IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 旭化成株式会社の特許一覧

<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-11-22
(45)【発行日】2024-12-02
(54)【発明の名称】ゴム組成物、及びタイヤ
(51)【国際特許分類】
   C08L 7/00 20060101AFI20241125BHJP
   C08L 9/00 20060101ALI20241125BHJP
   C08K 3/04 20060101ALI20241125BHJP
   C08K 3/36 20060101ALI20241125BHJP
   C08C 19/02 20060101ALI20241125BHJP
   C08C 19/22 20060101ALI20241125BHJP
   B60C 1/00 20060101ALI20241125BHJP
【FI】
C08L7/00
C08L9/00
C08K3/04
C08K3/36
C08C19/02
C08C19/22
B60C1/00 A
【請求項の数】 10
(21)【出願番号】P 2022559096
(86)(22)【出願日】2021-10-22
(86)【国際出願番号】 JP2021039141
(87)【国際公開番号】W WO2022091982
(87)【国際公開日】2022-05-05
【審査請求日】2023-03-28
(31)【優先権主張番号】P 2020182774
(32)【優先日】2020-10-30
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000000033
【氏名又は名称】旭化成株式会社
(74)【代理人】
【識別番号】100079108
【弁理士】
【氏名又は名称】稲葉 良幸
(74)【代理人】
【識別番号】100109346
【弁理士】
【氏名又は名称】大貫 敏史
(74)【代理人】
【識別番号】100117189
【弁理士】
【氏名又は名称】江口 昭彦
(74)【代理人】
【識別番号】100134120
【弁理士】
【氏名又は名称】内藤 和彦
(72)【発明者】
【氏名】井上 芳久
【審査官】横山 法緒
(56)【参考文献】
【文献】国際公開第2016/039005(WO,A1)
【文献】特開2019-014796(JP,A)
【文献】国際公開第2016/039007(WO,A1)
【文献】特開2012-136659(JP,A)
【文献】特開2012-102240(JP,A)
【文献】特開2012-052028(JP,A)
【文献】特表2010-522800(JP,A)
【文献】特開2004-250703(JP,A)
【文献】特開2003-253056(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C08L 1/00-101/14
C08K 3/00-13/08
C08C 19/00-19/44
B60C 1/00
(57)【特許請求の範囲】
【請求項1】
ヨウ素価が30~200(g/100g)であり、エチレン構造の含有量が3質量%以
上であり、芳香族ビニル単量体ブロックの含有量が10質量%未満であり、かつ共役ジエ
ン単量体単位の含有量が6質量%以上であり、ゴム状重合体の総量に対する窒素原子含有官能基を有する重合体の質量比率である変性率が60~95(質量%)であるゴム状重合体を10質量部以上90質量部以下と、
天然ゴムを10質量部以上90質量部以下と、
を、含有し、
前記ゴム状重合体と前記天然ゴムを含むゴム成分の総量100質量部に対して、
シリカ系無機充填剤及びカーボンブラックを40質量部以上60質量部以下含有し、
前記シリカ系無機充填剤の含有量が58質量部以下であり、前記カーボンブラックの含
有量が58質量部以下である、
ゴム組成物。
【請求項2】
前記ゴム状重合体のガラス転移温度(Tg)が、-35℃以下である、
請求項1に記載のゴム組成物。
【請求項3】
前記ゴム状重合体が共役ジエン系重合体であって、芳香族ビニル単量体単位を5質量%
以上40質量%以下含み、共役ジエン単量体単位中の1,2-ビニル結合量が10mol
%以上60mol%以下である、
請求項1又は2に記載のゴム組成物。
【請求項4】
前記ゴム状重合体が、スズ原子又は珪素原子を含有する、
請求項1乃至3のいずれか一項に記載のゴム組成物。
【請求項5】
前記ゴム成分の総量100質量部に対し、オイル及び/又は環含有樹脂を、35質量部
未満、さらに含む、
請求項1乃至4のいずれか一項に記載のゴム組成物。
【請求項6】
前記ゴム成分の総量100質量部に対し、オイルを10質量部未満、さらに含む、
請求項1乃至4のいずれか一項に記載のゴム組成物。
【請求項7】
前記ゴム状重合体のヨウ素価が80~200(g/100g)であり、かつ、芳香族ビ
ニル単量体単位の含有量が13質量%以下である
請求項1乃至6のいずれか一項に記載のゴム組成物。
【請求項8】
前記ゴム状重合体の共役ジエン単量体単位中の1,2-ビニル結合量が50mol%以
上60mol%以下である、
請求項1乃至7のいずれか一項に記載のゴム組成物。
【請求項9】
請求項1乃至8のいずれか一項に記載のゴム組成物を含む、タイヤ。
【請求項10】
請求項1乃至8のいずれか一項に記載のゴム組成物を含むキャップトレッドを具備し、
ロードインデックスが100以上170以下である、空気入りタイヤ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ゴム組成物、及びタイヤに関する。
【背景技術】
【0002】
近年、トラックやバスなどの重荷重の車両に用いる空気入りタイヤにおいては、地球環境負荷の低減化という社会的要請によって、低燃費化やタイヤの耐摩耗性の向上が求められている。さらには人命尊寿の観点からタイヤの使用後期の性能低下を抑制することで、運転時の安全安心を保持する要求も高まっている。
【0003】
従来から、タイヤの低燃費性の向上のために、キャップトレッドゴムにおいて、シリカの配合を行う技術が検討されている。確かに、この技術により低燃費性は向上するが、シリカの分散性が悪いと十分な耐摩耗性が得られず、低燃費性及び耐摩耗性を高次元でバランス化させることは困難である、という問題点を有している。
さらに、タイヤは、使用後期で性能変化が生じ、例えば硬度上昇に伴って乗り心地が悪化してしまう、という問題点を有している。
【0004】
近年、タイヤトレッド、シート、フィルム、及びアスファルト改質用のゴム材料の分野において、機械強度や圧縮永久歪みを高める目的で、エチレン構造を有し架橋可能な不飽和基を導入したゴム状重合体を含有するゴム組成物が提案されている。このようなゴム状重合体をタイヤ用のゴム組成物に含有させることにより、タイヤの耐摩耗性の向上が図られる(例えば、特許文献1~4参照)。
【0005】
エチレン構造を有し架橋可能な不飽和基を導入したゴム状重合体を含有するゴム組成物は、不飽和結合が少なく、経年劣化が抑制されるため、タイヤの使用後期での乗り心地の悪化の抑制も期待できる。
【先行技術文献】
【特許文献】
【0006】
【文献】国際公開第2003/085010号公報
【文献】国際公開第2019/151126号公報
【文献】国際公開第2019/151127号公報
【文献】国際公開第2019/078083号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、エチレン構造を有し架橋可能な不飽和基を導入したゴム状重合体は、水添率が高すぎると、ムーニー粘度が高くなり、加工性が悪化する傾向にある、という問題点を有している。
また、本発明者の検討によると、ゴム状重合体の水添率が高すぎると、ゴム組成物中で十分なシリカ分散性が得られず、加工性や耐摩耗性が悪化する傾向にある、という問題点も有している。
【0008】
そこで本発明においては、上述した従来技術の問題点に鑑み、加工性、低燃費性、耐摩耗性に優れ、タイヤの使用後期での性能変化も抑制できるゴム組成物を提供することを目的とする。
【課題を解決するための手段】
【0009】
本発明者らは、上述した従来技術の課題を解決するため鋭意検討した結果、ゴム状重合体のヨウ素価、エチレン構造の含有量、芳香族ビニル単量体ブロックの含有量、共役ジエン単量体単位の含有量を特定したゴム状重合体と、天然ゴムと、補強材としてのシリカ系無機充填剤、及びカーボンブラックを、所定量含有するゴム組成物により、上述した従来技術の課題を解決できることを見出し、本発明を完成するに至った。
すなわち、本発明は、以下のとおりである。
【0010】
〔1〕
ヨウ素価が30~200(g/100g)であり、エチレン構造の含有量が3質量%以
上であり、芳香族ビニル単量体ブロックの含有量が10質量%未満であり、かつ共役ジエ
ン単量体単位の含有量が6質量%以上であり、ゴム状重合体の総量に対する窒素原子含有官能基を有する重合体の質量比率である変性率が60~95(質量%)であるゴム状重合体を10質量部以上90質量部以下と、
天然ゴムを10質量部以上90質量部以下と、
を、含有し、
前記ゴム状重合体と前記天然ゴムを含むゴム成分の総量100質量部に対して、
シリカ系無機充填剤及びカーボンブラックを40質量部以上60質量部以下含有し、
前記シリカ系無機充填剤の含有量が58質量部以下であり、前記カーボンブラックの含
有量が58質量部以下である、
ゴム組成物。
〔2〕
前記ゴム状重合体のガラス転移温度(Tg)が、-35℃以下である、前記〔1〕に記
載のゴム組成物。
〔3〕
前記ゴム状重合体が共役ジエン系重合体であって、芳香族ビニル単量体単位を5質量%
以上40質量%以下含み、共役ジエン単量体単位中の1,2-ビニル結合量が10mol
%以上60mol%以下である、前記〔1〕又は〔2〕に記載のゴム組成物。
〔4〕
前記ゴム状重合体が、スズ原子又は珪素原子を含有する、前記〔1〕乃至〔3〕のいずれか一に記載のゴム組成物。
〔5〕
前記ゴム成分の総量100質量部に対し、オイル及び/又は環含有樹脂を、35質量部
未満、さらに含む、前記〔1〕乃至〔4〕のいずれか一に記載のゴム組成物。
〔6〕
前記ゴム成分の総量100質量部に対し、オイルを10質量部未満、さらに含む、前記
〔1〕乃至〔4〕のいずれか一に記載のゴム組成物。
〔7〕
前記ゴム状重合体のヨウ素価が80~200(g/100g)であり、かつ、芳香族ビ
ニル単量体単位の含有量が13質量%以下である、前記〔1〕乃至〔6〕のいずれか一に
記載のゴム組成物。
〔8〕
前記ゴム状重合体の共役ジエン単量体単位中の1,2-ビニル結合量が50mol%以
上60mol%以下である、前記〔1〕乃至〔7〕のいずれか一に記載のゴム組成物。
〔9〕
前記〔1〕乃至〔8〕のいずれか一に記載のゴム組成物を含む、タイヤ。
〔10〕
前記〔1〕乃至〔8〕のいずれか一に記載のゴム組成物を含むキャップトレッドを具備
し、ロードインデックスが100以上170以下である、空気入りタイヤ。
【発明の効果】
【0011】
本発明によれば、加工性、低燃費性、及び耐摩耗性に優れ、さらにタイヤの使用後期での性能変化も抑制できる優れたタイヤが得られるゴム組成物を提供できる。
【発明を実施するための形態】
【0012】
以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。
なお、以下の本実施形態は、本発明を説明するための例示であり、本発明は以下の実施形態に限定されるものではない。本発明は、その要旨の範囲内で適宜に変形して実施することができる。
【0013】
〔ゴム組成物〕
本実施形態のゴム組成物は、ヨウ素価が10~200(g/100g)であり、エチレン構造の含有量が3質量%以上であり、芳香族ビニル単量体ブロックの含有量が10質量%未満であり、かつ共役ジエン単量体単位の含有量が2質量%以上であるゴム状重合体(以下、単にゴム状重合体と記載する場合がある)を10質量部以上90質量部以下と、天然ゴムを10質量部以上90質量部以下とを含有する。
また、前記ゴム状重合体と前記天然ゴムを含むゴム成分の総量100質量部に対して、シリカ系無機充填剤及びカーボンブラックを20質量部以上80質量部以下含有し、前記シリカ系無機充填剤の含有量は60質量部以下であり、前記カーボンブラックの含有量は60質量部以下である。
上記構成により、加工性、低燃費性、及び耐摩耗性に優れ、かつ、タイヤの使用後期での性能変化も抑制できる優れたタイヤが得られるゴム組成物となる。
【0014】
本実施形態のゴム組成物は、加硫物として好適に用いられる。加硫物は、例えばゴム状重合体を前述のシリカやカーボンブラック等の充填剤、そして、前記ゴム状重合体以外のゴム成分、シランカップリング剤、ゴム用軟化剤、ワックス、加硫剤、加硫促進剤、加硫助剤と混合してゴム組成物とした後、加熱して加硫することにより得られる。
以下、各成分について詳細に説明する。
【0015】
(ゴム状重合体)
本実施形態のゴム組成物に用いるゴム状重合体は、例えば、少なくとも共役ジエン単量体を共重合した後に共役ジエン単量体単位の一部を水素添加するか、少なくともエチレンと共役ジエン単量体とを共重合することにより得られる。
これにより、エチレン構造と共役ジエン単量体単位とを含むゴム状重合体を得ることができる。
【0016】
また、ゴム状重合体は、必要に応じて、芳香族ビニル単量体単位を含んでいてもよい。この場合、ゴム状重合体は、少なくとも共役ジエン単量体と芳香族ビニル単量体を共重合した後に共役ジエン単量体単位の一部を水素添加するか、少なくともエチレンと共役ジエン単量体と芳香族ビニル単量体とを共重合して得ることができる。さらに、ゴム状重合体は、その他の単量体単位をさらに含んでいてもよい。
【0017】
なお、本実施形態において「単量体」とは、重合前の化合物を言い、「単量体単位」とは重合体を構成する構成単位をいう。また、「エチレン構造」には、共役ジエン単量体単位の二重結合部分の一部を水素添加することにより生じるものと、単量体としてエチレンを用いた場合のエチレン単量体単位の両方を含む。
【0018】
共役ジエン単量体を重合した後に水素添加する方法としては、例えば、国際公開第96/05250号公報、特開2000-053706号公報、国際公開第2003/085010号公報、国際公開第2019/151126号公報、国際公開第2019/151127号公報、国際公開第2002/002663号公報、及び国際公開第2015/006179号公報に記載されているように、種々の添加剤や条件のもとに、アニオン重合で共役ジエン単量体を重合し、さらに必要に応じてその他の単量体と共重合した後に水素添加する方法が挙げられる。
【0019】
共役ジエン単量体としては、以下に限定されないが、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、3-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、及び1,3-ヘプタジエンが挙げられる。
これらの中でも、工業的入手の容易さの観点から、1,3-ブタジエンやイソプレンが好ましく、1,3-ブタジエンがより好ましい。これらは1種単独で用いてもよいし、2種以上を併用してもよい。
【0020】
また、芳香族ビニル単量体としては、以下に限定されないが、例えば、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、o,p-ジメチルスチレン、o-エチルスチレン、m-エチルスチレン、p-エチルスチレン、α-メチルスチレン、ビニルエチルベンゼン、ビニルキシレン、ビニルナフタレン、及びジフェニルエチレンが挙げられる。
これらの中でも、工業的入手の容易さの観点から、スチレンが好ましい。これらは1種単独で用いてもよいし、2種以上を併用してもよい。
このような芳香族ビニル単量体に基づく構成単位をゴム状重合体中に含むことにより、本実施形態のゴム組成物をタイヤにした時の破壊強度、省燃費性、ウェットスキッド抵抗性、及び耐摩耗性のバランスがより向上する傾向にある。
【0021】
また、その他の単量体としては、以下に限定されないが、例えば、エチリデンノルボルネン、ジシクロペンタジエン、ビニルノルボルネン、ジビニルベンゼン等の非共役ポリエン化合物単量体;ジシクロペンタジエン、ビニルノルボルネン、エチリデンノルボルネン等の環状非共役ポリエン化合物単量体が挙げられる。
このようなその他の単量体を用いることにより、本実施形態のゴム組成物をタイヤに用いた時の破壊強度、省燃費性、ウェットスキッド抵抗性、及び耐摩耗性のバランスがより向上する傾向にある。
これらの単量体は1種単独で用いてもよいし、2種以上を併用してもよい。
【0022】
少なくともエチレンと共役ジエン単量体を共重合する方法としては、例えば、国際公開第2019/078083号公報、国際公開第2019/171679号公報、国際公開第2019/142501号公報に記載されている方法が好ましい方法として挙げられる。
特に種々の添加剤や条件のもとに、配位重合で、エチレン、共役ジエン単量体、必要に応じてその他の単量体を添加して共重合する方法が好ましい方法として挙げられる。
【0023】
<ヨウ素価>
ゴム状重合体のヨウ素価は、10(g/100g)以上であり、15(g/100g)以上が好ましく、30(g/100g)以上がより好ましく、50(g/100g)以上がさらに好ましく、80(g/100g)以上がさらに好ましい。ヨウ素価が10(g/100g)以上であることにより、ゴム組成物は、加工性や、架橋のしやすさ、タイヤにしたときの低燃費性がより向上する傾向にある。特に、ヨウ素価が80(g/100g)以上であることにより、さらに加工性が向上し、補強材の分散性が向上し、タイヤにしたときの耐定伸長疲労性がより向上する傾向にある。
一方、ゴム状重合体のヨウ素価は、200(g/100g)以下であり、170(g/100g)以下が好ましく、140(g/100g)以下がより好ましく、110(g/100g)以下がさらに好ましく、80(g/100g)以下がさらにより好ましい。ヨウ素価が200(g/100g)以下であることにより、ゴム組成物をタイヤにしたときの耐摩耗性がより向上し、タイヤの使用後期での性能変化も抑制できる傾向にある。
【0024】
ヨウ素価は、「JIS K 0070:1992」に記載の方法に準じて測定することができる。ヨウ素価は、対象となる物質100gと反応するハロゲンの量をヨウ素のグラム数に換算して表す値であるため、ヨウ素価の単位は「g/100g」である。
【0025】
ゴム状重合体のヨウ素価は、共役ジエン単量体単位に含まれる二重結合の量を調整することによって制御することができる。
後述するゴム状重合体の製造方法において、例えば、共役ジエン単量体と芳香族ビニル単量体とを共重合した場合は、共役ジエン単量体の含有量が低い方がヨウ素価は低くなり、また、共役ジエン単量を水素添加する場合は、水素添加率が高い方が、ヨウ素価は低くなる傾向にある。
【0026】
<エチレン構造>
ゴム状重合体に含まれるエチレン構造の含有量は3質量%以上であり、5質量%以上が好ましく、20質量%以上がより好ましい。エチレン構造が3質量%以上であることにより、ゴム組成物は耐摩耗性に優れたものとなる傾向にある。また、ゴム状重合体のエチレン構造の含有量は、好ましくは90質量%以下であり、80質量%以下であり、70質量%以上がより好ましい。エチレン構造の含有量が90質量%以下であることにより、ゴム組成物は、ゴム弾性がより向上する傾向にある。
【0027】
本実施形態のゴム組成物に用いるゴム状重合体は、芳香族部と共役ジエン部とを有する共役ジエン系共重合体に対して水素添加反応を行うことで、共役ジエン部中の二重結合部分の一部をエチレン構造とすることにより製造してもよいし、芳香族ビニル単量体と、共役ジエン単量体と、エチレンとをランダム共重合して製造してもよい。
このなかでも、製造コストの観点から、ゴム状重合体は、共役ジエン系共重合体に対して水素添加反応を行うことにより得ることが好ましい。
エチレン構造の含有量は、エチレンの添加量や、共役ジエン単量体単位の量とその水素添加率を調整することにより、3質量%以上に制御することができる。
【0028】
なお、本明細書において、芳香族ビニル単量体に基づく構成単位を「芳香族部」と記載する場合があり、共役ジエン単量体に基づく構成単位を、「共役ジエン部」と記載する場合がある。
【0029】
<芳香族ビニル単量体ブロックの含有量>
ゴム状重合体に含まれる芳香族ビニル単量体ブロックの含有量は10質量%未満であり、7質量%以下が好ましく、5質量%以下がより好ましく、3質量%以下がさらに好ましい。芳香族ビニル単量体ブロックの含有量が10質量%未満であることにより、本実施形態のゴム組成物をタイヤに用いた場合の省燃費性がより向上する傾向にある。芳香族ビニル単量体ブロックの含有量の下限は制限されないが、1質量%以上とすることができる。
【0030】
なお、前記「芳香族ビニル単量体ブロック」とは、芳香族ビニル単量体単位が8以上連鎖している構造をいう。
本実施形態のゴム組成物をタイヤに用いた時の省燃費性の観点から、本実施形態のゴム組成物に用いるゴム状重合体においては、このような芳香族ビニル単量体ブロックの数が、少ないか又は無いことが好ましい。
【0031】
ゴム状重合体中の芳香族ビニル単量体ブロックの含有量の測定方法としては、特に制限されないが、例えば、ゴム状重合体がブタジエン-スチレン共重合体の場合、Kolthoffの方法(I.M.KOLTHOFF,et al.,J.Polym.Sci.1,429(1946)に記載の方法)によりブタジエン-スチレン共重合体を分解し、メタノールに不溶なポリスチレン量を分析することにより測定する方法が挙げられる。その他の方法としては、国際公開第2014-133097号公報に記載されているように、NMRを用いてスチレン単位の連鎖を測定すること等の公知の方法が挙げられる。
ゴム状重合体中の芳香族ビニル単量体ブロックの含有量は、重合工程において、芳香族ビニル単量体の添加量、添加のタイミング等を調整することにより、10質量%未満に制御することができる。
【0032】
<共役ジエン単量体単位の含有量>
ゴム状重合体中の共役ジエン単量体単位の含有量は、2質量%以上であり、好ましくは3質量%以上であり、より好ましくは6質量%以上である。共役ジエン単量体単位が有する二重結合は、架橋可能な不飽和基となる。
ゴム状重合体中の共役ジエン単量体単位の含有量は、ヨウ素価と密接に関係している。共役ジエン単量体単位の含有量が2質量%以上であることにより、本実施形態のゴム組成物は、加工性、架橋のしやすさ、及びタイヤにした時の省燃費性が優れたものとなる傾向にある。また、ゴム状重合体中の共役ジエン単量体単位の含有量は、好ましくは50質量%以下であり、より好ましくは30質量%以下であり、さらに好ましくは20質量%以下である。共役ジエン単量体単位の含有量が50質量%以下であることにより、本実施形態のゴム組成物をタイヤにした時の耐摩耗性が優れたものとなり、タイヤの使用後期での性能変化も抑制できる傾向にある。
ゴム状重合体中の共役ジエン単量体単位の含有量は、重合工程における共役ジエン単量体の添加量を調整することにより、上記数値範囲に制御できる。
【0033】
<芳香族ビニル単量体単位の含有量>
ゴム状重合体は、芳香族ビニル単量体単位を含むことが好ましい。ゴム状重合体の芳香族ビニル単量体単位の含有量は、好ましくは5質量%以上であり、より好ましくは7質量%以上であり、さらに好ましくは9質量%以上である。芳香族ビニル単量体単位の含有量が5質量%以上であることにより、本実施形態のゴム組成物をタイヤに用いたときの操縦安定性が優れる傾向にある。
また、芳香族ビニル単量体単位の含有量は、40質量%以下であることが好ましく、35質量%以下であることがより好ましく、30質量%以下であることがさらに好ましい。芳香族ビニル単量体単位の含有量が40質量%以下であることにより、本実施形態のゴム組成物をタイヤに用いたときの省燃費性がより向上する傾向にある。
さらに、ゴム状重合体中の芳香族ビニル単量体単位の含有量が13質量%以下であることにより、本実施形態のゴム組成物をタイヤに用いたときの省燃費性と耐摩耗性がより向上する傾向にある。
ゴム状重合体中の芳香族ビニル単量体単位の含有量は、重合工程における芳香族ビニル単量体の添加量を調整することにより、上記数値範囲に制御できる。
【0034】
<共役ジエン単量体単位中の1,2-ビニル結合量>
本実施形態のゴム組成物をタイヤに用いたときのブレーキ性能に優れる観点から、前記ゴム状重合体における共役ジエン単量体単位中の1,2-ビニル結合量は、10mol%以上であることが好ましく、20mоl%以上であることがより好ましく、30mоl%以上であることがさらに好ましい。
また、本実施形態のゴム組成物をタイヤに用いたときの省燃費性に優れる観点から、共役ジエン単量単位中の1,2-ビニル結合量は、60mol%以下であることが好ましく、50mоl%以下であることがより好ましく、40mоl%以下であることがさらに好ましい。
さらに、本実施形態のゴム組成物をタイヤに用いたときの耐定伸長疲労性に優れる観点から、ゴム状重合体における共役ジエン単量体単位中の1,2-ビニル結合量は、50mol以上60mol%以下であることが好ましい。
ゴム状重合体における共役ジエン単量体単位中の1,2-ビニル結合量は、重合工程における共役ジエン単量体の添加量、水素添加反応工程における水素添加量及び反応時間を調整することにより、上記数値範囲に制御できる。
【0035】
<ゴム状重合体の含有量>
本実施形態のゴム組成物においては、ゴム状重合体と天然ゴムを含むゴム成分の総量を100質量部としたとき、ゴム状重合体の含有量は10質量部以上であり、好ましくは20質量部以上であり、より好ましくは30質量部以上である。
ゴム状重合体の含有量が10質量部以上であることにより、本実施形態のゴム組成物をタイヤに用いたときの省燃費性、耐摩耗性が優れたものとなる傾向にある。また、優れた加工性を確保する観点から、ゴム状重合体の含有量は90質量部以下であり、好ましくは70質量部以下であり、より好ましくは50質量部以下であり、さらに好ましくは40質量部以下である。
【0036】
以下、「質量部」で表す値は、特に断りがなければ、ゴム状重合体と天然ゴムを含むゴム成分の総量を100質量部とした場合の値とする。
【0037】
本実施形態のゴム組成物に含まれる特定のゴム成分の種類や含有比率を同定する手法は特に限定されないが、NMRを用いる方法が挙げられる。
例えば、既報(JSR TECHNICAL REVIEW No.126/2019)には、固体13C-C-NMRを用いることで、異なる2種類以上の成分からなるゴム成分中に含まれるスチレンユニット、1,2-ビニル結合、1,4-ビニル結合、1,4-シス結合、やイソプレンユニットの比率を定量的に算出することができる。
【0038】
異なる2種類以上の成分とは、特に限定されないが、水素未添加の1,2-ビニル結合、水素添加後の1,2-ビニル結合、水素未添加の3,4-ビニル結合、水素添加後の3,4-ビニル結合、水素未添加の1,4-ビニル結合、及び水素添加後の1,4-ビニル結合の結合様式で組み込まれている共役ジエン単量体単位、芳香族ビニル単量体単位が挙げられる。なお、各結合様式で組み込まれている共役ジエン単量体単位の各々の量は、NMR等によって測定することができる。
【0039】
水素未添加の1,2-ビニル結合、水素添加後の1,2-ビニル結合、水素未添加の3,4-ビニル結合、水素添加後の3,4-ビニル結合、水素未添加の1,4-ビニル結合、及び水素添加後の1,4-ビニル結合の結合様式で組み込まれている共役ジエン単量体単位や、芳香族ビニル単量体単位、及びこれら以外の単量体単位のモル体積、モル凝集エネルギーは、例えば、J.Bicerano, Prediction of Polymer Properties, 3rd Ed. Marcel Dekker, 2002記載の方法(Bicerano法)に従って求めることができる。
上記のように、これらを測定することにより、本実施形態のゴム組成物に含まれている特定のゴム成分の種類やその含有比率を同定することができる。
【0040】
<ゴム状重合体のガラス転移温度>
本実施形態のゴム組成物に用いるゴム状重合体は、ガラス転移温度が、-35℃以下であることが好ましく、-45℃以下がより好ましく、-50℃以下がさらに好ましい。
ゴム状重合体のガラス転移温度が上記範囲にあるとき、本実施形態のゴム組成物をタイヤに用いた際に耐摩耗性に優れる傾向にある。
【0041】
ゴム状重合体のガラス転移温度は、共役ジエン単量体単位の1,2-ビニル結合量や、芳香族ビニル単量体単位の量、水素添加率等を調整することにより上記数値範囲に制御することができる。
具体的には、芳香族ビニル単量体単位の量を減らす、1,2-ビニル結合量を減らすことにより、ゴム状重合体のガラス転移温度を低減させることができる。
ガラス転移温度を-35℃以下とする方法は、例えば、芳香族ビニル単量体単位の含有量を5~30質量%とし、共役ジエン単量体単位の1,2-ビニル結合量を20~50質量%とする方法が挙げられる。
水素添加率もガラス転移温度に影響するが、1,2-ビニル結合量や芳香族ビニル単量体単位の含有量に比べると影響が小さい。このため、ガラス転移温度の制御においては、1,2-ビニル結合量及び/又は芳香族ビニル単量体単位の含有量の増減を調整することが好ましい。
【0042】
ゴム状重合体のガラス転移温度は、ISO 22768:2006に従い、所定の温度範囲で昇温しながらDSC曲線を記録し、DSC微分曲線のピークトップ(Inflection point)を特定することにより測定できる。具体的には、後述する実施例に記載の方法により測定できる。
【0043】
ゴム状重合体のガラス転移温度の下限値は特に限定されないが、-90℃以上が好ましく、-80℃以上がより好ましく、-70℃以上がさらに好ましい。
ゴム状重合体のガラス転移温度が-90℃以上であることにより、本実施形態のゴム組成物は、ウェットグリップ性能に優れる傾向にある。
前記ゴム状重合体を、芳香族ビニル単量体単位を含まないものとし、かつ1,2-ビニル結合量を20%以上に調整することにより、ゴム状重合体のガラス転移温度を-90℃程度にすることができる。
【0044】
<窒素原子の含有>
ゴム状重合体は、本実施形態のゴム組成物をタイヤに用いたときの省燃費性を向上させる観点から、窒素原子を含有することが好ましい。
窒素原子は変性剤によりゴム状重合体に導入することができる。ゴム状重合体の水添率を低めにすることでゴム組成物において、補強材であるシリカ系無機充填剤の分散性を向上させることもできるが、ゴム状重合体を、窒素原子を含有する変性剤で変性させることにより、ゴム組成物中のシリカ系無機充填剤の分散性がより向上する傾向にある。
【0045】
<変性率>
ゴム状重合体は、本実施形態のゴム組成物をタイヤに用いたときの、補強材であるシリカ系無機充填剤の分散性の観点で、変性率が40質量%以上であることが好ましい。変性率は60質量%以上がより好ましく、70質量%以上がさらに好ましい。ゴム状重合体の変性率の上限は特に限定されないが、本実施形態のゴム組成物を混練りした後の配合物粘度が下がり加工性が良好になる観点から、98質量%以下が好ましく、95質量%以下がより好ましく、90質量%以下がさらに好ましい。
【0046】
本明細書中、「変性率」とは、ゴム状重合体の総量に対する窒素原子含有官能基を有する重合体の質量比率を表す。
ゴム状重合体への窒素原子の導入位置は、ゴム状重合体の重合開始末端、分子鎖中(グラフト含む)、及び重合末端のいずれであってもよい。
【0047】
ゴム状重合体を、共役ジエン単量体を重合した後に水素添加して製造する場合は、重合生産性、高い変性率、及び本実施形態のゴム組成物をタイヤに用いた場合の省燃費性の観点から、窒素原子を含有するカップリング剤を用いて、窒素原子含有官能基をゴム状重合体中に導入する方法を適用することが好ましい。
【0048】
窒素原子を含有するカップリング剤としては、重合生産性や高い変性率の観点から、イソシアナート化合物、イソチオシアナート化合物、イソシアヌル酸誘導体、窒素基含有カルボニル化合物、窒素基含有ビニル化合物、窒素基含有エポキシ化合物、及び窒素基含有アルコキシシラン化合物等が好ましい。
【0049】
本実施形態のゴム組成物をタイヤに用いる際の加工性が向上する観点から、前記カップリング剤の分岐数は高い方が好ましい。
カップリング剤の分岐数は、特に限定されないが、本実施形態のゴム組成物の加工性が向上する観点から、3分岐以上が好ましく、4分岐以上がより好ましい。分岐数の上限は特に限定されないが、生産性の観点から30分岐以下が好ましい。
【0050】
前記窒素原子を含有するカップリング剤としては、ゴム状重合体の重合生産性、高い変性率、及び本実施形態のゴム組成物をタイヤに用いた時の引張強度の観点から、窒素基含有アルコキシシラン化合物がより好ましい。
【0051】
窒素基含有アルコキシシラン化合物としては、以下に限定されないが、例えば、2,2-ジメトキシ-1-(3-トリメトキシシリルプロピル)-1-アザ-2-シラシクロペンタン、2,2-ジエトキシ-1-(3-トリエトキシシリルプロピル)-1-アザ-2-シラシクロペンタン、2,2-ジメトキシ-1-(4-トリメトキシシリルブチル)-1-アザ-2-シラシクロヘキサン、2,2-ジメトキシ-1-(5-トリメトキシシリルペンチル)-1-アザ-2-シラシクロヘプタン、2,2-ジメトキシ-1-(3-ジメトキシメチルシリルプロピル)-1-アザ-2-シラシクロペンタン、2,2-ジエトキシ-1-(3-ジエトキシエチルシリルプロピル)-1-アザ-2-シラシクロペンタン、2-メトキシ-2-メチル-1-(3-トリメトキシシリルプロピル)-1-アザ-2-シラシクロペンタン、2-エトキシ-2-エチル-1-(3-トリエトキシシリルプロピル)-1-アザ-2-シラシクロペンタン、2-メトキシ-2-メチル-1-(3-ジメトキシメチルシリルプロピル)-1-アザ-2-シラシクロペンタン、2-エトキシ-2-エチル-1-(3-ジエトキシエチルシリルプロピル)-1-アザ-2-シラシクロペンタン、トリス(3-トリメトキシシリルプロピル)アミン、トリス(3-メチルジメトキシシリルプロピル)アミン、トリス(3-トリエトキシシリルプロピル)アミン、トリス(3-メチルジエトキシシリルプロピル)アミン、トリス(トリメトキシシリルメチル)アミン、トリス(2-トリメトキシシリルエチル)アミン、トリス(4-トリメトキシシリルブチル)アミン、テトラキス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-プロパンジアミン、テトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン、テトラキス(3-トリメトキシシリルプロピル)-1,3-ビスアミノメチルシクロヘキサン、及びN1-(3-(ビス(3-(トリメトキシシリル)プロピル)アミノ)プロピル)-N1-メチル-N3-(3-(メチル(3-(トリメトキシシリル)プロピル)アミノ)プロピル)-N3-(3-(トリメトキシシリル)プロピル)-1,3-プロパンジアミンが挙げられる。
【0052】
ゴム状重合体を、エチレンと共役ジエン単量体を共重合して製造する場合は、本実施形態のゴム組成物をタイヤに用いた時の省燃費性、耐摩耗性、及び柔軟性の観点から、ゴム状重合体は、スズ原子、窒素原子、又は珪素原子を含有することが好ましい。
ゴム状重合体へのこれらの原子の導入方法としては、製造性の観点から、重合反応が100%に達した際に、スズ原子や窒素原子や珪素原子を含有するカップリング剤を用いて導入する方法を適用することが好ましい。
【0053】
スズ原子、窒素原子、又は珪素原子を含有するカップリング剤としては、以下に限定されるものではないが、例えば、ビス(マレイン酸-1-オクタデシル)ジオクチルスズ等のスズ含有化合物、4,4-ジフェニルメタンジイソシアネート等のイソシアネート化合物、グリシジルプロピルトリメトキシシラン等のアルコキシシラン化合物等が挙げられる。
【0054】
<分子量>
ゴム状重合体の重量平均分子量は、本実施形態のゴム組成物の成形体の形状安定性やゴム組成物を用いた架橋体の引張強度や耐摩耗性の観点から、15万以上が好ましく、20万以上がより好ましい。一方、本実施形態のゴム組成物を架橋用ゴム組成物にした時の加工性の観点から、100万以下が好ましく、50万以下がより好ましく、40万以下がさらに好ましい。
【0055】
ゴム状重合体の分子量分布(=重量平均分子量/数平均分子量)は、本実施形態のゴム組成物をタイヤに用いた時の省燃費性の観点から、2.0以下が好ましく、1.8以下がより好ましく、1.6以下がさらに好ましい。
一方、本実施形態のゴム組成物を架橋用ゴム組成物にした時の加工性の観点から、ゴム状重合体の分子量分布は、1.05以上が好ましく、1.2以上がより好ましく、1.4以上がさらに好ましい。
【0056】
重量平均分子量や分子量分布は、GC(ゲルパーミエーションクロマトグラフィー)によって測定されたポリスチレン換算の分子量から計算できる。
【0057】
<失活剤、中和剤、安定剤、ゴム用軟化剤>
ゴム状重合体の重合工程の終盤には、必要に応じて、失活剤、中和剤等を添加してもよい。
失活剤としては、以下に限定されないが、例えば、水;メタノール、エタノール、イソプロパノール等のアルコール等が挙げられる。
なお、前記ゴム状重合体の重合工程の終盤とは、添加したモノマーが95%以上重合に消費された状態を言う。
中和剤としては、以下に限定されないが、例えば、ステアリン酸、オレイン酸、バーサチック酸すなわち炭素数9~11個で、10個を中心とする、分岐の多いカルボン酸混合物等のカルボン酸;無機酸の水溶液、炭酸ガスが挙げられる。
【0058】
ゴム状重合体の重合工程の終盤に、ゲル生成を防止や加工安定性の観点から、ゴム用安定剤を添加することが好ましい。
ゴム用安定剤としては、以下に限定されず、公知のものを用いることができるが、例えば、2,6-ジ-tert-ブチル-4-ヒドロキシトルエン(以下「BHT」とも記す。)、n-オクタデシル-3-(4’-ヒドロキシ-3’,5’-ジ-tert-ブチルフェノール)プロピネート、2-メチル-4,6-ビス[(オクチルチオ)メチル]フェノール等の酸化防止剤が好ましい。
【0059】
ゴム状重合体の重合工程の終盤等に、ゴム状重合体の生産性、本実施形態のゴム組成物を用いたタイヤの製造時に無機充填剤等を配合した際の加工性を改善する観点から、必要に応じて、ゴム用軟化剤を添加することが好ましい。
ゴム用軟化剤としては、以下に限定されないが、例えば、伸展油、液状ゴム、環含有樹脂等が挙げられる。
ゴム用軟化剤をゴム状重合体に添加する方法としては、以下に限定されないが、例えば、ゴム用軟化剤をゴム状重合体の溶液に加え、混合して、ゴム用軟化剤含有のゴム状重合体溶液としたものを脱溶媒する方法が好ましい。
伸展油としては、例えば、アロマ油、ナフテン油、パラフィン油等が挙げられる。これらの中でも、環境安全上の観点、並びにオイルブリード防止及びウェットグリップ特性の観点から、IP346法による多環芳香族(PCA)成分が3質量%以下であるアロマ代替油が好ましい。アロマ代替油としては、例えば、Kautschuk Gummi Kunststoffe 52(12)799(1999)に示されるTDAE(Treated Distillate Aromatic Extracts)、MES(Mild Extraction Solvate)、RAE(Residual Aromatic Extracts)等が挙げられる。
本実施形態のゴム組成物中の伸展油の含有量は、ゴム組成物をタイヤに用いた時の経年劣化を抑制する観点から、10質量%以下が好ましく、7質量%以下がより好ましく、5質量%以下がさらに好ましい。
【0060】
前記ゴム用軟化剤である環含有樹脂としては、以下に限定されないが、例えば、芳香族系石油環含有樹脂、クマロン-インデン環含有樹脂、テルペン系環含有樹脂、ロジン誘導体(桐油環含有樹脂を含む)、トール油、トール油の誘導体、ロジンエステル環含有樹脂、天然及び合成のテルペン環含有樹脂、脂肪族炭化水素環含有樹脂、芳香族炭化水素環含有樹脂、混合脂肪族-芳香族炭化水素環含有樹脂、クマリン-インデン環含有樹脂、フェノール環含有樹脂、p-tert-ブチルフェノール-アセチレン環含有樹脂、フェノール-ホルムアルデヒド環含有樹脂、キシレン-ホルムアルデヒド環含有樹脂、モノオレフィンのオリゴマー、ジオレフィンのオリゴマー、芳香族系石油環含有樹脂、水素化芳香族炭化水素環含有樹脂、環式脂肪族炭化水素環含有樹脂、水素化炭化水素環含有樹脂、炭化水素環含有樹脂、水素化桐油環含有樹脂、水素化油環含有樹脂、水素化油環含有樹脂と単官能又は多官能アルコールとのエステル等が挙げられる。
これら環含有樹脂は、1種類を単独で用いてもよいし、2種以上を併用してもよい。
環含有樹脂が水素化物である場合、不飽和基を全て水添してもよいし、一部残してもよい。
ゴム状重合体に環含有樹脂を添加することにより、本実施形態のゴム組成物の加工性が改善し、さらには、ゴム組成物を加硫物としたときにおける破壊強度が向上する傾向にある。
【0061】
ゴム用軟化剤としての、伸展油、液状ゴム又は環含有樹脂等の添加量は、ゴム状重合体と天然ゴムを含むゴム成分の総量100質量部に対して、35質量部以下が好ましく、20質量部以下がより好ましく、10質量部以下がさらに好ましい。添加量をこの範囲とすることで、本実施形態のゴム組成物は、耐摩耗性及び省燃費性に優れる傾向にある。
また、本実施形態のゴム組成物中の伸展油等のオイル及び/又は環含有樹脂の含有量は、ゴム状重合体と天然ゴムを含むゴム成分100質量部に対し、35質量部未満が好ましく、20質量部以下がより好ましく、10質量部以下がさらに好ましい。
さらに、伸展油等のオイルの含有量は、ゴム状重合体と天然ゴムを含むゴム成分100質量部に対し、10質量部未満が好ましく、7質量部以下がより好ましく、5質量部以下がさらに好ましい。
この範囲であることにより、本実施形態のゴム組成物は、耐摩耗性及び省燃費性に優れる傾向にある。
【0062】
本実施形態のゴム組成物を構成するゴム状重合体は、所定の単量体を溶液中で重合し、かかる重合体溶液から溶媒を除去して取得することにより得られる。
ゴム状重合体を重合体溶液から溶媒を除去して取得する方法としては、公知の方法を用いることができる。例えば、スチームストリッピング等で溶媒を分離した後、重合体を濾別し、さらにそれを脱水及び乾燥してゴム状重合体を取得する方法、フラッシングタンクで濃縮し、さらにベント押し出し機等で脱揮する方法、ドラムドライヤー等で直接脱揮する方法等が挙げられる。
【0063】
(天然ゴム)
本実施形態のゴム組成物は、天然ゴムを含む。
本実施形態のゴム組成物は、ゴム状重合体と天然ゴムを含むゴム成分の総量を100質量部としたとき、天然ゴムの含有量は、耐摩耗性と加工性の観点から10質量部以上であり、好ましくは30質量部以上であり、耐摩耗性と加工性に加え、機械的強度も向上させる観点から、より好ましくは50質量部以上であり、さらに好ましくは60質量部以上である。
また、天然ゴムの含有量は、本実施形態のゴム組成物をタイヤに用いたときの省燃費性とタイヤの使用後期での性能変化を抑制する観点から、90質量部以下であり、80質量部以下が好ましく、70質量部以下がより好ましい。
【0064】
天然ゴムとしては、特に限定されないが、例えば、高分子量成分が多く破壊強度に優れる観点から、スモークドシートであるRSS3~5号、SMR(Standard Malaysian Rubber)、エポキシ化天然ゴムが挙げられる。
【0065】
本実施形態のゴム組成物を構成するゴム成分は、前記ゴム状重合体と天然ゴム以外の、その他のゴムを含んでいてもよい。
その他のゴムとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、スチレン-ブタジエンゴム(乳化重合タイヤや溶液重合タイプ)、ポリイソプレン、ブタジエンゴム(ハイシスポリブタジエン、ローシスポリブタジエン、シンジオタクチック1,2-ポリブタジエン)、アクリロニトリル-ブタジエンゴム(NBR)、クロロプレンゴム、エチレン-プロピレンゴムやエチレン-ブテンゴムやエチレン-オクテン等のエチレン-α-オレフィン共重合体ゴム、エチレン-プロピレン-ジエンゴム(EPDM)、ブチルゴム、多硫化ゴム、シリコーンゴム、フッ素ゴム、及びウレタンゴム等が挙げられる。
これらは、1種単独で使用してもよく、2種以上を混合して用いてもよい。
その他のゴムの混合は、ゴム状重合体の重合後にドライ状態のその他のゴムを混合して行ってもよく、ゴム状重合体の重合中に溶液状態のその他のゴムを混合して行ってもよい。
「その他のゴム」の含有量は、ゴム状重合体と天然ゴムの合計を100質量部としたとき、40質量部以下であることが、本実施形態のゴム組成物の破壊強度の観点で好ましい。例えば、ゴム状重合体と天然ゴムだけでは耐摩耗性が不足する場合に、ポリブタジエンを配合することが想定されるが、この場合、ポリブタジエンの添加量は、ゴム状重合体と天然ゴムの合計量100質量部に対して40質量部以下であることが好ましい。
【0066】
(シリカ系無機充填剤、及びカーボンブラック)
本実施形態のゴム組成物は、ゴム状重合体と天然ゴム、必要に応じてその他のゴムを含むゴム成分の総量100質量部に対して、シリカ系無機充填剤及びカーボンブラックを20質量部以上80質量部以下含有する。好ましくは30質量部以上70質量部以上であり、より好ましくは40質量部以上60質量部以下である。
【0067】
(シリカ無機充填剤)
本実施形態のゴム組成物をタイヤに用いたときのグリップ性能や操縦安定性向上の観点から、本実施形態のゴム組成物におけるシリカ系無機充填剤の含有量は、ゴム状重合体と天然ゴム、必要に応じてその他のゴムを含むゴム成分の総量100質量部に対して、60質量部以下であり、58質量部以下が好ましく、56質量部以下がより好ましい。
【0068】
シリカ系無機充填剤としては、特に限定されず公知のものを用いることができるが、SiO又はSiAlを構成単位として含む固体粒子が好ましく、SiO又はSiAlを構成単位の主成分とする固体粒子がより好ましい。
ここで、主成分とは、シリカ系無機充填剤中に50質量%以上、好ましくは70質量%以上、より好ましくは80質量%以上含有される成分をいう。
【0069】
シリカ系無機充填剤としては、以下に限定されないが、例えば、シリカ、クレイ、タルク、マイカ、珪藻土、ウォラストナイト、モンモリロナイト、ゼオライト、ガラス繊維等の無機繊維状物質が挙げられる。
シリカ系無機充填剤の市販品としては、例えば、エボニック・デグサ社製の商品名「Ultrasil 7000GR」が挙げられる。
また、表面を疎水化したシリカ系無機充填剤、シリカ系無機充填剤とシリカ系以外の無機充填剤との混合物を用いてもよい。
これらの中でも、本実施形態のゴム組成物の強度及び耐摩耗性の観点から、シリカ及びガラス繊維が好ましく、シリカがより好ましい。シリカとしては、例えば、乾式シリカ、湿式シリカ、合成ケイ酸塩シリカが挙げられる。これらの中でも、本実施形態のゴム組成物の破壊特性の改良効果及びウェットスキッド抵抗性のバランスに優れる観点から、湿式シリカが好ましい。
【0070】
本実施形態のゴム組成物において、実用上良好な耐摩耗性や破壊特性を得る観点から、シリカ系無機充填剤のBET吸着法で求められる窒素吸着比表面積(BET比表面積)は、100m/g以上300m/g以下であることが好ましく、170m/g以上250m/g以下であることがより好ましい。また必要に応じて、比較的に比表面積が小さい(例えば、比表面積が200m/g未満のシリカ系無機充填剤)と、比較的に比表面積が大きい(例えば、200m/g以上のシリカ系無機充填剤)と、を組み合わせて用いることができる。これにより、本実施形態のゴム組成物において、良好な耐摩耗性及び破壊特性と、低ヒステリシスロス性とを高度にバランスさせることができる。
なお、窒素吸着比表面積は、JIS K 6217-2:2001によって求められる。
【0071】
(カーボンブラック)
本実施形態のゴム組成物は、シリカ系無機充填剤の他に、カーボンブラックを、さらに含有する。
カーボンブラックの含有量は、本実施形態のゴム組成物の耐摩耗性向上の観点から、前記ゴム成分総量100質量部に対して、60質量部以下であり、58質量部以下が好ましく、56質量部以下がより好ましい。
【0072】
本実施形態のゴム組成物に用いるカーボンブラックの窒素吸着比表面積(BET比表面積)は、5m/g以上が好ましく、15m/g以上がより好ましく、35m/g以上がさらに好ましく、55m/g以上がさらにより好ましい。
カーボンブラックのBET比表面積が5m/g以上であることにより、本実施形態のゴム組成物において充分な補強効果が得られ、充分なゴム破壊強度、操縦安定性が得られる。
カーボンブラックのBET比表面積は、200m/g以下が好ましく、180m/g以下がより好ましく、140m/g以下がさらに好ましい。200m/g以下であることにより、本実施形態のゴム組成物において良好な低燃費性が得られる。
【0073】
また、本実施形態のゴム組成物に用いるカーボンブラックは、ジブチルフタレート吸油量(DBP)が、50mL/100g以上であることが好ましく、70mL/100g以上がより好ましく、90mL/100g以上がさらに好ましい。
カーボンブラックのDBPが50mL/100g以上であることにより、本実施形態のゴム組成物において充分な補強効果が得られ、充分なゴム破壊強度、操縦安定性が得られる。
また、カーボンブラックのDBPは、200mL/100g以下が好ましく、150mL/100g以下がより好ましく、110mL/100g以下がさらに好ましい。
カーボンブラックのDBPが200mL/100g以下であることにより、本実施形態のゴム組成物において、優れた低燃費性が得られる傾向にある。
なお、カーボンブラックのDBPは、JIS K 6217-4:2001に準拠して測定できる。
【0074】
本実施形態のゴム組成物をタイヤのサイドウォール用いる場合は、窒素吸着比表面積(BET比表面積)が、5~200m/gのカーボンブラックを含むことが好ましい。下限値は、より好ましくは15m/g以上、さらに好ましくは50m/g以上である。また、上限値は、より好ましくは180m/g以下、さらに好ましくは130m/g以下、さらにより好ましくは100m/g以下である。カーボンブラックのBET比表面積が5m/g以上であることにより、充分な補強効果が得られ、200m/g以下であることにより、優れた低燃費性が得られる傾向にある。
【0075】
本実施形態のゴム組成物をタイヤのサイドウォール用いる場合、カーボンブラックの含有量は、前記ゴム成分の総量100質量部に対して、30質量部以上が好ましく、より好ましくは35質量部以上である。当該含有量は、60質量部以下であるものとし、より好ましくは55質量部以下であり、さらに好ましくは50質量部以下である。
上記範囲内であると、良好な低燃費性、耐チップカット性、及び耐定伸長亀裂成長性が得られる。
【0076】
本実施形態のゴム組成物におけるシリカ系無機充填剤とカーボンブラックの合計含有量は、実用上良好な耐摩耗性や破壊特性を得る観点から、前記ゴム成分の総量100質量部に対して、20質量部以上であるものとし、30質量部以上が好ましく、40質量部以上がさらに好ましい。また、低燃費性の観点から、80質量部以下であるものとし、75質量部以下が好ましく、70質量部以下がより好ましく、60質量部以下がさらに好ましい。
シリカ系無機充填剤とカーボンブラックの比率は、低燃費性を重視する場合は、シリカ系無機充填剤とカーボンブラック合計量中のシリカ系無機充填剤の比率が60質量%以上であることが好ましく、より好ましくは70質量%以上、さらに好ましくは80質量%以上である。耐摩耗性を重視する場合はシリカ系無機充填剤とカーボンブラック合計量中のカーボンブラック比率が30質量%以上であることが好ましく、より好ましくは40質量%以上、さらに好ましくは50質量%以上である。
【0077】
(金属酸化物、金属水酸化物)
本実施形態のゴム組成物は、シリカ系無機充填剤やカーボンブラック以外に、金属酸化物や金属水酸化物を含有してもよい。
金属酸化物とは、化学式MxOy(Mは金属原子を表し、x及びyは、各々独立に、1~6の整数を表す)を構成単位の主成分とする固体粒子のことをいい、例えば、アルミナ、酸化チタン、酸化マグネシウム、酸化亜鉛等が挙げられる。
また、金属酸化物と金属酸化物以外の無機充填剤との混合物も用いることができる。
金属水酸化物としては、特に限定されず、例えば、水酸化アルミニウム、水酸化マグネシウム、水酸化ジルコニウム等が挙げられる。
【0078】
(シランカップリング剤)
本実施形態のゴム組成物は、シランカップリング剤を含有してもよい。
シランカップリング剤は、ゴム状重合体を含むゴム成分及びシリカ系無機充填剤のそれぞれに対する親和性又は結合性の基を有しており、ゴム成分とシリカ系無機充填剤の間の相互作用を緊密にする機能を有している。
シランカップリング剤としては、例えば、硫黄結合部分、アルコキシシリル基、及びシラノール基部分を一分子中に有する化合物が用いられる。
【0079】
シランカップリング剤は、以下に限定されるものではないが、例えば、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルエトキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、エトキシ(3-メルカプトプロピル)ビス(3,6,9,12,15-ペンタオキサオクタコサン-1-イルオキシ)シラン[エボニック・デグサ社製:Si363]、Momentive社製のNXT-Z30,NXT-Z45,NXTZ60,NXTシランなどのメルカプト基を含有するシランカップリング剤;ビス-[3-(トリエトキシシリル)-プロピル]-テトラスルフィド、ビス-[3-(トリエトキシシリル)-プロピル]-ジスルフィド、ビス-[2-(トリエトキシシリル)-エチル]-テトラスルフィド、ビス(3-トリエトキシシリルプロピル)トリスルフィド、ビス-[2-(トリエトキシシリル)-エチル]-テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3-トリエトキシシリルプロピルベンゾリルテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、3-トリメトキシシリルプロピルメタクリレートモノスルフィド、ビス(3-ジエトキシメチルシリルプロピル)テトラスルフィド、3-メルカプトプロピルジメトキシメチルシラン、ジメトキシメチルシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、ジメトキシメチルシリルプロピルベンゾチアゾリルテトラスルフィド等が挙げられる。
【0080】
前記シランカップリング剤の中でも、本実施形態のゴム組成物の補強効果の高さの観点から、ビス-[3-(トリエトキシシリル)-プロピル]-ジスルフィド;エトキシ(3-メルカプトプロピル)ビス(3,6,9,12,15-ペンタオキサオクタコサン-1-イルオキシ)シラン[エボニック・デグサ社製:Si363]、Momentive社製のNXT-Z30,NXT-Z45,NXTZ60,NXTシランなどのメルカプト基を含有するシランカップリング剤;ビス-[3-(トリエトキシシリル)-プロピル]-テトラスルフィドが好ましい。
これらのシランカップリング剤は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0081】
本実施形態のゴム組成物中のシランカップリング剤の配合量は、ゴム成分及びシリカ系無機充填剤において、ゴム成分とシリカ系無機充填剤の間の相互作用を緊密にする効果を一層顕著なものにする観点から、ゴム状重合体と天然ゴムを含むゴム成分の総量100質量部に対して、0.1質量部以上が好ましく、0.5質量部以上がより好ましく、1質量部以上がさらに好ましい。また、本実施形態のゴム組成物の加工性が良好となる観点から、シランカップリング剤の配合量は、30質量部以下が好ましく、20質量部以下がより好ましく、15質量部以下がさらに好ましい。
【0082】
(ゴム用軟化剤)
本実施形態のゴム組成物は、加工性の改良を図る観点から、ゴム用軟化剤を含有してもよい。
ゴム用軟化剤としては、例えば、鉱物油系ゴム用軟化剤、及び、液状若しくは低分子量の合成軟化剤が好適である。
前記鉱物油系ゴム用軟化剤は、プロセスオイル又はエクステンダーオイルとも呼ばれ、ゴムの軟化、増容、加工性の向上を図るために使用されている。また、前記鉱物油系ゴム用軟化剤は、芳香族環、ナフテン環、及びパラフィン鎖の混合物であり、パラフィン鎖の炭素数が全炭素中50%以上を占めるものがパラフィン系と呼ばれ、ナフテン環炭素数が30~45%のものがナフテン系、芳香族環の炭素数が30%を超えるものが芳香族系と呼ばれている。ゴム用軟化剤としては、適度な芳香族環の炭素数を有するものがゴム状重合体との親和性がよい傾向にあるため好ましい。
ゴム用軟化剤の配合量は、ブリードアウトを抑制し、経時によるゴム組成物の硬化を防止する観点から、ゴム状重合体と天然ゴムを含むゴム成分の総量100質量部に対し、10質量部以下が好ましく、7質量部以下がより好ましく、5質量部以下がさらに好ましい。
【0083】
〔ゴム組成物の製造方法〕
本実施形態のゴム組成物は、ゴム状重合体及び天然ゴムを含むゴム成分、シリカ系無機充填剤、カーボンブラック、必要に応じてその他の充填剤、シランカップリング剤、ゴム用軟化剤等の添加剤等の、構成材料を混合することにより製造できる。
混合方法については、以下に限定されないが、例えば、オープンロール、バンバリーミキサー、ニーダー、単軸スクリュー押出機、2軸スクリュー押出機、多軸スクリュー押出機等の一般的な混和機を用いた溶融混練方法、各成分を溶解混合後、溶剤を加熱除去する方法が挙げられる。
これらのうち、オープンロール、バンバリーミキサー、ニーダー、押出機を用いた溶融混練法が、生産性、良混練性の観点から好ましい。また、本実施形態のゴム組成物の構成材料を一度に混練する方法、複数の回数に分けて混合する方法のいずれも適用可能である。
【0084】
本実施形態のゴム組成物は、加硫剤により加硫処理を施した加硫組成物としてもよい。
加硫剤としては、以下に限定されないが、例えば、有機過酸化物及びアゾ化合物等のラジカル発生剤、オキシム化合物、ニトロソ化合物、ポリアミン化合物、硫黄、硫黄化合物が挙げられる。
硫黄化合物には、一塩化硫黄、二塩化硫黄、ジスルフィド化合物、高分子多硫化合物等が含まれる。
加硫剤の含有量は、補強効果によって破断強度を向上させる観点から、ゴム状重合体と天然ゴムを含むゴム成分の総量100質量部に対して、0.01質量部以上が好ましく、0.1質量部以上がより好ましく、1質量部以上がさらに好ましい。また柔軟性を有し破断伸びが向上する観点から、加硫剤の含有量は、20質量部以下が好ましく、15質量部以下がより好ましく、10質量部以下がさらに好ましい。
加硫方法としては、従来公知の方法を適用でき、加硫温度は特に限定されないが、加硫時間を短縮でき生産効率を高められる観点から120℃以上が好ましく、135℃以上がより好ましく、140℃以上がさらに好ましい。また加硫時の熱劣化を抑制する観点から200℃以下が好ましく、160℃以下がより好ましく、150℃以下がさらに好ましい。
加硫に際しては、必要に応じて加硫促進剤を用いてもよい。
加硫促進剤としては、従来公知の材料を用いることができ、以下に限定されないが、例えば、スルフェンアミド系化合物、グアニジン系化合物、チウラム系化合物、アルデヒド-アミン系化合物、アルデヒド-アンモニア系化合物、チアゾール系化合物、チオ尿素系化合物、ジチオカルバメート系化合物などの加硫促進剤が挙げられる。
また、加硫助剤としては、以下に限定されないが、例えば、亜鉛華、ステアリン酸が挙げられる。
加硫促進剤の含有量は、ゴム状重合体と天然ゴムを含むゴム成分の総量100質量部に対して、0.01質量部以上20質量部以下が好ましく、0.1質量部以上15質量部以下がより好ましい。
【0085】
本実施形態のゴム組成物には、本発明の目的を損なわない範囲内で、上述した構成成分以外の、その他の軟化剤、充填剤、耐熱安定剤、帯電防止剤、耐候安定剤、老化防止剤、着色剤、及び滑剤等の各種添加剤を用いてもよい。
その他の軟化剤としては、公知の軟化剤を用いることができる。その他の充填剤としては、例えば、炭酸カルシウム、炭酸マグネシウム、硫酸アルミニウム、硫酸バリウムが挙げられる。
耐熱安定剤、帯電防止剤、耐候安定剤、老化防止剤、着色剤、潤滑剤としては、それぞれ公知の材料を用いることができる。
【0086】
〔ゴム組成物の好ましい物性〕
本実施形態のゴム組成物においては、ゴム状重合体のヨウ素価(A)と、
前記ゴム成分の総量100質量部に対する、前記シリカ系無機充填剤の含有量(質量部)(B)と、前記カーボンブラックの含有量(質量部)(C)と、
前記シリカ系無機充填剤のBET比表面積(D)と、前記カーボンブラックのBET比表面積(E)が、下記式(1)の関係を有するものであることが好ましい。
(式(1)):
0<(0.029×((B)×(D))+((C)×(E)))-(A)<250
上記式(1)は、本実施形態のゴム組成物における充填剤の補強効果による耐摩耗性とゴム組成物の加工性のバランスを表すものであり、0より大きく、250未満であることにより耐摩耗性と加工性が共に優れたゴム組成物が得られる。
前記数値範囲は、10以上200以下であることがより好ましく、50以上150以下であることがさらに好ましい。
【0087】
本実施形態のゴム組成物においては、ゴム状重合体のヨウ素価(A)と、
前記ゴム成分の総量100質量部に対する、前記シリカ系無機充填剤の含有量(質量部)(B)と、前記カーボンブラックの含有量(質量部)(C)と、
前記シリカ系無機充填剤のBET比表面積(D)と、前記カーボンブラックのBET比表面積(E)が、下記式(2)の関係を有するものであることが好ましい。
(式(2)):
0<(0.029×((B)×(D))+((C)×(E)))-(A)<136
上記式(2)が、0より大きく136未満であることにより耐摩耗性と加工性及び耐定伸長疲労性に優れたゴム組成物が得られる。
前記数値範囲は、10以上126以下であることがより好ましく、50以上100以下であることがさらに好ましい。
【0088】
〔タイヤ〕
本実施形態のゴム組成物は、重荷重車両用のタイヤ用のゴム組成物として好適に用いられる。
すなわち、本実施形態のタイヤは、キャップトレッド部分が本実施形態のゴム組成物で構成される。
【0089】
重荷重車両用のタイヤの耐荷重性を示す、JATMA規格 ロードインデックスは、耐荷重性の観点から100以上が好ましく、より好ましくは110以上、さらに好ましくは120以上である。
重荷重車両用のタイヤは、摩耗に厳しい条件で使用されるため、優れた耐摩耗性が必要である。
また、タイヤは、環境負荷と運営コストに鑑みて、低燃費性が求められる。したがって、耐摩耗性と低燃費性の観点から、本実施形態のゴム組成物は、ガラス転移温度が低い天然ゴムを含有し、さらには、ガラス転移点の低いポリブタジエン、スチレンブダジエンブロック共重合体をゴム状重合体として用いることが好ましい。また、耐摩耗性の観点から、本実施形態のゴム組成物中の伸展油の配合量は少ないことが好ましい。
上述したように、本実施形態により、耐摩耗性に優れ、加工性と低燃費性、さらにタイヤの使用後期での性能変化も抑制できる優れたタイヤが得られるゴム組成物を提供できる。
【0090】
本実施形態のゴム組成物は、以下に限定されないが、例えば、省燃費タイヤ、オールシーズンタイヤ、スタッドレスタイヤ等の各種タイヤ:トレッド、カーカス、サイドウォール、ビード部等のタイヤ各部位への利用が可能である。
【0091】
特に、本実施形態のゴム組成物は、加硫物としたときに低燃費性と耐摩耗性に優れ、さらにタイヤの使用後期での性能変化も抑制できるため、重荷重車両用の省燃費タイヤ、オールシーズンタイヤ、スノータイヤのトレッド用として、より好適に用いられる。
【実施例
【0092】
以下、具体的な実施例及び比較例を挙げて、本実施形態をさらに詳しく説明するが、本実施形態は以下の実施例及び比較例により何ら限定されるものではない。
実施例及び比較例における各種の物性は下記に示す方法により測定した。
【0093】
(ゴム状重合体の重量平均分子量(Mw))
ポリスチレン系ゲルを充填剤としたカラムを3本連結したGPC測定装置を使用して、クロマトグラムを測定し、標準ポリスチレンを使用した検量線に基づいて、ゴム状重合体の重量平均分子量(Mw)を求めた。
具体的な測定条件を以下に示す。
下記測定用液20μLをGPC測定装置に注入して測定を行った。
<測定条件>
装置 :東ソー社製の商品名「HLC-8320GPC」
溶離液 :5mmol/Lのトリエチルアミン入りテトラヒドロフラン(THF)
ガードカラム:東ソー社製の商品名「TSKguardcolumn SuperH-H」、
分離カラム :東ソー社製の商品名「TSKgel SuperH5000」、「TSKgel SuperH6000」、「TSKgel SuperH7000」をこの順に連結したもの。
オーブン温度:40℃
流量 :0.6mL/分
検出器 :RI検出器(東ソー社製の商品名「HLC8020」)
測定用液 :測定用の試料10mgを20mLのTHFに溶解した測定溶液
【0094】
(ゴム状重合体、及びゴム組成物のムーニー粘度)
ムーニー粘度計(上島製作所社製の商品名「VR1132」)を用い、ISO 289に準拠し、L形ローターを用いて、ゴム状重合体及びゴム組成物のムーニー粘度を測定した。
まず、試料を1分間100℃度で予熱した後、ローターを2rpmで回転させ、4分後のトルクを測定して100℃におけるムーニー粘度(ML(1+4))とした。
【0095】
(ゴム状重合体の変性率)
ゴム状重合体の変性率は、変性したゴム状重合体がカラムに吸着する特性を利用し、カラム吸着GPC法で以下のとおり測定した。
試料及び低分子量内部標準ポリスチレンを含む試料溶液を、ポリスチレン系ゲルを充填したカラムで測定したクロマトグラムと、シリカ系ゲルを充填したカラムで測定したクロマトグラムと、の差分よりシリカ系カラムへの吸着量を測定し、変性率を求めた。
【0096】
ポリスチレン系カラムを用いたGPC測定条件を以下に示す。
下記測定用液20μLをGPC測定装置に注入して測定を行った。
<ポリスチレン系カラムを用いたGPC測定条件>
装置 :東ソー社製の商品名「HLC-8320GPC」
溶離液 :5mmol/Lのトリエチルアミン入りTHF
ガードカラム:東ソー社製の商品名「TSKguardcolumn SuperH-H」
カラム :東ソー社製の商品名「TSKgel SuperH5000」、「TSKgel SuperH6000」、「TSKgel SuperH7000」をこの順で連結したもの
オーブン温度:40℃
流量 :0.6mL/分
検出器 :RI検出器(東ソー社製 HLC8020)
測定用液 :試料10mg及び標準ポリスチレン5mgを20mLのTHFに溶解させて、試料溶液とした。
【0097】
シリカ系カラムを用いたGPC測定条件を以下に示す。
下記測定用液50μLをGPC測定装置に注入して測定を行った。
<シリカ系カラムを用いたGPC測定条件>
装置 :東ソー社製の商品名「HLC-8320GPC」
溶離液 :THF
ガードカラム:ジーエルサイエンス社製の商品名「DIOL 4.6×12.5mm 5micron」
分離カラム :アジレントテクノロジー社製の商品名「Zorbax PSM-1000S」、「PSM-300S」、「PSM-60S」をこの順で連結したもの
オーブン温度:40℃、
流量 :0.5mL/分
検出器 :RI検出器(東ソー社製 HLC8020)
【0098】
変性率の計算方法 :
ポリスチレン系カラムを用いたクロマトグラムのピーク面積の全体を100として、試料のピーク面積をP1、標準ポリスチレンのピーク面積をP2、シリカ系カラムを用いたクロマトグラムのピーク面積の全体を100として、試料のピーク面積をP3、標準ポリスチレンのピーク面積をP4として、下記式より変性率(%)を求めた。
変性率(%)=[1-(P2×P3)/(P1×P4)]×100
(ただし、P1+P2=P3+P4=100)
【0099】
(ゴム状重合体の結合スチレン量)
試料100mgを、クロロホルムで100mLに溶解して測定サンプルとした。
スチレンのフェニル基による紫外線吸収波長(254nm付近)の吸収量により、試料であるゴム状重合体100質量%に対する結合スチレン量(質量%)を測定した。
測定装置としては島津製作所社製の分光光度計「UV-2450」を用いた。
【0100】
(ゴム状重合体のブタジエン部分のミクロ構造(1,2-ビニル結合量))
試料50mgを、二硫化炭素10mLに溶解して測定サンプルとした。
溶液セルを用いて、赤外線スペクトルを600~1000cm-1の範囲で測定して、所定の波数における吸光度によりハンプトンの方法(R.R.Hampton,Analytical Chemistry 21,923(1949)に記載の方法)の計算式に従い、ブタジエン部分のミクロ構造、すなわち、1,2-ビニル結合量(mol%)を求めた。
測定装置としては、日本分光社製のフーリエ変換赤外分光光度計「FT-IR230」を用いた。
【0101】
(ゴム状重合体の水素添加率、エチレン構造、共役ジエン単量体単位)
H-NMR測定により水素添加前の重合体の不飽和結合部の積算値を得た。
次いで、水添反応後の反応液に、大量のメタノールを添加することで、水添共役ジエン系重合体(ゴム状重合体)を沈殿させて回収した。
次いで、水添共役ジエン系重合体をアセトンで抽出し、水添共役ジエン系重合体を真空乾燥した。
これを、H-NMR測定のサンプルとして用いて、水素添加率、エチレン構造、共役ジエン単量体単位を測定した。H-NMR測定の条件を以下に記す。
(測定条件)
測定機器 :JNM-LA400(JEOL製)
溶媒 :重水素化クロロホルム
測定サンプル :ポリマーを水素添加する前後の抜き取り品
サンプル濃度 :50mg/mL
観測周波数 :400MHz
化学シフト基準:TMS(テトラメチルシラン)
パルスディレイ:2.904秒
スキャン回数 :64回
パルス幅 :45°
測定温度 :26℃
【0102】
(ゴム状重合体のスチレンブロック量)
スチレン構造単位が8個以上連なった連鎖をスチレンブロックとし、次のように求めた。
重クロロホルムを溶媒として測定した400MHzのH-NMRスペクトルから、以下の(X)の各化学シフト範囲の積分値割合を求め、ゴム状ブロック重合体中に含まれるスチレンブロックの含有量を求めた。
(X)芳香族ビニル化合物連鎖8以上: 6.00≦X<6.68
【0103】
(ゴム状重合体のヨウ素価)
「JIS K 0070:1992」に記載の方法に準じて、ゴム状重合体のヨウ素価を算出した。
【0104】
(ゴム状重合体のガラス転移温度(Tg))
ゴム状重合体を試料として、ISO 22768:2006に準拠して、マックサイエンス社製の示差走査熱量計「DSC3200S」を用い、ヘリウム50mL/分の流通下、-100℃から20℃/分で昇温しながらDSC曲線を記録し、DSC微分曲線のピークトップ(Inflection point)をガラス転移温度とした。
【0105】
〔ゴム状重合体の製造〕
((製造例1)水素添加前のゴム状重合体(A))
内容積40Lで、撹持機及びジャケットを具備する温度制御が可能なオートクレーブを反応器として使用し、予め不純物を除去した、1,3-ブタジエンを2,160g、スチレンを300g、シクロヘキサンを21,000g、極性物質として、テトラヒドロフラン(THF)を30mmolと2,2-ビス(2-オキソラニル)プロパンを4.9mmol、反応器へ入れ、反応器内温を42℃に保持した。重合開始剤として、n-ブチルリチウム33.2mmolを上記反応器に供給した。
【0106】
重合反応開始後、重合による発熱で反応器内の温度は上昇を始め、反応器中のモノマーコンバージョンが98%に達した後に、1,3-ブタジエン540gを添加し、反応させた。
【0107】
最終的な反応器内の温度は、76℃に達した。この反応温度ピーク到達後から2分後に、反応器に2,2-ジメトキシ-1-(3-卜リメトキシシリルプロピル)-1-アザ-2-シラシクロペンタン(化合物1)を6.6mmol添加し、20分間、カップリング反応を実施し、重合体溶液を得た。この重合体溶液に、反応停止剤としてメタノールを6.0mmolを添加し、ゴム状重合体溶液(A-1)を得た。
共役ジエン系重合体溶液を一部抜き出し、乾燥機で脱溶剤し、水素添加前のゴム状重合体(A)を得た。
分析した結果を表1に示す。
【0108】
((製造例2)水素添加前のゴム状重合体(B))
内容積40Lで、撹持機及びジャケットを具備する温度制御が可能なオートクレーブを反応器として使用し、予め不純物を除去した、1,3-ブタジエンを2,100g、スチレンを780g、シクロヘキサンを21,000g、極性物質として、テトラヒドロフラン(THF)を30mmolと2,2-ビス(2-オキソラニル)プロパンを18.3mmol、反応器へ入れ、反応器内温を42℃に保持した。重合開始剤として、n-ブチルリチウム26.2mmolを上記反応器に供給した。
【0109】
重合反応開始後、重合による発熱で反応器内の温度は上昇を始め、反応器中のモノマーコンバージョンが98%に達した後に、1,3-ブタジエン120gを添加し、反応させた。
【0110】
最終的な反応器内の温度は、78℃に達した。この反応温度ピーク到達後から2分後に、反応器に2,2-ジメトキシ-1-(3-卜リメトキシシリルプロピル)-1-アザ-2-シラシクロペンタン(化合物1)を5.2mmol添加し、20分間、カップリング反応を実施した。この重合体溶液に、反応停止剤としてメタノールを4.7mmolを添加しゴム状重合体溶液(B-1)を得た。共役ジエン系重合体溶液を一部抜き出し、乾燥機で脱溶剤し、水素添加前のゴム状重合体(B)を得た。
【0111】
((製造例3)水素添加前のゴム状重合体(C))
2,2-ジメトキシ-1-(3-卜リメトキシシリルプロピル)-1-アザ-2-シラシクロペンタン(化合物1)を、テトラグリシジル―1,3-ビスアミノメチルシクロヘキサン(化合物2)に変えた以外は、前記(製造例1)と同様にしてゴム状重合体溶液(C-1)を得た。共役ジエン系重合体溶液を一部抜き出し、乾燥機で脱溶剤し、水素添加前のゴム状重合体(C)を得た。
【0112】
((製造例4)水素添加前のゴム状重合体(D))
2,2-ジメトキシ-1-(3-卜リメトキシシリルプロピル)-1-アザ-2-シラシクロペンタン(化合物1)の添加量を3.9mmolに変えた以外は、前記(製造例1)と同様にしてゴム状重合体溶液(D-1)を得た。共役ジエン系重合体溶液を一部抜き出し、乾燥機で脱溶剤し、水素添加前のゴム状重合体(D)を得た。
【0113】
((製造例5)水素添加前のゴム状重合体(E))
内容積40Lで、撹持機及びジャケットを具備する温度制御が可能なオートクレーブを反応器として使用し、予め不純物を除去した、1,3-ブタジエンを1,680g、スチレンを780g、シクロヘキサンを21,000g、極性物質として、テトラヒドロフラン(THF)を50mmolと2,2-ビス(2-オキソラニル)プロパンを8.2mmol、反応器へ入れ、反応器内温を42℃に保持した。重合開始剤として、n-ブチルリチウム33.2mmolを上記反応器に供給した。
【0114】
重合反応開始後、重合による発熱で反応器内の温度は上昇を始め、反応器中のモノマーコンバージョンが98%に達した後に、1,3-ブタジエン540gを添加し、反応させた。
【0115】
最終的な反応器内の温度は、76℃に達した。この反応温度ピーク到達後から2分後に、反応器に2,2-ジメトキシ-1-(3-卜リメトキシシリルプロピル)-1-アザ-2-シラシクロペンタン(化合物1)を6.6mmol添加し、20分間、カップリング反応を実施した。この重合体溶液に、反応停止剤としてメタノールを6.0mmolを添加しゴム状重合体溶液(E-1)を得た。共役ジエン系重合体溶液を一部抜き出し、乾燥機で脱溶剤し、水素添加前のゴム状重合体(E)を得た。
【0116】
((製造例6)水素添加前のゴム状重合体(F))
内容積40Lで、撹持機及びジャケットを具備する温度制御が可能なオートクレーブを反応器として使用し、予め不純物を除去した、1,3-ブタジエンを3,000g、シクロヘキサンを21,000g、極性物質として、テトラヒドロフラン(THF)を50mmolと2,2-ビス(2-オキソラニル)プロパンを6.7mmol、反応器へ入れ、反応器内温を40℃に保持した。重合開始剤として、n-ブチルリチウム45.0mmolを上記反応器に供給した。
【0117】
重合反応開始後、重合による発熱で反応器内の温度は上昇を始め、最終的な反応器内の温度は、79℃に達した。この反応温度ピーク到達後から2分後に、反応器に2,2-ジメトキシ-1-(3-卜リメトキシシリルプロピル)-1-アザ-2-シラシクロペンタン(化合物1)を8.0mmol添加し、20分間、カップリング反応を実施した。この重合体溶液に、反応停止剤としてメタノールを12.6mmolを添加しゴム状重合体溶液(F-1)を得た。共役ジエン系重合体溶液を一部抜き出し、乾燥機で脱溶剤し、水素添加前のゴム状重合体(F)を得た。
【0118】
((製造例7)水素添加前のゴム状重合体(G))
内容積40Lで、撹持機及びジャケットを具備する温度制御が可能なオートクレーブを反応器として使用し、予め不純物を除去した、1,3-ブタジエンを1、680g、スチレンを780g、シクロヘキサンを21,000g、極性物質として、テトラヒドロフラン(THF)を50mmolと2,2-ビス(2-オキソラニル)プロパンを5.7mmol、反応器へ入れ、反応器内温を42℃に保持した。重合開始剤として、n-ブチルリチウム31.9mmolを上記反応器に供給した。
【0119】
重合反応開始後、重合による発熱で反応器内の温度は上昇を始め、反応器中のモノマーコンバージョンが98%に達した後に、1,3-ブタジエン540gを添加し、反応させた。
【0120】
最終的な反応器内の温度は、79℃に達した。この反応温度ピーク到達後から2分後に、反応器に2,2-ジメトキシ-1-(3-卜リメトキシシリルプロピル)-1-アザ-2-シラシクロペンタン(化合物1)を6.4mmol添加し、20分間、カップリング反応を実施した。この重合体溶液に、反応停止剤としてメタノールを6.1mmolを添加しゴム状重合体溶液(G-1)を得た。共役ジエン系重合体溶液を一部抜き出し、乾燥機で脱溶剤し、水素添加前のゴム状重合体(G)を得た。
【0121】
((製造例8)水素添加前のゴム状重合体(H))
内容積40Lで、撹持機及びジャケットを具備する温度制御が可能なオートクレーブを反応器として使用し、予め不純物を除去した、1,3-ブタジエンを2,100g、スチレンを360g、シクロヘキサンを21,000g、極性物質として、テトラヒドロフラン(THF)を50mmolと2,2-ビス(2-オキソラニル)プロパンを29.5mmol、反応器へ入れ、反応器内温を40℃に保持した。重合開始剤として、n-ブチルリチウム34.7mmolを上記反応器に供給した。
【0122】
重合反応開始後、重合による発熱で反応器内の温度は上昇を始め、反応器中のモノマーコンバージョンが98%に達した後に、1,3-ブタジエン540gを添加し、反応させた。
【0123】
重合反応開始最終的な反応器内の温度は、76℃に達した。この反応温度ピーク到達後から2分後に、反応器に2,2-ジメトキシ-1-(3-卜リメトキシシリルプロピル)-1-アザ-2-シラシクロペンタン(化合物1)を6.9mmol添加し、20分間、カップリング反応を実施した。この重合体溶液に、反応停止剤としてメタノールを6.6mmolを添加しゴム状重合体溶液(H-1)を得た。共役ジエン系重合体溶液を一部抜き出し、乾燥機で脱溶剤し、水素添加前のゴム状重合体(H)を得た。
【0124】
(水素添加触媒(TC1)の調製)
窒素置換した反応溶液に乾燥及び精製したシクロヘキサン1Lを仕込み、ビス(η5-シクロペンタジエニル)チタニウムジクロリド100mmolを添加し、十分に攪拌しながらトリメチルアルミニウム200mmolを含むn-ヘキサン溶液を添加して、室温にて約3日間反応させ水素添加触媒(TC1)を得た。
【0125】
((製造例9)ゴム状重合体(AH1))
前記(製造例1)で得た水素添加前のゴム状重合体溶液(A-1)に、上記水素添加触媒(TC1)を、水素添加前のゴム状重合体100質量部あたり、Ti基準で60ppm添加し、水素圧0.8MPa、平均温度85℃で水素添加反応を50分間行った。得られたゴム状重合体の溶液に、酸化防止剤としてn-オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロオキシフェニル)-プロピオネートを12.6gと、4,6-ビス(オクチルチオメチル)-o-クレゾールを3.0g添加した後、ゴム状重合体溶液を温水に滴下して溶媒を除去し、乾燥機により乾燥処理を施し、ゴム状重合体(AH1)を得た。
【0126】
((製造例10)ゴム状重合体(AH2))
上記水素添加触媒(TC1)の添加量を、水素添加前のゴム状重合体100質量部あたり、Ti基準で70ppmに変えた以外は、前記(製造例9)と同様にしてゴム状重合体(AH2)を得た。
【0127】
((製造例11)ゴム状重合体(AH3))
上記水素添加触媒(TC1)の添加量を、水素添加前のゴム状重合体100質量部あたり、Ti基準で74ppmに変えた以外は、前記(製造例9)と同様にしてゴム状重合体(AH3)を得た。
【0128】
((製造例12)ゴム状重合体(AH4))
上記水素添加触媒(TC1)の添加量を、水素添加前のゴム状重合体100質量部あたり、Ti基準で80ppmに変えた以外は、前記(製造例9)と同様にしてゴム状重合体(AH3)を得た。
【0129】
((製造例13)ゴム状重合体(BH1))
前記(製造例2)で得た水素添加前のゴム状重合体溶液(B-1)に、上記水素添加触媒(TC1)を、水素添加前のゴム状重合体100質量部あたり、Ti基準で85ppm添加し、水素圧0.8MPa、平均温度85℃で水素添加反応を50分間行った。得られたゴム状重合体の溶液に、酸化防止剤としてn-オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロオキシフェニル)-プロピオネートを12.6gと、4,6-ビス(オクチルチオメチル)-o-クレゾールを3.0g添加した後、ゴム状重合体溶液を温水に滴下して溶媒を除去し、乾燥機により乾燥処理を施し、ゴム状重合体(BH1)を得た。
【0130】
((製造例14)ゴム状重合体(CH1))
前記(製造例3)で得た水素添加前のゴム状重合体溶液(C-1)に、上記水素添加触媒(TC1)を、水素添加前のゴム状重合体100質量部あたり、Ti基準で70ppm添加し、水素圧0.8MPa、平均温度85℃で水素添加反応を50分間行った。得られたゴム状重合体の溶液に、酸化防止剤としてn-オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロオキシフェニル)-プロピオネートを12.6gと、4,6-ビス(オクチルチオメチル)-o-クレゾールを3.0g添加した後、ゴム状重合体溶液を温水に滴下して溶媒を除去し、乾燥機により乾燥処理を施し、ゴム状重合体(CH1)を得た。
【0131】
((製造例15)ゴム状重合体(DH1))
前記(製造例4)で得た水素添加前のゴム状重合体溶液(D-1)に、上記水素添加触媒(TC1)を、水素添加前のゴム状重合体100質量部あたり、Ti基準で60ppm添加し、水素圧0.8MPa、平均温度85℃で水素添加反応を50分間行った。得られたゴム状重合体の溶液に酸化防止剤としてn-オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロオキシフェニル)-プロピオネートを12.6gと、4,6-ビス(オクチルチオメチル)-o-クレゾールを3.0g添加した後、ゴム状重合体溶液を温水に滴下して溶媒を除去し、乾燥機により乾燥処理を施し、ゴム状重合体(DH1)を得た。
【0132】
((製造例16)ゴム状重合体(EH1))
前記(製造例5)で得た水素添加前のゴム状重合体溶液(E-1)に、上記水素添加触媒(TC1)を、水素添加前のゴム状重合体100質量部あたり、Ti基準で60ppm添加し、水素圧0.8MPa、平均温度85℃で水素添加反応を50分間行った。得られたゴム状重合体の溶液に酸化防止剤としてn-オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロオキシフェニル)-プロピオネートを12.6gと、4,6-ビス(オクチルチオメチル)-o-クレゾールを3.0g添加した後、ゴム状重合体溶液を温水に滴下して溶媒を除去し、乾燥機により乾燥処理を施し、ゴム状重合体(EH1)を得た。
【0133】
((製造例17)ゴム状重合体(FH1))
前記(製造例6)で得た水素添加前のゴム状重合体溶液(F-1)に、上記水素添加触媒(TC1)を、水素添加前のゴム状重合体100質量部あたり、Ti基準で60ppm添加し、水素圧0.8MPa、平均温度85℃で水素添加反応を60分間行った。得られたゴム状重合体の溶液に酸化防止剤としてn-オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロオキシフェニル)-プロピオネートを12.6gと、4,6-ビス(オクチルチオメチル)-o-クレゾールを3.0g添加した後、ゴム状重合体溶液を温水に滴下して溶媒を除去し、乾燥機により乾燥処理を施し、ゴム状重合体(FH1)を得た。
【0134】
((製造例18)ゴム状重合体(GH1))
前記(製造例7)で得た水素添加前のゴム状重合体溶液(G-1)に、上記水素添加触媒(TC1)を、水素添加前のゴム状重合体100質量部あたり、Ti基準で60ppm添加し、水素圧0.8MPa、平均温度85℃で水素添加反応を80分間行った。得られたゴム状重合体の溶液に酸化防止剤としてn-オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロオキシフェニル)-プロピオネートを12.6gと、4,6-ビス(オクチルチオメチル)-o-クレゾールを3.0g添加した後、ゴム組成物溶液を温水に滴下して溶媒を除去し、乾燥機により乾燥処理を施し、ゴム状重合体(GH1)を得た。
【0135】
((製造例19)ゴム状重合体(HH1))
前記(製造例8)で得た水素添加前のゴム状重合体溶液(H-1)に、上記水素添加触媒(TC1)を、水素添加前のゴム状重合体100質量部あたり、Ti基準で60ppm添加し、水素圧0.8MPa、平均温度90℃で水素添加反応を60分間行った。得られたゴム状重合体の溶液に酸化防止剤としてn-オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロオキシフェニル)-プロピオネートを12.6gと、4,6-ビス(オクチルチオメチル)-o-クレゾールを3.0g添加した後、ゴム組成物溶液を温水に滴下して溶媒を除去し、乾燥機により乾燥処理を施し、ゴム状重合体(HH1)を得た。
【0136】
【表1】
【0137】
〔実施例1~2、参考例3~4、実施例5、参考例6、実施例7~21、参考例22~23、実施例24、参考例25、実施例26~35、参考例36、実施例37~38、参考例39、実施例40~41、比較例1~11〕
表1に示すゴム状重合体、ハイシスポリブタジエン(BR、宇部興産社製の「UBEPOL U150」)、天然ゴム(NR)を原料ゴム成分として、下記表2~表9、及び以下に示す配合に従い、それぞれの原料ゴムを含有するゴム組成物を得た。
なお、表中、(A)ゴム成分の総量を100質量部としたときの、各々の原料ゴムの配合量(質量部)を示した。
【0138】
【表2】
【0139】
【表3】
【0140】
【表4】
【0141】
【表5】
【0142】
【表6】
【0143】
【表7】
【0144】
【表8】
【0145】
【表9】
【0146】
表2~表9中の各成分について、使用した製品名は以下のとおりである。
・シリカ1(エボニック・デグサ社製の商品名「Ultrasil 7000GR」窒素吸着比表面積165m/g)
・シリカ2(エボニック・デグサ社製の商品名「Ultrasil 9100GR」窒素吸着比表面積235m/g)
・カーボンブラック(キャボットジャパン社製の商品名「N234)」
・S-RAEオイル(JX日鉱日石エネルギー社製の商品名「プロセスNC140」)
・水添テルペン(ヤスハラケミカル株式会社製、製品名クリアロン M125)
・カップリング剤(エボニック・デグサ社製の商品名「Si69」、ビス(トリエトキシシリルプロピル)テトラジスルフィド)
・老化防止剤(N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン)
・加硫促進剤1(CBS)(N-シクロヘキシル-2-ベンゾチアジルスルフィンアミド)
・加硫促進剤2(DPG)(ジフェニルグアニジン)
・ワックス(パラフィンワックス)
【0147】
上述した材料を次の方法により混練してゴム組成物を得た。
温度制御装置を備える密閉混練機(内容量0.3L)を使用し、第一段の混練として、充填率65%、ローター回転数30~50rpmの条件で、原料ゴム(ゴム状重合体、天然ゴム、ハイシスポリブタジエン)、充填剤(シリカ、カーボンブラック)、シランカップリング剤、プロセスオイル、亜鉛華、ステアリン酸を混練した。
このとき、密閉混合器の温度を制御し、排出温度は155~160℃で各ゴム組成物(配合物)を得た。
【0148】
次に、第二段の混練として、上記で得た配合物を室温まで冷却後、老化防止剤を加え、シリカ系無機充填剤の分散を向上させるため再度混練した。
この場合も、混合機の温度制御により、配合物の排出温度を145~150℃に調整した。
冷却後、第三段の混練として、70℃に設定したオープンロールにて、硫黄、加硫促進剤1,2を加えて混練した。その後、成形し、150℃で25分間、加硫プレスにて加硫した。加硫前のゴム組成物、及び加硫後のゴム組成物の特性を評価した。
具体的には、下記の方法により評価した。その結果を表2~表9に示す。
【0149】
〔特性の評価〕
(評価1)加工性:配合物ムーニー粘度
上記で得た第二段の混練後、かつ、第三段の混練前の配合物を試料として、ムーニー粘度計を使用し、JIS K6300-1に準拠して、130℃、1分間の予熱を行った後に、ローターを毎分2回転で4分間回転させた後の粘度を測定した。
表2~表5では比較例1の結果を、表6~表9では比較例7の結果をそれぞれ100として指数化した。指数が大きいほど加工性が良好であることを示す。
全ての指数は、表2~表5では比較例1のゴム組成物を使用したタイヤを用いた試験結果を、表6~表9では比較例7の結果を△とし、効果が5%以上15%未満の範囲で良化した場合を〇、15%以上20%未満の範囲で良化した場合を◎、20%以上良化した場合を◎◎とした。
【0150】
(評価2)低燃費性:粘弾性パラメータ
レオメトリックス・サイエンティフィック社製の粘弾性試験機「ARES」を使用し、ねじりモードで粘弾性パラメータを測定した。
各々の測定値は、表2~表5では比較例1のゴム組成物に対する結果を、表6~表9では比較例7の結果を100として指数化した。
50℃において周波数10Hz、ひずみ3%で測定したtanδを省燃費性の指標とした。指数が大きいほど省燃費性が良好であることを示す。
全ての指数は、表2~表5では比較例1のゴム組成物を使用したタイヤを用いた試験結果を、表6~表9では比較例7の結果を△とし、効果が5%以上15%未満の範囲で良化した場合を〇、15%以上20%未満の範囲で良化した場合を◎、20%以上良化した場合を◎◎とした。
【0151】
(評価3)耐摩耗性
アクロン摩耗試験機(安田精機製作所社製)を使用し、JIS K6264-2に準拠して、荷重44.4N、1000回転の摩耗量を測定し、表2~表5では比較例1の結果を、表6~表9では比較例7の結果を100として指数化した。指数が大きいほど耐摩耗性が良好であることを示す。
全ての指数は、表2~表5では比較例1のゴム組成物を使用したタイヤを用いた試験結果を、表6~表9では比較例7の結果を△とし、
効果が5%以上15%未満の範囲で良化した場合を〇、15%以上20%未満の範囲で良化した場合を◎、20%以上良化した場合を◎◎とした。
【0152】
(評価4)耐定伸長疲労性
定伸長疲労試験機(マイズ社製)を使用し、JIS K6260に準拠して、歪み80%、速度300cpmで繰り返し伸長を行った時の破断に至る伸長回数を測定し、表2~表5では比較例1の結果を、表6~表9では比較例7の結果を100として指数化した。指数が大きいほど破断までの伸長回数が多く、耐定伸長疲労性が良好であることを示す。
全ての指数は、表2~表5では比較例1のゴム組成物を使用したタイヤを用いた試験結果を、表6~表9では比較例7の結果を△とし、効果が5%以上15%未満の範囲で良化した場合を〇、15%以上20%未満の範囲で良化した場合を◎、20%以上良化した場合を◎◎とした。
【0153】
(評価5)タイヤ老化後にトラックを運転する際の乗り心地
タイヤの使用後期での性能変化を評価する手法を示す。
各ゴム組成物をトレッドに用いた275/80R22.5 ロードインデックス151のタイヤを作製し、80℃の恒温室で72時間老化させた後、積載重量20トンの車に装着して一般道と高速道路を含む約100kmを走行した際の乗り心地を評価した。
タイヤが老化すると硬度が高くなったり、他の物性が変化したりすることで、乗り心地が悪化した。
表2~表5では比較例1の結果、表6~表9では比較例7の結果をそれぞれ100として指数化した。
全ての指数は、表2~表5では比較例1のゴム組成物を使用したタイヤを用いた試験結果を、表6~表9では比較例7の結果を△とし、効果が5%以上15%未満の範囲で良化した場合を〇、15%以上20%未満の範囲で良化した場合を◎、20%以上良化した場合を◎◎とした。
【0154】
表2~表9に示す通り、実施例1~2、参考例3~4、実施例5、参考例6、実施例7~21、参考例22~23、実施例24、参考例25、実施例26~35、参考例36、実施例37~38、参考例39、実施例40~41は、比較例1~11と比較して、ゴム組成物の加工性と低燃費性と耐摩耗性のバランスに優れ、さらにタイヤの使用後期での性能変化も抑制できることを確認した。
【0155】
本出願は、2020年10月30日に日本国特許庁に出願された日本特許出願(特願2020-182774)に基づくものであり、その内容はここに参照として取り込まれる。
【産業上の利用可能性】
【0156】
本発明に係るゴム組成物は、重荷重の車両用の空気入りタイヤのトレッド、自動車の内装及び外装品、防振ゴム、ベルト、履物、発泡体、各種工業用品用途等の分野において産業上の利用可能性がある。