(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-11-25
(45)【発行日】2024-12-03
(54)【発明の名称】電動ターボ式圧縮機
(51)【国際特許分類】
F04D 17/12 20060101AFI20241126BHJP
F04D 29/28 20060101ALI20241126BHJP
F04D 29/30 20060101ALI20241126BHJP
F04D 29/42 20060101ALI20241126BHJP
【FI】
F04D17/12
F04D29/28 Z
F04D29/30 Z
F04D29/42 L
(21)【出願番号】P 2021151033
(22)【出願日】2021-09-16
【審査請求日】2023-12-18
(73)【特許権者】
【識別番号】000003218
【氏名又は名称】株式会社豊田自動織機
(74)【代理人】
【識別番号】110001195
【氏名又は名称】弁理士法人深見特許事務所
(72)【発明者】
【氏名】齋藤 博
(72)【発明者】
【氏名】岡野 祐樹
(72)【発明者】
【氏名】遠藤 佑樹
(72)【発明者】
【氏名】井沖 新
【審査官】岩田 健一
(56)【参考文献】
【文献】特開2016-118194(JP,A)
【文献】特開2003-83281(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F04D 17/12
F04D 29/28
F04D 29/30
F04D 29/42
F04D 29/44
(57)【特許請求の範囲】
【請求項1】
ハウジングと、
前記ハウジング内に収容された電動モータと、
前記ハウジング内に収容され、前記電動モータによって回転駆動される回転軸と、
前記回転軸と一体的に回転する第1インペラおよび第2インペラと、を備え、
前記電動モータ、前記第1インペラおよび前記第2インペラは、この順で前記回転軸の軸方向に配置され、
前記第1インペラは、前記回転軸に固定される第1ハブと前記第1ハブに配列された複数の第1翼とを有し、
前記第2インペラは、前記回転軸に固定される第2ハブと前記第2ハブに配列された複数の第2翼とを有し、
前記第1インペラは、回転により前記第1翼の前端から後端へとガスを移送し、
前記第2インペラは、前記第1インペラにより移送されたガスを、回転により前記第2翼の前端から後端へと移送し、
前記ハウジングは、
前記第1翼に対向するとともに前記第1インペラを収容する第1インペラ室を形成する第1シュラウドと、
前記第2翼に対向するとともに前記第2インペラを収容する第2インペラ室を形成する第2シュラウドと、を備え、
前記第1翼の後端と前記第1シュラウドとの間隙の最小値を第1後端間隙とし、前記第2翼の後端と前記第2シュラウドとの間隙の最小値を第2後端間隙とすると、
前記第1後端間隙は前記第2後端間隙よりも小さい、電動ターボ式圧縮機。
【請求項2】
前記第1後端間隙に向かった前記第1翼の後端の高さの最大値を第1出口高さとし、前記第2後端間隙に向かった前記第2翼の後端の高さの最大値を第2出口高さとすると、
前記第1出口高さは前記第2出口高さより高い、請求項1に記載の電動ターボ式圧縮機。
【請求項3】
前記第1インペラの外径が、前記第2インペラの外径よりも大きい、請求項1または請求項2に記載の電動ターボ式圧縮機。
【請求項4】
前記第1翼の前端と前記第1シュラウドとの間隙の最小値を第1前端間隙とし、前記第2翼の前端と前記第2シュラウドとの間隙の最小値を第2前端間隙とすると、
前記第1前端間隙は前記第2前端間隙よりも小さい、請求項1から請求項3のいずれか1項に記載の電動ターボ式圧縮機。
【請求項5】
冷凍サイクルを循環する冷媒を圧縮する、請求項1から請求項4のいずれか1項に記載の電動ターボ式圧縮機。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、電動ターボ式圧縮機に関する。
【背景技術】
【0002】
従来の電動ターボ式圧縮機は、たとえば、特開2015-194151号公報(特許文献1)に開示されている。電動ターボ式圧縮機は、回転駆動される回転軸と、回転軸に設けられた第1インペラおよび第2インペラとを備えている。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
本開示では、効率の良い2段圧縮ができる電動ターボ式圧縮機が提案される。
【課題を解決するための手段】
【0005】
従来の知見では、インペラの出口翼高さとチップクリアランスとの関係で圧縮機の効率が決まり、出口翼高さが小さいとチップクリアランスも小さくしないと効率が悪くなるとされている。本発明者らは、2段圧縮をするターボ式圧縮機の効率向上について鋭意検討した結果、チップクリアランスの影響が上記従来の知見と異なることを見出し、以下の構成を案出した。
【0006】
すなわち、本開示に従うと、ハウジングと、ハウジング内に収容された電動モータと、ハウジング内に収容され、電動モータによって回転駆動される回転軸と、回転軸と一体的に回転する第1インペラおよび第2インペラと、を備える、電動ターボ式圧縮機が提案される。電動モータ、第1インペラおよび第2インペラは、この順で回転軸の軸方向に配置されている。第1インペラは、回転軸に固定される第1ハブと、第1ハブに配列された複数の第1翼とを有している。第2インペラは、回転軸に固定される第2ハブと、第2ハブに配列された複数の第2翼とを有している。第1インペラは、回転により第1翼の前端から後端へとガスを移送する。第2インペラは、第1インペラにより移送されたガスを、回転により第2翼の前端から後端へと移送する。ハウジングは、第1翼に対向するとともに第1インペラを収容する第1インペラ室を形成する第1シュラウドと、第2翼に対向するとともに第2インペラを収容する第2インペラ室を形成する第2シュラウドと、を備えている。第1翼の後端と第1シュラウドとの間隙の最小値を第1後端間隙とし、第2翼の後端と第2シュラウドとの間隙の最小値を第2後端間隙とすると、第1後端間隙は第2後端間隙よりも小さい。
【0007】
このように間隙を設定することで、第1インペラでの冷媒の流れの乱れを抑制でき、電動ターボ式圧縮機は効率の良い2段圧縮をすることができる。また、第2インペラのハウジングとの接触を抑制できるので、電動ターボ式圧縮機の信頼性を向上することができる。
【0008】
上記の電動ターボ式圧縮機において、第1後端間隙に向かった第1翼の後端の高さの最大値を第1出口高さとし、第2後端間隙に向かった第2翼の後端の高さの最大値を第2出口高さとすると、第1出口高さは第2出口高さより高くてもよい。第1インペラの圧縮効率を向上させ、第1インペラから吐出される冷媒の圧力をより大きくすることで、第2インペラに流入する冷媒の流速を小さくできる。これにより、第1後端間隙を第2後端間隙よりも小さくして効率の良い2段圧縮を可能にする効果を、より確実に得ることができる。
【0009】
上記の電動ターボ式圧縮機において、第1インペラの外径が、第2インペラの外径よりも大きくてもよい。第1インペラの圧縮効率を向上させ、第1インペラから吐出される冷媒の圧力をより大きくすることで、第2インペラ52に流入する冷媒の流速を小さくできる。これにより、第1後端間隙を第2後端間隙よりも小さくして効率の良い2段圧縮を可能にする効果を、より確実に得ることができる。
【0010】
上記の電動ターボ式圧縮機において、第1翼の前端と第1シュラウドとの間隙の最小値を第1前端間隙とし、第2翼の前端と第2シュラウドとの間隙の最小値を第2前端間隙とすると、第1前端間隙は第2前端間隙よりも小さくてもよい。このように間隙を設定することで、冷媒の流れの乱れを抑制でき、効率の良い2段圧縮をすることができる。また、第2インペラのハウジングとの接触を抑制できるので、信頼性を向上することができる。
【0011】
上記の電動ターボ式圧縮機は、冷凍サイクルを循環する冷媒を圧縮するものであってもよい。これにより、第1後端間隙を第2後端間隙よりも小さくして、効率が良く信頼性の高い2段圧縮を実現することが可能になる。
【発明の効果】
【0012】
本開示に従った電動ターボ式圧縮機によると、効率の良い2段圧縮をすることができる。
【図面の簡単な説明】
【0013】
【
図1】実施形態におけるターボ式圧縮機を示す側断面図である。
【
図2】インペラの周辺を拡大して示す断面図である。
【
図3】第1翼の後端の周辺を拡大して示す断面図である。
【
図4】第2翼の後端の周辺を拡大して示す断面図である。
【
図5】第1翼の前端の周辺を拡大して示す断面図である。
【
図6】第2翼の前端の周辺を拡大して示す断面図である。
【
図7】インペラの配置の変形例を概略的に示す模式図である。
【発明を実施するための形態】
【0014】
以下、実施形態について図に基づいて説明する。以下の説明では、同一部品には、同一の符号を付している。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。
【0015】
実施形態の電動ターボ式圧縮機は、たとえば、空調装置に用いられる。電動ターボ式圧縮機が圧縮する被圧縮流体は、冷凍サイクルを循環する冷媒である。
図1は、実施形態における電動ターボ式圧縮機1を示す側断面図である。
【0016】
図1に示すように、電動ターボ式圧縮機1は、筒状のハウジング10を備えている。ハウジング10は、リアハウジング11、モータハウジング12、第1コンプレッサハウジング13、第2コンプレッサハウジング14、仕切壁15、第1中間ハウジング16、および第2中間ハウジング17を有している。リアハウジング11、モータハウジング12、第1コンプレッサハウジング13、第2コンプレッサハウジング14、仕切壁15、第1中間ハウジング16、および第2中間ハウジング17は、それぞれ金属材料製であり、例えば、アルミニウム製である。
【0017】
モータハウジング12は、板状の端壁部12aと、端壁部12aの外周部から筒状に延びる周壁部12bと、を有する有底筒状である。第2中間ハウジング17は、周壁部12bにおける端壁部12aとは反対側の開口を閉塞した状態で、モータハウジング12に連結されている。モータハウジング12の端壁部12a、周壁部12b、および第2中間ハウジング17によって、モータ室18が区画されている。モータハウジング12には、冷媒を吸入する図示しない吸入孔が形成されている。吸入孔は、モータ室18に連通している。したがって、モータ室18には、吸入孔を介して冷媒が吸入される。
【0018】
第2中間ハウジング17の中央部には、円孔状のシャフト挿通孔17aが形成されている。第2中間ハウジング17は、円筒状の第1軸受保持部19を有している。第1軸受保持部19は、第2中間ハウジング17の内周面に形成されている。第1軸受保持部19の内側は、シャフト挿通孔17aに連通している。第1軸受保持部19の中心軸線とシャフト挿通孔17aの中心軸線とは互いに一致している。第1軸受保持部19には、第1ラジアル軸受20が保持されている。
【0019】
モータハウジング12の端壁部12aは、円筒状の第2軸受保持部21を有している。第2軸受保持部21は、モータハウジング12の端壁部12aの中央部に形成されている。第1軸受保持部19の中心軸線と第2軸受保持部21の中心軸線とは一致している。第2軸受保持部21には、第2ラジアル軸受22が保持されている。第1ラジアル軸受20および第2ラジアル軸受22は、ハウジング10内に配置されている。
【0020】
第2中間ハウジング17におけるモータ室18とは反対側の外面には、第1室形成凹部17bが形成されている。第1室形成凹部17bは、シャフト挿通孔17aに連通している。第2中間ハウジング17は、連通孔23を複数有している。各連通孔23は、第2中間ハウジング17の外周寄りの部位に位置している。各連通孔23は、第2中間ハウジング17を貫通している。連通孔23は、モータ室18と第1室形成凹部17bとを連通している。
【0021】
第1中間ハウジング16は、第2中間ハウジング17に連結されている。第1中間ハウジング16は、第1室形成凹部17bの開口を閉塞するように第2中間ハウジング17に連結されている。第1中間ハウジング16と第2中間ハウジング17の第1室形成凹部17bとによって、スラスト軸受収容室25が区画されている。第1中間ハウジング16の中央部には、円孔状のシャフト挿通孔16aが形成されている。
【0022】
第1中間ハウジング16は、連通孔16bを複数有している。各連通孔16bは、第1中間ハウジング16の外周寄りの部位に位置している。各連通孔16bは、第1中間ハウジング16を貫通している。第1中間ハウジング16におけるスラスト軸受収容室25とは反対側の外面には、第2室形成凹部16cが形成されている。第2室形成凹部16cは、シャフト挿通孔16aに連通している。各連通孔16bは、スラスト軸受収容室25と第2室形成凹部16cとを連通している。
【0023】
第1コンプレッサハウジング13は、円孔状の第1吸入口24を有する筒状である。第1コンプレッサハウジング13は、第1吸入口24の中心軸線が、シャフト挿通孔16aの中心軸線に一致した状態で、第1中間ハウジング16に連結されている。第1吸入口24は、第2室形成凹部16cに連通している。
【0024】
仕切壁15は、第1コンプレッサハウジング13における第1中間ハウジング16とは反対側の端面に連結されている。仕切壁15は、板状である。仕切壁15の中央部には、円孔状の貫通孔27(
図2)が形成されている。貫通孔27は、仕切壁15を仕切壁15の厚み方向に貫通している。仕切壁15は、貫通孔27の中心軸線が、第1吸入口24の中心軸線に一致した状態で、第1コンプレッサハウジング13に連結されている。
【0025】
図2は、インペラの周辺を拡大して示す断面図である。
図1,2に示されるように、仕切壁15と第1コンプレッサハウジング13との間には、第1吸入口24に連通する第1インペラ室28と、第1インペラ室28の周囲で第1吸入口24の中心軸線周りに延びる第1吐出室29と、第1インペラ室28と第1吐出室29とを連通する第1ディフューザ流路30と、が形成されている。
【0026】
第2コンプレッサハウジング14は、仕切壁15における第1コンプレッサハウジング13とは反対側の端面に連結されている。第1コンプレッサハウジング13、仕切壁15、第2コンプレッサハウジング14に亘って、中間圧室31が形成されている。中間圧室31は、図示しない通路を介して第1吐出室29に連通している。第2コンプレッサハウジング14には、中間圧室31に連通する円孔状の第2吸入口32が形成されている。第1吐出室29と第2吸入口32とは、中間圧室31を介して連通している。
【0027】
仕切壁15と第2コンプレッサハウジング14との間には、第2吸入口32に連通する第2インペラ室33と、第2インペラ室33の周囲で第2吸入口32の中心軸線周りに延びる第2吐出室34と、第2インペラ室33と第2吐出室34とを連通する第2ディフューザ流路35と、が形成されている。
【0028】
ハウジング10は、第1インペラ室28および第2インペラ室33を有している。仕切壁15は、第1インペラ室28と第2インペラ室33とを仕切っている。
【0029】
リアハウジング11は、第2コンプレッサハウジング14に連結されている。リアハウジング11は、中間圧室31を区画している。リアハウジング11は、板状である。
【0030】
電動ターボ式圧縮機1は、回転軸40を備えている。回転軸40は、第2軸受保持部21の内側からモータ室18、第1軸受保持部19の内側、シャフト挿通孔17a、スラスト軸受収容室25、シャフト挿通孔16a、第1吸入口24、第1インペラ室28、貫通孔27、第2インペラ室33、および第2吸入口32の順に通過しながら、ハウジング10の軸方向に延びている。回転軸40は、貫通孔27に挿通された状態で、第1インペラ室28および第2インペラ室33に跨って配置されている。
【0031】
回転軸40は、一方の端部である第1端部40aと、他方の端部である第2端部40bとを有している。第1端部40aは、第2コンプレッサハウジング14内に配置されている。第2端部40bは、モータハウジング12の端壁部12a内に配置されている。回転軸40は、ハウジング10内に収容されている。
【0032】
回転軸40の軸線Lは、第1軸受保持部19、第2軸受保持部21、シャフト挿通孔17a、シャフト挿通孔16a、第1吸入口24、貫通孔27、および第2吸入口32それぞれの中心軸線に一致している。以下の説明では、回転軸40の軸線Lが延びる方向である「回転軸40の軸方向」を「スラスト方向」と記載し、「回転軸40の径方向」を「ラジアル方向」と記載することもある。
【0033】
第1ラジアル軸受20および第2ラジアル軸受22は、回転軸40をラジアル方向で回転可能に支持する。第1ラジアル軸受20および第2ラジアル軸受22は、空気動圧軸受であってもよい。
【0034】
電動ターボ式圧縮機1は、回転軸40に設けられた円板状の支持プレート75を備えている。支持プレート75は、回転軸40の外周面から径方向外側へ突出している。支持プレート75は、回転軸40と一体的に回転する。支持プレート75は、スラスト軸受収容室25に配置されている。
【0035】
第1中間ハウジング16と支持プレート75との間、および第2中間ハウジング17と支持プレート75との間には、スラスト軸受80がそれぞれ配置されている。両スラスト軸受80は、回転軸40をスラスト方向で回転可能に支持する。両スラスト軸受80は、空気動圧軸受であってもよい。
【0036】
電動ターボ式圧縮機1は、電動モータ41を備えている。電動モータ41は、モータ室18に収容されている。電動モータ41は、ハウジング10内に収容されている。電動モータ41は、回転軸40を回転駆動する駆動源の一例である。電動モータ41は、ステータ42およびロータ43を備えている。
【0037】
ステータ42は、円筒状のステータコア44と、ステータコア44に巻回されるコイル45と、を有している。ステータコア44は、モータハウジング12の周壁部12bの内周面に固定されている。
【0038】
ロータ43は、モータ室18において、ステータコア44の径方向内側に配置されている。ロータ43は、回転軸40と一体的に回転する。ロータ43は、回転軸40に固定されたロータコア43aと、ロータコア43aに設けられた図示しない複数の永久磁石と、を有している。図示しないインバータ装置によって制御された電力がコイル45に供給されることにより、電動モータ41のロータ43が回転する。回転軸40は、ロータ43と一体的に回転する。
【0039】
電動ターボ式圧縮機1は、第1インペラ51および第2インペラ52を備えている。第1インペラ51および第2インペラ52は、例えば、アルミニウム製である。第1インペラ51および第2インペラ52は、回転軸40に連結されている。第1インペラ51および第2インペラ52は、回転軸40と一体的に回転する。
【0040】
第2インペラ52は、第1インペラ51よりも回転軸40の第1端部40a側に配置されている。第1インペラ51および第2インペラ52は、第1ラジアル軸受20よりも回転軸40の第1端部40a寄りに配置されている。第1インペラ51は、第2インペラ52よりも電動モータ41に近く配置されている。電動モータ41、第1インペラ51および第2インペラ52は、回転軸40の軸方向において、この順で配置されている。
図2に示すように、第1インペラ51は、第1インペラ室28に収容されている。第2インペラ52は、第2インペラ室33に収容されている。
【0041】
第1インペラ51は、第1ハブ51Hを有している。第1ハブ51Hは、回転軸40に固定されている。第1ハブ51Hは、背面51aと、先端面51bと、外周面51cと、径方向外縁部51dとを有している。背面51a、先端面51b、外周面51cおよび径方向外縁部51dは、第1ハブ51Hの外表面の一部を構成している。第1ハブ51Hは、第1吸入口24側に位置する先端面51bから背面51aに向かうにつれて外径が拡径する、略円錐台状の形状を有している。
【0042】
背面51aは、第1ハブ51Hの後端をなす。背面51aは、冷媒の流路を形成しない第1ハブ51Hの外表面である。第1インペラ51が回転軸40に連結されて電動ターボ式圧縮機1が組み立てられた状態において、背面51aは、回転軸40の軸方向で仕切壁15に対向する。仕切壁15は、第1ハブ51Hの背面51aと回転軸40の軸方向で対向する第1対向面15aを有している。
【0043】
先端面51bは、第1ハブ51Hの前端をなす。先端面51bは、回転軸40の軸方向における第1インペラ51の一端を構成している。先端面51bは、第1インペラ51に冷媒が流入する側の、第1ハブ51Hの端部である。
【0044】
外周面(ハブ面)51cは、第1インペラ室28の内壁面の一部を構成している。外周面51cは、回転軸40の軸線Lに向けて凹む湾曲面である。外周面51cは、その少なくとも一部分が、回転軸40の径方向における外側を向いている。外周面51cは、回転軸40の軸方向に沿って、先端面51bから背面51aへ向かって徐々に径が大きくなるように形成されている。外周面51cは、先端面51bから背面51aに向かうに従って、径方向外側に向けて漸次傾斜している。
【0045】
径方向外縁部51dは、第1インペラ51における外径が最大の部位である。径方向外縁部51dは、短軸の円筒形状を有している。第1インペラ51は、外径R1を有している。第1インペラ51の外径R1は、回転軸40の径方向における回転軸40の軸線Lと第1インペラ51の径方向外縁部51dとの距離である。
【0046】
第1インペラ51は、複数の第1翼51Bを有している。複数の第1翼51Bは、第1ハブ51Hの外周面51cに設けられている。複数の第1翼51Bは、第1ハブ51Hの周方向に配列されている。複数の第1翼51Bは、第1インペラ室28を周方向に区画して、周方向に隣り合う一対の第1翼51Bの間に冷媒の流路を形成している。複数の第1翼51Bは、第1ハブ51Hの外周面51cから径方向外側に突出している。複数の第1翼51Bは、第1ハブ51Hの外周面51cに、周方向に等間隔置きで配置されている。第1ハブ51Hの周方向に隣り合う第1翼51B同士の間隔は、第1ハブ51Hの前端から後端に向かうにつれて、徐々に広くなる。
【0047】
第1翼51Bは、後端51Baと、前端51Bbと、先端面51Bcとを有している。後端51Ba、前端51Bbおよび先端面51Bcは、第1翼51Bの縁部の一部を構成している。第1翼51Bの前端51Bbは、第1吸入口24に向いている。第1翼51Bの後端51Baは、第1ディフューザ流路30に向いている。第1翼51Bの先端面51Bcは、第1コンプレッサハウジング13に対向している。前端51Bbは、回転軸40の径方向に延びている。後端51Baは、回転軸40の軸方向に延びている。
【0048】
先端面51Bcは、湾曲している。先端面51Bcは、回転軸40の軸方向に沿って、前端51Bbから後端51Baへ向かって徐々に径が大きくなるように形成されている。先端面51Bcは、前端51Bbから後端51Baに向かうに従って、径方向外側に向けて漸次傾斜している。第1翼51Bの先端面51Bcの曲率は、第1ハブ51Hの外周面51cの曲率よりも大きくなっている。
【0049】
前端51Bbは、冷媒の流れ方向における上流側の、第1翼51Bの縁部である。第1吸入口24から、前端51Bbの間を経由して、周方向に隣り合う一対の第1翼51Bの間に冷媒が流入する。後端51Baは、冷媒の流れ方向における下流側の、第1翼51Bの縁部である。冷媒は、周方向に隣り合う一対の後端51Baの間を経由して、径方向外側へ向けて流れる。
【0050】
第2インペラ52は、第2ハブ52Hを有している。第2ハブ52Hは、回転軸40に固定されている。第2ハブ52Hは、背面52aと、先端面52bと、外周面52cと、径方向外縁部52dとを有している。背面52a、先端面52b、外周面52cおよび径方向外縁部52dは、第2ハブ52Hの外表面の一部を構成している。第2ハブ52Hは、第2吸入口32側に位置する先端面52bから背面52aに向かうにつれて外径が拡径する、略円錐台状の形状を有している。
【0051】
背面52aは、第2ハブ52Hの後端をなす。背面52aは、冷媒の流路を形成しない第2ハブ52Hの外表面である。第2インペラ52が回転軸40に連結されて電動ターボ式圧縮機1が組み立てられた状態において、背面52aは、回転軸40の軸方向で仕切壁15に対向する。仕切壁15は、第2ハブ52Hの背面52aと回転軸40の軸方向で対向する第2対向面15bを有している。
【0052】
先端面52bは、第2ハブ52Hの前端をなす。先端面52bは、回転軸40の軸方向における第2インペラ52の一端を構成している。先端面52bは、第2インペラ52に冷媒が流入する側の、第2ハブ52Hの端部である。
【0053】
外周面(ハブ面)52cは、第2インペラ室33の内壁面の一部を構成している。外周面52cは、回転軸40の軸線Lに向けて凹む湾曲面である。外周面52cは、その少なくとも一部分が、回転軸40の径方向における外側を向いている。外周面52cは、回転軸40の軸方向に沿って、先端面52bから背面52aへ向かって徐々に径が大きくなるように形成されている。外周面52cは、先端面52bから背面52aに向かうに従って、径方向外側に向けて漸次傾斜している。
【0054】
径方向外縁部52dは、第2インペラ52における外径が最大の部位である。径方向外縁部52dは、短軸の円筒形状を有している。第2インペラ52は、外径R2を有している。第2インペラ52の外径R2は、回転軸40の径方向における回転軸40の軸線Lと第2インペラの径方向外縁部52dとの距離である。
図2に示されるように、第1インペラ51の外径R1が、第2インペラ52の外径R2よりも大きい。
【0055】
第2インペラ52は、複数の第2翼52Bを有している。複数の第2翼52Bは、第2ハブ52Hの外周面52cに設けられている。複数の第2翼52Bは、第2ハブ52Hの周方向に配列されている。複数の第2翼52Bは、第2インペラ室33を周方向に区画して、周方向に隣り合う一対の第2翼52Bの間に冷媒の流路を形成している。複数の第2翼52Bは、第2ハブ52Hの外周面52cから径方向外側に突出している。複数の第2翼52Bは、第2ハブ52Hの外周面52cに、周方向に等間隔置きで配置されている。第2ハブ52Hの周方向に隣り合う第2翼52B同士の間隔は、第2ハブ52Hの前端から後端に向かうにつれて、徐々に広くなる。
【0056】
第2翼52Bは、後端52Baと、前端52Bbと、先端面52Bcとを有している。後端52Ba、前端52Bbおよび先端面52Bcは、第2翼52Bの縁部の一部を構成している。第2翼52Bの前端52Bbは、第2吸入口32に向いている。第2翼52Bの後端52Baは、第2ディフューザ流路35に向いている。第2翼52Bの先端面52Bcは、第2コンプレッサハウジング14に対向している。前端52Bbは、回転軸40の径方向に延びている。後端52Baは、回転軸40の軸方向に延びている。
【0057】
先端面52Bcは、湾曲している。先端面52Bcは、回転軸40の軸方向に沿って、前端52Bbから後端52Baへ向かって徐々に径が大きくなるように形成されている。先端面52Bcは、前端52Bbから後端52Baに向かうに従って、径方向外側に向けて漸次傾斜している。第2翼52Bの先端面52Bcの曲率は、第2ハブ52Hの外周面52cの曲率よりも大きくなっている。
【0058】
前端52Bbは、冷媒の流れ方向における上流側の、第2翼52Bの縁部である。第2吸入口32から、前端52Bbの間を経由して、周方向に隣り合う一対の第2翼52Bの間に冷媒が流入する。後端52Baは、冷媒の流れ方向における下流側の、第2翼52Bの縁部である。冷媒は、周方向に隣り合う一対の後端52Baの間を経由して、径方向外側へ向けて流れる。
【0059】
電動モータ41は、回転軸40、第1インペラ51および第2インペラ52を含む回転体を回転駆動し、回転体を軸線Lまわりに一体的に回転させる。第1インペラ51は、回転軸40と一体的に回転することによって、第1翼51Bの前端51Bbから後端51Baへとガス状の冷媒を移送し、冷媒を圧縮する。第2インペラ52は、回転軸40と一体的に回転することによって、第1インペラ51により移送され第1インペラ51によって圧縮された後のガス状の冷媒を、第2翼52Bの前端52Bbから後端52Baへと移送し、冷媒を圧縮する。冷媒の流れ方向における上流側に第1インペラ51が配置され、下流側に第2インペラ52が配置されている。
【0060】
第1インペラ51および第2インペラ52は、仕切壁15を介して、第1ハブ51Hの背面51aと第2ハブ52Hの背面52aとが互いに向かい合うように、回転軸40に設けられている。第1インペラ51と第2インペラ52との間に、中空円筒状のスペーサ54が配置されている。スペーサ54は、第1ハブ51Hの背面51aに対向する第1端と、第2ハブ52Hの背面52aに対向する第2端とを有している。回転軸40の軸方向におけるスペーサ54の寸法は、仕切壁15の第1対向面15aと第2対向面15bとの間隔よりもわずかに大きい。スペーサ54は、回転軸40の外周面と貫通孔27の内周面との間の隙間をシールする機能を有している。
【0061】
回転軸40の第1端部40aにおける回転軸40の外周面に、嵌合部材55が取り付けられている。嵌合部材55は、中空筒状の形状を有している。嵌合部材55は、たとえばネジ作用で回転軸40に取り付けられている。嵌合部材55は、第2ハブ52Hの先端面52bに当接している。嵌合部材55は、第2インペラ52を回転軸40の軸方向に支持している。
【0062】
第1コンプレッサハウジング13は、仕切壁15と協働して第1インペラ室28を区画する第1シュラウド53aを有している。第1シュラウド53aは、第1インペラ51を径方向外側から覆う円錐台形状である。第1シュラウド53aは、第1ハブ51Hの外周面51cに対向している。第1シュラウド53aは、第1ハブ51Hの背面51aから先端面51bにかけて、第1ハブ51Hの外周面51cに沿って延びている。第1シュラウド53aは、複数の第1翼51Bを取り囲んでいる。第1シュラウド53aは、第1翼51Bの先端面51Bcに対向し、第1インペラ室28の内壁面の一部を形成している。第1ハブ51Hの周方向に隣り合う一対の第1翼51B、第1ハブ51Hおよび第1シュラウド53aによって、冷媒の流路が放射状に形成されている。
【0063】
第1インペラ51と第1シュラウド53aとの間に、第1チップクリアランス61が形成されている。この第1チップクリアランス61は、第1翼51Bの先端面51Bcと第1コンプレッサハウジング13の第1シュラウド53aとの間において、第1翼51Bの前端51Bbから後端51Baにかけて延びる隙間である。
【0064】
第2コンプレッサハウジング14は、仕切壁15と協働して第2インペラ室33を区画する第2シュラウド53bを有している。第2シュラウド53bは、第2インペラ52を径方向外側から覆う円錐台形状である。第2シュラウド53bは、第2ハブ52Hの外周面52cに対向している。第2シュラウド53bは、第2ハブ52Hの背面52aから先端面52bにかけて、第2ハブ52Hの外周面52cに沿って延びている。第2シュラウド53bは、複数の第2翼52Bを取り囲んでいる。第2シュラウド53bは、第2翼52Bの先端面52Bcに対向し、第2インペラ室33の内壁面の一部を形成している。第2ハブ52Hの周方向に隣り合う一対の第2翼52B、第2ハブ52Hおよび第2シュラウド53bによって、冷媒の流路が放射状に形成されている。
【0065】
第2インペラ52と第2シュラウド53bとの間に、第2チップクリアランス62が形成されている。この第2チップクリアランス62は、第2翼52Bの先端面52Bcと第2コンプレッサハウジング14の第2シュラウド53bとの間において、第2翼52Bの前端52Bbから後端52Baにかけて延びる隙間である。
【0066】
図3は、第1翼51Bの後端51Baの周辺を拡大して示す断面図である。第1チップクリアランス61は、第1翼51Bの後端51Baにおける先端面51Bcと第1シュラウド53aとの間のスラスト方向の隙間である第1後端間隙61bを含む。第1後端間隙61bは、第1翼51Bの後端51Baと第1シュラウド53aとの間隙の最小値である。第1後端間隙61bは、第1翼51Bの後端51Baと第1シュラウド53aとの間隙のうち、間隙の寸法が最も小さい間隙をいう。
【0067】
図4は、第2翼52Bの後端52Baの周辺を拡大して示す断面図である。第2チップクリアランス62は、第2翼52Bの後端52Baにおける先端面52Bcと第2シュラウド53bとの間のスラスト方向の隙間である第2後端間隙62bを含む。第2後端間隙62bは、第2翼52Bの後端52Baと第2シュラウド53bとの間隙の最小値である。第2後端間隙62bは、第2翼52Bの後端52Baと第2シュラウド53bとの間隙のうち、間隙の寸法が最も小さい間隙をいう。
【0068】
図3,4に示されるように、第1後端間隙61bのスラスト方向の隙間寸法である長さH1が、第2後端間隙62bのスラスト方向の隙間寸法である長さH2よりも小さい。第1翼51Bの後端51Baの位置における、第1翼51Bの先端面51Bcと第1コンプレッサハウジング13の第1シュラウド53aとの最短距離が、第2翼52Bの後端52Baの位置における、第2翼52Bの先端面52Bcと第2コンプレッサハウジング14の第2シュラウド53bとの最短距離よりも小さい。
【0069】
図5は、第1翼51Bの前端51Bbの周辺を拡大して示す断面図である。第1チップクリアランス61は、第1翼51Bの前端51Bbにおける先端面51Bcと第1シュラウド53aとの間のラジアル方向の隙間である第1前端間隙61aを含む。第1前端間隙61aは、第1翼51Bの前端51Bbと第1シュラウド53aとの間隙の最小値である。第1前端間隙61aは、第1翼51Bの前端51Bbと第1シュラウド53aとの間隙のうち、間隙の寸法が最も小さい間隙をいう。
【0070】
図6は、第2翼52Bの前端52Bbの周辺を拡大して示す断面図である。第2チップクリアランス62は、第2翼52Bの前端52Bbにおける先端面52Bcと第2シュラウド53bとの間のラジアル方向の隙間である第2前端間隙62aを含む。第2前端間隙62aは、第2翼52Bの前端52Bbと第2シュラウド53bとの間隙の最小値である。第2前端間隙62aは、第2翼52Bの前端52Bbと第2シュラウド53bとの間隙のうち、間隙の寸法が最も小さい間隙をいう。
【0071】
図5,6に示されるように、第1前端間隙61aのラジアル方向の隙間寸法である長さH3が、第2前端間隙62aのラジアル方向の隙間寸法である長さH4よりも小さい。第1翼51Bの前端51Bbの位置における、第1翼51Bの先端面51Bcと第1コンプレッサハウジング13の第1シュラウド53aとの最短距離が、第2翼52Bの前端52Bbの位置における、第2翼52Bの先端面52Bcと第2コンプレッサハウジング14の第2シュラウド53bとの最短距離よりも小さい。
【0072】
また、
図3,4に示されるように、第1インペラ51の第1翼51Bの後端51Baにおける第1翼51Bの軸方向の寸法である第1出口高さT1が、第2インペラ52の第2翼52Bの後端52Baにおける第2翼52Bの軸方向の寸法である第2出口高さT2よりも大きい。第1インペラ51の出口翼高さが、第2インペラ52の出口翼高さよりも大きい。
【0073】
第1出口高さT1は、第1後端間隙61bに向かった第1翼51Bの後端51Baの高さの最大値である。第1出口高さT1は、第1ハブ51Hの外周面51cから第1後端間隙61bに向かって突き出る第1翼51Bの後端51Baの高さのうち、突き出る高さが最も高い高さをいう。第2出口高さT2は、第2後端間隙62bに向かった第2翼52Bの後端52Baの高さの最大値である。第2出口高さT2は、第2ハブ52Hの外周面52cから第2後端間隙62bに向かって突き出る第2翼52Bの後端52Baの高さのうち、突き出る高さが最も高い高さをいう。
【0074】
電動ターボ式圧縮機1において、冷媒は図示しない吸入孔からモータ室18に吸入される。モータ室18に吸入された冷媒は、各連通孔23、スラスト軸受収容室25、各連通孔16b、および第2室形成凹部16cの内側を通過して、第1吸入口24に吸入される。第1吸入口24に吸入された冷媒は、第1インペラ51の遠心作用によって昇圧され、第1インペラ室28から第1ディフューザ流路30に送り込まれて、第1ディフューザ流路30にてさらに昇圧される。第1ディフューザ流路30を通過した冷媒は、第1吐出室29に吐出される。
【0075】
第1吐出室29に吐出された冷媒は、中間圧室31を通過して、第2吸入口32に吸入される。第2吸入口32に吸入された冷媒は、第2インペラ52の遠心作用によって昇圧され、第2インペラ室33から第2ディフューザ流路35に送り込まれて、第2ディフューザ流路35にてさらに昇圧される。第2ディフューザ流路35を通過した冷媒は、第2吐出室34に吐出される。第2吐出室34は、図示しない吐出口に連通している。電動ターボ式圧縮機1によって圧縮された冷媒は、その吐出口から、電動ターボ式圧縮機1の外部に吐出される。
【0076】
以上説明した実施形態の電動ターボ式圧縮機1では、
図3,4に示されるように、第1翼51Bの後端51Baと第1シュラウド53aとの最小の間隙である第1後端間隙61bが、第2翼52Bの後端52Baと第2シュラウド53bとの最小の間隙である第2後端間隙62bよりも、小さく形成されている。
【0077】
第2インペラ52は、第1インペラ51によって圧縮された後の冷媒を圧縮する。第2インペラ室33を流れる冷媒の圧力は、第1インペラ室28を流れる冷媒の圧力よりも高い。第1インペラ室28を流れる冷媒の密度が、第2インペラ室33を流れる冷媒の密度よりも小さいので、第1インペラ51の方が、体積流量を多く流す必要がある。そのため、第1インペラ室28を流れる冷媒の流速は、第2インペラ室33を流れる冷媒の流速よりも大きい。なお、第1インペラ51による冷媒の圧縮比は、第2インペラ52による冷媒の圧縮比よりも大きい。
【0078】
冷媒の流速が大きい方が、チップクリアランスの影響が大きくなる。冷媒の流速が大きい第1インペラ51では、第1チップクリアランス61が大きいと、冷媒の流れが乱される。冷媒の流速が小さい第2インペラ52では、第2チップクリアランス62が大きくても、性能への影響は小さい。第1インペラ51のチップクリアランスを小さくし、第1後端間隙61bを第2後端間隙62bよりも小さく設定することで、冷媒の流れの乱れを抑制できる。したがって、実施形態の電動ターボ式圧縮機1は、効率の良い2段圧縮をすることができる。
【0079】
第2インペラ52は、第1インペラ51よりも、回転軸40の第1端部40aに近く配置されている。回転軸40の先端側に配置された第2インペラ52は、第1インペラ51よりも、運転時の振れが大きくなる可能性がある。第2後端間隙62bを第1後端間隙61bよりも大きく設定することで、第2インペラ52の第2コンプレッサハウジング14との接触を抑制できる。したがって、電動ターボ式圧縮機1の信頼性を向上することができる。
【0080】
図3,4に示されるように、第1翼51Bの後端51Baが第1ハブ51Hの外周面51cから第1後端間隙61bへ向かって突き出る最大高さである第1出口高さT1が、第2翼52Bの後端52Baが第2ハブ52Hの外周面52cから第2後端間隙62bへ向かって突き出る最大高さである第2出口高さT2よりも大きい。
【0081】
第1インペラ51と第2インペラ52とはいずれも回転軸40と一体的に回転することから、第1インペラ51と第2インペラ52との回転数は等しい。この場合、第1出口高さT1を第2出口高さT2よりも大きくすることで、第1インペラ51の圧縮効率を向上できる。第1インペラ51から吐出される冷媒の圧力をより大きくすることで、第2インペラ52に流入する冷媒の流速をより小さくできる。これにより、第2チップクリアランス62を大きくしても性能への影響を小さくできるので、第1後端間隙61bを第2後端間隙62bよりも小さくして効率の良い2段圧縮を可能にする効果をより確実に得ることができる。
【0082】
図2に示されるように、第1インペラ51の外径R1が、第2インペラ52の外径R2よりも大きい。このようにすれば、第1インペラ51の圧縮効率を向上でき、第1インペラ51から吐出される冷媒の圧力をより大きくできるので、第2インペラ52に流入する冷媒の流速をより小さくできる。これにより、第2チップクリアランス62を大きくしても性能への影響を小さくできるので、第1後端間隙61bを第2後端間隙62bよりも小さくして効率の良い2段圧縮を可能にする効果をより確実に得ることができる。
【0083】
図5,6に示されるように、第1翼51Bの前端51Bbと第1シュラウド53aとの最小の間隙である第1前端間隙61aが、第2翼52Bの前端52Bbと第2シュラウド53bとの最小の間隙である第2前端間隙62aよりも、小さく形成されている。第1インペラ51のチップクリアランスを小さくし、第1前端間隙61aを第2前端間隙62aよりも小さく設定することで、冷媒の流れの乱れを抑制できる。したがって、効率の良い2段圧縮をすることができる。また、第2インペラ52の第2コンプレッサハウジング14との接触を抑制できるので、信頼性を向上することができる。
【0084】
電動ターボ式圧縮機1が圧縮する被圧縮流体が、冷凍サイクルを循環する冷媒であることで、第2チップクリアランス62を大きくしても、性能への影響を小さくできる。これにより、第1後端間隙61bを第2後端間隙62bよりも小さくして、効率が良く信頼性の高い2段圧縮を実現することが可能になる。
【0085】
これまでの実施形態の説明では、第1インペラ51の第1ハブ51Hの背面51aと第2インペラ52の第2ハブ52Hの背面52aとが、仕切壁15を介在させて互いに対向する配置の例について説明した。第1インペラ51と第2インペラ52との配置は、この例に限られるものではない。
図7はインペラの配置の変形例を概略的に示す模式図である。
図7に示されるように、第1インペラ51と第2インペラ52とを、先端面51b,52bが回転軸40の第2端部40bに向き背面51a,52aが回転軸40の第1端部40aに向くように、配置してもよい。この場合においても、第2インペラ52を回転軸40の第1端部40aにより近く配置し、第1後端間隙61bを第2後端間隙62bよりも小さく設定することで、効率が良く信頼性の高い2段圧縮ができる。
【0086】
実施形態で説明した電動ターボ式圧縮機1は、遠心圧縮機であるが、本開示の技術思想は、斜流式の圧縮機にも適用可能である。
【0087】
以上のように実施形態について説明を行なったが、今回開示された実施形態はすべての点で例示であって、制限的なものではないと考えられるべきである。この発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
【符号の説明】
【0088】
1 電動ターボ式圧縮機、10 ハウジング、11 リアハウジング、13 第1コンプレッサハウジング、14 第2コンプレッサハウジング、15 仕切壁、15a 第1対向面、15b 第2対向面、24 第1吸入口、27 貫通孔、28 第1インペラ室、29 第1吐出室、30 第1ディフューザ流路、31 中間圧室、32 第2吸入口、33 第2インペラ室、34 第2吐出室、35 第2ディフューザ流路、40 回転軸、40a 第1端部、40b 第2端部、41 電動モータ、51 第1インペラ、51B 第1翼、51Ba,52Ba 後端、51Bb,52Bb 前端、51Bc,51b,52Bc,52b 先端面、51H 第1ハブ、51a,52a 背面、51c,52c 外周面、51d,52d 径方向外縁部、52 第2インペラ、52B 第2翼、52H 第2ハブ、53a 第1シュラウド、53b 第2シュラウド、54 スペーサ、55 嵌合部材、61 第1チップクリアランス、61a 第1前端間隙、61b 第1後端間隙、62 第2チップクリアランス、62a 第2前端間隙、62b 第2後端間隙、H1,H2,H3,H4 長さ、L 軸線、R1,R2 外径。