがある。
【0063】
可能な一実装形態では、現在コーディングブロックをサブパーティションに分割するイントラ・サブパーティション分割タイプが垂直である場合、第1または第2のサブパーティションの幅が4サンプルであるとき、第1のサブパーティションと第2のサブパーティションとの間の境界に対して垂直であり隣接する、第1または第2のサブパーティションの行から取得される1個までのサンプルは修正される。「1個までのサンプルが修正される」とは、多くとも1個のサンプルが修正されることが許容されることを指してうることが理解され得る。すなわち、特定のフィルタ処理決定フェーズに応じて、場合によっては、サンプルが修正されないことがあり、または別の場合には、サブパーティション境界に対して垂直であり隣接する各行の中で1個のサンプルのみ修正されることがある。
【0064】
可能な一実装形態では、現在コーディングブロックをサブパーティションに分割するイントラ・サブパーティション分割タイプが水平である場合、第1のサブパーティションと第2のサブパーティションとの間のサブパーティション境界は水平のサブパーティション境界であり、あるいは、現在コーディングブロックをサブパーティションに分割するイントラ・サブパーティション分割タイプが垂直である場合、第1のサブパーティションと第2のサブパーティションとの間のサブパーティション境界は垂直のサブパーティション境界である。
【0065】
可能な一実装形態では、現在コーディングブロックをサブパーティションに分割するイントラ・サブパーティション分割タイプが垂直である場合、第1のサブパーティションは第2のサブパーティションの左にあってよく、第2のサブパーティションは第1のサブパーティションの再構成された値に基づいてイントラ予測されてよく、
現在コーディングブロックをサブパーティションに分割するイントラ・サブパーティション分割タイプが水平である場合、第1のサブパーティションは第2のサブパーティションの上にあってよく、第2のサブパーティションは第1のサブパーティションの再構成された値に基づいてイントラ予測されてよい。
【0066】
第2のサブパーティションが第1のサブパーティションの再構成されたバージョン(すなわち、再構成された値)に基づいてイントラ予測されることが理解され得る。再構成された第1のサブパーティションは、第2のサブパーティションのイントラ予測のための参照を表す。現在コーディングブロックが属する現在ピクチャが再構成された後、再構成されたピクチャがフィルタ処理プロセスに入力されることに留意されたい。現在ピクチャの再構成の間、現在コーディングブロックの予測ブロック(たとえば、予測される値)を取得するためにISPコーディングツールによって適用される現在コーディングブロックがイントラ予測され、詳細には、現在のイントラコーディングブロックの内側のサブパーティションが1つずつイントラ予測される。
【0067】
可能な一実装形態では、サブパーティションの個数は2個または4個である。
【0068】
可能な一実装形態では、
現在コーディングブロックの幅が4に等しくコーディングブロックの高さが8に等しい場合、かつ/または現在コーディングブロックの幅が8に等しく現在コーディングブロックの高さが4に等しい場合、サブパーティションの個数は2個であり、
そうでない場合、サブパーティションの個数は4個である。
【0069】
可能な一実装形態では、第1のサブパーティションと第2のサブパーティションとの間のサブパーティション境界がn×nサンプルグリッドと重なり合わない場合でも、第1または第2のサブパーティションの中の1個までのサンプルは修正され、nは整数である。
【0070】
n×nグリッドと位置合わせされていないが、ISPによって引き起こされコーディングブロックのサブパーティションの間の内部境界である、ターゲット境界をデブロッキングすることが許容される。
【0071】
可能な一実装形態では、第1のサブパーティションと第2のサブパーティションとの間のサブパーティション境界がn×nサンプルグリッドと重なり合う場合のみ、第1または第2のサブパーティションの中の1個までのサンプルは修正され、nは整数であり、たとえば、n=4またはn=8である。それによって、計算負荷はなお一層低減され得る。
【0072】
その上、サブパーティションの中の1個までのサンプルのフィルタ処理は、サブパーティションのうちのすべての高さが4サンプルであるとき、またはサブパーティションのうちのすべての幅が4サンプルであるときにのみ行われうる。それによって、全体的なコーディングプロセスの計算負荷はさらに低減され得る。
【0073】
一般に、サブパーティションは矩形変換ブロックサブパーティションであってよい。
【0074】
可能な一実装形態では、サブパーティションのサンプルはルマサンプルであるか、またはサブパーティションのサンプルはクロマサンプルである。
【0075】
可能な一実装形態では、現在コーディングブロックをサブパーティションに分割するイントラ・サブパーティション分割タイプが垂直である場合、サブパーティションをイントラ予測する順序は左から右であり、または現在コーディングブロックをサブパーティションに分割するイントラ・サブパーティション分割タイプが水平である場合、サブパーティションをイントラ予測する順序は上から下である。すなわち、サブパーティションへの予測ブロックの分割は、垂直方向において行われうる。この場合、サブパーティションをイントラ予測する順序は、1つずつ左から右までである。あるいは、サブパーティションへの予測ブロックの分割は、水平方向において行われうる。この場合、2つのサブパーティションをイントラ予測する順序は、1つずつ上から下までである。
【0076】
本開示では、現在コーディングブロックは、イントラ・サブパーティションISPツールを使用してコーディングされ、またはサブパーティション境界は、イントラ・サブパーティションISPツールによって引き起こされる。
【0077】
概して、コーディングブロックのサブパーティションの間のすべての境界の境界強度は、全体的な処理を簡略化するために、フィルタ処理プロセスの強度を示す一定値(たとえば、2)に設定されてよい。
【0078】
その上、隣接する2つのサブパーティションに対応してコーディングされたブロックフラグCBF値が取得されてよく、隣接する2つのサブパーティションに対応するCBF値に従って、現在ブロックの隣接する2つのサブパーティションの間の境界の境界強度を決定し、
フィルタ処理が行われるか否かというフィルタ処理決定が、決定された境界強度に従って行われてよい。隣接する2つのサブパーティションに対応するCBF値のうちの少なくとも1つは0に等しくなくてよく、ただし、0は、そのサブパーティションの量子化の後に残差データがないことを暗示する。
【0079】
本発明の第11の態様によれば、ビデオ復号装置が提供される。符号化ビデオストリームのピクチャを復号するためのビデオ復号装置であって、ビデオ復号装置は、
ピクチャを再構成するように構成された再構成ユニットであって、ピクチャの再構成は、現在ピクチャに属する現在コーディングブロックの再構成されたブロックを生成することを含み、現在コーディングブロックはイントラ予測モードでコーディングされ、現在コーディングブロックは、第1のサブパーティションおよび第2のサブパーティションを含むサブパーティションに分割され、第2のサブパーティションは、第1のサブパーティションに基づいてイントラ予測される、再構成ユニットと、
再構成されたピクチャを処理してフィルタ処理済みの再構成されたピクチャにするように構成されたフィルタ処理ユニットであって、フィルタ処理ユニットは、現在のサブパーティションもしくは現在のサブパーティションに隣接する別のサブパーティションの高さが4サンプルであるとき、または現在のサブパーティションもしくは現在のサブパーティションに隣接する別のサブパーティションの幅が4サンプルであるとき、再構成されたブロックの再構成されたサブパーティションの現在のサブパーティションの中の1個までのサンプルをフィルタ処理するように特に構成され、1個までのサンプルは、現在のサブパーティションと現在のサブパーティションに隣接して配置される前記別のサブパーティションとの間の境界に直交する、現在のサブパーティションの行または列の中に配置され、1つのサンプルが境界に隣接し、あるいはフィルタ処理ユニットは、現在のサブパーティションについてのそれぞれの最大フィルタ長および近傍ブロックについてのそれぞれの最大フィルタ長に基づいて、再構成されたブロックの現在のサブパーティションと現在のサブパーティションに隣接する近傍ブロックとの間の境界をフィルタ処理するように特に構成され、現在のサブパーティションの高さが4サンプルであるとき、または現在のサブパーティションの幅が4サンプルであるとき、それぞれの最大フィルタ長は両方とも1である、フィルタ処理ユニットとを含む。
【0080】
このことは、ISPのフレームワークにおいて再構成されたピクチャの品質を効率的に改善することを可能にする。
【0081】
さらに、現在ピクチャの現在コーディングブロックを符号化するための手段を含むエンコーダが提供され、その手段は、本発明の方法の上述の実施形態のうちのいずれか1つに従って、現在コーディングブロックの再構成されたブロックを生成するための手段と、現在ピクチャの再構成されたピクチャをフィルタ処理するための手段とを含む。
【0082】
さらに、現在ピクチャの現在コーディングブロックを復号するための手段を含むデコーダが提供され、その手段は、本発明の方法の上述の実施形態のうちのいずれか1つに従って、現在コーディングブロックの再構成されたブロックを生成するための手段と、現在ピクチャの再構成されたピクチャをフィルタ処理するための手段とを含む。
【0083】
1つまたは複数の実施形態の詳細が、添付図面および以下の説明において記載される。他の特徴、目的、および利点は、説明、図面、および請求項から明らかとなろう。
【0084】
以下では、本発明の実施形態が、添付の図および図面を参照しながらより詳細に説明される。
【図面の簡単な説明】
【0085】
【
図1A】本発明の実施形態を実施するように構成されたビデオコーディングシステムの一例を示すブロック図である。
【
図1B】本発明の実施形態を実施するように構成されたビデオコーディングシステムの別の例を示すブロック図である。
【
図2】本発明の実施形態を実施するように構成されたビデオエンコーダの一例を示すブロック図である。
【
図3】本発明の実施形態を実施するように構成されたビデオデコーダの例示的な構造を示すブロック図である。
【
図4】符号化装置または復号装置の一例を示すブロック図である。
【
図5】符号化装置または復号装置の別の例を示すブロック図である。
【
図6】イントラ・サブパーティション(ISP)ツールを使用するコーディングユニット(CU)内のサブパーティションエッジをデブロッキングする一例を示すブロック図である。
【
図7】イントラ・サブパーティション(ISP)ツールを使用するCU内のサブパーティションエッジをデブロッキングする別の例を示すブロック図である。
【
図8】8×8サンプルグリッドと重なり合う、CU内のサブパーティションエッジをデブロッキングする一例を示すブロック図である。
【
図9】4×4サンプルグリッドと重なり合う、CU内のすべてのサブパーティションエッジをデブロッキングする一例を示すブロック図である。
【
図10】サブパーティションサイズがデブロッキングの方向において直交して8サンプル未満であるとき、デブロッキング決定において3サンプルのみを使用し1サンプルのみを修正する弱いフィルタが、それに従って使用される一例を示すブロック図である。
【
図11】デブロッキングフィルタ処理のための例示的なプロセスを示すフロー図である。
【
図12】デブロッキングフィルタ処理のための別の例示的なプロセスを示すフロー図である。
【
図13】コーディングブロック内のサブパーティション境界をデブロッキングするためのデバイスの概略図である。
【
図14】ブロックエッジをデブロッキングするためのデバイスの概略図である。
【
図15】復号デバイスまたは符号化デバイスにおいて実施されるコーディングの例示的なプロセスを示すフロー図である。
【
図16】復号デバイスまたは符号化デバイスにおいて実施されるコーディングの別の例示的なプロセスを示すフロー図である。
【
図17】ビデオコーディングのためのデバイスの概略図である。
【
図18】ビデオコーディングのためのデバイスの概略図である。
【
図19】コンテンツ配信サービスを実現するコンテンツ供給システムの例示的な構造を示すブロック図である。
【
図20】端末デバイスの一例の構造を示すブロック図である。
【発明を実施するための形態】
【0086】
以下では、同一の参照符号は、別段に明示的に指定されない場合、同一のまたは少なくとも機能的に均等な特徴を指す。
【0087】
以下の説明では、本開示の一部を形成し、かつ本発明の実施形態の特定の態様または本発明の実施形態が使用され得る特定の態様を例として示す、添付の図への参照が行われる。本発明の実施形態が、他の態様において使用されてよく、図の中に示されない構造的または論理的な変更を含んでよいことが理解される。したがって、以下の発明を実施するための形態は限定的な意味で理解されるべきでなく、本発明の範囲は添付の請求項によって定義される。
【0088】
たとえば、説明される方法に関連する開示は、方法を行うように構成された対応するデバイスまたはシステムに対しても当てはまり得ることが理解され、逆も同様である。たとえば、1つまたは複数の特定の方法ステップが説明されたならば、対応するデバイスは、説明する1つまたは複数の方法ステップを行うための1つまたは複数のユニット(たとえば、1つもしくは複数のステップを行う1つのユニット、または複数のステップのうちの1つもしくは複数を各々が行う複数のユニット)、たとえば、機能ユニットを、そのような1つまたは複数のユニットが明示的に説明されないかまたは図示されないとしても含むことがある。一方、たとえば、1つまたは複数のユニット、たとえば、機能ユニットに基づいて、特定の装置が説明される場合、そのような1つまたは複数のステップが明示的に説明されないかまたは図示されないとしても、対応する方法は、1つまたは複数のユニットの機能を行うための1つのステップ(たとえば、1つもしくは複数のユニットの機能を行う1つのステップ、または複数のユニットのうちの1つもしくは複数の機能を各々が実行する複数のステップ)を含んでよい。さらに、別段に特に記載されていない限り、本明細書で説明する様々な例示的な実施形態および/または態様の特徴が互いに組み合わせられてよいことが理解される。
【0089】
ビデオコーディングとは、通常、ビデオまたはビデオシーケンスを形成する、ピクチャのシーケンスの処理を指す。「ピクチャ」という用語の代わりに、ビデオコーディングの分野では「フレーム」または「画像」という用語が同義語として使用され得る。ビデオコーディング(または、一般にコーディング)は、2つの部分、ビデオ符号化およびビデオ復号を含む。ビデオ符号化は、ソース側において行われ、通常、ビデオピクチャを表現するのに必要とされるデータの量を(より効率的な記憶および/または送信のために)低減するために、(たとえば、圧縮によって)元のビデオピクチャを処理することを含む。ビデオ復号は、宛先側において行われ、通常、ビデオピクチャを再構成するための、エンコーダと比較して逆の処理を含む。ビデオピクチャ(または、一般にピクチャ)の「コーディング」に言及する実施形態は、ビデオピクチャまたはそれぞれのビデオシーケンスの「符号化」または「復号」に関係すると理解されるものとする。符号化部分と復号部分との組合せは、コーデック(コーディングおよび復号)とも呼ばれる。
【0090】
可逆的ビデオコーディングの場合には、元のビデオピクチャは再構成され得、すなわち、(記憶または送信の間に伝送損失または他のデータ損失がないと想定すると)再構成ビデオピクチャは元のビデオピクチャと同じ品質を有する。不可逆的ビデオコーディングの場合には、ビデオピクチャを表現するデータの量を低減するために、たとえば、量子化によって、さらなる圧縮が実行され、ビデオピクチャは、デコーダにおいて完全に再構成され得るとは限らず、すなわち、再構成ビデオピクチャの品質は元のビデオピクチャの品質と比較して、より低く、すなわちより悪い。
【0091】
いくつかのビデオコーディング規格は、「不可逆的ハイブリッドビデオコーデック」のグループに属する(すなわち、サンプル領域における空間予測および時間予測と、変換領域における量子化を適用するための2D変換コーディングとを組み合わせる)。ビデオシーケンスの各ピクチャは、通常、重なり合わないブロックのセットに分割され、コーディングは、通常、ブロックレベルにおいて行われる。言い換えれば、エンコーダにおいて、ビデオは、通常、たとえば、予測ブロックを生成するために空間(ピクチャ内)予測および/または時間(ピクチャ間)予測を使用すること、現在ブロック(現在処理される/処理されるべきブロック)から予測ブロックを減算して残差ブロックを取得すること、残差ブロックを変換すること、ならびに送信されるべきデータの量を低減(圧縮)するために変換領域において残差ブロックを量子化することによって、ブロック(ビデオブロック)レベルにおいて処理すなわち符号化され、その一方で、デコーダにおいて、表現のために現在ブロックを再構成するために、符号化または圧縮されたブロックに対してエンコーダと比較して逆の処理が適用される。さらに、エンコーダは、後続のブロックを処理すなわちコーディングするために、その両方が同一の予測(たとえば、イントラ予測およびインター予測)および/または再構成を生成するように、デコーダ処理ループを複製する。
【0092】
以下、
図1~
図3に基づいて、ビデオコーディングシステム10、ビデオエンコーダ20、およびビデオデコーダ30の実施形態について説明する。
【0093】
図1Aは、この本出願の技法を利用し得る例示的なコーディングシステム10、たとえば、ビデオコーディングシステム10(または、ショートコーディングシステム10)を示す概略ブロック図である。ビデオコーディングシステム10のビデオエンコーダ20(または、ショートエンコーダ20)およびビデオデコーダ30(または、ショートデコーダ30)は、本出願で説明する様々な例による技法を実行するように構成され得るデバイスの例を表す。
【0094】
図1Aに示すように、コーディングシステム10は、符号化されたピクチャデータ21を、たとえば、符号化されたピクチャデータ
21を復号するための宛先デバイス14に提供するように構成されたソースデバイス12を含む。
【0095】
ソースデバイス12は、エンコーダ20を含み、追加的に、すなわち任意選択で、ピクチャソース16、プリプロセッサ(または、前処理ユニット)18、たとえば、ピクチャプリプロセッサ18、および通信インターフェースまたは通信ユニット22を含みうる。
【0096】
ピクチャソース16は、任意の種類のピクチャキャプチャデバイス、たとえば、実世界ピクチャをキャプチャするためのカメラ、ならびに/あるいは任意の種類のピクチャ生成デバイス、たとえば、コンピュータアニメーション化されたピクチャを生成するためのコンピュータグラフィックスプロセッサ、または実世界ピクチャ、コンピュータ生成されたピクチャ(たとえば、スクリーンコンテンツ、仮想現実(VR)ピクチャ)、および/もしくはそれらの任意の組合せ(たとえば、拡張現実(AR)ピクチャ)を取得および/もしくは提供するための任意の種類の他のデバイスを含んでよく、またはそれらであってもよい。ピクチャソースは、上述のピクチャのうちのいずれかを記憶する任意の種類のメモリまたはストレージであってよい。
【0097】
プリプロセッサ18、および前処理ユニット18によって行われる処理と区別して、ピクチャまたはピクチャデータ17は、未加工ピクチャまたは未加工ピクチャデータ17と呼ばれることもある。
【0098】
プリプロセッサ18は、(未加工)ピクチャデータ17を受信し、ピクチャデータ17に対して前処理を行って、前処理済みのピクチャ19または前処理済みのピクチャデータ19を取得するように構成される。プリプロセッサ18によって行われる前処理は、たとえば、トリミング、(たとえば、RGBからYCbCrへの)カラーフォーマット変換、色補正、またはノイズ除去を含んでよい。前処理ユニット18が任意選択の構成要素であってよいことが理解され得る。
【0099】
ビデオエンコーダ20は、前処理済みのピクチャデータ19を受信し、符号化されたピクチャデータ21を提供するように構成される(さらなる詳細が、たとえば
図2に基づいて、以下で説明される)。
【0100】
ソースデバイス12の通信インターフェース22は、符号化されたピクチャデータ21を受信し、記憶または直接の再構成のために、通信チャネル13を介して別のデバイス、たとえば、宛先デバイス14または任意の他のデバイスへ、符号化されたピクチャデータ21(または、それらのさらに処理された任意のバージョン)を送信するように構成され得る。
【0101】
宛先デバイス14は、デコーダ30(たとえば、ビデオデコーダ30)を含み、追加として、すなわち任意選択で、通信インターフェースまたは通信ユニット28、ポストプロセッサ32(または、後処理ユニット32)、およびディスプレイデバイス34を含んでよい。
【0102】
宛先デバイス14の通信インターフェース28は、たとえば、ソースデバイス12から直接、または任意の他のソース、たとえば、記憶デバイス、たとえば、符号化されたピクチャデータ記憶デバイスから、符号化されたピクチャデータ21(または、それらのさらに処理された任意のバージョン)を受信し、符号化されたピクチャデータ21をデコーダ30に提供するように構成される。
【0103】
通信インターフェース22および通信インターフェース28は、ソースデバイス12と宛先デバイス14との間の直接通信リンク、たとえば、直接有線接続または直接ワイヤレス接続を介して、あるいは任意の種類のネットワーク、たとえば、有線ネットワークもしくはワイヤレスネットワークもしくはそれらの任意の組合せ、または任意の種類のプライベートネットワークおよびパブリックネットワーク、またはそれらの任意の種類の組合せを介して、符号化されたピクチャデータ21または符号化データ13を送信または受信するように構成され得る。
【0104】
通信インターフェース22は、たとえば、適切なフォーマット、たとえば、パケットの中に、符号化されたピクチャデータ21をパッケージ化し、かつ/または通信リンクもしくは通信ネットワークを介した送信のために任意の種類の送信符号化もしくは送信処理を使用して、符号化されたピクチャデータを処理するように構成され得る。
【0105】
通信インターフェース22の相対物を形成する通信インターフェース28は、たとえば、送信されたデータを受信し、任意の種類の対応する送信復号もしくは送信処理および/またはデパッケージングを使用して送信データを処理して、符号化されたピクチャデータ21を取得するように構成され得る。
【0106】
通信インターフェース22と通信インターフェース28はいずれも、ソースデバイス12から宛先デバイス14を指し示す、
図1Aの中の通信チャネル13に対する矢印によって示されるような単方向の通信インターフェース、または双方向の通信インターフェースとして構成されてよく、また、たとえば、通信リンクおよび/またはデータ送信、たとえば、符号化されたピクチャデータの送信に関係する任意の他の情報を肯定応答および交換するために、たとえば、接続をセットアップするためのメッセージを送受信するように構成されてよい。
【0107】
デコーダ30は、符号化されたピクチャデータ21を受信し、復号されたピクチャデータ31または復号されたピクチャ31を提供するように構成される(さらなる詳細は、たとえば、
図3または
図5に基づいて、以下で説明される)。
【0108】
宛先デバイス14のポストプロセッサ32は、復号されたピクチャデータ31(再構成されたピクチャデータとも呼ばれる)、たとえば、復号されたピクチャ31を後処理して、後処理されたピクチャデータ33、たとえば、後処理されたピクチャ33を取得するように構成される。後処理ユニット32によって実行される後処理は、たとえば、ディスプレイデバイス34による、たとえば、表示用の復号されたピクチャデータ31を準備するための、たとえば、(たとえば、YCbCrからRGBへの)カラーフォーマット変換、色補正、トリミング、もしくはリサンプリング、または任意の他の処理を含んでよい。
【0109】
宛先デバイス14のディスプレイデバイス34は、たとえば、ユーザまたは見ている人に、ピクチャを表示するための、後処理されたピクチャデータ33を受信するように構成される。ディスプレイデバイス34は、再構成されたピクチャを表現するための任意の種類のディスプレイ、たとえば、統合型または外部のディスプレイまたはモニタであってよく、またはそれを含んでもよい。ディスプレイは、たとえば、液晶ディスプレイ(LCD)、有機発光ダイオード(OLED)ディスプレイ、プラズマディスプレイ、プロジェクタ、マイクロLEDディスプレイ、液晶オンシリコン(LCoS)、デジタル光プロセッサ(DLP)、または任意の種類の他のディスプレイを含んでよい。
【0110】
図1Aはソースデバイス12および宛先デバイス14を別個のデバイスとして示すが、デバイスの実施形態はまた、ソースデバイス12または対応する機能と宛先デバイス14または対応する機能の、両方または両方の機能を含んでよい。そのような実施形態では、ソースデバイス12または対応する機能および宛先デバイス14または対応する機能は、同じハードウェアおよび/またはソフトウェアを使用して、あるいは別個のハードウェアおよび/もしくはソフトウェアまたはそれらの任意の組合せによって、実装され得る。
【0111】
説明に基づいて当業者にとって明らかとなるように、異なるユニットの機能または
図1Aに示すようなソースデバイス12内および/もしくは宛先デバイス14内の機能の存在および(正確な)分割は、実際のデバイスおよび適用例に応じて変わることがある。
【0112】
エンコーダ20(たとえば、ビデオエンコーダ20)もしくはデコーダ30(たとえば、ビデオデコーダ30)、またはエンコーダ20とデコーダ30の両方は、1つまたは複数のマイクロプロセッサ、デジタル信号プロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、個別論理、ハードウェア、ビデオコーディング専用、またはそれらの任意の組合せなどの、
図1Bに示すような処理回路構成を介して実装され得る。エンコーダ20は、
図2のエンコーダ20に関して説明するような様々なモジュールおよび/または本明細書で説明する任意の他のエンコーダシステムもしくはサブシステムを具現するために、処理回路構成46を介して実装され得る。デコーダ30は、
図3のデコーダ30に関して説明するような様々なモジュールおよび/または本明細書で説明する任意の他のデコーダシステムもしくはサブシステムを具現するために、処理回路構成46を介して実装され得る。処理回路構成は、後で説明するような様々な動作を実行するように構成され得る。
図5に示すように、技法が部分的にソフトウェアで実施される場合、デバイスは、ソフトウェアのための命令を好適な非一時的コンピュータ可読記憶媒体の中に記憶してよく、本開示の技法を実行するために1つまたは複数のプロセッサを使用してハードウェアで命令を実行してよい。ビデオエンコーダ20およびビデオデコーダ30のいずれも、たとえば、
図1Bに示すように、組み合わせられたエンコーダ/デコーダ(コーデック)の一部として単一のデバイスの中に統合され得る。
【0113】
ソースデバイス12および宛先デバイス14は、任意の種類のハンドヘルドまたは固定のデバイス、たとえば、ノートブックまたはラップトップコンピュータ、モバイルフォン、スマートフォン、タブレットまたはタブレットコンピュータ、カメラ、デスクトップコンピュータ、セットトップボックス、テレビジョン、ディスプレイデバイス、デジタルメディアプレーヤ、ビデオゲーム機、(コンテンツサービスサーバまたはコンテンツ配信サーバなどの)ビデオストリーミングデバイス、ブロードキャスト受信器デバイス、ブロードキャスト送信器デバイスなどを含む、幅広いデバイスのうちのいずれかを含んでよく、オペレーティングシステムを使用しなくてよく、または任意の種類のオペレーティングシステムを使用してもよい。場合によっては、ソースデバイス12および宛先デバイス14はワイヤレス通信のために装備されてよい。したがって、ソースデバイス12および宛先デバイス14はワイヤレス通信デバイスであってよい。
【0114】
場合によっては、
図1Aに示すビデオコーディングシステム10は一例にすぎず、本出願の技法は、必ずしも符号化デバイスと復号デバイスとの間の任意のデータ通信を含むとは限らない、ビデオコーディング設定(たとえば、ビデオ符号化またはビデオ復号)に適用されてよい。他の例では、データは、ローカルメモリから取り出される、ネットワークを介してストリーミングされるなどである。ビデオ符号化デバイスは、データを符号化するとともにメモリに記憶してよく、かつ/またはビデオ復号デバイスは、データをメモリから取り出すとともに復号してよい。いくつかの例では、互いに通信しないが、単にデータをメモリに符号化し、かつ/またはデータをメモリから取り出すとともに復号するデバイスによって、符号化および復号が行われる。
【0115】
説明の便宜上、たとえば、High-Efficiency Video Coding(HEVC)を参照して、またはVersatile Video Coding (VVC)、すなわち、ITU-T Video Coding Experts Group (VCEG)とISO/IEC Motion Picture Experts Group(MPEG)とのJoint Collaboration Team on Video Coding (JCT-VC)によって策定された次世代ビデオコーディング規格の参照ソフトウェアを参照して、本発明の実施形態が本明細書で説明される。本発明の実施形態がHEVCまたはVVCに限定されないことを、当業者は理解されよう。
【0116】
エンコーダおよび符号化方法
図2は、本出願の技法を実施するように構成される例示的なビデオエンコーダ20の概略ブロック図を示す。
図2の例では、ビデオエンコーダ20は、入力201(または、入力インターフェース201)、残差計算ユニット204、変換処理ユニット206、量子化ユニット208、逆量子化ユニット210および逆変換処理ユニット212、再構成ユニット214、ループフィルタユニット220、復号ピクチャバッファ(DPB)230、モード選択ユニット260、エントロピー符号化ユニット270、ならびに出力272(または、出力インターフェース272)を含む。モード選択ユニット260は、インター予測ユニット244、イントラ予測ユニット254、および分割ユニット262を含んでよい。インター予測ユニット244は、動き推定ユニットおよび動き補償ユニット(図示せず)を含んでよい。
図2に示すようなビデオエンコーダ20は、ハイブリッドビデオエンコーダ、すなわちハイブリッドビデオコーデックによるビデオエンコーダと称されることもある。
【0117】
残差計算ユニット204、変換処理ユニット206、量子化ユニット208、モード選択ユニット260は、エンコーダ20の順方向信号経路を形成するものと称されてよく、その一方で、逆量子化ユニット210、逆変換処理ユニット212、再構成ユニット214、バッファ216、ループフィルタ220、復号ピクチャバッファ(DPB)230、インター予測ユニット244、およびイントラ予測ユニット254は、ビデオエンコーダ20の逆方向信号経路を形成するものとして称されてよく、ビデオエンコーダ20の逆方向信号経路はデコーダの信号経路に対応する(
図3の中のビデオデコーダ30を参照)。逆量子化ユニット210、逆変換処理ユニット212、再構成ユニット214、ループフィルタ220、復号ピクチャバッファ(DPB)230、インター予測ユニット244、およびイントラ予測ユニット254はまた、ビデオエンコーダ20の「ビルトインデコーダ」を形成するものと称される。
【0118】
ピクチャおよびピクチャ分割(ピクチャおよびブロック)
エンコーダ20は、ピクチャ17(または、ピクチャデータ17)、たとえば、ビデオまたはビデオシーケンスを形成するピクチャのシーケンスのピクチャを、たとえば、入力201を介して受信するように構成され得る。受信されるピクチャまたはピクチャデータはまた、前処理済みのピクチャ19(または、前処理済みのピクチャデータ19)であってよい。簡単のために、以下の説明はピクチャ17を参照する。ピクチャ17は、現在ピクチャ、または(同じビデオシーケンス、すなわち、やはり現在ピクチャを含むビデオシーケンスの、他のピクチャ、たとえば、前に符号化および/または復号されたピクチャから、現在ピクチャを区別するために、ビデオコーディングでは特に)コーディングされるべきピクチャと呼ばれることもある。
【0119】
(デジタル)ピクチャは、強度値を有するサンプルの2次元のアレイまたは行列であるか、またはそのように見なされ得る。アレイの中のサンプルは、ピクセル(短い形式のピクチャ要素)またはペルと呼ばれることもある。アレイまたはピクチャの水平および垂直の方向(または、軸)におけるサンプルの個数は、ピクチャのサイズおよび/または解像度を規定する。色の表現のために、通常、3つの色成分が採用され、すなわち、ピクチャは、3つのサンプルアレイが表されてよく、またはそれらを含んでよい。RBGフォーマットまたは色空間の中で、ピクチャは、対応する赤色、緑色、および青色のサンプルアレイを含む。しかしながら、ビデオコーディングでは、各ピクセルは、通常、ルミナンスおよびクロミナンスのフォーマットまたは色空間、たとえば、YCbCrで表され、YCbCrは、Y(時々、代わりにLも使用される)によって示されるルミナンス成分、ならびにCbおよびCrによって示される2つのクロミナンス成分を含む。ルミナンス(または、ショートルマ)成分Yは、輝度または(たとえば、グレースケールピクチャにおけるような)グレーレベル強度を表し、2つのクロミナンス(または、ショートクロマ)成分CbおよびCrは、色度または色情報成分を表す。したがって、YCbCrフォーマットをなすピクチャは、ルミナンスサンプル値(Y)のルミナンスサンプルアレイ、およびクロミナンス値(CbおよびCr)の2つのクロミナンスサンプルアレイを含む。RGBフォーマットをなすピクチャは、YCbCrフォーマットに変換(convert)または変換(transform)されてよく、逆も同様であり、そのプロセスは色変換(color transformation)または色変換(color conversion)とも呼ばれる。ピクチャがモノクロである場合、ピクチャはルミナンスサンプルアレイのみを含んでよい。したがって、ピクチャは、たとえば、モノクロフォーマットでのルマサンプルのアレイ、または4:2:0、4:2:2、および4:4:4カラーフォーマットでの、ルマサンプルのアレイおよびクロマサンプルの2つの対応するアレイであってよい。
【0120】
ビデオエンコーダ20の実施形態は、ピクチャ17を複数の(通常は重なり合わない)ピクチャブロック203に分割するように構成されたピクチャ分割ユニット(
図2に示さず)を含んでよい。これらのブロックは、ルートブロック、マクロブロック(H.264/AVC)、またはコーディングツリーブロック(CTB)もしくはコーディングツリーユニット(CTU)(H.265/HEVCおよびVVC)と呼ばれることもある。ピクチャ分割ユニットは、ビデオシーケンスのすべてのピクチャに対して同じブロックサイズを、かつブロックサイズを規定する対応するグリッドを使用するか、あるいはピクチャまたはピクチャのサブセットもしくはグループの間でブロックサイズを変更し、各ピクチャを対応するブロックに分割するように構成され得る。
【0121】
さらなる実施形態では、ビデオエンコーダは、ピクチャ17のブロック203、たとえば、ピクチャ17を形成する1つの、複数の、または全部のブロックを、直接受信するように構成され得る。ピクチャブロック203は、現在ピクチャブロック、またはコーディングされるべきピクチャブロックと呼ばれることもある。
【0122】
ピクチャ17のように、ピクチャブロック203は再び、強度値(サンプル値)を有するサンプルの、ただしピクチャ17よりも寸法が小さい、2次元のアレイまたは行列であるか、またはそのように見なされ得る。言い換えれば、ブロック203は、たとえば、1つのサンプルアレイ(たとえば、モノクロピクチャ17の場合にはルマアレイ、またはカラーピクチャの場合にはルマアレイもしくはクロマアレイ)、または3つのサンプルアレイ(たとえば、カラーピクチャ17の場合にはルマアレイおよび2つのクロマアレイ)、あるいは適用されるカラーフォーマットに応じて任意の他の個数および/または種類のアレイを含んでよい。ブロック203の水平および垂直の方向(または、軸)におけるサンプルの個数は、ブロック203のサイズを規定する。したがって、ブロックは、たとえば、サンプルのM×N(M列×N行)アレイ、または変換係数のM×Nアレイであってよい。
【0123】
図2に示すようなビデオエンコーダ20の実施形態は、ピクチャ17をブロックごとに符号化するように構成されてよく、たとえば、符号化および予測がブロック203ごとに行われる。
【0124】
図2に示すようなビデオエンコーダ20の実施形態は、スライス(ビデオスライスとも呼ばれる)を使用することによってピクチャを分割および/または符号化するようにさらに構成されてよく、ピクチャは、(通常は重複しない)1つまたは複数のスライスに分割され得るか、またはそうしたスライスを使用して符号化され得、各スライスは、1つまたは複数のブロック(たとえば、CTU)を含みうる。
【0125】
図2に示すようなビデオエンコーダ20の実施形態は、タイルグループ(ビデオタイルグループとも呼ばれる)および/またはタイル(ビデオタイルとも呼ばれる)を使用することによってピクチャを分割および/または符号化するようにさらに構成されてよく、ピクチャは、(通常は重複しない)1つまたは複数のタイルグループに分割され得るか、またはそうしたタイルグループを使用して符号化され得、各タイルグループは、たとえば、1つもしくは複数のブロック(たとえば、CTU)または1つもしくは複数のタイルを含んでよく、各タイルは、たとえば、矩形形状であってよく、1つまたは複数のブロック(たとえば、CTU)、たとえば、完全なブロックまたは分数ブロックを含んでよい
【0126】
残差計算
残差計算ユニット204は、たとえば、サンプルごとに(ピクセルごとに)ピクチャブロック203のサンプル値から予測ブロック265のサンプル値を減算することによって、ピクチャブロック203および予測ブロック265(予測ブロック265についてのさらなる詳細は後で提供される)に基づいて残差ブロック205(残差205とも呼ばれる)を計算して、サンプル領域において残差ブロック205を取得するように構成され得る。
【0127】
変換
変換処理ユニット206は、残差ブロック205のサンプル値に対して変換、たとえば、離散コサイン変換(DCT)または離散サイン変換(DST)を適用して、変換領域における変換係数207を取得するように構成され得る。変換係数207は、変換残差係数と呼ばれることもあり、変換領域における残差ブロック205を表しうる。
【0128】
変換処理ユニット206は、H.265/HEVCに対して規定された変換などのDCT/DSTの整数近似を適用するように構成され得る。直交DCT変換と比較して、そのような整数近似は、通常、いくつかの係数によってスケーリングされる。順変換および逆変換によって処理される残差ブロックのノルムを保存するために、変換プロセスの一部として追加のスケーリング係数が適用される。スケーリング係数は、典型的には、シフト演算のためにスケーリング係数が2のべき乗であること、変換係数のビット深度、確度と実装コストとの間のトレードオフなどのような、いくつかの制約に基づいて選ばれる。たとえば、逆変換処理ユニット212による、たとえば、逆変換(および、たとえば、ビデオデコーダ30における逆変換処理ユニット312による、対応する逆変換)について、特定のスケーリング係数が指定され、エンコーダ20における、たとえば、変換処理ユニット206による順変換のための対応するスケーリング係数が、それに応じて指定され得る。
【0129】
ビデオエンコーダ20の実施形態(それぞれ、変換処理ユニット206)は、たとえば、直接、またはエントロピー符号化ユニット270を介して符号化もしくは圧縮された、変換パラメータ、たとえば、1つまたは複数の変換のタイプを出力するように構成されてよく、その結果、たとえば、ビデオデコーダ30は、復号のために変換パラメータを受信および使用し得る。
【0130】
量子化
量子化ユニット208は、たとえば、スカラー量子化またはベクトル量子化を適用することによって変換係数207を量子化して、量子化された係数209を取得するように構成され得る。量子化された係数209は、量子化変換係数209または量子化残差係数209と呼ばれることもある。
【0131】
量子化プロセスは、変換係数207の一部または全部に関連するビット深度を低減し得る。たとえば、nビットの変換係数は、量子化の間にmビットの変換係数に切り捨てられてよく、ただし、nはmよりも大きい。量子化の程度は、量子化パラメータ(QP)を調整することによって修正され得る。たとえば、スカラー量子化の場合、より細かいかまたはより粗い量子化を達成するために、様々なスケーリングが適用され得る。より小さい量子化ステップサイズは、より細かい量子化に対応し、その一方で、より大きい量子化ステップサイズは、より粗い量子化に対応する。適用可能な量子化ステップサイズは、量子化パラメータ(QP)によって示され得る。量子化パラメータは、たとえば、適用可能な量子化ステップサイズの既定のセットへのインデックスであってよい。たとえば、小さい量子化パラメータは、細かい量子化(小さい量子化ステップサイズ)に対応してよく、大きい量子化パラメータは、粗い量子化(大きい量子化ステップサイズ)に対応してよく、またはその逆も同様である。量子化は、量子化ステップサイズによる除算を含んでよく、たとえば、逆量子化ユニット210による、対応する逆量子化および/または逆の逆量子化は、量子化ステップサイズによる乗算を含んでよい。いくつかの規格、たとえば、HEVCによる実施形態は、量子化ステップサイズを決定するために量子化パラメータを使用するように構成され得る。概して、量子化ステップサイズは、除算を含む式の固定小数点近似を使用して、量子化パラメータに基づいて計算され得る。量子化ステップサイズおよび量子化パラメータに対する式の固定小数点近似において使用されるスケーリングのために修正されることがある、残差ブロックのノルムを復元するために、量子化および逆量子化に対して追加のスケーリング係数が導入されてよい。1つの例示的な実装形態では、逆変換および逆量子化のスケーリングが組み合わせられることがある。あるいは、カスタマイズされた量子化テーブルが使用されてよく、たとえば、ビットストリームの中で、エンコーダからデコーダにシグナリングされてよい。量子化は不可逆的演算であり、増大する量子化ステップサイズとともに損失が増大する。
【0132】
ビデオエンコーダ20の実施形態(それぞれ、量子化ユニット208)は、たとえば、直接、またはエントロピー符号化ユニット270を介して符号化された、量子化パラメータ(QP)を出力するように構成されてよく、その結果、たとえば、ビデオデコーダ30は、復号のために量子化パラメータを受信および適用し得る。
【0133】
逆量子化
逆量子化ユニット210は、たとえば、量子化ユニット208と同じ量子化ステップサイズに基づいて、またはそれを使用して、量子化ユニット208によって適用される量子化方式の逆を適用することによって、量子化された係数に対して量子化ユニット208の逆量子化を適用して逆量子化された係数211を取得するように構成される。逆量子化された係数211は、逆量子化残差係数211と呼ばれることもあり、量子化による損失に起因して通常は変換係数と同一でないが、変換係数207に対応し得る。
【0134】
逆変換
逆変換処理ユニット212は、変換処理ユニット206によって適用される変換の逆変換、たとえば、逆離散コサイン変換(DCT)もしくは逆離散サイン変換(DST)、または他の逆変換を適用して、サンプル領域において再構成された残差ブロック213(または、対応する逆量子化された係数213)を取得するように構成される。再構成された残差ブロック213は、(再構成された)変換ブロック213と呼ばれることもある。
【0135】
再構成
再構成ユニット214(たとえば、加算回路(adder)または加算器(summer)214)は、たとえば、再構成された残差ブロック213のサンプル値と予測ブロック265のサンプル値とをサンプルごとに加算することによって、(再構成された)変換ブロック213(すなわち、再構成された残差ブロック213)を予測ブロック265に加算してサンプル領域において再構成されたブロック215を取得するように構成される。
【0136】
フィルタ処理
ループフィルタユニット220(または、短く「ループフィルタ」220)は、再構成されたブロック215をフィルタ処理してフィルタ処理済みのブロック221を取得するように、または概して、再構成サンプルをフィルタ処理してフィルタ処理済みのサンプルを取得するように構成される。ループフィルタユニットは、たとえば、ピクセル遷移を平滑化するか、またはビデオ品質を別の方法で改善するように構成される。ループフィルタユニット220は、デブロッキングフィルタ、サンプル適応型オフセット(SAO)フィルタ、または1つもしくは複数の他のフィルタ、たとえば、双方向フィルタ、適応型ループフィルタ(ALF)、シャープ化フィルタ、平滑化フィルタ、または協調フィルタ、あるいはそれらの任意の組合せなどの、1つまたは複数のループフィルタを含んでよい。ループフィルタユニット220はループ内フィルタであるものとして
図2に示されるが、他の構成では、ループフィルタユニット220は、ループ後フィルタとして実装されてもよい。フィルタ処理済みのブロック221は、フィルタ処理済みの再構成されたブロック221と呼ばれることもある。
【0137】
ビデオエンコーダ20の実施形態(それぞれ、ループフィルタユニット220)は、たとえば、直接、またはエントロピー符号化ユニット270を介して符号化された、(サンプル適応型オフセット情報などの)ループフィルタパラメータを出力するように構成されてよく、その結果、たとえば、デコーダ30は、復号のために同じループフィルタパラメータまたはそれぞれのループフィルタを受信および適用し得る。
【0138】
復号ピクチャバッファ
復号ピクチャバッファ(DPB)230は、ビデオエンコーダ20によってビデオデータを符号化するための、参照ピクチャまたは概して参照ピクチャデータを記憶するメモリでありうる。DPB230は、同期DRAM(SDRAM)を含むダイナミックランダムアクセスメモリ(DRAM)、磁気抵抗RAM(MRAM)、抵抗性RAM(RRAM)、または他のタイプのメモリデバイスなどの、様々なメモリデバイスのうちのいずれかによって形成され得る。復号ピクチャバッファ(DPB)230は、1つまたは複数のフィルタ処理済みのブロック221を記憶するように構成され得る。復号ピクチャバッファ230は、以前にフィルタ処理された他のブロック、たとえば、同じ現在ピクチャの、または異なるピクチャの、以前に再構成およびフィルタ処理されたブロック221、たとえば、以前に再構成されたピクチャを記憶するようにさらに構成されてよく、たとえば、インター予測のために、以前に再構成すなわち復号された全体的なピクチャ(ならびに、対応する参照ブロックおよびサンプル)、および/または部分的に再構成された現在ピクチャ(ならびに、対応する参照ブロックおよびサンプル)を提供し得る。たとえば、再構成されたブロック215が、ループフィルタユニット220によってフィルタ処理されていないか、または再構成されたブロックもしくはサンプルのさらに処理された任意の他のバージョンである場合、復号ピクチャバッファ(DPB)230はまた、1つまたは複数のフィルタ処理されていない再構成されたブロック215、または概して、フィルタ処理されていない再構成サンプルを記憶するように構成されてもよい。
【0139】
モード選択(分割および予測)
モード選択ユニット260は、分割ユニット262、インター予測ユニット244、およびイントラ予測ユニット254を含み、元のピクチャデータ、たとえば、元のブロック203(現在ピクチャ17の現在ブロック203)、ならびに同じ(現在の)ピクチャの、かつ/あるいは1つまたは複数の以前に復号されたピクチャからの、たとえば、復号ピクチャバッファ230または他のバッファ(たとえば、図示しないラインバッファ)からの、再構成されたピクチャデータ、たとえば、フィルタ処理された再構成済みのサンプルもしくはブロック、および/またはフィルタ処理されていない再構成済みのサンプルもしくはブロックを、受信または取得するように構成される。再構成されたピクチャデータは、予測ブロック265または予測子265を取得するために、予測、たとえば、インター予測またはイントラ予測のための、参照ピクチャデータとして使用される。
【0140】
モード選択ユニット260は、(分割を含まない)現在のブロック予測モードのための分割および予測モード(たとえば、イントラまたはインター予測モード)を決定または選択し、残差ブロック205の計算のために、かつ再構成されたブロック215の再構成のために使用される、対応する予測ブロック265を生成するように構成され得る。
【0141】
モード選択ユニット260の実施形態は、最もよい一致、すなわち言い換えれば最小残差(最小残差とは、送信または記憶のためのより良好な圧縮を意味する)、もしくは最小シグナリングオーバーヘッド(最小シグナリングオーバーヘッドとは、送信または記憶のためのより良い圧縮を意味する)を与えるか、またはその両方を考慮するかもしくはその両方のバランスをとる、分割および予測モードを(たとえば、モード選択ユニット260によってサポートされるか、またはモード選択ユニット260にとって利用可能なものから)選択するように構成され得る。モード選択ユニット260は、レートひずみ最適化(RDO)に基づいて分割および予測モードを決定するように、すなわち、最小のレートひずみをもたらす予測モードを選択するように構成され得る。このコンテキストにおける「最良の」、「最小の」、「最適な」などのような用語は、必ずしも全体的な「最良の」、「最小の」、「最適な」などを指すとは限らず、しきい値または他の制約を上回るかまたは下回る値のような、終結基準または選択基準の充足を指してもよく、潜在的に「準最適な選択」につながるが、計算量および処理時間を低減する。
【0142】
言い換えれば、分割ユニット262は、たとえば、4分木分割(QT)、バイナリ分割(BT)、もしくはトリプルツリー分割(TT)、またはそれらの任意の組合せを反復的に使用して、ブロック203をより小さいブロックパーティションまたは(再びブロックを形成する)サブブロックに分割し、たとえば、ブロックパーティションまたはサブブロックの各々に対して予測を実行するように構成されてよく、モード選択は、分割されるブロック203のツリー構造の選択を含み、予測モードは、ブロックパーティションまたはサブブロックの各々に適用される。
【0143】
以下では、例示的なビデオエンコーダ20によって実行される(たとえば、分割ユニット260による)分割および(インター予測ユニット244およびイントラ予測ユニット254による)予測処理が、より詳細に説明される。
【0144】
分割
分割ユニット262は、現在ブロック203をより小さいパーティション、たとえば、正方形または矩形のサイズのより小さいブロックに分割し(すなわち分け)得る。これらのより小さいブロック(サブブロックと呼ばれることもある)は、一層小さいパーティションにさらに分割され得る。このことはまた、ツリー分割または階層的ツリー分割と呼ばれ、たとえば、ルートツリーレベル0(階層レベル0、深度0)における、ルートブロックは、再帰的に分割されてよく、たとえば、次に低いツリーレベルの2つ以上のブロック、たとえば、ツリーレベル1(階層レベル1、深度1)におけるノードに分割されてよく、これらのブロックは再び、たとえば、終結基準が充足されており、たとえば、最大ツリー深度または最小ブロックサイズに到達したので、分割が終結されるまで、次に低いレベルの2つ以上のブロック、たとえば、ツリーレベル2(階層レベル2、深度2)などに分割されてよい。それ以上分割されないブロックは、ツリーのリーフブロックまたはリーフノードとも呼ばれる。2つのパーティションへの分割を用いるツリーは2分木(BT)と呼ばれ、3つのパーティションへの分割を用いるツリーは3分木(TT)と呼ばれ、4つのパーティションへの分割を用いるツリーは4分木(QT)と呼ばれる。
【0145】
前に述べたように、本明細書で使用する「ブロック」という用語は、ピクチャの一部分、特に、正方形または矩形の部分であってよい。たとえば、HEVCおよびVVCを参照すると、ブロックは、コーディングツリーユニット(CTU)、コーディングユニット(CU)、予測ユニット(PU)、および変換ユニット(TU)、ならびに/または対応するブロック、たとえば、コーディングツリーブロック(CTB)、コーディングブロック(CB)、変換ブロック(TB)、もしくは予測ブロック(PB)であってよく、またはそれらに相当し得る。
【0146】
たとえば、コーディングツリーユニット(CTU)は、3つのサンプルアレイを有するピクチャのルマサンプルのCTB、クロマサンプルの2つの対応するCTB、またはモノクロピクチャもしくは3つの別個の色平面を使用してコーディングされるピクチャのサンプルのCTB、およびサンプルをコーディングするために使用されるシンタックス構造であってよく、またはそれらを含んでもよい。それに対応して、コーディングツリーブロック(CTB)は、成分をCTBへ分けることが分割であるような、Nのいくつかの値に対する、サンプルのN×Nブロックであってよい。コーディングユニット(CU)は、3つのサンプルアレイを有するピクチャのルマサンプルのコーディングブロック、クロマサンプルの2つの対応するコーディングブロック、またはモノクロピクチャもしくは3つの別個の色平面を使用してコーディングされるピクチャのサンプルのコーディングブロック、およびサンプルをコーディングするために使用されるシンタックス構造であってよく、またはそれらを含んでもよい。それに対応して、コーディングブロック(CB)は、CTBをコーディングブロックへ分けることが分割であるような、MおよびNのいくつかの値に対する、サンプルのM×Nブロックであってよい。
【0147】
たとえば、HEVCによる実施形態では、コーディングツリーユニット(CTU)は、コーディングツリーとして示される4分木構造を使用することによってCUに分割され得る。ピクチャエリアを、(時間的な)インターピクチャ予測を使用してコーディングすべきか、それとも(空間的な)イントラピクチャ予測を使用してコーディングすべきかという決定は、CUレベルにおいて行われる。各CUは、PU分割タイプに従って1つ、2つ、または4つのPUにさらに分割され得る。1つのPUの内側では、同じ予測プロセスが適用され、関連する情報がPU単位でデコーダへ送信される。PU分割タイプに基づいて予測プロセスを適用することによって残差ブロックを取得した後、CUは、CU用のコーディングツリーと同様の他の4分木構造に従って変換ユニット(TU)に分割され得る。
【0148】
実施形態では、たとえば、多用途ビデオコーディング(VVC)と呼ばれる現在策定中の最新のビデオコーディング規格によれば、コーディングブロックを分割するために、たとえば、組み合わせられた4分木および2分木(QTBT)分割が用いられる。QTBTブロック構造の中で、CUは、正方形または矩形のいずれかの形状を有しうる。たとえば、コーディングツリーユニット(CTU)は、4分木構造によって最初に分割される。4分木リーフノードは、2分木または3分(またはトリプル)木構造によってさらに分割される。ツリーリーフノードを分割することは、コーディングユニット(CU)と呼ばれ、そのセグメント化は、それ以上の分割を伴わずに予測処理および変換処理のために使用される。このことは、CU、PU、およびTUがQTBTコーディングブロック構造の中で同じブロックサイズを有することを意味する。並行して、複数のパーティション、たとえば、トリプルツリーパーティションがQTBTブロック構造と一緒に使用され得る。
【0149】
一例では、ビデオエンコーダ20のモード選択ユニット260は、本明細書で説明する分割法の任意の組合せを実行するように構成され得る。
【0150】
上記で説明したように、ビデオエンコーダ20は、(たとえば、予め決定された)予測モードのセットから、最良のまたは最適な予測モードを決定または選択するように構成される。予測モードのセットは、たとえば、イントラ予測モードおよび/またはインター予測モードを含んでよい。
【0151】
イントラ予測
イントラ予測モードのセットは、たとえば、HEVCにおいて規定されるように、35個の異なるイントラ予測モード、たとえば、DC(または、平均)モードおよび平面モードのような全方向性モード、もしくは方向性モードを含んでよく、または、たとえば、VVCのために規定されるように、67個の異なるイントラ予測モード、たとえば、DC(または、平均)モードおよび平面モードのような全方向性モード、もしくは方向性モードを含んでよい。
【0152】
イントラ予測ユニット254は、イントラ予測モードのセットのイントラ予測モードに従ってイントラ予測ブロック265を生成するために、同じ現在ピクチャの近傍ブロックの再構成されたサンプルを使用するように構成される。
【0153】
イントラ予測ユニット254(または概して、モード選択ユニット260)は、符号化されたピクチャデータ21の中に含めるためのシンタックス要素266の形式でイントラ予測パラメータ(または概して、ブロック用の選択されたイントラ予測モードを示す情報)をエントロピー符号化ユニット270に出力するようにさらに構成され、その結果、たとえば、ビデオデコーダ30は、復号のために予測パラメータを受信および使用し得る。
【0154】
インター予測
インター予測モードのセット(または、可能なインター予測モード)は、利用可能な参照ピクチャ(すなわち、たとえば、DBP230の中に記憶されている、少なくとも部分的に復号された、以前のピクチャ)、ならびに他のインター予測パラメータ、たとえば、最良に整合する参照ブロックを求めて探索するために参照ピクチャ全体が使用されるのか、それとも一部のみ、たとえば、参照ピクチャの現在ブロックのエリアの周囲の探索ウィンドウエリアが使用されるのか、ならびに/または、たとえば、ピクセル補間、たとえば、ハーフペル補間/セミペル補間および/もしくはクォーターペル補間が適用されるか否かに依存する。
【0155】
上記の予測モードに加えて、スキップモードおよび/またはダイレクトモードが適用されてよい。
【0156】
インター予測ユニット244は、動き推定(ME)ユニットおよび動き補償(MC)ユニット(両方とも
図2に示さず)を含んでよい。動き推定ユニットは、動き推定のために、ピクチャブロック203(現在ピクチャ17の現在ピクチャブロック203)および復号されたピクチャ231、または少なくとも1つもしくは複数の以前に再構成されたブロック、たとえば、他の/異なる1つもしくは複数の以前に復号されたピクチャ231の再構成されたブロックを、受信または取得するように構成され得る。たとえば、ビデオシーケンスは、現在ピクチャおよび以前に復号されたピクチャ231を含んでよく、すなわち言い換えれば、現在ピクチャおよび以前に復号されたピクチャ231は、ビデオシーケンスを形成するピクチャのシーケンスの一部であってよく、またはそれらを形成し得る。
【0157】
エンコーダ20は、たとえば、複数の他のピクチャのうちの同じかまたは異なるピクチャの複数の参照ブロックから参照ブロックを選択し、参照ピクチャ(または、参照ピクチャインデックス)、および/または参照ブロックの位置(x、y座標)と現在ブロックの位置との間のオフセット(空間オフセット)を、インター予測パラメータとして動き推定ユニットに提供するように構成され得る。このオフセットは動きベクトル(MV)とも呼ばれる。
【0158】
動き補償ユニットは、インター予測パラメータを取得、たとえば受信し、インター予測パラメータに基づいて、またはインター予測パラメータを用いて、インター予測を行ってインター予測ブロック265を取得するように構成される。動き補償ユニットによって行われる動き補償は、動き推定によって決定された動き/ブロックベクトルに基づいて予測ブロックをフェッチまたは生成すること、場合によってはサブピクセル精度への補間を実行することを伴ってよい。補間フィルタ処理は、知られているピクセルサンプルから追加のピクセルサンプルを生成してよく、したがって、ピクチャブロックをコーディングするために使用され得る候補予測ブロックの個数を潜在的に増大させる。現在ピクチャブロックのPUに対する動きベクトルを受信すると、動き補償ユニットは、参照ピクチャリストのうちの1つの中で動きベクトルが指し示す先の予測ブロックの位置を特定し得る。
【0159】
動き補償ユニットはまた、ビデオスライスのピクチャブロックを復号する際のビデオデコーダ30による使用のために、ブロックおよびビデオスライスに関連するシンタックス要素を生成し得る。スライスおよびそれぞれのシンタックス要素への追加またはあるいは、タイルグループおよび/またはタイルならびにそれぞれのシンタックス要素が生成または使用され得る。
【0160】
エントロピーコーディング
エントロピー符号化ユニット270は、量子化された係数209、インター予測パラメータ、イントラ予測パラメータ、ループフィルタパラメータ、および/または他のシンタックス要素に対して、たとえば、エントロピー符号化アルゴリズムまたはエントロピー符号化方式(たとえば、可変長コーディング(VLC)方式、コンテキスト適応型VLC方式(CAVLC)、算術コーディング方式、2値化方式、コンテキスト適応型バイナリ算術コーディング(CABAC)、シンタックスベースコンテキスト適応型バイナリ算術コーディング(SBAC)、確率区間分割エントロピー(PIPE)コーディング、または別のエントロピー符号化方法または技法)、あるいはバイパス(圧縮なし)を適用して、たとえば、符号化ビットストリーム21の形式で、出力272を介して出力され得る符号化されたピクチャデータ21を取得するように構成され、その結果、たとえば、ビデオデコーダ30は、復号のためにパラメータを受信および使用し得る。符号化ビットストリーム21は、ビデオデコーダ30へ送信されてよく、または後でビデオデコーダ30によって送信するかもしくは取り出すためにメモリの中に記憶されてもよい。
【0161】
ビデオエンコーダ20の他の構造的変形が、ビデオストリームを符号化するために使用され得る。たとえば、非変換ベースのエンコーダ20が、いくつかのブロックまたはフレームに対して変換処理ユニット206を用いずに残差信号を直接量子化することができる。別の実装形態では、エンコーダ20は、単一のユニットの中に組み合わせられた量子化ユニット208および逆量子化ユニット210を有することができる。
【0162】
デコーダおよび復号方法
図3は、この本出願の技法を実施するように構成されるビデオデコーダ30の一例を示す。ビデオデコーダ30は、たとえば、エンコーダ20によって符号化された、符号化されたピクチャデータ21(たとえば、符号化ビットストリーム21)を受信して、復号されたピクチャ331を取得するように構成される。符号化されたピクチャデータまたはビットストリームは、符号化されたピクチャデータを復号するための情報、たとえば、符号化ビデオスライス(および/またはタイルグループもしくはタイル)のピクチャブロックを表すデータ、および関連するシンタックス要素を含む。
【0163】
図3の例では、デコーダ30は、エントロピー復号ユニット304、逆量子化ユニット310、逆変換処理ユニット312、再構成ユニット314(たとえば、加算器314)、ループフィルタ320、復号ピクチャバッファ(DBP)330、モード適用ユニット360、インター予測ユニット344、およびイントラ予測ユニット354を含む。インター予測ユニット344は、動き補償ユニットであってよく、または動き補償ユニットを含んでもよい。ビデオデコーダ30は、いくつかの例では、
図2からのビデオエンコーダ100に関して説明した符号化パスとは概して逆の復号パスを行い得る。
【0164】
エンコーダ20に関して説明したように、逆量子化ユニット210、逆変換処理ユニット212、再構成ユニット214、ループフィルタ220、復号ピクチャバッファ(DPB)230、インター予測ユニット344、およびイントラ予測ユニット354はまた、ビデオエンコーダ20の「ビルトインデコーダ」を形成するものとして参照される。したがって、逆量子化ユニット310は逆量子化ユニット110と機能が同一であってよく、逆変換処理ユニット312は逆変換処理ユニット212と機能が同一であってよく、再構成ユニット314は再構成ユニット214と機能が同一であってよく、ループフィルタ320はループフィルタ220と機能が同一であってよく、復号ピクチャバッファ330は復号ピクチャバッファ230と機能が同一であってよい。したがって、ビデオ20エンコーダのそれぞれのユニットおよび機能に対して提供された説明は、それに対応してビデオデコーダ30のそれぞれのユニットおよび機能に適用される。
【0165】
エントロピー復号
エントロピー復号ユニット304は、ビットストリーム21(または概して、符号化されたピクチャデータ21)を構文解析し、たとえば、符号化されたピクチャデータ21へのエントロピー復号を行って、たとえば、量子化された係数309および/または復号されたコーディングパラメータ(
図3に示さず)、たとえば、インター予測パラメータ(たとえば、参照ピクチャインデックスおよび動きベクトル)、イントラ予測パラメータ(たとえば、イントラ予測モードまたはインデックス)、変換パラメータ、量子化パラメータ、ループフィルタパラメータ、および/または他のシンタックス要素のうちのいずれかまたはすべてを取得するように構成される。エントロピー復号ユニット304は、エンコーダ20のエントロピー符号化ユニット270に関して説明したような符号化方式に対応する復号アルゴリズムまたは復号方式を適用するように構成され得る。エントロピー復号ユニット304は、モード適用ユニット360にインター予測パラメータ、イントラ予測パラメータ、および/または他のシンタックス要素を、またデコーダ30の他のユニットに他のパラメータを提供するように、さらに構成され得る。ビデオデコーダ30は、ビデオスライスレベルおよび/またはビデオブロックレベルにおいてシンタックス要素を受信し得る。スライスおよびそれぞれのシンタックス要素に加えてまたは代えて、タイルグループおよび/またはタイルならびにそれぞれのシンタックス要素が受信および/または使用され得る。
【0166】
逆量子化
逆量子化ユニット310は、(たとえば、エントロピー復号ユニット304によって、たとえば、構文解析および/または復号することによって)符号化されたピクチャデータ21から量子化パラメータ(QP)(または概して、逆量子化に関係する情報)および量子化された係数を受信し、量子化パラメータに基づいて、復号された量子化された係数309に対して逆量子化を適用して、変換係数311と呼ばれることもある逆量子化された係数311を取得するように構成され得る。逆量子化プロセスは、量子化の程度、および同様に、適用されるべき逆量子化の程度を決定するために、ビデオスライス(または、タイルもしくはタイルグループ)の中のビデオブロックごとの、ビデオエンコーダ20によって決定された量子化パラメータの使用を含んでよい。
【0167】
逆変換
逆変換処理ユニット312は、変換係数311とも呼ばれる逆量子化された係数311を受信し、サンプル領域において再構成された残差ブロック213を取得するために逆量子化された係数311に変換を適用するように構成され得る。再構成された残差ブロック213は、変換ブロック313と呼ばれることもある。変換は、逆変換、たとえば、逆DCT変換、逆DST変換、逆整数変換、または概念的に同様の逆変換プロセスであってよい。逆変換処理ユニット312は、逆量子化された係数311に適用されるべき変換を決定するために、(たとえば、エントロピー復号ユニット304によって、たとえば、構文解析および/または復号することによって)符号化されたピクチャデータ21から変換パラメータまたは対応する情報を受信するようにさらに構成され得る。
【0168】
再構成
再構成ユニット314(たとえば、加算回路(adder)または加算器(summer)314)は、たとえば、再構成残差ブロック313のサンプル値と予測ブロック365のサンプル値とを加算することによって、予測ブロック365に再構成残差ブロック313を加算して、サンプル領域において再構成されたブロック315を取得するように構成され得る。
【0169】
フィルタ処理
(コーディングループの中またはコーディングループの後のいずれかの)ループフィルタユニット320は、たとえば、ピクセル遷移を平滑化するか、またはビデオ品質を別の方法で改善するために、再構成されたブロック315をフィルタ処理してフィルタ処理済みのブロック321を取得するように構成される。ループフィルタユニット320は、デブロッキングフィルタ、サンプル適応型オフセット(SAO)フィルタ、または1つもしくは複数の他のフィルタ、たとえば、双方向フィルタ、適応型ループフィルタ(ALF)、シャープ化フィルタ、平滑化フィルタ、または協調フィルタ、あるいはそれらの任意の組合せなどの、1つまたは複数のループフィルタを含んでよい。ループフィルタユニット320はループ内フィルタであるものとして
図3に示されるが、他の構成では、ループフィルタユニット320は、ループ後フィルタとして実装されてよい。
【0170】
復号ピクチャバッファ
ピクチャの復号されたビデオブロック321は、次いで、他のピクチャに対する後続の動き補償のための、かつ/または出力されるそれぞれ表示用の、参照ピクチャとして復号されたピクチャ331を記憶する、復号ピクチャバッファ330の中に記憶される。
【0171】
デコーダ30は、ユーザへの提示または鑑賞のために、たとえば、出力312を介して復号されたピクチャ311を出力するように構成される。
【0172】
予測
インター予測ユニット344は、インター予測ユニット244と(詳細には、動き補償ユニットと)同一であってよく、イントラ予測ユニット354は、機能がインター予測ユニット254と同一であってよく、分割および/もしくは予測パラメータ、または符号化されたピクチャデータ21から(たとえば、エントロピー復号ユニット304によって、たとえば、構文解析および/または復号することによって)受信されたそれぞれの情報に基づいて、分けることまたは分割の決定および予測を行う。モード適用ユニット360は、(フィルタ処理されているかまたはフィルタ処理されていない)再構成されたピクチャ、ブロック、またはそれぞれのサンプルに基づいて、ブロックごとに予測(イントラ予測またはインター予測)を実行して、予測ブロック365を取得するように構成され得る。
【0173】
イントラコーディングされた(I)スライスとしてビデオスライスがコーディングされるとき、モード適用ユニット360のイントラ予測ユニット354は、シグナリングされたイントラ予測モード、および現在ピクチャの以前に復号されたブロックからのデータに基づいて、現在ビデオスライスのピクチャブロックに対する予測ブロック365を生成するように構成される。インターコーディングされた(すなわち、BまたはP)スライスとしてビデオピクチャがコーディングされるとき、モード適用ユニット360のインター予測ユニット344(たとえば、動き補償ユニット)は、動きベクトル、およびエントロピー復号ユニット304から受信された他のシンタックス要素に基づいて、現在ビデオスライスのビデオブロックに対する予測ブロック365を作り出すように構成される。インター予測の場合、予測ブロックは、参照ピクチャリストのうちの1つの中の参照ピクチャのうちの1つから作り出されてよい。ビデオデコーダ30は、DPB330の中に記憶された参照ピクチャに基づいてデフォルトの構成法を用いて、参照フレームリスト、すなわち、リスト0およびリスト1を構成し得る。スライス(たとえば、ビデオスライス)に加えてまたは代えてタイルグループ(たとえば、ビデオタイルグループ)および/またはタイル(たとえば、ビデオタイル)を使用する実施形態に対して、またはそうした実施形態によって、同じかまたは同様のことが適用されてよく、たとえば、ビデオは、I、P、またはBタイルグループおよび/またはタイルを用いてコーディングされてよい。
【0174】
モード適用ユニット360は、動きベクトルまたは関連する情報および他のシンタックス要素を構文解析することによって、現在ビデオスライスのビデオブロックに対する予測情報を決定し、予測情報を使用して、復号されている現在ビデオブロックに対する予測ブロックを作り出すように構成される。たとえば、モード適用ユニット360は、受信されたシンタックス要素のうちのいくつかを使用して、ビデオスライスのビデオブロックをコーディングするために使用された予測モード(たとえば、イントラ予測またはインター予測)、インター予測スライスタイプ(たとえば、Bスライス、Pスライス、またはGPBスライス)、スライス用の参照ピクチャリストのうちの1つまたは複数に対する構成情報、スライスのインター符号化ビデオブロックごとの動きベクトル、スライスのインターコードコーディングされたビデオブロックごとのインター予測ステータス、および現在ビデオスライスの中のビデオブロックを復号するための他の情報を決定する。スライス(たとえば、ビデオスライス)に加えてまたは代えてタイルグループ(たとえば、ビデオタイルグループ)および/またはタイル(たとえば、ビデオタイル)を使用する実施形態に対して、またはそうした実施形態によって、同じかまたは同様のことが適用されてよく、たとえば、ビデオは、I、P、またはBタイルグループおよび/またはタイルを使用してコーディングされうる。
【0175】
図3に示すようなビデオデコーダ30の実施形態は、スライス(ビデオスライスとも呼ばれる)を使用することによってピクチャを分割および/または復号するように構成されてよく、ピクチャは、(通常は重複しない)1つまたは複数のスライスに分割され得るか、またはそうしたスライスを使用して復号され得、各スライスは、1つまたは複数のブロック(たとえば、CTU)を含んでよい。
【0176】
図3に示すようなビデオデコーダ30の実施形態は、タイルグループ(ビデオタイルグループとも呼ばれる)および/またはタイル(ビデオタイルとも呼ばれる)を使用することによってピクチャを分割および/または復号するように構成されてよく、ピクチャは、(通常は重複しない)1つまたは複数のタイルグループに分割され得るか、またはそうしたタイルグループを使用して復号され得、各タイルグループは、たとえば、1つもしくは複数のブロック(たとえば、CTU)または1つもしくは複数のタイルを含んでよく、各タイルは、たとえば、矩形形状であってよく、1つまたは複数のブロック(たとえば、CTU)、たとえば、完全なブロックまたは分数ブロックを含んでよい。
【0177】
ビデオデコーダ30の他の変形が、符号化されたピクチャデータ21を復号するために使用され得る。たとえば、デコーダ30は、ループフィルタ処理ユニット320を用いずに出力ビデオストリームを作り出すことができる。たとえば、非変換ベースのデコーダ30が、いくつかのブロックまたはフレームに対して逆変換処理ユニット312を用いずに残差信号を直接逆量子化することができる。別の実装形態では、ビデオデコーダ30は、単一のユニットの中に組み合わせられた逆量子化ユニット310および逆変換処理ユニット312を有することができる。
【0178】
エンコーダ20およびデコーダ30において、現在のステップの処理結果がさらに処理されてよく、次いで、次のステップに出力されてよいことを理解されたい。たとえば、補間フィルタ処理、動きベクトル導出、またはループフィルタ処理の後、補間フィルタ処理、動きベクトル導出、またはループフィルタ処理の処理結果に対して、クリップまたはシフトなどのさらなる演算が実行されてよい。
【0179】
現在ブロックの導出された動きベクトル(限定はしないが、アフィンモードの制御点動きベクトル、アフィンモード、平面モード、ATMVPモードにおけるサブブロック動きベクトル、時間動きベクトルなどを含む)に、さらなる演算が適用され得ることに留意されたい。たとえば、動きベクトルの値は、その表現ビットに従って既定の範囲に制約される。動きベクトルの表現ビットがbitDepthである場合、範囲は-2^(bitDepth-1)~2^(bitDepth-1)-1であり、ただし、「^」は累乗を意味する。たとえば、bitDepthが16に等しく設定される場合、範囲は-32768~32767であり、bitDepthが18に等しく設定される場合、範囲は-131072~131071である。たとえば、導出される動きベクトル(たとえば、1つの8×8ブロック内の4つの4×4サブブロックのMV)の値は、4つの4×4サブブロックMVの整数部分の間の最大差分が、1ピクセル以下などの、Nピクセル以下となるように制約される。ここで、bitDepthに従って動きベクトルを制約するための2つの方法を提供する。
【0180】
図4は、本開示の一実施形態によるビデオコーディングデバイス400の概略図である。ビデオコーディングデバイス400は、本明細書で説明するような開示する実施形態を実施するのに適している。一実施形態では、ビデオコーディングデバイス400は、
図1Aのビデオデコーダ30などのデコーダ、または
図1Aのビデオエンコーダ20などのエンコーダであってよい。
【0181】
ビデオコーディングデバイス400は、データを受信するための入口ポート410(または、入力ポート410)および受信器ユニット(Rx)420、データを処理するためのプロセッサ、論理ユニット、または中央処理ユニット(CPU)430、データを送信するための送信器ユニット(Tx)440および出口ポート450(または、出力ポート450)、ならびにデータを記憶するためのメモリ460を含む。ビデオコーディングデバイス400はまた、光信号または電気信号の出口または入口のために入口ポート410、受信器ユニット420、送信器ユニット440、および出口ポート450に結合された、光-電気(OE)構成要素および電気-光(EOl)構成要素を含んでよい。
【0182】
プロセッサ430は、ハードウェアおよびソフトウェアによって実装される。プロセッサ430は、1つまたは複数のCPUチップ、コア(たとえば、マルチコアプロセッサ)、FPGA、ASIC、およびDSPとして実装され得る。プロセッサ430は、入口ポート410、受信器ユニット420、送信器ユニット440、出口ポート450、およびメモリ460と通信している。プロセッサ430は、コーディングモジュール470を含む。コーディングモジュール470は、上記で説明した開示する実施形態を実施する。たとえば、コーディングモジュール470は、様々なコーディング動作を実施、処理、準備、または提供する。したがって、コーディングモジュール470を含むことは、ビデオコーディングデバイス400の機能性に大幅な改善をもたらし、異なる状態へのビデオコーディングデバイス400の変形をもたらす。あるいは、コーディングモジュール470は、メモリ460の中に記憶されプロセッサ430によって実行される命令として実装される。
【0183】
メモリ460は、1つまたは複数のディスク、テープドライブ、およびソリッドステートドライブを含んでよく、実行のためにそのようなプログラムが選択されるときにプログラムを記憶するための、かつプログラム実行中に読み取られる命令およびデータを記憶するための、オーバーフローデータ記憶デバイスとして使用されてよい。メモリ460は、たとえば、揮発性および/または不揮発性であってよく、読取り専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、3値連想メモリ(TCAM)、および/またはスタティックランダムアクセスメモリ(SRAM)であってよい。
【0184】
図5は、例示的な実施形態による
図1からのソースデバイス12および宛先デバイス14のうちのどちらか一方または両方として使用され得る装置500の簡略化されたブロック図である。
【0185】
装置500の中のプロセッサ502は中央処理ユニットであり得る。あるいは、プロセッサ502は、現存するかまたは今後開発される、情報を操作または処理することが可能な任意の他のタイプのデバイスまたは複数のデバイスであり得る。開示する実装形態は図示のように単一のプロセッサ、たとえば、プロセッサ502を用いて実践され得るが、速度および効率における利点は、2つ以上のプロセッサを使用して達成され得る。
【0186】
装置500の中のメモリ504は、一実装形態では読取り専用メモリ(ROM)デバイスまたはランダムアクセスメモリ(RAM)デバイスであり得る。任意の他の好適なタイプの記憶デバイスが、メモリ504として使用され得る。メモリ504は、バス512を使用してプロセッサ502によってアクセスされるコードおよびデータ506を含むことができる。メモリ504は、オペレーティングシステム508およびアプリケーションプログラム510をさらに含むことができ、アプリケーションプログラム510は、ここで説明する方法をプロセッサ502が実行することを可能にする少なくとも1つのプログラムを含む。たとえば、アプリケーションプログラム510は、アプリケーション1~Nを含むことができ、アプリケーション1~Nは、ここで説明する方法を実行するビデオコーディングアプリケーションをさらに含む。
【0187】
装置500はまた、ディスプレイ518などの1つまたは複数の出力デバイスを含むことができる。ディスプレイ518は、一例では、ディスプレイを、タッチ入力を感知するように動作可能なタッチ感応性要素と組み合わせる、タッチ感応性ディスプレイであってよい。ディスプレイ518は、バス512を介してプロセッサ502に結合され得る。
【0188】
ここでは単一のバスとして示されるが、装置500のバス512は複数のバスからなり得る。さらに、2次ストレージ514が、装置500の他の構成要素に直接結合され得るか、またはネットワークを介してアクセスされ得、メモリカードなどの単一の統合ユニット、または複数のメモリカードなどの複数のユニットを含むことができる。したがって、装置500は多種多様な構成で実装され得る。
【0189】
イントラ・サブパーティション(ISP)コーディングツールは、イントラ(予測)ブロックを複数のサブパーティションに分割し、これらのサブパーティションを予測し、たとえば、最初に1つのサブパーティションを予測し、次いで、後続するサブパーティションを予測する。いくつかの状況では、ブロックアーティファクトを引き起こす、サブパーティション境界を横切る不連続性があり得る。
【0190】
一例では、
図6は、複数のサブパーティションへのイントラブロック600のISP分割を示す。この例では、2つの方向性パーティション、すなわち、水平パーティション601および垂直パーティション602があり、(
図6に示さない)他の例では、角度方向性パーティションなどの他のパーティションが行われる。
図6に示す例では、垂直パーティション602を用いたサブパーティションおよび対応する境界がラベル付けされる。本明細書では、イントラブロック600が、4つのサブパーティション、すなわち、sub0、sub1、sub2、およびsub3に分割される。3つのサブパーティション境界、すなわち、サブパーティション0と1との間のサブパーティション境界A、サブパーティション1と2との間のサブパーティション境界B、サブパーティション2と3との間のサブパーティション境界Cがラベル付けされ、水平パーティション601の例において同様の定義が使用され得る。
【0191】
一実施形態では、サブパーティションの予測はISPツールによってもたらされ、サブパーティションは連続的に復号され得る。1つのサブパーティションについて、エンコーダによって送られた係数をエントロピー復号し、次いで、それらを逆量子化および逆変換することによって、残差信号が生成され得る。次いで、サブパーティションがイントラ予測され、最後に、予測信号に残差信号を加算することによって対応する再構成サンプルが取得される。予測信号は、基本的には、上および左の参照サンプルラインから角度モードに基づいて行われるイントラ予測を表してよい。残差が復号され、次いで、予測信号に加算されて最終の予測を形成する。これらの再構成サンプルは、次いで、次のサブパーティションを予測するために使用される。したがって、1つのサブパーティションの再構成された値は、次のサブパーティションの予測を生成するために利用可能であり、そのことはプロセスを繰り返し、以下同様である。すべてのサブパーティション(sub0、sub1、sub2、sub3)は、同じイントラモードを共有する。
【0192】
概して、サブパーティションのために2つの処理順序、すなわち、正規の順序および逆の順序が使用され得る。一例では、水平パーティションの場合、正規の順序は上から下であり、逆の順序は下から上である。別の例では、垂直パーティションの場合、正規の順序は左から右であり、逆の順序は右から左である。
【0193】
図7に示すように、ISPコーディングツールによって引き起こされるブロックアーティファクトを低減するために、サブパーティション701へのコーディングブロック700の水平パーティションの後、またはサブパーティション702へのコーディングブロック700の垂直パーティションの後、ISPが適用されるブロックの内側のサブパーティション境界がデブロッキングフィルタ処理される。これらのサブパーティション境界に対してデブロッキングフィルタを適用するために、いくつかの代替方法が提案されている。
【0194】
増加した境界強度を伴うデブロッキングフィルタ処理
境界強度(Bs)とは、デブロッキングフィルタの強さを制御するために使用されるパラメータである。Bsの値がより大きいと、境界に直交する、より多くのサンプルがフィルタ処理され得る。ISPの予測は、誤差伝搬の問題をもたらす場合があり、すなわち、予測誤差が処理順序で伝搬する。
【0195】
図6に示すような一例では、コーディングブロック(コーディングユニット)の垂直パーティションおよび正規の処理順序を用いると、これらのサブパーティションの中のサンプルは、左から右に、すなわち、sub0、sub1、sub2、およびsub3で再構成される。サブパーティション0は、(左の近傍ブロックおよび上の近傍ブロックからの)その参照サンプルがすでに再構成されているので、一般に、より良好な予測品質を有する場合がある。しかしながら、サブパーティション1の参照サンプルの左の部分は再構成されたサブパーティション0からのものであり、したがって、サブパーティション1の参照サンプルはサブパーティション0のものほど正確ではない場合があり、より多くの残差信号をもたらす。同様に、サブパーティション2の参照サンプルはサブパーティション1のものよりもさらに劣悪であり、処理順序で予測誤差が伝搬する。
【0196】
処理順序で境界強度が増大する方法が提案される。すなわち、2つのサブパーティションの間の境界(たとえば、
図6の中の境界A、B、C)が近傍ブロックのより近くにあるとき、境界がより少ない誤差を有するので、この境界に対するBsはより小さい値に設定される。境界が近傍ブロックからより遠くにあるとき、誤差伝搬のために境界がより多くの誤差を有するので、この境界に対するBsはより大きい値に設定される。
【0197】
図6に示すような一例では、垂直パーティションおよび正規の(左から右への)処理順序がブロックに対して行われると、サブパーティション境界AのBsは0に設定され、サブパーティション境界BのBsは1に設定され、サブパーティション境界CのBsは2に設定される。
【0198】
図6に示すような一例では、垂直パーティションおよび逆の(右から左への)処理順序がブロックに対して行われると、サブパーティション境界AのBsは2に設定され、サブパーティション境界BのBsは1に設定され、サブパーティション境界CのBsは0に設定される。
【0199】
他の例では、水平パーティションに対して同様のプロセスが実行される。
【0200】
コーディングされたブロックフラグ(CBF)に基づくデブロッキングフィルタ処理
一例では、各サブパーティションは別々に予測および再構成され、各サブパーティションは、異なる残差(元の信号と予測された信号との間の差分)情報を有する場合がある。詳細には、量子化の後、ブロックまたはサブパーティションが残差データを有するか否かを示すために、コーディングされたブロックフラグ(CBF)が使用される。概して、1に等しいCBFを伴う(すなわち、量子化の後の残差データがある)ブロックは、0に等しいCBFを伴う(すなわち、量子化の後の残差データがない)ブロックよりも多くのひずみを有する。この実施形態は、2つのサブパーティションの間の境界に対して、その隣接する2つのサブパーティションのCBFフラグに基づいてデブロッキングフィルタを適用する。
【0201】
一例では、サブパーティション境界の2つのサブパーティションの各々が、0に等しいCBFフラグ値を有する場合、デブロッキングフィルタが適用されず、そうでない場合(サブパーティション境界の2つのサブパーティションのうちの少なくとも1つが、1に等しいCBFフラグ値を有する場合)、デブロッキングフィルタが適用され、サブパーティション境界のBs値は1に設定される。
図6における一例を提起すると、サブパーティション0および1の各々が、0に等しいCBFフラグを有する場合、サブパーティション境界Aに対してデブロッキングフィルタが適用されない。少なくともサブパーティション0および1が、1に等しいCBFフラグを有する場合、Bsが1に設定されて、サブパーティション境界Aに対してデブロッキングフィルタが適用される。
【0202】
一例では、サブパーティション境界の2つのサブパーティションの各々が、0に等しいCBFフラグ値を有する場合、デブロッキングフィルタが適用されず、そうでない場合(サブパーティション境界の2つのサブパーティションのうちの少なくとも1つが、1に等しいCBFフラグ値を有する場合)、サブパーティション境界のBs値が2に設定されて、デブロッキングフィルタが適用される。
図6における一例を提起すると、サブパーティション0および1の各々が、0に等しいCBFフラグを有する場合、サブパーティションAに対してデブロッキングフィルタが適用されない。少なくともサブパーティション0および1が、1に等しいCBFフラグを有する場合、Bsが2に設定されて、サブパーティション境界Aに対してデブロッキングフィルタが適用される。
【0203】
サブパーティション境界に対する一定の境界強度設定
一例では、
図6に示すすべてのサブパーティション境界A、B、およびCに対して、一定の境界強度(Bs)が1に設定される。
【0204】
別の例では、
図6に示すすべてのサブパーティション境界A、B、およびCに対して、一定の境界強度(Bs)が2に設定される。
【0205】
図8に示すように、別の例によれば、サブパーティション801へのコーディングブロック800の水平パーティションの後、またはサブパーティション802へのコーディングブロック800の垂直パーティションの後、8×8サンプルグリッドと重なり合うサブパーティション境界だけがデブロッキングされ、サブパーティションエッジの残りはデブロッキングされない。このことは、エッジのうちのほんの少ししかデブロッキングされないので、低減された計算量という利点を有する。
【0206】
別の代替形態が
図9に示される。この場合、サブパーティション901へのコーディングブロック900の水平パーティションの後、またはサブパーティション902へのコーディングブロック900の垂直パーティションの後、4×4サンプルグリッドと重なり合うすべてのサブパーティション境界がデブロッキングされる。
【0207】
位置のコーディネータは(x,y)として定義され、xは、水平方向においてフレーム全体の左上のサンプルから何個のサンプルほど離れるのかを表し、yは、垂直方向においてフレーム全体の左上のサンプルから何個のサンプルほど離れるのかを表す。フレーム全体の左上のサンプルのコーディネータは、(0,0)である。
【0208】
一例では、8×8サンプルグリッドは、(x,y)の位置から開始することができ、ただし、x%8==0である。演算%は、8で除算されたxの剰余として定義される、モジュラ演算を意味する。
【0209】
一例では、8×8サンプルグリッドは、(x,y)の位置から開始することができ、ただし、x%8==4である。演算%は、8で除算されたxの剰余として定義される、モジュラ演算を意味する。
【0210】
一例では、8×8サンプルグリッドは、(x,y)の位置から開始することができ、ただし、y%8==0である。演算%は、8で除算されたyの剰余として定義される、モジュラ演算を意味する。
【0211】
一例では、8×8サンプルグリッドは、(x,y)の位置から開始することができ、ただし、y%8==4である。演算%は、8で除算されたyの剰余として定義される、モジュラ演算を意味する。
【0212】
より小さいブロックの取扱い
ISPの適用は、高さまたは幅が4サンプルのサブパーティションをもたらすことがある。垂直パーティションを用いる
図6における一例では、Wが16サンプルである場合、各サブパーティションは幅が4サンプルである。この場合、
図10に示すように、サブパーティション1031とサブパーティション
1033との間のサブパーティション境界1032に沿った1個までのサンプル10314または10331修正のみをする弱いフィルタが使用され得る。
図10に示す例では、たとえば、サブパーティション1031とサブパーティション1033との間のサブパーティション境界1032に対して垂直であり隣接する、サブパーティション1031、1033の各行の中でフィルタ処理が行われる。
図10に示すように、近傍ブロック1010と現在ブロック1030との間のエッジ1020に沿った1個までのサンプル1108または10311のみを修正する弱いフィルタが使用され得る。
図10に示す別の例では、たとえば、近傍ブロック1010とブロック1030のサブパーティション1031との間のエッジ1020に対して垂直であり隣接する、サブパーティション1031または近傍ブロック1010の各行の中でフィルタ処理が行われる。そうでない場合(サブパーティション境界に直交するサブパーティションの高さ/幅が4サンプルよりも大きい場合、正規のVVC JVET-L1001バージョン13(http://phenix.it-sudparis.eu/jvet/doc_end_user/current_document.php?id=4834)デブロッキングフィルタ(たとえば、上記のVVC文書の中で開示されるデブロッキングフィルタ)が使用され得る。
【0213】
別の実施形態では、上記の実施形態および例のうちのいずれか1つに対して、サブパーティション境界が8×8グリッドと位置合わせされないとき、デブロッキングフィルタは適用されない。
【0214】
提案する方法のイントラ・サブパーティション関連の定義の詳細は、VVCドラフトの仕様書(パート7.3.9.5および7.4.10.5)のフォーマットで次のように記載される。
【0215】
【0216】
7.4.10.5 コーディングユニットセマンティック
intra_subpartitions_mode_flag[x0][y0]が1に等しいことは、現在のイントラコーディングユニットがNumIntraSubPartitions[x0][y0]個の矩形変換ブロックサブパーティションに分割されることを規定する。intra_subpartitions_mode_flag[x0][y0]が0に等しいことは、現在のイントラコーディングユニットが矩形変換ブロックサブパーティションに分割されないことを規定する。
【0217】
intra_subpartitions_mode_flag[x0][y0]が存在しないとき、それは0に等しいものと推測される。
【0218】
intra_subpartitions_split_flag[x0][y0]は、イントラ・サブパーティション分割タイプが水平であるのかそれとも垂直であるのかを規定する。intra_subpartitions_split_flag[x0][y0]が存在しないとき、それは次のように推測される。
cbHeightがMaxTbSizeYよりも大きいならば、intra_subpartitions_split_flag[x0][y0]は0に等しいものと推測される。
そうでない(cbWidthがMaxTbSizeYよりも大きい)場合、intra_subpartitions_split_flag[x0][y0]は1に等しいものと推測される。
【0219】
変数IntraSubPartitionsSplitTypeは、Table 13に示すような、現在のルマコーディングブロックに対して使用される分割のタイプを規定する。IntraSubPartitionsSplitTypeは次のように導出される。
intra_subpartitions_mode_flag[x0][y0]が0に等しいならば、IntraSubPartitionsSplitTypeは0に等しく設定される。
そうでない場合、IntraSubPartitionsSplitTypeは1+intra_subpartitions_split_flag[x0][y0]に等しく設定される。
【0220】
【0221】
変数NumIntraSubPartitionsは、イントラ・ルマ・コーディングブロックが分割される変換ブロックサブパーティションの個数を規定する。NumIntraSubPartitionsは次のように導出される。
IntraSubPartitionsSplitTypeがISP_NO_SPLITに等しいならば、NumIntraSubPartitionsは1に等しく設定される。
そうではなく、次の条件のうちの1つが真であるならば、NumIntraSubPartitionsは2に等しく設定される。
cbWidthが4に等しく、かつcbHeightが8に等しい。
cbWidthが8に等しく、かつcbHeightが4に等しい。
そうでない場合、NumIntraSubPartitionsは4に等しく設定される。
【0222】
図11は、画像符号化および/または画像復号においてコーディングブロック内のサブパーティション境界をデブロッキングするためのデブロッキング方法のフローチャートであり、現在コーディングブロックはイントラ予測モードでコーディングされ、現在コーディングブロックは、第1のサブパーティションおよび第1のサブパーティションに隣接する第2のサブパーティションを含むサブパーティションに分割され、第2のサブパーティションは、第1のサブパーティションに基づいてイントラ予測される。本方法のさらなる詳細が、たとえば、
図6~
図10に関して上記で説明される。
【0223】
ステップ1101において、第1のサブパーティションの幅が4サンプルであるか、もしくは第2のサブパーティションの幅が4サンプルであるとき、または第1のサブパーティションの高さが4サンプルであるか、もしくは第2のサブパーティションの高さが4サンプルであるとき、第1のサブパーティションについての第1の最大フィルタ長を1に決定し、および/または第2のサブパーティションについての第2の最大フィルタ長に1することを決定する;
ステップ1102において、第1のサブパーティションの1個までのサンプルの値を修正し、1個までのサンプルは、第1のサブパーティションと第2のサブパーティションとの間のサブパーティション境界に対して垂直であり隣接する、第1のサブパーティションの行または列から取得される;および/または
ステップ1103において、第2のサブパーティションの1個までのサンプルの値を修正し、1個までのサンプルは、第1のサブパーティションと第2のサブパーティションとの間のサブパーティション境界に対して垂直であり隣接する、第2のサブパーティションの行または列から取得される。
【0224】
上記に基づいて、本開示は、サブパーティション境界における少数のサンプル値を修正することを可能にし、したがって、本方法は、ISPが適用されるブロックの中のサブパーティション境界によって引き起こされることがあるブロックアーティファクトを低減することができ、したがって、コーディング効率を改善する。
【0225】
図12は、画像符号化および/または画像復号において画像ブロック間のブロックエッジをデブロッキングするためのデブロッキング方法のフローチャートであり、ブロックエッジは、現在コーディングブロックの現在のサブパーティションと現在コーディングブロックの近傍ブロックとの間のエッジを含み、現在コーディングブロックはイントラ予測モードでコーディングされ、現在コーディングブロックはサブパーティションに分割される。本方法のさらなる詳細が、たとえば、
図6~
図10に関して上記で説明される。
【0226】
ステップ1201において、現在のサブパーティションの幅が4サンプルであるか、または現在のサブパーティションの高さが4サンプルであるとき、現在のサブパーティションについての第3の最大フィルタ長が1であること、および/または近傍ブロックについての第4の最大フィルタ長が1であることを決定する;
ステップ1202において、現在のサブパーティションの1個までのサンプルの値を修正し、1個までのサンプルは、現在のサブパーティションと近傍ブロックとの間のエッジに対して垂直であり隣接する、現在のサブパーティションの行または列から取得される;および/または
ステップ1203において、近傍ブロックの1個までのサンプルの値を修正し、1個までのサンプルは、現在のサブパーティションと近傍ブロックとの間のエッジに対して垂直であり隣接する、近傍ブロックの行または列から取得される。
【0227】
上記に基づいて、本開示は、サブパーティション境界における少数のサンプル値を修正することを可能にし、したがって、本方法は、ブロックエッジとサブパーティション境界との間でフィルタ処理が重複することをある程度まで回避しながら、ISPが適用されるブロックの中のサブパーティション境界によって引き起こされることがあるブロックアーティファクトを低減することができ、したがって、コーディング効率を改善する。
【0228】
図13は、本開示で説明する技法に従ってコーディングブロック内のサブパーティション境界をデブロッキングするための例示的なデバイス1300を示すブロック図である(さらなる詳細が、たとえば、
図2および
図3ならびに
図6~
図10に基づいて以下で説明される)。コーディングブロック内のサブパーティション境界をデブロッキングするための、画像エンコーダおよび/または画像デコーダにおける使用のためのデバイスであって、現在コーディングブロックはイントラ予測モードでコーディングされ、現在コーディングブロックは、第1のサブパーティションおよび第1のサブパーティションに隣接する第2のサブパーティションを含むサブパーティションに分割され、一例では、第2のサブパーティションは、第1のサブパーティションに基づいてイントラ予測され、デバイス1300は、
第1のサブパーティションの幅が4サンプルであるか、もしくは第2のサブパーティションの幅が4サンプルであるとき、または第1のサブパーティションの高さが4サンプルであるか、もしくは第2のサブパーティションの高さが4サンプルであるとき、第1のサブパーティションについての第1の最大フィルタ長が1であること、および/または第2のサブパーティションについての第2の最大フィルタ長が1であることを決定することと、
第1のサブパーティションの1個までのサンプルの値を修正することであって、1個までのサンプルは、第1のサブパーティションと第2のサブパーティションとの間のサブパーティション境界に対して垂直であり隣接する、第1のサブパーティションの行もしくは列から取得されること、および/または
第2のサブパーティションの1個までのサンプルの値を修正することであって、1個までのサンプルは、第1のサブパーティションと第2のサブパーティションとの間のサブパーティション境界に対して垂直であり隣接する、第2のサブパーティションの行もしくは列から取得されることと
を行うように構成されたデブロッキングフィルタ1310を含む。
【0229】
図14は、本開示で説明する技法に従ってブロックエッジをデブロッキングするための例示的なデバイス1400を示すブロック図である(さらなる詳細が、たとえば、
図2および
図3ならびに
図6~
図10に基づいて以下で説明される)。画像エンコーダおよび/または画像デコーダにおける使用のためのデバイスであって、ブロックエッジは、現在コーディングブロックの現在のサブパーティションと現在コーディングブロックの近傍ブロックとの間のエッジを含み、現在コーディングブロックはイントラ予測モードでコーディングされ、現在コーディングブロックはサブパーティションに分割され、
デバイス1400は、
現在のサブパーティションの幅が4サンプルであるか、または現在のサブパーティションの高さが4サンプルであるとき、現在のサブパーティションについての第3の最大フィルタ長が1であること、および/または近傍ブロックについての第4の最大フィルタ長が1であることを決定することと、
現在のサブパーティションの1個までのサンプルの値を修正することであって、1個までのサンプルは、現在のサブパーティションと近傍ブロックとの間のエッジに対して垂直であり隣接する、現在のサブパーティションの行もしくは列から取得されること、および/または
近傍ブロックの1個までのサンプルの値を修正することであって、1個までのサンプルは、現在のサブパーティションと近傍ブロックとの間のエッジに対して垂直であり隣接する、近傍ブロックの行もしくは列から取得されることと
を行うように構成されたデブロッキングフィルタ1410を含む。
【0230】
図15は、復号デバイスまたは符号化デバイスにおいて実施されるコーディングの方法のフローチャートである。
【0231】
ステップ1501において、現在ピクチャに属する現在コーディングブロックの再構成されたブロックを生成し、現在コーディングブロックはイントラ予測モードでコーディングされ、現在コーディングブロックは、第1のサブパーティションおよび第2のサブパーティションを含むサブパーティションに分割され、第2のサブパーティションは、第1のサブパーティションに基づいてイントラ予測される。
【0232】
ステップ1502において、現在ピクチャの再構成されたピクチャに対してフィルタ処理を行い、現在ピクチャの再構成されたピクチャに対してフィルタ処理を行うことは、現在のサブパーティションの高さが4サンプルであるとき、または現在のサブパーティションの幅が4サンプルであるとき、再構成されたブロックの再構成されたサブパーティションの現在のサブパーティションの中の1個までのサンプルをフィルタ処理することを含み、1個のサンプルは、現在のサブパーティションと現在のサブパーティションに隣接して配置される別のサブパーティションとの間の境界に直交する、現在のサブパーティションの行または列の中に配置され、1個のサンプルは境界に隣接する。
【0233】
本実施形態のいくつかの実装形態では、現在コーディングブロックをサブパーティションに分割するイントラ・サブパーティション分割タイプが水平である場合、現在のサブパーティションの高さが4サンプルであるとき、現在のサブパーティションと現在のサブパーティションの下または上にある前記別のサブパーティションとの間の境界に対して垂直であり隣接する、現在のサブパーティションの列から取得される1個のサンプルの値は修正される。
【0234】
本実施形態のいくつかの実装形態では、現在コーディングブロックをサブパーティションに分割するイントラ・サブパーティション分割タイプが垂直である場合、現在のサブパーティションの幅が4サンプルであるとき、現在のサブパーティションと現在のサブパーティションの左または右にある前記別のサブパーティションとの間の境界に対して垂直であり隣接する、現在のサブパーティションの行から取得される1個のサンプルの値は修正される。
【0235】
本実施形態のいくつかの実装形態では、現在コーディングブロックをサブパーティションに分割するイントラ・サブパーティション分割タイプが水平である場合、現在のサブパーティションと現在のサブパーティションに隣接して配置される前記別のサブパーティションとの間の境界は水平のサブパーティション境界であり、または
現在コーディングブロックをサブパーティションに分割するイントラ・サブパーティション分割タイプが垂直である場合、現在のサブパーティションと現在のサブパーティションに隣接して配置される前記別のサブパーティションとの間の境界は垂直のサブパーティション境界である。
【0236】
本実施形態のいくつかの実装形態では、現在コーディングブロックをサブパーティションに分割するイントラ・サブパーティション分割タイプが垂直である場合、第1のサブパーティションは第2のサブパーティションの左にあり、第2のサブパーティションは第1のサブパーティションの再構成された値に基づいてイントラ予測され、
現在コーディングブロックをサブパーティションに分割するイントラ・サブパーティション分割タイプが水平である場合、第1のサブパーティションは第2のサブパーティションの上にあり、第2のサブパーティションは第1のサブパーティションの再構成された値に基づいてイントラ予測される。
【0237】
本実施形態のいくつかの実装形態では、現在のサブパーティションは、第1のサブパーティションの再構成されたバージョンまたは第2のサブパーティションの再構成されたバージョンである。
【0238】
本実施形態のいくつかの実装形態では、サブパーティションの個数は2個または4個である。
【0239】
本実施形態のいくつかの実装形態では、
コーディングブロックの幅が4に等しくコーディングブロックの高さが8に等しい場合、かつ/またはコーディングブロックの幅が8に等しくコーディングブロックの高さが4に等しい場合、サブパーティションの個数は2個であり、
そうでない場合、サブパーティションの個数は4個である。
【0240】
本実施形態のさらに可能な実装形態では、現在のサブパーティションと他のサブパーティションとの間の境界が再構成されたブロックのn×nサンプルグリッドと重なり合う場合のみ、現在のサブパーティションの中の1個までのサンプルのフィルタ処理は実行され、nは整数である。たとえば、n=4またはn=8である。それによって、計算負荷はなお一層低減され得る。
【0241】
本実施形態のさらに可能な実装形態では、
サブパーティションのうちのすべての高さが4サンプルであるとき、またはサブパーティションのうちのすべての幅が4サンプルであるときにのみ、現在のサブパーティションの中の1個までのサンプルのフィルタ処理を行う。それによって、全体的なコーディングプロセスの計算負荷はさらに低減され得る。
【0242】
詳細には、サブパーティションは矩形変換ブロックサブパーティションである。ISPが分割されるとき、各サブパーティションは変換ブロックである。
【0243】
本開示では、コーディングブロックは、イントラ・サブパーティションISPツールを使用してコーディングされる。
【0244】
本実施形態のさらに可能な実装形態では、現在コーディングブロックをサブパーティションに分割するイントラ・サブパーティション分割タイプが垂直である場合、サブパーティションをイントラ予測する順序は左から右もしくは右から左であり(たとえば、サブパーティションへの予測ブロックの分割は垂直方向において実行されてよく)、または
現在コーディングブロックをサブパーティションに分割するイントラ・サブパーティション分割タイプが水平である場合、サブパーティションをイントラ予測する順序は上から下もしくは下から上である(サブパーティションへの予測ブロックの分割は水平方向において実行されてよい)。
【0245】
詳細には、現在のサブパーティションは、第1のサブパーティションの再構成されたバージョン(すなわち、再構成された値)または第2のサブパーティションの再構成されたバージョン(すなわち、再構成された値)である。たとえば、サブパーティションの個数は2個または4個であり得る。
【0246】
コーディングブロックは、イントラ・サブパーティションISPツールを使用してコーディングされ得る。ISPコーディングツールは、イントラ予測を伴うコーディングブロックのみに適用される。コーディングブロック/イントラ予測ブロックの分割は、1Dサブパーティション、すなわち、サブパーティションのラインをもたらし得る。方法が画像符号化において使用される場合、再構成されたブロックの生成は、(それが当技術分野において知られているように)以下のプロセスフロー、すなわち、現在ブロック(すなわち、元のブロック)およびイントラ予測ブロックに基づく残差ブロックの計算、残差ブロックの残差係数の変換および量子化、再構成された残差ブロックを取得するための逆量子化および逆変換に基づく(以下の詳細な説明も参照)。再構成されたブロックは、再構成された残差ブロックおよび予測ブロックに基づいて取得される。方法が画像復号において使用される場合、再構成されたブロックの生成は、(それが当技術分野で知られているように)以下のプロセスフロー、すなわち、受信ビットストリームの中に含まれる情報に基づいて残差ブロックの残差係数を取得すること、残差ブロックの残差係数の変換および量子化、再構成された残差ブロックを取得するための逆量子化および逆変換に基づく(以下の詳細な説明も参照)。再構成されたブロックは、再構成された残差ブロックおよび予測ブロックに基づいて取得される。さらに、1個までのサンプルをフィルタ処理することによって、現在ブロックを含む現在の画像の再構成されたピクチャが、ブロックベースの画像コーディング方式におけるフィルタ処理プロセスの中に入力され、ブロック境界に隣接する1個までのサンプルを修正することを含む、境界のフィルタ処理が意図されている。この種類のデブロッキングの決定は、(垂直のサブパーティションの間の境界のフィルタ処理の場合、同じ行の中で隣接し、または水平のサブパーティションの間の境界のフィルタ処理の場合、同じ列の中で隣接する)3個のサンプルのみに基づいてよい(上記の詳細な説明も参照)。
【0247】
概して、コーディングブロックのサブパーティションの間のすべての境界の境界強度は、全体的な処理を簡略化するために、フィルタ処理プロセスの強度を示す一定値(たとえば、2)に設定されてよい。
【0248】
本発明に従って採用される弱いフィルタ処理(1個までのサンプル)は、不必要な大きい計算負荷およびメモリリソースの必要なしに、小さいブロックの中のブロックアーティファクトを低減することを可能にする。
【0249】
図16は、復号デバイスまたは符号化デバイスにおいて実施されるコーディングの別の方法のフローチャートである。
【0250】
ステップ1601において、現在ピクチャに属する現在コーディングブロックの再構成されたブロックを生成し、現在コーディングブロックはイントラ予測モードでコーディングされ、現在コーディングブロックは、第1のサブパーティションおよび第2のサブパーティションを含むサブパーティションに分割され、第2のサブパーティションは、第1のサブパーティションに基づいてイントラ予測される。
【0251】
ステップ1602において、現在ピクチャの再構成されたピクチャに対してフィルタ処理を実行し、現在ピクチャの再構成されたピクチャに対してフィルタ処理を行うことは、再構成されたブロックの現在のサブパーティションと現在のサブパーティションに隣接する近傍ブロック(すなわち、現在ブロックの近傍ブロック)との間の境界を、現在のサブパーティションの最大フィルタ長および近傍ブロックの最大フィルタ長に基づいてフィルタ処理することを含み、現在のサブパーティションの高さが4サンプルであるとき、または現在のサブパーティションの幅が4サンプルであるとき、現在のサブパーティションの最大フィルタ長および近傍ブロックの最大フィルタ長は1である。
【0252】
一例では、ステップ1203は、
境界に隣接する現在のサブパーティションの1個のサンプル値を、現在のサブパーティションの最大フィルタ長MAに基づいて修正するステップと、
境界に隣接する近傍ブロックのサンプル値を、近傍ブロックの最大フィルタ長MBに基づいて修正するステップとを含んでよい。
【0253】
MA=1、MB=1である。
【0254】
詳細には、ステップ1203は、
現在のサブパーティションの多くともMA個のサンプル値を修正するステップを含んでよく、多くともMA個のサンプルは、境界に対して垂直であり隣接するラインの中にあり、MA=1であり、
境界に隣接する近傍ブロックのサンプル値を最大フィルタ長MBに基づいて修正するステップは、
近傍ブロックの多くともMB個のサンプル値を修正するステップを含み、多くともMB個のサンプルは、境界に対して垂直であり隣接するラインの中にあり、MB=1である。
【0255】
ここで、現在のサブパーティションの最大フィルタ長とは、現在のサブパーティションについてフィルタ処理プロセスにおいて修正されることが許容されるサンプルの個数を指す。近傍ブロックの最大フィルタ長とは、近傍ブロックに対してフィルタ処理プロセスにおいて修正されることが許容されるサンプルの個数を指す。
【0256】
本実施形態のいくつかの実装形態では、第1のサブパーティションは、コーディングブロックに隣接して配置される別の再構成されたブロックに基づいてイントラ予測される。
【0257】
本実施形態のさらに可能な実装形態では、境界が再構成されたブロックのn×nサンプルグリッドと重なり合う場合のみ、フィルタ処理は実行され、nは整数である。たとえば、nは4または8である。
【0258】
本実施形態のいくつかの実装形態では、現在コーディングブロックをサブパーティションに分割するイントラ・サブパーティション分割タイプが水平である場合、現在のサブパーティションの高さが4サンプルであるとき、現在のサブパーティションと現在のサブパーティションの下または上にある前記近傍ブロックとの間の境界に対して垂直であり隣接する、現在のサブパーティションの列から取得される1個のサンプルの値は修正される。
【0259】
本実施形態のいくつかの実装形態では、現在コーディングブロックをサブパーティションに分割するイントラ・サブパーティション分割タイプが垂直である場合、現在のサブパーティションの幅が4サンプルであるとき、現在のサブパーティションと現在のサブパーティションの左または右にある前記近傍ブロックとの間の境界に対して垂直であり隣接する、現在のサブパーティションの行から取得される1個のサンプルの値は修正される。
【0260】
本実施形態のいくつかの実装形態では、現在コーディングブロックをサブパーティションに分割するイントラ・サブパーティション分割タイプが水平である場合、現在のサブパーティションと現在のサブパーティションに隣接して配置される前記近傍ブロックとの間の境界は水平の境界であり、または
現在コーディングブロックをサブパーティションに分割するイントラ・サブパーティション分割タイプが垂直である場合、現在のサブパーティションと現在のサブパーティションに隣接して配置される前記近傍ブロックとの間の境界は垂直の境界である。
【0261】
本実施形態のいくつかの実装形態では、現在コーディングブロックをサブパーティションに分割するイントラ・サブパーティション分割タイプが垂直である場合、第1のサブパーティションは第2のサブパーティションの左にあり、第2のサブパーティションは第1のサブパーティションの再構成された値に基づいてイントラ予測され、
現在コーディングブロックをサブパーティションに分割するイントラ・サブパーティション分割タイプが水平である場合、第1のサブパーティションは第2のサブパーティションの上にあり、第2のサブパーティションは第1のサブパーティションの再構成された値に基づいてイントラ予測される。
【0262】
詳細には、サブパーティションの個数は2個または4個である。サブパーティションの個数が2個であるとき、それに対応して、現在ブロックの内側に第1のサブパーティションおよび第2のサブパーティションがあり、現在のサブパーティションは、第1のサブパーティションの再構成されたバージョンまたは第2のサブパーティションの再構成されたバージョンであってよい。
【0263】
サブパーティションの個数が4個であるとき、それに対応して、現在ブロックの内側に第1のサブパーティション、第2のサブパーティション、第3のサブパーティションおよび第4のサブパーティションがあり、現在のサブパーティションは、第1のサブパーティションの再構成されたバージョンまたは第4のサブパーティションの再構成されたバージョンであってよい。
【0264】
第1のサブパーティション、第2のサブパーティション、第3のサブパーティションおよび第4のサブパーティションが、サブパーティションに対して異なって使用されるにすぎないことが理解され得る。場合によっては、サブパーティションのうちのすべての高さが4サンプルであり、またはサブパーティションのうちのすべての幅が4サンプルである。
【0265】
本実施形態のさらに可能な実装形態では、
コーディングブロックの幅が4に等しくコーディングブロックの高さが8に等しい場合、かつ/またはコーディングブロックの幅が8に等しくコーディングブロックの高さが4に等しい場合、サブパーティションの個数は2個であり、
そうでない場合、サブパーティションの個数は4個である。
【0266】
本実施形態のさらに可能な実装形態では、境界が再構成されたブロックのn×nサンプルグリッドと重なり合う場合のみ、フィルタ処理は実行され、nは整数である。たとえば、nは4または8である。
【0267】
詳細には、サブパーティションは矩形変換ブロックサブパーティションである。
【0268】
本開示では、コーディングブロックは、イントラ・サブパーティションISPツールを使用してコーディングされる。
【0269】
図17は、本開示で説明する技法による例示的なデバイス1700を示すブロック図である(さらなる詳細が、たとえば、
図6~
図10および
図15に基づいて以下で説明される)。デバイスは、画像エンコーダおよび/または画像デコーダにおける使用を対象とする。一例では、デバイス1700は、
図2の中のエンコーダに対応し得る。別の例では、デバイス1700は、
図3の中のデコーダに対応し得る。デバイスは、
現在ピクチャに属する現在コーディングブロックの再構成されたブロックを生成するように構成された再構成ユニット1701であって、現在コーディングブロックはイントラ予測モードでコーディングされ、現在コーディングブロックは、第1のサブパーティションおよび第2のサブパーティションを含むサブパーティションに分割され、第2のサブパーティションは、第1のサブパーティションに基づいてイントラ予測される、再構成ユニット1701と、
現在ピクチャの再構成されたピクチャに対してフィルタ処理を行うように構成されたフィルタ処理ユニット1730であって、フィルタ処理ユニット1730は、現在のサブパーティションの高さが4サンプルであるとき、または現在のサブパーティションの幅が4サンプルであるとき、再構成されたブロックの再構成されたサブパーティションの現在のサブパーティションの中の1個までのサンプルをフィルタ処理するように特に構成され、1個のサンプルは、現在のサブパーティションと現在のサブパーティションに隣接して配置される別のサブパーティションとの間の境界に直交する、現在のサブパーティションの行または列の中に配置され、1個のサンプルは境界に隣接する、フィルタ処理ユニット1730とを含んでよい。
【0270】
図18は、本開示で説明する技法による例示的なデバイス1800を示すブロック図である(さらなる詳細が、たとえば、
図6~
図10および
図16に基づいて以下で説明される)。デバイスは、画像エンコーダおよび/または画像デコーダにおける使用を対象とする。一例では、デバイス1800は、
図2の中のエンコーダに対応し得る。別の例では、デバイス1800は、
図3の中のデコーダに対応し得る。デバイスは、
現在ピクチャに属する現在コーディングブロックの再構成されたブロックを生成するように構成された再構成ユニット1810であって、現在コーディングブロックはイントラ予測モードでコーディングされ、現在コーディングブロックは、第1のサブパーティションおよび第2のサブパーティションを含むサブパーティションに分割され、第2のサブパーティションは、第1のサブパーティションに基づいてイントラ予測される、再構成ユニット1810と、
現在ピクチャの再構成されたピクチャに対してフィルタ処理を行うように構成されたフィルタ処理ユニット1830であって、フィルタ処理ユニット1830は、再構成されたブロックの現在のサブパーティションと現在のサブパーティションに隣接する近傍ブロックとの間の境界を、現在のサブパーティションの最大フィルタ長および近傍ブロックの最大フィルタ長に基づいてフィルタ処理するように特に構成され、現在のサブパーティションの高さが4サンプルであるとき、または現在のサブパーティションの幅が4サンプルであるとき、現在のサブパーティションおよび近傍ブロックのそれぞれの最大フィルタ長は1である、フィルタ処理ユニット1830とを含んでよい。
【0271】
上記に基づいて、本開示は、サブパーティション境界における少数のサンプル値を修正することを可能にし、したがって、本方法は、ブロックエッジとサブパーティション境界との間でフィルタ処理が重複することをある程度まで回避しながら、ISPが適用されるブロックの中のサブパーティション境界によって引き起こされることがあるブロックアーティファクトを低減することができ、したがって、コーディング効率を改善する。
【0272】
以下のことは、符号化方法、ならびに上述の実施形態に示すような復号方法、およびそれらを使用するシステムの、適用例の説明である。
【0273】
図17は、本開示で説明する技法による例示的なデバイス1700を示すブロック図である(さらなる詳細が、たとえば、
図6~
図10および
図15に基づいて以下で説明される)。デバイスは、画像エンコーダおよび/または画像デコーダにおける使用を対象とする。一例では、デバイス1700は、
図2の中のエンコーダに対応し得る。別の例では、デバイス1700は、
図3の中のデコーダに対応し得る。デバイスは、
現在ピクチャに属する現在コーディングブロックの再構成されたブロックを生成するように構成された再構成ユニット
1710であって、現在コーディングブロックはイントラ予測モードでコーディングされ、現在コーディングブロックは、第1のサブパーティションおよび第2のサブパーティションを含むサブパーティションに分割され、第2のサブパーティションは、第1のサブパーティションに基づいてイントラ予測される、再構成ユニット1701と、
現在ピクチャの再構成されたピクチャに対してフィルタ処理を行うように構成されたフィルタ処理ユニット1730であって、フィルタ処理ユニット1730は、現在のサブパーティションの高さが4サンプルであるとき、または現在のサブパーティションの幅が4サンプルであるとき、再構成されたブロックの再構成されたサブパーティションの現在のサブパーティションの中の1個までのサンプルをフィルタ処理するように特に構成され、1個のサンプルは、現在のサブパーティションと現在のサブパーティションに隣接して配置される別のサブパーティションとの間の境界に直交する、現在のサブパーティションの行または列の中に配置され、1個のサンプルは境界に隣接する、フィルタ処理ユニット1730とを含んでよい。
【0274】
キャプチャデバイス3102はデータを生成し、上記の実施形態に示すような符号化方法によってデータを符号化し得る。あるいは、キャプチャデバイス3102がデータをストリーミングサーバ(図に示さず)に配信してよく、サーバがデータを符号化し符号化データを端末デバイス3106へ送信する。キャプチャデバイス3102は、限定はしないが、カメラ、スマートフォンもしくはパッド、コンピュータもしくはラップトップ、ビデオ会議システム、PDA、車載デバイス、またはそれらのうちのいずれかの組合せなどを含む。たとえば、キャプチャデバイス3102は、上記で説明したようなソースデバイス12を含んでよい。データがビデオを含むとき、キャプチャデバイス3102の中に含まれるビデオエンコーダ20が実際にビデオ符号化処理を実行してよい。データがオーディオ(すなわち、音声)を含むとき、キャプチャデバイス3102の中に含まれるオーディオエンコーダが実際にオーディオ符号化処理を実行してよい。いくつかの実際的なシナリオの場合、キャプチャデバイス3102は、符号化ビデオおよびオーディオデータを、それらを一緒に多重化することによって配信する。他の実際的なシナリオの場合、たとえば、ビデオ会議システムでは、符号化オーディオデータおよび符号化ビデオデータは多重化されない。キャプチャデバイス3102は、符号化オーディオデータおよび符号化ビデオデータを別々に端末デバイス3106に配信する。
【0275】
コンテンツ供給システム3100では、端末デバイス310は符号化データを受信および再生する。端末デバイス3106は、上述の符号化データを復号することが可能な、スマートフォンもしくはパッド3108、コンピュータもしくはラップトップ3110、ネットワークビデオレコーダ(NVR)/デジタルビデオレコーダ(DVR)3112、TV3114、セットトップボックス(STB)3116、ビデオ会議システム3118、ビデオ監視システム3120、携帯情報端末(PDA)3122、車載デバイス3124、またはそれらのうちのいずれかの組合せなどの、データ受信および復元能力を有するデバイスであり得る。たとえば、端末デバイス3106は、上記で説明したような宛先デバイス14を含んでよい。符号化データがビデオを含むとき、端末デバイスの中に含まれるビデオデコーダ30は、ビデオ復号を実行するために優先される。符号化データがオーディオを含むとき、端末デバイスの中に含まれるオーディオデコーダは、オーディオ復号処理を実行するために優先される。
【0276】
そのディスプレイを有する端末デバイス、たとえば、スマートフォンもしくはパッド3108、コンピュータもしくはラップトップ3110、ネットワークビデオレコーダ(NVR)/デジタルビデオレコーダ(DVR)3112、TV3114、携帯情報端末(PDA)3122、または車載デバイス3124の場合、端末デバイスは復号データをそのディスプレイに供給することができる。ディスプレイが装備されない端末デバイス、たとえば、STB3116、ビデオ会議システム3118、またはビデオ監視システム3120の場合、復号データを受信および表示するために外部ディスプレイ3126がそれらに接触される。
【0277】
このシステムの中の各デバイスが符号化または復号を実行するとき、上述の実施形態に示されるようなピクチャ符号化デバイスまたはピクチャ復号デバイスが使用され得る。
【0278】
図20は、端末デバイス3106の一例の構造を示す図である。端末デバイス3106がキャプチャデバイス3102からストリームを受信した後、プロトコル進行ユニット3202は、ストリームの伝送プロトコルを分析する。プロトコルは、限定はしないが、リアルタイムストリーミングプロトコル(RTSP)、ハイパーテキスト転送プロトコル(HTTP)、HTTPライブストリーミングプロトコル(HLS)、MPEG-DASH、リアルタイムトランスポートプロトコル(RTP)、リアルタイムメッセージングプロトコル(RTMP)、またはそれらの任意の種類の組合せなどを含む。
【0279】
プロトコル進行ユニット3202がストリームを処理した後、ストリームファイルが生成される。ファイルは逆多重化ユニット3204に出力される。逆多重化ユニット3204は、多重化されたデータを符号化オーディオデータおよび符号化ビデオデータに分離することができる。上記で説明したように、いくつかの実際的なシナリオの場合、たとえば、ビデオ会議システムでは、符号化オーディオデータおよび符号化ビデオデータは多重化されない。この状況では、符号化データは、逆多重化ユニット3204を通ることなく、ビデオデコーダ3206およびオーディオデコーダ3208へ送信される。
【0280】
逆多重化処理を介して、ビデオエレメンタリストリーム(ES)、オーディオES、および任意選択でサブタイトルが生成される。上述の実施形態で説明したようなビデオデコーダ30を含むビデオデコーダ3206は、上述の実施形態に示されるような復号方法によってビデオESを復号してビデオフレームを生成し、このデータを同期ユニット3212に供給する。オーディオデコーダ3208は、オーディオESを復号してオーディオフレームを生成し、このデータを同期ユニット3212に供給する。あるいは、ビデオフレームは、それを同期ユニット3212に供給する前にバッファ(
図Yに図示せず)の中に記憶し得る。同様に、オーディオフレームは、それを同期ユニット3212に供給する前にバッファ(
図Yに図示せず)の中に記憶し得る。
【0281】
同期ユニット3212は、ビデオフレームとオーディオフレームとを同期させ、ビデオ/オーディオをビデオ/オーディオディスプレイ3214に供給する。たとえば、同期ユニット3212は、ビデオの提示とオーディオ情報とを同期させる。情報は、コーディングされたオーディオデータおよびビジュアルデータの提示に関係するタイムスタンプ、ならびにデータストリーム自体の配信に関係するタイムスタンプを使用して、シンタックスの中でコーディングし得る。
【0282】
ストリームの中にサブタイトルが含まれる場合、サブタイトルデコーダ3210は、サブタイトルを復号し、それをビデオフレームおよびオーディオフレームと同期させ、ビデオ/オーディオ/サブタイトルをビデオ/オーディオ/サブタイトルディスプレイ3216に供給する。
【0283】
本発明は上述のシステムに限定されず、上述の実施形態におけるピクチャ符号化デバイスまたはピクチャ復号デバイスのいずれも、他のシステム、たとえば、自動車システムの中に組み込まれ得る。
【0284】
本発明は、本明細書では様々な実施形態とともに説明されている。しかしながら、開示する実施形態への他の変形形態が、請求される本発明を実践する際に、図面、本開示、および添付の特許請求の範囲の検討から当業者によって理解および達成され得る。特許請求の範囲の中で、「含む(comprising)」という語は他の要素またはステップを除外せず、不定冠詞「a」または「an」は複数を除外しない。単一のプロセッサまたは他のユニットが、特許請求の範囲に記載されるいくつかの項目の機能を遂行し得る。通常は異なる従属請求項の中にいくつかの方策が記載されるという単なる事実は、これらの方策の組合せが有利には使用され得ないことを示すものではない。コンピュータプログラムは、他のハードウェアと一緒に、または他のハードウェアの一部として供給される、光記憶媒体またはソリッドステートメディアなどの、好適な媒体において記憶/配布され得るが、インターネットまたは他の有線もしくはワイヤレスの通信システムを介するような、他の形態においても配布され得る。
【0285】
様々な図(方法および装置)の「ブロック」(「ユニット」)が、(ハードウェアまたはソフトウェアの中の必然的に個別の「ユニット」ではなく)本発明の実施形態の機能を表すかまたは説明し、したがって、装置実施形態および方法実施形態の機能または特徴を等しく(ユニット=ステップ)説明することを、当業者は理解されよう。
【0286】
「ユニット」という用語は、エンコーダ/デコーダの実施形態の機能の例示のために使用されるにすぎず、本開示を限定することを意図しない。
【0287】
本出願において提供されるいくつかの実施形態では、開示するシステム、装置、および方法が他の方法で実施され得ることを理解されたい。たとえば、説明する装置実施形態は例示的にすぎない。たとえば、ユニット分割は論理的な機能分割にすぎず、実際の実装において他の分割であってよい。たとえば、複数のユニットまたは構成要素は組み合わせられてよく、または別のシステムの中に統合されてよく、あるいはいくつかの特徴は無視されてよく、または実行されなくてよい。加えて、表示または説明される相互結合または直接の結合もしくは通信接続は、いくつかのインターフェースを使用することによって実施されてよい。装置またはユニットの間の間接的な結合または通信接続は、電子形態、機械形態、または他の形態で実施されてよい。
【0288】
別個の部分として説明されるユニットは、物理的に別個であってもなくてもよく、ユニットとして表示される部分は、物理ユニットであってもなくてもよく、1つの位置に置かれてよく、または複数のネットワークユニット上で分散されてもよい。ユニットの一部または全部は、本実施形態の解決策の目的を達成するための実際の必要に従って選択されてよい。
【0289】
加えて、本発明の実施形態における機能ユニットは1つの処理ユニットの中に統合されてよく、またはユニットの各々が物理的に単独で存在してよく、または2つ以上のユニットが1つのユニットの中に統合される。
【0290】
本発明の実施形態は、本明細書で説明する方法および/またはプロセスのうちのいずれかを実行するように構成された処理回路構成を含む装置、たとえば、エンコーダおよび/またはデコーダをさらに含んでよい。
【0291】
本発明の実施形態は主にビデオコーディングに基づいて説明されているが、コーディングシステム10、エンコーダ20、およびデコーダ30(かつそれに対応して、システム10)の実施形態、ならびに本明細書で説明する他の実施形態がまた、静止画処理または静止画コーディング、すなわち、ビデオコーディングにおけるような先行するかまたは連続する任意のピクチャから独立した個々のピクチャの処理またはコーディングのために構成され得ることに留意されたい。概して、ピクチャ処理コーディングが単一のピクチャ17に限定される場合には、インター予測ユニット244(エンコーダ)および344(デコーダ)だけは利用可能でなくてよい。ビデオエンコーダ20およびビデオデコーダ30のすべての他の機能性(ツールまたは技術とも呼ばれる)は、静止画処理、たとえば、残差計算204/304、変換206、量子化208、逆量子化210/310、(逆)変換212/312、分割262/362、イントラ予測254/354および/またはループフィルタ処理220、320、ならびにエントロピーコーディング270およびエントロピー復号304のために等しく使用され得る。
【0292】
たとえば、エンコーダ20およびデコーダ30の実施形態、ならびに、たとえば、エンコーダ20およびデコーダ30を参照しながら、本明細書で説明する機能は、ハードウェア、ソフトウェア、ファームウェア、またはそれらの任意の組合せで実施され得る。ソフトウェアで実施される場合、機能は、1つまたは複数の命令またはコードとして、コンピュータ可読媒体上に記憶されてよく、または通信媒体を介して送信されてよく、ハードウェアベースの処理ユニットによって実行されてよい。コンピュータ可読媒体は、データ記憶媒体などの有形媒体、または、たとえば、通信プロトコルに従って、ある場所から別の場所へのコンピュータプログラムの転送を容易にする任意の媒体を含む通信媒体に相当する、コンピュータ可読記憶媒体を含んでよい。このようにして、コンピュータ可読媒体は、概して、(1)非一時的である有形コンピュータ可読記憶媒体、または(2)信号もしくは搬送波などの通信媒体に、相当し得る。データ記憶媒体は、本開示で説明する技法の実施のための命令、コード、および/またはデータ構造を取り出すために、1つもしくは複数のコンピュータまたは1つもしくは複数のプロセッサによってアクセスされ得る、任意の利用可能な媒体であってよい。コンピュータプログラム製品は、コンピュータ可読媒体を含んでよい。
【0293】
例として、かつ限定的でなく、そのようなコンピュータ可読記憶媒体は、RAM、ROM、EEPROM、CD-ROM、または他の光ディスクストレージ、磁気ディスクストレージ、または他の磁気記憶デバイス、フラッシュメモリ、あるいは命令またはデータ構造の形態の所望のプログラムコードを記憶するために使用され得るとともにコンピュータによってアクセスされ得る、任意の他の媒体を含むことができる。また、任意の接続が適切にコンピュータ可読媒体と呼ばれる。たとえば、命令が、同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL)、または赤外線、無線、およびマイクロ波などのワイヤレス技術を使用して、ウェブサイト、サーバ、または他のリモートソースから送信される場合、同軸ケーブル、光ファイバケーブル、ツイストペア、DSL、または赤外線、無線、およびマイクロ波などのワイヤレス技術は、媒体の定義の中に含まれる。ただし、コンピュータ可読記憶媒体およびデータ記憶媒体が、接続、搬送波、信号、または他の一時的媒体を含まず、代わりに非一時的な有形記憶媒体を対象とすることを理解されたい。本明細書で使用するディスク(disk)およびディスク(disc)は、コンパクトディスク(disc)(CD)、レーザーディスク(登録商標)(disc)、光ディスク(disc)、デジタル多用途ディスク(disc)(DVD)、フロッピーディスク(disk)、およびBlu-ray(登録商標)ディスク(disc)を含み、ここで、ディスク(disk)は、通常、データを磁気的に再生し、ディスク(disc)は、レーザーを用いてデータを光学的に再生する。上記のものの組合せも、コンピュータ可読媒体の範囲内に含まれるべきである。
【0294】
命令は、1つまたは複数のデジタル信号プロセッサ(DSP)、汎用マイクロプロセッサ、特定用途向け集積回路(ASIC)、フィールドプログラマブル論理アレイ(FPGA)、または他の均等な集積論理回路構成もしくは個別論理回路構成などの、1つまたは複数のプロセッサによって実行され得る。したがって、本明細書で使用する「プロセッサ」という用語は、上記の構造または本明細書で説明する技法の実装にとって好適な任意の他の構造のうちのいずれかを指すことがある。加えて、いくつかの態様では、本明細書で説明する機能性は、符号化および復号するために構成された専用のハードウェア内および/またはソフトウェアモジュール内で提供され得るか、または組み合わせられたコーデックの中に組み込まれ得る。また、技法は1つまたは複数の回路または論理要素の中に完全に実装され得る。
【0295】
本開示の技法は、ワイヤレスハンドセット、集積回路(IC)、またはICのセット(たとえば、チップセット)を含む、多種多様なデバイスまたは装置において実施され得る。様々な構成要素、モジュール、またはユニットは、開示する技法を実行するように構成されたデバイスの機能的態様を強調するために本開示で説明されるが、必ずしも様々なハードウェアユニットによる実現を必要とするとは限らない。むしろ、上記で説明したように、様々なユニットは、コーデックハードウェアユニットの中で組み合わせられてよく、あるいは好適なソフトウェアおよび/またはファームウェアとともに、上記で説明したような1つまたは複数のプロセッサを含む、相互動作可能なハードウェアユニットの集合によって提供されてよい。
【符号の説明】
【0296】
10 コーディングシステム
12 ソースデバイス
13 通信チャネル
14 宛先デバイス
16 ピクチャソース
17 ピクチャ、
18 プリプロセッサ
19 前処理済みのピクチャデータ
20 エンコーダ
21 符号化されたピクチャデータ
22 通信インターフェース
28 通信インターフェース
30 デコーダ、ビデオデコーダ
31 復号されたピクチャ
32 ポストプロセッサ
33 後処理されたピクチャデータ
34 ディスプレイデバイス
46 処理回路構成
201 入力
203 ピクチャブロック
204 残差計算ユニット
205 残差ブロック
206 変換処理ユニット
207 変換係数
208 量子化ユニット
209 量子化された係数
210 逆量子化ユニット
211 逆量子化された係数
212 逆変換処理ユニット
213 再構成された残差ブロック
214 再構成ユニット
215 再構成されたブロック
220 ループフィルタユニット
221 フィルタ処理済みのブロック
230 復号ピクチャバッファ(DPB)
231 復号されたピクチャ
244 インター予測ユニット
254 イントラ予測ユニット
260 モード選択ユニット
262 分割ユニット
265 予測ブロック
266 シンタックス要素
270 エントロピー符号化ユニット
272 出力
304 エントロピー復号ユニット
309 量子化された係数
310 逆量子化ユニット
311 逆量子化された係数
312 逆変換処理ユニット
313 再構成残差ブロック
314 再構成ユニット
315 再構成されたブロック
320 ループフィルタ
321 フィルタ処理済みのブロック
330 復号ピクチャバッファ(DBP)
331 復号されたピクチャ
344 インター予測ユニット
354 イントラ予測ユニット
360 モード適用ユニット
365 予測ブロック
400 ビデオコーディングデバイス
410 入力ポート
420 受信器ユニット(Rx)
430 プロセッサ
440 送信器ユニット(Tx)
450 出力ポート
460 メモリ
470 コーディングモジュール
500 装置
502 プロセッサ
504 メモリ
506 データ
508 オペレーティングシステム
510 アプリケーションプログラム
512 バス
518 ディスプレイ
600 イントラブロック
601 水平パーティション
602 垂直パーティション
700 コーディングブロック
701、702 サブパーティション
800 コーディングブロック
801、802 サブパーティション
900 コーディングブロック
901、902 サブパーティション
1010 近傍ブロック
1020 エッジ
1030 現在ブロック
1031 サブパーティション
1032 サブパーティション境界
1033 サブパーティション
1108 サンプル
1300 デバイス
1310 デブロッキングフィルタ
1400 デバイス
1410 デブロッキングフィルタ
1700 デバイス
1701 再構成ユニット
1730 フィルタ処理ユニット
1800 デバイス
1810 再構成ユニット
1830 フィルタ処理ユニット
3100 コンテンツ供給システム
3102 キャプチャデバイス
3104 通信リンク
3106 端末デバイス
3108 スマートフォン、パッド
3110 コンピュータ、ラップトップ
3112 ネットワークビデオレコーダ(NVR)/デジタルビデオレコーダ(DVR)
3114 TV
3116 セットトップボックス(STB)
3118 ビデオ会議システム
3120 ビデオ監視システム
3122 携帯情報端末(PDA)
3124 車載デバイス
3126 ディスプレイ
3202 プロトコル進行ユニット
3204 逆多重化ユニット
3206 ビデオデコーダ
3208 オーディオデコーダ
3210 サブタイトルデコーダ
3212 同期ユニット
3214 ビデオ/オーディオディスプレイ
3216 ビデオ/オーディオ/サブタイトルディスプレイ
10311、10314、10331 サンプル