IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日立建機株式会社の特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-11-19
(45)【発行日】2024-11-27
(54)【発明の名称】機械の状態検出装置
(51)【国際特許分類】
   G01M 99/00 20110101AFI20241120BHJP
   G05B 23/02 20060101ALI20241120BHJP
【FI】
G01M99/00 Z
G05B23/02 T
【請求項の数】 9
(21)【出願番号】P 2023511237
(86)(22)【出願日】2022-03-28
(86)【国際出願番号】 JP2022014895
(87)【国際公開番号】W WO2022210499
(87)【国際公開日】2022-10-06
【審査請求日】2023-08-22
(31)【優先権主張番号】P 2021063255
(32)【優先日】2021-04-02
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000005522
【氏名又は名称】日立建機株式会社
(74)【代理人】
【識別番号】110002572
【氏名又は名称】弁理士法人平木国際特許事務所
(72)【発明者】
【氏名】鵜沼 宗利
(72)【発明者】
【氏名】津久井 洋
(72)【発明者】
【氏名】安島 健一
(72)【発明者】
【氏名】江尻 孝一郎
(72)【発明者】
【氏名】本田 充彦
【審査官】黒田 浩一
(56)【参考文献】
【文献】特開2022-083497(JP,A)
【文献】特開2018-185256(JP,A)
【文献】特開2018-097616(JP,A)
【文献】国際公開第2018/042616(WO,A1)
【文献】国際公開第2016/117041(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01M 99/00
G05B 23/02
G06Q 10/00
(57)【特許請求の範囲】
【請求項1】
時系列的に変化する機械の状態を示す状態情報を複数の時刻において収集する収集装置と、前記複数の時刻において収集された複数の前記状態情報を処理して前記機械の状態を検出する演算処理装置と、を備える機械の状態検出装置であって、
前記演算処理装置は、
前記収集装置により収集された前記複数の状態情報を時分割して前記状態情報の種別を特徴量とする複数の特徴量ベクトルを特定し、特定された前記特徴量ベクトルを予め定められた複数の集合の何れかに分類し、分類された前記特徴量ベクトルに対して、当該特徴量ベクトルが属する前記集合を識別する分類IDを付与する分類処理部と、
前記収集装置により収集された時系列的に変化する前記機械の状態を示す状態情報に基づいて、前記機械が受けたダメージを検出する検出処理部と、
前記検出処理部により前記ダメージが検出された区間と、当該区間において前記分類処理部により付与された前記分類IDとを紐付ける紐付処理部と、を備える
ことを特徴とする機械の状態検出装置。
【請求項2】
前記演算処理装置は、
前記機械がダメージを受けた前記区間における前記機械の状態であるダメージ状態を特定する前記分類IDが予め記録された第1記録部と、
前記第1記録部に記録された前記分類IDに基づいて、前記紐付処理部により紐付けられた前記分類IDが、未知の前記分類IDであるか否かを判定する第1判定処理部と、 前記第1判定処理部により前記未知の分類IDであると判定された前記分類IDを前記第1記録部に登録する第1登録処理部と、を更に備える
ことを特徴とする請求項1に記載の機械の状態検出装置。
【請求項3】
前記演算処理装置は、
前記特徴量ベクトルと前記分類IDとが予め対応付けられて記録された第2記録部と、
前記分類処理部により特定された前記特徴量ベクトルと前記第2記録部に記録された前記特徴量ベクトルとに基づいて、前記分類処理部により特定された前記特徴量ベクトルに付与するべき前記分類IDが前記第2記録部に記録されているか否かを判定する第2判定処理部と、
前記分類処理部により特定された前記特徴量ベクトルに付与するべき前記分類IDが前記第2記録部に記録されていない場合、新たな前記分類IDを生成する生成処理部と、 前記生成処理部により生成された前記分類IDと、当該分類IDを付与するべき前記特徴量ベクトルとを対応付けて前記第2記録部に登録する第2登録処理部と、を更に備える
ことを特徴とする請求項1に記載の機械の状態検出装置。
【請求項4】
前記演算処理装置は、
前記紐付処理部により前記分類IDに紐付けられた前記区間を含む所定区間において前記分類処理部により付与された前記分類IDを切り出す切出処理部と、
前記切出処理部により切り出された前記分類IDに基づいて、前記所定区間における前記機械の前記状態を再現する動画を生成する再現処理部と、
前記再現処理部により生成された前記動画を表示装置に表示させる表示処理部と、を更に備える
ことを特徴とする請求項1に記載の機械の状態検出装置。
【請求項5】
前記演算処理装置は、前記機械が受けたダメージ量を推定する推定処理部を更に備え、 前記検出処理部は、前記区間において収集された前記状態情報に基づいて、前記区間において前記機械が受けたダメージ量である個別ダメージ量を検出し、
前記紐付処理部は、前記検出処理部により検出された前記個別ダメージ量を、当該個別ダメージ量が検出された前記区間において前記分類処理部により付与された前記分類IDに紐付け、
前記推定処理部は、
前記検出処理部により検出された前記個別ダメージ量と、当該個別ダメージ量の検出回数とに基づいて、当該個別ダメージ量の積算値を前記分類ID毎に算出し、
前記分類ID毎に算出された複数の前記積算値を累積して前記機械が受けた累積ダメージ量を推定する
ことを特徴とする請求項1に記載の機械の状態検出装置。
【請求項6】
前記演算処理装置は、
前記紐付処理部により前記分類IDに紐付けられた前記区間を含む所定区間において前記分類処理部により付与された前記分類IDを切り出す切出処理部と、
前記切出処理部により切り出された前記分類IDに基づいて、前記所定区間における前記機械の前記状態を再現する動画を生成する再現処理部と、
前記再現処理部により生成された前記動画を表示装置に表示させる表示処理部と、を更に備え、
前記表示処理部は、前記所定区間において収集された前記状態情報の前記時系列的な変化、前記所定区間における前記個別ダメージ量の前記時系列的な変化、前記累積ダメージ量、前記累積ダメージ量の前記時系列的な変化、及び、前記機械の寿命の予測結果の少なくとも1つを、前記動画に併せて前記表示装置に表示させる
ことを特徴とする請求項5に記載の機械の状態検出装置。
【請求項7】
時系列的に変化する機械の状態を示す状態情報を複数の時刻において収集する収集装置と、前記複数の時刻において収集された複数の前記状態情報を処理して前記機械の状態を検出する演算処理装置と、を備える機械の状態検出装置であって、
前記演算処理装置は、
前記収集装置により収集された前記複数の状態情報を時分割して前記状態情報の種別を特徴量とする複数の特徴量ベクトルを特定し、特定された前記特徴量ベクトルを予め定められた複数の集合の何れかに分類し、分類された前記特徴量ベクトルに対して、当該特徴量ベクトルが属する前記集合を識別する分類IDを付与する分類処理部と、
前記機械がダメージを受けた区間における前記機械の状態であるダメージ状態を特定する前記分類IDが予め記録された第1記録部と、
前記分類処理部により付与された前記分類IDと、前記第1記録部に記録された前記分類IDとに基づいて、前記分類処理部により付与された前記分類IDによって特定される前記ダメージ状態を認識する認識処理部と、を備える
ことを特徴とする機械の状態検出装置。
【請求項8】
前記演算処理装置は、前記機械が受けたダメージ量を推定する推定処理部を更に備え、 前記第1記録部には、前記区間において前記機械が受けたダメージ量である個別ダメージ量が、前記分類IDに予め紐付けられて記録されており、
前記推定処理部は、
前記認識処理部により認識された前記ダメージ状態を特定する前記分類IDと、前記第1記録部に記録された前記分類IDとに基づいて、前記認識処理部により認識された前記ダメージ状態に対応する前記個別ダメージ量を特定し、
特定された前記個別ダメージ量と、当該個別ダメージ量に対応する前記ダメージ状態の発生回数とに基づいて、当該個別ダメージ量の積算値を前記分類ID毎に算出し、
前記分類ID毎に算出された複数の前記積算値を累積して前記機械が受けた累積ダメージ量を推定する
ことを特徴とする請求項7に記載の機械の状態検出装置。
【請求項9】
前記演算処理装置は、
前記認識処理部により認識された前記ダメージ状態に対応する前記区間を含む所定区間において前記分類処理部により付与された前記分類IDを切り出す切出処理部と、
前記切出処理部により切り出された前記分類IDに基づいて、前記所定区間における前記機械の前記状態を再現する動画を生成する再現処理部と、
前記再現処理部により生成された前記動画を表示装置に表示させる表示処理部と、を更に備え、
前記表示処理部は、前記所定区間において収集された前記状態情報の前記時系列的な変化、前記所定区間における前記個別ダメージ量の前記時系列的な変化、前記累積ダメージ量、前記累積ダメージ量の前記時系列的な変化、及び、前記機械の寿命の予測結果の少なくとも1つを、前記動画に併せて前記表示装置に表示させる
ことを特徴とする請求項8に記載の機械の状態検出装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、機械の状態を検出する装置に関する。
【背景技術】
【0002】
本技術分野の関連技術として、下記の特許文献1、特許文献2、特許文献3がある。特許文献1には、機械に異常が発生した時の機械の動作傾向を学習する装置が記載されている。特許文献2には、機械に加わる応力の発生した時間軸上での区間、或いは、機械が存在した位置での区間を検出する検出装置が記載されている。特許文献3には、機械の行った動作の認識結果から機械が受けたダメージ量を推定する損傷推定装置が記載されている。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2018-97616号公報
【文献】特許第6215446号公報
【文献】特許第6458055号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
上記の特許文献1~3に記載の技術には、次のような課題がある。
(a)特許文献1では、異常が発生した時の機械の動作が、既知の動作なのか未知の動作なのかを判定する手段及び出力方法について述べられていない。また、機械の異常を示すアラーム等を用いて機械の動作傾向を学習しているので、異常を示すアラーム発生前に機械が受けたダメージ(異常の発生要因)を検出することに関しても述べられていない。
(b)特許文献2では、異常(機械の破断)を引き起こす前のダメージ(繰り返し応力)の発生した区間を検出し、ダメージを受けた要因を、位置状態認識手段を用いて特定している。ところが、ここで用いている位置状態認識手段は、予め設定された状態を認識するものであり、設定されていない状態が発生した場合にどのような処理を行うかに関しては述べられていない。
(c)特許文献3では、予め動作認識結果とその動作を行った場合に機械が受けるダメージ量とを紐付けるテーブルを作成する。そして、運用時には、機械の行った動作を動作認識手法により認識し、認識結果に基づき、当該動作に対応するダメージ量を参照して、ダメージ量を推定している。ところが、ここで用いている動作認識手法は、上記(b)と同様に予め設定された動作の認識であり、設定されていない動作が行われた場合にどのような処理を行うかに関しては述べられていない。
【0005】
本発明は、上記に鑑みてなされたものであり、ダメージを与えると想定していない未知の動作が行われたか否かに関わらず、機械の状態を容易に検出することが可能な機械の状態検出装置を提供することを目的とする。
【課題を解決するための手段】
【0006】
上記課題を解決するために、本発明の機械の状態検出装置は、時系列的に変化する機械の状態を示す状態情報を複数の時刻において収集する収集装置と、前記複数の時刻において収集された複数の前記状態情報を処理して前記機械の状態を検出する演算処理装置と、を備える機械の状態検出装置であって、前記演算処理装置は、前記収集装置により収集された前記複数の状態情報を時分割して前記状態情報の種別を特徴量とする複数の特徴量ベクトルを特定し、特定された前記特徴量ベクトルを予め定められた複数の集合の何れかに分類し、分類された前記特徴量ベクトルに対して、当該特徴量ベクトルが属する前記集合を識別する分類IDを付与する分類処理部と、前記収集装置により収集された時系列的に変化する前記機械の状態を示す状態情報に基づいて、前記機械が受けたダメージを検出する検出処理部と、前記検出処理部により前記ダメージが検出された区間と、当該区間において前記分類処理部により付与された前記分類IDとを紐付ける紐付処理部と、を備えることを特徴とする。
【発明の効果】
【0007】
本発明によれば、ダメージを与えると想定していない未知の動作が行われたか否かに関わらず、機械の状態を容易に検出することができる。
上記以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。
【図面の簡単な説明】
【0008】
図1】実施形態1の状態検出装置の処理ブロック図。
図2】状態検出装置の処理フロー図。
図3】繰り返し応力振幅及び波長の説明図。
図4】分類モデルデータベースに記録された情報の例。
図5】状態分類用センサ・制御情報の例。
図6】分類処理の処理結果の例。
図7】分類IDのパターンの説明図。
図8】ダメージ状態の分類IDデータベースに記録された情報の例(その1)。
図9】ダメージ区間の切り出しの他の例。
図10】ダメージ状態の分類IDデータベースに記録された情報の例(その2)。
図11】ダメージ状態の分類IDデータベースに記録された情報の例(その3)。
図12】実施形態2の状態検出装置の処理ブロック図。
図13】分類IDのクラスタ分布の説明図。
図14】実施形態3の状態検出装置の処理ブロック図。
図15】ダメージ状態の分類IDデータベースに記録された情報の例(その4)。
図16】キーフレームアニメーションの説明図。
図17】ダメージ状態の分類IDデータベースに記録された情報の例(その5)。
図18】実施形態4の状態検出装置の処理ブロック図。
図19】実施形態5の状態検出装置の処理ブロック図。
図20】累積損傷度の例。
図21】累積損傷度の時系列的な変化の例。
図22】実施形態6の状態検出装置において行われる個別ダメージ量の積算値の可視化の例。
図23】ダメージ状態の発生回数の可視化の例。
図24】実施形態7の状態検出装置における表示画面の例(その1)。
図25】表示画面の例(その2)。
図26】表示画面の例(その3)。
【発明を実施するための形態】
【0009】
以下、本発明の実施形態について図面を用いて説明する。なお、各実施形態において同一の符号を付された構成は、特に言及しない限り、各実施形態において同様の機能を有し、その説明を省略する。
【0010】
[実施形態1]
図1図11を用いて、実施形態1の状態検出装置100について説明する。
図1は、実施形態1の状態検出装置100の処理ブロック図である。図2は、状態検出装置100の処理フロー図である。図3は、繰り返し応力振幅及び波長の説明図である。図4は、分類モデルデータベース1hに記録された情報の例を示す図である。図5は、状態分類用センサ・制御情報1fの例を示す図である。図6は、分類処理1iの処理結果の例を示す図である。図7は、分類IDのパターンの説明図である。図8は、ダメージ状態の分類IDデータベース1oに記録された情報の例(その1)を示す図である。
【0011】
状態検出装置100は、建設機械又は産業用ロボット等の作業機械をはじめとする各種機械の状態を検出する装置である。特に、状態検出装置100は、時系列的に変化する機械の状態(例えば機械の動作状態)を検出する装置である。図1の1c、1d、1eは、状態検出装置100の適用対象である機械の一例を示している。1cは、ダンプトラックのような運搬車両である。1dは、ショベルのような車両系の建設機械である。1eは、製造工場等において利用されている産業用ロボットである。これらに限らず、状態検出装置100は、様々な機械に適用可能である。
【0012】
状態検出装置100は、機械の状態を検出するための情報を収集する収集装置1aと、収集された情報を用いて機械の状態を検出するための処理を行う演算処理装置1bとに大別することができる。すなわち、状態検出装置100は、時系列的に変化する機械の状態を示す状態情報を複数の時刻において収集する収集装置1aと、複数の時刻において収集された複数の状態情報を処理して前記機械の状態を検出する演算処理装置1bとを備える。
【0013】
収集装置1aは、例えば、機械に備えられた各種センサ情報を記憶する装置から成り、機械に搭載されるコントローラ等により構成される。収集装置1a及び演算処理装置1bのそれぞれは、一般用又は産業用のコンピュータにより構成されてもよいし、マイクロコンピュータを用いた専用のハードウェアにより構成されてもよい。収集装置1a及び演算処理装置1bのそれぞれは、CPM、ROM及びRAMを含んで構成され、ROMに記憶されたプログラムをCPUが実行することにより、それぞれの機能を実現する。演算処理装置1bは、収集装置1aにより収集された情報を、通信回線を用いて外部クラウドコンピュータに吸い上げ、クラウドコンピュータを用いて処理を行ってもよい。なお、図1では、収集装置1aと演算処理装置1bとを分けて図示しているが、状態検出装置100は、収集装置1aと演算処理装置1bとを1つの筐体に収容し、1つの装置として構成されてもよい。
【0014】
収集装置1aは、時系列的に変化する機械の状態を示す状態情報として、状態分類用センサ・制御情報1fを収集する状態分類用センサ・制御情報収集部1fと、ダメージ検出用センサ・制御情報1gを収集するダメージ検出用センサ・制御情報収集部1gと、を備える。状態分類用センサ・制御情報1fは、機械の状態を分類するために用いられる、センサの計測情報、及び、機械の各部位を制御する情報である。ダメージ検出用センサ・制御情報1gは、機械が受けたダメージを検出するために用いられる、センサの計測情報、及び、機械の各部位を制御する情報である。状態分類用センサ・制御情報1fと、ダメージ検出用センサ・制御情報1gとは、同じ種別の情報であってもよいし、異なる種別の情報であってもよい。本実施形態では、状態分類用センサ・制御情報1fを「状態情報1f」とも称する。本実施形態では、ダメージ検出用センサ・制御情報1gを「状態情報1g」とも称する。
【0015】
収集装置1aは、状態情報1f及び状態情報1gに含まれるセンサの計測情報を、機械に取り付けられた歪みゲージ又は角度センサ等から直接取得したり、機械に搭載されたCAN(Controller Area Network)等のネットワークに流れる情報を取得したりすることによって収集することができる。収集装置1aは、状態情報1f及び状態情報1gに含まれる制御情報を、機械の制御装置等から直接取得したり、機械に搭載されたネットワークに流れる情報を取得したりすることによって収集することができる。
【0016】
演算処理装置1bは、機械が受けたダメージの検出処理1jを実行する検出処理部1jと、機械が受けたダメージ量の判定処理1kを実行する判定処理部1kと、収集装置1aにより収集された状態情報1fに基づいて、各時刻における機械の状態を分類する分類処理1iを実行する分類処理部1iと、検出処理1j(及び判定処理1k)の処理結果と、分類処理1iの処理結果との紐付処理1lを実行する紐付処理部1lと、紐付処理1lにより紐付けられた分類IDが未知の分類IDであるか否かの判定処理1mを実行する判定処理部1mと、紐付処理1lにより紐付けられた分類IDが未知の分類IDであることを表示する表示処理1nを実行する表示処理部1nと、判定処理1mにより未知の分類IDであると判定された分類IDを分類IDデータベース1oに登録する登録処理1pを実行する登録処理部1pと、を備える。更に、演算処理装置1bは、ダメージ状態の分類IDデータベース1oと、分類モデルデータベース1hとを、記録装置として備える。
なお、説明の都合上、収集装置1a内及び演算処理装置1b内の各部の構成と、各部における処理とを同一の符号により表すものとする。
【0017】
演算処理装置1bは、上記のように、機械が受けたダメージの検出処理1jを実行する機能(検出処理部1j)を備える。検出処理部1jは、収集装置1aにより収集された状態情報1gに基づいて、機械が受けたダメージを検出する処理を行う。検出処理1jは、機械が受けたダメージの大きな時間軸上の区間(期間)を検出する。検出処理1jが対象としているダメージとは、例えば、油圧シリンダ又は油圧モータ等の機械の各部位が受ける応力疲労損傷によるダメージである。また、検出処理1jが対象としているダメージには、応力疲労損傷のような物理的なダメージの他、例えば、機械のバランスが悪い状況等の安全上問題となる状況も含まれる。機械のバランスが悪い状況は、機械に傾斜計を取り付けることによって検出され得る。
【0018】
ダメージの検出処理1jとして、特許文献2に記載の手法がある。この手法は、ダンプトラックに取り付けられた歪ゲージによって計測された応力値を用いて、繰り返し応力の開始時刻と終了時刻を検出する手法である。図3には、この手法を用いて検出処理1jを行った例を示す。図3の横軸は時刻を示す。図3の縦軸は、応力(3a)、応力振幅(3b)、疲労損傷速度(3c)を、それぞれの時間軸を合わせて示す。図3の3hは、応力波形であり、機械の所定位置に取り付けられた歪ゲージの計測値をグラフ化したものである。疲労損傷は、応力の絶対値ではなく繰り返し応力の振幅の大きさに依存する。図3の3hは、応力の絶対値を示したものであり、そのままではどこで大きな疲労損傷を受けたのかは分からない。そこで、検出処理1jでは、この応力波形3hから繰り返し応力の振幅及び応力の波長の検出を行い、大きな疲労損傷を受けた区間の検出を行う。この手法は、応力サイクルカウント法の一種であるレインフロー法を改良して応力の波長を検出する手法である。図3の3iや3jは、3hの応力波形から、この手法を用いて検出した繰り返し応力の振幅及び応力の波長を検出したものである。3iや3jの矩形は、検出された応力の振幅及び波長を示している。3iや3jの矩形の縦軸に沿った長さが繰り返し応力の振幅の大きさを示している。3iや3jの矩形の横軸に沿った長さが繰り返し応力の波長を示している。3iや3jの矩形の底辺の左側の頂点に対応する時刻は、繰り返し応力の開始時刻を示している。3iや3jの矩形の底辺の右側の頂点に対応する時刻は、繰り返し応力の終了時刻を示している。
【0019】
ダンプトラックへの土砂の積込作業は、ダンプトラックが空荷状態で移動し(3d)、停車したダンプトラックに土砂が複数回に分けて積み込まれ(3e)、ダンプトラックが積載状態で移動し(3f)、積載した土砂を排出する排土を行う(3g)という流れで行われる。図3の3jは、ダンプトラックに土砂が積み込まれる際(3e)にダンプトラックが受ける繰り返し応力の振幅及び波長を示している。図3の3iは、ダンプトラックが排土を行う際(3g)にダンプトラックが受ける繰り返し応力の振幅及び波長を示している。この手法により、検出処理1jは、機械が受けたダメージの大きさ(繰り返し応力の振幅の大きさ)と、機械がダメージを受けた区間(繰り返し応力の振幅の開始時刻から終了時刻までの期間)とを検出することができる。また、図3の3cは、機械が単位時間当たりに受ける疲労損傷(疲労損傷速度)を示している。この疲労損傷速度3cは、3bに示す繰り返し応力の振幅及び波長を基に、様々な繰り返し応力から単位時間当たりに受ける様々な疲労損傷を算出し、これらの単位時間当たりの疲労損傷を積算することによって算出される。これにより、検出処理1jは、各時刻におけるダメージの大きさを検出することができる。
【0020】
なお、特許文献2に記載された上記手法は、機械が受けたダメージの大きさと、機械がダメージを受けた区間とを検出する手法の一例である。機械が受けたダメージの大きさと、機械がダメージを受けた区間とを検出できるのであれば、検出処理1jには他の手法が用いられてもよい。
【0021】
本実施形態では、機械が受けたダメージの大きさ(繰り返し応力の振幅の大きさ)を「ダメージ量」とも称する。本実施形態では、機械がダメージを受けた時間軸上の区間(ダメージの開始時刻から終了時刻までの期間)を「ダメージ区間」とも称する。本実施形態では、機械がダメージを受けた際(ダメージ区間)における機械の状態を「ダメージ状態」とも称する。本実施形態では、ダメージ区間において機械が受けたダメージ量を「個別ダメージ量」とも称する。
【0022】
更に、演算処理装置1bは、上記のように、機械が受けたダメージ量の判定処理1kを実行する機能(判定処理部1k)を備える。判定処理部1kは、検出処理1jにより検出されたダメージ量が、機械の各部位の寿命に影響を及ぼすようなダメージ量であるか否かを判定する処理を行う。ダメージ量の判定処理1kは、検出処理1jにより検出されたダメージ量が、所定の閾値以上であれば寿命に影響を及ぼすようなダメージ量であると判定し、閾値未満であれば寿命に影響を及ぼさないダメージ量であると判定する。検出処理1jにより検出されたダメージ量が寿命に影響を及ぼさないダメージ量であれば、状態情報1g及び状態情報1fを取得する処理が行われる(図2の2aの「NO」に対応する)。一方、検出処理1jにより検出されたダメージ量が寿命に影響を及ぼすダメージ量であれば、後述する紐付処理1lが行われる(図2の2aの「YES」に対応する)。
【0023】
なお、演算処理装置1bは、判定処理1kにおいて閾値を設定せず、検出処理1jにより検出されたダメージ量の全てにおいて紐付処理1lを行ってもよい。例えば、ダメージ量が小さくてもダメージ状態の発生回数が多い場合には、寿命に影響を及ぼすダメージ量を判定するための閾値を設定することが難しい可能性がある。このような場合には、演算処理装置1bは、判定処理1kを行わず、検出処理1jにより検出されたダメージ量の全てにおいて紐付処理1lを行ってもよい。
【0024】
更に、演算処理装置1bは、上記のように、収集装置1aにより収集された状態情報1fに基づいて、各時刻における機械の状態を分類する分類処理1iを実行する機能(分類処理部1i)を備える。分類処理部1iは、収集装置1aにより複数の時刻において収集された複数の状態情報1fを時分割して、状態情報1fの種別を特徴量とする複数の特徴量ベクトルを特定する処理を行う。そして、分類処理部1iは、特定された特徴量ベクトルを予め定められた複数の集合(クラスタ)の何れかに分類し、分類された特徴量ベクトルに対して、当該特徴量ベクトルが属する集合(クラスタ)を識別する分類IDを付与する処理を行う。
【0025】
具体的には、分類処理1iは、分類モデルデータベース1hに予め記録されている情報を基に行われる。分類モデルデータベース1hには、状態情報1fの項目(種別)を特徴量ベクトルの項目(特徴量として定められたベクトル成分)として(状態分類用センサ・制御情報がn項目であればn次元の特徴量ベクトル)、機械の様々な状態毎に、その状態を示す特徴量ベクトルとそれを識別する分類IDとが予め対応付けられて記録されている。
【0026】
図4には、分類モデルデータベース1hに記録された情報の一例が示されている。図4の4aは、センサAから操作量Zまでの特徴量ベクトルの項目を示す。図4の4bは、分類IDを示す。分類モデルデータベース1hは、例えば、クラスタリング手法を用いて構築することができる。分類処理1iは、収集装置1aにより複数の時刻において収集され、機械の様々な状態が記録されている複数の学習用の状態情報1fを、時系列的に分割して複数の特徴量ベクトルを特定する。そして、分類処理1iは、特定された複数の特徴量ベクトルを、クラスタリング手法を用いて複数のクラスタの何れかに分類し、分類IDを付与する。クラスタリング手法としては、例えば、k-means等の手法が用いられてもよい。k-meansは、類似する特徴量ベクトル同士を、予め設定された分割数に応じた数のクラスタにまとめ、各クラスタを識別する分類IDを返答する手法である。これにより、状態情報1fの特徴量ベクトルは、設定された分割数によって分類され、分類された特徴量ベクトルが属するクラスタの分類IDが付与される。特徴量ベクトルは、機械の代表的な状態を、設定された分割数mによって分割し、それぞれの状態の特徴を示すものである。図4の例では、分類IDとして「3」が付与された特徴量ベクトルは、(M31、M32、・・・、M3n)である。分類IDは、分割数であるm種類のIDが存在する。本実施形態では、図4に示す分類モデルデータベース1hに記録された特徴量ベクトルを、「分類モデルの特徴量ベクトル」とも称する。
【0027】
分類IDは、機械の1つの状態(又はシーン)を示している。例えば、分類IDは、機械がダンプトラックであればダンプトラックのベッセルを上げて排土を行っている状態や、機械がショベルであればフロントアームを上げて掘削している状態を示している。また、機械の状態は、特徴量ベクトルによって示される。分類モデルデータベース1hは、機械の状態を示す特徴量ベクトルと、当該特徴量ベクトルを識別する分類IDとを対応付けて記録している。実施形態1の分類モデルデータベース1hは、例として説明した「ダンプトラックのベッセルを上げて排土を行っている状態」のような、機械の状態を示す自然言語を、分類IDと直接的に対応付けて記録しているわけではない。
【0028】
分類処理1iは、分類モデルデータベース1hに記録された特徴量ベクトルのうち、分類対象の状態情報1fの特徴量ベクトルに最も類似する特徴量ベクトルの分類IDを探索する処理を行う。類似するとは、特徴量ベクトル同士の距離(例えばユークリッド距離)が他よりも近いことである。分類処理1iは、分類モデルデータベース1hに記録された特徴量ベクトルのうち、分類対象の特徴量ベクトルと最も距離が近い特徴量ベクトルを探索し、探索された特徴量ベクトルの分類IDを、当該分類対象の特徴量ベクトルの基になった状態情報1fが収集された時刻における機械の状態を示す分類IDとする。
【0029】
図5には、分類対象の特徴量ベクトルの基になった状態情報1fの一例が示されている。図5の「時刻T」における状態情報1fは、(F13、F23、・・・、Fm3)である。この(F13、F23、・・・、Fm3)は、「時刻T」における状態情報1fの各項目(種別)を特徴量とする特徴量ベクトルを構成する。本実施形態では、図5に示す状態情報1fの特徴量ベクトルを、「収集データの特徴量ベクトル」とも称する。
【0030】
分類処理1iは、図5に示す各時刻における収集データの特徴量ベクトルに最も類似する分類モデルの特徴量ベクトルを探索し、探索された分類モデルの特徴量ベクトルの分類IDを取得する。この類似する特徴量ベクトルの探索する処理では、収集データの特徴量ベクトルと分類モデルの特徴量ベクトルとの類似度として、収集データの特徴量ベクトルと分類モデルの特徴量ベクトルとの距離(例えばユークリッド距離)を計算すればよい。そして、分類処理1iは、当該距離が最も近い分類モデルの特徴量ベクトルの分類IDを取得すればよい。収集データの特徴量ベクトルと分類モデルの特徴量ベクトルとの距離の計算では、ユークリッド距離の他、マハラノビス距離を計算してもよく、様々な距離の計算手法を用いることができる。このような処理によって、分類処理1iの処理結果としては、図6に示すような時系列的に並んだ分類IDの列が得られることとなる。
【0031】
更に、演算処理装置1bは、上記のように、検出処理1j(及び判定処理1k)の処理結果と、分類処理1iの処理結果との紐付処理1lを実行する機能(紐付処理部1l)を備える。紐付処理部1lは、ダメージの検出処理1jによりダメージが検出された区間であるダメージ区間と、当該ダメージ区間において分類処理1iにより付与された分類IDとを紐付ける処理を行う。これにより、演算処理装置1bは、ダメージ区間における機械の状態であるダメージ状態を、分類処理1iにより付与された分類IDによって特定することができる。
【0032】
図7には、検出処理1j(及び判定処理1k)の処理結果と分類処理1iの処理結果とを時系列的に並べた図が示されている。図7の7aは、検出処理1j(及び判定処理1k)の処理結果を示し、図3の3jと同様に、繰り返し応力の振幅及び波長を示している。図7の7dは繰り返し応力の開始時刻を示し、図7の7eは繰り返し応力の終了時刻を示している。図7の中段及び下段に示す7b及び7cは、分類処理1iの処理結果を示している。図7の中段及び下段に示す「(3)」等の括弧書きの数字は、分類IDの値を示している。
【0033】
分類処理1iの処理結果は、時系列的に並んだ分類IDの列として得られる。この時系列に並んだ分類IDの列には、次の2つのタイプが存在する。その1つは、図7の7bに示すように、開始時刻7dと終了時刻7eとの間のダメージ区間において、当該分類IDの列が、同じ分類IDによって構成されるタイプである。図7の例では、開始時刻7dと終了時刻7eとの間の区間における分類IDの列は、全て分類ID(5)によって構成されている。他の1つは、図7の7cに示すように、開始時刻7dと終了時刻7eとの間のダメージ区間において、分類IDの列が、特徴的なパターンを有して構成されるタイプである。図7の例では、ダメージ区間における分類IDの列は、分類ID(6)、(6)、(4)、(7)、(7)、(7)というパターンを有して構成されている。分類IDの列が同じ分類IDによって構成されるタイプは、機械の動作が少ない場合に観測される。分類IDの列がパターンを有して構成されるタイプは、機械が当該パターンに対応する動作を行った場合に観測される。機械の状態の変化が分類IDの変化として現れるので、分類IDの列は、機械の状態に対応するパターンを有することとなる。よって、分類IDの列は、ダメージ区間における機械の状態であるダメージ状態を特定することができる。
【0034】
更に、演算処理装置1bは、上記のように、紐付処理1lにより紐付けられた分類IDが未知の分類IDであるか否かの判定処理1mを実行する機能(判定処理部1m)を備える。判定処理部1mは、ダメージ状態の分類IDデータベース1oに記録された分類IDに基づいて、紐付処理1lにより紐付けられた分類IDが、未知の分類IDであるか否かを判定する処理を行う。
【0035】
判定処理1mは、分類処理1iの処理結果として得られる上記の分類IDの列のタイプに応じて、異なる処理を行う。判定処理1mは、上記の分類IDの列が同じ分類IDによって構成されるタイプであれば、1つの分類IDのみが記録されている分類IDデータベース1oのレコードを参照する。図7の7bの例では、判定処理1mは、ダメージ区間に紐付けられた分類ID(5)が分類IDデータベース1oに記録されていれば、この紐付けられた分類IDは既知の分類IDである(未知の分類IDではない)と判定する。一方、判定処理1mは、ダメージ区間に紐付けられた分類ID(5)が分類IDデータベース1oに記録されていなければ、この紐付けられた分類IDは未知の分類IDであると判定する。
【0036】
判定処理1mは、上記の分類IDの列がパターンを有して構成されるタイプであれば、図8に示すような項目が記録されている分類IDデータベース1oのレコードを参照する。図8の8aは、分類IDのパターンの項目を示す。図8の8bは、8aの分類IDのパターンを識別するIDの項目を示す。判定処理1mは、図7の7cに示すようなダメージ区間に紐付けられた分類IDのパターンと、図8の8aに示すような分類IDデータベース1oに記録された分類IDのパターンとの類似度判定を行う。この類似度判定としては、DPマッチング(Dynamic Programming matching)によりパターン認識処理が用いられてもよい。
【0037】
DPマッチングは、動的計画法を用いたパターンマッチングの手法であり、パターンの弾性マッチングを考慮した手法である。弾性マッチングとは、例えば、図7の7cにおいて、分類ID(6)や(7)が複数回連続して出現していることを「伸びている」と考え、「伸びている」影響を無くして、分類ID(6)や(7)をそれぞれ1回出現しているものとしてマッチング処理を行う手法である。したがって、図7の7cに示す分類IDのパターンと、図8の8aの#1に示す分類IDのパターンとは、同一のパターンとして認識される。なお、DPマッチングは、類似度の計算も可能である。パターンに含まれる全ての分類IDが一致すれば、類似度は100%となり、パターンに含まれる一部の分類IDしか一致しなければ、類似度は100%より低い値となる。判定処理1mは、類似度が100%でなくてもある程度高ければ、ダメージ区間に紐付けられた分類IDのパターンと、分類IDデータベース1oに記録された分類IDのパターンとを同一のパターンとして判定してもよい。判定処理1mは、ダメージ区間に紐付けられた分類IDのパターンが、分類IDデータベース1oに記録された分類IDのパターンと同一であれば、この紐付けられた分類IDは既知の分類IDである(未知の分類IDではない)と判定する。一方、判定処理1mは、ダメージ区間に紐付けられた分類IDのパターンが、分類IDデータベース1oに記録された分類IDのパターンと同一でなければ、この紐付けられた分類IDは未知の分類IDであると判定する。
【0038】
紐付処理1lにより紐付けられた分類IDが既知の分類IDであると判定されれば、状態情報1g及び状態情報1fを取得する処理が行われる(図2の2bの「NO」に対応する)。一方、紐付処理1lにより紐付けられた分類IDが未知の分類IDであると判定されれば、後述する表示処理1n及び登録処理1pが行われる(図2の2bの「YES」に対応する)。
【0039】
更に、演算処理装置1bは、上記のように、紐付処理1lにより紐付けられた分類IDが未知の分類IDであることを表示する表示処理1nを実行する機能(表示処理部1n)を備える。紐付処理1lにより紐付けられた分類IDが未知の分類IDであることは、未知のダメージ状態が発生したことを意味する。表示処理部1nは、未知のダメージ状態が発生したことを示す情報を、ディスプレイ等の表示装置に表示させるか、スピーカ等の音声出力装置によって発報させる処理を行う。なお、演算処理装置1bは、表示処理1nの実行を省略してもよい。
【0040】
更に、演算処理装置1bは、上記のように、判定処理1mにより未知の分類IDであると判定された分類IDを分類IDデータベース1oに登録する登録処理1pを実行する機能(登録処理部1p)を備える。図7の7bの例では、分類ID(5)が未知の分類IDであれば、登録処理部1pは、分類ID(5)を分類IDデータベース1oに登録する処理を行う。図8の例では、登録処理部1pは、未知の分類IDのパターンを、図8の#3の「未定義」と記載された8aの箇所に登録すると共に、当該パターンを識別するIDを、8bの箇所に登録する処理を行う。なお、未知の分類IDのパターンを8aの箇所に登録する際には、複数回連続して出現した分類IDを1回出現しているものとして登録する。
【0041】
以上のように、実施形態1の状態検出装置100は、時系列的に変化する機械の状態を示す状態情報1fを複数の時刻において収集する収集装置1aと、複数の時刻において収集された複数の状態情報1fを処理して機械の状態を検出する演算処理装置1bと、を備える。演算処理装置1bは、収集装置1aにより収集された複数の状態情報1fを時分割して状態情報1fの種別を特徴量とする特徴量ベクトルを複数のクラスタ(集合)の何れかに分類して分類IDを付与する分類処理部1iを備える。更に、演算処理装置1bは、収集装置1aにより収集された時系列的に変化する機械の状態を示す状態情報1gに基づいて機械が受けたダメージを検出する検出処理部1jを備える。更に、演算処理装置1bは、検出処理部1jによりダメージが検出された区間と、当該区間において分類処理部1iにより付与された分類IDとを紐付ける紐付処理部1lを備える。
【0042】
このような構成により、実施形態1の状態検出装置100は、機械がダメージを受けた区間における機械の状態であるダメージ状態を、分類処理部1iにより付与された分類IDによって特定することができる。これにより、状態検出装置100は、分類処理部1iにより付与された分類IDを参照するだけで、当該分類IDに紐付けられたダメージ区間においてダメージ状態が発生したことを容易に検出することができる。また、状態検出装置100は、ダメージ状態を特定する分類IDを記録しておけば、記録された分類IDに基づいて、検出されたダメージ状態が、ダメージを与えると想定していない未知の状態であるか否かを容易に判定することができる。よって、実施形態1の状態検出装置100は、ダメージを与えると想定していない未知の動作が行われたか否かに関わらず、機械の状態を容易に検出することができる。
【0043】
更に、実施形態1の状態検出装置100は、演算処理装置1bが、ダメージ状態を特定する分類IDが予め記録された分類IDデータベース1oを備える。更に、演算処理装置1bは、分類IDデータベース1oに記録された分類IDに基づいて紐付処理部1lにより紐付けられた分類IDが、未知の分類IDであるか否かを判定する判定処理部1mを備える。更に、演算処理装置1bは、判定処理部1mにより未知の分類IDであると判定された分類IDを分類IDデータベース1oに登録する登録処理部1pを備える。
【0044】
このような構成により、実施形態1の状態検出装置100は、ダメージ状態を特定する分類IDが記録された分類IDデータベース1oを容易に拡充することができ、検出されたダメージ状態が未知の状態であるか否かを更に確実且つ容易に判定することができる。そして、状態検出装置100は、未知のダメージ状態が発生する頻度を低減することができるので、機械の現在の状態を正確に検出し易くなる。よって、実施形態1の状態検出装置100は、ダメージを与えると想定していない未知の動作が行われたか否かに関わらず、機械の状態を容易に検出することができると共に、機械のメンテナンスを適時に実行し易くする等、機械の健全性を持続させ易くすることができる。
【0045】
図9は、ダメージ区間の切り出しの他の例を示す図である。
【0046】
上記の説明では、検出処理1jが、繰り返し応力の振幅及び波長によってダメージを検出する例を説明したが、検出処理1jは、応力に関する波形の強弱のみでダメージを検出してもよい。図9の9aは、図3の3cに示す疲労損傷速度の波形の一部を切り出した例を示している。検出処理1jは、波形9aの強弱を定める閾値9bを設定し、波形9aが閾値9b以上に変化する時刻9c及び閾値9b未満に変化する時刻9dを、ダメージ区間の開始時刻9c及び終了時刻9dとして検出することができる。なお、検出処理1jは、当該ダメージ区間における波形9aの最大値を、当該ダメージ区間において機械が受けたダメージ量として検出してもよい。或いは、検出処理1jは、当該ダメージ区間における波形9aの平均値を、当該ダメージ区間において機械が受けたダメージ量として検出してもよい。
【0047】
図10は、ダメージ状態の分類IDデータベース1oに記録された情報の例(その2)を示す図である。図11は、ダメージ状態の分類IDデータベース1oに記録された情報の例(その3)を示す図である。
【0048】
また、紐付処理1lは、検出処理1jにより検出されたダメージ区間と、当該ダメージ区間において分類処理1iにより付与された分類IDとを紐付けるだけでなく、当該ダメージ区間において機械が受けたダメージ量(個別ダメージ量)を紐付けてもよい。そして、分類IDデータベース1oには、図10及び図11に示すように、当該ダメージ区間において分類処理1iにより付与された分類IDに個別ダメージ量が紐付けられて記録されてもよい。
【0049】
図10は、分類処理1iの処理結果として得られる上記の分類IDの列が、同じ分類IDによって構成されるタイプの場合を示している。図10の10aは、分類IDの項目を示す。図10の10bは、個別ダメージ量の項目を示す。個別ダメージ量の項目10bは、図10に示すように、機械の部位毎に分けて記録されていてもよい。
【0050】
図11は、分類処理1iの処理結果として得られる上記の分類IDの列が、パターンを有して構成されるタイプの場合を示している。図11の11aは、分類IDのパターンの項目を示す。図11の11bは、分類IDのパターンを識別するIDの項目を示す。図11の11cは、個別ダメージ量の項目を示す。個別ダメージ量の項目11bは、図10と同様に、機械の部位毎に分けて記録されていてもよい。図11の場合、個別ダメージ量は、ダメージ区間内において変動するので(図9を参照)、ダメージ区間における個別ダメージ量の平均値、最大値又は累積値等を、分類IDのパターンに紐付ける個別ダメージ量の代表値として用いればよい。当然ながら、この平均値等以外の統計量を、ダメージ区間における個別ダメージ量の代表値として用いても構わない。
【0051】
このような構成により、実施形態1の状態検出装置100は、分類処理部1iにより付与された分類IDによって、ダメージ状態を特定することができだけでなく、個別ダメージ量まで特定することができる。これにより、状態検出装置100は、分類処理部1iにより付与された分類IDを参照するだけで、単にダメージ状態が発生したことを容易に検出することができるだけでなく、ダメージ区間において機械がどの程度のダメージ量を受けたのかを容易に検出することができる。これにより、状態検出装置100は、機械の現在の疲労損傷度合い等をより正確に検出することができる。よって、実施形態1の状態検出装置100は、機械の状態を容易且つ正確に検出することができると共に、機械のメンテナンスを更に適時に実行できる等、機械の健全性を更に持続させることができる。
【0052】
なお、演算処理装置1bに備えられた検出処理1jを実行する機能は、請求の範囲に記載された「検出処理部」の一例に相当する。演算処理装置1bに備えられた分類モデルデータベース1hは、請求の範囲に記載された「第2記録部」の一例に相当する。演算処理装置1bに備えられた分類処理1iを実行する機能は、請求の範囲に記載された「分類処理部」の一例に相当する。演算処理装置1bに備えられた判定処理1mを実行する機能は、請求の範囲に記載された「第1判定処理部」の一例に相当する。演算処理装置1bに備えられたダメージ状態の分類IDデータベース1oは、請求の範囲に記載された「第1記録部」の一例に相当する。演算処理装置1bに備えられた登録処理1pを実行する機能は、請求の範囲に記載された「第1登録処理部」の一例に相当する。
【0053】
[実施形態2]
図12図13を用いて、実施形態2の状態検出装置100について説明する。実施形態2の状態検出装置100において、従前の実施形態と同様の構成及び動作については、説明を省略する。
図12は、実施形態2の状態検出装置100の処理ブロック図である。図13は、分類IDのクラスタ分布の説明図である。
【0054】
実施形態1の状態検出装置100では、分類モデルデータベース1hに予め記録された特徴量ベクトルのうち、分類処理1iにより特定された分類対象の特徴量ベクトルと最も距離が近い特徴量ベクトルを探索する。そして、実施形態1の状態検出装置100では、探索された特徴量ベクトルの分類IDを、当該分類対象の特徴量ベクトルの基になった状態情報1fが収集された時刻における機械の状態を示す分類IDとして、当該分類対象の特徴量ベクトルに付与していた。
【0055】
この場合、図13に示すような問題が生じる可能性がある。図13は、特徴量ベクトルのうちの1つの特徴量Aを横軸に記述し、当該特徴量ベクトルのうちの他の1つの特徴量Bを縦軸に記述した2次元の特徴量空間を示している。実際に本発明にて用いられる特徴量ベクトルは非常に大きな次元数を有しているが、説明を簡略化するため次元数を減らして2次元の特徴量空間にて説明する。図13の13a、13b、13c及び13dは、それぞれ、分類モデルデータベース1hに予め記録された分類ID(5)、(6)、(1)及び(3)のそれぞれの特徴量ベクトルの位置座標を示す。図13の13gによって囲まれた13eは、今回新たに検出されたダメージ区間において特定された分類対象の特徴量ベクトル群のそれぞれの位置座標を示す。特徴量ベクトル群の位置座標13gは、分類モデルデータベース1hに予め記録された特徴量ベクトルの位置座標から遠く、どの分類IDのクラスタにも属さないように見える。これは、分類モデルデータベース1hを構築する学習区間には、今回新たに検出されたダメージ区間に類似する機械の状態が含まれていなかったことにより起こっていると考えられる。
【0056】
そこで、実施形態2の状態検出装置100では、図12に示すような処理機能を備える。実施形態2の演算処理装置1bは、分類処理1iにより特定された分類対象の特徴量ベクトルに類似する特徴量ベクトルの分類IDが、分類モデルデータベース1hに記録されているか否かを判定する判定処理12aを実行する機能(判定処理部12a)を備える。すなわち、判定処理部12aは、分類処理1iにより特定された分類対象の特徴量ベクトルと、分類モデルデータベース1hに予め記録された特徴量ベクトルとに基づいて、分類処理1iにより特定された分類対象の特徴量ベクトルに付与するべき分類IDが、分類モデルデータベース1hに記録されているか否かを判定する処理を行う。
【0057】
判定処理12aは、実施形態1で説明したように、分類対象の特徴量ベクトルと分類モデルデータベース1hに記録された特徴量ベクトルとの距離を計算する。そして、判定処理12aは、計算された当該距離が、予め設定された閾値以下である場合、分類対象の特徴量ベクトルに類似する特徴量ベクトルの分類IDが、分類モデルデータベース1hに記録されていると判定する。すなわち、この場合、判定処理12aは、分類対象の特徴量ベクトルに付与するべき分類IDが分類モデルデータベース1hに記録されていると判定する。その後、実施形態1と同様に紐付処理1lが行われる。一方、判定処理12aは、計算された当該距離が、予め設定された閾値より大きい(遠い)場合、分類対象の特徴量ベクトルに類似する特徴量ベクトルの分類IDが、分類モデルデータベース1hに記録されていないと判定する。すなわち、この場合、判定処理12aは、分類対象の特徴量ベクトルに付与するべき分類IDが分類モデルデータベース1hに記録されていないと判定する。その後、実施形態2では、後述する生成処理12b及び登録処理12cが行われる。
【0058】
実施形態2の演算処理装置1bは、分類対象の特徴量ベクトルに類似する特徴量ベクトルの分類IDが分類モデルデータベース1hに記録されていない場合、新たな分類モデルを生成する生成処理12bを実行する機能(生成処理部12b)を備える。すなわち、生成処理部12bは、分類対象の特徴量ベクトルに付与するべき分類IDが分類モデルデータベース1hに記録されていない場合、新たな分類IDを生成する処理を行う。
【0059】
更に、実施形態2の演算処理装置1bは、生成処理12bにより生成された新たな分類モデルを分類モデルデータベース1hに登録する登録処理12cを実行する機能(登録処理部12c)を備える。すなわち、登録処理部12cは、生成処理部12bにより生成された新たな分類IDと、当該分類IDを付与するべき特徴量ベクトルとを対応付けて分類モデルデータベース1hに登録する処理を行う。
【0060】
生成処理12b及び登録処理12cは、次の2つの手法の何れか(手法1又は手法2)によって行われてもよい。手法1では、生成処理12bは、今回新たに検出されたダメージ区間において特定された分類対象の特徴量ベクトル群を、分類モデルデータベース1hを構築する学習区間に追加し、クラスタリング等の分類手法を用いて、分類モデルデータベース1hを再構築する処理を行う。これにより、生成処理12bは、図13の13fに示すように、今回新たに検出されたダメージ区間において特定された分類対象の特徴量ベクトル群を代表する代表特徴量ベクトルの代表座標値(代表特徴量ベクトルの各特徴量の値)を生成する。そして、生成処理12bは、この生成された代表座標値を有する代表特徴量ベクトルに付与するべき新たな分類IDを生成する。登録処理12cは、生成された代表座標値を有する代表特徴量ベクトルと、生成された新たな分類IDとを対応付けて分類モデルデータベース1hに登録する。登録処理12cは、生成された新たな分類IDを、ダメージ状態を特定する分類IDとして分類IDデータベース1oに登録する。
【0061】
手法2では、生成処理12bは、今回新たに検出されたダメージ区間において特定された分類対象の特徴量ベクトル群から、当該特徴量ベクトル群の代表座標値を計算する。当該特徴量ベクトル群の代表座標値は、例えば、当該特徴量ベクトル群の重心座標値や平均座標値を算出することよって計算されてもよい。生成処理12bは、計算された代表座標値を有する代表特徴量ベクトルに付与するべき新たな分類IDを生成する。登録処理12cは、計算された代表座標値を有する代表特徴量ベクトルと、生成された新たな分類IDとを対応付けて分類モデルデータベース1hに登録する。登録処理12cは、生成された新たな分類IDを、ダメージ状態を特定する分類IDとして分類IDデータベース1oに登録する。
【0062】
上記のような手法1又は手法2により、実施形態2の状態検出装置100は、図13を用いて説明したような上記の課題を解決することができる。通常、手法1のように分類モデルデータベース1hを再学習することは演算処理装置1bの処理負荷が大きく処理時間が掛かるので、手法2の方が有効である。生成処理12bは、分類IDを新たに生成する必要がある場合、初めの数回(予め設定された閾値以下の回数)は手法2を実施し、新たに生成された分類IDが蓄積してきたら手法1を用いて分類モデルデータベース1hの再学習を行うといった、手法1と手法2のハイブリット処理を行ってもよい。
【0063】
このように、実施形態2の状態検出装置100は、分類処理1iにより特定された特徴量ベクトルに付与するべき分類IDが記録されていない場合、新たな分類IDを生成し、当該特徴量ベクトルと対応付けて分類モデルデータベース1hに登録する。
【0064】
これにより、実施形態2の状態検出装置100は、機械の状態を特定する特徴量ベクトルが記録された分類モデルデータベース1hを容易に拡充することができ、機械の状態を更に確実且つ容易に分類することができる。そして、状態検出装置100は、分類処理1iにより特定された特徴量ベクトルに付与するべき分類IDが記録されてことが発生する頻度を低減することができるので、機械の現在の状態を正確に検出し易くなる。よって、実施形態2の状態検出装置100は、ダメージを与えると想定していない未知の動作が行われたか否かに関わらず、機械の状態を容易に検出することができると共に、機械のメンテナンスを適時に実行し易くする等、機械の健全性を持続させ易くすることができる。
【0065】
なお、演算処理装置1bに備えられた判定処理12aを実行する機能は、請求の範囲に記載された「第2判定処理部」の一例に相当する。演算処理装置1bに備えられた生成処理12bを実行する機能は、請求の範囲に記載された「生成処理部」の一例に相当する。演算処理装置1bに備えられた登録処理12cを実行する機能は、請求の範囲に記載された「第2登録処理部」の一例に相当する。
【0066】
[実施形態3]
図14図17を用いて、実施形態3の状態検出装置100について説明する。実施形態3の状態検出装置100において、従前の実施形態と同様の構成及び動作については、説明を省略する。
図14は、実施形態3の状態検出装置100の処理ブロック図である。図15は、ダメージ状態の分類IDデータベース1oに記録された情報の例(その4)を示す図である。図16は、キーフレームアニメーションの説明図である。図17は、ダメージ状態の分類IDデータベース1oに記録された情報の例(その5)を示す図である。
【0067】
実施形態3では、機械の状態を可視化する手法について説明する。実施形態3の演算処理装置1bは、紐付処理1lにより分類IDに紐付けられた区間を含む所定区間において分類処理1iにより付与された分類IDを切り出す切出処理14aを実行する機能(切出処理部14a)を備える。すなわち、切出処理部14aは、当該所定区間において分類処理1iにより付与された分類IDを切り出す処理を行う。切出処理14aにより切り出された分類IDは、後述する再現処理14bにおいて、アニメーションを生成する際に使用される。切出処理14aにより切り出される所定区間は、紐付処理1lにより分類IDに紐付けられた区間であるダメージ区間そのものであってもよいし、ダメージ区間の前後の時間を含む区間であってもよい。
【0068】
例えば、図7の7bのように、分類処理1iの処理結果として得られる上記の分類IDの列が同じ分類IDによって構成されるタイプである場合、切出処理14aにより切り出される所定区間は、ダメージ区間の前後の時間を含む区間であるとよい(図7の7bの場合は、ダメージ区間の前後の分類ID(3)及び(2)を含む区間)。なお、このタイプの場合でも、ダメージ区間そのものでの機械の状態を再現するだけで十分なのであれば、切出処理14aにより切り出される所定区間は、ダメージ区間そのものであってもよい。この場合、ユーザの操作により入力可能な入力装置を設けて、切出処理14aにより切り出される所定区間を選択させてもよい。
【0069】
一方、例えば、図7の7cのように、分類処理1iの処理結果として得られる上記の分類IDの列がパターンを有して構成されるタイプである場合、切出処理14aにより切り出される所定区間は、ダメージ区間そのものであってもよい。切出処理14aは、所定区間における分類IDを切り出した後、複数回連続して出現している分類IDを統合してもよいし、複数回連続して出現している分類IDを統合せずに切り出したままの状態としてもよい。但し、再現処理14bにおいてアニメーションを生成する際には、アニメーションの再生速度が必要になる。分類IDを統合した場合、統合の開始時刻などの時刻情報を分類IDに付随させた方がよい。図15に、分類IDデータベース1oに、アニメーション表示用分類IDの情報に関する項目を追加した例を示す。図15の15aが、アニメーション表示用分類IDの情報に関する項目を示す。図15では、複数回連続して出現している分類IDを統合した例を示している。
【0070】
実施形態3の演算処理装置1bは、切出処理14aにより分類IDを切り出した所定区間における機械の状態を再現するアニメーション(動画)を生成する再現処理14bを実行する機能(再現処理部14b)。再現処理部14bは、切出処理14aにより切り出された分類IDに対応する特徴量ベクトルに基づいて、所定区間における機械の状態を再現するアニメーション(動画)を生成する処理を行う。
【0071】
再現処理14bは、コンピュータグラフィックスで用いられているキーフレームアニメーションを利用して、所定区間における機械の状態を再現するアニメーションを生成する。図16は、機械の1つである油圧ショベルの状態を再現するアニメーションが生成された例を示している。切出処理14aにより切り出された分類IDに対応する特徴量ベクトルには、機械(ショベル)の状態として、フロント作業機の各関節の曲げ角度の情報が含まれている。例えば、ブーム、アーム、バケットの関節の曲げ角度の情報である。キーフレームアニメーションは、分類ID間のこの曲げ角度を、補間法を利用して生成する方法である。例えば、アニメーション表示用の分類IDが、図16の16fに示す分類ID(11)、16gに示す分類ID(12)、16hに示す分類ID(13)であるとする。キーフレームアニメーションを利用しないアニメーションでは、分類ID(11)、(12)及び(13)に対応するショベルの状態をそれぞれ再現するフレーム16a、16b及び16cを生成し、これらを時間軸上で切り替えて表示する。このため、キーフレームアニメーションを利用しないアニメーションでは、ショベルの動きを円滑に再現できないギクシャクしたアニメーションとなる。なお、ここで述べたフレームとは、セルアニメーションで用いる静止画ではなく、3次元コンピュータグラフィックスを用いて生成された3次元形状モデルから2次元投影画面に投影して生成された静止画である。
【0072】
そこで、再現処理14bは、キーフレームアニメーションを利用して、ショベルの動きを円滑に再現できるよう、フレーム16a、16b及び16cのそれぞれの間におけるショベルの状態を再現するフレームを生成することによって、キーフレーム補間を行う。図16の例では、再現処理14bは、ショベルの各関節の曲げ角度毎に、キーフレーム補間を行う。図16の16iはブームの曲げ角度、16jはアームの曲げ角度、16kはバケットの曲げの角度を示している。図16の16i、16j及び16kに示す各曲線は、図16の16f、16g及び16hの3点を補間関数の制御点として、当該3点の間における各関節の曲げ角度を補間した結果を示している。補間関数は、様々な関数を用いることができる。例えばスプライン関数等である。これらの補間関数を用いることにより、再現処理14bは、補間関数の制御点の間の時刻における各関節の曲げ角度を滑らかに補間し、ショベルの動きを円滑に再現できるアニメーションを生成することができる。図16の16d及び16eは、補間されたフレームを示し、フレーム16aと16bとの間、及び、フレーム16bと16cとの間を補間している。勿論、フレーム16aとフレーム16dとの間を補間するフレームを生成することも可能である。なお、実際の機械の動作速度を再現するためには、キーフレームとして使用した分類IDの発生時刻が必要になる。再現処理14bは、キーフレームの時刻情報を基に、補間されたフレームの時刻情報についても補間する。これにより、再現処理14bは、機械の動作速度を再現することができる。また、再現処理14bは、アニメーション以外の動画を生成してもよい。
【0073】
実施形態3の演算処理装置1bは、再現処理14bにより生成されたアニメーション(動画)を表示装置に表示させる表示処理を実行する機能(表示処理部)を備える。この表示処理を実行する機能は、図14には図示していないが、例えば、表示処理1nを実行する機能に含まれていてもよいし、再現処理14bを実行する機能に含まれていてもよい。
【0074】
このように、実施形態3の状態検出装置100は、紐付処理1lにより分類IDに紐付けられた区間を含む所定区間において分類処理1iにより付与された分類IDを切り出す。そして、状態検出装置100は、切り出された分類IDに対応する特徴量ベクトルに基づいて、機械の状態を円滑に再現するアニメーションを生成し、表示装置に表示させる。
【0075】
これにより、実施形態3の状態検出装置100は、ダメージ区間において機械がどのような状態であったかを、視覚的に分かりやすく表現することができるので、ユーザにダメージ状態を直感的に把握させることができる。また、実施形態3の状態検出装置100では、分類IDに対応する特徴量ベクトルを用いてアニメーションを生成するので、実際に収集された状態情報1fよりも少ない情報によってアニメーションを生成することができる。
【0076】
なお、実施形態3の状態検出装置100は、切り出された分類IDに対応する特徴量ベクトル、すなわち、特徴量ベクトルを構成する状態情報1fに基づいて、アニメーションを生成するのではなく、状態情報1gに基づいてアニメーションを生成してもよい。また、実施形態3の状態検出装置100は、生成されたアニメーションの内容をテキスト化して、図17の17aに示すようにテキスト表示用文字列として、分類IDデータベース1oに登録してもよい。この際、テキスト表示用文字列17aは、アニメーション表示用分類IDの情報15aに対応付けて、分類IDデータベース1oに記録される。
【0077】
また、演算処理装置1bに備えられた切出処理14aを実行する機能は、請求の範囲に記載された「切出処理部」の一例に相当する。演算処理装置1bに備えられた再現処理14bを実行する機能は、請求の範囲に記載された「再現処理部」の一例に相当する。演算処理装置1bに備えられた再現処理14b又は表示処理1nを実行する機能に含まれるアニメーションの表示処理を実行する機能は、請求の範囲に記載された「表示処理部」の一例に相当する。
【0078】
[実施形態4]
図18を用いて、実施形態4の状態検出装置100について説明する。実施形態4の状態検出装置100において、従前の実施形態と同様の構成及び動作については、説明を省略する。
図18は、実施形態4の状態検出装置100の処理ブロック図である。
【0079】
実施形態4では、ダメージ状態の分類IDデータベース1oを利用してダメージ状態を認識する手法について説明する。実施形態4の状態検出装置100は、状態情報1gを用いずにダメージ状態を認識する。状態情報1gを取得するためには、機械に後付けされるセンサや、制御情報を取得するための装置が必要であったが、これらの情報を用いなくても、ダメージ区間の認識及びダメージ状態の認識が可能である。
【0080】
実施形態4の演算処理装置1bは、分類処理1iにより付与された分類IDによって特定されるダメージ状態を認識する認識処理18aを実行する機能(認識処理部18a)を備える。認識処理部18aは、分類処理1iにより付与された分類IDと、分類IDデータベース1oに記録された分類IDとに基づいて、分類処理1iにより付与された分類IDによって特定されるダメージ状態を認識する処理を行う。
【0081】
認識処理18aは、分類処理1iの処理結果として得られる上記の分類IDの列が、例えば図17の8aに示すような分類IDのパターンとして分類IDデータベース1oに記録されているか否かを探索する処理を行う。当該分類IDの列が同じ分類IDによって構成されるタイプの場合(図17の#3)、認識処理18aは、当該分類IDが分類IDデータベース1oに記録されているか否かを判定して探索すればよい。当該分類IDの列がパターンを有して構成されるタイプの場合(図17の#1や#2)、認識処理18aは、上記のDPマッチング等のようなパターンマッチングの手法を用いて探索すればよい。これにより、認識処理18aは、状態情報1gを用いずにダメージ状態を検出することができる。認識処理18aは、分類処理1iの処理結果として得られる上記の分類IDの列のうちの最初の分類IDが付与された時刻がダメージ状態の開始時刻であり、最後の分類IDが付与された時刻がダメージ状態の終了時刻であるとして、ダメージ区間を認識することができる。
【0082】
更に、実施形態4の演算処理装置1bは、認識処理18aによるダメージ状態の認識結果を表示装置に表示させる表示処理18bを実行する機能(表示処理部18b)を備える。認識処理18aにより、分類処理1iの処理結果として得られる上記の分類IDの列が分類IDデータベース1oに記録されていることが探索できれば、表示処理部18bは、例えば、図17のアニメーション表示用分類ID15aや、テキスト表示用文字列17aを取得することができる。表示処理部18bは、取得されたアニメーション表示用分類ID15aやテキスト表示用文字列17aを用いて、ダメージ状態を再現するアニメーションを表示装置に表示させる処理を行う。
【0083】
このように、実施形態4の状態検出装置100は、状態情報1gを用いなくてもダメージ状態を認識することができる。これにより、実施形態4の状態検出装置100は、状態情報1gを取得するセンサ等が故障したりしても、分類処理部1iにより付与された分類IDによってダメージ状態を容易に検出することができる。実施形態4の状態検出装置100は、分類IDデータベース1oに記録された分類IDに基づいて、検出されたダメージ状態が、ダメージを与えると想定していない未知の状態であるか否かを容易に判定することができる。よって、実施形態4の状態検出装置100は、ダメージを与えると想定していない未知の動作が行われたか否かに関わらず、機械の状態を容易に検出することができる。
【0084】
なお、演算処理装置1bに備えられた認識処理18aを実行する機能は、請求の範囲に記載された「認識処理部」の一例に相当する。演算処理装置1bに備えられた表示処理18bを実行する機能は、請求の範囲に記載された「表示処理部」の一例に相当する。
【0085】
[実施形態5]
図19図21を用いて、実施形態5の状態検出装置100について説明する。実施形態5の状態検出装置100において、従前の実施形態と同様の構成及び動作については、説明を省略する。
図19は、実施形態5の状態検出装置100の処理ブロック図である。図20は、累積損傷度の例を示す図である。図21は、累積損傷度の時系列的な変化の例を示す図である。
【0086】
実施形態5の状態検出装置100は、演算処理装置1bが、実施形態4の認識処理18aの処理結果に基づいてダメージ量の推定処理19aを行う機能(推定処理部19a)を備える。分類IDデータベース1oには、図10及び図11に示すように、ダメージ区間において機械の各部位が受ける個別ダメージ量が、分類ID(又は分類IDのパターン)に予め紐付けられて記録されていてもよい。推定処理部19aは、認識処理18aの認識結果によりダメージ状態を認識すると、そのダメージ状態を特定する分類ID(例えば図10の#1の分類ID(1)等)から個別ダメージ量を特定する処理を行う。すなわち、推定処理部19aは、認識処理18aにより認識されたダメージ状態を特定する分類IDと、分類IDデータベース1oに記録された分類IDとに基づいて、認識処理18aにより認識されたダメージ状態に対応する個別ダメージ量を特定する処理を行う。なお、図10及び図11に示す個別ダメージ量は、1つの事象によって機械が受けるダメージ量である。
【0087】
ダメージ量が応力の計測値や応力を推定できる値である場合、推定処理19aは、S-N線図を用いて、個別ダメージ量を損傷度に変換することができる。S-N線図は、繰り返し応力と、材料が破断するまでの応力の繰り返し回数との関係を示す。損傷度は、1回の繰り返し応力(応力振幅)からS-N線図を用いて算出される。損傷度の累積値である累積損傷度は、1になると材料が破断に至ることを示している。つまり、損傷度は、機械の寿命の消費量ともいえる。したがって、推定処理19aは、S-N線図を用いて、図10及び図11に示した個別ダメージ量を損傷度に変換することができる。推定処理19aは、S-N線図を、国際溶接学会(IIW)のFATクラスを用いたり、実際に機械の寿命試験を行ったりすることによって、予め取得することができる。なお、S-N線図の取得が困難な場合、推定処理19aは、一般的なS-N線図の傾きから損傷度の傾向を取得する。この場合、推定処理19aは、損傷度の絶対値については分からないが、損傷度の傾向(大きいか小さいか)については判断することができる。推定処理19aは、損傷度を算出することによって、1回のダメージ状態が機械の寿命に与える影響を推定したり、機械の部位毎に累積損傷度を算出して寿命消費量又は寿命残存量を推定したり、累積損傷度の時系列的な変化から機械の部位毎の寿命を予測したりすることができる。
【0088】
更に、実施形態5の演算処理装置1bは、推定処理19aの推定結果を表示装置に表示させる表示処理19bを実行する機能(表示処理部19b)を備える。表示処理部18bは、推定処理19aにより推定された、1回のダメージ状態が機械の寿命に与える影響を可視化したり、機械の各部位の寿命消費量又は寿命残存量を可視化したり、機械の部位毎の寿命の予測結果を可視化したりする処理を行う。
【0089】
図20及び図21は、可視化の一例である。図20は、機械の各部位の累積損傷度を示している。図20の20fは、累積損傷度が1.0のラインを示している。累積損傷度が1.0に到達すると、機械の各部位は寿命に到達する。図20の20a~20eは、機械の各部位の累積損傷度を示している。図20の部位Aの累積損傷度20aは、20fのラインに最も近く、寿命残存量が最も少ないことが分かる。表示処理19bは、図20に示す累積損傷度のグラフの表示態様を寿命残存量に応じて変化させてもよい。例えば、表示処理19bは、寿命残存量が少なくなるに従って、図20に示すグラフの色を緑→黄色→赤等のように変化させて表示させてもよい。
【0090】
図21は、累積損傷度の時系列的な変化を示している。図21の21eは、累積損傷度が1.0のラインを示している。図21の21a~21cは、機械の各部位の累積損傷度の時系列的な変化を示している。図21の21dは、現時点を示すラインである。図21の21f~21hは、累積損傷度の時系列的な変化21a~21cの予測結果を示す直線である。この予測結果を示す直線21f~21hと累積損傷度が1.0のライン21eとの交点が示す時刻は、寿命に到達する時刻を示している。例えば、図21の21aの部位では、予測結果を示す直線21fとライン21eとの交点21kが示す時刻21iにおいて寿命に到達すると予測される。表示処理19bは、寿命に到達する時刻までの時間である寿命残存時間(時刻21dから時刻21iまでの時間)を表示したり、修繕するための部品の発注等を促す情報を表示したり、図21に示すグラフの色を、図20と同様に変化させて表示したりすることができる。また、表示処理19bは、図20図21に示すグラフがユーザによって操作(例えばマウス等でクリック)されると、その部位の図面等を表示させてもよい。
【0091】
このように、実施形態5の状態検出装置100は、認識処理18aの処理結果から個別ダメージ量を推定することができる。これにより、実施形態5の状態検出装置100は、推定された個別ダメージ量から損傷度及び累積損傷度を算出することができる。実施形態5の状態検出装置100は、1回のダメージ状態が機械の寿命に与える影響を推定したり、機械の部位毎に寿命消費量又は寿命残存量を推定したり、累積損傷度の時系列的な変化から機械の寿命を予測したりすることができる。よって、実施形態5の状態検出装置100は、ダメージ区間において機械がどのような状態であったかだけでなく、将来的に機械の状態がどのように変化するのかを、様々な観点から検出することができる。
【0092】
なお、実施形態5の演算処理装置1bが備える推定処理19aを実行する機能は、実施形態1~3の演算処理装置1bが備えることもできる。例えば、実施形態1~3の演算処理装置1bは、個別ダメージ量から損傷度及び累積損傷度を算出して、機械の部位毎に寿命消費量又は寿命残存量を推定したり、累積損傷度の時系列的な変化から機械の部位毎の寿命を予測したりする推定処理19aの実行機能を備えてもよい。上記の特許文献3では、予め決められたダメージ状態に関してのみ損傷度を算出することが可能であったので、想定外のダメージ状態の損傷度を推定することはできなかった。しかしながら、実施形態1~3の演算処理装置1bが推定処理19aの実行機能を備えることによって、想定外のダメージ状態における損傷度を推定することが可能となる。
【0093】
なお、演算処理装置1bに備えられた推定処理19aを実行する機能は、請求の範囲に記載された「推定処理部」の一例に相当する。演算処理装置1bに備えられた表示処理19bを実行する機能は、請求の範囲に記載された「表示処理部」の一例に相当する。
【0094】
[実施形態6]
図22図23を用いて、実施形態6の状態検出装置100について説明する。実施形態6の状態検出装置100において、従前の実施形態と同様の構成及び動作については、説明を省略する。
図22は、実施形態6の状態検出装置100において行われる個別ダメージ量の積算値の可視化の例を示す図である。図23は、ダメージ状態の発生回数の可視化の例を示す図である。
【0095】
実施形態6では、機械の各部位が受けたダメージ量の主な原因となった機械の状態を特定し、可視化する手法について説明する。実施形態5の演算処理装置1bは、推定処理19a及び表示処理19bの実行機能を備え、図10及び図11に示すような分類IDデータベース1oに記録された個別ダメージ量から、機械の部位毎に損傷度及び累積損傷度を算出し、可視化することができる。実施形態6の演算処理装置1bについても、推定処理19a及び表示処理19bの実行機能を備える。但し、実施形態6の演算処理装置1bは、分類IDデータベース1oに記録された或る部位の個別ダメージ量を分類ID毎に積算して積算値を算出し、可視化することができる。そして、実施形態6の演算処理装置1bは、算出された分類ID毎の複数の積算値を累積して累積ダメージ量を推定することができる。
【0096】
すなわち、実施形態6の推定処理19aは、認識処理18aにより認識されたダメージ状態を特定する分類IDと、分類IDデータベース1oに記録された分類IDとに基づいて、認識処理18aにより認識されたダメージ状態に対応する個別ダメージ量を特定する。そして、実施形態6の推定処理19aは、特定された個別ダメージ量と、当該個別ダメージ量に対応するダメージ状態の発生回数(すなわち当該個別ダメージ量を受けた回数)とに基づいて、当該個別ダメージ量の積算値を分類ID毎に算出する。そして、実施形態6の推定処理19aは、分類ID毎に算出された複数の積算値を累積して、機械が受けた累積ダメージ量を推定する。そして、実施形態6の表示処理19bは、推定処理19aの処理結果を表示装置に表示させる。
【0097】
具体的には、実施形態6の推定処理19aは、ある分類IDに紐付けられた個別ダメージ量と、当該個別ダメージ量に対応するダメージ状態の発生回数とを乗算することによって、個別ダメージ量の積算値を分類ID毎に算出する。推定処理19aは、分類ID毎に算出された複数の積算値のそれぞれの総和を算出することによって、累積ダメージ量を推定する。そして、実施形態6の推定処理19aは、分類ID毎に推定された複数の積算値のそれぞれが累積ダメージ量に占める割合に基づいて、機械が累積ダメージ量を受けた主な原因となったダメージ状態を特定する。
【0098】
例えば、図10において、分類ID(1)のダメージ状態が1回発生し、分類ID(3)のダメージ状態が1000回発生したとする。この場合、部位Aの分類ID(1)における個別ダメージ量の積算値は、1050×1=1050と算出される。部位Aの分類ID(3)における個別ダメージ量の積算値は、5×1000=5000と算出される。そして、部位Aが受けた累積ダメージ量は、1050+5000=6050と推定される。部位Aが受けた累積ダメージ量6050のうち、分類ID(3)における個別ダメージ量の積算値5000が占める割合は、分類ID(1)における個別ダメージ量の積算値1050が占める割合よりも大きい。よって、部位Aが累積ダメージ量6050を受けた主な原因となったダメージ状態は、分類ID(3)のダメージ状態であることが特定される。この状況を可視化したのが、図22及び図23である。
【0099】
図22は、部位Aが受けた個別ダメージ量の積算値を、分類ID毎に示している。図23は、部位Aが受けた個別ダメージ量に対応するダメージ状態の発生回数を、分類ID毎に示している。図22により、部位Aが累積ダメージ量を受けた主な原因となったダメージ状態は、分類ID(3)のダメージ状態であることがわかる。図23により、分類ID(3)のダメージ状態は、発生回数が多いダメージ状態であることが分かり、分類ID(3)のダメージ状態の発生回数を低減することによって、部位Aが受ける累積ダメージ量を低減可能であることが分かる。
【0100】
なお、実施形態6の推定処理19aは、実施形態5と同様に、累積ダメージ量を累積損傷度に変換することができる。そして、実施形態6の推定処理19aは、実施形態5と同様に、機械の部位毎に寿命消費量又は寿命残存量を推定したり、累積損傷度の時系列的な変化から機械の部位毎の寿命を予測したりすることができる。また、図22及び図23の例において、部位Aの寿命が次回のメンテナンス時期よりも前に到来する場合、分類ID(3)のダメージ状態を余り発生させないことが好ましい。この場合、実施形態6の演算処理装置1bは、図21に示すような累積損傷度の時系列的な変化21a~21cの予測結果を示す直線21f~21hと、本実施形態の手法とを組み合わせて、分類ID(3)のダメージ状態を余り発生させないような制御指令を生成し、機械の動作を制御する制御装置に送信してもよい。また、図22及び図23の例において、分類ID(3)はクラスタリング手法により分類されたダメージ状態であり、どのような状態であるかがユーザにとって分かりにくい場合がある。この場合、実施形態6の演算処理装置1bは、実施形態3の切出処理14a及び再現処理14bを実行する機能を備え、分類ID(3)のダメージ状態を再現するアニメーションを生成し、表示装置に表示させることができる。
【0101】
なお、上記の説明では、推定処理19aは、個別ダメージ量の積算値を、分類ID毎に算出するとして説明したが、図11に示すように、個別ダメージ量が分類IDのパターンを識別するIDに紐付けられている場合には、分類IDのパターンを識別するID毎に算出する。また、図20図22及び図23では、演算処理装置1bは、棒グラフを用いて可視化していたが、円グラフ等の他の形式を用いた可視化してもよい。
【0102】
このように、実施形態6の状態検出装置100では、個別ダメージ量の積算値を分類ID毎に算出し、分類ID毎に算出された複数の積算値を累積して、機械が受けた累積ダメージ量を推定する。これにより、実施形態6の状態検出装置100では、分類ID毎に推定された複数の積算値のそれぞれが累積ダメージ量に占める割合から、機械が累積ダメージ量を受けた主な原因となったダメージ状態を特定することができる。したがって、実施形態6の状態検出装置100は、主原因となったダメージ状態を発生させないよう機械を制御する等の対策を適切に講じることができるので、機械の健全性を更に持続させることができる。
【0103】
なお、実施形態6の演算処理装置1bが備える推定処理19a及び表示処理19bを実行する機能は、実施形態1~3の演算処理装置1bが備えることもできる。例えば、実施形態1~3の演算処理装置1bは、検出処理1jにより検出された個別ダメージ量と、当該個別ダメージ量の検出回数(すなわちダメージ状態の発生回数)とに基づいて、当該個別ダメージ量の積算値を分類ID毎に算出し、分類ID毎に算出された複数の積算値を累積して、機械が受けた累積ダメージ量を推定する推定処理19aの実行機能を備えてもよい。これにより、実施形態1~3の演算処理装置1bは、想定外のダメージ状態が累積ダメージ量の主原因であっても、これを適切に推定することができる。
【0104】
[実施形態7]
図24図26を用いて、実施形態7の状態検出装置100について説明する。実施形態7の状態検出装置100において、従前の実施形態と同様の構成及び動作については、説明を省略する。
図24は、実施形態7の状態検出装置100における表示画面の例(その1)を示す図である。図25は、表示画面の例(その2)を示す図である。図26は、表示画面の例(その3)を示す図である。
【0105】
実施形態7では、実施形態1~6において説明してきた各種処理結果の可視化について説明する。実施形態7の演算処理装置1bは、切出処理14a及び再現処理14bを実行する機能を備えると共に、再現処理14bにより生成されたアニメーション(動画)を表示装置に表示させる表示処理を実行する機能を備える。実施形態7の表示処理は、切出処理14aにより分類IDが切り出された所定区間において収集された状態情報1fの時系列的な変化、所定区間における個別ダメージ量の時系列的な変化、累積ダメージ量、累積ダメージ量の時系列的な変化、及び、機械の寿命の予測結果の少なくとも1つを、再現処理14bにより生成されたアニメーションに併せて表示装置に表示させる。
【0106】
図24は、機械が寿命に影響を及ぼすダメージを受けた際の表示画面の例を示している。図24の24aは、表示画面の全体を示す。図24の24bは、ダメージを受けたバケットシリンダの圧力波形、すなわち、状態情報1fの時系列的な変化を示す。図24の24iは、バケットシリンダの圧力波形24bに基づいて検出された個別ダメージ量の波形、すなわち、個別ダメージ量の時系列的な変化を示す。図24の24fは、所定区間においてダメージ状態にある機械が行っていた動作(以下「ダメージ動作」とも称する)を再現するアニメーションを示す。
【0107】
表示画面24aを表示する表示装置は、機械が油圧ショベル等の建設機械である場合、建設機械の運転席に設置された表示装置であってもよいし、機械の監視ルームに設置された表示装置であってもよい。後述する表示画面25a,26aについても、同様の表示装置に表示される。実施形態7の表示処理は、機械がダメージを受けると、表示画面24aを直ちにリアルタイムで表示させてもよいし、機械の作業終了後等の所定タイミングで表示させてもよい。或いは、実施形態7の表示処理は、ユーザが表示ボタン等を操作したことを契機として、表示画面24aを表示させてもよい。表示画面25a,26aについても、同様にリアルタイムや所定タイミング等で表示される。
【0108】
実施形態7の表示処理は、機械がダメージを受けると、表示画面24aを表示装置に表示させることができる。この際、実施形態7の表示処理は、図24bの24c及び24eに示すように、「ダメージ状態が発生しました」等のダメージ状態が発生したことを示す情報、及び、機械がダメージを受けた時刻の情報を表示させて、ユーザに報知することができる。実施形態7の表示処理は、図24の24dに示すようにダメージを受けた機械の部位をテキストで表示させたり、図24の24hに示すようにダメージを受けた機械の部位の色又は形状を変更する強調表示をアニメーション24fに重畳して表示させたりすることができる。
【0109】
この際、強調表示は、ダメージの累積損傷度に応じて異なっていてもよい。例えば、ダメージを受けた機械の部位の累積損傷度が高い場合は「赤」とし、「赤」ほど累積損傷度が高くはないが要注意である場合は「黄」とし、何れにも該当しない場合は「青」とする表示であってもよい。もちろん、表示される色は、赤、黄、青の3種類に限られるものではなく、これらの3種類の色は一例に過ぎない。
【0110】
また、実施形態7の表示処理は、ダメージを受けた機械の部位の強調表示に限られるものではなく、機械全体を表示するアニメーション24fを、機械の主要な部位(機械がショベルであれば、ブーム、アーム、バケット又は走行体等)ごとに色で区分けして表示させてもよい。これにより、実施形態7の表示処理は、強調表示された部位以外の部位に関しても、どの部位の累積損傷度が高く、どの部位は要注意であるか等、機械全体の累積損傷度を、ダメージを受ける度にユーザに容易に把握させることができる。
【0111】
実施形態7の表示処理は、図24の24b及び24iに示すように、状態情報1fの時系列的な変化、及び、個別ダメージ量の時系列的な変化を表示させて、機械がどのようなダメージをどれだけ受けたのかをユーザに報知することができる。
【0112】
図25は、機械の或る部位の寿命残存量が低下した際の表示画面の例を示している。図25の25aは、表示画面の全体を示す。図25の25bは、機械の各部位の累積損傷度、すなわち、機械の各部位が受けた累積ダメージ量を示す。図25の25fは、図24の24fと同様のアニメーションを示す。
【0113】
実施形態7の表示処理は、機械の或る部位の寿命残存量が低下すると、表示画面25aを表示装置に表示させることができる。この際、実施形態7の表示処理は、図25の25d及び25eに示すように、累積損傷度が増加し、寿命残存量が低下したこと示す情報をテキストで表示させたり、図25の25bに示すように、棒グラフ等によって図示させたりすることができる。また、実施形態7の表示処理は、寿命残存量が低下した部位の強調表示をアニメーション25fに重畳して表示させることができる。ダメージ状態には、分類IDが紐付けられているが、図17の17aに示すようなテキスト表示用文字列が対応付けられていない場合がある。この場合であっても、実施形態7の表示処理は、寿命残存量が低下したダメージ状態をアニメーション25fとして再現するので、機械がどのような状態であったかをユーザに分かりやすく報知することができる。
【0114】
図26は、機械の寿命の予測結果を表示する表示画面の例を示している。図26の26aは、表示画面の全体を示す。図26の26bは、機械の或る部位における累積損傷度の時系列的な変化、及び、その寿命の予測結果を示す。すなわち、図26の26bは、機械の或る部位における累積ダメージ量の時系列的な変化、及び、その寿命の予測結果を示す。図26の26fは、図25の25fと同様のアニメーションを示す。
【0115】
実施形態7の表示処理は、機械の或る部位の寿命残存量が低下すると、その寿命を予測し、表示画面26aを表示装置に表示させることができる。この際、実施形態7の表示処理は、図26の26c及び26dに示すように、累積損傷度が増加したこと示す情報、及び、寿命残存時間を示す情報をテキストで表示させて、ユーザに報知することができる。また、実施形態7の表示処理は、図26の26eに示すように、ユーザが取るべき行動をテキストで表示させて、ユーザに報知することができる。ユーザが取るべき行動が代理店に連絡することである場合、「代理店に連絡要」の表示26eをユーザがタップ(又はポインタで指定してクリック)することにより、電話番号等の代理店の連絡先を表示させたり、簡易的な対策の手順を表示させたりしてもよい。
【0116】
図24図26は、何れも表示画面の一例であり、ユーザに報知するためのテキスト表示の有無は任意に設定可能である。例えば、実施形態7の表示処理は、まず、アニメーション24f~26fだけを表示させてもよい。そして、アニメーション24f~26fに重畳された強調表示をユーザがタップ等することにより、更に詳細な情報を表示させるようにしてもよい。これにより、実施形態7の表示処理では、アニメーション24f~26fの表示領域が広く確保されて、機械全体のどの部位がダメージを受けたか(累積損傷度が高いか)をユーザに正確に把握させることができると共に、ユーザが必要と考える情報だけを報知することができる。
【0117】
このように、実施形態7の状態検出装置100は、ダメージ区間を含む所定区間において収集されたセンサ・制御情報1fの時系列的な変化、個別ダメージ量の時系列的な変化、累積ダメージ量、累積ダメージ量の時系列的な変化、及び、機械の寿命の予測結果の少なくとも1つを、ダメージ状態を再現するアニメーションに併せて表示させる。これにより、実施形態7の状態検出装置100は、ダメージ状態を可視化することができると共に、将来的な機械の状態の変化を様々な観点から可視化することができ、ユーザに直感的に把握させることができる。
【0118】
[その他]
なお、本発明は上記の実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記の実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、或る実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、或る実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
【0119】
また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路にて設計する等によりハードウェアによって実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアによって実現してもよい。各機能を実現するプログラム、テープ、ファイル等の情報は、メモリや、ハードディスク、SSD(solid state drive)等の記録装置、又は、ICカード、SDカード、DVD等の記録媒体に置くことができる。
【0120】
また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
【符号の説明】
【0121】
1a…収集装置、1b…演算処理装置、1i…分類処理(分類処理部)、1j…検出処理(検出処理部)、1l…紐付処理(紐付処理部)、1m…判定処理(第1判定処理部)、1n、18b、19b…表示処理(表示処理部)、1p…登録処理(第1登録処理部)、1o…分類IDデータベース(第1記録部)、1h…分類モデルデータベース(第2記録部)、12a…判定処理(第2判定処理部)、12b…生成処理(生成処理部)、12c…登録処理(第2登録処理部)、14a…切出処理(切出処理部)、14b…再現処理(再現処理部)、18a…認識処理(認識処理部)、19a…推定処理(推定処理部)、100…状態検出装置。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23
図24
図25
図26