(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-11-22
(45)【発行日】2024-12-02
(54)【発明の名称】セルロース繊維と無機粒子の複合繊維の調製方法
(51)【国際特許分類】
D06M 11/44 20060101AFI20241125BHJP
D21H 17/70 20060101ALI20241125BHJP
【FI】
D06M11/44
D21H17/70
(21)【出願番号】P 2020063751
(22)【出願日】2020-03-31
【審査請求日】2023-02-24
【前置審査】
(73)【特許権者】
【識別番号】000183484
【氏名又は名称】日本製紙株式会社
(74)【代理人】
【識別番号】100118902
【氏名又は名称】山本 修
(74)【代理人】
【識別番号】100126985
【氏名又は名称】中村 充利
(74)【代理人】
【識別番号】100141265
【氏名又は名称】小笠原 有紀
(74)【代理人】
【識別番号】100129311
【氏名又は名称】新井 規之
(72)【発明者】
【氏名】中田 泰夫
(72)【発明者】
【氏名】蜷川 幸司
(72)【発明者】
【氏名】中谷 徹
【審査官】大▲わき▼ 弘子
(56)【参考文献】
【文献】国際公開第2019/203344(WO,A1)
【文献】特開2019-172849(JP,A)
【文献】特開2018-090939(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
D06M10/00-11/84、16/00、19/00-23/18、
D21B1/00-1/38、D21C1/00-11/14、D21D1/00-99/00、
D21F1/00-13/12、D21G1/00-9/00、D21H11/00-27/42、
D21J1/00-7/00
(57)【特許請求の範囲】
【請求項1】
セルロース繊維と無機粒子の複合繊維を調製する方法であって、
複合繊維の懸濁液を23~55重量%の濃度に濃縮する工程と、
複合繊維の濃縮物を
目的地まで輸送した後、
1~15重量%の濃度に水中で離解する工程と、
を含み、無機粒子の少なくとも一部が、カルシウム、ケイ酸、マグネシウム、バリウム若しくはアルミニウムの金属塩、または、チタン、銅、亜鉛を含む金属粒子である、上記方法(ただし、複合繊維が、酸化パルプに金属を担持させた金属担持パルプである場合を除く)。
【請求項2】
前記複合繊維の濃縮物を目的地まで輸送した後、
離解機を用いて水中で離解する、請求項1に記載の方法。
【請求項3】
前記セルロース繊維の平均繊維長が400μm以上である、請求項1または2に記載の方法。
【請求項4】
前記無機粒子が、ハイドロタルサイトを含む、請求項1~3のいずれかに記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、セルロース繊維と無機粒子の複合繊維に関する。
【背景技術】
【0002】
木質繊維を始めとするセルロース繊維は、その表面の官能基などに基づいて種々の特性を発揮するところ、用途によっては表面を改質する必要が生じる場合もあり、これまで、繊維を表面改質する技術が開発されてきている。
【0003】
例えば、繊維は、その表面に無機粒子を付着させることによって、様々な特性を発揮させることができる。セルロース繊維などの繊維上に無機粒子を析出させる技術について、特許文献1には、パルプ懸濁液中で炭酸ガス法により炭酸カルシウムを析出させることによって、パルプと炭酸カルシウムの複合繊維を製造する技術が記載されている。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
本発明の課題は、無機粒子によってその表面が被覆されたセルロース繊維を目的地まで運搬し、離解することである。特に、無機粒子による被覆が繊維表面より剥離することが無いように運搬し、離解することである。
【課題を解決するための手段】
【0006】
本発明は、これに制限されるものでないが、以下の発明を包含する。
[1] セルロース繊維と無機粒子との複合繊維を23~55%の濃度に濃縮する工程と、複合繊維の濃縮物を水中で離解する工程と、を含む、複合繊維の調製方法。
[2] 前記複合繊維の濃縮物を輸送する工程をさらに含む、[1]に記載の方法。
[3] 前記無機粒子の少なくとも一部が、カルシウム、ケイ酸、マグネシウム、バリウム若しくはアルミニウムの金属塩、または、チタン、銅、亜鉛を含む金属粒子である、[1]または[2]に記載の方法。
[4] 前記無機粒子が、ハイドロタルサイトを含む、[1]~[3]のいずれかに記載の方法。
【発明の効果】
【0007】
本発明によれば、無機粒子によってその表面が被覆されたセルロース繊維を運搬し、離解することができる。
【図面の簡単な説明】
【0008】
【
図1】
図1は、実験1の結果を示すグラフである(横軸:濃度、縦軸:無機分残存率)。
【
図2】
図2は、実験1の結果を示すグラフである(横軸:濃度、縦軸:離解時間)。
【発明を実施するための形態】
【0009】
本発明の一態様において、繊維を含む溶液において無機粒子を合成し、無機粒子と繊維との複合繊維を製造する工程の後に、濃度を23~55%まで濃縮する工程を設ける。濃度は、25~50%が好ましく、28~50%がさらに好ましく、30~45%がとりわけ好ましい。複合繊維の濃縮・脱水は、例えば、遠心脱水機、沈降濃縮機などを用いて行われる。この遠心脱水機の例としては、デカンター、スクリューデカンターなどが挙げられる。濾過機や脱水機を用いる場合についてもその種類に特に制限はなく、一般的なものを使用することができるが、例えば、フィルタープレス、ドラムフィルター、ベルトプレス、チューブプレス等の加圧型脱水機、オリバーフィルター等の真空ドラム脱水機などを好適に用いることができる。複合繊維を濃縮した後は、フレコンバッグ等に入れて、保管してもよいし、すぐに運搬してもよい。複合繊維の濃度が低すぎると、離解した後に無機粒子複合繊維の残存率が低下する。また、複合繊維の濃度55%を超えると運搬後に離解にかかる時間が長くなる。
【0010】
運搬先では、無機粒子と繊維との複合繊維に水を加えて希釈した後、離解して加工する工程を加える。離解は通常は0.1~15%で行うことができ、本発明においては、0.5~5%が好ましく、1~3%がさらに好ましい。0.1%未満になると、離解した後に無機粒子複合繊維の残存率が低下する。濃度15%を超えると離解が困難となる。加工する工程とは、無機粒子と繊維との複合繊維を使用、または、製品化する過程で、特定の形態に加工する工程のすべてをいう。例えば、無機粒子と繊維との複合繊維を加工する工程としては、繊維と無機粒子の複合繊維をシート化する工程、フラッフ化工程、造粒工程、成型工程、等が挙げられる。
【0011】
複合繊維の合成
本発明において、セルロース繊維などの繊維を含む溶液中で無機粒子を合成することによって複合繊維を合成することができる。繊維表面が、無機粒子の析出における好適な場となり、複合繊維を合成しやすいためである。複合繊維の合成方法としては、例えば、繊維と無機粒子の前駆体を含む溶液を開放型の反応槽中で撹拌、混合して複合繊維を合成しても良いし、繊維と無機粒子の前駆体を含む水性懸濁液を反応容器内に噴射することによって合成してもよい。後述するが、無機物の前駆体の水性懸濁液を反応容器内に噴射する際に、キャビテーション気泡を発生させ、その存在下で無機粒子を合成してもよい。無機粒子は、それぞれ、公知の反応によってセルロース繊維上に合成することができる。
【0012】
一般的に、無機粒子の生成は、クラスター状態(集まる原子・分子数が少ない段階で、集合と離散を繰り返す)から、核(クラスターから安定な集合状態に移行し、臨界サイズ以上になると捕まった原子・分子が離散しなくなる)、そして成長(核に新たな原子・分子が集まり粒子が大きくなる)の過程を経ることが知られており、原料濃度や反応温度が高いほど、核生成が起こりやすいと言われている。本願発明の複合繊維は、主に原料濃度、パルプの叩解度(比表面積)、繊維を含む溶液の粘性、添加薬品の濃度および添加スピード、反応温度、撹拌スピードを調整することで、繊維上に効率的に核を結着させ、かつ粒子成長を促すことにより、セルロース繊維表面が無機粒子で強く被覆された複合繊維を得ることができる。
【0013】
本発明においては、反応容器内にキャビテーション気泡を生じさせるような条件で液体を噴射してもよいし、キャビテーション気泡を生じさせないような条件で噴射してもよい。また、反応容器はいずれの場合においても圧力容器であることが好ましい。なお、本発明における圧力容器とは0.005MPa以上の圧力をかけることのできる容器のことである。キャビテーション気泡を生じさせないような条件の場合、圧力容器内の圧力は、静圧で0.005MPa以上0.9MPa以下であることが好ましい。
【0014】
(キャビテーション気泡)
本発明に係る複合繊維を合成する場合、キャビテーション気泡の存在下で無機粒子を析出させることができる。本発明においてキャビテーションとは、流体の流れの中で圧力差により短時間に泡の発生と消滅が起きる物理現象であり、空洞現象とも言われる。キャビテーションによって生じる気泡(キャビテーション気泡)は、流体の中で圧力がごく短時間だけ飽和蒸気圧より低くなったとき、液体中に存在する100ミクロン以下のごく微小な「気泡核」を核として生じる。
【0015】
本発明においてキャビテーション気泡は、公知の方法によって反応容器内に発生させることができる。例えば、流体を高圧で噴射することによってキャビテーション気泡を発生させること、流体内で高速で攪拌することによってキャビテーションを発生させること、流体内で爆発を生じさせることによってキャビテーションを発生させること、超音波振動子によってキャビテーションを発生させること(バイブトラリー・キャビテーション)などが考えられる。
【0016】
本発明においては、原料などの反応溶液をそのまま噴射液体として用いてキャビテーションを発生させることもできるし、反応容器内に何らかの流体を噴射してキャビテーション気泡を発生させることもできる。液体噴流が噴流をなす流体は、流動状態であれば液体、気体、粉体やパルプ等の固体の何れでもよく、またそれらの混合物であってもよい。更に必要であれば上記の流体に、新たな流体として、炭酸ガスなど、別の流体を加えることができる。上記流体と新たな流体は、均一に混合して噴射してもよいが、別個に噴射してもよい。
【0017】
液体噴流とは、液体または液体の中に固体粒子や気体が分散あるいは混在する流体の噴流であり、パルプや無機粒子の原料スラリーや気泡を含む液体噴流のことをいう。ここで云う気体は、キャビテーションによる気泡を含んでいてもよい。
【0018】
キャビテーションは液体が加速され、局所的な圧力がその液体の蒸気圧より低くなったときに発生するため、流速及び圧力が特に重要となる。このことから、キャビテーション状態を表わす基本的な無次元数、キャビテーション数(Cavitation Number)σは、0.001以上0.5以下であることが望ましく、0.003以上0.2以下であることが好ましく、0.01以上0.1以下であることが特に好ましい。キャビテーション数σが0.001未満である場合、キャビテーション気泡が崩壊する時の周囲との圧力差が低いため効果が小さくなり、0.5より大である場合は、流れの圧力差が低くキャビテーションが発生し難くなる。
【0019】
また、ノズルまたはオリフィス管を通じて噴射液を噴射してキャビテーションを発生させる際には、噴射液の圧力(上流側圧力)は0.01MPa以上30MPa以下であることが望ましく、0.7MPa以上20MPa以下であることが好ましく、2MPa以上15MPa以下がより好ましい。上流側圧力が0.01MPa未満では下流側圧力との間で圧力差を生じ難く作用効果は小さい。また、30MPaより高い場合、特殊なポンプ及び圧力容器を必要とし、消費エネルギーが大きくなることからコスト的に不利である。一方、容器内の圧力(下流側圧力)は静圧で0.005MPa以上0.9MPa以下が好ましい。また、容器内の圧力と噴射液の圧力との比は0.001~0.5の範囲が好ましい。
【0020】
本発明において、キャビテーション気泡が発生しないような条件で噴射液を噴射して無機粒子を合成することもできる。具体的には、噴射液の圧力(上流側圧力)を2MPa以下、好ましくは1MPa以下とし、噴射液の圧力(下流側圧力)を開放し、0.05MPa以下とすることがより好ましい。
【0021】
噴射液の噴流の速度は1m/秒以上200m/秒以下の範囲であることが望ましく、20m/秒以上100m/秒以下の範囲であることが好ましい。噴流の速度が1m/秒未満である場合、圧力低下が低く、キャビテーションが発生し難いため、その効果は弱い。一方、200m/秒より大きい場合、高圧を要し特別な装置が必要であり、コスト的に不利である。
【0022】
本発明におけるキャビテーション発生場所は、無機粒子を合成する反応容器内に発生させればよい。また、ワンパスで処理することも可能であるが、必要回数だけ循環することもできる。さらに複数の発生手段を用いて並列で、あるいは順列で処理することができる。
【0023】
キャビテーションを発生させるための液体の噴射は、大気開放の容器の中でなされても良いが、キャビテーションをコントロールするために圧力容器の中でなされるのが好ましい。
【0024】
液体噴射によってキャビテーションを発生させる場合、反応溶液の固形分濃度は30重量%以下であることが好ましく、20重量%以下がより好ましい。このような濃度であると、キャビテーション気泡を反応系に均一に作用させやすくなるためである。また、反応溶液である消石灰の水性懸濁液は、反応効率の点から、固形分濃度が0.1重量%以上であることが好ましい。
【0025】
本発明において例えば炭酸カルシウムとセルロース繊維との複合繊維を合成する場合、反応液のpHは、反応開始時は塩基性側であるが炭酸化反応が進行するにしたがって中性に変化する。したがって、反応液のpHをモニターすることによって反応を制御することができる。
【0026】
本発明では、液体の噴射圧力を高めることで、噴射液の流速が増大し、これに伴って圧力が低下し、より強力なキャビテーションが発生させることができる。また、反応容器内の圧力を加圧することで、キャビテーション気泡が崩壊する領域の圧力が高くなり、気泡と周囲の圧力差が大きくなるため気泡は激しく崩壊し衝撃力を大きくすることができる。更には導入する炭酸ガスの溶解と分散を促進することができる。反応温度は0℃以上90℃以下であることが好ましく、特に10℃以上60℃以下であることが好ましい。一般には、融点と沸点の中間点で衝撃力が最大となると考えられることから、水性溶液の場合、50℃前後が好適であるが、それ以下の温度であっても、蒸気圧の影響を受けないため、上記の範囲であれば高い効果が得られる。
【0027】
本発明の複合繊維を製造する際には、さらに公知の各種助剤を添加することができる。例えば、キレート剤を添加することができ、具体的には、クエン酸、リンゴ酸、酒石酸などのポリヒドロキシカルボン酸、シュウ酸などのジカルボン酸、グルコン酸などの糖酸、イミノ二酢酸、エチレンジアミン四酢酸などのアミノポリカルボン酸およびそれらのアルカリ金属塩、ヘキサメタリン酸、トリポリリン酸などのポリリン酸のアルカリ金属塩、グルタミン酸、アスパラギン酸などのアミノ酸およびこれらのアルカリ金属塩、アセチルアセトン、アセト酢酸メチル、アセト酢酸アリルなどのケトン類、ショ糖などの糖類、ソルビトールなどのポリオールが挙げられる。また、表面処理剤としてパルミチン酸、ステアリン酸等の飽和脂肪酸、オレイン酸、リノール酸等の不飽和脂肪酸、脂環族カルボン酸、アビエチン酸等の樹脂酸、それらの塩やエステルおよびエーテル、アルコール系活性剤、ソルビタン脂肪酸エステル類、アミド系やアミン系界面活性剤、ポリオキシアルキレンアルキルエーテル類、ポリオキシエチレンノニルフェニルエーテル、アルファオレフィンスルホン酸ナトリウム、長鎖アルキルアミノ酸、アミンオキサイド、アルキルアミン、第四級アンモニウム塩、アミノカルボン酸、ホスホン酸、多価カルボン酸、縮合リン酸などを添加することができる。また、必要に応じ分散剤を用いることもできる。この分散剤としては、例えば、ポリアクリル酸ナトリウム、ショ糖脂肪酸エステル、グリセリン脂肪酸エステル、アクリル酸-マレイン酸共重合体アンモニウム塩、メタクリル酸-ナフトキシポリエチレングリコールアクリレート共重合体、メタクリル酸-ポリエチレングリコールモノメタクリレート共重合体アンモニウム塩、ポリエチレングリコールモノアクリレートなどがある。これらを単独または複数組み合わせて使用することができる。また、添加のタイミングは合成反応の前でも後でも良い。このような添加剤は、無機粒子に対して、好ましくは0.001~20%、より好ましくは0.1~10%の量で添加することができる。
また、本発明において反応はバッチ反応とすることもでき、連続反応とすることもできる。一般に、反応後の残存物を排出する便利さから、バッチ反応工程を行うことが好ましい。反応のスケールは特に制限されないが、100L以下のスケールで反応させてもよいし、100L超のスケールで反応させてもよい。反応容器の大きさは、例えば、10L~100L程度とすることもできるし、100L~1000L程度としてもよい。
【0028】
また、反応液の電導度や反応時間によって反応を制御することができ、具体的には、反応物が反応槽に滞留する時間を調整して制御することができる。その他、本発明においては、反応槽の反応液を攪拌したり、反応を多段反応としたりすることによって反応を制御することもできる。
【0029】
本発明においては、反応生成物である複合繊維が懸濁液として得られるため、必要に応じて、貯蔵タンクに貯蔵したり、濃縮、脱水、粉砕、分級、熟成、分散などの処理を行ったりすることができる。これらは公知の工程によることができ、用途やエネルギー効率などを考慮して適宜決定すればよい。例えば濃縮・脱水処理は、遠心脱水機、沈降濃縮機などを用いて行われる。この遠心脱水機の例としては、デカンター、スクリューデカンターなどが挙げられる。濾過機や脱水機を用いる場合についてもその種類に特に制限はなく、一般的なものを使用することができるが、例えば、フィルタープレス、ドラムフィルター、ベルトプレス、チューブプレス等の加圧型脱水機、オリバーフィルター等の真空ドラム脱水機などを好適に用いて炭酸カルシウムケーキとすることができる。粉砕の方法としては、ボールミル、サンドグラインダーミル、インパクトミル、高圧ホモジナイザー、低圧ホモジナイザー、ダイノーミル、超音波ミル、カンダグラインダ、アトライタ、石臼型ミル、振動ミル、カッターミル、ジェットミル、離解機、叩解機、短軸押出機、2軸押出機、超音波攪拌機、家庭用ジューサーミキサー等が挙げられる。分級の方法としては、メッシュ等の篩、アウトワード型もしくはインワード型のスリットもしくは丸穴スクリーン、振動スクリーン、重量異物クリーナー、軽量異物クリーナー、リバースクリーナー、篩分け試験機等が挙げられる。分散の方法としては、高速ディスパーザー、低速ニーダーなどが挙げられる。
【0030】
本発明における複合繊維は、完全に脱水せずに懸濁液の状態で填料や顔料に配合することもできるが、乾燥して粉体とすることもできる。この場合の乾燥機についても特に制限はないが、例えば、気流乾燥機、バンド乾燥機、噴霧乾燥機などを好適に使用することができる。
【0031】
本発明の複合繊維は、公知の方法によって改質することが可能である。例えば、ある態様においては、その表面を疎水化し、樹脂などとの混和性を高めたりすることが可能である。
【0032】
本発明においては、懸濁液の調製などに水を使用するが、この水としては、通常の水道水、工業用水、地下水、井戸水などを用いることができる他、イオン交換水や蒸留水、超純水、工業廃水、反応液を分離・脱水する際に得られる水を好適に用いることできる。
【0033】
また本発明においては、反応槽の反応液を循環させて使用することができる。このように反応液を循環させて、溶液の撹拌を促すことにより、反応効率を上げ、所望の無機粒子と繊維の複合繊維を得ることが容易になる。
【0034】
無機粒子
本発明において、繊維と複合化する無機粒子は特に制限されないが、水に不溶性または難溶性の無機粒子であることが好ましい。無機粒子の合成を水系で行う場合があり、また、繊維複合繊維を水系で使用することもあるため、無機粒子が水に不溶性または難溶性であると好ましい。
【0035】
ここで言う無機粒子とは、金属元素もしくは非金属元素の化合物のことを言う。金属元素の化合物とは、金属の陽イオン(例えば、Na+、Ca2+、Mg2+、Al3+、Ba2+など)と陰イオン(例えば、O2-、OH-、CO3
2-、PO4
3-、SO4
2-、NO3
-、Si2O3
2-、SiO3
2-、Cl-、F-、S2-など)がイオン結合によって結合してできた、一般に無機塩と呼ばれるものを言う。非金属元素の化合物とは、ケイ酸(SiO2)などである。本発明において、無機粒子の少なくとも一部が、カルシウム、マグネシウムまたはバリウムの金属塩、または、無機粒子の少なくとも一部が、ケイ酸、またはアルミニウムの金属塩、あるいはチタン、銅、銀、鉄、マンガン、セリウムまたは亜鉛を含む金属粒子であることが好ましい。
【0036】
これら無機粒子の合成法は公知の方法によることができ、気液法と液液法のいずれでも良い。気液法の一例としては炭酸ガス法があり、例えば水酸化マグネシウムと炭酸ガスを反応させることで、炭酸マグネシウムを合成することができる。液液法の例としては、酸(塩酸、硫酸など)と塩基(水酸化ナトリウムや水酸化カリウムなど)を中和によって反応させたり、無機塩と酸もしくは塩基を反応させたり、無機塩同士を反応させたりする方法が挙げられる。例えば、水酸化バリウムと硫酸を反応させることで硫酸バリウムを得たり、硫酸アルミニウムと水酸化ナトリウムを反応させることで水酸化アルミニウムを得たり、炭酸カルシウムと硫酸アルミニウムを反応させることでカルシウムとアルミニウムが複合化した無機粒子を得ることができる。また、このようにして無機粒子を合成する際、反応液中に任意の金属や非金属化合物を共存させることもでき、この場合はそれらの金属もしくは非金属化合物が無機粒子中に効率よく取り込まれ、複合化できる。例えば、炭酸カルシウムにリン酸を添加してリン酸カルシウムを合成する際に、二酸化チタンを反応液中に共存させることで、リン酸カルシウムとチタンの複合粒子を得ることができる。
【0037】
(炭酸カルシウム)
炭酸カルシウムを合成する場合であれば、例えば、炭酸ガス法、可溶性塩反応法、石灰・ソーダ法、ソーダ法などによって炭酸カルシウムを合成することができ、好ましい態様において、炭酸ガス法によって炭酸カルシウムを合成する。
【0038】
一般に、炭酸ガス法によって炭酸カルシウムを製造する場合、カルシウム源として石灰(ライム)が使用され、生石灰CaOに水を加えて消石灰Ca(OH)2を得る消和工程と、消石灰に炭酸ガスCO2を吹き込んで炭酸カルシウムCaCO3を得る炭酸化工程とによって炭酸カルシウムが合成される。この際、生石灰に水を加えて調製した消石灰の懸濁液をスクリーンに通して、懸濁液中に含まれる低溶解性の石灰粒を除去してもよい。また、消石灰を直接カルシウム源としてもよい。本発明において炭酸ガス法によって炭酸カルシウムを合成する場合、キャビテーション気泡の存在下で炭酸化反応を行うこともできる。
【0039】
炭酸ガス法によって炭酸カルシウムを合成する場合、消石灰の水性懸濁液の固形分濃度は、好ましくは0.1~40重量%、より好ましくは0.5~30重量%、さらに好ましくは1~20重量%程度である。固形分濃度が低いと反応効率が低く、製造コストが高くなり、固形分濃度が高すぎると流動性が悪くなり、反応効率が落ちる。本発明においては、キャビテーション気泡の存在下で炭酸カルシウムを合成するため、固形分濃度の高い懸濁液(スラリー)を用いても、反応液と炭酸ガスを好適に混合することができる。
【0040】
消石灰を含む水性懸濁液としては、炭酸カルシウム合成に一般に用いられるものを使用でき、例えば、消石灰を水に混合して調製したり、生石灰(酸化カルシウム)を水で消和(消化)したりして調製することができる。消和する際の条件は特に制限されないが、例えば、CaOの濃度は0.05重量%以上、好ましくは1重量%以上、温度は20~100℃、好ましくは30~100℃とすることができる。また、消和反応槽(スレーカー)での平均滞留時間も特に制限されないが、例えば、5分~5時間とすることができ、2時間以内とすることが好ましい。当然であるが、スレーカーはバッチ式であっても連続式であってもよい。なお、本発明においては炭酸化反応槽(カーボネーター)と消和反応槽(スレーカー)とを別々にしてもよく、また、1つの反応槽を炭酸化反応槽および消和反応槽として用いてもよい。
【0041】
炭酸カルシウムの合成では、反応液中の原料(Caイオン、CO3イオン)が高濃度であるほど、また、高温条件であるほど、核形成反応が進みやすいが、複合繊維を製造する場合、このような条件下では、セルロース繊維に核が定着されにくく、懸濁液中で遊離した無機粒子が合成されやすい。従って、炭酸カルシウムが強固に結着した複合繊維を製造するには、核形成反応を適切に制御することが必要となる。具体的には、Caイオンおよびパルプ濃度の適正化と、CO2の時間当たりの供給量を緩やかにすることで、これを達成できる。例えば、反応容器中のCaイオン濃度は、0.01mol/L以上0.20mol/L未満が好ましい。0.01mol/L未満だと反応が進行しにくく、0.20mol/L以上では懸濁液中で遊離した無機粒子が合成されやすい。パルプ濃度は、0.5%以上4.0%未満が好ましい。0.5%未満では繊維に原料が衝突する頻度が減るため、反応が進行しにくく、4.0%以上では攪拌不良から均一な複合繊維を得ることができない。CO2の時間当たりの供給量は、反応溶液1Lあたり0.001mol/min以上0.060mol/min未満が望ましい。0.001mol/min未満であると反応が進行しにくく、0.060mol/min以上では懸濁液中で遊離した無機粒子が合成されやすい。
【0042】
(炭酸マグネシウム)
炭酸マグネシウムを合成する場合、炭酸マグネシウムの合成方法は、公知の方法によることができる。例えば、水酸化マグネシウムと炭酸ガスから重炭酸マグネシウムを合成し、重炭酸マグネシウムから正炭酸マグネシウムを経て塩基性炭酸マグネシウムを合成することができる。炭酸マグネシウムは合成方法によって重炭酸マグネシウム、正炭酸マグネシウム、塩基性炭酸マグネシウムなどを得ることができるが、本発明の繊維複合繊維に係る炭酸マグネシウムは、塩基性炭酸マグネシムにすることが特に好ましい。なぜならば、重炭酸マグネシウムは安定性が比較的低く、柱状(針状)結晶である正炭酸マグネシウムは繊維へ定着しにくい場合があるためである。一方、繊維の存在下で塩基性炭酸マグネシウムにまで化学反応させることで、繊維表面をうろこ状などに被覆した炭酸マグネシウムと繊維の繊維複合繊維を得ることができる。
【0043】
また本発明においては、反応槽の反応液を循環させて使用することができる。このように反応液を循環させて、反応液と炭酸ガスとの接触を増やすことにより、反応効率を上げ、所望の無機粒子を得ることが容易になる。
【0044】
本発明においては、二酸化炭素(炭酸ガス)などのガスが反応容器に吹き込まれ、反応液と混合することができる。本発明によれば、ファン、ブロワなどの気体供給装置がなくとも炭酸ガスを反応液に供給することができ、しかも、キャビテーション気泡によって炭酸ガスが微細化されるため反応を効率よく行うことができる。
【0045】
本発明において、二酸化炭素を含む気体の二酸化炭素濃度に特に制限はないが、二酸化炭素濃度が高い方が好ましい。また、インジェクターに導入する炭酸ガスの量に制限はなく適宜選択することができる。
【0046】
本発明の二酸化炭素を含む気体は、実質的に純粋な二酸化炭素ガスでもよく、他のガスとの混合物であってもよい。例えば、二酸化炭素ガスの他に、空気、窒素などの不活性ガスを含む気体を、二酸化炭素を含む気体として用いることができる。また、二酸化炭素を含む気体としては、二酸化炭素ガス(炭酸ガス)の他、製紙工場の焼却炉、石炭ボイラー、重油ボイラーなどから排出される排ガスを二酸化炭素含有気体として好適に用いることができる。その他にも、石灰焼成工程から発生する二酸化炭素を用いて炭酸化反応を行うこともできる。
【0047】
炭酸マグネシウムの合成では、反応液中の原料(Mgイオン、CO3イオン)が高濃度であるほど、また、高温条件であるほど、核形成反応が進みやすいが、複合繊維を製造する場合、このような条件下では、セルロース繊維に核が定着されにくく、懸濁液中で遊離した無機粒子が合成されやすい。従って、炭酸マグネシウムが強固に結着した複合繊維を製造するには、核形成反応を適切に制御することが必要となる。具体的には、Mgイオンおよびパルプ濃度の適正化と、CO2の時間当たりの供給量を緩やかにすることで、これを達成できる。例えば、反応容器中のMgイオン濃度は、0.0001mol/L以上0.20mol/L未満が好ましい。0.0001mol/L未満だと反応が進行しにくく、0.20mol/L以上では懸濁液中で遊離した無機粒子が合成されやすい。パルプ濃度は、0.5%以上4.0%未満が好ましい。0.5%未満では繊維に原料が衝突する頻度が減るため、反応が進行しにくく、4.0%以上では攪拌不良から均一な複合繊維を得ることができない。CO2の時間当たりの供給量は、反応溶液1Lあたり0.001mol/min以上0.060mol/min未満が望ましい。0.001mol/min未満であると反応が進行しにくく、0.060mol/min以上では懸濁液中で遊離した無機粒子が合成されやすい。
【0048】
(硫酸バリウム)
硫酸バリウムを合成する場合、硫酸バリウム(BaSO4)で表されるバリウムイオンと硫酸イオンからなるイオン結晶性の化合物であり、板状あるいは柱状の形態であることが多く、水には難溶性である。純粋な硫酸バリウムは無色の結晶であるが、鉄、マンガン、ストロンチウム、カルシウムなどの不純物を含むと黄褐色または黒灰色を呈し、半透明となる。天然の鉱物としても得られるが、化学反応によって合成することもできる。特に、化学反応による合成品は医薬用(X線造影剤)に用いられるほか、化学的に安定な性質を応用して塗料、プラスチック、蓄電池等に広く使用されている。
【0049】
本発明においては、繊維の存在下で、溶液中で硫酸バリウムを合成することによって、硫酸バリウムと繊維の複合繊維を製造することができる。例えば、酸(硫酸など)と塩基を中和によって反応させたり、無機塩と酸もしくは塩基を反応させたり、無機塩同士を反応させたりする方法が挙げられる。例えば、水酸化バリウムと硫酸もしくは硫酸アルミニウムを反応させることで硫酸バリウムを得たり、硫酸塩の含まれる水溶液中に塩化バリウムを加えて硫酸バリウムを沈殿させたりすることができる。
【0050】
硫酸バリウムの合成では、溶液中の原料(Baイオン、SO4イオン)が高濃度であるほど、また、高温条件であるほど、核形成反応が進みやすいが、複合繊維を製造する場合、このような条件下では、セルロース繊維に核が定着されにくく、懸濁液中で遊離した無機粒子が合成されやすい。従って、硫酸バリウムが強固に結着した複合繊維を製造するには、核形成反応を適切に制御することが必要となる。具体的には、Baイオンおよびパルプ濃度の適正化と、SO4イオンの時間当たりの供給量を緩やかにすることで、これを達成できる。例えば、反応容器中のBaイオン濃度は、0.01mol/L以上0.20mol/L未満が好ましい。0.01mol/L未満だと反応が進行しにくく、0.20mol/L以上では懸濁液中で遊離した無機粒子が合成されやすい。パルプ濃度は、0.5%以上4.0%未満が好ましい。0.5%未満では繊維に原料が衝突する頻度が減るため、反応が進行しにくく、4.0%以上では攪拌不良から均一な複合繊維を得ることができない。SO4イオンの時間当たりの供給量は、反応溶液1Lあたり0.005mol/min以上0.080mol/min未満が望ましい。0.001mol/min未満であると反応が進行しにくく、0.080mol/min以上では懸濁液中で遊離した無機粒子が合成されやすい。
【0051】
(ハイドロタルサイト)
ハイドロタルサイトを合成する場合、ハイドロタルサイトの合成方法は公知の方法によることができる。例えば、反応容器内に中間層を構成する炭酸イオンを含む炭酸塩水溶液とアルカリ溶液(水酸化ナトリウムなど)に繊維を浸漬し、次いで、酸溶液(基本層を構成する二価金属イオン及び三価金属イオンとを含む金属塩水溶液)を添加し、温度、pHなどを制御して共沈反応により、ハイドロタルサイトを合成する。また、反応容器内において、酸溶液(基本層を構成する二価金属イオン及び三価金属イオンを含む金属塩水溶液)に繊維を浸漬し、次いで、中間層を構成する炭酸イオンを含む炭酸塩水溶液とアルカリ溶液(水酸化ナトリウム等)を滴下し、温度、pH等を制御して共沈反応により、ハイドロタルサイトを合成することもできる。常圧での反応が一般的ではるが、それ以外にも、オートクレーブなどを使用しての水熱反応により得る方法もある(特開昭60-6619号公報)。
【0052】
本発明においては、基本層を構成する二価金属イオンの供給源として、マグネシウム、亜鉛、バリウム、カルシウム、鉄、銅、コバルト、ニッケル、マンガンの各種塩化物、硫化物、硝酸化物、硫酸化物を用いることができる。また、基本層を構成する三価金属イオンの供給源として、アルミニウム、鉄、クロム、ガリウムの各種塩化物、硫化物、硝酸化物、硫酸化物を用いることができる。
【0053】
本発明においては、層間陰イオンとして炭酸イオン、硝酸イオン、塩化物イオン、硫酸イオン、リン酸イオンなどを用いることができる。炭酸イオンを層間陰イオンとする場合、炭酸ナトリウムが供給源として使用される。ただし炭酸ナトリウムは、二酸化炭素(炭酸ガス)を含む気体で代替可能で、実質的に純粋な二酸化炭素ガスや、他のガスとの混合物であってもよい。例えば、製紙工場の焼却炉、石炭ボイラー、重油ボイラーなどから排出される排ガスを二酸化炭素含有気体として好適に用いることができる。その他にも、石灰焼成工程から発生する二酸化炭素を用いて炭酸化反応を行うこともできる。
【0054】
ハイドロタルサイトの合成では、溶液中の原料(基本層を構成する金属イオン、CO3イオン等)が高濃度であるほど、また、高温条件であるほど、核形成反応が進みやすいが、このような条件下では、複合繊維を製造する場合、セルロース繊維に核が定着されにくく、懸濁液中で遊離した無機粒子が合成されやすい。従って、ハイドロタルサイトが強固に結着した複合繊維を製造するには、核形成反応を適切に制御することが必要となる。具体的には、CO3イオンおよびパルプ濃度の適正化と、金属イオンの時間当たりの供給量を緩やかにすることで、これを達成できる。例えば、反応容器中のCO3イオン濃度は、0.01mol/L以上0.80mol/L未満が好ましい。0.01mol/L未満だと反応が進行しにくく、0.80mol/L以上では懸濁液中で遊離した無機粒子が合成されやすい。パルプ濃度は、0.5%以上4.0%未満が好ましい。0.5%未満では繊維に原料が衝突する頻度が減るため、反応が進行しにくく、4.0%以上では攪拌不良から均一な複合繊維を得ることができない。金属イオンの時間当たりの供給量は、金属の種類にもよるが、例えばMgイオンの場合、反応溶液1Lあたり0.001mol/min以上0.010mol/min未満が望ましく、0.001mol/min以上0.005mol/min未満がより望ましい。0.001mol/min未満であると反応が進行しにくく、0.010mol/min以上では懸濁液中で遊離した無機粒子が合成されやすい。
【0055】
(アルミナ/シリカ)
アルミナおよび/またはシリカを合成する場合、アルミナおよび/またはシリカの合成方法は公知の方法によることができる。反応の出発物質として無機酸もしくはアルミニウム塩のいずれか1つ以上を用いた場合、珪酸アルカリ塩を添加して合成する。出発物質として珪酸アルカリ塩を用い、無機酸もしくはアルミニウム塩のいずれか1つ以上を添加して合成することもできるが、無機酸および/もしくはアルミニウム塩を出発物質として用いた場合の方が、生成物の繊維への定着は良好である。無機酸としては特に限定されるものではなく、例えば、硫酸、塩酸、硝酸等を用いることができる。これらの中でもコストおよびハンドリングの点から硫酸が特に好ましい。アルミニウム塩としては、硫酸バンド、塩化アルミニウム、ポリ塩化アルミニウム、ミョウバン、カリミョウバン等が挙げられ、中でも硫酸バンドを好適に用いることができる。珪酸アルカリ塩としては、珪酸ナトリウムもしくは珪酸カリウムなどが挙げられるが、入手しやすいため珪酸ナトリウムが好適である。珪酸とアルカリのモル比はいずれでも良いが、一般に3号珪酸として流通しているものはSiO2:Na2O=3~3.4:1程度のモル比のものであり、これを好適に用いることができる。
【0056】
本発明においては、シリカおよび/またはアルミナが繊維表面に付着した複合繊維を製造するにあたって、繊維を含む反応液のpHを4.6以下に維持しながら繊維上にシリカおよび/またはアルミナを合成することが好ましい。これによって、繊維表面がよく被覆された複合繊維が得られる理由の詳細は完全には明らかになっていないが、pHを低く維持することによって3価のアルミニウムイオンへの電離率が高くなるため、被覆率や定着率が高い複合繊維が得られると考えられる。
【0057】
シリカおよび/またはアルミナ合成では、反応液中の原料(珪酸イオン、アルミニウムイオン)が高濃度であるほど、また、高温条件であるほど、核形成反応が進みやすいが、複合繊維を製造する場合、このような条件下では、セルロース繊維に核が定着されにくく、懸濁液中で遊離した無機粒子が合成されやすい。従って、シリカおよび/またはアルミナが強固に結着した複合繊維を製造するには、核形成反応を適切に制御することが必要となる。具体的には、パルプ濃度の適正化と、添加する珪酸イオン、アルミニウムイオンの時間当たりの供給量を緩やかにすることで、これを達成できる。例えば、パルプ濃度は、0.5%以上4.0%未満が好ましい。0.5%未満では繊維に原料が衝突する頻度が減るため、反応が進行しにくく、4.0%以上では攪拌不良から均一な複合繊維を得ることができない。添加する珪酸イオン、アルミニウムイオンの時間当たりの供給量は、例えばアルミニウムイオンの場合、反応溶液1Lあたり0.001mol/min以上が望ましく、0.01mol/min以上がより望ましく、また、0.5mol/min未満が望ましく、0.050mol/min未満がより望ましい。0.001mol/min未満であると反応が進行しにくく、0.050mol/min以上では懸濁液中で遊離した無機粒子が合成されやすい。
【0058】
一つの好ましい態様として、本発明の複合繊維における無機粒子の平均一次粒子径を、例えば、1.5μm以下とすることができるが、平均一次粒子径を1200nm以下や900nm以下にすることもでき、さらには平均一次粒子径が200nm以下や150nm以下にすることもできる。また、無機粒子の平均一次粒子径は10nm以上とすることも可能である。なお、平均一次粒子径は電子顕微鏡写真で測定することができる。
【0059】
(水酸化アルミニウム)
水酸化アルミニウムはAl(OH)3で表されるアルミニウムイオンと水酸化物イオンからなるイオン結晶性の化合物であり、粒状の形態であることが多く、水には難溶性である。化学反応による合成品は医薬品や吸着剤に用いられるほか、加熱時に水を放出する性質を利用して難燃化剤や不燃化剤として用いられる。
【0060】
本発明においては、繊維の存在下で、溶液中で水酸化アルミニウムを合成することによって、水酸化アルミニウムと繊維の複合繊維を製造することができる。例えば、酸(硫酸など)と塩基を中和によって反応させたり、無機塩と酸もしくは塩基を反応させたり、無機塩同士を反応させたりする方法が挙げられる。例えば、水酸化ナトリウムと硫酸アルミニウムを反応させることで水酸化アルミウニウムを得たり、アルカリ塩の含まれる水溶液中に塩化アルミニウムを加えて水酸化アルミニウムを沈殿させたりすることができる。
【0061】
水酸化アルミニウムの合成では、溶液中の原料(Alイオン、OHイオン)が高濃度であるほど、また、高温条件であるほど、核形成反応が進みやすいが、複合繊維を製造する場合、このような条件下では、セルロース繊維に核が定着されにくく、懸濁液中で遊離した無機粒子が合成されやすい。従って、水酸化アルミニウムが強固に結着した複合繊維を製造するには、核形成反応を適切に制御することが必要となる。具体的には、OHイオンおよびパルプ濃度の適正化と、Alイオンの時間当たりの供給量を緩やかにすることで、これを達成できる。例えば、反応容器中のOHイオン濃度は、0.01mol/L以上0.50mol/L未満が好ましい。0.01mol/L未満だと反応が進行しにくく、0.50mol/L以上では懸濁液中で遊離した無機粒子が合成されやすい。パルプ濃度は、0.5%以上4.0%未満が好ましい。0.5%未満では繊維に原料が衝突する頻度が減るため、反応が進行しにくく、4.0%以上では攪拌不良から均一な複合繊維を得ることができない。Alイオンの時間当たりの供給量は、反応溶液1Lあたり0.001mol/min以上0.050mol/min未満が望ましい。0.001mol/min未満であると反応が進行しにくく、0.050mol/min以上では懸濁液中で遊離した無機粒子が合成されやすい。
【0062】
セルロース繊維
本発明で使用する複合繊維は、セルロース繊維と無機粒子とを複合化したものである。複合繊維を構成するセルロース繊維としては例えば、天然のセルロース繊維はもちろん、レーヨンやリヨセルなどの再生繊維(半合成繊維)や合成繊維などを制限なく使用することができる。セルロース繊維の原料としては、パルプ繊維(木材パルプや非木材パルプ)、セルロースナノファイバー、バクテリアセルロース、ホヤなどの動物由来セルロース、藻類などが例示され、木材パルプは、木材原料をパルプ化して製造すればよい。木材原料としては、アカマツ、クロマツ、トドマツ、エゾマツ、ベニマツ、カラマツ、モミ、ツガ、スギ、ヒノキ、カラマツ、シラベ、トウヒ、ヒバ、ダグラスファー、ヘムロック、ホワイトファー、スプルース、バルサムファー、シーダ、パイン、メルクシマツ、ラジアータパイン等の針葉樹、及びこれらの混合材、ブナ、カバ、ハンノキ、ナラ、タブ、シイ、シラカバ、ハコヤナギ、ポプラ、タモ、ドロヤナギ、ユーカリ、マングローブ、ラワン、アカシア等の広葉樹及びこれらの混合材が例示される。
【0063】
木材原料(木質原料)などの天然材料をパルプ化する方法は、特に限定されず、製紙業界で一般に用いられるパルプ化法が例示される。木材パルプはパルプ化法により分類でき、例えば、クラフト法、サルファイト法、ソーダ法、ポリサルファイド法等の方法により蒸解した化学パルプ;リファイナー、グラインダー等の機械力によってパルプ化して得られる機械パルプ;薬品による前処理の後、機械力によるパルプ化を行って得られるセミケミカルパルプ;古紙パルプ;脱墨パルプ等が挙げられる。木材パルプは、未晒(漂白前)の状態であってもよいし、晒(漂白後)の状態であってもよい。
【0064】
非木材由来のパルプとしては、綿、ヘンプ、サイザル麻、マニラ麻、亜麻、藁、竹、バガス、ケナフ、サトウキビ、トウモロコシ、稲わら、楮(こうぞ)、みつまた等が例示される。
【0065】
パルプ繊維は、未叩解及び叩解のいずれでもよく、複合繊維シートの物性に応じて選択すればよいが、叩解を行う方が好ましい。これにより、シート強度の向上並びに無機粒子の定着促進が期待できる。
【0066】
また、これらセルロース原料はさらに処理を施すことで粉末セルロース、酸化セルロースなどの化学変性セルロース、およびセルロースナノファイバー:CNF(ミクロフィブリル化セルロース:MFC、TEMPO酸化CNF、リン酸エステル化CNF、カルボキシメチル化CNF、機械粉砕CNFなど)として使用することもできる。本発明で用いる粉末セルロースとしては、例えば、精選パルプを酸加水分解した後に得られる未分解残渣を精製・乾燥し、粉砕・篩い分けするといった方法により製造される棒軸状である一定の粒径分布を有する結晶性セルロース粉末を用いてもよいし、KCフロック(日本製紙製)、セオラス(旭化成ケミカルズ製)、アビセル(FMC製)などの市販品を用いてもよい。粉末セルロースにおけるセルロースの重合度は好ましくは100~1500程度であり、X線回折法による粉末セルロースの結晶化度は好ましくは70~90%であり、レーザー回折式粒度分布測定装置による体積平均粒子径は好ましくは500nm以上100μm以下である。
【0067】
本発明で用いる酸化セルロースは、例えばN-オキシル化合物、及び、臭化物、ヨウ化物若しくはこれらの混合物からなる群から選択される化合物の存在下で酸化剤を用いて水中で酸化することで得ることができる。セルロースナノファイバーとしては、上記セルロース原料を解繊する方法が用いられる。解繊方法としては、例えばセルロースや酸化セルロース等の化学変性セルロースの水懸濁液等を、リファイナー、高圧ホモジナイザー、グラインダー、一軸または多軸混練機、ビーズミル等による機械的な磨砕、ないし叩解することにより解繊する方法を使用することができる。上記方法を1種または複数種類組み合わせてセルロースナノファイバーを製造してもよい。製造したセルロースナノファイバーの繊維径は電子顕微鏡観察などで確認することができ、例えば好ましくは5nm~300nmの範囲にある。このセルロースナノファイバーを製造する際、セルロースを解繊及び/又は微細化する前及び/又は後に、任意の化合物をさらに添加してセルロースナノファイバーと反応させ、水酸基が修飾されたものにすることもできる。修飾する官能基としては、アセチル基、エステル基、エーテル基、ケトン基、ホルミル基、ベンゾイル基、アセタール、ヘミアセタール、オキシム、イソニトリル、アレン、チオール基、ウレア基、シアノ基、ニトロ基、アゾ基、アリール基、アラルキル基、アミノ基、アミド基、イミド基、アクリロイル基、メタクリロイル基、プロピオニル基、プロピオロイル基、ブチリル基、2-ブチリル基、ペンタノイル基、ヘキサノイル基、ヘプタノイル基、オクタノイル基、ノナノイル基、デカノイル基、ウンデカノイル基、ドデカノイル基、ミリストイル基、パルミトイル基、ステアロイル基、ピバロイル基、ベンゾイル基、ナフトイル基、ニコチノイル基、イソニコチノイル基、フロイル基、シンナモイル基等のアシル基、2-メタクリロイルオキシエチルイソシアノイル基等のイソシアネート基、メチル基、エチル基、プロピル基、2-プロピル基、ブチル基、2-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、ミリスチル基、パルミチル基、ステアリル基等のアルキル基、オキシラン基、オキセタン基、オキシル基、チイラン基、チエタン基等が挙げられる。これらの置換基の中の水素が水酸基、カルボキシ基等の官能基で置換されても構わない。また、アルキル基の一部が不飽和結合になっていても構わない。これらの官能基を導入するために使用する化合物としては特に限定されず、例えば、リン酸由来の基を有する化合物、カルボン酸由来の基を有する化合物、硫酸由来の基を有する化合物、スルホン酸由来の基を有する化合物、アルキル基を有する化合物、アミン由来の基を有する化合物等が挙げられる。リン酸基を有する化合物としては特に限定されないが、リン酸、リン酸のリチウム塩であるリン酸二水素リチウム、リン酸水素二リチウム、リン酸三リチウム、ピロリン酸リチウム、ポリリン酸リチウムが挙げられる。更にリン酸のナトリウム塩であるリン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸三ナトリウム、ピロリン酸ナトリウム、ポリリン酸ナトリウムが挙げられる。更にリン酸のカリウム塩であるリン酸二水素カリウム、リン酸水素二カリウム、リン酸三カリウム、ピロリン酸カリウム、ポリリン酸カリウムが挙げられる。更にリン酸のアンモニウム塩であるリン酸二水素アンモニウム、リン酸水素二アンモニウム、リン酸三アンモニウム、ピロリン酸アンモニウム、ポリリン酸アンモニウムなどが挙げられる。これらのうち、リン酸基導入の効率が高く、工業的に適用しやすい観点から、リン酸、リン酸のナトリウム塩、リン酸のカリウム塩、リン酸のアンモニウム塩が好ましく、リン酸二水素ナトリウム、リン酸水素二ナトリウムがより好ましいが、特に限定されない。カルボキシル基を有する化合物としては特に限定されないが、マレイン酸、コハク酸、フタル酸、フマル酸、グルタル酸、アジピン酸、イタコン酸等のジカルボン酸化合物やクエン酸、アコニット酸などトリカルボン酸化合物が挙げられる。カルボキシル基を有する化合物の酸無水物としては特に限定されないが、無水マレイン酸、無水コハク酸、無水フタル酸、無水グルタル酸、無水アジピン酸、無水イタコン酸等のジカルボン酸化合物の酸無水物が挙げられる。カルボキシル基を有する化合物の誘導体としては特に限定されないが、カルボキシル基を有する化合物の酸無水物のイミド化物、カルボキシル基を有する化合物の酸無水物の誘導体が挙げられる。カルボキシル基を有する化合物の酸無水物のイミド化物としては特に限定されないが、マレイミド、コハク酸イミド、フタル酸イミド等のジカルボン酸化合物のイミド化物が挙げられる。カルボキシル基を有する化合物の酸無水物の誘導体としては特に限定されない。例えば、ジメチルマレイン酸無水物、ジエチルマレイン酸無水物、ジフェニルマレイン酸無水物等の、カルボキシル基を有する化合物の酸無水物の少なくとも一部の水素原子が置換基(例えば、アルキル基、フェニル基等)で置換されたものが挙げられる。上記カルボン酸由来の基を有する化合物のうち、工業的に適用しやすく、ガス化しやすいことから、無水マレイン酸、無水コハク酸、無水フタル酸が好ましいが、特に限定されない。また、化学的に結合させなくても、修飾する化合物がセルロースナノファイバーに物理的に吸着する形でセルロースナノファイバーを修飾してもよい。物理的に吸着する化合物としては界面活性剤等が挙げられ、アニオン性、カチオン性、ノニオン性いずれを用いてもよい。セルロースを解繊及び/又は粉砕する前に上記の修飾を行った場合、解繊及び/又は粉砕後にこれらの官能基を脱離させ、元の水酸基に戻すこともできる。以上のような修飾を施すことで、セルロースナノファイバーの解繊を促進したり、セルロースナノファイバーを使用する際に種々の物質と混合しやすくしたりすることができる。
【0068】
以上に示した繊維は単独で用いても良いし、複数を混合しても良い。例えば、製紙工場の排水から回収された繊維状物質を本発明の炭酸化反応に供給してもよい。このような物質を反応槽に供給することにより、種々の複合粒子を合成することができ、また、形状的にも繊維状粒子などを合成することができる。
【0069】
本発明においては、繊維の他にも、生成物である無機粒子に取り込まれて複合粒子を生成するような物質を用いることができる。本発明にいては、パルプ繊維を始めとする繊維を使用するが、それ以外にも無機粒子、有機粒子、ポリマーなどを含む溶液中で無機粒子を合成することによって、さらにこれらの物質が取り込まれた複合粒子を製造することが可能である。
【0070】
複合化する繊維の繊維長は特に制限されないが、例えば、平均繊維長が0.1μm~15mm程度とすることができ、1μm~12mm、100μm~10mm、400μm~8mmなどとしてもよい。このうち、本発明においては、平均繊維長を400μm以上(0.4mm以上)とすることが好ましい。
【0071】
複合化する繊維の平均繊維径は特に制限されないが、例えば、平均繊維径が1nm~100μm程度とすることができ、500nm~100μm、1μm~90μm、3μm~50μm、5μm~30μmなどとしてもよい。このうち、本発明においては、平均繊維径が500nm以上であると後工程での生産効率を向上できるため好ましい。
【0072】
繊維の平均繊維長と平均繊維径は、繊維長測定装置により測定できる。繊維長測定装置としては、例えば、Valmet Fractionator(Valmet社製)が挙げられる。
【0073】
複合化する繊維は、繊維表面の15%以上が無機粒子で被覆されるような量で使用することが好ましいが、例えば、繊維と無機粒子の重量比を、5/95~95/5とすることができ、10/90~90/10、20/80~80/20、30/70~70/30、40/60~60/40としてもよい。
【0074】
本発明に係る複合繊維は、好ましい態様において、繊維表面の15%以上が無機粒子で被覆されており、このような面積率でセルロース繊維表面が被覆されていると無機粒子に起因する特徴が大きく生じるようになる一方、繊維表面に起因する特徴が小さくなる。
【0075】
本発明に係る複合繊維は、種々の形状で用いることができ、例えば、粉体、ペレット、モールド、水性懸濁液、ペースト、シート、ボード、ブロック、その他の形状にして用いることができる。また、複合繊維を主成分として他の材料と共にモールドや粒子・ペレットなどの成形体にすることもできる。乾燥して紛体にする場合の乾燥機についても特に制限はないが、例えば、気流乾燥機、バンド乾燥機、噴霧乾燥機などを好適に使用することができる。
【0076】
本発明に係る複合繊維は、種々の用途に用いることができ、例えば、紙、繊維、セルロース系複合材料、フィルター材料、塗料、プラスチックやその他の樹脂、ゴム、エラストマー、セラミック、ガラス、タイヤ、建築材料(アスファルト、アスベスト、セメント、ボード、コンクリート、れんが、タイル、合板、繊維板、天井材、壁材、床材、屋根材など)、家具、各種担体(触媒担体、医薬担体、農薬担体、微生物担体など)、吸着剤(不純物除去、消臭、除湿など)、抗菌材、抗ウイルス剤、しわ防止剤、粘土、研磨材、摩擦材、改質剤、補修材、断熱材、耐熱材、放熱材、防湿材、撥水材、耐水材、遮光材、シーラント、シールド材、防虫剤、接着剤、医用材料、ペースト材料、変色防止剤、電波吸収材、絶縁材、遮音材、インテリア材、防振材、半導体封止材、放射線遮断材、材料等のあらゆる用途に広く使用することができる。また、前記用途における各種充填剤、コーティング剤などに用いることができる。このうち、吸着剤、抗菌材、抗ウイルス剤、摩擦材、放射線遮蔽材、難燃材料、建築材料、断熱材が好ましい。
【0077】
本発明の複合繊維は、製紙用途に適用してもよく、例えば、印刷用紙、新聞紙、インクジェット用紙、PPC用紙、クラフト紙、上質紙、コート紙、微塗工紙、包装紙、薄葉紙、色上質紙、キャストコート紙、ノンカーボン紙、ラベル用紙、感熱紙、各種ファンシーペーパー、水溶紙、剥離紙、工程紙、壁紙用原紙、難燃紙(不燃紙)、積層板原紙、プリンテッドエレクトロニクス用紙、バッテリー用セパレータ、クッション紙、トレーシングペーパー、含浸紙、ODP用紙、建材用紙、化粧材用紙、封筒用紙、テープ用紙、熱交換用紙、化繊紙、減菌紙、耐水紙、耐油紙、耐熱紙、光触媒紙、化粧紙(脂取り紙など)、各種衛生紙(トイレットペーパー、ティッシュペーパー、ワイパー、おむつ、生理用品等)、たばこ用紙、板紙(ライナー、中芯原紙、白板紙など)、紙皿原紙、カップ原紙、ベーキング用紙、研磨紙、合成紙などが挙げられる。すなわち、本発明によれば、一次粒子径が小さくかつ粒度分布の狭い無機粒子と繊維との複合繊維を得ることができるため、2μm超の粒子径を有していた従来の無機填料とは異なった特性を発揮させることができる。更には、単に無機粒子を繊維に単に配合した場合と異なり、無機粒子を繊維と複合繊維化しておくと、無機粒子がシートに歩留易いだけでなく、凝集せずに均一に分散したシートを得ることができる。本発明における無機粒子は、好ましい態様において、繊維の外表面・ルーメンの内側に定着するだけでなく、ミクロフィブリルの内側にも生成することが電子顕微鏡観察の結果から明らかとなっている。
【0078】
また、本発明係る複合繊維を使用する際には、一般に無機填料及び有機填料と呼ばれる粒子や、各種繊維を併用することができる。例えば、無機填料として、炭酸カルシウム(軽質炭酸カルシウム、重質炭酸カルシウム)、炭酸マグネシウム、炭酸バリウム、水酸化アルミニウム、水酸化カルシウム、水酸化マグネシウム、水酸化亜鉛、クレー(カオリン、焼成カオリン、デラミカオリン)、タルク、酸化亜鉛、ステアリン酸亜鉛、二酸化チタン、ケイ酸ナトリウムと鉱酸から製造されるシリカ(ホワイトカーボン、シリカ/炭酸カルシウム複合繊維、シリカ/二酸化チタン複合繊維)、白土、ベントナイト、珪藻土、硫酸カルシウム、ゼオライト、脱墨工程から得られる灰分を再生して利用する無機填料および再生する過程でシリカや炭酸カルシウムと複合繊維を形成した無機填料などが挙げられる。炭酸カルシウム-シリカ複合物としては、炭酸カルシウムおよび/または軽質炭酸カルシウム-シリカ複合物以外に、ホワイトカーボンのような非晶質シリカを併用しても良い。有機填料としては、尿素-ホルマリン樹脂、ポリスチレン樹脂、フェノール樹脂、微小中空粒子、アクリルアミド複合繊維、木材由来の物質(微細繊維、ミクロフィブリル繊維、粉体ケナフ)、変性不溶化デンプン、未糊化デンプンなどが挙げられる。繊維としては、セルロースなどの天然繊維はもちろん、石油などの原料から人工的に合成される合成繊維、さらには、レーヨンやリヨセルなどの再生繊維(半合成繊維)、さらには無機繊維などを制限なく使用することができる。天然繊維としては上記の他にウールや絹糸やコラーゲン繊維等の蛋白系繊維、キチン・キトサン繊維やアルギン酸繊維等の複合糖鎖系繊維等が挙げられる。セルロース系の原料としては、パルプ繊維(木材パルプや非木材パルプ)、バクテリアセルロース、ホヤなどの動物由来セルロース、藻類などが例示され、木材パルプは、木材原料をパルプ化して製造すればよい。木材原料としては、アカマツ、クロマツ、トドマツ、エゾマツ、ベニマツ、カラマツ、モミ、ツガ、スギ、ヒノキ、カラマツ、シラベ、トウヒ、ヒバ、ダグラスファー、ヘムロック、ホワイトファー、スプルース、バルサムファー、シーダ、パイン、メルクシマツ、ラジアータパイン等の針葉樹、及びこれらの混合材、ブナ、カバ、ハンノキ、ナラ、タブ、シイ、シラカバ、ハコヤナギ、ポプラ、タモ、ドロヤナギ、ユーカリ、マングローブ、ラワン、アカシア等の広葉樹及びこれらの混合材が例示される。木材原料をパルプ化する方法は、特に限定されず、製紙業界で一般に用いられるパルプ化法が例示される。木材パルプはパルプ化法により分類でき、例えば、クラフト法、サルファイト法、ソーダ法、ポリサルファイド法等の方法により蒸解した化学パルプ;リファイナー、グラインダー等の機械力によってパルプ化して得られる機械パルプ;薬品による前処理の後、機械力によるパルプ化を行って得られるセミケミカルパルプ;古紙パルプ;脱墨パルプ等が挙げられる。木材パルプは、未晒(漂白前)の状態であってもよいし、晒(漂白後)の状態であってもよい。非木材由来のパルプとしては、綿、ヘンプ、サイザル麻、マニラ麻、亜麻、藁、竹、バガス、ケナフ、サトウキビ、トウモロコシ、稲わら、楮(こうぞ)、みつまた等が例示される。木材パルプ及び非木材パルプは、未叩解及び叩解のいずれでもよい。また、これらセルロース原料はさらに処理を施すことで粉末セルロース、酸化セルロースなどの化学変性セルロース、およびセルロースナノファイバー:CNF(ミクロフィブリル化セルロース:MFC、TEMPO酸化CNF、リン酸エステル化CNF、カルボキシメチル化CNF、機械粉砕CNF)として使用することもできる。合成繊維としてはポリエステル、ポリアミド、ポリオレフィン、アクリル繊維、半合繊維としてはレーヨン、アセテートなどが挙げられ、無機繊維としては、ガラス繊維、炭素繊維、各種金属繊維などが挙げられる。以上について、これらは単独でも2種類以上の組み合わせで用いても構わない。
【0079】
本発明の複合繊維を構成する無機粒子の平均粒子径や形状等は、電子顕微鏡による観察により確認することができる。さらに、無機粒子を合成する際の条件を調整することによって、種々の大きさや形状を有する無機粒子を繊維と複合繊維化することができる。
【0080】
複合繊維の形態
本発明においては、上述の複合繊維を様々な成形物(体)に成形することが可能である。例えば、本発明の複合繊維をシート化すると、高灰分のシートを容易に得ることができる。また、得られたシートを貼り合せて多層シートとすることもできる。
【0081】
シート製造に用いる抄紙機(抄造機)としては、例えば長網抄紙機、円網抄紙機、ギャップフォーマ、ハイブリッドフォーマ、ロトフォーマー、多層抄紙機、これらの機器の抄紙方式を組合せた公知の抄造機などが挙げられる。抄紙機におけるプレス線圧、後段でカレンダー処理を行う場合のカレンダー線圧は、いずれも操業性や複合繊維シートの性能に支障を来さない範囲内で定めることができる。また、形成されたシートに対して含浸や塗布により澱粉や各種ポリマー、顔料およびそれらの混合物を付与しても良い。
【0082】
シート化の際には湿潤および/または乾燥紙力剤(紙力増強剤)を添加することができる。これにより、複合繊維シートの強度を向上させることができる。紙力剤としては例えば、尿素ホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ポリアミド、ポリアミン、エピクロロヒドリン樹脂、植物性ガム、ラテックス、ポリエチレンイミン、グリオキサール、ガム、マンノガラクタンポリエチレンイミン、ポリアクリルアミド樹脂、ポリビニルアミン、ポリビニルアルコール等の樹脂;上記樹脂から選ばれる2種以上からなる複合ポリマー又は共重合ポリマー;澱粉及び加工澱粉;カルボキシメチルセルロース、グアーガム、尿素樹脂等が挙げられる。紙力剤の添加量は特に限定されない。
【0083】
また、填料の繊維への定着を促したり、填料や繊維の歩留を向上させたりするために、高分子ポリマーや無機物を添加することもできる。例えば凝結剤として、ポリエチレンイミンおよび第三級および/または四級アンモニウム基を含む改質ポリエチレンイミン、ポリアルキレンイミン、ジシアンジアミドポリマー、ポリアミン、ポリアミン/エピクロヒドリン重合体、並びにジアルキルジアリル第四級アンモニウムモノマー、ジアルキルアミノアルキルアクリレート、ジアルキルアミノアルキルメタクリレート、ジアルキルアミノアルキルアクリルアミド及びジアルキルアミノアルキルメタクリルアミドとアクリルアミドの重合体、モノアミン類とエピハロヒドリンからなる重合体、ポリビニルアミン及びビニルアミン部を持つ重合体やこれらの混合物などのカチオン性のポリマーに加え、前記ポリマーの分子内にカルボキシル基やスルホン基などのアニオン基を共重合したカチオンリッチな両イオン性ポリマー、カチオン性ポリマーとアニオン性または両イオン性ポリマーとの混合物などを用いることができる。また歩留剤として、カチオン性またはアニオン性、両性ポリアクリルアミド系物質を用いることができる。また、これらに加えて少なくとも一種以上のカチオンやアニオン性のポリマーを併用する、いわゆるデュアルポリマーと呼ばれる歩留りシステムを適用することもでき、少なくとも一種類以上のアニオン性のベントナイトやコロイダルシリカ、ポリ珪酸、ポリ珪酸もしくはポリ珪酸塩ミクロゲルおよびこれらのアルミニウム改質物などの無機微粒子や、アクリルアミドが架橋重合したいわゆるマイクロポリマーといわれる粒径100μm以下の有機系の微粒子を一種以上併用する多成分歩留りシステムであってもよい。特に単独または組合せで使用するポリアクリルアミド系物質が、極限粘度法による重量平均分子量が200万ダルトン以上である場合、良好な歩留りを得ることができ、好ましくは、500万ダルトン以上であり、更に好ましくは1000万ダルトン以上3000万ダルトン未満の上記アクリルアミド系物質である場合に非常に高い歩留りを得ることが出来る。このポリアクリルアミド系物質の形態はエマルジョン型でも溶液型であっても構わない。この具体的な組成としては、該物質中にアクリルアミドモノマーユニットを構造単位として含むものであれば特に限定はないが、例えば、アクリル酸エステルの4級アンモニウム塩とアクリルアミドとの共重合物、あるいはアクリルアミドとアクリル酸エステルを共重合させた後、4級化したアンモニウム塩が挙げられる。該カチオン性ポリアクリルアミド系物質のカチオン電荷密度は特には限定されない。
【0084】
その他、目的に応じて、濾水性向上剤、内添サイズ剤、pH調整剤、消泡剤、ピッチコントロール剤、スライムコントロール剤、嵩高剤、炭酸カルシウム、カオリン、タルク、シリカなどの無機粒子(いわゆる填料)等が挙げられる。各添加剤の使用量は特に限定されない。
【0085】
シートの基本重量(坪量:1平方mあたりの重量)は、目的に応じて適宜調整できるが、例えば建材として用いる場合には、60~1200g/m2とすると強度が強く、また、製造時の乾燥負荷が低いため良好である。また、シートの坪量は、1200g/m2以上とすることもでき、例えば2000~110000g/m2とすることもできる。
【0086】
シート化以外の成形法を用いることも可能であり、例えば、パルプモールドと呼ばれるように鋳型に原料を流し込んで吸引脱水・乾燥させる方法や、樹脂や金属などの成形物の表面に塗り広げて乾燥後、基材から剥離する方法などによって、種々の形状を有する成形物を得ることができる。また、樹脂を混ぜてプラスチック様に成形することもできるし、セメントやゴムに混ぜて補強材として用いることもできる。また、一般にセメントや石膏などの無機質ボードを作成するのに用いられるような加圧・加熱プレス成形でボード状にしたり、ブロック状に成形したりすることもできる。一般に、シートは、折り曲げたり、巻き取れたりするものであるが、より強度が必要な場合には、ボード状にすることができる。また、厚みのある塊であるブロック状に成形することも可能であり、例えば、直方体や立方体などに成形することができる。
【0087】
以上に示した配合・乾燥・成形において、1種類の複合繊維のみを用いることもできるし、2種類以上の複合繊維を混合して用いることもできる。2種類以上の複合繊維を用いる場合は、予めそれらを混合したものを用いることもできるし、それぞれを配合・乾燥・成形したものを後から混合することもできる。
【0088】
また、複合繊維の成形物に後からポリマーなどの各種有機物や顔料などの各種無機物を付与しても良い。
本発明品で製造した成形物には印刷を施すことができる。この印刷方法は特に限定されるものではいが、例えば、オフセット印刷、シルクスクリーン印刷、スクリーン印刷、グラビア印刷、マイクログラビア印刷、フレキソ印刷、活版印刷、シール印刷、フォーム印刷、オンデマンド印刷、ファニッシャーロール印刷、インクジェット印刷等の公知の方式で行うことができる。この中でもインクジェト印刷は、オフセット印刷のように版下を作製する必要がなく、インクジェットプリンターの大型化が比較的容易であるため、大型シートへの印刷も可能であるため好ましい。また、フレキソ印刷は表面の凹凸が比較的大きい成形物にも好適に印刷できるため、ボードやモールド、ブロックのような形状に成形した際にも好適に用いることができる。
【0089】
また、印刷によって形成される印刷画像の絵柄の種類は特に限定されるものではなく、例えば木目柄、石目柄、布目柄、抽象柄、幾何学模様、文字、記号、又はこれらの組み合わせ等、所望により任意であり、単色無地であってもよい。
【実施例】
【0090】
具体的な実験例を挙げて本発明をより詳細に説明するが、本発明は下記の具体例に限定されるものではない。また、本明細書において特に記載しない限り、濃度や部などは重量基準であり、数値範囲はその端点を含むものとして記載される。
【0091】
実験1
針葉樹晒クラフトパルプ(NBKP、日本製紙製)および広葉樹晒クラフトパルプ(LBKP、日本製紙製)を2:8の割合でパルパー(IHI voite社製)に投入し、水を加え濃度5%で離解し、パルプ分散液を調製した。これをダブルディスクリファイナー(DDR、相川鉄工社製)にて濾水度が410mlになるまで叩解した。
【0092】
得られたパルプ分散液をスクリーン(相川鉄工社製)に通して異物を除去した後、10m3を反応器(住友重機械プロセス機器社製)に投じ、温度57℃で撹拌しながら水酸化ナトリウムと炭酸ナトリウムをパルプ重量当たり76.7%および12.6%添加し、pH13とした。その後、7.3%硫酸マグネシウムと3.4%硫酸アルミニウムの混合溶液を60分間かけて滴下し、pH7になるまで反応させた。得られた複合繊維の懸濁液を、脱水機(富国工業社製)で濃度29.1%まで脱水して濃縮した。複合繊維のカナダ標準濾水度は413mlであり、生成物に含まれる固形分の内訳は、以下のとおりだった。
・複合繊維(マグネシウムハイドロタルサイト24.0%、LBKP37.6%、NBKP9.4%で構成されている複合繊維) 71.7%
・(パルプ繊維に定着していない)マグネシウムハイドロタルサイト 29.0%
この複合繊維について、下表のように濃度を調整し、それぞれのサンプルを5日間静置した。濃度の調整には、脱水機(富国工業社製)または乾燥機(ISUZU, Drying Oven)を使用した。
【0093】
次いで、複合繊維を濃度3%まで水で希釈して離解した。離解は、JIS規格(JIS P 8220-1、「化学パルプの離解」)に基づいてTAPPI離解機により実施し、パルプ繊維が完全に解繊するまでの時間を離解時間として記録した。
【0094】
本実験においては、複合繊維に占める無機粒子の重量割合を測定し、実験前後の変化を評価した。すなわち、離解したサンプルに水を加えて0.1%に希釈し、200mlのスラリー(固形分0.2g)を60メッシュ篩に通して、篩上に残った繊維量(B)と篩上に残った無機粒子量(C)を測定し、複合繊維に占める無機粒子の重量割合[C/(B+C)]を算出した。下表に示す無機粒子複合繊維の残存率(%)は、複合繊維に占める無機粒子の重量割合(静置実験後)/複合繊維に占める無機粒子の重量割合(静置実験前)×100として算出した。
【0095】
【0096】
表1に示したように、サンプルC~E(静置時濃度:25~48.2%)の複合繊維は、5日間静置した後でも、離解性が良好であった。一方、サンプルB(静置時濃度:20%)では離解後の複合繊維の無機分残存率が低下し、サンプルF(静置時濃度:67.7%)では離解性が悪化した。
【0097】
実験2
針葉樹晒クラフトパルプ(NBKP、日本製紙製)および広葉樹晒クラフトパルプ(LBKP、日本製紙製)を2:8の割合でパルパー(IHI voite社製)に投入し、水を加え濃度5%で離解し、パルプ分散液を調製した。これをダブルディスクリファイナー(DDR、相川鉄工社製)にて濾水度が550mlになるまで叩解した。
【0098】
得られたパルプ分散液をスクリーン(相川鉄工社製)に通して異物を除去した後、10m3を反応器(住友重機械プロセス機器社製)に投じ、温度57℃で撹拌しながら水酸化ナトリウムと炭酸ナトリウムをパルプ重量当たり75.3%および12.5%添加し、pH13とした。その後、9.7%硫酸亜鉛と3.4%硫酸アルミニウムの混合溶液を60分間かけて滴下し、pH7になるまで反応させた。得られた複合繊維の懸濁液を、脱水機(富国工業社製)で濃度25%まで脱水して濃縮した。
【0099】
無機粒子と繊維の複合繊維を含む水分散液(濃度:25%、有姿:6.5トン)を調製し、1m3のフレコンバッグに収容して製紙工場に運搬した。このサンプルに含まれる固形分は、以下のとおりである。
・無機粒子と繊維の複合繊維(亜鉛ハイドロタルサイト13.2%、LBKP14.0%、NBKP55.9%で構成されている複合繊維) 83.1%
・(パルプ繊維に定着していない)亜鉛ハイドロタルサイト 16.9%
次いで、工場に運搬した複合繊維を、パルパー(容積:10m3)を用いて3回に分けて離解した。すなわち、フレコンバッグに収容した複合繊維の水分散液(約2.2トン)をパルパーに投入し、水を加えて6.7%に希釈してから離解した。15分の離解後に複合無機分残存率を測定したところ、58.0%だった。