(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-11-25
(45)【発行日】2024-12-03
(54)【発明の名称】熱管理システム
(51)【国際特許分類】
B60H 1/22 20060101AFI20241126BHJP
H01M 10/613 20140101ALI20241126BHJP
H01M 10/625 20140101ALI20241126BHJP
H01M 10/667 20140101ALI20241126BHJP
H01M 10/6569 20140101ALI20241126BHJP
H01M 10/6556 20140101ALI20241126BHJP
H01M 10/617 20140101ALI20241126BHJP
F25B 1/00 20060101ALI20241126BHJP
【FI】
B60H1/22 651
H01M10/613
H01M10/625
H01M10/667
H01M10/6569
H01M10/6556
H01M10/617
F25B1/00 399Y
(21)【出願番号】P 2021009652
(22)【出願日】2021-01-25
【審査請求日】2023-12-11
(73)【特許権者】
【識別番号】000004260
【氏名又は名称】株式会社デンソー
(74)【代理人】
【識別番号】110001472
【氏名又は名称】弁理士法人かいせい特許事務所
(72)【発明者】
【氏名】前田 隆宏
(72)【発明者】
【氏名】寺地 翔太
(72)【発明者】
【氏名】松井 謙史朗
(72)【発明者】
【氏名】義則 毅
(72)【発明者】
【氏名】笠松 伸矢
【審査官】佐藤 正浩
(56)【参考文献】
【文献】特開2019-043262(JP,A)
【文献】特開2020-178469(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B60H 1/22
H01M 10/613
H01M 10/625
H01M 10/667
H01M 10/6569
H01M 10/6556
H01M 10/617
F25B 1/00
(57)【特許請求の範囲】
【請求項1】
高圧冷媒と熱媒体とを熱交換させる高温側水冷媒熱交換部(12)、および低圧冷媒と前記熱媒体とを熱交換させる低温側水冷媒熱交換部(20)を有する冷凍サイクル装置(10)と、
前記熱媒体を循環させる熱媒体回路(40)と、を備える熱管理システムであって、
前記熱媒体回路は、前記高温側水冷媒熱交換部の熱媒体通路(12b)が接続された高温側回路(41)、前記低温側水冷媒熱交換部の熱媒体通路(20b)が接続された低温側回路(42)、および前記高温側回路を流通する前記熱媒体と前記低温側回路を流通する前記熱媒体との間で熱を移動させる熱移動部(43)を有し、
前記低温側回路は、第1温度調整対象物(51)と前記熱媒体とを熱交換させる第1熱交換部(51a)、第2温度調整対象物(50)と前記熱媒体とを熱交換させる第2熱交換部(50a)、前記第1熱交換部および前記第2熱交換部のうち一方から流出した前記熱媒体を前記低温側水冷媒熱交換部を迂回させて前記第1熱交換部および前記第2熱交換部の一方の熱媒体入口側へ戻す熱媒体バイパス通路(424)、並びに、前記低温側回路の回路構成を切り替える低温側回路切替部(422)を有し、
前記第1温度調整対象物を加熱する際に、前記熱移動部は、前記高温側水冷媒熱交換部
にて加熱された前記熱媒体の有する熱を前記第1熱交換部へ流入する前記熱媒体へ移動させ
、さらに、前記低温側回路切替部
は、前記低温側回路の回路構成を、前記第1熱交換部
から流出した前記熱媒体を前記熱媒体バイパス通路
を介して前記第1熱交換部の入口側へ戻す回路構成に切り替える熱管理システム。
【請求項2】
前記第1温度調整対象物を加熱する際に、前記熱移動部は、前記高温側水冷媒熱交換部にて加熱された前記熱媒体の有する熱を前記第1熱交換部へ流入する前記熱媒体へ移動させ、さらに、前記低温側回路切替部は、前記低温側回路の回路構成を、前記第1熱交換部から流出した前記熱媒体を前記熱媒体バイパス通路を介して前記第1熱交換部の入口側へ戻すとともに、前記第2熱交換部から流出した前記熱媒体を前記低温側水冷媒熱交換部へ流入させる回路構成に切り替える請求項1に記載の熱管理システム。
【請求項3】
前記熱移動部は、前記高温側回路と前記低温側回路とを接続する接続通路(43)であり、
前記接続通路は、前記高温側水冷媒熱交換部から流出した前記熱媒体を、前記第1熱交換部の熱媒体入口側へ導く入口側接続通路(431)を有している請求項1
または2に記載の熱管理システム。
【請求項4】
前記低温側回路は、前記熱媒体を吸入して前記第1熱交換部へ圧送する第1低温側ポンプ(421a)を有し、
前記入口側接続通路は、前記高温側水冷媒熱交換部から流出した前記熱媒体を、前記第1低温側ポンプの吸入口側へ導くように接続されている請求項
3に記載の熱管理システム。
【請求項5】
前記高温側回路は、前記熱媒体を吸入して前記高温側水冷媒熱交換部側へ圧送する高温側ポンプ(411)を有し、
前記接続通路は、前記第1熱交換部から流出した前記熱媒体を、前記高温側ポンプの吸入口側へ導く出口側接続通路(432)を有している請求項
3または
4に記載の熱管理システム。
【請求項6】
前記熱媒体回路は、前記熱移動部における熱移動量を調整する熱移動量調整部(44)を有し、
前記熱移動量調整部の作動を制御する熱移動量制御部(60c)を備え、
前記熱移動量制御部は、前記低温側回路切替部が前記第1熱交換部から流出した前記熱媒体を前記熱媒体バイパス通路を介して前記第1熱交換部へ戻す回路構成に切り替えている際に、前記第1熱交換部へ流入する前記熱媒体の温度(TWL1)が予め定めた目標温度(TWLW1)に近づくように、前記熱移動量調整部の作動を制御する請求項1ないし
5のいずれか1つに記載の熱管理システム。
【請求項7】
前記高温側回路は、加熱対象流体と前記熱媒体とを熱交換させる加熱用熱交換部(413)を有している請求項1ないし
6のいずれか1つに記載の熱管理システム。
【請求項8】
前記高温側回路は、前記熱媒体を加熱する加熱部(412)を有している請求項1ないし
7のいずれか1つに記載の熱管理システム。
【請求項9】
前記低温側回路切替部は、前記第1熱交換部から流出した前記熱媒体を、前記熱媒体バイパス通路および前記低温側水冷媒熱交換部の少なくとも一方へ流入させる請求項1ないし
8のいずれか1つに記載の熱管理システム。
【請求項10】
前記低温側回路は、外気と前記熱媒体とを熱交換させる低温側外気熱交換部(423)を有し、
前記低温側回路切替部は、前記第2熱交換部から流出した前記熱媒体を、前記低温側外気熱交換部側および前記低温側水冷媒熱交換部側の少なくとも一方へ流出させる請求項1ないし
9のいずれか1つに記載の熱管理システム。
【請求項11】
前記低温側回路切替部は、前記低温側水冷媒熱交換部の熱媒体通路へ流入させる前記熱媒体を、前記第1熱交換部から流出した前記熱媒体および前記第2熱交換部から流出した前記熱媒体のいずれか一方に切り替える請求項1ないし
10のいずれか1つに記載の熱管理システム。
【請求項12】
前記低温側回路は、外気と前記熱媒体とを熱交換させる低温側外気熱交換部(423)を有し、
前記低温側回路切替部は、前記第1熱交換部から流出した前記熱媒体を、前記低温側外気熱交換部側および前記低温側水冷媒熱交換部側の少なくとも一方へ流出させる請求項1ないし
11のいずれか1つに記載の熱管理システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、複数の温度調整対象物の温度調整を行う熱管理システムに関する。
【背景技術】
【0002】
従来、特許文献1に、車両用の熱管理システムが開示されている。特許文献1の熱管理システムは、車室内の空調および複数の温度調整対象物の温度調整を行う。ここで、特許文献1の熱管理システムにおける温度調整対象物は、車載機器へ電力を供給するバッテリと、作動時に発熱する車載機器(具体的には、インバータ、モータジェネレータ等)である。
【0003】
特許文献1の熱管理システムは、蒸気圧縮式の冷凍サイクル装置、および熱媒体回路を備えている。冷凍サイクル装置は、車室内へ送風される送風空気および熱媒体の温度を調整する。熱媒体回路は、冷凍サイクル装置によって温度調整された熱媒体を循環させる。さらに、熱媒体回路には、バッテリの冷却水通路および車載機器の冷却水通路が接続されている。
【0004】
特許文献1の熱管理システムでは、バッテリおよび車載機器を冷却するとともに、車室内の暖房を行う際に、冷凍サイクル装置のチラーにて、バッテリの冷却水通路および車載機器の冷却水通路から流出した熱媒体と冷凍サイクル装置の低圧冷媒とを熱交換させる。そして、チラーにて冷却された熱媒体を、再びバッテリの冷却水通路および車載機器の冷却水通路へ流入させることによって、バッテリおよび車載機器を冷却している。
【0005】
さらに、冷凍サイクル装置では、チラーにてバッテリおよび車載機器の廃熱を吸熱した低圧冷媒を圧縮する。そして、圧縮された高圧冷媒を熱源として、送風空気を加熱する。つまり、特許文献1の熱管理システムでは、バッテリおよび車載機器を冷却すると同時に車室内の暖房を行う運転モード時に、バッテリおよび車載機器の廃熱を回収して、暖房用の熱源として利用している。
【先行技術文献】
【特許文献】
【0006】
【発明の概要】
【発明が解決しようとする課題】
【0007】
ところで、特許文献1の熱媒体回路の回路構成では、バッテリの冷却水通路へ流入する熱媒体の温度と車載機器の冷却水通路へ流入する熱媒体の温度が同等となる。このため、特許文献1の熱管理システムでは、バッテリおよび車載機器の双方を同等の温度に調整することはできるものの、バッテリの温度と車載機器の温度とを異なる温度に調整することが難しい。
【0008】
しかしながら、一般的に、バッテリを適切に作動させることのできる適正な温度帯と車載機器を適切に作動させることのできる適正な温度帯は、一致していない。このため、バッテリの暖機を行いながら、その他の車載機器を冷却しなければならない運転条件等も存在し得る。
【0009】
ところが、特許文献1の熱管理システムでは、バッテリの暖機を行いながら、その他の車載機器を冷却することができない。換言すると、特許文献1の熱管理システムでは、バッテリを暖機しながら、その他の車載機器の発生させた熱を回収して、暖房用の熱源等として充分に有効利用することができない。
【0010】
本発明は、上記点に鑑み、温度調整対象物の発生させた熱を、充分に有効利用可能な熱管理システムを提供することを目的とする。
【課題を解決するための手段】
【0011】
上記目的を達成するため、請求項1に記載の熱管理システムは、冷凍サイクル装置(10)と、熱媒体回路(40)と、を備える。
【0012】
冷凍サイクル装置は、高温側水冷媒熱交換部(12)、および低温側水冷媒熱交換部(20)を有する。高温側水冷媒熱交換部は、高圧冷媒と熱媒体とを熱交換させる。低温側水冷媒熱交換部は、低圧冷媒と熱媒体とを熱交換させる。
【0013】
熱媒体回路は、熱媒体を循環させる。さらに、熱媒体回路は、高温側回路(41)、低温側回路(42)、および熱移動部(43)を有する。高温側回路は、高温側水冷媒熱交換部の熱媒体通路(12b)が接続される。低温側回路は、低温側水冷媒熱交換部の熱媒体通路(20b)が接続される。熱移動部は、高温側回路を流通する熱媒体と低温側回路を流通する熱媒体との間で熱を移動させる。
【0014】
低温側回路は、第1熱交換部(51a)、第2熱交換部(50a)、熱媒体バイパス通路(424)、および低温側回路切替部(422)を有する。第1熱交換部は、第1温度調整対象物(51)と熱媒体とを熱交換させる。第2熱交換部は、第2温度調整対象物(50)と熱媒体とを熱交換させる。熱媒体バイパス通路は、第1熱交換部および第2熱交換部のうち一方から流出した熱媒体を低温側水冷媒熱交換部を迂回させて第1熱交換部および第2熱交換部の一方の熱媒体入口側へ戻す。低温側回路切替部は、低温側回路の回路構成を切り替える。
【0015】
第1温度調整対象物を加熱する際に、熱移動部は、高温側水冷媒熱交換部にて加熱された熱媒体の有する熱を第1熱交換部へ流入する前記熱媒体へ移動させる。
【0016】
さらに、低温側回路切替部は、低温側回路の回路構成を、第1熱交換部から流出した熱媒体を熱媒体バイパス通路を介して第1熱交換部の入口側へ戻す回路構成に切り替える。
【0017】
これによれば、熱移動部(43)を備えているので、高温側回路(41)の高温側水冷媒熱交換部(12)にて加熱された熱媒体の有する熱を、低温側回路(42)の第1熱交換部(51a)へ流入する熱媒体へ移動させることができる。従って、第1温度調整対象物(51)を加熱することができる。
【0018】
さらに、第1温度調整対象物を加熱する際であって、熱移動部(43)が前記高温側水冷媒熱交換部にて加熱された熱媒体の有する熱を第1熱交換部(51a)へ流入する熱媒体へ移動させ、さらに、低温側回路切替部(422)が、低温側回路の回路構成を、第1熱交換部(51a)から流出した熱媒体を熱媒体バイパス通路(424)を介して第1熱交換部(51a)の入口側へ戻すとともに、第2熱交換部(50a)から流出した熱媒体を低温側水冷媒熱交換部(20)へ流入させる回路構成に切り替えてもよい。
【0019】
これによれば、第1熱交換部(51a)と熱媒体バイパス通路(424)との間を循環する熱媒体の温度の影響を受けることなく、第2熱交換部(50a)と低温側水冷媒熱交換部(20)との間で熱媒体を循環させることができる。
【0020】
このため、低温側水冷媒熱交換部(20)にて第2熱交換部(50a)から流出した熱媒体と低圧冷媒とを熱交換させることによって、低圧冷媒に第2温度調整対象物(50)の有する熱を吸熱させることができる。そして、第2熱交換部(50a)へ流入する熱媒体を冷却することができる。
【0021】
さらに、冷凍サイクル装置(10)では、低温側水冷媒熱交換部(20)にて低圧冷媒が回収した廃熱を熱源として、高温側水冷媒熱交換部(12)にて高温側回路(41)を流通する熱媒体を加熱することができる。
【0022】
つまり、請求項1に記載の熱管理システムによれば、第1温度調整対象物(51)を加熱しながら、第2温度調整対象物(50)の有する熱を回収して、高温側回路(41)を流通する熱媒体の加熱源として利用することができる。すなわち、温度調整対象物の発生させた熱を充分に有効利用することができる。
【0023】
なお、この欄及び特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
【図面の簡単な説明】
【0024】
【
図1】第1実施形態の熱管理システムの模式的な全体構成図である。
【
図2】第1実施形態の五方弁の作動態様を説明するための説明図である。
【
図3】第1実施形態の五方弁の別の作動態様を説明するための説明図である。
【
図4】第1実施形態の五方弁のさらに別の作動態様を説明するための説明図である。
【
図5】第1実施形態の熱管理システムの電気制御部を示すブロック図である。
【
図6】第1実施形態の熱管理システムの温度調整用の運転モードの切り替えを示す制御特性図である。
【
図7】第1実施形態のB1C1モード等における熱媒体流れを示す模式的な全体構成図である。
【
図8】第1実施形態のB1C3モードにおける熱媒体流れを示す模式的な全体構成図である。
【
図9】第1実施形態のB2C1モード等における熱媒体流れを示す模式的な全体構成図である。
【
図10】第1実施形態のB2C3モードにおける熱媒体流れを示す模式的な全体構成図である。
【
図11】第1実施形態のB3C3モードにおける熱媒体流れを示す模式的な全体構成図である。
【
図12】第1実施形態の急速充電冷却モードにおける熱媒体流れを示す模式的な全体構成図である。
【
図13】第2実施形態の熱管理システムの模式的な全体構成図である。
【
図14】第2実施形態の熱管理システムの温度調整用の運転モードの切り替えを示す制御特性図である。
【
図15】第2実施形態のB4C1モード等における熱媒体流れを示す模式的な全体構成図である。
【
図16】第2実施形態のB4C3モード等における熱媒体流れを示す模式的な全体構成図である。
【
図17】第3実施形態の熱管理システムの模式的な全体構成図である。
【発明を実施するための形態】
【0025】
以下に、図面を参照しながら本発明を実施するための複数の実施形態を説明する。各実施形態において先行する実施形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各実施形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の実施形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示していなくとも実施形態同士を部分的に組み合せることも可能である。
【0026】
(第1実施形態)
図1~
図12を用いて、本発明に係る熱管理システム1の第1実施形態を説明する。本実施形態の熱管理システム1は、電気自動車に適用されている。電気自動車は、走行用の駆動力を電動モータから得る車両である。熱管理システム1は、電気自動車において、空調対象空間である車室内の空調、および温度調整対象物である車載機器の温度調整を行う。
【0027】
熱管理システム1において温度調整体調物となる車載機器は、具体的に、バッテリ51、インバータ52、モータジェネレータ53、先進運転支援システム(いわゆる、ADAS)用の制御装置54である。
【0028】
バッテリ51は、インバータ52等の電気式の車載機器へ供給される電力を蓄える二次電池である。バッテリ51は、積層配置された複数の電池セルを、電気的に直列あるいは並列に接続することによって形成された組電池である。本実施形態の電池セルは、リチウムイオン電池である。
【0029】
バッテリ51は、作動時(すなわち、充放電時)に発熱する。バッテリ51は、低温になると出力が低下しやすく、高温になると劣化が進行しやすいという特性を有している。このため、バッテリ51の温度は、適切な温度範囲内(本実施形態では、15℃以上、かつ、55℃以下)に維持されている必要がある。そこで、熱管理システム1では、バッテリ51を第1温度調整対象物としている。
【0030】
インバータ52は、バッテリ51からモータジェネレータ53へ供給される電力の周波数を変換するとともに、モータジェネレータ53が発生させた交流電力を直流電力に変換してバッテリ51側へ出力する電力変換装置である。モータジェネレータ53は、電力を供給されることによって走行用の駆動力を出力する電動モータとなり、車両の減速中や降坂走行時には回生電力を発生させる発電装置となる。先進運転支援システムは、運転者の運転操作を支援するシステムである。
【0031】
インバータ52、モータジェネレータ53、およびADAS用の制御装置54は、いずれも作動時に発熱する。インバータ52、モータジェネレータ53、およびADAS用の制御装置54は、高温になると電気回路の劣化が進行してしまう可能性がある。このため、それぞれ電気回路の保護が可能な基準耐熱温度(本実施形態では、130℃)よりも低い温度に維持されている必要がある。
【0032】
そこで、熱管理システム1では、インバータ52、モータジェネレータ53、およびADAS用の制御装置54を第2温度調整対象物としている。以下の説明では、第2温度調整対象物であるインバータ52、モータジェネレータ53、およびADAS用の制御装置54の総称として、強電系機器50という用語を用いることがある。
【0033】
従って、本実施形態の熱管理システム1では、第1温度調整対象物を適切に作動させることのできる第1温度調整対象物の適正な温度帯と第2温度調整対象物を適切に作動させることのできる第2温度調整対象物の適正な温度帯は、完全に一致している訳ではない。すなわち、第1温度調整対象物の適正な温度帯と第2温度調整対象物の適正な温度帯は、異なっている。
【0034】
熱管理システム1は、
図1の全体構成図に示すように、冷凍サイクル装置10、室内空調ユニット30、熱媒体回路40等を備えている。
【0035】
まず、冷凍サイクル装置10について説明する。冷凍サイクル装置10は、車室内の空調および車載機器の温度調整のために、車室内へ送風される送風空気および熱媒体回路40を循環する熱媒体を冷却あるいは加熱する。さらに、冷凍サイクル装置10は、車室内の空調および車載機器の温度調整のために、後述する各種運転モードに応じて、冷媒回路を切替可能に構成されている。
【0036】
冷凍サイクル装置10では、冷媒としてHFO系冷媒(具体的には、R1234yf)を採用している。冷凍サイクル装置10は、圧縮機11から吐出された吐出冷媒の圧力が冷媒の臨界圧力を超えない蒸気圧縮式の亜臨界冷凍サイクルを構成する。冷媒には、圧縮機11を潤滑するための冷凍機油が混入されている。冷凍機油は、液相冷媒に相溶性を有するPAGオイルである。冷凍機油の一部は、冷媒とともにサイクルを循環している。
【0037】
圧縮機11は、冷凍サイクル装置10において、冷媒を吸入し、圧縮して吐出する。圧縮機11は、車室の前方側の駆動装置室内に配置されている。駆動装置室は、車両走行用の駆動力の発生させるために用いられる機器(例えば、モータジェネレータ53)等の少なくとも一部が配置される空間を形成している。
【0038】
圧縮機11は、吐出容量が固定された固定容量型の圧縮機構を電動モータにて駆動する電動圧縮機である。圧縮機11は、後述するシステム制御用の制御装置60から出力される制御信号によって、回転数(すなわち、冷媒吐出能力)が制御される。
【0039】
圧縮機11の吐出口には、水冷媒熱交換器12の冷媒通路の入口側が接続されている。水冷媒熱交換器12は、圧縮機11から吐出された高圧冷媒を流通させる冷媒通路12aと、熱媒体回路40の高温側回路41側の熱媒体を流通させる熱媒体通路12bと、を有している。
【0040】
水冷媒熱交換器12は、冷媒通路12aを流通する高圧冷媒と熱媒体通路12bを流通する熱媒体とを熱交換させる高温側水冷媒熱交換部である。水冷媒熱交換器12では、高圧冷媒の有する熱を熱媒体に放熱させて、熱媒体を加熱する。
【0041】
水冷媒熱交換器12の冷媒通路12aの出口には、第1冷媒継手部13aの流入口側が接続されている。第1冷媒継手部13aは、互いに連通する3つの流入出口を有する三方継手である。第1冷媒継手部13aとしては、複数の配管を接合して形成された継手部材や、金属ブロックや樹脂ブロックに複数の冷媒通路を設けることによって形成された継手部材を採用することができる。
【0042】
さらに、冷凍サイクル装置10は、後述するように、第2冷媒継手部13b~第6冷媒継手部13fを有している。第2冷媒継手部13b~第6冷媒継手部13fの基本的構成は、第1冷媒継手部13aと同様である。
【0043】
第1冷媒継手部13aの一方の流出口には、暖房用膨張弁14aの入口側が接続されている。第1冷媒継手部13aの他方の流出口には、除湿用通路22aを介して、第2冷媒継手部13bの一方の流入口側が接続されている。
【0044】
除湿用通路22aは、後述する並列除湿暖房モード時等に冷媒を流通させる流路を形成する。除湿用通路22aには、除湿用開閉弁15aが配置されている。除湿用開閉弁15aは、除湿用通路22aを開閉する電磁弁である。除湿用開閉弁15aは、制御装置60から出力される制御電圧によって、その作動が制御される。
【0045】
さらに、冷凍サイクル装置10は、後述するように、暖房用開閉弁15bを有している。暖房用開閉弁15bの基本的構成は、除湿用開閉弁15aと同様である。除湿用開閉弁15aおよび暖房用開閉弁15bは、冷媒通路を開閉することによって、冷凍サイクル装置10の冷媒回路を切り替えることができる。従って、除湿用開閉弁15aおよび暖房用開閉弁15bは、冷媒回路を切り替える冷媒回路切替部である。
【0046】
暖房用膨張弁14aは、後述する暖房モード時等に、水冷媒熱交換器12の冷媒通路12aから流出した高圧冷媒を減圧させるとともに、下流側へ流出させる冷媒の流量(質量流量)を調整する暖房用減圧部である。
【0047】
暖房用膨張弁14aは、絞り開度を変化させる弁体部と、弁体部を変位させる電動アクチュエータ(具体的には、ステッピングモータ)と、を有する電気式の可変絞り機構である。暖房用膨張弁14aは、制御装置60から出力される制御パルスによって、その作動が制御される。
【0048】
暖房用膨張弁14aは、弁開度を全開にすることで冷媒減圧作用および流量調整作用を殆ど発揮することなく単なる冷媒通路として機能する全開機能を有している。また、暖房用膨張弁14aは、弁開度を全閉にすることで冷媒通路を閉塞する全閉機能を有している。
【0049】
さらに、冷凍サイクル装置10は、後述するように、冷房用膨張弁14bおよび冷却用膨張弁14cを有している。冷房用膨張弁14bおよび冷却用膨張弁14cの基本的構成は、暖房用膨張弁14aと同様である。
【0050】
暖房用膨張弁14a、冷房用膨張弁14bおよび冷却用膨張弁14cは、上述した全閉機能を発揮することによって、冷凍サイクル装置10の冷媒回路を切り替えることができる。従って、暖房用膨張弁14a、冷房用膨張弁14bおよび冷却用膨張弁14cは、冷媒回路切替部としての機能を兼ね備えている。
【0051】
もちろん、暖房用膨張弁14a、冷房用膨張弁14bおよび冷却用膨張弁14cを、全閉機能を有していない可変絞り機構と開閉弁とを組み合わせて形成してもよい。この場合は、開閉弁が冷媒回路切替部となる。
【0052】
暖房用膨張弁14aの出口には、室外熱交換器16の冷媒入口側が接続されている。室外熱交換器16は、暖房用膨張弁14aから流出した冷媒と図示しない冷却ファンにより送風された外気とを熱交換させる室外熱交換部である。室外熱交換器16は、駆動装置室内の前方側に配置されている。このため、車両走行時には、室外熱交換器16に走行風を当てることができる。
【0053】
室外熱交換器16の冷媒出口には、第3冷媒継手部13cの流入口側が接続されている。第3冷媒継手部13cの一方の流出口には、暖房用通路22bを介して、第4冷媒継手部13dの一方の流入口側が接続されている。暖房用通路22bは、後述する暖房モード時等に冷媒を流通させる流路を形成する。暖房用通路22bには、暖房用通路22bを開閉する暖房用開閉弁15bが配置されている。
【0054】
第3冷媒継手部13cの他方の流出口には、第2冷媒継手部13bの他方の流入口側が接続されている。第3冷媒継手部13cの他方の流出口と第2冷媒継手部13bの他方の流入口とを接続する冷媒通路には、逆止弁17が配置されている。逆止弁17は、第3冷媒継手部13c側から第2冷媒継手部13b側へ冷媒が流れることを許容し、第2冷媒継手部13b側から第3冷媒継手部13c側へ冷媒が流れることを禁止する。
【0055】
第2冷媒継手部13bの流出口には、第5冷媒継手部13eの流入口側が接続されている。第5冷媒継手部13eの一方の流出口には、冷房用膨張弁14bの入口側が接続されている。第5冷媒継手部13eの他方の流出口には、冷却用膨張弁14cの入口側が接続されている。
【0056】
冷房用膨張弁14bは、後述する冷房モード時等に、冷媒を減圧させるとともに、下流側へ流出させる冷媒の流量を調整する冷房用減圧部である。
【0057】
冷房用膨張弁14bの出口には、室内蒸発器18の冷媒入口側が接続されている。室内蒸発器18は、後述する室内空調ユニット30の空調ケース31内に配置されている。室内蒸発器18は、冷房用膨張弁14bにて減圧された低圧冷媒と車室内へ送風される送風空気とを熱交換させる冷却用熱交換器である。室内蒸発器18では、低圧冷媒を蒸発させて吸熱作用を発揮させることによって、送風空気を冷却する。
【0058】
室内蒸発器18の冷媒出口には、蒸発圧力調整弁19の入口側が接続されている。蒸発圧力調整弁19は、室内蒸発器18の着霜を抑制するために、室内蒸発器18における冷媒蒸発圧力を、予め定めた設定圧力以上に維持するように弁開度を変化させる可変絞り機構である。より具体的には、蒸発圧力調整弁19は、入口側の冷媒圧力の上昇に伴って、弁開度を増加させる機械的機構で構成されている。蒸発圧力調整弁19の出口には、第6冷媒継手部13fの一方の流入口側が接続されている。
【0059】
冷却用膨張弁14cは、後述するB1C1モード時等に、冷媒を減圧させるとともに、下流側へ流出させる冷媒の流量を調整する冷却用減圧部である。
【0060】
冷却用膨張弁14cの出口には、チラー20の冷媒通路20aの入口側が接続されている。チラー20は、冷却用膨張弁14cにて減圧された低圧冷媒を流通させる冷媒通路20aと、熱媒体回路40の低温側回路42側の熱媒体を流通させる熱媒体通路20bと、を有している。チラー20は、冷媒通路20aを流通する低圧冷媒と熱媒体通路20bを流通する熱媒体を熱交換させる低温側水冷媒熱交換部である。チラー20では、低圧冷媒を蒸発させて吸熱作用を発揮させることによって、熱媒体を冷却する。
【0061】
チラー20の冷媒通路20aの出口には、第6冷媒継手部13fの他方の流入口側が接続されている。第6冷媒継手部13fの流出口には、第4冷媒継手部13dの他方の流入口側が接続されている。
【0062】
第4冷媒継手部13dの流出口には、アキュムレータ21の入口側が接続されている。アキュムレータ21は、内部に流入した冷媒の気液を分離して、サイクル内の余剰液相冷媒を蓄える低圧側の気液分離器である。アキュムレータ21の気相冷媒出口には、圧縮機11の吸入口側が接続されている。
【0063】
次に、熱媒体回路40について説明する。熱媒体回路40は、熱媒体を循環させる熱媒体回路である。熱媒体回路40では、熱媒体として、エチレングリコール水溶液を採用している。熱媒体回路40は、高温側回路41、低温側回路42、接続通路43、三方弁44等を有している。
【0064】
高温側回路41は、高温側ポンプ411、電気ヒータ412、ヒータコア413等を有している。高温側回路41には、水冷媒熱交換器12の熱媒体通路12b、三方弁44等が接続されている。
【0065】
高温側ポンプ411は、熱媒体を水冷媒熱交換器12の熱媒体通路12bの入口側へ圧送する高温側熱媒体圧送部である。高温側ポンプ411は、制御装置60から出力される制御電圧によって、回転数(すなわち、圧送能力)が制御される電動ポンプである。
【0066】
さらに、熱媒体回路40は、後述するように、低温側回路42側に第1低温側ポンプ421aおよび第2低温側ポンプ421bを有している。第1低温側ポンプ421aおよび第2低温側ポンプ421bの基本的構成は、高温側ポンプ411と同様である。
【0067】
水冷媒熱交換器12の熱媒体通路12bの出口側には、電気ヒータ412が配置されている。電気ヒータ412は、水冷媒熱交換器12から流出した熱媒体を加熱する加熱部である。本実施形態では、電気ヒータ412として、電力を供給されることによって発熱するPTC素子を有するPTCヒータが採用されている。電気ヒータ412の発熱量は、制御装置60から出力される制御電圧によって制御される。
【0068】
電気ヒータ412の熱媒体流れ下流側には、三方弁44の流入口側が接続されている。三方弁44は、水冷媒熱交換器12から流出した熱媒体を内部へ流入させて、ヒータコア413側および後述する入口側接続通路431側の少なくとも一方へ流出させる三方式の流量調整弁である。
【0069】
三方弁44は、ヒータコア413へ流入する熱媒体の流量と入口側接続通路431へ流入する熱媒体の流量との流量比を連続的に調整可能に構成されている。これにより、三方弁44は、入口側接続通路431を流通する熱媒体の流量を調整することができる。
【0070】
さらに、三方弁44は、流量比を調整することによって、水冷媒熱交換器12側から流入した熱媒体の全流量を、ヒータコア413および入口側接続通路431のいずれか一方へ流入させることができる。従って、三方弁44は、高温側回路41の回路構成を切り替える高温側回路切替部としての機能を兼ね備える。三方弁44は、制御装置60から出力される制御信号によって、その作動が制御される。
【0071】
ヒータコア413は、室内空調ユニット30の空調ケース31内に配置されている。ヒータコア413は、水冷媒熱交換器12等で加熱された熱媒体と車室内へ送風される送風空気とを熱交換させる加熱用熱交換部である。ヒータコア413では、熱媒体の有する熱を送風空気に放熱させて、送風空気を加熱する。従って、熱管理システム1における加熱対象流体は、送風空気である。
【0072】
ヒータコア413の熱媒体出口には、第1熱媒体継手部45aを介して、高温側ポンプ411の吸入口側が接続されている。第1熱媒体継手部45aは、熱媒体用の三方継手である。
【0073】
さらに、熱媒体回路40は、後述するように、低温側回路42側に第2熱媒体継手部45b~第6熱媒体継手部45fを有している。第1熱媒体継手部45a~第6熱媒体継手部45fの基本的構成は、冷凍サイクル装置10の第1冷媒継手部13a等と同様である。
【0074】
低温側回路42は、第1低温側ポンプ421a、第2低温側ポンプ421b、バッテリ51の冷却水通路51a、五方弁422、低温側ラジエータ423等を有している。低温側回路42には、チラー20の熱媒体通路20bが接続されている。
【0075】
第1低温側ポンプ421aは、熱媒体をバッテリ51の冷却水通路51aへ圧送するバッテリ側熱媒体圧送部である。バッテリ51の冷却水通路51aは、バッテリ51を構成する複数の電池セルを収容する専用ケース部内に形成されている。バッテリ51の冷却水通路51aは、バッテリ51を形成する複数の電池セルと熱媒体と熱交換させる第1熱交換部である。
【0076】
バッテリ51の冷却水通路51aの出口には、第2熱媒体継手部45bを介して、五方弁422のバッテリ側流入口422a側が接続されている。
【0077】
第2低温側ポンプ421bは、熱媒体を強電系機器50の冷却水通路52a~54aへ圧送する強電系機器側熱媒体圧送部である。強電系機器50の冷却水通路52a~54aは、それぞれの強電系機器50の外殻を形成するハウジング部あるいはケース部内に形成されている。強電系機器50の冷却水通路52a~54aは、強電系機器50と熱媒体とを熱交換させる第2熱交換部である。
【0078】
本実施形態の強電系機器50の冷却水通路52a~54aは、具体的に、インバータ52の冷却水通路52a、モータジェネレータ53の冷却水通路53a、およびADAS用の制御装置54の冷却水通路54aである。また、第2低温側ポンプ421bから圧送された熱媒体は、インバータ52の冷却水通路52a、モータジェネレータ53の冷却水通路53a、およびADAS用の制御装置54の冷却水通路54aの順に流れる。
【0079】
強電系機器50の冷却水通路52a~54aの出口(すなわち、ADAS用の制御装置54の冷却水通路54aの出口)には、五方弁422の強電系機器側流入口422b側が接続されている。
【0080】
五方弁422は、低温側回路42の回路構成を切り替える低温側回路切替部である。五方弁422は、熱媒体を流入させる流入口として、バッテリ側流入口422aおよび強電系機器側流入口422bを有している。五方弁422は、熱媒体を流出させる流出口として、チラー側流出口422c、バイパス通路側流出口422d、ラジエータ側流出口422eを有している。五方弁422の詳細構成については後述する。
【0081】
五方弁422のチラー側流出口422cには、チラー20の熱媒体通路20bの入口側が接続されている。チラー20の熱媒体通路20bの出口には、第3熱媒体継手部45cの流入口側が接続されている。第3熱媒体継手部45cの一方の流出口には、第4熱媒体継手部45dの一方の流入口側が接続されている。第3熱媒体継手部45cの他方の流出口には、第5熱媒体継手部45eの一方の流入口側が接続されている。
【0082】
第4熱媒体継手部45dの流出口には、第6熱媒体継手部45fを介して、第1低温側ポンプ421aの吸入口側が接続されている。また、五方弁422のバイパス通路側流出口422dには、熱媒体バイパス通路424の入口側が接続されている。熱媒体バイパス通路424の出口側には、第4熱媒体継手部45dの他方の流入口が接続されている。
【0083】
熱媒体バイパス通路424は、バッテリ51の冷却水通路51aから流出した熱媒体を、チラー20および低温側ラジエータ423を迂回させて、バッテリ51の冷却水通路51aの入口側へ戻す流路を形成する。
【0084】
第5熱媒体継手部45eの流出口には、第2低温側ポンプ421bの吸入口側が接続されている。また、五方弁422のラジエータ側流出口422eには、低温側ラジエータ423の熱媒体入口側が接続されている。低温側ラジエータ423は、外気と五方弁422のラジエータ側流出口422eから流出した熱媒体とを熱交換させる低温側外気熱交換部である。低温側ラジエータ423の熱媒体出口には、第5熱媒体継手部45eの他方の流入口側が接続されている。
【0085】
接続通路43は、高温側回路41と低温側回路42とを接続する熱媒体流路である。接続通路43は、入口側接続通路431および出口側接続通路432を有している。入口側接続通路431は、高温側回路41を流通する熱媒体を低温側回路42側へ導く流路を形成する。出口側接続通路432は、低温側回路42を流通する熱媒体を高温側回路41側へ導く流路を形成する。
【0086】
入口側接続通路431の入口部は、三方弁44の1つの流出口側に接続されている。入口側接続通路431の出口部は、第6熱媒体継手部45fの1つの流入口に接続されている。出口側接続通路432の入口部は、第2熱媒体継手部45bの1つの流出口に接続されている。出口側接続通路432の出口部は、第1熱媒体継手部45aの1つの流入口に接続されている。
【0087】
このため、入口側接続通路431は、高温側回路41の水冷媒熱交換器12にて加熱された熱媒体であって、かつ、ヒータコア413の上流側の熱媒体を、低温側回路42の第1低温側ポンプ421aの吸入口側へ導くことができる。出口側接続通路432は、バッテリ51の冷却水通路51aから流出した熱媒体を、高温側回路のヒータコア413の下流側であって、かつ、高温側ポンプ411の吸入口側へ導くことができる。
【0088】
従って、三方弁44が、接続通路43である入口側接続通路431および出口側接続通路432に熱媒体を流通させることによって、高温側回路41を流通する熱媒体と低温側回路42を流通する熱媒体とを混合させることができる。これにより、高温側回路41を流通する熱媒体と低温側回路42を流通する熱媒体との間で熱を移動させることができる。従って、接続通路43は、熱移動部である。
【0089】
この際、三方弁44は、入口側接続通路431を流通する熱媒体の流量を調整することによって、高温側回路41を流通する熱媒体と低温側回路42を流通する熱媒体との間の熱移動量を調整することができる。従って、三方弁44は、接続通路43における熱移動量を調整する熱移動量調整部である。
【0090】
次に、
図2~
図4を用いて、五方弁422の詳細構成について説明する。五方弁422は、
図2~
図4に示すように、熱媒体をバッテリ側流入口422aおよび強電系機器側流入口422bから内部へ流入させる。さらに、内部へ流入した熱媒体を、チラー側流出口422c、バイパス通路側流出口422d、およびラジエータ側流出口422eの少なくとも1つから流出させる。
【0091】
このような五方弁422は、
図2~
図4の説明図に示すように、例えば、複数の三方式の流量調整弁を組み合わせること等によって形成することができる。
【0092】
五方弁422は、
図2の説明図に太実線で示すように、バッテリ51の冷却水通路51aから流出した熱媒体を、バッテリ側流入口422aを介して内部へ流入させる。そして、バッテリ側流入口422aを介して内部へ流入させた熱媒体を、熱媒体バイパス通路424側およびチラー20の熱媒体通路20b側の少なくとも一方側へ流出させることができる。
【0093】
五方弁422は、熱媒体バイパス通路424へ流入する熱媒体の流量とチラー20の熱媒体通路20bへ流入する熱媒体の流量との流量比を連続的に調整可能に構成されている。さらに、五方弁422は、流量比を調整することによって、バッテリ51の冷却水通路51a側から流入した熱媒体の全流量を、熱媒体バイパス通路424およびチラー20の熱媒体通路20bのいずれか一方へ流入させることもできる。
【0094】
これにより、五方弁422は、バッテリ51の冷却水通路51aの出口側と熱媒体バイパス通路424の入口側とを接続する回路と、バッテリ51の冷却水通路51aの出口側とチラー20の熱媒体通路20bの入口側とを接続する回路と、を切り替えることができる。
【0095】
また、五方弁422は、
図3の説明図に太実線で示すように、強電系機器50の冷却水通路52a~54aから流出した熱媒体を、強電系機器側流入口422bを介して内部へ流入させる。そして、強電系機器側流入口422bを介して内部へ流入させた冷媒を、低温側ラジエータ423側およびチラー20の熱媒体通路20b側の少なくとも一方側へ流出させることができる。
【0096】
五方弁422は、低温側ラジエータ423へ流入する熱媒体の流量とチラー20の熱媒体通路20bへ流入する熱媒体の流量との流量比を連続的に調整可能に構成されている。さらに、五方弁422は、流量比を調整することによって、強電系機器50の冷却水通路52a~54aから流出した熱媒体の全流量を、低温側ラジエータ423およびチラー20の熱媒体通路20bのいずれか一方へ流入させることもできる。
【0097】
これにより、五方弁422は、強電系機器50の冷却水通路52a~54aの出口側と低温側ラジエータ423の熱媒体入口側とを接続する回路と、強電系機器50の冷却水通路52a~54aの出口側とチラー20の熱媒体通路20bの入口側とを接続する回路と、を切り替えることができる。
【0098】
また、五方弁422は、
図4の説明図に太実線および太破線で示すように、バッテリ51の冷却水通路51aから流出した熱媒体および強電系機器50の冷却水通路52a~54aから流出した熱媒体の少なくとも一方を内部へ流入させて、チラー20の熱媒体通路20b側へ流出させることができる。
【0099】
五方弁422は、チラー20の熱媒体通路20bへ流入する熱媒体のうち、バッテリ51の冷却水通路51aから流出した熱媒体の流量と強電系機器50の冷却水通路52a~54aから流出した熱媒体の流量との流量比を連続的に調整可能に構成されている。
【0100】
さらに、五方弁422は、流量比を調整することによって、チラー20の熱媒体通路20bへ流入する熱媒体の全流量を、バッテリ51の冷却水通路51aから流出した熱媒体および強電系機器50の冷却水通路52a~54aから流出した熱媒体のいずれか一方とすることもできる。
【0101】
これにより、五方弁422は、バッテリ51の冷却水通路51aの出口側とチラー20の熱媒体通路20bの入口側とを接続する回路と、強電系機器50の冷却水通路52a~54aの出口側とチラー20の熱媒体通路20bの入口側とを接続する回路と、を切り替えることができる。
【0102】
さらに、五方弁422は、上述した熱媒体回路の切替機能を組み合わせて発揮することができる。例えば、バッテリ51の冷却水通路51aの出口側と熱媒体バイパス通路424の入口側とを接続すると同時に、強電系機器50の冷却水通路52a~54aの出口側とチラー20の熱媒体通路20bの入口側とを接続することができる。
【0103】
また、例えば、バッテリ51の冷却水通路51aの出口側とチラー20の熱媒体通路20bの入口側とを接続すると同時に、強電系機器50の冷却水通路52a~54aの出口側と低温側ラジエータ423の熱媒体入口側とを接続することができる。
【0104】
また、例えば、バッテリ51の冷却水通路51aの出口側とチラー20の熱媒体通路20bの入口側とを接続すると同時に、バッテリ51の冷却水通路51aの出口側と低温側ラジエータ423の熱媒体入口側とを接続することができる。
【0105】
次に、室内空調ユニット30について説明する。室内空調ユニット30は、車室内の空調のために適切な温度に調整された送風空気を、車室内の適切な箇所へ吹き出すために、複数の構成機器を一体化したユニットである。室内空調ユニット30は、車室内最前部の計器盤(インストルメントパネル)の内側に配置されている。
【0106】
室内空調ユニット30は、
図1に示すように、送風空気の空気通路を形成する空調ケース31内に、室内送風機32、室内蒸発器18、ヒータコア413等を収容したものである。空調ケース31は、ある程度の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)にて成形されている。
【0107】
空調ケース31の送風空気流れ最上流側には、内外気切替装置33が配置されている。内外気切替装置33は、空調ケース31内へ内気(すなわち、車室内空気)と外気(すなわち、車室外空気)とを切替導入する。内外気切替装置33は、制御装置60から出力される制御信号によって、その作動が制御される。
【0108】
内外気切替装置33の送風空気流れ下流側には、室内送風機32が配置されている。室内送風機32は、内外気切替装置33を介して吸入した空気を車室内へ向けて送風する。室内送風機32は、遠心多翼ファンを電動モータにて駆動する電動送風機である。室内送風機32は、制御装置60から出力される制御電圧によって、回転数(すなわち、送風能力)が制御される。
【0109】
室内送風機32の送風空気流れ下流側には、室内蒸発器18およびヒータコア413が、送風空気流れに対して、この順に配置されている。つまり、室内蒸発器18は、ヒータコア413よりも、送風空気流れ上流側に配置されている。また、空調ケース31内には、室内蒸発器18通過後の送風空気を、ヒータコア413を迂回して流す冷風バイパス通路35が形成されている。
【0110】
空調ケース31内の室内蒸発器18の送風空気流れ下流側であって、かつ、ヒータコア413および冷風バイパス通路35の送風空気流れ上流側には、エアミックスドア34が配置されている。
【0111】
エアミックスドア34は、室内蒸発器18通過後の送風空気のうち、ヒータコア413側を通過させる送風空気の風量と冷風バイパス通路35を通過させる送風空気の風量との風量割合を調整する風量割合調整部である。エアミックスドア34は、エアミックスドア用の電動アクチュエータによって駆動される。エアミックスドア用の電動アクチュエータは、制御装置60から出力される制御信号によって、その作動が制御される。
【0112】
ヒータコア413および冷風バイパス通路35の送風空気流れ下流側には、混合空間36が配置されている。混合空間36は、ヒータコア413にて加熱された送風空気と冷風バイパス通路35を通過して加熱されていない送風空気とを混合させる空間である。
【0113】
従って、室内空調ユニット30では、エアミックスドア34が風量割合を調整することによって、混合空間36にて混合された送風空気(すなわち、空調風)の温度を調整することができる。
【0114】
空調ケース31の送風空気流れ最下流部には、混合空間36にて混合された送風空気を、車室内へ吹き出すための図示しない複数の開口穴が形成されている。
【0115】
複数の開口穴は、車室内に形成された複数の吹出口に連通している。複数の吹出口としては、フェイス吹出口、フット吹出口、デフロスタ吹出口が設けられている。フェイス吹出口は、乗員の上半身に向けて送風空気を吹き出す吹出口である。フット吹出口は、乗員の足元に向けて送風空気を吹き出す吹出口である。デフロスタ吹出口は、車両前方窓ガラスに向けて送風空気を吹き出す吹出口である。
【0116】
複数の開口穴には、それぞれ図示しない吹出モードドアが配置されている。吹出モードドアは、それぞれの開口穴を開閉する。吹出モードドアは、吹出モードドア用の電動アクチュエータによって駆動される。吹出モードドア用の電動アクチュエータは、制御装置60から出力される制御信号によって、その作動が制御される。
【0117】
従って、室内空調ユニット30では、吹出モードドアによって開口される開口穴を切り替えることによって、空調風が吹き出される箇所を変更することができる。
【0118】
次に、本実施形態の電気制御部の概要について説明する。制御装置60は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。制御装置60は、ROM内に記憶された制御プログラムに基づいて各種演算、処理を行い、その出力側に接続された各種制御対象機器11、14a~14c、15a、15b、32、33、34、44、411、412、421a、421b、422等の作動を制御する。
【0119】
また、制御装置60の入力側には、
図5のブロック図に示すように、内気温センサ61、外気温センサ62、日射センサ63、第1冷媒温度センサ64a~第3冷媒温度センサ64c、蒸発器温度センサ64f、第1冷媒圧力センサ65a~第3冷媒圧力センサ65c、高温側熱媒体温度センサ66a、第1低温側熱媒体温度センサ67a、第2低温側熱媒体温度センサ67b、バッテリ温度センサ68、空調風温度センサ69等が接続されている。そして、制御装置60には、これらのセンサ群の検出信号が入力される。
【0120】
内気温センサ61は、車室内温度(内気温)Trを検出する内気温検出部である。外気温センサ62は、車室外温度(外気温)Tamを検出する外気温検出部である。日射センサ63は、車室内へ照射される日射量Asを検出する日射量検出部である。
【0121】
第1冷媒温度センサ64aは、圧縮機11から吐出された冷媒の温度である第1冷媒温度TR1を検出する第1冷媒温度検出部である。第2冷媒温度センサ64bは、水冷媒熱交換器12の冷媒通路12aから流出した冷媒の温度である第2冷媒温度TR2を検出する第2冷媒温度検出部である。第3冷媒温度センサ64cは、室外熱交換器16から流出した冷媒の温度である第3冷媒温度TR3を検出する第3冷媒温度検出部である。
【0122】
蒸発器温度センサ64fは、室内蒸発器18における冷媒蒸発温度(蒸発器温度)Tefinを検出する蒸発器温度検出部である。本実施形態の蒸発器温度センサ64fでは、具体的に、室内蒸発器18の熱交換フィン温度を検出している。
【0123】
第1冷媒圧力センサ65aは、圧縮機11から吐出された冷媒の圧力である第1冷媒圧力PR1を検出する第1冷媒圧力検出部である。第2冷媒圧力センサ65bは、水冷媒熱交換器12の冷媒通路12aから流出した冷媒の圧力である第2冷媒圧力PR2を検出する第2冷媒圧力検出部である。第3冷媒圧力センサ65cは、室外熱交換器16から流出した冷媒の圧力である第3冷媒圧力PR3を検出する第3冷媒圧力検出部である。
【0124】
高温側熱媒体温度センサ66aは、電気ヒータ412の熱媒体流れ下流側であって、三方弁44へ流入する熱媒体の温度である高温側熱媒体温度TWHを検出する高温側熱媒体温度検出部である。
【0125】
第1低温側熱媒体温度センサ67aは、第1低温側ポンプ421aから圧送されてバッテリ51の冷却水通路51aへ流入する熱媒体の温度である第1低温側熱媒体温度TWL1を検出する第1低温側熱媒体温度検出部である。
【0126】
第2低温側熱媒体温度センサ67bは、第2低温側ポンプ421bから圧送されて強電系機器50の冷却水通路52a~54aへ流入する熱媒体の温度である第2低温側熱媒体温度TWL2を検出する第2低温側熱媒体温度検出部である。より具体的には、第2低温側熱媒体温度TWL2は、インバータ52の冷却水通路52aへ流入する熱媒体の温度である。
【0127】
バッテリ温度センサ68は、バッテリ温度TB(すなわち、バッテリ51の温度)を検出するバッテリ温度検出部である。本実施形態のバッテリ温度センサ68は、複数の温度センサを有し、バッテリ51の複数の箇所の温度を検出している。このため、制御装置60では、バッテリ51を形成する各電池セルの温度差を検出することができる。さらに、バッテリ温度TBとしては、複数の温度センサの検出値の平均値を採用している。
【0128】
空調風温度センサ69は、混合空間36から車室内へ送風される送風空気温度TAVを検出する空調風温度検出部である。
【0129】
さらに、制御装置60の入力側には、
図5に示すように、空調用の操作パネル70が接続されている。空調用の操作パネル70は、車室内前部の計器盤付近に配置されている。制御装置60には、空調用の操作パネル70に設けられた各種操作スイッチからの操作信号が入力される。
【0130】
空調用の操作パネル70に設けられた各種操作スイッチとしては、具体的に、オートスイッチ、エアコンスイッチ、風量設定スイッチ、温度設定スイッチ等がある。
【0131】
オートスイッチは、ユーザが車室内空調の自動制御運転を設定あるいは解除する操作部である。エアコンスイッチは、ユーザが室内蒸発器18にて送風空気の冷却を行うことを要求する操作部である。風量設定スイッチは、ユーザが室内送風機32の風量をマニュアル設定する操作部である。温度設定スイッチは、ユーザが車室内の設定温度Tsetを設定する操作部である。
【0132】
なお、本実施形態の制御装置60は、その出力側に接続された各種制御対象機器を制御する制御部が一体に構成されたものである。そして、制御装置60のうち、それぞれの制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が、それぞれの制御対象機器の作動を制御する制御部を構成している。
【0133】
例えば、制御装置60のうち、圧縮機11の冷媒吐出能力(具体的には、圧縮機11の回転数)を制御する構成は、圧縮機制御部60aを構成している。また、五方弁422の作動を制御する構成は、低温側熱媒体回路制御部60bを構成している。また、三方弁44の作動を制御する構成は、熱移動量制御部60cを構成している。
【0134】
次に、上記構成の熱管理システム1の作動について説明する。前述の如く、熱管理システム1は、車室内の空調、および車載機器の温度調整を行うことができる。そのために、熱管理システム1では、冷凍サイクル装置10の回路構成、および熱媒体回路40の回路構成を切り替えて、各種運転モードを実行する。
【0135】
熱管理システム1の運転モードには、車室内の空調用の運転モードと車載機器の温度調整用の運転モードがある。熱管理システム1では、空調用の運転モードと温度調整用の運転モードとを適宜組み合わせて実行することができる。
【0136】
これにより、熱管理システム1では、車載機器の温度調整を行うことなく、車室内の空調のみを行うことができる。また、車室内の空調を行うことなく、車載機器の温度調整を行うことができる。また、車室内の空調を行うと同時に車載機器の温度調整を行うことができる。
【0137】
まず、空調用の運転モードについて説明する。空調用の運転モードには、(A1)冷房モード、(A2)直列除湿暖房モード、(A3)並列除湿暖房モード、(A4)暖房モードがある。
【0138】
(A1)冷房モードは、送風空気を冷却して車室内へ吹き出すことによって、車室内の冷房を行う運転モードである。
【0139】
(A2)直列除湿暖房モードは、冷却されて除湿された送風空気を再加熱して車室内へ吹き出すことによって、車室内の除湿暖房を行う運転モードである。
【0140】
(A3)並列除湿暖房モードは、冷却されて除湿された送風空気を直列除湿暖房モードよりも高い加熱能力で再加熱して車室内へ吹き出すことによって、車室内の除湿暖房を行う運転モードである。
【0141】
(A4)暖房モードは、送風空気を加熱して車室内へ吹き出すことによって、車室内の暖房を行う運転モードのである。
【0142】
空調用の運転モードの切り替えは、制御装置60に記憶されている空調用の制御プログラムが実行されることによって行われる。空調用の制御プログラムは、操作パネル70のオートスイッチが投入されて、車室内空調の自動制御運転が設定された際に実行される。
【0143】
空調用の制御プログラムのメインルーチンでは、所定の周期毎に上述のセンサ群の検出信号および操作パネル70の操作スイッチの操作信号を読み込む。そして、読み込んだ検出信号および操作信号の値に基づいて、車室内へ吹き出す吹出空気の目標温度である目標吹出温度TAOを算出する。
【0144】
より具体的には、目標吹出温度TAOは、以下数式F1を用いて算出される。
TAO=Kset×Tset-Kr×Tr-Kam×Tam-Ks×As+C…(F1)
なお、Tsetは、操作パネル70の温度設定スイッチによって設定された車室内の設定温度である。Trは、内気温センサ61によって検出された内気温である。Tamは、外気温センサ62によって検出された外気温である。Asは、日射センサ63によって検出された日射量である。Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。
【0145】
そして、操作パネル70のエアコンスイッチが投入された状態で、目標吹出温度TAOが予め定めた冷房基準温度KTAO1よりも低くなっている場合には、空調用の運転モードが冷房モードに切り替えられる。
【0146】
また、エアコンスイッチが投入された状態で、目標吹出温度TAOが冷房基準温度KTAO1以上になっており、かつ、外気温Tamが予め定めた除湿暖房基準温度KTAO2よりも高くなっている場合には、空調用の運転モードが直列除湿暖房モードに切り替えられる。
【0147】
また、エアコンスイッチが投入された状態で、目標吹出温度TAOが冷房基準温度KTAO1以上になっており、かつ、外気温Tamが除湿暖房基準温度KTAO2以下になっている場合には、空調用の運転モードが並列除湿暖房モードに切り替えられる。
【0148】
また、エアコンスイッチの冷房スイッチが投入されていない場合には、空調用の運転モードが暖房モードに切り替えられる。
【0149】
このため、冷房モードは、主に夏季のように比較的外気温が高い場合に実行される。直列除湿暖房モードは、主に春季あるいは秋季に実行される。並列除湿暖房モードは、主に早春季あるいは晩秋季のように直列除湿暖房モードよりも高い加熱能力で送風空気を加熱する必要のある場合に実行される。暖房モードは、主に冬季の低外気温時に実行される。以下に空調用の各運転モードの詳細作動を説明する。
【0150】
(A1)冷房モード
冷房モードでは、制御装置60が、暖房用膨張弁14aを全開状態とし、冷房用膨張弁14bを冷媒減圧作用を発揮する絞り状態とする。冷却用膨張弁14cについては、温度調整用の運転モードに応じて制御される。このことは、他の空調用の運転モードにおいても同様である。また、制御装置60は、除湿用開閉弁15aを閉じ、暖房用開閉弁15bを閉じる。
【0151】
このため、冷房モードの冷凍サイクル装置10では、圧縮機11から吐出された冷媒が、水冷媒熱交換器12、全開となっている暖房用膨張弁14a、室外熱交換器16、逆止弁17、冷房用膨張弁14b、室内蒸発器18、蒸発圧力調整弁19、アキュムレータ21、圧縮機11の吸入口の順に循環する蒸気圧縮式の冷凍サイクルが構成される。
【0152】
さらに、制御装置60は、その他の制御対象機器の作動を適宜制御する。例えば、制御装置60は、圧縮機11の回転数については、蒸発器温度センサ64fによって検出された蒸発器温度Tefinが、目標蒸発器温度TEOに近づくように制御する。目標蒸発器温度TEOは、目標吹出温度TAOに基づいて、予め制御装置60に記憶された制御マップを参照して決定される。
【0153】
また、制御装置60は、冷房用膨張弁14bの絞り開度については、冷房用膨張弁14bへ流入する冷媒の過冷却度SC3が、目標過冷却度SCO3に近づくように制御する。
【0154】
冷房用膨張弁14bへ流入する冷媒の過冷却度SC3は、第3冷媒温度センサ64cによって検出された第3冷媒温度TR3、および第3冷媒圧力センサ65cによって検出された第3冷媒圧力PR3を用いて算定される。目標過冷却度SCO3は、外気温Tamに基づいて、予め制御装置60に記憶された制御マップを参照して、サイクルの成績係数(COP)が極大値に近づくように決定される。
【0155】
また、制御装置60は、高温側ポンプ411については、予め定めた圧送能力を発揮するように制御する。また、制御装置60は、三方弁44については、内部へ流入させた熱媒体の少なくとも一部がヒータコア413側へ流出するように制御する。第1低温側ポンプ421a、第2低温側ポンプ421b、五方弁422については、温度調整用の運転モードに応じて制御される。このことは、他の空調用の運転モードにおいても同様である。
【0156】
また、制御装置60は、高温側熱媒体温度センサ66aによって検出された高温側熱媒体温度TWHが予め定めた基準高温側熱媒体温度KTWHよりも低くなっている際には、電気ヒータ412を作動させる。
【0157】
また、制御装置60は、室内送風機32の送風能力については、目標吹出温度TAOに基づいて、予め制御装置60に記憶された制御マップを参照して決定する。また、制御装置60は、エアミックスドア34の開度については、空調風温度センサ69によって検出された送風空気温度TAVが目標吹出温度TAOに近づくように制御する。
【0158】
従って、冷房モードの冷凍サイクル装置10では、水冷媒熱交換器12および室外熱交換器16を、冷媒を放熱させて凝縮させる凝縮器(換言すると、放熱器)として機能させ、室内蒸発器18を、冷媒を蒸発させる蒸発器として機能させる蒸気圧縮式の冷凍サイクルが構成される。その結果、冷房モードの冷凍サイクル装置10では、水冷媒熱交換器12にて、熱媒体が加熱される。さらに、室内蒸発器18にて、送風空気が冷却される。
【0159】
また、冷房モードの熱媒体回路40では、水冷媒熱交換器12にて加熱された熱媒体が、ヒータコア413へ供給される。
【0160】
また、冷房モードの室内空調ユニット30では、室内送風機32から送風された送風空気が、室内蒸発器18にて冷却される。室内蒸発器18にて冷却された送風空気は、エアミックスドア34の開度に応じてヒータコア413および冷風バイパス通路35を通過して、目標吹出温度TAOに近づくように温度調整される。そして、温度調整された送風空気が車室内へ吹き出されることによって、車室内の冷房が実現される。
【0161】
(A2)直列除湿暖房モード
直列除湿暖房モードでは、制御装置60が、暖房用膨張弁14aを絞り状態とし、冷房用膨張弁14bを絞り状態とする。また、制御装置60は、除湿用開閉弁15aを閉じ、暖房用開閉弁15bを閉じる。
【0162】
このため、直列除湿暖房モードの冷凍サイクル装置10では、圧縮機11から吐出された冷媒が、水冷媒熱交換器12、暖房用膨張弁14a、室外熱交換器16、逆止弁17、冷房用膨張弁14b、室内蒸発器18、蒸発圧力調整弁19、アキュムレータ21、圧縮機11の吸入口の順に循環する蒸気圧縮式の冷凍サイクルが構成される。
【0163】
さらに、制御装置60は、その他の制御対象機器の作動を適宜制御する。例えば、制御装置60は、圧縮機11の回転数については、冷房モードと同様に制御する。
【0164】
また、制御装置60は、暖房用膨張弁14aの絞り開度および冷房用膨張弁14bの絞り開度については、目標吹出温度TAOに基づいて、予め制御装置60に記憶された制御マップを参照して、COPが極大値に近づくように決定する。直列除湿暖房モードの制御マップでは、目標吹出温度TAOの上昇に伴って、暖房用膨張弁14aの絞り開度を減少させ、冷房用膨張弁14bの絞り開度を増加させるように決定する。
【0165】
また、制御装置60は、冷房モードと同様に、熱媒体回路40の高温側ポンプ411等の作動を制御する。また、制御装置60は、冷房モードと同様に、室内空調ユニット30の室内送風機32等の作動を制御する。
【0166】
従って、直列除湿暖房モードの冷凍サイクル装置10では、水冷媒熱交換器12を凝縮器として機能させ、室内蒸発器18を蒸発器として機能させる蒸気圧縮式の冷凍サイクルが構成される。さらに、室外熱交換器16における冷媒の飽和温度が外気温Tamよりも高い場合には、室外熱交換器16を凝縮器として機能させる。また、室外熱交換器16における冷媒の飽和温度が外気温Tamよりも低い場合には、室外熱交換器16を蒸発器として機能させる。
【0167】
その結果、直列除湿暖房モードの冷凍サイクル装置10では、水冷媒熱交換器12にて、熱媒体が加熱される。さらに、室内蒸発器18にて、送風空気が冷却される。
【0168】
また、直列除湿暖房モードの熱媒体回路40では、水冷媒熱交換器12にて加熱された熱媒体がヒータコア413へ供給される。
【0169】
また、直列除湿暖房モードの室内空調ユニット30では、室内送風機32から送風された送風空気が、室内蒸発器18にて冷却されて除湿される。室内蒸発器18にて冷却されて除湿された送風空気は、エアミックスドア34の開度調整によって、目標吹出温度TAOに近づくように温度調整される。そして、温度調整された送風空気が車室内へ吹き出されることによって、車室内の除湿暖房が実現される。
【0170】
さらに、直列除湿暖房モードの冷凍サイクル装置10では、目標吹出温度TAOの上昇に伴って、暖房用膨張弁14aの絞り開度を減少させ、冷房用膨張弁14bの絞り開度を増加させている。これによれば、目標吹出温度TAOの上昇に伴って、ヒータコア413における送風空気の加熱能力を向上させることができる。
【0171】
より詳細には、室外熱交換器16における冷媒の飽和温度が外気温Tamよりも高くなっている際には、目標吹出温度TAOの上昇に伴って、室外熱交換器16における冷媒の飽和温度と外気温Tamとの温度差を縮小させることができる。従って、目標吹出温度TAOの上昇に伴って、室外熱交換器16における冷媒の外気への放熱量を減少させて、水冷媒熱交換器12における冷媒から熱媒体への放熱量を増加させることができる。
【0172】
また、室外熱交換器16における冷媒の飽和温度が外気温Tamよりも低くなっている際には、目標吹出温度TAOの上昇に伴って、外気温Tamと室外熱交換器16における冷媒との温度差を拡大させることができる。従って、目標吹出温度TAOの上昇に伴って、室外熱交換器16における冷媒の外気からの吸熱量を増加させて、水冷媒熱交換器12における冷媒から熱媒体への放熱量を増加させることができる。
【0173】
その結果、直列除湿暖房モードでは、目標吹出温度TAOの上昇に伴って、ヒータコア413における送風空気の加熱能力を向上させることができる。
【0174】
(A3)並列除湿暖房モード
並列除湿暖房モードでは、制御装置60が、暖房用膨張弁14aを絞り状態とし、冷房用膨張弁14bを絞り状態とする。また、制御装置60は、除湿用開閉弁15aを開き、暖房用開閉弁15bを開く。
【0175】
このため、並列除湿暖房モードの冷凍サイクル装置10では、圧縮機11から吐出された冷媒が、水冷媒熱交換器12、第1冷媒継手部13a、暖房用膨張弁14a、室外熱交換器16、暖房用通路22b、アキュムレータ21、圧縮機11の吸入口の順に冷媒が循環する。同時に、圧縮機11から吐出された冷媒が、水冷媒熱交換器12、第1冷媒継手部13a、除湿用通路22a、冷房用膨張弁14b、室内蒸発器18、蒸発圧力調整弁19、アキュムレータ21、圧縮機11の吸入口の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。つまり、室外熱交換器16と室内蒸発器18が冷媒流れに対して並列的に接続されるサイクルが構成される。
【0176】
さらに、制御装置60は、その他の制御対象機器の作動を適宜制御する。例えば、制御装置60は、圧縮機11の回転数については、第1冷媒圧力センサ65aによって検出された第1冷媒圧力PR1が、目標凝縮圧力PDOに近づくように制御する。目標凝縮圧力PDOは、高温側熱媒体温度TWHが、予め定めた目標水温TWHOに近づくように決定されている。
【0177】
また、制御装置60は、暖房用膨張弁14aの絞り開度および冷房用膨張弁14bの絞り開度については、目標吹出温度TAOに基づいて、予め制御装置60に記憶された制御マップを参照して、COPが極大値に近づくように決定する。並列除湿暖房モードの制御マップでは、目標吹出温度TAOの上昇に伴って、暖房用膨張弁14aの絞り開度を減少させ、冷房用膨張弁14bの絞り開度を増加させるように決定する。
【0178】
また、制御装置60は、冷房モードと同様に、熱媒体回路40の高温側ポンプ411等の作動を制御する。また、制御装置60は、冷房モードと同様に、室内空調ユニット30の室内送風機32等の作動を制御する。
【0179】
従って、並列除湿暖房モードの冷凍サイクル装置10では、水冷媒熱交換器12を凝縮器として機能させ、室外熱交換器16および室内蒸発器18を蒸発器として機能させる蒸気圧縮式の冷凍サイクルが構成される。その結果、並列除湿暖房モードの冷凍サイクル装置10では、水冷媒熱交換器12にて、熱媒体が加熱される。さらに、室内蒸発器18にて、送風空気が冷却される。
【0180】
また、並列除湿暖房モードの熱媒体回路40では、水冷媒熱交換器12にて加熱された熱媒体が、ヒータコア413へ供給される。
【0181】
また、並列除湿暖房モードの室内空調ユニット30では、室内送風機32から送風された送風空気が、室内蒸発器18にて冷却されて除湿される。室内蒸発器18にて冷却されて除湿された送風空気は、エアミックスドア34の開度調整によって、目標吹出温度TAOに近づくように温度調整される。そして、温度調整された送風空気が車室内へ吹き出されることによって、車室内の除湿暖房が実現される。
【0182】
さらに、並列除湿暖房モードの冷凍サイクル装置10では、暖房用膨張弁14aの絞り開度を、冷房用膨張弁14bの絞り開度よりも減少させることができる。これによれば、室外熱交換器16における冷媒蒸発温度を、室内蒸発器18における冷媒蒸発温度よりも低い温度に低下させることができる。
【0183】
従って、直列除湿暖房モードよりも室外熱交換器16における冷媒の外気からの吸熱量を増加させて、水冷媒熱交換器12における冷媒から熱媒体への放熱量を増加させることができる。その結果、並列除湿暖房モードでは、直列除湿暖房モードよりもヒータコア413における送風空気の加熱能力を向上させることができる。
【0184】
(A4)暖房モード
暖房モードでは、制御装置60が、暖房用膨張弁14aを絞り状態とし、冷房用膨張弁14bを全閉状態とする。また、制御装置60は、除湿用開閉弁15aを閉じ、暖房用開閉弁15bを開く。
【0185】
このため、暖房モードの冷凍サイクル装置10では、圧縮機11から吐出された冷媒が、水冷媒熱交換器12、暖房用膨張弁14a、室外熱交換器16、暖房用通路22b、アキュムレータ21、圧縮機11の吸入口の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。
【0186】
さらに、制御装置60は、その他の制御対象機器の作動を適宜制御する。例えば、制御装置60は、圧縮機11の回転数については、並列除湿暖房モードと同様に制御する。
【0187】
また、制御装置60は、暖房用膨張弁14aの絞り開度については、暖房用膨張弁14aへ流入する冷媒の過冷却度SC2が、目標過冷却度SCO2に近づくように制御する。
【0188】
暖房用膨張弁14aへ流入する冷媒の過冷却度SC2は、第2冷媒温度センサ64bによって検出された第2冷媒温度TR2、および第2冷媒圧力センサ65bによって検出された第2冷媒圧力PR2を用いて算出される。目標過冷却度SCO2は、第1冷媒温度センサ64aによって検出された第1冷媒温度TR1に基づいて、予め制御装置60に記憶された制御マップを参照して、COPが極大値に近づくように決定される。
【0189】
また、制御装置60は、冷房モードと同様に、熱媒体回路40の高温側ポンプ411等の作動を制御する。また、制御装置60は、冷房モードと同様に、室内空調ユニット30の室内送風機32等の作動を制御する。
【0190】
従って、暖房モードの冷凍サイクル装置10では、水冷媒熱交換器12を凝縮器として機能させ、室外熱交換器16を蒸発器として機能させる蒸気圧縮式の冷凍サイクルが構成される。その結果、暖房モードの冷凍サイクル装置10では、水冷媒熱交換器12にて、熱媒体が加熱される。
【0191】
また、暖房モードの熱媒体回路40では、水冷媒熱交換器12にて加熱された熱媒体がヒータコア413へ供給される。
【0192】
また、暖房モードの室内空調ユニット30では、室内送風機32から送風された送風空気が、室内蒸発器18を通過する。室内蒸発器18を通過した送風空気が、エアミックスドア34の開度調整によって、目標吹出温度TAOに近づくように温度調整される。そして、温度調整された送風空気が車室内へ吹き出されることによって、車室内の暖房が実現される。
【0193】
次に、温度調整用の運転モードについて説明する。温度調整用の運転モードでは、第1温度調整対象物であるバッテリ51、および第2温度調整対象物である強電系機器50の温度調整を行う。
【0194】
前述の如く、本実施形態では、第1温度調整対象物であるバッテリ51の適正な温度帯と、第2温度調整対象物である強電系機器50の適正な温度帯が異なっている。このため、温度調整用の運転モードでは、バッテリ51の温度調整を行うためのバッテリ用の運転モードと、強電系機器50の温度調整を行うための強電系機器用の運転モードと、を組み合わせて実行する。
【0195】
バッテリ用の運転モードとしては、(B1)バッテリ加温モード、(B2)バッテリ均温モード、(B3)バッテリ冷却モードがある。
【0196】
(B1)バッテリ加温モードは、温度調整された熱媒体によってバッテリ51の暖機を行う運転モードである。
【0197】
(B2)バッテリ均温モードは、バッテリ51を形成する各電池セルの均温化を行う運転モードである。
【0198】
(B3)バッテリ冷却モードは、チラー20にて冷却された熱媒体によってバッテリ51を冷却する運転モードである。
【0199】
また、強電系機器用の運転モードとしては、(C1)強電系機器蓄熱モード、(C2)強電系機器廃熱回収モード、(C3)強電系機器冷却モードがある。
【0200】
(C1)強電系機器蓄熱モードは、強電系機器50の発熱によって、強電系機器50の暖機および熱媒体の加熱を行う運転モードである。
【0201】
(C2)強電系機器廃熱回収モードは、チラー20にて冷却された熱媒体によって強電系機器50を冷却する運転モードである。換言すると、チラー20にて強電系機器50の廃熱を低圧冷媒に吸熱させる運転モードである。
【0202】
(C3)強電系機器冷却モードは、低温側ラジエータ423にて冷却された熱媒体によって強電系機器50を冷却する運転モードである。
【0203】
温度調整用の運転モードの切り替えは、制御装置60に記憶されている温度調整用の制御プログラムが実行されることによって行われる。温度調整用の制御プログラムは、ユーザが車室内の空調を要求しているか否かにかかわらず、車両システムが起動している際あるいは外部電源からバッテリ51に充電している際に実行される。
【0204】
温度調整用の制御プログラムでは、所定の周期毎に上述のセンサ群の検出信号を読み込む。そして、読み込んだ検出信号に基づいて、温度調整用の運転モードを切り替える。
【0205】
より具体的には、温度調整用の制御プログラムでは、バッテリ温度センサ68によって検出されたバッテリ温度TBおよび第2低温側熱媒体温度センサ67bによって検出された第2低温側熱媒体温度TWL2に基づいて、予め制御装置60に記憶された制御マップを参照して、温度調整用の運転モードを切り替える。
【0206】
温度調整用の制御プログラムが参照する制御マップでは、
図6の制御特性図に示すように、バッテリ温度TBが第1基準バッテリ温度KTB1以下になっている際には、バッテリ用の運転モードを(B1)バッテリ加温モードに切り替える。
【0207】
そして、バッテリ温度TBが上昇過程では、バッテリ温度TBが第2基準バッテリ温度KTB2以上になると、(B1)バッテリ加温モードから(B2)バッテリ均温モードへ切り替える。さらに、バッテリ温度TBが第4基準バッテリ温度KTB4以上になると、(B2)バッテリ均温モードから(B3)バッテリ冷却モードへ切り替える。
【0208】
一方、バッテリ温度TBが下降過程では、バッテリ温度TBが第3基準バッテリ温度KTB3以下になると、(B3)バッテリ冷却モードから(B2)バッテリ均温モードへ切り替える。さらに、バッテリ温度TBが第1基準バッテリ温度KTB1以下になると、(B2)バッテリ均温モードから(B1)バッテリ加温モードへ切り替える。
【0209】
上述した第4基準バッテリ温度KTB4と第3基準バッテリ温度KTB3との温度差、および第2基準バッテリ温度KTB2と第1基準バッテリ温度KTB1との温度差は、制御ハンチング防止のためのヒステリシス幅として設定されている。
【0210】
さらに、
図6の制御特性図に示すように、第2低温側熱媒体温度TWL2が第1基準強電系機器側温度KTWL21以下になっている際には、強電系機器用の運転モードを(C1)強電系機器蓄熱モードへ切り替える。
【0211】
そして、第2低温側熱媒体温度TWL2が上昇過程では、第2低温側熱媒体温度TWL2が第2基準強電系機器側温度KTWL22以上になると、(C1)強電系機器蓄熱モードから(C2)強電系機器廃熱回収モードへ切り替える。さらに、第2低温側熱媒体温度TWL2が第4基準強電系機器側温度KTWL24以上になると、(C2)強電系機器廃熱回収モードから(C3)強電系機器冷却モードへ切り替える。
【0212】
一方、第2低温側熱媒体温度TWL2が下降過程では、第2低温側熱媒体温度TWL2が第3基準強電系機器側温度KTWL23以下になると、(C3)強電系機器冷却モードから(C2)強電系機器廃熱回収モードへ切り替える。さらに、第2低温側熱媒体温度TWL2が第1基準強電系機器側温度KTWL21以下になると、(C2)強電系機器廃熱回収モードから(C1)強電系機器蓄熱モードへ切り替える。
【0213】
但し、
図6の制御特性図に示すように、本実施形態では、バッテリ用の運転モードが(B3)バッテリ冷却モードになっている場合は、バッテリ51の冷却を優先するために、強電系機器用の運転モードを(C3)強電系機器冷却モードにする。
【0214】
以下に温度調整用の各運転モードの詳細作動を説明する。以下の説明では、温度調整用の各運転モードを、バッテリ用の運転モードに付した符号と強電系機器用の運転モードに付した符号を組み合わせて表す。例えば、(B1)バッテリ加温モードと(C1)強電系機器蓄熱モードとを実行する運転モードをB1C1モードと記載する。
【0215】
まず、車両走行時等のように、車室内空調が行われている場合の温度調整用の運転モード、すなわち空調中の温度調整用の運転モードについて説明する。
【0216】
空調中の温度調整用の運転モードでは、上述した(A1)冷房モード、(A2)直列除湿暖房モード、(A3)並列除湿暖房モード、(A4)暖房モードのいずれかが実行されていることを前提とする。換言すると、空調中の温度調整用の運転モードでは、冷凍サイクル装置10の圧縮機11、室内空調ユニット30の室内送風機32、熱媒体回路40の高温側回路41の高温側ポンプ411等が作動していることを前提とする。
【0217】
(空調中のB1C1モード)
B1C1モードは、(B1)バッテリ加温モードと(C1)強電系機器蓄熱モードとを実行する運転モードである。
【0218】
B1C1モードでは、制御装置60が、冷凍サイクル装置10の冷却用膨張弁14cを全閉状態とする。このため、B1C1モードの冷凍サイクル装置10では、冷媒がチラー20へ流入することはない。
【0219】
また、制御装置60は、三方弁44の作動を制御して、内部に流入した熱媒体をヒータコア413側および入口側接続通路431側の双方へ流出させる。また、制御装置60は、予め定めた圧送能力を発揮するように第1低温側ポンプ421aおよび第2低温側ポンプ421bを作動させる。
【0220】
また、制御装置60は、五方弁422の作動を制御して、バッテリ51の冷却水通路51aの出口側と熱媒体バイパス通路424の入口側とを接続すると同時に、強電系機器50の冷却水通路52a~54aの出口側とチラー20の熱媒体通路20bの入口側とを接続する回路に切り替える。
【0221】
このため、B1C1モードの熱媒体回路40では、
図7の矢印で示すように、熱媒体が流れる。具体的には、B1C1モードの高温側回路41では、高温側ポンプ411から圧送された熱媒体が、水冷媒熱交換器12の熱媒体通路12b、電気ヒータ412、三方弁44、ヒータコア413、高温側ポンプ411の吸入口の順に循環する。
【0222】
また、B1C1モードの低温側回路42では、第1低温側ポンプ421aから圧送された熱媒体が、バッテリ51の冷却水通路51a、五方弁422、熱媒体バイパス通路424、第1低温側ポンプ421aの吸入口の順に循環する。第2低温側ポンプ421bから圧送された熱媒体が、強電系機器50の冷却水通路52a~54a、五方弁422、チラー20の熱媒体通路20b、第2低温側ポンプ421bの吸入口の順に循環する。
【0223】
また、B1C1モードの接続通路43では、三方弁44へ流入した熱媒体の一部が、入口側接続通路431を介して、第1低温側ポンプ421aの吸入口側へ熱媒体が流れる。また、バッテリ51の冷却水通路51aから流出した熱媒体の一部が、出口側接続通路432を介して、高温側ポンプ411の吸入口側へ熱媒体が流れる。
【0224】
さらに、制御装置60は、その他の制御対象機器の作動を適宜制御する。例えば、制御装置60は、第1低温側熱媒体温度センサ67aによって検出された第1低温側熱媒体温度TWL1が、予め定めた暖機用目標温度TWLW1に近づくように、三方弁44の作動を制御する。換言すると、制御装置60は、バッテリ51の冷却水通路51aへ流入する熱媒体の温度が、暖機用目標温度TWLW1に近づくように、三方弁44の作動を制御する。暖機用目標温度TWLW1は、バッテリ51を適切に暖機することができるように設定されている。
【0225】
従って、B1C1モードの熱媒体回路40では、車室内空調のために水冷媒熱交換器12あるいは電気ヒータ412にて加熱された熱媒体が三方弁44へ流入する。三方弁44へ流入した熱媒体は、三方弁44にて分流されて、ヒータコア413および入口側接続通路431へ流入する。
【0226】
三方弁44から入口側接続通路431へ流入した熱媒体は、第6熱媒体継手部45fへ流入する。第6熱媒体継手部45fでは、入口側接続通路431から流出した熱媒体の流れと、熱媒体バイパス通路424から流出した熱媒体の流れが合流する。この際、三方弁44は、バッテリ51の冷却水通路51aへ流入する熱媒体の温度が暖機用目標温度TWLW1に近づくように、入口側接続通路431を流通する熱媒体の流量を調整する。
【0227】
第6熱媒体継手部45fから流出した熱媒体は、第1低温側ポンプ421aへ吸入されて、バッテリ51の冷却水通路51aへ圧送される。バッテリ51の冷却水通路51aへ流入した熱媒体は、バッテリ51の各電池セルに放熱する。これにより、バッテリ51の暖機が行われる。
【0228】
バッテリ51の冷却水通路51aから流出した熱媒体の流れは、第2熱媒体継手部45bにて分岐される。第2熱媒体継手部45bにて分岐された一方の熱媒体は、出口側接続通路432を介して第1熱媒体継手部45aへ流入する。
【0229】
第1熱媒体継手部45aでは、出口側接続通路432から流出した熱媒体の流れと、ヒータコア413から流出した熱媒体の流れが合流する。第1熱媒体継手部45aにて合流した熱媒体は、高温側ポンプ411へ吸入される。
【0230】
第2熱媒体継手部45bにて分岐された他方の熱媒体は、五方弁422を介して熱媒体バイパス通路424へ流入する。熱媒体バイパス通路424から流出した熱媒体は、第4熱媒体継手部45dを介して第6熱媒体継手部45fへ流入する。
【0231】
また、B1C1モードの低温側回路42では、第2低温側ポンプ421bから圧送された熱媒体が、強電系機器50の冷却水通路52a~54aへ流入する。この際、強電系機器50の冷却水通路52a~54aを流通する熱媒体の温度が強電系機器50の温度よりも低くなっていれば、熱媒体が強電系機器50の廃熱を吸熱する。
【0232】
強電系機器50の冷却水通路52a~54aから流出した熱媒体は、五方弁422を介して、チラー20の熱媒体通路20bへ流入する。B1C1モードでは、冷却用膨張弁14cが全閉状態となっている。このため、チラー20にて、熱媒体と冷媒が熱交換することはない。
【0233】
チラー20の熱媒体通路20bから流出した熱媒体は、第3熱媒体継手部45cおよび第5熱媒体継手部45eを介して、第2低温側ポンプ421bへ吸入される。つまり、B1C1モードの低温側回路42では、強電系機器50の廃熱が冷媒や外気に放熱されることがなく、強電系機器50の暖機および熱媒体の加熱が行われる。
【0234】
(空調中のB1C2モード)
B1C2モードは、(B1)バッテリ加温モードと(C2)強電系機器廃熱回収モードとを実行する運転モードである。ここで、(C2)強電系機器廃熱回収モードは、強電系機器50の冷却を目的とする運転モードではない。このため、B1C2モードにおいて、空調あるいはバッテリ51の暖機のために強電系機器50の廃熱を回収する要求がない場合には、B1C1モードと同様の運転を行えばよい。
【0235】
空調中のB1C2モードでは、制御装置60が、冷凍サイクル装置10の冷却用膨張弁14cを絞り状態とする。さらに、空調用の運転モードが、(A4)暖房モードになっている際には、制御装置60は、除湿用開閉弁15aを開き、暖房用開閉弁15bを開く。
【0236】
このため、B1C2モードの冷凍サイクル装置10では、冷却用膨張弁14cで減圧された低圧冷媒がチラー20の冷媒通路20aへ流入する。チラー20の冷媒通路20aから流出した冷媒は、第6冷媒継手部13f、第4冷媒継手部13dを介して、アキュムレータ21へ流入する。
【0237】
さらに、空調用の運転モードが、(A4)暖房モードになっている際には、圧縮機11から吐出された冷媒が、水冷媒熱交換器12、第1冷媒継手部13a、暖房用膨張弁14a、室外熱交換器16、暖房用通路22b、アキュムレータ21、圧縮機11の吸入口の順に冷媒が循環する。同時に、圧縮機11から吐出された冷媒が、水冷媒熱交換器12、第1冷媒継手部13a、除湿用通路22a、冷却用膨張弁14c、チラー20、アキュムレータ21、圧縮機11の吸入口の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。つまり、室外熱交換器16とチラー20が冷媒流れに対して並列的に接続されるサイクルが構成される。
【0238】
また、制御装置60は、B1C1モードと同様に、三方弁44、五方弁422、第1低温側ポンプ421aおよび第2低温側ポンプ421bの作動を制御する。
【0239】
このため、B1C2モードの熱媒体回路40では、
図7の矢印で示すように、B1C1モードと同様に熱媒体が流れる。
【0240】
さらに、制御装置60は、その他の制御対象機器の作動を適宜制御することができる。例えば、制御装置60は、第2低温側熱媒体温度TWL2が、予め定めた強電系機器用目標温度TWLO2に近づくように、冷却用膨張弁14cの絞り開度を制御してもよい。換言すると、制御装置60は、強電系機器50の冷却水通路50aへ流入する熱媒体の温度が、強電系機器用目標温度TWLO2に近づくように、冷却用膨張弁14cの絞り開度を制御する。強電系機器用目標温度TWLO2は、強電系機器50を適切に作動させることができるように設定されている。
【0241】
従って、B1C2モードの冷凍サイクル装置10では、水冷媒熱交換器12を凝縮器として機能させ、少なくともチラー20を蒸発器として機能させる蒸気圧縮式の冷凍サイクルが構成される。このため、少なくともチラー20にて低圧冷媒が回収した強電系機器50の廃熱を熱源として、水冷媒熱交換器12にて高温側回路41を流通する熱媒体を加熱することができる。
【0242】
また、B1C2モードの熱媒体回路40では、B1C1モードと同様に、バッテリ51の暖機が行われる。
【0243】
また、B1C2モードの低温側回路42では、第2低温側ポンプ421bから圧送された熱媒体が、強電系機器50の冷却水通路52a~54aへ流入する。強電系機器50の冷却水通路52a~54aを流通する熱媒体は、強電系機器50の廃熱を吸熱する。これにより、強電系機器50が冷却される。
【0244】
強電系機器50の冷却水通路52a~54aから流出した熱媒体は、五方弁422を介して、チラー20の熱媒体通路20bへ流入する。B1C2モードでは、冷却用膨張弁14cが絞り状態となっている。このため、チラー20へ流入した熱媒体は、冷却用膨張弁14cにて減圧された低圧冷媒と熱交換して冷却される。これにより、強電系機器50の冷却水通路50aへ流入する熱媒体の温度が強電系機器用目標温度TWLO2に近づく。
【0245】
チラー20の熱媒体通路20bから流出した熱媒体は、第3熱媒体継手部45cおよび第5熱媒体継手部45eを介して、第2低温側ポンプ421bへ吸入される。
【0246】
一方、チラー20へ流入した低圧冷媒は、熱媒体の有する熱を吸熱して蒸発する。換言すると、チラー20へ流入した低圧冷媒は、強電系機器50の廃熱を回収する。
【0247】
また、空調中のB1C2モードでは、冷凍サイクル装置10の圧縮機11が作動している。従って、空調中のB1C2モードの冷凍サイクル装置10では、圧縮機11が、チラー20にて強電系機器50の廃熱を回収した冷媒を圧縮して、水冷媒熱交換器12の冷媒通路12a側へ吐出する。
【0248】
水冷媒熱交換器12では、チラー20にて低圧冷媒が回収した強電系機器50の廃熱の少なくとも一部が、高温側回路41を流通する熱媒体に放熱される。これにより、高温側回路41を流通する熱媒体が加熱される。つまり、B1C2モードでは、強電系機器50の廃熱を熱源として、高温側回路41を流通する熱媒体が加熱される。さらに、加熱された熱媒体を熱源として、送風空気の加熱およびバッテリ51の暖機が行われる。
【0249】
ところで、バッテリ51の暖機を行う手段として、強電系機器50の冷却水通路52a~54aから流出した熱媒体を、バッテリ51の冷却水通路51aへ直接流入させる手段が考えられる。
【0250】
ところが、強電系機器50の冷却水通路52a~54aから流出した熱媒体は、比較的高温(具体的には、60℃以上)になっている可能性がある。このため、強電系機器50の冷却水通路52a~54aから流出した熱媒体を、バッテリ51の冷却水通路51aへ直接流入させてしまうと、バッテリ51の温度を急上昇させて、バッテリ51の劣化を進行させてしまう可能性がある。
【0251】
これに対して、B1C2モードでは、強電系機器50の廃熱を冷凍サイクル装置10の冷媒に回収させて、高温側回路41を流通する熱媒体の加熱源として利用している。従って、高温側回路41を流通する熱媒体の温度を、強電系機器50の冷却水通路52a~54aから流出した直後の熱媒体の温度よりも低下させた所望の温度とすることができる。
【0252】
その結果、B1C2モードでは、バッテリ51の温度の急上昇を招くことなく、バッテリ51の適切な暖機を行うことができる。
【0253】
(空調中のB1C3モード)
B1C3モードは、(B1)バッテリ加温モードと(C3)強電系機器冷却モードとを実行する運転モードである。
【0254】
B1C3モードでは、制御装置60が、冷凍サイクル装置10の冷却用膨張弁14cを全閉状態とする。このため、B1C3モードの冷凍サイクル装置10では、冷媒がチラー20へ流入することはない。
【0255】
また、制御装置60は、B1C1モードと同様に、三方弁44、第1低温側ポンプ421aおよび第2低温側ポンプ421bの作動を制御する。また、制御装置60は、五方弁422の作動を制御して、バッテリ51の冷却水通路51aの出口側と熱媒体バイパス通路424の入口側とを接続すると同時に、強電系機器50の冷却水通路52a~54aの出口側と低温側ラジエータ423の熱媒体入口側とを接続する回路に切り替える。
【0256】
このため、B1C3モードの熱媒体回路40では、
図8の矢印で示すように熱媒体が流れる。具体的には、B1C3モードの高温側回路41では、高温側ポンプ411から圧送された熱媒体が、B1C1モードと同様に循環する。また、B1C3モードの接続通路43では、B1C1モードと同様に熱媒体が流れる。
【0257】
また、B1C3モードの低温側回路42では、第1低温側ポンプ421aから圧送された熱媒体が、バッテリ51の冷却水通路51a、五方弁422、熱媒体バイパス通路424、第1低温側ポンプ421aの吸入口の順に循環する。第2低温側ポンプ421bから圧送された熱媒体が、強電系機器50の冷却水通路52a~54a、五方弁422、低温側ラジエータ423、第2低温側ポンプ421bの吸入口の順に循環する。
【0258】
従って、B1C3モードの熱媒体回路40では、B1C1モードと同様に、バッテリ51の適切な暖機が行われる。
【0259】
また、B1C3モードの低温側回路42では、第2低温側ポンプ421bから圧送された熱媒体が、強電系機器50の冷却水通路52a~54aへ流入する。強電系機器50の冷却水通路52a~54aを流通する熱媒体は、強電系機器50の廃熱を吸熱する。これにより、強電系機器50が冷却される。
【0260】
強電系機器50の冷却水通路52a~54aから流出した熱媒体は、五方弁422を介して、低温側ラジエータ423へ流入する。低温側ラジエータ423へ流入した熱媒体は、外気に放熱して冷却される。これにより、強電系機器50の冷却水通路52a~54aへ流入する熱媒体が外気温程度に冷却される。
【0261】
低温側ラジエータ423から流出した熱媒体は、第5熱媒体継手部45eを介して、第2低温側ポンプ421bへ吸入される。つまり、B1C3モードの低温側回路42では、低温側ラジエータ423にて、強電系機器50の廃熱を外気に放熱することによって、強電系機器50の冷却が行われる。
【0262】
(空調中のB2C1モード)
B2C1モードは、(B2)バッテリ均温モードと(C1)強電系機器蓄熱モードとを実行する運転モードである。
【0263】
B2C1モードでは、制御装置60が、冷凍サイクル装置10の冷却用膨張弁14cを全閉状態とする。このため、B1C1モードの冷凍サイクル装置10では、冷媒がチラー20へ流入することはない。
【0264】
また、制御装置60は、三方弁44の作動を制御して、内部に流入した熱媒体の全流量をヒータコア413側へ流出させる。また、制御装置60は、B1C1モードと同様に、五方弁422、第1低温側ポンプ421aおよび第2低温側ポンプ421bの作動を制御する。
【0265】
このため、B2C1モードの熱媒体回路40では、
図9の矢印で示すように、熱媒体が流れる。具体的には、B2C1モードの高温側回路41では、高温側ポンプ411から圧送された熱媒体が、水冷媒熱交換器12の熱媒体通路12b、電気ヒータ412、三方弁44、ヒータコア413、高温側ポンプ411の吸入口の順に循環する。また、B2C1モードの接続通路43では、熱媒体は流通しない。
【0266】
また、B2C1モードの低温側回路42では、第1低温側ポンプ421aから圧送された熱媒体が、バッテリ51の冷却水通路51a、五方弁422、熱媒体バイパス通路424、第1低温側ポンプ421aの吸入口の順に循環する。第2低温側ポンプ421bから圧送された熱媒体が、強電系機器50の冷却水通路52a~54a、五方弁422、チラー20の熱媒体通路20b、第2低温側ポンプ421bの吸入口の順に循環する。
【0267】
従って、B2C1モードの低温側回路42では、第1低温側ポンプ421aから圧送された熱媒体が、バッテリ51の冷却水通路51aへ圧送される。そして、熱媒体がバッテリ51の冷却水通路51aを流通することによって、バッテリ51を形成する各電池セルの均温化が行われる。また、B2C1モードの低温側回路42では、B1C1モードと同様に、強電系機器50の暖機および熱媒体の加熱が行われる。
【0268】
ここで、B2C1モードでは、各電池セルの温度差ΔTBが、予め定めた基準温度差ΔKTB以下となっている際には、第1低温側ポンプ421aを停止させる均温OFFモードを実行してもよい。温度差ΔTBは、バッテリ温度センサ68の検出値から算定することができる。また、基準温度差ΔKTBは、バッテリ51の劣化を招かないように設定すればよい。
【0269】
(空調中のB2C2モード)
B2C2モードは、(B2)バッテリ均温モードと(C2)強電系機器廃熱回収モードとを実行する運転モードである。B2C2モードについても、空調あるいはバッテリ51の暖機のために強電系機器50の廃熱を回収する要求がない場合は、B2C1モードと同様の運転を行えばよい。
【0270】
空調中のB2C2モードでは、制御装置60が、B1C2モードと同様に、冷凍サイクル装置10の冷却用膨張弁14cを絞り状態とする。さらに、空調用の運転モードが、(A4)暖房モードになっている際には、制御装置60は、除湿用開閉弁15aを開き、暖房用開閉弁15bを開く。
【0271】
このため、B2C2モードの冷凍サイクル装置10では、冷却用膨張弁14cで減圧された低圧冷媒がチラー20の冷媒通路20aへ流入する。チラー20の冷媒通路20aから流出した冷媒は、第6冷媒継手部13f、第4冷媒継手部13dを介して、アキュムレータ21へ流入する。
【0272】
さらに、空調用の運転モードが、(A4)暖房モードになっている際には、B1C2モードと同様に、室外熱交換器16とチラー20が冷媒流れに対して並列的に接続されるサイクルが構成される。
【0273】
また、制御装置60は、B2C1モードと同様に、三方弁44、五方弁422、第1低温側ポンプ421aおよび第2低温側ポンプ421bの作動を制御する。
【0274】
このため、B2C2モードの熱媒体回路40では、
図9の矢印で示すように、B2C1モードと同様に熱媒体が流れる。
【0275】
さらに、制御装置60は、B1C2モードと同様に、その他の制御対象機器の作動を適宜制御する。
【0276】
従って、B2C2モードの低温側回路42では、B2C1モードと同様に、バッテリ51を形成する各電池セルの均温化が行われる。
【0277】
また、B2C2モードの低温側回路42では、B1C2モードと同様に、チラー20にて冷却された熱媒体が、強電系機器50の冷却水通路52a~54aを流通することによって、強電系機器50が冷却される。
【0278】
また、空調中のB2C2モードでは、冷凍サイクル装置10の圧縮機11が作動している。従って、空調中のB2C2モードの冷凍サイクル装置10では、B1C2モードと同様に、チラー20にて低圧冷媒が回収した強電系機器50の廃熱を熱源として、高温側回路41を流通する熱媒体が加熱される。さらに、加熱された熱媒体を熱源として、送風空気が加熱される。
【0279】
さらに、B2C2モードにおいても、B2C1モードと同様に、均温OFFモードを実行してもよい。
【0280】
(空調中のB2C3モード)
B2C3モードは、(B2)バッテリ均温モードと(C3)強電系機器冷却モードとを実行する運転モードである。
【0281】
B2C3モードでは、制御装置60が、冷凍サイクル装置10の冷却用膨張弁14cを全閉状態とする。このため、B2C3モードの冷凍サイクル装置10では、冷媒がチラー20へ流入することはない。
【0282】
また、制御装置60は、B2C1モードと同様に、三方弁44、第1低温側ポンプ421aおよび第2低温側ポンプ421bの作動を制御する。また、制御装置60は、五方弁422の作動を制御して、バッテリ51の冷却水通路51aの出口側と熱媒体バイパス通路424の入口側とを接続すると同時に、強電系機器50の冷却水通路52a~54aの出口側と低温側ラジエータ423の熱媒体入口側とを接続する回路に切り替える。
【0283】
このため、B2C3モードの熱媒体回路40では、
図10の矢印で示すように熱媒体が流れる。具体的には、B2C3モードの高温側回路41では、高温側ポンプ411から圧送された熱媒体が、B2C1モードと同様に循環する。また、B2C3モードの接続通路43では、B2C1モードと同様に、熱媒体は流通しない。
【0284】
また、B2C3モードの低温側回路42では、第1低温側ポンプ421aから圧送された熱媒体が、バッテリ51の冷却水通路51a、五方弁422、熱媒体バイパス通路424、第1低温側ポンプ421aの吸入口の順に循環する。第2低温側ポンプ421bから圧送された熱媒体が、強電系機器50の冷却水通路52a~54a、五方弁422、低温側ラジエータ423、第2低温側ポンプ421bの吸入口の順に循環する。
【0285】
従って、B2C3モードの低温側回路42では、B2C1モードと同様に、バッテリ51を形成する各電池セルの均温化が行われる。また、B2C3モードの低温側回路42では、B1C3モードと同様に、低温側ラジエータ423にて、強電系機器50の廃熱を外気に放熱することによって、強電系機器50の冷却が行われる。
【0286】
さらに、B2C3モードにおいても、B2C1モードと同様に、均温OFFモードを実行してもよい。
【0287】
(空調中のB3C3モード)
B3C3モードは、(B3)バッテリ冷却モードと(C3)強電系機器冷却モードとを実行する運転モードである。
【0288】
空調中のB3C3モードでは、制御装置60が、B1C2モードと同様に、冷凍サイクル装置10の冷却用膨張弁14cを絞り状態とする。さらに、空調用の運転モードが、(A4)暖房モードになっている際には、制御装置60は、除湿用開閉弁15aを開き、暖房用開閉弁15bを開く。
【0289】
このため、B3C3モードの冷凍サイクル装置10では、冷却用膨張弁14cで減圧された低圧冷媒がチラー20の冷媒通路20aへ流入する。チラー20の冷媒通路20aから流出した冷媒は、第6冷媒継手部13f、第4冷媒継手部13dを介して、アキュムレータ21へ流入する。
【0290】
さらに、空調用の運転モードが、(A4)暖房モードになっている際には、B1C2モードと同様に、室外熱交換器16とチラー20が冷媒流れに対して並列的に接続されるサイクルが構成される。
【0291】
また、制御装置60は、三方弁44の作動を制御して、内部に流入した熱媒体の全流量をヒータコア413側へ流出させる。また、制御装置60は、予め定めた圧送能力を発揮するように第1低温側ポンプ421aおよび第2低温側ポンプ421bを作動させる。
【0292】
また、制御装置60は、五方弁422の作動を制御して、バッテリ51の冷却水通路51aの出口側とチラー20の熱媒体通路20bの入口側とを接続すると同時に、強電系機器50の冷却水通路52a~54aの出口側と低温側ラジエータ423の熱媒体入口側とを接続する回路に切り替える。
【0293】
このため、B3C3モードの熱媒体回路40では、
図11の矢印で示すように熱媒体が流れる。具体的には、B3C3モードの高温側回路41では、高温側ポンプ411から圧送された熱媒体が、B2C1モードと同様に循環する。また、B3C3モードの接続通路43では、B2C1モードと同様に、熱媒体は流通しない。
【0294】
また、B3C3モードの低温側回路42では、第1低温側ポンプ421aから圧送された熱媒体が、バッテリ51の冷却水通路51a、五方弁422、チラー20の熱媒体通路20b、第1低温側ポンプ421aの吸入口の順に循環する。第2低温側ポンプ421bから圧送された熱媒体が、強電系機器50の冷却水通路52a~54a、五方弁422、低温側ラジエータ423、第2低温側ポンプ421bの吸入口の順に循環する。
【0295】
さらに、制御装置60は、その他の制御対象機器の作動を適宜制御する。例えば、制御装置60は、第1低温側熱媒体温度TWL1が、バッテリ用目標温度TWLO1に近づくように、冷却用膨張弁14cの絞り開度を制御する。換言すると、制御装置60は、バッテリ51の冷却水通路51aへ流入する熱媒体の温度が、バッテリ用目標温度TWLO1に近づくように、冷却用膨張弁14cの絞り開度を制御する。バッテリ用目標温度TWLO1は、バッテリ51を適切に作動させることができるように設定されている。
【0296】
従って、B3C3モードの低温側回路42では、第1低温側ポンプ421aから圧送された熱媒体が、バッテリ51の冷却水通路51aへ流入する。バッテリ51の冷却水通路51aを流通する熱媒体は、バッテリ51の廃熱を吸熱する。これにより、バッテリ51が冷却される。
【0297】
バッテリ51の冷却水通路51aから流出した熱媒体は、五方弁422を介して、チラー20の熱媒体通路20bへ流入する。チラー20へ流入した熱媒体は、冷却用膨張弁14cにて減圧された低圧冷媒と熱交換して冷却される。これにより、バッテリ51の冷却水通路51aへ流入する熱媒体の温度が、バッテリ用目標温度TWLO1に近づく。
【0298】
チラー20の熱媒体通路20bから流出した熱媒体は、第3熱媒体継手部45cおよび第4熱媒体継手部45dを介して、第1低温側ポンプ421aへ吸入される。
【0299】
一方、チラー20へ流入した低圧冷媒は、熱媒体の有する熱を吸熱して蒸発する。換言すると、チラー20へ流入した低圧冷媒は、バッテリ51の廃熱を回収する。
【0300】
また、空調中のB3C3モードでは、冷凍サイクル装置10の圧縮機11が作動している。従って、空調中のB3C3モードの冷凍サイクル装置10では、圧縮機11が、チラー20にてバッテリ51の廃熱を回収した冷媒を圧縮して、水冷媒熱交換器12の冷媒通路12a側へ吐出する。
【0301】
水冷媒熱交換器12では、チラー20にて低圧冷媒が回収したバッテリ51の廃熱の少なくとも一部が、高温側回路41を流通する熱媒体に放熱される。これにより、高温側回路41を流通する熱媒体が加熱される。さらに、加熱された熱媒体を熱源として、送風空気が加熱される。
【0302】
また、B3C3モードの低温側回路42では、B1C3モードと同様に、低温側ラジエータ423にて、強電系機器50の廃熱を外気に放熱することによって、強電系機器50の冷却が行われる。
【0303】
次に、バッテリ51の充電時のように、車室内空調が行われていない場合、すなわち非空調中の温度調整用の運転モードについて説明する。
【0304】
車室内空調が行われていない場合には、冷凍サイクル装置10の圧縮機11、室内空調ユニット30の室内送風機32、熱媒体回路40の高温側回路41の高温側ポンプ411等を停止させることができる。そこで、非空調中の温度調整用の運転モードでは、不必要なエネルギ消費を抑制するために、必要に応じて冷凍サイクル装置10の圧縮機11等を作動させる。
【0305】
(非空調中のB1C1モード)
B1C1モードでは、バッテリ51の暖機のために、高温側回路41を流通する熱媒体を加熱する必要がある。
【0306】
そこで、非空調中のB1C1モードでは、制御装置60が、暖房用膨張弁14aを絞り状態とし、冷房用膨張弁14bを全閉状態とし、冷凍サイクル装置10の冷却用膨張弁14cを全閉状態とする。また、制御装置60は、除湿用開閉弁15aを閉じ、暖房用開閉弁15bを開く。
【0307】
このため、非空調中のB1C1モードの冷凍サイクル装置10では、(A4)暖房モードと同様の順で冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。
【0308】
さらに、制御装置60は、その他の制御対象機器の作動を適宜制御する。例えば、制御装置60は、圧縮機11の回転数については、予め定めた吐出能力を発揮するように制御する。また、制御装置60は、高温側ポンプ411については、予め定めた圧送能力を発揮するように制御する。その他の作動は、空調中のB1C1モードと同様である。
【0309】
従って、非空調中のB1C1モードの冷凍サイクル装置10では、(A4)暖房モードと同様に、室外熱交換器16にて外気から吸熱した熱を熱源として、水冷媒熱交換器12にて高温側回路41を流通する熱媒体を加熱することができる。
【0310】
また、非空調中のB1C1モードの室内空調ユニット30では、室内送風機32が停止しているので、ヒータコア413にて、熱媒体と送風空気が熱交換することはない。従って、加熱された送風空気が車室内へ吹き出されてしまうことはない。
【0311】
また、B1C1モードの熱媒体回路40では、
図7の矢印で示すように熱媒体が流れる。従って、非空調中のB1C1モードでは、空調中のB1C1モードと同様に、バッテリ51の暖機、強電系機器50の暖機、および熱媒体の加熱が行われる。
【0312】
(非空調中のB1C2モード)
B1C2モードでは、バッテリ51の暖機のために、高温側回路41を流通する熱媒体を加熱する必要がある。さらに、B1C2モードでは、チラー20にて低圧冷媒に強電系機器50の廃熱を吸熱させる必要があるものとする。もちろん、空調中と同様に、バッテリ51の暖機のために強電系機器50の廃熱を回収する要求がない場合は、B1C1モードと同様の運転を行えばよい。
【0313】
そこで、非空調中のB1C2モードでは、制御装置60が、暖房用膨張弁14aを絞り状態とし、冷房用膨張弁14bを全閉状態とし、冷凍サイクル装置10の冷却用膨張弁14cを絞り状態とする。また、制御装置60は、除湿用開閉弁15aを開き、暖房用開閉弁15bを開く。
【0314】
このため、非空調中のB1C2モードの冷凍サイクル装置10では、空調用の運転モードが(A4)暖房モードになっている際の空調中のB1C2モードと同様に、室外熱交換器16とチラー20が冷媒流れに対して並列的に接続されるサイクルが構成される。
【0315】
さらに、制御装置60は、その他の制御対象機器の作動を適宜制御する。例えば、制御装置60は、圧縮機11の回転数については、予め定めた吐出能力を発揮するように制御する。また、制御装置60は、高温側ポンプ411については、予め定めた圧送能力を発揮するように制御する。その他の作動は、空調中のB1C2モードと同様である。
【0316】
従って、非空調中のB1C2モード冷凍サイクル装置10では、水冷媒熱交換器12を凝縮器として機能させ、室外熱交換器16およびチラー20を蒸発器として機能させる蒸気圧縮式の冷凍サイクルが構成される。このため、チラー20にて低圧冷媒が回収した強電系機器50の廃熱と室外熱交換器16にて冷媒が外気から吸熱した熱とを熱源として、水冷媒熱交換器12にて高温側回路41を流通する熱媒体を加熱することができる。
【0317】
また、非空調中のB1C1モードの室内空調ユニット30では、室内送風機32が停止しているので、ヒータコア413にて、熱媒体と送風空気が熱交換することはない。従って、加熱された送風空気が車室内へ吹き出されてしまうことはない。
【0318】
また、B1C2モードの熱媒体回路40では、
図7の矢印で示すように熱媒体が流れる。従って、非空調中の熱媒体回路40では、空調中のB1C2モードと同様に、バッテリ51の暖機、および強電系機器50の廃熱の回収が行われる。
【0319】
ここで、非空調用のB1C2モードの冷凍サイクル装置10では、チラー20にて低圧冷媒が回収した強電系機器50の廃熱、および室外熱交換器16にて冷媒が外気から吸熱した熱の双方を熱源として、高温側回路41を流通する熱媒体を加熱することができる。これに対して、強電系機器50の廃熱のみを熱源とすることで、バッテリ51を充分に暖機できる場合は、暖房用膨張弁14aを全閉状態としてもよい。
【0320】
(非空調中のB1C3モード)
B1C3モードでは、バッテリ51の暖機のために、高温側回路41を流通する熱媒体を加熱する必要がある。
【0321】
そこで、非空調中のB1C3モードでは、制御装置60が、非空調中のB1C1モードと同様に、暖房用膨張弁14aを絞り状態とし、冷房用膨張弁14bを全閉状態とし、冷凍サイクル装置10の冷却用膨張弁14cを全閉状態とする。また、制御装置60は、除湿用開閉弁15aを閉じ、暖房用開閉弁15bを開く。
【0322】
このため、非空調中のB1C3モードの冷凍サイクル装置10では、(A4)暖房モードと同様の順で冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。
【0323】
さらに、制御装置60は、その他の制御対象機器の作動を適宜制御する。例えば、制御装置60は、圧縮機11の回転数については、予め定めた吐出能力を発揮するように制御する。また、制御装置60は、高温側ポンプ411については、予め定めた圧送能力を発揮するように制御する。その他の作動は、空調中のB1C3モードと同様である。
【0324】
従って、非空調中のB1C3モードの冷凍サイクル装置10では、(A4)暖房モードと同様に、室外熱交換器16にて外気から吸熱した熱を熱源として、水冷媒熱交換器12にて高温側回路41を流通する熱媒体を加熱することができる。
【0325】
また、非空調中のB1C3モードの室内空調ユニット30では、室内送風機32が停止しているので、ヒータコア413にて、熱媒体と送風空気が熱交換することはない。従って、加熱された送風空気が車室内へ吹き出されてしまうことはない。
【0326】
また、B1C3モードの熱媒体回路40では、
図8の矢印で示すように熱媒体が流れる。従って、非空調中のB1C3モードでは、空調中のB1C3モードと同様に、バッテリ51の暖機、および強電系機器50の冷却が行われる。
【0327】
(非空調中のB2C1モード)
非空調中のB2C1モードでは、高温側回路41を流通する熱媒体を加熱する必要や、チラー20にて低圧冷媒に強電系機器50の廃熱を吸熱させる必要がない。このため、非空調中のB2C1モードでは、制御装置60が、冷凍サイクル装置10の圧縮機11や、室内空調ユニット30の室内送風機32等を停止させる。その他の作動は、空調中のB2C1モードと同様である。
【0328】
このため、B2C1モードの熱媒体回路40では、
図9の矢印で示すように熱媒体が流れる。従って、非空調中のB2C1モードでは、空調中のB2C1モードと同様に、バッテリ51を形成する各電池セルの均温化、強電系機器50の暖機、および熱媒体の加熱が行われる。
【0329】
ここで、
図9では、高温側ポンプ411から圧送された熱媒体が高温側回路41を循環する例を図示しているが、非空調中のB2C1モードでは、高温側ポンプ411を停止させてもよい。さらに、非空調中のB2C1モードにおいても、均温OFFモードを実行してもよい。
【0330】
(非空調中のB2C2モード)
B2C2モードでは、チラー20にて、低圧冷媒に強電系機器50の廃熱を吸熱させる必要があるものとする。もちろん、空調中と同様に、バッテリ51の暖機のために強電系機器50の廃熱を回収する要求がない場合は、B2C1モードと同様の運転を行えばよい。
【0331】
そこで、非空調中のB2C2モードでは、制御装置60が、暖房用膨張弁14aを全開状態とし、冷房用膨張弁14bを全閉状態とし、冷凍サイクル装置10の冷却用膨張弁14cを絞り状態とする。また、制御装置60は、除湿用開閉弁15aを閉じ、暖房用開閉弁15bを閉じる。
【0332】
このため、非空調中のB2C2モードの冷凍サイクル装置10では、圧縮機11から吐出された冷媒が、水冷媒熱交換器12、全開となっている暖房用膨張弁14a、室外熱交換器16、逆止弁17、冷却用膨張弁14c、チラー20、アキュムレータ21、圧縮機11の吸入口の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。
【0333】
さらに、制御装置60は、その他の制御対象機器の作動を適宜制御する。例えば、制御装置60は、圧縮機11の回転数については、予め定めた吐出能力を発揮するように制御する。また、制御装置60は、高温側ポンプ411については、非空調中のB1C1モードと同様に制御する。その他の作動は、空調中のB2C2モードと同様である。
【0334】
従って、非空調中のB2C2モードの冷凍サイクル装置10では、室外熱交換器16を凝縮器として機能させ、チラー20を蒸発器として機能させる蒸気圧縮式の冷凍サイクルが構成される。その結果、チラー20にて低圧冷媒が回収した強電系機器50の廃熱を、外気に放熱させることができる。
【0335】
さらに、高温側回路41を流通する熱媒体の温度が高圧冷媒よりも低くなっている際には、水冷媒熱交換器12を凝縮器として機能させることができる。この場合は、水冷媒熱交換器12にて、強電系機器50の廃熱を熱媒体へ放熱させることができる。
【0336】
また、非空調中のB2C2モードの室内空調ユニット30では、室内送風機32が停止しているので、ヒータコア413にて、熱媒体と送風空気が熱交換することはない。従って、加熱された送風空気が車室内へ吹き出されてしまうことはない。
【0337】
また、B2C2モードの熱媒体回路40では、
図9の矢印で示すように熱媒体が流れる。従って、非空調中のB2C2モードでは、空調中のB2C2モードと同様に、バッテリ51を形成する各電池セルの均温化、および強電系機器50の廃熱の回収が行われる。
【0338】
ここで、
図9では、高温側ポンプ411から圧送された熱媒体が高温側回路41を循環する例を図示しているが、非空調用のB2C2モードでは、高温側ポンプ411を停止させてもよい。さらに、非空調中のB2C2モードにおいても、均温OFFモードを実行してもよい。
【0339】
(非空調中のB2C3モード)
非空調中のB2C3モードでは、高温側回路41を流通する熱媒体を加熱する必要や、チラー20にて低圧冷媒に強電系機器50の廃熱を吸熱させる必要がない。このため、非空調中のB2C3モードでは、制御装置60が、冷凍サイクル装置10の圧縮機11や、室内空調ユニット30の室内送風機32等を停止させる。その他の作動は、空調中のB2C3モードと同様である。
【0340】
このため、B2C3モードの熱媒体回路40では、
図10の矢印で示すように熱媒体が流れる。従って、非空調中のB2C3モードでは、空調中のB2C3モードと同様に、バッテリ51を形成する各電池セルの均温化、強電系機器50の冷却が行われる。
【0341】
ここで、
図10では、高温側ポンプ411から圧送された熱媒体が高温側回路41を循環する例を図示しているが、非空調中のB2C3モードでは、高温側ポンプ411を停止させてもよい。さらに、非空調中のB2C3モードにおいても、均温OFFモードを実行してもよい。
【0342】
(非空調中のB3C3モード)
B3C3モードでは、チラー20にて、低圧冷媒にバッテリ51の廃熱を吸熱させる必要がある。
【0343】
そこで、非空調中のB3C3モードでは、制御装置60が、非空調中のB2C2モードと同様に、暖房用膨張弁14aを全開状態とし、冷房用膨張弁14bを全閉状態とし、冷凍サイクル装置10の冷却用膨張弁14cを絞り状態とする。また、制御装置60は、除湿用開閉弁15aを閉じ、暖房用開閉弁15bを閉じる。
【0344】
このため、非空調中のB3C3モードでは、非空調中のB2C2モードと同様の順で冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。
【0345】
さらに、制御装置60は、その他の制御対象機器の作動を適宜制御する。例えば、制御装置60は、圧縮機11の回転数については、予め定めた吐出能力を発揮するように制御する。また、制御装置60は、高温側ポンプ411については、予め定めた圧送能力を発揮するように制御する。その他の作動は、空調中のB3C3モードと同様である。
【0346】
従って、非空調中のB3C3モードの冷凍サイクル装置10では、室外熱交換器16を凝縮器として機能させ、チラー20を蒸発器として機能させる蒸気圧縮式の冷凍サイクルが構成される。その結果、チラー20にて低圧冷媒が回収したバッテリ51の廃熱を、外気に放熱させることができる。
【0347】
さらに、高温側回路41を流通する熱媒体の温度が高圧冷媒よりも低くなっている際には、水冷媒熱交換器12を凝縮器として機能させることができる。この場合は、水冷媒熱交換器12にて、バッテリ51の廃熱を熱媒体へ放熱させることができる。
【0348】
また、非空調中のB3C3モードの室内空調ユニット30では、室内送風機32が停止しているので、ヒータコア413にて、熱媒体と送風空気が熱交換することはない。従って、加熱された送風空気が車室内へ吹き出されてしまうことはない。
【0349】
また、B3C3モードの熱媒体回路40では、
図11の矢印で示すように熱媒体が流れる。従って、非空調中のB3C3モードでは、空調中のB3C3モードと同様に、バッテリ51の冷却、および強電系機器50の冷却が行われる。
【0350】
ここで、
図11では、高温側ポンプ411から圧送された熱媒体が高温側回路41を循環する例を図示しているが、非空調中のB3C3モードでは、高温側ポンプ411を停止させてもよい。
【0351】
上述した非空調中のB3C3モードでは、バッテリ温度TBが第4基準バッテリ温度KTB4以上の比較的高温になった際に、バッテリ51を冷却する運転モードである。従って、非空調中のB3C3モードは、バッテリ51の発熱量が多くなる充電時等に実行してもよい。
【0352】
ところが、バッテリ51を通常充電時よりも短時間で充電する急速充電時には、通常充電時よりもバッテリ51の発熱量が多くなる。そのため、急速充電時には、熱管理システム1がB3B3モードに切り替えても、バッテリ51の冷却が不充分になってしまう可能性がある。
【0353】
このため、本実施形態で熱管理システム1では、B3B3モードよりも高い冷却能力でバッテリ51を冷却する(D)急速充電冷却モードを実行することができる。(D)急速充電冷却モードは、バッテリ51の急速充電が開始された際に実行される。以下に(D)急速充電冷却モードの詳細作動を説明する。
【0354】
(D)急速充電冷却モード
急速充電冷却モードでは、制御装置60が、非空調中のB3C3モードと同様に、暖房用膨張弁14aを全開状態とし、冷房用膨張弁14bを全閉状態とし、冷凍サイクル装置10の冷却用膨張弁14cを絞り状態とする。また、制御装置60は、除湿用開閉弁15aを閉じ、暖房用開閉弁15bを閉じる。
【0355】
このため、急速充電冷却モードでは、非空調中のB3C3モードと同様の順で冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。
【0356】
さらに、制御装置60は、その他の制御対象機器の作動を適宜制御する。例えば、制御装置60は、圧縮機11の回転数については、予め定めた吐出能力を発揮するように制御する。
【0357】
また、制御装置60は、五方弁422の作動を制御して、バッテリ51の冷却水通路51aの出口側とチラー20の熱媒体通路20bの入口側とを接続すると同時に、バッテリ51の冷却水通路51aの出口側と低温側ラジエータ423の熱媒体入口側とを接続する回路に切り替える。
【0358】
このため、急速充電冷却モードの熱媒体回路40の低温側回路42では、
図12の矢印で示すように熱媒体が流れる。
【0359】
具体的には、急速充電冷却モードの低温側回路42では、第1低温側ポンプ421aから圧送された熱媒体が、バッテリ51の冷却水通路51a、五方弁422、チラー20の熱媒体通路20b、第1低温側ポンプ421aの吸入口の順に循環する。同時に、第1低温側ポンプ421aから圧送された熱媒体が、バッテリ51の冷却水通路51a、五方弁422、低温側ラジエータ423、第1低温側ポンプ421aの吸入口の順に循環する。その他の作動は、空調中のB3C3モードと同様である。
【0360】
従って、急速充電冷却モードの冷凍サイクル装置10では、室外熱交換器16を凝縮器として機能させ、チラー20を蒸発器として機能させる蒸気圧縮式の冷凍サイクルが構成される。このため、チラー20にて低圧冷媒が回収したバッテリ51の廃熱を、外気に放熱させることができる。
【0361】
また、急速充電冷却モードの室内空調ユニット30では、室内送風機32が停止しているので、ヒータコア413にて、熱媒体と送風空気が熱交換することはない。従って、加熱された送風空気が車室内へ吹き出されてしまうことはない。
【0362】
また、急速充電冷却モードの低温側回路42では、第1低温側ポンプ421aから圧送された熱媒体が、バッテリ51の冷却水通路51aへ流入する。バッテリ51の冷却水通路51aを流通する熱媒体は、バッテリ51の廃熱を吸熱する。これにより、バッテリ51が冷却される。
【0363】
強電系機器50の冷却水通路52a~54aから流出した熱媒体の流れは、五方弁422にて分岐される。五方弁422にて分岐された一方の熱媒体は、チラー20の熱媒体通路20bへ流入する。チラー20の熱媒体通路20bへ流入した熱媒体は、低圧冷媒と熱交換して冷却される。チラー20の熱媒体通路20bから流出した熱媒体は、第3熱媒体継手部45cの1つの流入出口へ流入する。
【0364】
一方、チラー20へ流入した低圧冷媒は、熱媒体の有する熱を吸熱して蒸発する。換言すると、低圧冷媒は、バッテリ51の廃熱を回収する。
【0365】
五方弁422にて分岐された他方の熱媒体は、低温側ラジエータ423へ流入する。低温側ラジエータ423へ流入した熱媒体は、外気に放熱して冷却される。低温側ラジエータ423から流出した熱媒体は、第3熱媒体継手部45cの別の流入出口へ流入する。
【0366】
第3熱媒体継手部45cでは、チラー20の熱媒体通路20bから流出した熱媒体の流れと低温側ラジエータ423から流出した熱媒体の流れが合流する。第3熱媒体継手部45cにて合流した熱媒体は、第4熱媒体継手部45dおよび第6熱媒体継手部45fを介して、第1低温側ポンプ421aへ吸入される。
【0367】
従って、急速充電冷却モードでは、バッテリ51の廃熱をチラー20にて低圧冷媒に吸熱させるだけでなく、低温側ラジエータ423にて外気に放熱させることができる。これにより、急速充電冷却モードでは、B3C3モードよりもバッテリ51の冷却能力を向上させることができる。
【0368】
その結果、急速充電冷却モードでは、通常充電時よりもバッテリ51の発熱量が増加する急速充通時であっても、バッテリ51の温度を適正な温度帯に冷却することができる。
【0369】
以上の如く、本実施形態の熱管理システム1によれば、車室内の快適な空調および複数の車載機器の適切な温度調整を行うことができる。
【0370】
ここで、本実施形態の熱管理システム1では、第1温度調整対象物であるバッテリ51の適正な温度帯と、第2温度調整対象物である強電系機器50の適正な温度帯が異なっている。このため、本実施形態の熱管理システム1では、バッテリ51を暖機しながら、強電系機器50を冷却しなければならない運転条件も存在する。
【0371】
これに対して、本実施形態の熱管理システム1では、熱移動部である接続通路43を有している。従って、B1C2モード等で説明したように、水冷媒熱交換器12にて加熱された熱媒体の有する熱を、バッテリ51の冷却水通路51aへ流入する熱媒体へ移動させることができる。従って、バッテリ51を加熱して暖機することができる。
【0372】
さらに、接続通路43に熱媒体を流通させて熱を移動させている際に、五方弁422が、バッテリ51の冷却水通路51aと熱媒体バイパス通路424との間で熱媒体を循環させると同時に、強電系機器50の冷却水通路50aとチラー20の熱媒体通路20bとの間で熱媒体を循環させる回路構成に切り替える。
【0373】
従って、バッテリ51の冷却水通路51aと熱媒体バイパス通路424との間を循環する熱媒体の温度の影響を受けることなく、強電系機器50の冷却水通路50aとチラー20の熱媒体通路20bとの間で熱媒体を循環させることができる。
【0374】
このため、チラー20にて強電系機器50の冷却水通路50aから流出した熱媒体と冷却用膨張弁14cにて減圧された低圧冷媒とを熱交換させることによって、低圧冷媒に強電系機器50の廃熱を吸熱させることができる。そして、強電系機器50の冷却水通路50aへ流入する熱媒体を冷却することができる。
【0375】
さらに、冷凍サイクル装置10では、チラー20にて低圧冷媒が回収した廃熱を熱源として、水冷媒熱交換器12にて高温側回路41を流通する熱媒体を加熱することができる。その結果、B1C2モードで説明したように、高温側回路41を流通する熱媒体を熱源として、バッテリ51を暖機することができる。
【0376】
つまり、本実施形態の熱管理システム1によれば、バッテリ51を暖機しながら、強電系機器50の廃熱を回収して高温側回路41を流通する熱媒体の加熱源として利用することができる。すなわち、本実施形態の熱管理システム1によれば、第1温度調整対象物の適正な温度帯と第2温度調整対象物の適正な温度帯が異なっていても、温度調整対象物の発生させた熱を充分に有効利用することができる。
【0377】
また、本実施形態の熱管理システム1の高温側回路41は、高温側回路41を流通する熱媒体と加熱対象流体である送風空気とを熱交換させる加熱用熱交換部であるヒータコア413を有している。従って、空調中のB1C2モード等で説明したように、強電系機器50の廃熱を回収して、送風空気の加熱源として充分に有効利用することができる。
【0378】
また、本実施形態の熱管理システム1では、熱移動部として接続通路43を採用している。そして、接続通路43の入口側接続通路431が、水冷媒熱交換器12から流出した熱媒体を、バッテリ51の冷却水通路51aの入口側へ導くように接続されている。これによれば、高温側回路41を流通する熱媒体を有する熱を、バッテリ51を暖機するために利用することができる。
【0379】
さらに、入口側接続通路431は、水冷媒熱交換器12から流出した熱媒体を、熱媒体をバッテリ51の冷却水通路51aへ圧送する第1低温側ポンプ421aの吸入口側へ導いている。これによれば、水冷媒熱交換器12から流出した熱媒体を、確実に、バッテリ51の冷却水通路51aへ供給することができる。すなわち、高温側回路41を流通する熱媒体を有する熱を、確実に、バッテリ51を暖機するために利用することができる。
【0380】
また、接続通路43の出口側接続通路432が、バッテリ51の冷却水通路51aから流出した熱媒体を、高温側ポンプ411の吸入口側へ導くように接続されている。さらに、ヒータコア413が、三方弁44と第1熱媒体継手部45aとの間に配置されている。つまり、三方弁44から接続通路43へ流入した熱媒体は、ヒータコア413を迂回して高温側ポンプ411の吸入口側へ導かれる。
【0381】
これによれば、接続通路43に熱媒体を流通させても、ヒータコア413へ流入する熱媒体の温度に影響を与えにくい。従って、バッテリ51の暖機を行っても、車室内の空調に影響を与えにくい。
【0382】
また、本実施形態の熱管理システム1では、五方弁422が、バッテリ51の冷却水通路51aと熱媒体バイパス通路424との間で熱媒体を循環させる回路構成に切り替えている際に、熱移動量制御部60cが、第1低温側熱媒体温度TWL1が暖機用目標温度TWLW1に近づくように、三方弁44の作動を制御する。
【0383】
これによれば、入口側接続通路431を流通した熱媒体と熱媒体バイパス通路424を流通した熱媒体と混合させて、バッテリ51の冷却水通路51aへ流入させることができる。従って、バッテリ51の冷却水通路51aへ流入する熱媒体の温度の急変動を抑制して、より一層効果的に、バッテリ51の劣化の進行を抑制することができる。
【0384】
また、本実施形態の熱管理システム1の高温側回路41は、加熱部としての電気ヒータ412を有している。これによれば、冷凍サイクル装置10の熱媒体の加熱能力が不足しても、高温側回路41を流通する熱媒体の温度を上昇させて、バッテリ51の暖機や送風空気の加熱を行うことができる。
【0385】
また、本実施形態の熱管理システム1の五方弁422は、バッテリ51の冷却水通路51aから流出した熱媒体を、熱媒体バイパス通路424およびチラー20の熱媒体通路20bの少なくとも一方へ流入させることができる。従って、バッテリ51の冷却水通路51aから流出した熱媒体を、冷却する回路構成と冷却しない回路構成を切り替えることができる。
【0386】
また、本実施形態の熱管理システム1の五方弁422は、強電系機器50の冷却水通路50aから流出した熱媒体を、低温側ラジエータ423およびチラー20の熱媒体通路20bの少なくとも一方へ流入させることができる。従って、強電系機器50の冷却水通路50aから流出した熱媒体を、低圧冷媒と熱交換させて冷却する回路構成と外気と熱交換させて冷却する回路構成とを切り替えることができる。
【0387】
また、本実施形態の熱管理システム1の五方弁422は、チラー20の熱媒体通路20bへ流入させる熱媒体を、バッテリ51の冷却水通路51aから流出した熱媒体および強電系機器50の冷却水通路50aから流出した熱媒体のいずれか一方に切り替えることができる。
【0388】
これによれば、バッテリ51の冷却水通路51aから流出した熱媒体および強電系機器50の冷却水通路50aから流出した熱媒体を、共通するチラー20にて冷却することができる。
【0389】
また、本実施形態の熱管理システム1の五方弁422は、バッテリ51の冷却水通路51aから流出した熱媒体を、低温側ラジエータ423およびチラー20の熱媒体通路20bの双方へ流入させることができる。これによれば、急速充電冷却モードのように、バッテリ51の廃熱をチラー20にて低圧冷媒に吸熱させるとともに、低温側ラジエータ423にて外気に放熱させる回路構成に切り替えることができる。従って、バッテリ51を効果的に冷却することができる。
【0390】
(第2実施形態)
本実施形態では、第1実施形態で説明した熱管理システム1に対して、
図13の全体構成図に示すように、熱媒体回路40の低温側回路42に、電池側ラジエータ423aおよび三方切替弁425を追加した例を説明する。
【0391】
電池側ラジエータ423aは、外気と五方弁422のバイパス通路側流出口422dから流出した熱媒体とを熱交換させる電池側外気熱交換部である。電池側ラジエータ423aの基本的構成は、低温側ラジエータ423と同様である。電池側ラジエータ423aの出口は、第7熱媒体継手部45gを介して、熱媒体バイパス通路424の出口側に接続されている。
【0392】
三方切替弁425は、五方弁422のバイパス通路側流出口422dから流出した熱媒体を、熱媒体バイパス通路424側および電池側ラジエータ423a側のいずれか一方へ流出させる切替弁である。三方切替弁425は、低温側回路42の回路構成を切り替える低温側回路切替部である。三方切替弁425は、制御装置60から出力される制御信号によって、その作動が制御される。その他の熱管理システム1の構成は、第1実施形態と同様である。
【0393】
次に、上記構成の本実施形態の熱管理システム1の作動について説明する。本実施形態の熱管理システム1のバッテリ用の運転モードとしては、(B1)バッテリ加温モード、(B2)バッテリ均温モード、(B3)バッテリ冷却モードに加えて、(B4)バッテリ外気冷却モードを実行することができる。
【0394】
(B4)バッテリ外気冷却モードは、電池側ラジエータ423aにて冷却された熱媒体によってバッテリ51を冷却する運転モードである。
【0395】
また、本実施形態の温度調整用の制御プログラムでは、
図14の制御特性図に示す制御マップを参照して、温度調整用の運転モードを切り替える。
【0396】
具体的には、強電系機器用の運転モードが(C1)強電系機器蓄熱モードあるいは(C2)強電系機器廃熱回収モードになっている場合であって、バッテリ温度TBが上昇過程では、バッテリ温度TBが第4基準バッテリ温度KTB4以上になると、(B2)バッテリ均温モードから(B4)バッテリ外気冷却モードへ切り替える。
【0397】
一方、強電系機器用の運転モードが(C1)強電系機器蓄熱モードあるいは(C2)強電系機器廃熱回収モードになっている場合であって、バッテリ温度TBが下降過程では、バッテリ温度TBが第3基準バッテリ温度KTB3以下になると、(B4)バッテリ外気冷却モードから(B2)バッテリ均温モードへ切り替える。
【0398】
また、強電系機器用の運転モードが(C3)強電系機器冷却モードになっている場合であって、バッテリ温度TBが上昇過程では、バッテリ温度TBが第4基準バッテリ温度KTB4以上になると、(B2)バッテリ均温モードから(B3)バッテリ冷却モードへ切り替える。さらに、バッテリ温度TBが第6基準バッテリ温度KTB6以上になると、(B3)バッテリ冷却モードから(B4)バッテリ外気冷却モードへ切り替える。
【0399】
一方、強電系機器用の運転モードが(C3)強電系機器冷却モードになっている場合であって、バッテリ温度TBが下降過程では、バッテリ温度TBが第5基準バッテリ温度KTB5以下になると、(B4)バッテリ外気冷却モードから(B3)バッテリ冷却モードへ切り替える。さらに、バッテリ温度TBが第3基準バッテリ温度KTB3以下になると、(B3)バッテリ冷却モードから(B2)バッテリ均温モードへ切り替える。
【0400】
従って、本実施形態の熱管理システム1では、B4C1モード、B4C2モード、およびB4C3モードを実行することができる。以下に温度調整用の各運転モードの詳細作動を説明する。
【0401】
(B4C1モード)
B4C1モードは、(B4)バッテリ外気冷却モードと(C1)強電系機器蓄熱モードとを実行する運転モードである。
【0402】
B4C1モードでは、制御装置60が、冷凍サイクル装置10の冷却用膨張弁14cを全閉状態とする。このため、B4C1モードの冷凍サイクル装置10では、冷媒がチラー20へ流入することはない。従って、非空調中であれば、冷凍サイクル装置10の圧縮機11や、室内空調ユニット30の室内送風機32、高温側回路41の高温側ポンプ411等を停止させてもよい。
【0403】
また、制御装置60は、五方弁422の作動を制御して、バッテリ51の冷却水通路51aの出口側と熱媒体バイパス通路424の入口側とを接続すると同時に、強電系機器50の冷却水通路52a~54aの出口側とチラー20の熱媒体通路20bの入口側とを接続する回路に切り替える。
【0404】
また、制御装置60は、三方切替弁425の作動を制御して、五方弁422のバイパス通路側流出口422dから流出した熱媒体を、電池側ラジエータ423a側へ流出させる回路に切り替える。
【0405】
このため、B4C1モードの熱媒体回路40では、
図15の矢印で示すように熱媒体が流れる。
【0406】
具体的には、B4C1モードの低温側回路42では、第1低温側ポンプ421aから圧送された熱媒体が、バッテリ51の冷却水通路51a、五方弁422、電池側ラジエータ423a、第1低温側ポンプ421aの吸入口の順に循環する。第2低温側ポンプ421bから圧送された熱媒体が、強電系機器50の冷却水通路52a~54a、五方弁422、チラー20の熱媒体通路20b、第2低温側ポンプ421bの吸入口の順に循環する。
【0407】
さらに、制御装置60は、その他の制御対象機器の作動を適宜制御する。例えば、制御装置60は、予め定めた圧送能力を発揮するように第1低温側ポンプ421aおよび第2低温側ポンプ421bを作動させる。
【0408】
従って、B4C1モードの熱媒体回路40では、第1低温側ポンプ421aから圧送された熱媒体が、バッテリ51の冷却水通路51aを流通する際に、バッテリ51の廃熱を吸熱する。これにより、バッテリ51が冷却される。バッテリ51の冷却水通路51aから流出した熱媒体は、電池側ラジエータ423aを流通する際に、外気に放熱して冷却される。
【0409】
つまり、B4C1モードの熱媒体回路40では、電池側ラジエータ423aにて、バッテリ51の廃熱が外気に放熱されることによって、バッテリ51の冷却が行われる。
【0410】
さらに、B4C1モードの熱媒体回路40では、第1実施形態で説明したB1C1モード等と同様に、強電系機器50の暖機および熱媒体の加熱が行われる。
【0411】
ここで、
図15では、高温側ポンプ411から圧送された熱媒体が高温側回路41を循環する例を図示しているが、非空調中のB4C1モードでは、高温側ポンプ411を停止させてもよい。
【0412】
(空調中のB4C2モード)
B4C2モードは、(B4)バッテリ外気冷却モードと(C2)強電系機器廃熱回収モードとを実行する運転モードである。
【0413】
空調中のB4C1モードでは、制御装置60が、空調中のB2C2モードと同様に、冷凍サイクル装置10の冷却用膨張弁14cを絞り状態とする。
【0414】
また、制御装置60は、B4C1モードと同様に、五方弁422、三方切替弁425、第1低温側ポンプ421aおよび第2低温側ポンプ421bの作動を制御する。
【0415】
このため、B4C2モードの熱媒体回路40では、
図15の矢印で示すように、B4C1モードと同様に熱媒体が流れる。
【0416】
さらに、制御装置60は、空調中のB2C2モードと同様に、その他の制御対象機器の作動を制御する。
【0417】
従って、空調中のB4C2モードの熱媒体回路40では、B4C1モードと同様に、バッテリ51が冷却される。さらに、空調中のB2C2モードと同様に、強電系機器50が冷却される。
【0418】
(非空調中のB4C2モード)
非空調中のB4C2モードでは、チラー20にて低圧冷媒に強電系機器50の廃熱を吸熱させる必要がある。
【0419】
そこで、非空調中のB4C2モードでは、非空調中のB2C2モードと同様に、制御装置60が、暖房用膨張弁14aを全開状態とし、冷房用膨張弁14bを全閉状態とし、冷凍サイクル装置10の冷却用膨張弁14cを絞り状態とする。また、制御装置60は、除湿用開閉弁15aを閉じ、暖房用開閉弁15bを閉じる。
【0420】
このため、非空調中のB4C2モードの冷凍サイクル装置10では、非空調中のB2C2モードと同様に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。
【0421】
また、制御装置60は、B4C1モードと同様に、五方弁422、三方切替弁425、第1低温側ポンプ421aおよび第2低温側ポンプ421bの作動を制御する。
【0422】
このため、B4C2モードの熱媒体回路40では、
図15の矢印で示すように、B4C1モードと同様に熱媒体が流れる。
【0423】
さらに、制御装置60は、非空調中のB2C2モードと同様に、その他の制御対象機器の作動を制御する。
【0424】
従って、非空調中のB4C2モードの熱媒体回路40では、B4C1モードと同様に、バッテリ51が冷却される。さらに、空調中のB2C2モードと同様に、強電系機器50が冷却される。
【0425】
(B4C3モード)
B4C3モードは、(B4)バッテリ外気冷却モードと(C3)強電系機器冷却モードとを実行する運転モードである。
【0426】
B4C3モードでは、制御装置60が、冷凍サイクル装置10の冷却用膨張弁14cを全閉状態とする。このため、B4C3モードの冷凍サイクル装置10では、冷媒がチラー20へ流入することはない。従って、非空調中であれば、冷凍サイクル装置10の圧縮機11や、室内空調ユニット30の室内送風機32、高温側回路41の高温側ポンプ411等を停止させてもよい。
【0427】
また、制御装置60は、B4C1モードと同様に、五方弁422、三方切替弁425、第1低温側ポンプ421aおよび第2低温側ポンプ421bの作動を制御する。
【0428】
このため、B4C3モードの熱媒体回路40では、
図16の矢印で示すように、熱媒体が流れる。
【0429】
具体的には、B4C3モードの低温側回路42では、第1低温側ポンプ421aから圧送された熱媒体が、バッテリ51の冷却水通路51a、五方弁422、電池側ラジエータ423a、第1低温側ポンプ421aの吸入口の順に循環する。第2低温側ポンプ421bから圧送された熱媒体が、強電系機器50の冷却水通路52a~54a、五方弁422、低温側ラジエータ423、第2低温側ポンプ421bの吸入口の順に循環する。
【0430】
さらに、制御装置60は、B4C1モードと同様に、その他の制御対象機器の作動を制御する。
【0431】
従って、B4C3モードでは、B4C1モードと同様に、バッテリ51が冷却される。さらに、B3C3モードと同様に、強電系機器50が冷却される。
【0432】
その他の作動は、第1実施形態と同様である。以上の如く、本実施形態の熱管理システム1によれば、車室内の快適な空調および複数の車載機器の適切な温度調整を行うことができる。さらに、本実施形態の熱管理システム1においても、第1温度調整対象物の適正な温度帯と第2温度調整対象物の適正な温度帯が異なっていても、温度調整対象物の発生させた熱を充分に有効利用することができる。
【0433】
また、本実施形態の熱管理システム1では、B4C1モード、B4C2モード、およびB4C3モードを実行することができる。従って、第1実施形態に対して、より一層適切に、第1温度調整対象物であるバッテリ51の温度調整、および第2温度調整対象物である強電系機器50の温度調整を行うことができる。
【0434】
(第3実施形態)
本実施形態では、第1実施形態で説明した熱管理システム1に対して、
図17の全体構成図に示すように、高温側回路41側の第1熱媒体継手部45aに代えて、高温側リザーブタンク46aが採用されている。また、低温側回路42側の第5熱媒体継手部45eに代えて、低温側リザーブタンク46bが採用されている。
【0435】
高温側リザーブタンク46aおよび低温側リザーブタンク46bは、熱媒体回路40内で余剰となっている熱媒体を貯留する熱媒体貯留部である。
【0436】
より具体的には、高温側リザーブタンク46aの流入口には、ヒータコア413の熱媒体出口側、および接続通路43の出口側接続通路432の出口側が接続されている。また、高温側リザーブタンク46aの流出口には、高温側ポンプ411の吸入口側が接続されている。
【0437】
また、低温側リザーブタンク46bの流入口には、チラー20の熱媒体通路20bの出口側および低温側ラジエータ423の熱媒体出口側が接続されている。低温側リザーブタンク46bの流出口には、第2低温側ポンプ421bの吸入口側が接続されている。熱管理システム1のその他の構成および作動は、第1実施形態と同様である。
【0438】
従って、本実施形態の熱管理システム1においても、第1実施形態と同様の効果を得ることができる。すなわち、車室内の快適な空調および複数の車載機器の適切な温度調整を行うことができる。さらに、第1温度調整対象物の適正な温度帯と第2温度調整対象物の適正な温度帯が異なっていても、温度調整対象物の発生させた熱を充分に有効利用することができる。
【0439】
また、本実施形態の熱管理システム1では、高温側リザーブタンク46aおよび低温側リザーブタンク46bに熱媒体を貯留しておくことで、熱媒体回路40を循環する熱媒体の液量低下を抑制することができる。さらに、高温側リザーブタンク46aの流出口および低温側リザーブタンク46b流出口が、それぞれ高温側ポンプ411の吸入口側および第2低温側ポンプ421bの吸入口側に接続されている。
【0440】
従って、熱媒体回路40の回路構成を切り替えた際等に、熱媒体の液面が変動することを抑制し、高温側ポンプ411および第2低温側ポンプ421bに空気が噛みこんでしまうことを抑制することができる。その結果、高温側ポンプ411および第2低温側ポンプ421bの圧送能力の低下を抑制し、温度調整対象物の発生させた熱を、熱媒体を介して、より一層有効に利用することができる。
【0441】
(他の実施形態)
本発明は上述の実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。
【0442】
(1)上述した実施形態では、本発明に係る熱管理システム1を車両に適用した例を説明したが、熱管理システム1の適用はこれに限定されない。例えば、室内の空調を行いつつ、適切な温度帯の異なる複数の温度調整対象物(例えば、コンピュータシステム、電気機器)の温度を調整する温度調整機能付きの据え置き型の空調装置等に適用してもよい。
【0443】
また、上述した実施形態では、強電系機器50として、インバータ52、モータジェネレータ53、およびADAS用の制御装置54を採用した例を説明したが、これに限定されない。例えば、充電器、電力制御ユニット(いわゆる、PCU)であってもよい。
【0444】
(2)冷凍サイクル装置10の各構成は、上述した実施形態に開示された構成に限定されない。
【0445】
上述した効果を得ることのできる範囲で、複数のサイクル構成機器の一体化等を行ってもよい。例えば、第4冷媒継手部13dと第6冷媒継手部13fとを一体化させた四方継手構造の継手部を採用してもよい。このことは、熱媒体回路40においても同様である。例えば、第4熱媒体継手部45dと第6熱媒体継手部45fとを一体化させた四方継手構造の継手部を採用してもよい。
【0446】
また、上述の実施形態では、冷媒としてR1234yfを採用した例を説明したが、冷媒はこれに限定されない。例えば、R134a、R600a、R410A、R404A、R32、R407C、等を採用してもよい。または、これらの冷媒のうち複数種を混合させた混合冷媒等を採用してもよい。さらに、冷媒として二酸化炭素を採用して、高圧側冷媒圧力が冷媒の臨界圧力以上となる超臨界冷凍サイクルを構成してもよい。
【0447】
(3)熱媒体回路40の各構成は、上述した実施形態に開示された構成に限定されない。
【0448】
上述した実施形態では、複数の三方式の流量調整弁を組み合わせることによって形成された五方弁422を採用した例を説明したが、これに限定されない。
【0449】
例えば、内部に複数の空間を形成する第1ボデーおよび第2ボデー、第1ボデーと第2ボデーとの間に介在されるスライド弁、スライド弁を変位させる電動アクチュエータを備える五方弁であってもよい。
【0450】
より詳細には、第1ボデーおよび第2ボデーに形成された複数の空間は、いずれかの流入出口に連通している。スライド弁には、第1ボデー側の空間と第2ボデー側の空間とを連通させる穴部および第1ボデー側の空間同士あるいは第2ボデー側の空間同士を連通させる溝部が形成されている。そして、電動アクチュエータが変位させることによって、五方弁422と同様に低温側回路42の回路構成を切り替えることができればよい。
【0451】
また、五方弁422による回路構成の切替は完全な切替でなくてもよい。例えば、上述した(D)急速充電冷却モードにおいて、一部の熱媒体が、強電系機器50の冷却水通路50aや熱媒体バイパス通路424を流通しもよい。
【0452】
また、上述の実施形態では、熱移動部として接続通路43を採用した例を説明したが、これに限定されない。
【0453】
例えば、入口側接続通路431に代えて、三方弁44から流出した熱媒体とバッテリ51の冷却水通路51aへ流入する熱媒体とを熱交換させる入口側熱移動部を採用してもよい。さらに、出口側接続通路432に代えて、バッテリ51の冷却水通路51aから流出した熱媒体と水冷媒熱交換器12の熱媒体通路12bへ流入する熱媒体とを熱交換させる出口側熱移動部を採用してもよい。
【0454】
また、上述の実施形態では、加熱部である電気ヒータ412として、PTCヒータを採用した例を説明したが、これに限定されない。例えば、ニクロム線やカーボン繊維ヒータ等を採用してもよい。また、加熱部として、他の熱源で加熱された温水を流通させる温水パイプを採用してもよい。
【0455】
また、上述の第3実施形態では、第1熱媒体継手部45aに代えて、高温側リザーブタンク46aを配置した例、および第3熱媒体継手部45cに代えて、低温側リザーブタンク46bを配置した例を説明したが、これに限定されない。例えば、第5熱媒体継手部45eや第6熱媒体継手部45fに代えて、低温側リザーブタンク46bを配置してもよい。また、高温側リザーブタンク46aおよび低温側リザーブタンク46bの一方を採用してもよい。
【0456】
また、上述の実施形態では、熱媒体回路40の熱媒体として、エチレングリコール水溶液を採用した例を説明したが、これに限定されない。熱媒体として、ジメチルポリシロキサン、あるいはナノ流体等を含む溶液、不凍液、アルコール等を含む水系の液冷媒、オイル等を含む液媒体等を採用してもよい。
【0457】
(4)熱管理システム1の各運転モードの作動は、上述した実施形態に開示された作動に限定されない。
【0458】
例えば、非空調中のB1C1モードおよび非空調中のB1C3モードでは、冷凍サイクル装置10の圧縮機11を停止させて、電気ヒータ412によって高温側回路41を流通する熱媒体を加熱してもよい。
【0459】
また、バッテリ51の充電時であっても、乗員が車室内に登場している場合は、空調中の温度調整用の運転モードを実行してもよい。
【0460】
(5)上述の各実施形態で開示された技術手段は、実施可能な範囲で適宜組み合わせてもよい。例えば、第3実施形態で説明した高温側リザーブタンク46aおよび低温側リザーブタンク46bを第2実施形態の熱管理システム1に適用してもよい。
【符号の説明】
【0461】
10…冷凍サイクル装置、12…水冷媒熱交換器(高温側水冷媒熱交換部)、
20…チラー(低温側水冷媒熱交換器)、40…熱媒体回路、
41…高温側回路、42…低温側回路、43…接続通路(熱移動部)、
431…入口側接続通路、432…出口側接続通路、
44…三方弁(熱移動量調整部)、
422…五方弁(低温側回路切替部)、
424…熱媒体バイパス通路、
51…バッテリ(第1温度調整対象物)、51a…冷却水通路(第1熱交換部)、
50…強電系機器(第2温度調整対象物)、50a…冷却水通路(第2熱交換部)