IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ コニカミノルタ株式会社の特許一覧

<>
  • 特許-軸間距離測定器及び画像形成装置 図1
  • 特許-軸間距離測定器及び画像形成装置 図2
  • 特許-軸間距離測定器及び画像形成装置 図3
  • 特許-軸間距離測定器及び画像形成装置 図4
  • 特許-軸間距離測定器及び画像形成装置 図5
  • 特許-軸間距離測定器及び画像形成装置 図6
  • 特許-軸間距離測定器及び画像形成装置 図7
  • 特許-軸間距離測定器及び画像形成装置 図8
  • 特許-軸間距離測定器及び画像形成装置 図9
  • 特許-軸間距離測定器及び画像形成装置 図10
  • 特許-軸間距離測定器及び画像形成装置 図11
  • 特許-軸間距離測定器及び画像形成装置 図12
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-11-25
(45)【発行日】2024-12-03
(54)【発明の名称】軸間距離測定器及び画像形成装置
(51)【国際特許分類】
   G01B 5/14 20060101AFI20241126BHJP
   B65H 5/06 20060101ALI20241126BHJP
【FI】
G01B5/14
B65H5/06 D
【請求項の数】 17
(21)【出願番号】P 2020210911
(22)【出願日】2020-12-21
(65)【公開番号】P2022097776
(43)【公開日】2022-07-01
【審査請求日】2023-09-26
(73)【特許権者】
【識別番号】000001270
【氏名又は名称】コニカミノルタ株式会社
(74)【代理人】
【識別番号】110001254
【氏名又は名称】弁理士法人光陽国際特許事務所
(72)【発明者】
【氏名】渡辺 義章
(72)【発明者】
【氏名】橋村 嘉人
(72)【発明者】
【氏名】藤山 大助
【審査官】櫻井 仁
(56)【参考文献】
【文献】実開平05-060651(JP,U)
【文献】特開2005-041585(JP,A)
【文献】実開昭52-160349(JP,U)
【文献】実開平02-045410(JP,U)
【文献】実開平02-071203(JP,U)
【文献】特開昭56-160606(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01B 5/00- 5/30
G01B 21/00-21/32
B65H 5/06
(57)【特許請求の範囲】
【請求項1】
2軸間の距離又は該距離の変位量を測定するための軸間距離測定器であって、
測定時に前記2軸のうち一方の軸の周面に当接され、一方の測定基準となる第一測定子と、
測定時に前記2軸のうち他方の軸の周面に当接され、他方の測定基準となる第二測定子と、
弾性部材を含み、前記第一測定子と前記第二測定子とを相対的に移動するように支持し、前記弾性部材の弾性力により前記第一測定子と前記第二測定子とを離れる方向に付勢する移動機構と、
前記移動機構による前記第一測定子と前記第二測定子との距離の変位を計測するように設けられた測定手段と、を備え、
前記2軸間に挿入された前記第一測定子と前記第二測定子とが前記移動機構により、当該2軸間を広げる方向に前記2軸に押圧力をそれぞれ作用させた測定時の状態に保持可能とされ、
前記第一測定子及び前記第二測定子のうちいずれか一方は、該測定子が当接する軸に平行な軸回りの回動支点を介して前記移動機構に対して連結されている軸間距離測定器。
【請求項2】
2軸間の距離又は該距離の変位量を測定するための軸間距離測定器であって、
測定時に前記2軸のうち一方の軸の周面に当接され、一方の測定基準となる第一測定子と、
測定時に前記2軸のうち他方の軸の周面に当接され、他方の測定基準となる第二測定子と、
弾性部材を含み、前記第一測定子と前記第二測定子とを相対的に移動するように支持し、前記弾性部材の弾性力により前記第一測定子と前記第二測定子とを離れる方向に付勢する移動機構と、
前記移動機構による前記第一測定子と前記第二測定子との距離の変位を計測するように設けられた測定手段と、を備え、
前記2軸間に挿入された前記第一測定子と前記第二測定子とが前記移動機構により、当該2軸間を広げる方向に前記2軸に押圧力をそれぞれ作用させた測定時の状態に保持可能とされ、
前記第一測定子及び前記第二測定子のうちいずれか一方は、該測定子が当接する軸回りの回動支点を介して前記移動機構に対して連結されている軸間距離測定器。
【請求項3】
回動支点を中心として前記第一測定子と前記第二測定子との角度を所定の初期角度に規制する弾性規制機構を備える請求項又は請求項に記載の軸間距離測定器。
【請求項4】
2軸間の距離又は該距離の変位量を測定するための軸間距離測定器であって、
測定時に前記2軸のうち一方の軸の周面に当接され、一方の測定基準となる第一測定子と、
測定時に前記2軸のうち他方の軸の周面に当接され、他方の測定基準となる第二測定子と、
弾性部材を含み、前記第一測定子と前記第二測定子とを相対的に移動するように支持し、前記弾性部材の弾性力により前記第一測定子と前記第二測定子とを離れる方向に付勢する移動機構と、
前記移動機構による前記第一測定子と前記第二測定子との距離の変位を計測するように設けられた測定手段と、を備え、
前記2軸間に挿入された前記第一測定子と前記第二測定子とが前記移動機構により、当該2軸間を広げる方向に前記2軸に押圧力をそれぞれ作用させた測定時の状態に保持可能とされ、
少なくとも前記2軸の使用温度範囲で耐久する材料で構成されている軸間距離測定器。
【請求項5】
2軸間の距離又は該距離の変位量を測定するための軸間距離測定器であって、
測定時に前記2軸のうち一方の軸の周面に当接され、一方の測定基準となる第一測定子と、
測定時に前記2軸のうち他方の軸の周面に当接され、他方の測定基準となる第二測定子と、
弾性部材を含み、前記第一測定子と前記第二測定子とを相対的に移動するように支持し、前記弾性部材の弾性力により前記第一測定子と前記第二測定子とを離れる方向に付勢する移動機構と、
前記移動機構による前記第一測定子と前記第二測定子との距離の変位を計測するように設けられた測定手段と、を備え、
前記2軸間に挿入された前記第一測定子と前記第二測定子とが前記移動機構により、当該2軸間を広げる方向に前記2軸に押圧力をそれぞれ作用させた測定時の状態に保持可能とされ、
前記第一測定子と前記第二測定子とは、前記2軸の軸方向にオフセットされて固定されているか又は当該オフセット量を選択可能とされている軸間距離測定器。
【請求項6】
2軸間の距離又は該距離の変位量を測定するための軸間距離測定器であって、
測定時に前記2軸のうち一方の軸の周面に当接され、一方の測定基準となる第一測定子と、
測定時に前記2軸のうち他方の軸の周面に当接され、他方の測定基準となる第二測定子と、
弾性部材を含み、前記第一測定子と前記第二測定子とを相対的に移動するように支持し、前記弾性部材の弾性力により前記第一測定子と前記第二測定子とを離れる方向に付勢する移動機構と、
前記移動機構による前記第一測定子と前記第二測定子との距離の変位を計測するように設けられた測定手段と、を備え、
前記2軸間に挿入された前記第一測定子と前記第二測定子とが前記移動機構により、当該2軸間を広げる方向に前記2軸に押圧力をそれぞれ作用させた測定時の状態に保持可能とされ、
前記第一測定子及び前記第二測定子のうちいずれか一方を、当該一方の測定子が当接する軸の支持フレームに、該軸に該測定子を弾性力により押圧した状態で固定するための弾性連結部を備える軸間距離測定器。
【請求項7】
前記2軸の軸方向に観察したとき、前記第一測定子及び/又は前記第二測定子は、前記測定時の状態において前記一方の軸の中心線と前記他方の軸の中心線とを通る直線を境界線として互いに逆側にある2つの位置で前記周面と当接する請求項1、2、4~6のいずれか一項に記載の軸間距離測定器。
【請求項8】
前記2つの位置で前記周面に当接する測定子には、当該2つの位置のそれぞれに転がり軸受が設けられている請求項に記載の軸間距離測定器。
【請求項9】
前記2軸の軸方向に観察したとき、前記第一測定子の中央及び前記第二測定子の中央は、前記弾性部材による前記弾性力の合力作用線上にある請求項1、2、4~6のいずれか一項に記載の軸間距離測定器。
【請求項10】
前記測定手段として電子的測長器を備える請求項1、2、4~6のいずれか一項に記載の軸間距離測定器。
【請求項11】
前記電子的測長器は差動トランス式変位センサーを使用した測長器である請求項10に記載の軸間距離測定器。
【請求項12】
前記電子的測長器の出力信号に基づき測定値を表示する表示装置を備える請求項10に記載の軸間距離測定器。
【請求項13】
前記2軸に対する前記押圧力は、測定手段の測定精度に影響を与えない範囲をされている請求項1、2、4~6のいずれか一項に記載の軸間距離測定器。
【請求項14】
前記第一測定子及び前記第二測定子が当接する前記周面は、ローラーの軸を構成する芯金の周面である請求項1、2、5、6のいずれか一項に記載の軸間距離測定器。
【請求項15】
前記移動機構は、前記移動を直動とした直動機構である請求項1、2、4~6のいずれか一項に記載の軸間距離測定器。
【請求項16】
請求項1~15のいずれか一項に記載の軸間距離測定器を備え、
同一の2軸に対し、軸方向の異なる位置に装着された2以上の前記軸間距離測定器を備える画像形成装置。
【請求項17】
前記軸間距離測定器の出力信号が受信可能にされ、当該出力信号に基づく前記2軸間の距離の監視又は画像形成条件の制御が可能にされた制御部を備える請求項16に記載の画像形成装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、軸間距離測定器及び画像形成装置に関する。
【背景技術】
【0002】
画像形成装置等のローラー対を有する装置において、ローラー対を構成する一方の軸と他方の軸との間の軸間距離は、当該装置の処理性能に影響するため、個々の製品完成体において測定する必要がある。
特許文献1には、発光素子(発光ダイオード)と受光素子(フォトダイオード)とからなる軸間距離測定手段が記載されている。この軸間距離測定手段は、発光ダイオードから照射された光が、ローラー対を構成する2軸のうちの一方の軸に当たり、その反射光がフォトダイオードに入光するように各々固定され、該軸の移動に伴う反射光の強さの変化により軸間距離を測定する。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2005-41585号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、製品完成体においては、測定対象の軸の周囲に十分なスペースが無く、測定器をうまく配置できないために軸間距離を測定することができない場合がある。
また、画像形成装置の定着ユニットのように軸が移動する場合、さらにその移動に追従して軸間距離の変化を測定したい場合、軸間距離を測定することが難しくなる。軸の周囲に十分なスペースが無い上に、軸が移動してしまうと、軸間距離の測定は困難を極める。
特許文献1に記載のもの又はレーザー測長器などその他の光学的な測定手段を用いる場合、発光器及び受光器を設置することができ、かつ、測定光の光路に測定対象以外の光を遮るものがないという条件を要するため、上記問題を解決することが難しかった。光学的な測定手段によれば、軸間距離の変化に対する追従性を発揮できるが、測定光の照射範囲から測定対象の軸が外れると追従できない。追従範囲を大きくするには、照射範囲や受光範囲を大きくする必要があるから、装置が大型化し、ますます周囲にスペースを要することとなる。
また、キャリパーゲージ、マイクロメーター、ノギスなどの手持ちの測定器を測定者が用いて測定する場合には、測定者の手が装置内に入って測定器を測定位置に運べて測定操作ができること、測定操作を周囲の構成物が阻害しないことなどの条件を要する上に、正確に測定できるかは測定者の熟練度に依存するために測定値が安定しないという問題もある。
【0005】
本発明は以上の従来技術における問題に鑑みてなされたものであって、省スペースに設置することができるとともに、軸間距離の変化に対して追従しつつ軸間距離を安定して精度よく測定することができる軸間距離測定器を提供することを課題とする。
【課題を解決するための手段】
【0006】
本発明の一態様は
2軸間の距離又は該距離の変位量を測定するための軸間距離測定器であって、
測定時に前記2軸のうち一方の軸の周面に当接され、一方の測定基準となる第一測定子と、
測定時に前記2軸のうち他方の軸の周面に当接され、他方の測定基準となる第二測定子と、
弾性部材を含み、前記第一測定子と前記第二測定子とを相対的に移動するように支持し、前記弾性部材の弾性力により前記第一測定子と前記第二測定子とを離れる方向に付勢する移動機構と、
前記移動機構による前記第一測定子と前記第二測定子との距離の変位を計測するように設けられた測定手段と、を備え、
前記2軸間に挿入された前記第一測定子と前記第二測定子とが前記移動機構により、当該2軸間を広げる方向に前記2軸に押圧力をそれぞれ作用させた測定時の状態に保持可能とされ、
前記第一測定子及び前記第二測定子のうちいずれか一方は、該測定子が当接する軸に平行な軸回りの回動支点を介して前記移動機構に対して連結されている軸間距離測定器である。
本発明の他の態様は、
2軸間の距離又は該距離の変位量を測定するための軸間距離測定器であって、
測定時に前記2軸のうち一方の軸の周面に当接され、一方の測定基準となる第一測定子と、
測定時に前記2軸のうち他方の軸の周面に当接され、他方の測定基準となる第二測定子と、
弾性部材を含み、前記第一測定子と前記第二測定子とを相対的に移動するように支持し、前記弾性部材の弾性力により前記第一測定子と前記第二測定子とを離れる方向に付勢する移動機構と、
前記移動機構による前記第一測定子と前記第二測定子との距離の変位を計測するように設けられた測定手段と、を備え、
前記2軸間に挿入された前記第一測定子と前記第二測定子とが前記移動機構により、当該2軸間を広げる方向に前記2軸に押圧力をそれぞれ作用させた測定時の状態に保持可能とされ、
前記第一測定子及び前記第二測定子のうちいずれか一方は、該測定子が当接する軸回りの回動支点を介して前記移動機構に対して連結されている軸間距離測定器である。
本発明の他の態様は、
2軸間の距離又は該距離の変位量を測定するための軸間距離測定器であって、
測定時に前記2軸のうち一方の軸の周面に当接され、一方の測定基準となる第一測定子と、
測定時に前記2軸のうち他方の軸の周面に当接され、他方の測定基準となる第二測定子と、
弾性部材を含み、前記第一測定子と前記第二測定子とを相対的に移動するように支持し、前記弾性部材の弾性力により前記第一測定子と前記第二測定子とを離れる方向に付勢する移動機構と、
前記移動機構による前記第一測定子と前記第二測定子との距離の変位を計測するように設けられた測定手段と、を備え、
前記2軸間に挿入された前記第一測定子と前記第二測定子とが前記移動機構により、当該2軸間を広げる方向に前記2軸に押圧力をそれぞれ作用させた測定時の状態に保持可能とされ、
少なくとも前記2軸の使用温度範囲で耐久する材料で構成されている軸間距離測定器である。
本発明の他の態様は、
2軸間の距離又は該距離の変位量を測定するための軸間距離測定器であって、
測定時に前記2軸のうち一方の軸の周面に当接され、一方の測定基準となる第一測定子と、
測定時に前記2軸のうち他方の軸の周面に当接され、他方の測定基準となる第二測定子と、
弾性部材を含み、前記第一測定子と前記第二測定子とを相対的に移動するように支持し、前記弾性部材の弾性力により前記第一測定子と前記第二測定子とを離れる方向に付勢する移動機構と、
前記移動機構による前記第一測定子と前記第二測定子との距離の変位を計測するように設けられた測定手段と、を備え、
前記2軸間に挿入された前記第一測定子と前記第二測定子とが前記移動機構により、当該2軸間を広げる方向に前記2軸に押圧力をそれぞれ作用させた測定時の状態に保持可能とされ、
前記第一測定子と前記第二測定子とは、前記2軸の軸方向にオフセットされて固定されているか又は当該オフセット量を選択可能とされている軸間距離測定器である。
本発明の他の態様は、
2軸間の距離又は該距離の変位量を測定するための軸間距離測定器であって、
測定時に前記2軸のうち一方の軸の周面に当接され、一方の測定基準となる第一測定子と、
測定時に前記2軸のうち他方の軸の周面に当接され、他方の測定基準となる第二測定子と、
弾性部材を含み、前記第一測定子と前記第二測定子とを相対的に移動するように支持し、前記弾性部材の弾性力により前記第一測定子と前記第二測定子とを離れる方向に付勢する移動機構と、
前記移動機構による前記第一測定子と前記第二測定子との距離の変位を計測するように設けられた測定手段と、を備え、
前記2軸間に挿入された前記第一測定子と前記第二測定子とが前記移動機構により、当該2軸間を広げる方向に前記2軸に押圧力をそれぞれ作用させた測定時の状態に保持可能とされ、
前記第一測定子及び前記第二測定子のうちいずれか一方を、当該一方の測定子が当接する軸の支持フレームに、該軸に該測定子を弾性力により押圧した状態で固定するための弾性連結部を備える軸間距離測定器である。
【発明の効果】
【0007】
本発明の軸間距離測定器によれば、2軸間のスペースを利用して省スペースに設置することができるとともに、弾性力により軸間距離の変化に対して追従して測定時の状態に保持され軸間距離を安定して精度よく測定することができる。
【図面の簡単な説明】
【0008】
図1】画像形成装置の全体構成を概略的に示す正面図である。
図2】画像形成装置の機能的構成を示したブロック図である。
図3】定着部の概略構成を示す正面図である。
図4】第1実施形態の軸間距離測定器及び測定対象の2軸を示す正面図である。
図5】校正マスターの正面図(a)及び側面図(b)である。
図6】2つの軸間距離測定器及び測定対象の2軸を示す側面図である。
図7】1つの軸間距離測定器及び測定対象の2軸を示す側面図である。
図8】第2実施形態の軸間距離測定器及び測定対象の2軸を示す正面図である。
図9】第3実施形態の軸間距離測定器及び測定対象の2軸を示す正面図である。
図10】第4実施形態の軸間距離測定器及び測定対象の2軸を示す正面図である。
図11】第4実施形態の軸間距離測定器及び測定対象の2軸を示す側面図である。
図12】第5実施形態の軸間距離測定器及び測定対象の2軸を示す正面図である。
【発明を実施するための形態】
【0009】
以下に本発明の一実施形態につき図面を参照して説明する。以下は本発明の一実施形態であって本発明を限定するものではない。
【0010】
[画像形成装置の構成]
図1は、本実施形態に係る画像形成装置1の全体構成を概略的に示す図である。図2は、本実施形態に係る画像形成装置1の主要な機能的構成を示すブロック図である。
図1、2に示す画像形成装置1は、電子写真プロセス技術を利用した中間転写方式のカラー画像形成装置である。すなわち、画像形成装置1は、感光体ドラム413上に形成されたY(イエロー)、M(マゼンタ)、C(シアン)、K(ブラック)の各色トナー画像を中間転写ベルト421に転写(一次転写)し、中間転写ベルト421上で4色のトナー画像を重ね合わせた後、用紙に転写(二次転写)することにより、画像を形成する。
【0011】
画像形成装置1には、YMCKの4色に対応する感光体ドラム413を中間転写ベルト421の走行方向に直列配置し、中間転写ベルト421に各色トナー画像を順次転写させるタンデム方式が採用されている。
【0012】
図2に示すように、画像形成装置1は、画像読取部10、操作表示部20、画像処理部
30、画像形成部40、用紙搬送部50、定着部60、記憶部70、通信部80及び制御部100を備えている。
【0013】
制御部100は、CPU(Central Processing Unit)101、ROM(Read Only Memory)102、RAM(Random Access Memory)103等を備える。CPU101は、ROM102から処理内容に応じたプログラムを読み出してRAM103に展開し、展開したプログラムと協働して図2に示す画像形成装置1の各ブロックの動作を集中制御する。
【0014】
画像読取部10は、ADF(Auto Document Feeder)と称される自動原稿給紙装置11および原稿画像走査装置12(スキャナー)等を備えて構成される。
自動原稿給紙装置11は、原稿トレイに載置された原稿Dを搬送機構により搬送して原稿画像走査装置12へ送り出す。自動原稿給紙装置11は、原稿トレイに載置された多数枚の原稿Dの画像(両面を含む)を連続して一挙に読み取ることができる。
【0015】
原稿画像走査装置12は、自動原稿給紙装置11からコンタクトガラス上に搬送された原稿又はコンタクトガラス上に載置された原稿を光学的に走査し、原稿からの反射光をCCD(Charge Coupled Device)センサー12aの受光面上に結像させ、原稿画像を読み
取る。画像読取部10は、原稿画像走査装置12による読取結果に基づいて入力画像データを生成する。この入力画像データには、画像処理部30において所定の画像処理が施される。
【0016】
操作表示部20は、例えばタッチパネル付の液晶ディスプレイ(LCD:Liquid Crystal Display)で構成され、表示部21及び操作部22として機能する。表示部21は、制御部100から入力される表示制御信号に従って、各種操作画面、画像の状態表示、各機能の動作状況等の表示を行う。操作部22は、テンキー、スタートキー等の各種操作キーを備え、ユーザーによる各種入力操作を受け付けて、操作信号を制御部100に出力する。
【0017】
画像処理部30は、入力されたジョブの画像データ(入力画像データ)に対して、初期設定又はユーザー設定に応じたデジタル画像処理を行う回路等を備える。例えば、画像処理部30は、制御部100の制御下で、階調補正データ(階調補正テーブル)に基づいて階調補正を行う。また、画像処理部30は、入力画像データに対して、階調補正の他、色補正、シェーディング補正等の各種補正処理や、圧縮処理等を施す。これらの処理が施された画像データに基づいて、画像形成部40が制御される。
【0018】
画像形成部40は、画像処理済みの入力画像データに基づいて、Y成分、M成分、C成分、K成分の各有色トナーによる画像を形成するための画像形成ユニット41Y、41M、41C、41K、中間転写ユニット42等を備える。
【0019】
Y成分、M成分、C成分、K成分用の画像形成ユニット41Y、41M、41C、41Kは、同様の構成を有する。図示及び説明の便宜上、共通する構成要素は同一の符号で示し、それぞれを区別する場合には符号にY、M、C、又はKを添えて示すこととする。図1では、Y成分用の画像形成ユニット41Yの構成要素についてのみ符号が付され、その他の画像形成ユニット41M、41C、41Kの構成要素については符号が省略されている。
【0020】
画像形成ユニット41は、露光装置411、現像部412、感光体ドラム413(像担持体)、帯電装置414、ドラムクリーニング装置415、等を備える。
【0021】
感光体ドラム413は、例えばアルミニウム製の導電性円筒体(アルミ素管)の周面に、アンダーコート層(UCL:Under Coat Layer)、電荷発生層(CGL:Charge Generation Layer)、電荷輸送層(CTL:Charge Transport Layer)を順次積層した負帯電型の有機感光体(OPC:Organic Photo-conductor)である。電荷発生層は、電荷発生材料(例えばフタロシアニン顔料)を樹脂バインダー(例えばポリカーボネイト)に分散させた有機半導体からなり、露光装置411による露光により一対の正電荷と負電荷を発生する。電荷輸送層は、正孔輸送性材料(電子供与性含窒素化合物)を樹脂バインダー(例えばポリカーボネイト樹脂)に分散させたものからなり、電荷発生層で発生した正電荷を電荷輸送層の表面まで輸送する。
【0022】
制御部100は、感光体ドラム413を回転させる駆動モーター(図示略)に供給される駆動電流を制御することにより、感光体ドラム413を一定の周速度(例えば、665mm/s)で回転させる。
【0023】
帯電装置414は、光導電性を有する感光体ドラム413の表面を一様に負極性に帯電させる。露光装置411は、例えば半導体レーザーで構成され、感光体ドラム413に対して各色成分の画像に対応するレーザー光を照射する。感光体ドラム413の電荷発生層で正電荷が発生し、電荷輸送層の表面まで輸送されることにより、感光体ドラム413の表面電荷(負電荷)が中和される。感光体ドラム413の表面には、周囲との電位差により各色成分の静電潜像が形成される。
【0024】
現像部412は、トナーとキャリアーとを含む二成分現像剤を用いる二成分現像方式の現像部であり、感光体ドラム413の表面に各色成分のトナーを付着させることにより静電潜像を可視化してトナー画像を形成する。
【0025】
なお、キャリアーとしては、特に限定されず、一般に使用されている公知のキャリアーを使用することができ、バインダー型キャリアーやコート型キャリアーなどが使用できる。キャリアー粒径としてはこれに限定されるものではないが、15~100μmが好ましい。
トナーも特に限定されず、一般に使用されている公知のトナーを使用することができる。例えば、バインダー樹脂中に、着色剤や必要に応じて荷電制御剤や離型剤等を含有させ、外添剤を処理させたものを使用することができる。トナー粒径は、特に限定されるものではないが、3~15μm程度が好ましい。
【0026】
ドラムクリーニング装置415は、感光体ドラム413の表面に摺接されるドラムクリーニングブレード等を有し、一次転写後に感光体ドラム413の表面に残存する転写残トナーを除去する。
【0027】
中間転写ユニット42は、中間転写ベルト421、一次転写ローラー422(転写部)、複数の支持ローラー423、二次転写ローラー424、ベルトクリーニング装置426、及びセンサー427等を備える。
【0028】
中間転写ベルト421は、無端状ベルトで構成され、複数の支持ローラー423にループ状に張架される。複数の支持ローラー423のうちの少なくとも1つは駆動ローラーで構成され、その他は従動ローラーで構成される。例えば、K成分用の一次転写ローラー422よりもベルト走行方向下流側に配置されるローラー423Aが駆動ローラーであることが好ましい。これにより、一次転写部におけるベルトの走行速度を一定に保持しやすくなる。駆動ローラー423Aが回転することにより、中間転写ベルト421は矢印A方向に一定速度で走行する。
【0029】
一次転写ローラー422は、各色成分の感光体ドラム413に対向して、中間転写ベルト421の内周面側に配置される。中間転写ベルト421を挟んで、一次転写ローラー422が感光体ドラム413に圧接されることにより、感光体ドラム413から中間転写ベルト421へトナー画像を転写するための一次転写ニップが形成される。
【0030】
二次転写ローラー424は、駆動ローラー423Aのベルト走行方向下流側に配置されるローラー423B(以下「バックアップローラー423B」と称する)に対向して、中間転写ベルト421の外周面側に配置される。中間転写ベルト421を挟んで、二次転写ローラー424がバックアップローラー423Bに圧接されることにより、中間転写ベルト421から用紙へトナー画像を転写するための二次転写ニップが形成される。
【0031】
一次転写ニップを中間転写ベルト421が通過する際、感光体ドラム413上のトナー画像が中間転写ベルト421に順次重ねて一次転写される。具体的には、一次転写ローラー422に一次転写バイアスを印加し、中間転写ベルト421の裏面側(一次転写ローラー422と当接する側)にトナーと逆極性の電荷を付与することにより、トナー画像は中間転写ベルト421に静電的に転写される。
【0032】
その後、用紙が二次転写ニップを通過する際、中間転写ベルト421上のトナー画像が用紙に二次転写される。具体的には、二次転写ローラー424に二次転写バイアスを印加し、用紙の裏面側(二次転写ローラー424と当接する側)にトナーと逆極性の電荷を付与することにより、トナー画像は用紙に静電的に転写される。トナー画像が転写された用紙は定着部60に向けて搬送される。
【0033】
ベルトクリーニング装置426は、中間転写ベルト421の表面に摺接するベルトクリーニングブレード等を有し、二次転写後に中間転写ベルト421の表面に残留する転写残トナーを除去する。なお、二次転写ローラー424に代えて、二次転写ローラーを含む複数の支持ローラーに、二次転写ベルトがループ状に張架された構成(いわゆるベルト式の二次転写ユニット)を採用しても良い。
【0034】
定着部60は、図3に示すようにトナー画像が二次転写され、搬送されてきた用紙を定着ニップで加熱、加圧することにより、用紙にトナー画像を定着させる。図3に示すように定着部60は、上ローラー61と下ローラー62とを圧接して、用紙通過方向の距離であるニップ幅Wの範囲にニップ圧が作用した定着ニップを形成し、トナーTによる画像が転写された用紙Sに対して適切なニップ幅Wを通過する間に適切なニップ圧による加圧及び加熱を施し用紙SにトナーTによる画像を良好に定着させる。
【0035】
用紙搬送部50は、給紙部51、排紙部52、及び搬送経路部53等を備える。給紙部51を構成する3つの給紙トレイユニット51a~51cには、坪量やサイズ等に基づいて識別された用紙(規格用紙、特殊用紙)があらかじめ設定された種類毎に収容される。搬送経路部53は、レジストローラー対53a等の複数の搬送ローラー対を有する。
【0036】
給紙トレイユニット51a~51cに収容されている用紙は、最上部から一枚ずつ送出され、搬送経路部53により画像形成部40に搬送される。このとき、レジストローラー対53aが配設されたレジストローラー部により、給紙された用紙の傾きが補正されるとともに搬送タイミングが調整される。そして、画像形成部40において、中間転写ベルト421のトナー画像が用紙の一方の面に一括して二次転写され、定着部60において定着工程が施される。画像形成された用紙は、排紙ローラー52aを備えた排紙部52により機外に排紙される。
【0037】
なお、用紙は、長尺紙やロール紙であってもよい。この場合、用紙は、画像形成装置1と接続された給紙装置(図示せず)に収容されており、給紙装置が保有する用紙は、当該給紙装置から用紙給紙口54を介して画像形成装置1へと供給され、搬送経路部53へと送り出される。
【0038】
記憶部70は、例えば、不揮発性の半導体メモリ(いわゆるフラッシュメモリ)やハードディスクドライブ等により構成される。記憶部70には、画像形成装置1に係る各種設定情報を始めとする各種データが記憶されている。
【0039】
通信部80は、例えばLAN(Local Area Network)カード等の通信制御カードで構成され、LAN、WAN(Wide Area Network)等の通信ネットワークに接続された外部の装置(例えばパーソナルコンピューター)との間で各種データの送受信を行う。
【0040】
[軸間距離測定]
次に定着部60の上ローラー61と下ローラー62との距離を測定対象の例とした軸間距離測定器につき説明する。
【0041】
(第1実施形態)
図4に測定対象の2軸61a,62aが示される。一方の軸61aは上ローラー61の軸を構成する芯金である。他方の軸62aは下ローラー62の軸を構成する芯金である。図4に示すように2軸61a,62a間の距離を測定対象とし、軸間距離測定器90が測定時の状態に設置されている。
【0042】
軸間距離測定器90は2軸間の距離又は該距離の変位量を測定するための軸間距離測定器であって、第一測定子91と、第二測定子92と、直動機構(移動機構)93と、測定手段(94)とを備える。
第一測定子91は、測定時に2軸61a,62aのうち一方の軸61aの周面61cに当接され、一方の測定基準となる。
第二測定子92は、測定時に2軸61a,62aのうち他方の軸62aの周面62cに当接され、他方の測定基準となる。
直動機構93は、弾性部材93aを含み、第一測定子91と第二測定子92とを相対的に直線Cに沿って直動するように支持し、弾性部材93aの弾性力により第一測定子91と第二測定子92とを離れる方向(C1,C2方向)に付勢する。直動機構93に適用されるガイド機構は、ガイドロッドとシリンダによるもの、ガイドレールとガイドローラーによるもの、リンク機構によるもの、その他任意の機構によればよい。また、移動は本実施形態の直動に限らず、曲線上の移動、斜めの移動等の他の移動軌跡のものを適用してもよい。
【0043】
測定手段(94)は、直動機構による直線Cに沿った第一測定子91と第二測定子92との距離の変位を計測するように設けられている。測定手段としては、定規、マイクロメーターなどの機械式測長器のほか電子的測長器を適用できる。図4に示す例では、電子的測長器の一つとしての差動トランス式変位センサー94を使用した測長器を適用する。差動トランス式変位センサー94は、ロッド94a及び検出ヘッド94bを有し、ロッド94aにガイドされた検出ヘッド94bの直線運動を対応する電気信号に変換できる電気機械トランスデューサである。図4に示すようにロッド94aが一方の測定子(図4では第二測定子92)に固定され、検出ヘッド94bが他方の測定子(図4では第一測定子91)に固定され、ロッド94aの軸方向、すなわち、差動トランス式変位センサー94による変位の測定方向が直線Cに平行な方向に配置されている。
したがって、第一測定子91と第二測定子92との距離の変位を、差動トランス式変位センサー94から電気信号として取り出すことができる。
【0044】
図4に示すように軸間距離測定器90は、2軸61a,62a間に挿入された第一測定子91と第二測定子92とが直動機構93により、当該2軸61a,62a間を広げる方向(C1,C2方向)に2軸61a,62aに押圧力をそれぞれ作用させた測定時の状態に保持可能とされている。
【0045】
また図4に示すように2軸61a,62aの軸方向に観察したとき、第一測定子91は、測定時の状態において一方の軸61aの中心線61xと他方の軸62aの中心線62xとを通る直線Cを境界線として互いに逆側にある2つの位置91a,91bで周面61cと当接する。これにより、軸61aを第一測定子91に対して定位置に安定させる安定性が増す。
また第二測定子92も同様に、図4に示すように測定時の状態において直線Cを境界線として互いに逆側にある2つの位置92a,92bで周面62cと当接する。これにより、軸62aを第二測定子92に対して定位置に安定させる安定性が増す。
なお、2点で当接する以上の構造は、第一測定子91及び第二測定子92のうちいずれか一方のみに採用してもよい。
【0046】
また、図4に示すように2軸61a,62aの軸方向に観察したとき、第一測定子91の中央及び第二測定子92の中央は、弾性部材93aによる弾性力の合力作用線上にある。すなわち、弾性部材93aによる弾性力の合力作用線が直線Cに一致し、かつ、直線Cは第一測定子91の中央及び第二測定子92の中央を通っている。このような配置とすることで、直動機構93にモーメントが生じず、円滑に直動動作することができる。また、第一測定子91及び第二測定子92に加え直動機構93も2軸61a,62a間の領域を利用して配置できるから、軸間距離測定器90を2軸61a,62a間のスペースを利用して省スペースに設置することができる。
【0047】
以上説明した軸間距離測定器90によれば、2軸61a,62a間のスペースを利用して省スペースに設置することができる。
また以上説明したように軸間距離測定器90は、2軸61a,62a間に挿入された第一測定子91と第二測定子92とが直動機構93により、当該2軸間を広げる方向(C1,C2方向)に2軸61a,62aに押圧力をそれぞれ作用させた測定時の状態に保持され、また上述した測定手段(94)を備えるので、2軸61a,62a間の距離の変動があっても、第一測定子91が軸61aの周面61cに常に当接した状態で追従し、第二測定子92が軸62aの周面62cに常に当接した状態で追従して、2軸61a,62a間の距離の変位が第一測定子91と第二測定子92との距離の変位に反映され、当該変位を測定手段(94)により測定することができる。
したがって、軸間距離測定器90によれば、弾性力により軸間距離の変化に対して追従して測定時の状態に保持され軸間距離を安定して精度よく測定することができる。
また、測定子(91,92)が軸芯である芯金(61a,62a)に当接するので、精度良く軸間距離を測定することができる。
【0048】
以上の実施形態のように軸間距離測定器90を定着部60の定着ローラー61,62に適用する場合には、定着ローラー61,62の圧接時の軸間距離を測定できるので、定着ローラー61,62のニップ圧、ニップ幅が適切かどうか検知することができ、また検知結果に基づきローラー61,62の軸間距離を制御し、所望のニップ圧、ニップ幅に制御することも可能になる。
【0049】
軸間距離測定器は、測定対象の2軸に接触するので、少なくとも2軸の使用温度範囲で耐久する材料で構成されているとよい。本実施形態の場合、定着のために熱を発する定着部60の定着ローラー61,62に使用されるので、定着ローラー61,62の使用温度範囲で耐久する材料で構成されているとよい。これにより、軸間距離測定器90を測定時の状態に取り付けたまま、画像形成装置1の稼働中を含め継続的に使用することができる。
【0050】
軸間距離測定器90は、画像形成装置1の構成要素として備えられて、生産、検査、出荷され、ユーザーに使用されるように実施してもよいし、出荷前の検査時に取り付けて検査し、取り外してから出荷してもよい。
上記の電子的測長器(94)の出力信号に基づき測定値を表示する表示装置を適宜に用意して測定を実施する。当該表示装置は画像形成装置に対して外付けのものであってよい。また、当該表示装置として、画像形成装置1に備わる制御部100及び操作表示部20を適用してもよい。後者の場合、制御部100は、図2に示すように軸間距離測定器90(差動トランス式変位センサー94)の出力信号が受信可能にされ、当該出力信号に基づく2軸間の距離の監視又は画像形成条件の制御が可能にされる。監視の場合は、測定履歴を記録し、必要により操作表示部20への表示出力、外部への通知を行う。画像形成条件の制御例としては、上述したように定着ローラー61,62間の距離を変更制御し、印刷に適切なニップ圧、ニップ幅としたり、定着ローラー61,62間の距離を変更せず他の画像形成条件を変更して対応したりすることが挙げられる。
【0051】
また、軸間距離測定器90は、測定対象の設計寸法の基準とする校正マスターを備えるものとする。
校正マスターとは、測定対象の2軸の対測定子当接面を模した標準原器で、既知の一定の軸間距離が再現され、恒久的に保持、保存されるものである。例えば、図5に示すように校正マスター95は、金属ブロックの削り出しにより、精度良くかつ容易に変形しないように形成され、測定対象の2軸の対測定子当接面に相当する当接面95aと当接面95bとを有する。
校正作業としては、第一測定子91を当接面95aに当接させ、第二測定子92を当接面95bに当接させて、軸間距離測定器90を校正マスター95に対し測定時の状態にセットし、測定を実施し、測定結果を上記の表示装置等に記憶する。
以上の校正により、軸間距離の基準絶対値が得られたので、その後は測定精度が確保される。さらに本実施形態の校正マスター95は、測定対象の設計寸法の基準値を再現するものであるため、校正マスター95を対象に測定した軸間距離との差を測定することで、設計寸法の基準値との誤差を測定することができる。
これにより、製品としての合否判断と、再調整を精度よく行うことができる。
設計寸法の基準値との差を測定するために電子的測長器(94)に基づく測定のゼロ点を設定可能とされている。ゼロ点の設定は、上記表示装置で行えるように実施すればよい。
【0052】
軸間距離測定器90を2軸61a,62aに対して測定時の状態にセットすると、2軸61a,62a間を広げる方向に押圧力を作用させるので、当該押圧力が無い時に対し誤差を生じさせるおそれがある。
そのため、軸間距離測定器90による2軸61a,62aに対する押圧力は、測定手段(94)の測定精度に影響を与えない範囲をされている。
軸間距離測定器90による2軸61a,62aに対する押圧力は、例えば、定着部60による定着押圧荷重の1%以下として測定精度に影響がないようにする。
【0053】
図6に示すように同一の2軸61a,62aに対し、軸方向の異なる位置に装着された2以上の軸間距離測定器90L、90Rを画像形成装置1に備えるようにしてもよい。これにより上下ローラー61,62の偏芯に起因の振動によるピッチムラ、長手方向片減り摩耗によるローラー傾きなどの検出が可能となる。
【0054】
図7に示すように第一測定子91と第二測定子92とは、2軸61a,62aの軸方向にオフセットされて固定されていることとしてもよい。これにより、軸61aと軸62aとで測定子を当接可能な軸方向の範囲がずれている場合に対応することができる。同一の軸間距離測定器90で異なるオフセット量(オフセット0を含む)にフレキシブルに対応するために、当該オフセット量を選択可能とされた軸間距離測定器90を構成してもよい。オフセット量を選択可能とする機構としては、例えば、第一測定子91の軸61aへの当接部分の部品を軸方向にスライド可能にガイドし任意の位置で固定できる機構や、同部品の取り付け方向を変えることでオフセット量が変化するものなどが挙げられる。
【0055】
(第2実施形態)
以下に、上記第1実施形態を基本にした変形例の実施形態につき説明する。同一の部分は同符号を付して説明を省略する。
ここでは、図8を参照して第2実施形態につき説明する。
図8に示す軸間距離測定器90Bにあっては、2つの位置91a,91bで周面61cに当接する第一測定子91には、当該2つの位置91a,91bのそれぞれに転がり軸受91c,91dが設けられている。上述したように第一測定子91は、軸61aの周面61cに2つの位置91a,91bで当接する。この当接する部材が転がり軸受91c,91dとされる。
図8に示す軸間距離測定器90Bにあっては、2つの位置92a,92bで周面62cに当接する第二測定子92にも同様に、当該2つの位置92a,92bのそれぞれに転がり軸受92c,92dが設けられている。
これにより、上ローラー61及び/下ローラー62の回転時にも測定時の状態が安定して保持され精度よく測定することができる。例えば軸間距離測定器90Bが画像形成装置1に組み込まれた状態で出荷され、使用される場合に、上ローラー61及び/下ローラー62の回転中も精度よく軸間距離を測定することができる。
転がり軸受91c,91d,92c,92dとしてはコロ(円筒体)又は球体が適用される。
【0056】
(第3実施形態)
次に、図9を参照して第3実施形態につき説明する。
図9に示す軸間距離測定器90Cにあっては、第一測定子91及び第二測定子92のうちいずれか一方(本実施形態では第二測定子92)を、当該一方の測定子92が当接する軸62aの支持フレーム62Fに、該軸62aに該測定子92を弾性力により押圧した状態で固定するための弾性連結部62Sを備える。
2軸61a,62aの近接・離間動作には、画像形成装置1の稼働時における圧接・乖離ストロークと、メンテナンス等のために当該圧接・乖離ストロークの最大距離を超えて離れるストローク(以下「開放ストローク」と呼ぶ)とがある。圧接・乖離ストロークは駆動力により変化する範囲である。直動機構93の直動ストロークは、少なくとも圧接・乖離ストロークに追従する。なお、2軸61a,62aの近接・離間動作は、画像形成装置1本体に対して一方が可動、他方が固定であることで実現してもよいし、双方が可動であることで実現してもよいし、一方のみが可動の場合どちらが可動であっても実現することができる。
圧接・乖離ストロークと開放ストロークとを合わせた全ストロークのうち全部又は一部は、直線軌道とされる場合がある。また、全ストロークのうち全部又は一部は、円弧軌道とされる場合がある。
また、軸61aが軸62aの直上になく、常に又はストローク中の位置により斜め上方に配置される場合がある。
以上の事情により、軸間距離測定器90Cの2軸61a,62a間への保持力が低下して不十分になるか又は無くなって軸間距離測定器90Cが脱落するおそれがある。定型的な例を言えば、測定時の状態で直動機構93の直動方向が斜めに傾いており、2軸61aが第一測定子91から離れてしまった時である。このような時に、軸間距離測定器90Cが脱落してしまうと、再び2軸61a,62aが互いに近づいても軸間距離測定器90Cが2軸61a,62a間に収まらず、測定時の状態に復帰できない。
そこで本実施形態では、第二測定子92を軸62aの支持フレーム62Fに固定する。支持フレーム62Fは、軸62aをその中心軸回りに回転可能に支持するフレームであり、軸62aが軸間距離を変更するために可動である場合には、軸62aと共に移動するフレームである。この支持フレーム62Fに第二測定子92を固定することで、第二測定子92を軸62aの周面62cに当接した状態に固定することができる。
しかしながら、部品精度、組立精度の影響により、第二測定子92が軸62aの周面62cから浮いてしまったり、過大な押圧力を作用させてしまったりする不具合が生じ得る。
そこで、弾性連結部62Sにより、軸62aに第二測定子92を弾性力により適度に押圧した状態で固定する。これにより、上記不具合を防止することができ、安定して精度よく測定することができる。
弾性連結部62Sとしては、コイルばね、板ばね等を適用する。弾性連結部62Sを含むブラケットの形状、構造は任意であり、適宜に設計すればよい。
【0057】
第二測定子92を軸62aの支持フレーム62Fに固定したことにより、上記全ストロークに対する追従性が悪化するおそれがある。典型的な例を言えば、全ストロークのうち全部又は一部が円弧軌道とされる場合である。
そこで本実施形態の軸間距離測定器90Cでは、第一測定子91及び第二測定子92のうちいずれか一方(本実施形態では第二測定子92)は、該測定子92が当接する軸62aに平行な軸回りの回動支点92eを介して直動機構93に対して連結されている構成とした。
これにより、第二測定子92を基準に観察して第一測定子91の角度が変わり、第一測定子91が軸61aに追従しやすくなり、測定精度が保持される。
【0058】
第二測定子92を基準に観察して第一測定子91の角度が変わるので、開放ストロークにより軸61aが第一測定子91から離れた際に、第一測定子91は定位置になく、再び軸61aが第一測定子91に近づき当接するとき、軸61aが第一測定子91にうまく保持されないおそれがある。ここでは図中の円弧気道C3に沿って軸61aが第一測定子91に近接・乖離するとする。
そこで本実施形態の軸間距離測定器90Cは、回動支点92eを中心として第一測定子91と第二測定子92との角度を所定の初期角度に規制する弾性規制機構96を備える。
弾性規制機構96は、引張コイルばね等とし、図9上で左側に引っ張っておくことで、軸61aが第一測定子91から離れた際、軸61aが第一測定子91に再接近する位置に安定させる。これにより、軸61aが第一測定子91から離れた後も、測定時の状態に安定して復帰することができ、精度良く測定することができる。
【0059】
(第4実施形態)
次に、図10及び図11を参照して第4実施形態につき説明する。
上記第3実施形態にあっては、回動支点92eが軸62aの中心線62xから離れていた。この場合、少なくとも測定したい範囲のストローク(2軸が圧接しているときのストローク)において中心線62xと回動支点92eとを結ぶ直線上に軸61aの中心線61xがほぼ収束していれば実用上問題ない。また、ストローク中における中心線61xと中心線62xと回動支点92eとの相対位置関係は一定の変化を経る(常に同じ軌道変化である)ので必要により電子計算機上で測定値に補正を掛けることも可能である。
図10及び図11に示す本実施形態の軸間距離測定器90Dにあっては、第一測定子91及び第二測定子92のうちいずれか一方(本実施形態では第二測定子92)は、該測定子92が当接する軸62a回りの回動支点92fを介して直動機構93に対して連結されている。
これにより、第一測定子91と第二測定子92とが回動支点92fを中心としてどのような相対角度にあっても、測定手段(94)が測定する距離は常に2軸61a,62a間の距離であるので理想的であり、精度良く測定することができる。
但し、軸間距離測定器90Dが比較的長大となるため、画像形成装置1の機器構成によっては上記第3実施形態の軸間距離測定器90Cを適用するとよい。
【0060】
(第5実施形態)
次に、図12を参照して第5実施形態につき説明する。
本実施形態の軸間距離測定器90Eは、以下の点が上記第1実施形態と異なる。
図12に示すように本実施形態の軸間距離測定器90Eは、第1測定子91及び第2測定子92の当接面91g,92gが直動機構93の直動方向(直線Cの方向)に対して垂直な平面とされる。図12に示すように軸方向に観察したとき、直動機構93の押圧力の作用により、軸61aの周面61cと当接面91gとの当接位置は点91hに、軸62aの周面62cと当接面92gとの当接位置は点92hに誘導され、軸間距離測定器90Eは2軸61,62間に保持可能である。このような軸間距離測定器90Eによっても2軸61,62間の距離を精度よく安定して測定することができる。
なお、測定手段としては、第2測定子92に対して固定された定規94cと、第1測定子91に対して固定された指針94dを例示する。また、直動機構93の支柱が1本のものを例示する。
【0061】
以上本発明の実施形態につき説明したが、本発明の技術範囲は上述した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において上述した実施形態に種々の変更を加えたものを含む。
上記実施形態では、測定対象を定着ローラー対(61,62)としたが、定着ローラー対以外の搬送ローラー対等の他の2軸を測定対象としてもよい。
搬送ローラー対に本軸間距離測定器を設置し、上記表示装置を接続しておけば、搬送中にも軸間距離をリアルタイムに測定することができるので、通過する部材の有無の検知、通過する部材の厚みの測定、通過する異物の検知などに応用することができる。
【符号の説明】
【0062】
1 画像形成装置
10 画像読取部
11 自動原稿給紙装置
12 原稿画像走査装置
20 操作表示部
21 表示部
22 操作部
30 画像処理部
40 画像形成部
41 画像形成ユニット
42 中間転写ユニット
50 用紙搬送部
51 給紙部
52 排紙部
53 搬送経路部
54 用紙給紙口
60 定着部
61a 軸(測定対象)
62a 軸(測定対象)
70 記憶部
80 通信部
90 軸間距離測定器
91 第一測定子
92 第二測定子
93 直動機構(移動機構)
94 差動トランス式変位センサー(測定手段)
95 校正マスター
96 弾性規制機構
100 制御部
411 露光装置
412 現像部
413 感光体ドラム
414 帯電装置
415 ドラムクリーニング装置
421 中間転写ベルト
422 一次転写ローラー
D 原稿
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12