(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-11-25
(45)【発行日】2024-12-03
(54)【発明の名称】繊維状セルロース、繊維状セルロース分散液及びシート
(51)【国際特許分類】
D21H 11/20 20060101AFI20241126BHJP
D21H 15/02 20060101ALI20241126BHJP
C08B 5/00 20060101ALI20241126BHJP
【FI】
D21H11/20
D21H15/02
C08B5/00
(21)【出願番号】P 2021561579
(86)(22)【出願日】2020-11-27
(86)【国際出願番号】 JP2020044375
(87)【国際公開番号】W WO2021107147
(87)【国際公開日】2021-06-03
【審査請求日】2023-10-04
(31)【優先権主張番号】P 2019217113
(32)【優先日】2019-11-29
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2020031744
(32)【優先日】2020-02-27
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000122298
【氏名又は名称】王子ホールディングス株式会社
(74)【代理人】
【識別番号】110000109
【氏名又は名称】弁理士法人特許事務所サイクス
(72)【発明者】
【氏名】堤 ▲祥▼行
(72)【発明者】
【氏名】松原 悠介
(72)【発明者】
【氏名】野口 真代
(72)【発明者】
【氏名】白尾 剛之
(72)【発明者】
【氏名】大渕 貴之
(72)【発明者】
【氏名】山根 教郎
【審査官】塩治 雅也
(56)【参考文献】
【文献】特開2014-034673(JP,A)
【文献】特開2015-189698(JP,A)
【文献】国際公開第2018/131721(WO,A1)
【文献】特開2014-101604(JP,A)
【文献】特開2017-117695(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
D21B 1/00- 1/38
D21C 1/00-11/14
D21D 1/00-99/00
D21F 1/00-13/12
D21G 1/00- 9/00
D21H 11/00-27/42
D21J 1/00- 7/00
C08B 5/00
(57)【特許請求の範囲】
【請求項1】
繊維幅が1000nm以下であり、イオン性置換基を有する繊維状セルロースであって、
前記イオン性置換基の導入量は1.00mmol/g以上であり、
前記繊維状セルロースを0.5質量%濃度の水分散液とした場合、23℃における前記水分散液の粘度が108mPa・s以上1000mPa・s以下であ
り、
前記繊維状セルロースを6.0質量%濃度の水分散液とした場合、23℃における前記水分散液の粘度が2,000,000mPa・s以上30,000,000mPa・s以下である、繊維状セルロース。
【請求項2】
前記繊維状セルロースの重合度は230超え450以下である、請求項1に記載の繊維状セルロース。
【請求項3】
前記繊維状セルロースを13.0質量%濃度の水分散液とした場合、23℃における前記水分散液の粘度が5,000,000mPa・s以上100,000,000mPa・s以下である、請求項1
又は2に記載の繊維状セルロース。
【請求項4】
前記イオン性置換基は、リンオキソ酸基、リンオキソ酸基に由来する置換基、硫黄オキソ酸基及び硫黄オキソ酸基に由来する置換基からなる群から選択される少なくとも1種である、請求項1~
3のいずれか1項に記載の繊維状セルロース。
【請求項5】
請求項1~
4のいずれか1項に記載の繊維状セルロースを含む繊維状セルロース含有分散液。
【請求項6】
前記繊維状セルロースの濃度が3.0質量%以上である請求項
5に記載の繊維状セルロース含有分散液。
【請求項7】
請求項1~
4のいずれか1項に記載の繊維状セルロースを含むシート。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、繊維状セルロース、繊維状セルロース分散液及びシートに関する。
【背景技術】
【0002】
従来、セルロース繊維は、衣料や吸収性物品、紙製品等に幅広く利用されている。セルロース繊維としては、繊維径が10μm以上50μm以下の繊維状セルロースに加えて、繊維径が1μm以下の微細繊維状セルロースも知られている。微細繊維状セルロースは、新たな素材として注目されており、その用途は多岐にわたる。
【0003】
微細繊維状セルロースを製造する際には、セルロース原料を含むスラリーを解繊処理(機械処理)することが行われている。例えば、特許文献1には、セルロース原料を酵素で処理する工程と、酵素処理後のセルロース原料を解繊する工程を含有する微細繊維の製造方法が開示されている。ここでは、酵素処理を行うことでセルロース原料を充分に微細化し、微細繊維の収率を高めることが検討されている。また、特許文献1では、繊維長が長く、かつアスペクト比の大きな微細繊維を製造することを目的としている。
【0004】
また、特許文献2には、平均繊維幅が200nm以下であり、重合度が50以上500以下であり、所定の極性基を有する微細繊維状セルロースが開示されている。ここでは、エマルション樹脂と混ぜ合わせた際に凝集物を形成しにくい微細繊維状セルロースを得ることが検討されている。なお、特許文献2の実施例では、重合度が248~454であり、0.5%濃度における粘度が108~740の分散液が得られている。
【先行技術文献】
【特許文献】
【0005】
【文献】国際公開第2013/176033号
【文献】特開2014-34673号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
微細繊維状セルロースは、分散液中では、優れた増粘作用を発揮するため、塗料や化粧品の用途に用いられる場合がある。しかしながら、微細繊維状セルロースは優れた増粘作用を発揮するが故に高濃度(例えば3質量%以上)の微細繊維状セルロース分散液とすることが困難であった。また、微細繊維状セルロースの高濃度分散液を得ようとした場合、分散液中で微細繊維状セルロースが均一に分散せず、場合によっては微細繊維状セルロースの凝集物(ダマ)等が発生することが本発明者らの検討により明らかとなった。
【0007】
一方で、微細繊維状セルロースを高濃度で含む分散液は、使用態様によっては希釈して用いられる場合がある。このような場合、その分散液は優れた粒子分散性を発揮することが求められる場合がある。
【0008】
そこで本発明者らは、このような従来技術の課題を解決するために、高濃度の微細繊維状セルロース分散液であって、微細繊維状セルロースが均一に分散した微細繊維状セルロース分散液を提供することを目的として検討を進めた。また、本発明者らは、高濃度の微細繊維状セルロース分散液を希釈して用いる際には、優れた粒子分散性が発揮されるように検討を重ねた。
【課題を解決するための手段】
【0009】
上記の課題を解決するために鋭意検討を行った結果、本発明者らは、0.5質量%濃度の水分散液とした場合に、その水分散液の粘度を所定範囲内とし得る微細繊維状セルロースであって、所定量以上のイオン性置換基が導入された微細繊維状セルロースを用いることにより、高濃度の微細繊維状セルロース分散液であって、微細繊維状セルロースが均一に分散した微細繊維状セルロース分散液が得られることを見出した。また、本発明者らは、このようにして得られた高濃度の微細繊維状セルロース分散液を希釈した際には、希釈分散液が優れた粒子分散性を発揮し得ることを見出し、本発明を完成するに至った。
具体的に、本発明は、以下の構成を有する。
【0010】
[1] 繊維幅が1000nm以下であり、イオン性置換基を有する繊維状セルロースであって、
イオン性置換基の導入量は1.00mmol/g以上であり、
繊維状セルロースを0.5質量%濃度の水分散液とした場合、23℃における水分散液の粘度が108mPa・s以上1000mPa・s以下である、
繊維状セルロース。
[2] 繊維状セルロースの重合度は230超え450以下である、[1]に記載の繊維状セルロース。
[3] 繊維状セルロースを6.0質量%濃度の水分散液とした場合、23℃における水分散液の粘度が2,000,000mPa・s以上30,000,000mPa・s以下である、[1]又は[2]に記載の繊維状セルロース。
[4] 繊維状セルロースを13.0質量%濃度の水分散液とした場合、23℃における水分散液の粘度が5,000,000mPa・s以上100,000,000mPa・s以下である、[1]~[3]のいずれかに記載の繊維状セルロース。
[5] イオン性置換基は、リンオキソ酸基、リンオキソ酸基に由来する置換基、硫黄オキソ酸基及び硫黄オキソ酸基に由来する置換基からなる群から選択される少なくとも1種である、[1]~[4]のいずれかに記載の繊維状セルロース。
[6] [1]~[5]のいずれかに記載の繊維状セルロースを含む繊維状セルロース含有分散液。
[7] 繊維状セルロースの濃度が3.0質量%以上である[6]に記載の繊維状セルロース含有分散液。
[8] [1]~[5]のいずれかに記載の繊維状セルロースを含むシート。
【発明の効果】
【0011】
本発明によれば、高濃度の微細繊維状セルロース分散液であって、微細繊維状セルロースが均一に分散した微細繊維状セルロース分散液を得ることができる。また、本発明においては、高濃度の微細繊維状セルロース分散液を希釈した際、希釈分散液は優れた粒子分散性を発揮する。
【図面の簡単な説明】
【0012】
【
図1】
図1は、リンオキソ酸基を有する繊維状セルロース含有スラリーに対するNaOH滴下量とpHの関係を示すグラフである。
【
図2】
図2は、カルボキシ基を有する繊維状セルロース含有スラリーに対するNaOH滴下量とpHの関係を示すグラフである。
【発明を実施するための形態】
【0013】
以下において、本発明について詳細に説明する。以下に記載する構成要件の説明は、代表的な実施形態や具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。
【0014】
(繊維状セルロース)
本実施形態の繊維状セルロースは、繊維幅が1000nm以下であり、イオン性置換基を有する繊維状セルロースであって、イオン性置換基の導入量は1.00mmol/g以上であり、繊維状セルロースを0.5質量%濃度の水分散液とした場合、23℃における水分散液の粘度が108mPa・s以上1000mPa・s以下である、繊維状セルロースである。なお、本明細書において、繊維幅が1000nm以下の繊維状セルロースを微細繊維状セルロースともいう。
【0015】
微細繊維状セルロース分散液(水分散液)の粘度はB型粘度計を用いて、23℃で、回転速度3rpmとし、測定開始から3分後の粘度値である。B型粘度計としては、例えば、BLOOKFIELD社製、アナログ粘度計T-LVTを用いることができる。なお、微細繊維状セルロースを0.5質量%濃度の水分散液に希釈した際には、ディスパーザーにて4000rpmで3分間撹拌した後、自転公転型スーパーミキサー(シンキー社製、ARE-250)にて微細繊維状セルロース分散液の脱泡処理を行う。0.5質量%濃度の水分散液の粘度は、108mPa・s以上であればよく、200mPa・s以上であることが好ましく、250mPa・s以上であることがより好ましく、350mPa・s以上であることがさらに好ましい。また、0.5質量%濃度の水分散液の粘度は、1000mPa・s以下であればよく、700mPa・s以下であることが好ましい。
【0016】
また、微細繊維状セルロースを6.0質量%濃度の水分散液とした場合、23℃における水分散液の粘度は、2,000,000mPa・s以上であることが好ましく、3,000,000mPa・s以上であることがより好ましく、4,000,000mPa・s以上であること特に好ましい。また、微細繊維状セルロースを6.0質量%濃度の水分散液とした場合、23℃における水分散液の粘度は、30,000,000mPa・s以下であることが好ましく、20,000,000mPa・s以下であることがより好ましく、10,000,000mPa・s以下であることが特に好ましい。また、微細繊維状セルロースを13.0質量%濃度の水分散液とした場合、23℃における水分散液の粘度は、5,000,000mPa・s以上であることが好ましく、10,000,000mPa・s以上であることがより好ましく、18,000,000mPa・s以上であることが特に好ましい。また、微細繊維状セルロースを13.0質量%濃度の水分散液とした場合、23℃における水分散液の粘度は、100,000,000mPa・s以下であることが好ましく、50,000,000mPa・s以下であることがより好ましく、30,000,000mPa・s以下であること特に好ましい。6.0質量%濃度の水分散液もしくは、13.0質量%濃度の水分散液の粘度はB型粘度計を用いて、23℃で、回転速度0.3rpmとし、測定開始から3分後の粘度値である。B型粘度計としては、例えば、BLOOKFIELD社製、デジタル粘度計DV2TT-LVTを用いることができる。なお、微細繊維状セルロースを6.0質量%濃度もしくは13.0質量%濃度の水分散液に調製した際には、ディスパーザーにて4000rpmで3分間撹拌した後、自転公転型スーパーミキサー(シンキー社製、ARE-250)にて微細繊維状セルロース分散液の脱泡処理を行う。6.0質量%濃度もしくは13.0質量%濃度の水分散液に調製する際には、6.0質量%濃度もしくは13.0質量%濃度よりも高濃度の水分散液を得て、該水分散液を水で希釈することにより6.0質量%濃度もしくは13.0質量%濃度の水分散液を得てもよい。
【0017】
従来技術においては、3.0質量%以上の高濃度の水分散液を得ることが困難であり、6.0質量%や13.0質量%といった高濃度の水分散液を得ること自体が不可能であった。また、従来技術において得られた微細繊維状セルロース分散液を濃縮するなどして6.0質量%や13.0質量%濃度の水分散液とした場合であっても、水分散液がゲル状となったり、水分散液に粒状物(繊維の凝集物)等が発生するなどして均一な水分散液を得ることができなかった。当然ながらこのような高濃度の水分散液においては、その粘度の測定は不可能であった。例えば、0.5~2.0質量%濃度の水分散液を解繊処理に施した後、加熱処理やエバポレーターで濃縮を行った場合、濃縮の過程で壁面に膜状物が発生するなどして、微細繊維状セルロースが均一に分散した6.0質量%以上の分散液を得ることはできない。このため、たとえ、0.5~2.0質量%濃度の水分散液の粘度が本実施形態における同濃度の水分散液の粘度と同等であったとしても、6.0質量%や13.0質量%といった高濃度の水分散液を得ることがそもそも不可能であり、6.0質量%や13.0質量%といった高濃度の水分散液において上記範囲内の粘度を有する分散液を得ることはできない。
【0018】
一方、本実施形態においては、微細繊維状セルロースのイオン性置換基の導入量を所定値以上とし、さらに、0.5質量%濃度の水分散液とした場合の23℃における水分散液の粘度が上記範囲内となる微細繊維状セルロースを得ることにより、高濃度であり、かつ微細繊維状セルロースが均一に分散した微細繊維状セルロースの分散液を得ることに成功した。また、本実施形態においては、解繊処理に供するリン酸化パルプの分散液を高濃度とし、このような高濃度のパルプ分散液に解繊処理を施し、また、必要に応じて後述するような低分子化処理を併せて施すことで、微細繊維状セルロースを3.0質量%以上含む水分散液(例えば、6.0質量%や13.0質量%の水分散液)においてもその粘度を測定することが可能となり、高濃度分散液としては比較的低粘度の水分散液を得ることに成功した。さらに、本実施形態においては、高濃度分散液を希釈して用いる場合には、希釈水分散液の粒子分散性を高めることもできる。
【0019】
上述したように、本実施形態においては、微細繊維状セルロースを高濃度で含む分散液を得ることができる。このため、分散液の保管コストや輸送コストの大幅な削減が可能となる。さらに、本実施形態においては、微細繊維状セルロース分散液の生産効率を高めることもできる。
【0020】
本実施形態において、繊維状セルロースの重合度は230より大きいこと好ましく、240以上であることがより好ましい。また、繊維状セルロースの重合度は450以下であることが好ましく、400以下であることがより好ましく、350以下であることがさらに好ましく、300以下であることが一層好ましく、290以下であることがより一層好ましく、280以下であることが特に好ましい。例えば、繊維状セルロースの重合度は230超え450以下であってもよく、230超え280以下であってもよい。
【0021】
微細繊維状セルロースの重合度は、Tappi T230に従い測定されたパルプ粘度から計算した値である。具体的には、測定対象の微細繊維状セルロースを、銅エチレンジアミン水溶液に分散させて測定した粘度(η1とする)、及び分散媒体のみで測定したブランク粘度(η0とする)を測定したのち、比粘度(ηsp)、固有粘度([η])を下記式に従って測定する。
ηsp=(η1/η0)-1
[η]=ηsp/(c(1+0.28×ηsp))
ここで、式中のcは、粘度測定時の微細繊維状セルロースの濃度を示す。
さらに、下記式から重合度(DP)を算出する。
DP=1.75×[η]
この重合度は粘度法によって測定された平均重合度であることから、「粘度平均重合度」と称されることもある。
【0022】
本実施形態においては、微細繊維状セルロースの重合度を上記範囲内とし、さらに、0.5質量%濃度の水分散液とした場合の23℃における水分散液の粘度が上記範囲内となる微細繊維状セルロースを得ることにより、高濃度の微細繊維状セルロース分散液であって、かつ微細繊維状セルロースが均一に分散した微細繊維状セルロース分散液が得られやすくなる。このような高濃度の微細繊維状セルロース分散液は種々の用途に好ましく用いられる。例えば、シート形成用途や補強材用途、塗料用途に好ましく用いられ、特に、透明性が求められる用途に好ましく用いられる。また、本実施形態の微細繊維状セルロースを用いた高濃度分散液を希釈した際には、希釈水分散液は優れた粒子分散性を発揮するため、本実施形態の微細繊維状セルロースは増粘剤としての用途としても好ましく用いられる。
【0023】
本実施形態においては、高濃度の微細繊維状セルロース分散液を得ることができる。例えば、微細繊維状セルロース分散液の濃度は、3.0質量%以上であることが好ましく、4.0質量%以上であることがより好ましく、5.0質量%以上であることがさらに好ましく、6.0質量%以上であることが一層好ましく、10.0質量%以上であることが特に好ましい。なお、本明細書において、微細繊維状セルロース分散液の濃度とは、微細繊維状セルロース分散液の全質量に対する微細繊維状セルロースの含有量を言う。また、本明細書においては、分散液の全質量に対して微細繊維状セルロースを3.0質量%以上含む分散液(すなわち、微細繊維状セルロース分散液濃度が3.0質量%以上の分散液)を高濃度の微細繊維状セルロース分散液と言う。
【0024】
本実施形態の微細繊維状セルロースを水等の溶媒に分散させて得られる高濃度の微細繊維状セルロース分散液中において、微細繊維状セルロースは均一に分散している。このため、高濃度の微細繊維状セルロース分散液は高透明である。例えば、微細繊維状セルロースを水等の溶媒に分散させて6.0質量%の高濃度分散液とした場合、分散液中に微細繊維状セルロースが分散するため、微細繊維状セルロースを目視で確認することができない。このような場合に、高濃度の微細繊維状セルロース分散液中において、微細繊維状セルロースは均一に分散していると評価できる。また、このような場合、高濃度の微細繊維状セルロース分散液は白濁することがなく、半透明もしくは透明である。
【0025】
本実施形態の繊維状セルロースは、繊維幅が1000nm以下である微細繊維状セルロースである。繊維状セルロースの繊維幅は100nm以下であることがより好ましく、8nm以下であることがさらに好ましい。
【0026】
繊維状セルロースの繊維幅は、たとえば電子顕微鏡観察などにより測定することが可能である。繊維状セルロースの平均繊維幅は、たとえば1000nm以下である。繊維状セルロースの平均繊維幅は、たとえば2nm以上1000nm以下であることが好ましく、2nm以上100nm以下であることがより好ましく、2nm以上50nm以下であることがさらに好ましく、2nm以上10nm以下であることが特に好ましい。繊維状セルロースの平均繊維幅を2nm以上とすることにより、セルロース分子として水に溶解することを抑制し、繊維状セルロースによる強度や剛性、寸法安定性の向上という効果をより発現しやすくすることができる。なお、繊維状セルロースは、たとえば単繊維状のセルロースである。
【0027】
繊維状セルロースの平均繊維幅は、たとえば電子顕微鏡を用いて以下のようにして測定される。まず、濃度0.05質量%以上0.1質量%以下の繊維状セルロースの水系懸濁液を調製し、この懸濁液を親水化処理したカーボン膜被覆グリッド上にキャストしてTEM観察用試料とする。幅の広い繊維を含む場合には、ガラス上にキャストした表面のSEM像を観察してもよい。次いで、観察対象となる繊維の幅に応じて1000倍、5000倍、10000倍あるいは50000倍のいずれかの倍率で電子顕微鏡画像による観察を行う。但し、試料、観察条件や倍率は下記の条件を満たすように調整する。
【0028】
(1)観察画像内の任意箇所に一本の直線Xを引き、該直線Xに対し、20本以上の繊維が交差する。
(2)同じ画像内で該直線と垂直に交差する直線Yを引き、該直線Yに対し、20本以上の繊維が交差する。
【0029】
上記条件を満足する観察画像に対し、直線X、直線Yと交差する繊維の幅を目視で読み取る。このようにして、少なくとも互いに重なっていない表面部分の観察画像を3組以上得る。次いで、各画像に対して、直線X、直線Yと交差する繊維の幅を読み取る。これにより、少なくとも20本×2×3=120本の繊維幅を読み取る。そして、読み取った繊維幅の平均値を、繊維状セルロースの平均繊維幅とする。
【0030】
繊維状セルロースの繊維長は、特に限定されないが、たとえば0.1μm以上1000μm以下であることが好ましく、0.1μm以上800μm以下であることがより好ましく、0.1μm以上600μm以下であることがさらに好ましい。繊維長を上記範囲内とすることにより、繊維状セルロースの結晶領域の破壊を抑制できる。また、繊維状セルロースのスラリー粘度を適切な範囲とすることも可能となる。なお、繊維状セルロースの繊維長は、たとえばTEM、SEM、AFMによる画像解析より求めることができる。
【0031】
繊維状セルロースはI型結晶構造を有していることが好ましい。ここで、繊維状セルロースがI型結晶構造を有することは、グラファイトで単色化したCuKα(λ=1.5418Å)を用いた広角X線回折写真より得られる回折プロファイルにおいて同定できる。具体的には、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークをもつことから同定することができる。微細繊維状セルロースに占めるI型結晶構造の割合は、たとえば30%以上であることが好ましく、40%以上であることがより好ましく、50%以上であることがさらに好ましい。これにより、耐熱性と低線熱膨張率発現の点でさらに優れた性能が期待できる。結晶化度については、X線回折プロファイルを測定し、そのパターンから常法により求められる(Seagalら、Textile Research Journal、29巻、786ページ、1959年)。
【0032】
繊維状セルロースの軸比(繊維長/繊維幅)は、特に限定されないが、たとえば20以上10000以下であることが好ましく、50以上1000以下であることがより好ましい。なお、本明細書において、繊維幅が1000nm以下の繊維状セルロース(微細繊維状セルロース)は、セルロースナノファイバー(CNF)であり、繊維状セルロース(微細繊維状セルロース)にはセルロースナノクリスタル(CNC)は含まれないものとする。セルロースナノクリスタル(CNC)の軸比(繊維長/繊維幅)は通常10以上30以下程度である。また、繊維状セルロースの軸比を上記下限値以上とすることにより、たとえば繊維状セルロースを水分散液として扱う際に、希釈等のハンドリングがしやすくなる点で好ましい。
【0033】
本実施形態における繊維状セルロースは、たとえば結晶領域と非結晶領域をともに有している。結晶領域と非結晶領域をともに有し、かつ軸比が上記範囲内にある微細繊維状セルロースは、後述する微細繊維状セルロースの製造方法により実現されるものである。
【0034】
本実施形態の繊維状セルロースは、イオン性置換基を有する。イオン性置換基としては、たとえばアニオン性基およびカチオン性基のいずれか一方または双方を含むことができる。本実施形態においては、イオン性置換基としてアニオン性基を有することが特に好ましい。また、イオン性置換基は、エステル結合を解して繊維状セルロースに連結する基であることが好ましい。この場合、エステル結合は、繊維状セルロースとイオン性置換基となる化合物の脱水縮合で形成される。
【0035】
イオン性置換基としてのアニオン性基としては、たとえばリンオキソ酸基またはリンオキソ酸基に由来する置換基(単にリンオキソ酸基ということもある)、カルボキシ基またはカルボキシ基に由来する置換基(単にカルボキシ基ということもある)、および硫黄オキソ酸基または硫黄オキソ酸基に由来する置換基(単に硫黄オキソ酸基ということもある)から選択される少なくとも1種であることが好ましく、リンオキソ酸基およびカルボキシ基から選択される少なくとも1種であることがより好ましく、リンオキソ酸基であることが特に好ましい。繊維状セルロースにリンオキソ酸基を導入することで、高濃度分散液とした場合に分散液の透明性をより効果的に高めることができる。また、繊維状セルロースにリンオキソ酸基を導入することで、繊維状セルロースの耐塩性を向上させることもできる。
【0036】
リンオキソ酸基又はリンオキソ酸基に由来する置換基は、例えば下記式(1)で表される置換基である。各繊維状セルロースには、下記式(1)で表される置換基が複数種導入されていてもよい。この場合、複数導入される下記式(1)で表される置換基はそれぞれ同一であっても異なっていてもよい。
【0037】
【0038】
式(1)中、a、bおよびnは自然数であり、mは任意の数である(ただし、a=b×mである)。n個あるαおよびα’のうち少なくとも1つはO-であり、残りはR又はORである。なお、各αおよびα’の全てがO-であっても構わない。n個あるαは全て同じでも、それぞれ異なっていてもよい。βb+は有機物又は無機物からなる1価以上の陽イオンである。
【0039】
Rは、各々、水素原子、飽和-直鎖状炭化水素基、飽和-分岐鎖状炭化水素基、飽和-環状炭化水素基、不飽和-直鎖状炭化水素基、不飽和-分岐鎖状炭化水素基、不飽和-環状炭化水素基、芳香族基、またはこれらの誘導基である。また、式(1)においては、nは1であることが好ましい。
【0040】
飽和-直鎖状炭化水素基としては、メチル基、エチル基、n-プロピル基、又はn-ブチル基等が挙げられるが、特に限定されない。飽和-分岐鎖状炭化水素基としては、i-プロピル基、又はt-ブチル基等が挙げられるが、特に限定されない。飽和-環状炭化水素基としては、シクロペンチル基、又はシクロヘキシル基等が挙げられるが、特に限定されない。不飽和-直鎖状炭化水素基としては、ビニル基、又はアリル基等が挙げられるが、特に限定されない。不飽和-分岐鎖状炭化水素基としては、i-プロペニル基、又は3-ブテニル基等が挙げられるが、特に限定されない。不飽和-環状炭化水素基としては、シクロペンテニル基、シクロヘキセニル基等が挙げられるが、特に限定されない。芳香族基としては、フェニル基、又はナフチル基等が挙げられるが、特に限定されない。
【0041】
また、Rにおける誘導基としては、上記各種炭化水素基の主鎖又は側鎖に対し、カルボキシ基、カルボキシレート基(-COO-)、ヒドロキシ基、アミノ基及びアンモニウム基などの官能基から選択される少なくとも1種類が付加又は置換した状態の官能基が挙げられるが、特に限定されない。また、Rの主鎖を構成する炭素原子数は特に限定されないが、20以下であることが好ましく、10以下であることがより好ましい。Rの主鎖を構成する炭素原子数を上記範囲とすることにより、リンオキソ酸基の分子量を適切な範囲とすることができ、繊維原料への浸透を容易にし、微細セルロース繊維の収率を高めることもできる。なお、式(1)中にRが複数個存在する場合や繊維状セルロースに上記式(1)で表される複数種の置換基が導入される場合には、複数存在するRはそれぞれ同一であっても異なっていてもよい。
【0042】
βb+は有機物又は無機物からなる1価以上の陽イオンである。有機物からなる1価以上の陽イオンとしては、有機オニウムイオンを挙げることができる。有機オニウムイオンとしては、例えば、有機アンモニウムイオンや有機ホスホニウムイオンを挙げることができる。有機アンモニウムイオンとしては、例えば、脂肪族アンモニウムイオンや芳香族アンモニウムイオンを挙げることができ、有機ホスホニウムイオンとしては、例えば、脂肪族ホスホニウムイオンや芳香族ホスホニウムイオンを挙げることができる。無機物からなる1価以上の陽イオンとしては、ナトリウム、カリウム、若しくはリチウム等のアルカリ金属のイオンや、カルシウム、若しくはマグネシウム等の2価金属のイオン、水素イオン、アンモニウムイオン等が挙げられる。なお、式(1)中にβb+が複数個存在する場合や繊維状セルロースに上記式(1)で表される複数種の置換基が導入される場合には、複数存在するβb+はそれぞれ同一であっても異なっていてもよい。有機物又は無機物からなる1価以上の陽イオンとしては、βb+を含む繊維原料を加熱した際に黄変しにくく、また工業的に利用し易いナトリウム、又はカリウムのイオンが好ましいが、特に限定されない。
【0043】
リンオキソ酸基又はリンオキソ酸基に由来する置換基としては、より具体的には、リン酸基(-PO3H2)、リン酸基の塩、亜リン酸基(ホスホン酸基)(-PO2H2)、亜リン酸基(ホスホン酸基)の塩が挙げられる。また、リンオキソ酸基又はリンオキソ酸基に由来する置換基は、リン酸基が縮合した基(例えば、ピロリン酸基)、ホスホン酸が縮合した基(例えば、ポリホスホン酸基)、リン酸エステル基(例えば、モノメチルリン酸基、ポリオキシエチレンアルキルリン酸基)、アルキルホスホン酸基(例えば、メチルホスホン酸基)などであってもよい。
【0044】
また、硫黄オキソ酸基(硫黄オキソ酸基又は硫黄オキソ酸基に由来する置換基)は、例えば下記式(2)で表される置換基である。各繊維状セルロースには、下記式(2)で表される置換基が複数種導入されていてもよい。この場合、複数導入される下記式(2)で表される置換基はそれぞれ同一であっても異なっていてもよい。
【0045】
【0046】
上記構造式中、bおよびnは自然数であり、pは0または1であり、mは任意の数である(ただし、1=b×mである)。なお、nが2以上である場合、複数あるpは同一の数であってもよく、異なる数であってもよい。上記構造式中、βb+は有機物または無機物からなる1価以上の陽イオンである。有機物からなる1価以上の陽イオンとしては、有機オニウムイオンを挙げることができる。有機オニウムイオンとしては、例えば、有機アンモニウムイオンや有機ホスホニウムイオンを挙げることができる。有機アンモニウムイオンとしては、例えば、脂肪族アンモニウムイオンや芳香族アンモニウムイオンを挙げることができ、有機ホスホニウムイオンとしては、例えば、脂肪族ホスホニウムイオンや芳香族ホスホニウムイオンを挙げることができる。無機物からなる1価以上の陽イオンとしては、ナトリウム、カリウム、若しくはリチウム等のアルカリ金属のイオンや、カルシウム、若しくはマグネシウム等の2価金属のイオン、水素イオン、アンモニウムイオン等が挙げられる。なお、繊維状セルロースに上記式(2)で表される複数種の置換基が導入される場合には、複数存在するβb+はそれぞれ同一であっても異なっていてもよい。有機物又は無機物からなる1価以上の陽イオンとしては、βb+を含む繊維原料を加熱した際に黄変しにくく、また工業的に利用し易いナトリウム、又はカリウムのイオンが好ましいが、特に限定されない。
【0047】
繊維状セルロースに対するイオン性置換基の導入量は、繊維状セルロース1g(質量)あたり1.00mmol/g以上であればよく、1.10mmol/g以上であることが好ましく、1.20mmol/g以上であることがより好ましい。また、繊維状セルロースに対するイオン性置換基の導入量は、たとえば繊維状セルロース1g(質量)あたり5.20mmol/g以下であることが好ましく、3.65mmol/g以下であることがより好ましく、3.00mmol/g以下であることがさらに好ましく、2.50mmol/g以下であることが一層好ましく、2.00mmol/g以下であることが特に好ましい。ここで、単位mmol/gにおける分母は、イオン性置換基の対イオンが水素イオン(H+)であるときの繊維状セルロースの質量を示す。イオン性置換基の導入量を上記範囲内とすることにより、繊維原料の微細化を容易とすることができ、繊維状セルロースの安定性を高めることが可能となる。また、イオン性置換基の導入量を上記範囲内とすることにより、高濃度であり、かつ高透明な微細繊維状セルロース分散液が得られやすくなる。さらにイオン性置換基の導入量を上記範囲内とすることにより、繊維状セルロースの耐塩性を向上させることもできる。
【0048】
繊維状セルロースに対するイオン性置換基の導入量は、たとえば中和滴定法により測定することができる。中和滴定法による測定では、得られた繊維状セルロースを含有するスラリーに、水酸化ナトリウム水溶液などのアルカリを加えながらpHの変化を求めることにより、導入量を測定する。
【0049】
図1は、リンオキソ酸基を有する繊維状セルロース含有スラリーに対するNaOH滴下量とpHの関係を示すグラフである。繊維状セルロースに対するリンオキソ酸基の導入量は、たとえば次のように測定される。
まず、繊維状セルロースを含有するスラリーを強酸性イオン交換樹脂で処理する。なお、必要に応じて、強酸性イオン交換樹脂による処理の前に、後述の解繊処理工程と同様の解繊処理を測定対象に対して実施してもよい。
次いで、水酸化ナトリウム水溶液を加えながらpHの変化を観察し、
図1の上側部に示すような滴定曲線を得る。
図1の上側部に示した滴定曲線では、アルカリを加えた量に対して測定したpHをプロットしており、
図1の下側部に示した滴定曲線では、アルカリを加えた量に対するpHの増分(微分値)(1/mmol)をプロットしている。この中和滴定では、アルカリを加えた量に対して測定したpHをプロットした曲線において、増分(pHのアルカリ滴下量に対する微分値)が極大となる点が二つ確認される。これらのうち、アルカリを加えはじめて先に得られる増分の極大点を第1終点と呼び、次に得られる増分の極大点を第2終点と呼ぶ。滴定開始から第1終点までに必要としたアルカリ量が、滴定に使用したスラリー中に含まれる繊維状セルロースの第1解離酸量と等しくなり、第1終点から第2終点までに必要としたアルカリ量が滴定に使用したスラリー中に含まれる繊維状セルロースの第2解離酸量と等しくなり、滴定開始から第2終点までに必要としたアルカリ量が滴定に使用したスラリー中に含まれる繊維状セルロースの総解離酸量と等しくなる。そして、滴定開始から第1終点までに必要としたアルカリ量を滴定対象スラリー中の固形分(g)で除して得られる値が、リンオキソ酸基導入量(mmol/g)となる。なお、単にリンオキソ酸基導入量(またはリンオキソ酸基量)と言った場合は、第1解離酸量のことを表す。
なお、
図1において、滴定開始から第1終点までの領域を第1領域と呼び、第1終点から第2終点までの領域を第2領域と呼ぶ。例えば、リンオキソ酸基がリン酸基の場合であって、このリン酸基が縮合を起こす場合、見かけ上、リンオキソ酸基における弱酸性基量(本明細書では第2解離酸量ともいう)が低下し、第1領域に必要としたアルカリ量と比較して第2領域に必要としたアルカリ量が少なくなる。一方、リンオキソ酸基における強酸性基量(本明細書では第1解離酸量ともいう)は、縮合の有無に関わらずリン原子の量と一致する。また、リンオキソ酸基が亜リン酸基の場合は、リンオキソ酸基に弱酸性基が存在しなくなるため、第2領域に必要としたアルカリ量が少なくなるか、第2領域に必要としたアルカリ量はゼロとなる場合もある。この場合、滴定曲線において、pHの増分が極大となる点は一つとなる。
【0050】
なお、上述のリンオキソ酸基導入量(mmol/g)は、分母が酸型の繊維状セルロースの質量を示すことから、酸型の繊維状セルロースが有するリンオキソ酸基量(以降、リンオキソ酸基量(酸型)と呼ぶ)を示している。一方で、リンオキソ酸基の対イオンが電荷当量となるように任意の陽イオンCに置換されている場合は、分母を当該陽イオンCが対イオンであるときの繊維状セルロースの質量に変換することで、陽イオンCが対イオンである繊維状セルロースが有するリンオキソ酸基量(以降、リンオキソ酸基量(C型))を求めることができる。
すなわち、下記計算式によって算出する。
リンオキソ酸基量(C型)=リンオキソ酸基量(酸型)/{1+(W-1)×A/1000}
A[mmol/g]:繊維状セルロースが有するリンオキソ酸基由来の総アニオン量(リンオキソ酸基の総解離酸量)
W:陽イオンCの1価あたりの式量(たとえば、Naは23、Alは9)
【0051】
図2は、イオン性置換基としてカルボキシ基を有する繊維状セルロースを含有する分散液に対するNaOH滴下量とpHの関係を示すグラフである。繊維状セルロースに対するカルボキシ基の導入量は、たとえば次のように測定される。
まず、繊維状セルロースを含有する分散液を強酸性イオン交換樹脂で処理する。なお、必要に応じて、強酸性イオン交換樹脂による処理の前に、後述の解繊処理工程と同様の解繊処理を測定対象に対して実施してもよい。
次いで、水酸化ナトリウム水溶液を加えながらpHの変化を観察し、
図2の上側部に示すような滴定曲線を得る。
図2の上側部に示した滴定曲線では、アルカリを加えた量に対して測定したpHをプロットしており、
図2の下側部に示した滴定曲線では、アルカリを加えた量に対するpHの増分(微分値)(1/mmol)をプロットしている。この中和滴定では、アルカリを加えた量に対して測定したpHをプロットした曲線において、増分(pHのアルカリ滴下量に対する微分値)が極大となる点が一つ確認され、この極大点を第1終点と呼ぶ。ここで、
図2における滴定開始から第1終点までの領域を第1領域と呼ぶ。第1領域で必要としたアルカリ量が、滴定に使用した分散液中のカルボキシ基量と等しくなる。そして、滴定曲線の第1領域で必要としたアルカリ量(mmol)を、滴定対象の繊維状セルロースを含有する分散液中の固形分(g)で除すことで、カルボキシ基の導入量(mmol/g)を算出する。
【0052】
なお、上述のカルボキシ基導入量(mmol/g)は、分母が酸型の繊維状セルロースの質量であることから、酸型の繊維状セルロースが有するカルボキシ基量(以降、カルボキシ基量(酸型)と呼ぶ)を示している。一方で、カルボキシ基の対イオンが電荷当量となるように任意の陽イオンCに置換されている場合は、分母を当該陽イオンCが対イオンであるときの繊維状セルロースの質量に変換することで、陽イオンCが対イオンである繊維状セルロースが有するカルボキシ基量(以降、カルボキシ基量(C型))を求めることができる。すなわち、下記計算式によって算出する。
カルボキシ基量(C型)=カルボキシ基量(酸型)/{1+(W-1)×(カルボキシ基量(酸型))/1000}
W:陽イオンCの1価あたりの式量(たとえば、Naは23、Alは9)
【0053】
滴定法によるイオン性置換基量の測定においては、水酸化ナトリウム水溶液1滴の滴下量が多すぎる場合や、滴定間隔が短すぎる場合、本来より低いイオン性置換基量となるなど正確な値が得られないことがある。適切な滴下量、滴定間隔としては、例えば、0.1N水酸化ナトリウム水溶液を5~30秒に10~50μLずつ滴定するなどが望ましい。また、繊維状セルロース含有スラリーに溶解した二酸化炭素の影響を排除するため、例えば、滴定開始の15分前から滴定終了まで、窒素ガスなどの不活性ガスをスラリーに吹き込みながら測定するなどが望ましい。
【0054】
また、繊維状セルロースに対する硫黄オキソ酸基の導入量は、繊維状セルロースを含むスラリーを、湿式灰化した後、適当な倍率で希釈した試料の硫黄量を測定することで算出することができる。具体的には、繊維状セルロースを過塩素酸と濃硝酸を用いて湿式灰化した後に、適当な倍率で希釈してICP発光分析により硫黄量を測定する。供試した繊維状セルロースの絶乾質量で除した値を硫黄オキソ酸基量(単位:mmol/g)とする。
【0055】
以上、本実施形態に係る繊維状セルロース及び当該繊維状セルロースを含む分散液について説明した。また、本明細書では、別の実施形態として、繊維幅が1000nm以下であり、イオン性置換基を有する微細繊維状セルロース含有分散液であって、微細繊維状セルロースの含有量が、分散液の全質量に対して5.0質量%以上14.0質量%以下であり、微細繊維状セルロースの重合度が、235以上290以下である、微細繊維状セルロース含有分散液もまた、開示される。微細繊維状セルロース含有分散液のB型粘度計を用いて測定された粘度は、4800×103mPa・s以上30000×103mPa・s以下であることが特に好ましい。微細繊維状セルロースのイオン性置換基は、リンオキソ酸基又はリンオキソ酸基に由来する置換基(その中でもリン酸基)が特に好ましい。また、微細繊維状セルロースに対するイオン性置換基の導入量は、1.00mmol/g以上2.00mmol/g以下が特に好ましい。その他の説明については、上記の本実施形態に係る繊維状セルロース及び当該繊維状セルロースを含む分散液の説明と同様であるため、ここでは省略する。
【0056】
(微細繊維状セルロースの製造方法)
<繊維原料>
微細繊維状セルロースは、セルロースを含む繊維原料から製造される。セルロースを含む繊維原料としては、特に限定されないが、入手しやすく安価である点からパルプを用いることが好ましい。パルプとしては、たとえば木材パルプ、非木材パルプ、および脱墨パルプが挙げられる。木材パルプとしては、特に限定されないが、たとえば広葉樹クラフトパルプ(LBKP)、針葉樹クラフトパルプ(NBKP)、サルファイトパルプ(SP)、広葉樹溶解パルプ(LDKP、LDSP)、針葉樹溶解パルプ(NDKP、NDSP)、ソーダパルプ(AP)、未晒しクラフトパルプ(UKP)および酸素漂白クラフトパルプ(OKP)等の化学パルプ、セミケミカルパルプ(SCP)およびケミグラウンドウッドパルプ(CGP)等の半化学パルプ、砕木パルプ(GP)およびサーモメカニカルパルプ(TMP、BCTMP)等の機械パルプ等が挙げられる。非木材パルプとしては、特に限定されないが、たとえばコットンリンターおよびコットンリント等の綿系パルプ、麻、麦わらおよびバガス等の非木材系パルプが挙げられる。脱墨パルプとしては、特に限定されないが、たとえば古紙を原料とする脱墨パルプが挙げられる。本実施態様のパルプは上記の1種を単独で用いてもよいし、2種以上混合して用いてもよい。上記パルプの中でも、入手のしやすさという観点からは、たとえば木材パルプおよび脱墨パルプが好ましい。また、木材パルプの中でも、セルロース比率が大きく解繊処理時の微細繊維状セルロースの収率が高い観点や、パルプ中のセルロースの分解が小さく軸比の大きい長繊維の微細繊維状セルロースが得られる観点から、たとえば化学パルプがより好ましく、クラフトパルプ、サルファイトパルプがさらに好ましい。中でも、針葉樹由来のパルプは、後述する解繊処理時の解繊性が良好であり、分散液とした際の透明性がより向上するため好ましく用いられる。
【0057】
セルロースを含む繊維原料としては、たとえばホヤ類に含まれるセルロースや、酢酸菌が生成するバクテリアセルロースを利用することもできる。また、セルロースを含む繊維原料に代えて、キチン、キトサンなどの直鎖型の含窒素多糖高分子が形成する繊維を用いることもできる。
【0058】
<リンオキソ酸基導入工程>
微細繊維状セルロースの製造工程は、イオン性置換基導入工程を含む。イオン性置換基導入工程としては、例えば、リンオキソ酸基導入工程が挙げられる。リンオキソ酸基導入工程は、セルロースを含む繊維原料が有する水酸基と反応することで、リンオキソ酸基を導入できる化合物から選択される少なくとも1種の化合物(以下、「化合物A」ともいう)を、セルロースを含む繊維原料に作用させる工程である。この工程により、リンオキソ酸基導入繊維が得られることとなる。
【0059】
本実施形態に係るリンオキソ酸基導入工程では、セルロースを含む繊維原料と化合物Aの反応を、尿素及びその誘導体から選択される少なくとも1種(以下、「化合物B」ともいう)の存在下で行ってもよい。一方で、化合物Bが存在しない状態において、セルロースを含む繊維原料と化合物Aの反応を行ってもよい。
【0060】
化合物Aを化合物Bとの共存下で繊維原料に作用させる方法の一例としては、乾燥状態、湿潤状態またはスラリー状の繊維原料に対して、化合物Aと化合物Bを混合する方法が挙げられる。これらのうち、反応の均一性が高いことから、乾燥状態または湿潤状態の繊維原料を用いることが好ましく、特に乾燥状態の繊維原料を用いることが好ましい。繊維原料の形態は、特に限定されないが、たとえば綿状や薄いシート状であることが好ましい。化合物Aおよび化合物Bは、それぞれ粉末状または溶媒に溶解させた溶液状または融点以上まで加熱して溶融させた状態で繊維原料に添加する方法が挙げられる。これらのうち、反応の均一性が高いことから、溶媒に溶解させた溶液状、特に水溶液の状態で添加することが好ましい。また、化合物Aと化合物Bは繊維原料に対して同時に添加してもよく、別々に添加してもよく、混合物として添加してもよい。化合物Aと化合物Bの添加方法としては、特に限定されないが、化合物Aと化合物Bが溶液状の場合は、繊維原料を溶液内に浸漬し吸液させたのちに取り出してもよいし、繊維原料に溶液を滴下してもよい。また、必要量の化合物Aと化合物Bを繊維原料に添加してもよいし、過剰量の化合物Aと化合物Bをそれぞれ繊維原料に添加した後に、圧搾や濾過によって余剰の化合物Aと化合物Bを除去してもよい。
【0061】
本実施態様で使用する化合物Aとしては、リン原子を有し、セルロースとエステル結合を形成可能な化合物であればよく、リン酸もしくはその塩、亜リン酸もしくはその塩、脱水縮合リン酸もしくはその塩、無水リン酸(五酸化二リン)などが挙げられるが特に限定されない。リン酸としては、種々の純度のものを使用することができ、たとえば100%リン酸(正リン酸)や85%リン酸を使用することができる。亜リン酸としては、99%亜リン酸(ホスホン酸)が挙げられる。脱水縮合リン酸は、リン酸が脱水反応により2分子以上縮合したものであり、例えばピロリン酸、ポリリン酸等を挙げることができる。リン酸塩、亜リン酸塩、脱水縮合リン酸塩としては、リン酸、亜リン酸または脱水縮合リン酸のリチウム塩、ナトリウム塩、カリウム塩、アンモニウム塩などが挙げられ、これらは種々の中和度とすることができる。これらのうち、リン酸基の導入効率が高く、後述する解繊工程で解繊効率がより向上しやすく、低コストであり、かつ工業的に適用しやすい観点から、リン酸、リン酸のナトリウム塩、リン酸のカリウム塩、リン酸のアンモニウム塩または亜リン酸、亜リン酸のナトリウム塩、亜リン酸のカリウム塩、亜リン酸のアンモニウム塩が好ましく、リン酸、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸二水素アンモニウム、または亜リン酸、亜リン酸ナトリウムがより好ましい。
【0062】
繊維原料に対する化合物Aの添加量は、特に限定されないが、たとえば化合物Aの添加量をリン原子量に換算した場合において、繊維原料(絶乾質量)に対するリン原子の添加量が0.5質量%以上100質量%以下となることが好ましく、1質量%以上50質量%以下となることがより好ましく、2質量%以上30質量%以下となることがさらに好ましい。繊維原料に対するリン原子の添加量を上記範囲内とすることにより、微細繊維状セルロースの収率をより向上させることができる。一方で、繊維原料に対するリン原子の添加量を上記上限値以下とすることにより、収率向上の効果とコストのバランスをとることができる。
【0063】
本実施態様で使用する化合物Bは、上述のとおり尿素及びその誘導体から選択される少なくとも1種である。化合物Bとしては、たとえば尿素、ビウレット、1-フェニル尿素、1-ベンジル尿素、1-メチル尿素、および1-エチル尿素などが挙げられる。反応の均一性を向上させる観点から、化合物Bは水溶液として用いることが好ましい。また、反応の均一性をさらに向上させる観点からは、化合物Aと化合物Bの両方が溶解した水溶液を用いることが好ましい。
【0064】
繊維原料(絶乾質量)に対する化合物Bの添加量は、特に限定されないが、たとえば1質量%以上500質量%以下であることが好ましく、10質量%以上400質量%以下であることがより好ましく、100質量%以上350質量%以下であることがさらに好ましい。
【0065】
セルロースを含む繊維原料と化合物Aの反応においては、化合物Bの他に、たとえばアミド類またはアミン類を反応系に含んでもよい。アミド類としては、たとえばホルムアミド、ジメチルホルムアミド、アセトアミド、ジメチルアセトアミドなどが挙げられる。アミン類としては、たとえばメチルアミン、エチルアミン、トリメチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ピリジン、エチレンジアミン、ヘキサメチレンジアミンなどが挙げられる。これらの中でも、特にトリエチルアミンは良好な反応触媒として働くことが知られている。
【0066】
リンオキソ酸基導入工程においては、繊維原料に化合物A等を添加又は混合した後、当該繊維原料に対して加熱処理を施すことが好ましい。加熱処理温度としては、繊維の熱分解や加水分解反応を抑えながら、リンオキソ酸基を効率的に導入できる温度を選択することが好ましい。加熱処理温度は、たとえば50℃以上300℃以下であることが好ましく、100℃以上250℃以下であることがより好ましく、130℃以上200℃以下であることがさらに好ましい。また、加熱処理には、種々の熱媒体を有する機器を利用することができ、たとえば撹拌乾燥装置、回転乾燥装置、円盤乾燥装置、ロール型加熱装置、プレート型加熱装置、流動層乾燥装置、バンド型乾燥装置、ろ過乾燥装置、振動流動乾燥装置、気流乾燥装置、減圧乾燥装置、赤外線加熱装置、遠赤外線加熱装置、マイクロ波加熱装置、高周波乾燥装置を用いることができる。
【0067】
本実施形態に係る加熱処理においては、たとえば薄いシート状の繊維原料に化合物Aを含浸等の方法により添加した後、加熱する方法や、ニーダー等で繊維原料と化合物Aを混練又は撹拌しながら加熱する方法を採用することができる。これにより、繊維原料における化合物Aの濃度ムラを抑制して、繊維原料に含まれるセルロース繊維表面へより均一にリンオキソ酸基を導入することが可能となる。これは、乾燥に伴い水分子が繊維原料表面に移動する際、溶存する化合物Aが表面張力によって水分子に引き付けられ、同様に繊維原料表面に移動してしまう(すなわち、化合物Aの濃度ムラを生じてしまう)ことを抑制できることに起因するものと考えられる。
【0068】
また、加熱処理に用いる加熱装置は、たとえばスラリーが保持する水分、及び化合物Aと繊維原料中のセルロース等が含む水酸基等との脱水縮合(リン酸エステル化)反応に伴って生じる水分、を常に装置系外に排出できる装置であることが好ましい。このような加熱装置としては、例えば送風方式のオーブン等が挙げられる。装置系内の水分を常に排出することにより、リン酸エステル化の逆反応であるリン酸エステル結合の加水分解反応を抑制できることに加えて、繊維中の糖鎖の酸加水分解を抑制することもできる。このため、軸比の高い微細繊維状セルロースを得ることが可能となる。
【0069】
加熱処理の時間は、たとえば繊維原料から実質的に水分が除かれてから1秒以上300分以下であることが好ましく、1秒以上1000秒以下であることがより好ましく、10秒以上800秒以下であることがさらに好ましい。本実施形態では、加熱温度と加熱時間を適切な範囲とすることにより、リンオキソ酸基の導入量を好ましい範囲内とすることができる。
【0070】
リンオキソ酸基導入工程は、少なくとも1回行えば良いが、2回以上繰り返して行うこともできる。2回以上のリンオキソ酸基導入工程を行うことにより、繊維原料に対して多くのリンオキソ酸基を導入することができる。
【0071】
繊維原料に対するリンオキソ酸基の導入量は、繊維状セルロース1g(質量)あたり1.00mmol/g以上であればよく、1.10mmol/g以上であることが好ましく、1.20mmol/g以上であることがより好ましい。また、繊維原料に対するリンオキソ酸基の導入量は、たとえば繊維状セルロース1g(質量)あたり5.20mmol/g以下であることが好ましく、3.65mmol/g以下であることがより好ましく、3.00mmol/g以下であることがさらに好ましく、2.50mmol/g以下であることが一層好ましく、2.00mmol/g以下であることが特に好ましい。リンオキソ酸基の導入量を上記範囲内とすることにより、繊維原料の微細化を容易にし、微細繊維状セルロースの安定性を高めることができる。また、リンオキソ酸基の導入量を上記範囲内とすることにより、高濃度であり、かつ高透明な微細繊維状セルロース分散液が得られやすくなる。また、リンオキソ酸基の導入量を上記範囲内とすることにより、繊維状セルロースの耐塩性を向上させることもできる。
【0072】
<カルボキシ基導入工程>
微細繊維状セルロースの製造工程は、イオン性置換基導入工程として、例えば、カルボキシ基導入工程を含んでもよい。カルボキシ基導入工程は、セルロースを含む繊維原料に対し、オゾン酸化やフェントン法による酸化、TEMPO酸化処理などの酸化処理やカルボン酸由来の基を有する化合物もしくはその誘導体、またはカルボン酸由来の基を有する化合物の酸無水物もしくはその誘導体によって処理することにより行われる。
【0073】
カルボン酸由来の基を有する化合物としては、特に限定されないが、たとえばマレイン酸、コハク酸、フタル酸、フマル酸、グルタル酸、アジピン酸、イタコン酸等のジカルボン酸化合物やクエン酸、アコニット酸等のトリカルボン酸化合物が挙げられる。また、カルボン酸由来の基を有する化合物の誘導体としては、特に限定されないが、たとえばカルボキシ基を有する化合物の酸無水物のイミド化物、カルボキシ基を有する化合物の酸無水物の誘導体が挙げられる。カルボキシ基を有する化合物の酸無水物のイミド化物としては、特に限定されないが、たとえばマレイミド、コハク酸イミド、フタル酸イミド等のジカルボン酸化合物のイミド化物が挙げられる。
【0074】
カルボン酸由来の基を有する化合物の酸無水物としては、特に限定されないが、たとえば無水マレイン酸、無水コハク酸、無水フタル酸、無水グルタル酸、無水アジピン酸、無水イタコン酸等のジカルボン酸化合物の酸無水物が挙げられる。また、カルボン酸由来の基を有する化合物の酸無水物の誘導体としては、特に限定されないが、たとえばジメチルマレイン酸無水物、ジエチルマレイン酸無水物、ジフェニルマレイン酸無水物等のカルボキシ基を有する化合物の酸無水物の少なくとも一部の水素原子が、アルキル基、フェニル基等の置換基により置換されたものが挙げられる。
【0075】
カルボキシ基導入工程において、TEMPO酸化処理を行う場合には、たとえばその処理をpHが6以上8以下の条件で行うことが好ましい。このような処理は、中性TEMPO酸化処理ともいう。中性TEMPO酸化処理は、たとえばリン酸ナトリウム緩衝液(pH=6.8)に、繊維原料としてパルプと、触媒としてTEMPO(2,2,6,6-テトラメチルピペリジン-1-オキシル)等のニトロキシラジカル、犠牲試薬として次亜塩素酸ナトリウムを添加することで行うことができる。さらに亜塩素酸ナトリウムを共存させることによって、酸化の過程で発生するアルデヒドを、効率的にカルボキシ基まで酸化することができる。また、TEMPO酸化処理は、その処理をpHが10以上11以下の条件で行ってもよい。このような処理は、アルカリTEMPO酸化処理ともいう。アルカリTEMPO酸化処理は、たとえば繊維原料としてのパルプに対し、触媒としてTEMPO等のニトロキシラジカルと、共触媒として臭化ナトリウムと、酸化剤として次亜塩素酸ナトリウムを添加することにより行うことができる。
【0076】
繊維状セルロースに対するカルボキシ基の導入量は、置換基の種類によっても変わるが、たとえばTEMPO酸化によりカルボキシ基を導入する場合、繊維状セルロース1g(質量)あたり1.00mmol/g以上であればよく、1.10mmol/g以上であることが好ましく、1.20mmol/g以上であることがより好ましい。また、繊維状セルロースに対するカルボキシ基の導入量は、3.65mmol/g以下であることが好ましく、3.00mmol/g以下であることがより好ましく、2.50mmol/g以下であることがさらに好ましく、2.00mmol/g以下であることが特に好ましい。その他、置換基がカルボキシメチル基である場合、微細繊維状セルロース1g(質量)あたり5.8mmol/g以下であってもよい。カルボキシ基の導入量を上記範囲内とすることにより、繊維原料の微細化を容易とすることができ、繊維状セルロースの安定性を高めることが可能となる。また、カルボキシ基の導入量を上記範囲内とすることにより、高濃度であり、かつ高透明な微細繊維状セルロース分散液が得られやすくなる。
【0077】
<硫黄オキソ酸基導入工程>
微細繊維状セルロースの製造工程は、イオン性置換基導入工程として、例えば、硫黄オキソ酸基導入工程を含んでもよい。硫黄オキソ酸基導入工程は、セルロースを含む繊維原料が有する水酸基と硫黄オキソ酸が反応することで、硫黄オキソ酸基を有するセルロース繊維(硫黄オキソ酸基導入繊維)を得ることができる。
【0078】
硫黄オキソ酸基導入工程では、上述した<リンオキソ酸基導入工程>における化合物Aに代えて、セルロースを含む繊維原料が有する水酸基と反応することで、硫黄オキソ酸基を導入できる化合物から選択される少なくとも1種の化合物(以下、「化合物C」ともいう)を用いる。化合物Cとしては、硫黄原子を有し、セルロースとエステル結合を形成可能な化合物であればよく、硫酸もしくはその塩、亜硫酸もしくはその塩、硫酸アミドなどが挙げられるが特に限定されない。硫酸としては、種々の純度のものを使用することができ、例えば96%硫酸(濃硫酸)を使用することができる。亜硫酸としては、5%亜硫酸水が挙げられる。硫酸塩又は亜硫酸塩としては、硫酸塩又は亜硫酸塩のリチウム塩、ナトリウム塩、カリウム塩、アンモニウム塩などが挙げられ、これらは種々の中和度とすることができる。硫酸アミドとしては、スルファミン酸などを使用することができる。硫黄オキソ酸基導入工程では、上述した<リンオキソ酸基導入工程>における化合物Bを同様に用いることが好ましい。
【0079】
硫黄オキソ酸基導入工程においては、セルロース原料に硫黄オキソ酸、並びに、尿素及び/又は尿素誘導体を含む水溶液を混合した後、当該セルロース原料に対して加熱処理を施すことが好ましい。加熱処理温度としては、繊維の熱分解や加水分解反応を抑えながら、硫黄オキソ酸基を効率的に導入できる温度を選択することが好ましい。加熱処理温度は、100℃以上であることが好ましく、120℃以上であることがより好ましく、150℃以上であることがさらに好ましい。また、加熱処理温度は、300℃以下であることが好ましく、250℃以下であることがより好ましく、200℃以下であることがさらに好ましい。
【0080】
加熱処理工程では、実質的に水分がなくなるまで加熱をすることが好ましい。このため、加熱処理時間は、セルロース原料に含まれる水分量や、硫黄オキソ酸、並びに、尿素及び/又は尿素誘導体を含む水溶液の添加量によって、変動するが、例えば、10秒以上10000秒以下とすることが好ましい。加熱処理には、種々の熱媒体を有する機器を利用することができ、例えば熱風乾燥装置、撹拌乾燥装置、回転乾燥装置、円盤乾燥装置、ロール型加熱装置、プレート型加熱装置、流動層乾燥装置、バンド型乾燥装置、ろ過乾燥装置、振動流動乾燥装置、気流乾燥装置、減圧乾燥装置、赤外線加熱装置、遠赤外線加熱装置、マイクロ波加熱装置、高周波乾燥装置を用いることができる。
【0081】
セルロース原料に対する硫黄オキソ酸基の導入量は、1.00mmol/g以上であればよく、1.10mmol/g以上であることが好ましく、1.20mmol/g以上であることがより好ましい。また、セルロース原料に対する硫黄オキソ酸基の導入量は、5.00mmol/g以下であることが好ましく、3.00mmol/g以下であることがより好ましく、2.50mmol/g以下であることがさらに好ましく、2.00mmol/g以下であることが特に好ましい。硫黄オキソ酸基の導入量を上記範囲内とすることにより、繊維原料の微細化を容易とすることができ、繊維状セルロースの安定性を高めることが可能となる。また、硫黄オキソ酸基の導入量を上記範囲内とすることにより、高濃度であり、かつ高透明な微細繊維状セルロース分散液が得られやすくなる。
【0082】
<洗浄工程>
本実施形態における微細繊維状セルロースの製造方法においては、必要に応じてイオン性置換基導入繊維に対して洗浄工程を行うことができる。洗浄工程は、たとえば水や有機溶媒によりイオン性置換基導入繊維を洗浄することにより行われる。また、洗浄工程は後述する各工程の後に行われてもよく、各洗浄工程において実施される洗浄回数は、特に限定されない。
【0083】
<アルカリ処理工程>
微細繊維状セルロースを製造する場合、イオン性置換基導入工程と、後述する解繊処理工程との間に、繊維原料に対してアルカリ処理を行ってもよい。アルカリ処理の方法としては、特に限定されないが、例えばアルカリ溶液中に、イオン性置換基導入繊維を浸漬する方法が挙げられる。
【0084】
アルカリ溶液に含まれるアルカリ化合物は、特に限定されず、無機アルカリ化合物であってもよいし、有機アルカリ化合物であってもよい。本実施形態においては、汎用性が高いことから、たとえば水酸化ナトリウムまたは水酸化カリウムをアルカリ化合物として用いることが好ましい。また、アルカリ溶液に含まれる溶媒は、水または有機溶媒のいずれであってもよい。中でも、アルカリ溶液に含まれる溶媒は、水、またはアルコールに例示される極性有機溶媒などを含む極性溶媒であることが好ましく、少なくとも水を含む水系溶媒であることがより好ましい。アルカリ溶液としては、汎用性が高いことから、たとえば水酸化ナトリウム水溶液、または水酸化カリウム水溶液が好ましい。
【0085】
アルカリ処理工程におけるアルカリ溶液の温度は、特に限定されないが、たとえば5℃以上80℃以下であることが好ましく、10℃以上60℃以下であることがより好ましい。アルカリ処理工程におけるイオン性置換基導入繊維のアルカリ溶液への浸漬時間は、特に限定されないが、たとえば5分以上30分以下であることが好ましく、10分以上20分以下であることがより好ましい。アルカリ処理におけるアルカリ溶液の使用量は、特に限定されないが、たとえばイオン性置換基導入繊維の絶対乾燥質量に対して100質量%以上100000質量%以下であることが好ましく、1000質量%以上10000質量%以下であることがより好ましい。
【0086】
アルカリ処理工程におけるアルカリ溶液の使用量を減らすために、イオン性置換基導入工程の後であってアルカリ処理工程の前に、イオン性置換基導入繊維を水や有機溶媒により洗浄してもよい。アルカリ処理工程の後であって解繊処理工程の前には、取り扱い性を向上させる観点から、アルカリ処理を行ったイオン性置換基導入繊維を水や有機溶媒により洗浄することが好ましい。
【0087】
<酸処理工程>
微細繊維状セルロースを製造する場合、イオン性置換基を導入する工程と、後述する解繊処理工程の間に、繊維原料に対して酸処理を行ってもよい。例えば、イオン性置換基導入工程、酸処理、アルカリ処理及び解繊処理をこの順で行ってもよい。
【0088】
酸処理の方法としては、特に限定されないが、たとえば酸を含有する酸性液中に繊維原料を浸漬する方法が挙げられる。使用する酸性液の濃度は、特に限定されないが、たとえば10質量%以下であることが好ましく、5質量%以下であることがより好ましい。また、使用する酸性液のpHは、特に限定されないが、たとえば0以上4以下であることが好ましく、1以上3以下であることがより好ましい。酸性液に含まれる酸としては、たとえば無機酸、スルホン酸、カルボン酸等を用いることができる。無機酸としては、たとえば硫酸、硝酸、塩酸、臭化水素酸、ヨウ化水素酸、次亜塩素酸、亜塩素酸、塩素酸、過塩素酸、リン酸、ホウ酸等が挙げられる。スルホン酸としては、たとえばメタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、トリフルオロメタンスルホン酸等が挙げられる。カルボン酸としては、たとえばギ酸、酢酸、クエン酸、グルコン酸、乳酸、シュウ酸、酒石酸等が挙げられる。これらの中でも、塩酸または硫酸を用いることが特に好ましい。
【0089】
酸処理における酸溶液の温度は、特に限定されないが、たとえば5℃以上100℃以下が好ましく、20℃以上90℃以下がより好ましい。酸処理における酸溶液への浸漬時間は、特に限定されないが、たとえば5分以上120分以下が好ましく、10分以上60分以下がより好ましい。酸処理における酸溶液の使用量は、特に限定されないが、たとえば繊維原料の絶対乾燥質量に対して100質量%以上100000質量%以下であることが好ましく、1000質量%以上10000質量%以下であることがより好ましい。
【0090】
<解繊処理>
イオン性置換基導入繊維を解繊処理工程で解繊処理(機械処理)することにより、微細繊維状セルロースが得られる。解繊処理工程においては、たとえば解繊処理装置を用いることができる。解繊処理装置は、特に限定されないが、たとえば高速解繊機、グラインダー(石臼型粉砕機)、高圧ホモジナイザーや超高圧ホモジナイザー、高圧衝突型粉砕機、ボールミル、ビーズミル、ディスク型リファイナー、コニカルリファイナー、二軸混練機、振動ミル、高速回転下でのホモミキサー、超音波分散機、またはビーターなどを使用することができる。上記解繊処理装置の中でも、粉砕メディアの影響が少なく、コンタミネーションのおそれが少ない高速解繊機、高圧ホモジナイザー、超高圧ホモジナイザーを用いるのがより好ましい。
【0091】
解繊処理工程においては、たとえばイオン性置換基導入繊維を、分散媒により希釈してスラリー状にすることが好ましい。分散媒としては、水、および極性有機溶媒などの有機溶媒から選択される1種または2種以上を使用することができる。極性有機溶媒としては、特に限定されないが、たとえばアルコール類、多価アルコール類、ケトン類、エーテル類、エステル類、非プロトン性極性溶媒等が好ましい。アルコール類としては、たとえばメタノール、エタノール、イソプロパノール、n-ブタノール、イソブチルアルコール等が挙げられる。多価アルコール類としては、たとえばエチレングリコール、プロピレングリコール、グリセリンなどが挙げられる。ケトン類としては、アセトン、メチルエチルケトン(MEK)等が挙げられる。エーテル類としては、たとえばジエチルエーテル、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノn-ブチルエーテル、プロピレングリコールモノメチルエーテル等が挙げられる。エステル類としては、たとえば酢酸エチル、酢酸ブチル等が挙げられる。非プロトン性極性溶媒としてはジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリジノン(NMP)等が挙げられる。
【0092】
解繊処理時のセルロース繊維の濃度は適宜設定できるが、本実施形態においては、解繊処理時のセルロース繊維の濃度は3.0質量%以上であることが好ましく、4.0質量%以上であることがより好ましく、5.0質量%以上であることがさらに好ましく、6.0質量%以上であることが特に好ましい。また、解繊処理時のセルロース繊維の濃度の上限は特に限定されるものではないが、例えば、20.0質量%としてもよい。本実施形態においては、解繊処理時のセルロース繊維の濃度を上記範囲内とすることにより、微細繊維状セルロースが均一に分散し、かつ高透明の高濃度分散液を得ることが可能となる。また、解繊処理時のセルロース繊維の濃度を上記範囲内とすることにより、微細繊維状セルロースの生産効率を高めることが可能となり、結果として微細繊維状セルロースを含む分散液やシートといった加工物を効率よく生産することも可能となる。加えて、解繊処理時のセルロース繊維の濃度を上記範囲内とすることにより、高濃度の分散液を得ることが可能となり、輸送時や保管時のコストダウンも可能となる。
【0093】
また、イオン性置換基導入繊維を分散媒に分散させて得たスラリー中には、例えば水素結合性のある尿素などのイオン性置換基導入繊維以外の固形分が含まれていてもよい。
【0094】
<低分子化処理>
本実施形態の微細繊維状セルロースの製造方法は、上述したような工程に加えて、さらに低分子化処理を施す工程を含むことが好ましい。具体的には、上述したように、適宜処理を施したセルロース繊維に解繊処理を施して繊維幅が1000nm以下の繊維状セルロースを得る工程と、繊維状セルロースに低分子化処理を施す工程とを含むことが好ましい。すなわち、本実施形態の微細繊維状セルロースの製造方法は、例えば、セルロース繊維に解繊処理を施した後に、低分子化処理を施す工程を含むことが好ましい。なお、解繊処理工程の前に低分子化処理を施してもよく、例えば、解繊処理の前に低分子化処理を施した後に、さらに解繊処理の後に低分子化処理を施してもよい。また、低分子化処理を施した後に、解繊処理を行い、さらに低分子化処理を施した後に、再び解繊処理工程をもよい。中でも、より効果的に低分子化するために、解繊処理の後に低分子化処理を施すことが好ましい。
【0095】
本明細書において、低分子化処理を施す工程は、微細繊維状セルロースを0.5質量%濃度の水分散液とした場合、23℃における水分散液の粘度を100mPa・s以下となるように、例えば、微細繊維状セルロースの重合度を低下させる工程である。具体的には、低分子化処理を施す工程は、繊維幅が1000nm以下の繊維状セルロースの重合度を450以下にする工程であることが好ましく、400以下にする工程であることがより好ましく、350以下にする工程であることがさらに好ましく、300以下にする工程であることが一層好ましく、290以下にする工程であることがより一層好ましく、280以下にする工程であることが特に好ましい。
【0096】
低分子化処理を施す工程としては、例えば、オゾン処理工程、酵素処理工程、酸処理工程、亜臨界水処理工程等を挙げることができる。低分子化処理を施す工程は、オゾン処理工程、酵素処理工程、酸処理工程及び亜臨界水処理工程から選択される少なくとも1種であることが好ましく、オゾン処理工程及び酵素処理工程から選択される少なくとも1種であることが特に好ましい。
【0097】
オゾン処理工程では、微細繊維状セルロース分散液(スラリー)にオゾンを添加する。オゾンを添加する際には、例えば、オゾン/酸素混合気体として添加することが好ましい。この際、微細繊維状セルロース分散液(スラリー)中に含まれる微細繊維状セルロース1gに対するオゾン添加率は、1.0×10-4g以上とすることが好ましく、1.0×10-3g以上とすることがより好ましく、1.0×10-2g以上とすることがさらに好ましい。なお、微細繊維状セルロース1gに対するオゾン添加率は、1.0×101g以下とすることが好ましい。微細繊維状セルロース分散液(スラリー)にオゾンを添加した後には、10℃以上50℃以下の条件下で10秒以上10分以下撹拌を行い、その後、1分以上100分以下静置することが好ましい。
【0098】
酵素処理工程では、微細繊維状セルロース分散液(スラリー)に酵素を添加する。この際に用いる酵素は、セルラーゼ系酵素であることが好ましい。セルラーゼ系酵素は、セルロースの加水分解反応機能を有する触媒ドメインの高次構造に基づく糖質加水分解酵素ファミリーに分類される。セルラーゼ系酵素はセルロース分解特性によってエンド型グルカナーゼ(endo-glucanase)とセロビオヒドロラーゼ(cellobiohydrolase)に大別される。エンド型グルカナーゼはセルロースの非晶部分や可溶性セロオリゴ糖、又はカルボキシメチルセルロースのようなセルロース誘導体に対する加水分解性が高く、それらの分子鎖を内側からランダムに切断し、重合度を低下させる。これに対して、セロビオヒドロラーゼはセルロースの結晶部分を分解し、セロビオースを与える。また、セロビオヒドロラーゼはセルロース分子の末端から加水分解し、エキソ型或いはプロセッシブ酵素とも呼ばれる。酵素処理工程において使用する酵素は特に限定されるものではないが、エンド型グルカナーゼを使用することが好ましい。
【0099】
酵素処理工程では、微細繊維状セルロース1gに対して酵素活性が0.1nkat以上となるよう酵素を添加することが好ましく、1nkat以上となるよう酵素を添加することがより好ましく、10nkat以上となるよう酵素を添加することがさらに好ましい。また、微細繊維状セルロース1gに対して酵素活性が100000nkat以下となるよう酵素を添加することが好ましく、50000nkat以下となるよう酵素を添加することがより好ましく10000nkat以下となるよう酵素を添加することがさらに好ましい。微細繊維状セルロース分散液(スラリー)に酵素を添加した後には、0℃以上80℃未満の条件下で1分以上100時間以下処理を行い、その後、80℃以上の条件下に置くなどして酵素を失活させることが好ましい。
【0100】
酸処理工程は、例えば、硫酸、硝酸、塩酸、臭化水素酸、ヨウ化水素酸、次亜塩素酸、亜塩素酸、塩素酸、過塩素酸、リン酸、ホウ酸、スルホン酸(例えばメタンスルホン酸)等と混合する工程である。中でも、酸処理工程は、次亜塩素酸と混合する工程(次亜塩素酸処理工程)であることが好ましい。次亜塩素酸処理工程では、微細繊維状セルロース分散液(スラリー)に次亜塩素酸ナトリウムを用いることができる。次亜塩素酸ナトリウムの添加率は微細繊維状セルロース1gに対して1.0×10-4g以上であることが好ましく、1.0×10-3g以上であることがより好ましく、1.0×10-2g以上であることがさらに好ましく、1.0×10-1g以上であることが特に好ましい。また、次亜塩素酸ナトリウム添加率は微細繊維状セルロース1gに対して1.0×102g以下であることが好ましい。微細繊維状セルロース分散液(スラリー)に次亜塩素酸ナトリウムを添加した後には、10℃以上50℃以下の条件下で1分以上10時間以下撹拌を行うことが好ましい。
【0101】
亜臨界水処理工程では、微細繊維状セルロース分散液(スラリー)に高温高圧処理を施し、亜臨界状態とする。微細繊維状セルロースは亜臨界状態において加水分解される。具体的には、微細繊維状セルロース分散液(スラリー)を反応容器に入れた後、150℃以上500℃以下、好ましくは150℃以上350℃以下となるまで昇温し、反応容器内の圧力を10MPa以上80MPa以下、好ましくは10MPa以上20MPa以下に加圧する。この際の加熱加圧時間は0.1秒以上100秒以下であることが好ましく、3秒以上50秒以下であることがより好ましい。
【0102】
低分子化処理工程の後には、さらに解繊処理工程を設けてることが好ましい。中でも、低分子化処理工程の前後に解繊処理工程を設けることが好ましい。この場合、解繊処理工程としては、上述した工程と同様の工程を例示することができるが、中でも、低分子化処理工程後の解繊処理工程では、高圧ホモジナイザー又は超高圧ホモジナイザーを用いることが好ましい。
【0103】
なお、本実施形態は、イオン性置換基を有するセルロース繊維を解繊処理する工程と、低分子化処理とを少なくとも1工程ずつ含む、微細繊維状セルロースの製造方法に関するものであってもよい。微細繊維状セルロースの製造方法がイオン性置換基を有するセルロース繊維を解繊処理する工程と、低分子化処理とを少なくとも1工程ずつ含むことで、解繊処理時のセルロース繊維の濃度をより高めることができる。これにより、高濃度の微細繊維状セルロース分散液を効率よく得ることができる。なお、この場合、微細繊維状セルロースの製造方法は、解繊処理工程、低分子化処理工程及び解繊処理工程をこの順で含むものであってもよく、低分子化処理工程、解繊処理工程、低分子化処理工程及び解繊処理工程をこの順で含むものであってもよい。なお、最初の解繊処理工程もしくは低分子化処理工程の前には、上述したようなイオン性置換基導入工程や洗浄工程、アルカリ処理工程等が設けられることが好ましい。このような微細繊維状セルロースの製造方法において、低分子化処理工程は、オゾン処理工程、酵素処理工程、酸処理工程及び亜臨界水処理工程から選択される少なくとも1種であることが好ましく、オゾン処理工程及び酵素処理工程から選択される少なくとも1種であることが特に好ましい。
【0104】
(繊維状セルロース分散液)
本実施形態は、上述した微細繊維状セルロースを含む繊維状セルロース分散液に関する発明であってもよい。繊維状セルロース分散液は、微細繊維状セルロースを、水を含む溶媒に分散させてなる繊維状セルロース分散液(微細繊維状セルロース含有分散液、微細繊維状セルロース含有スラリーもしくはスラリーともいう)であることが好ましく、水を主成分とする溶媒に分散させてなる繊維状セルロース水分散液であることがより好ましい。
【0105】
繊維状セルロース分散液中における微細繊維状セルロースの含有量(微細繊維状セルロースの濃度)は、繊維状セルロース分散液の全質量に対して、3.0質量%以上であることが好ましく、4.0質量%以上であることがより好ましく、5.0質量%以上であることがさらに好ましく、6.0質量%以上であることが特に好ましい。また、微細繊維状セルロースの含有量(微細繊維状セルロースの濃度)は、繊維状セルロース分散液の全質量に対して、30.0質量%以下であることが好ましく、20.0質量%以下であることがより好ましい。
【0106】
繊維状セルロース分散液を、微細繊維状セルロース濃度が0.5質量%の繊維状セルロース分散液とした場合、該分散液の23℃における粘度は、108mPa・s以上であればよく、250mPa・s以上であることが好ましく、350mPa・s以上であることがより好ましい。また、該分散液の23℃における粘度は、1000mPa・s以下であればよく、700mPa・s以下であることが好ましい。微細繊維状セルロース分散液の粘度はB型粘度計を用いて、23℃で、回転速度3rpmとし、測定開始から3分後の粘度値である。B型粘度計としては、例えば、BLOOKFIELD社製、アナログ粘度計T-LVTを用いることができる。なお、微細繊維状セルロースを0.5質量%濃度の繊維状セルロース分散液を調製する際には、ディスパーザーにて4000rpmで3分間撹拌した後、自転公転型スーパーミキサー(シンキー社製、ARE-250)にて微細繊維状セルロース分散液の脱泡処理を行う。
【0107】
微細繊維状セルロースを6.0質量%濃度の水分散液とした場合、23℃における水分散液の粘度は、2,000,000mPa・s以上であることが好ましく、3,000,000mPa・s以上であることがより好ましく、4,000,000mPa・s以上であること特に好ましい。また、微細繊維状セルロースを6.0質量%濃度の水分散液とした場合、23℃における水分散液の粘度は、30,000,000mPa・s以下であることが好ましく、20,000,000mPa・s以下であることがより好ましく、10,000,000mPa・s以下であることが特に好ましい。また、微細繊維状セルロースを13.0質量%濃度の水分散液とした場合、23℃における水分散液の粘度は、5,000,000mPa・s以上であることが好ましく、10,000,000mPa・s以上であることがより好ましく、18,000,000mPa・s以上であることが特に好ましい。また、微細繊維状セルロースを13.0質量%濃度の水分散液とした場合、23℃における水分散液の粘度は、100,000,000mPa・s以下であることが好ましく、50,000,000mPa・s以下であることがより好ましく、30,000,000mPa・s以下であること特に好ましい。6.0質量%濃度の水分散液もしくは、13.0質量%濃度の水分散液の粘度はB型粘度計を用いて、23℃で、回転速度0.3rpmとし、測定開始から3分後の粘度値である。B型粘度計としては、例えば、BLOOKFIELD社製、デジタル粘度計DV2Tを用いることができる。なお、微細繊維状セルロースを6.0質量%濃度もしくは13.0質量%濃度の水分散液に調製した際には、ディスパーザーにて4000rpmで3分間撹拌した後、自転公転型スーパーミキサー(シンキー社製、ARE-250)にて微細繊維状セルロース分散液の脱泡処理を行う。6.0質量%濃度もしくは13.0質量%濃度の水分散液に調製する際には、6.0質量%濃度もしくは13.0質量%濃度よりも高濃度の水分散液を得て、該水分散液を水で希釈することにより6.0質量%濃度もしくは13.0質量%濃度の水分散液を得てもよい。
【0108】
繊維状セルロース分散液を、微細繊維状セルロース濃度が0.2質量%の繊維状セルロース分散液とした場合、該分散液のヘーズは、80%以下であることが好ましく、60%以下であることがより好ましく、40%以下であることがさらに好ましく、30%以下であることが一層好ましく、15%以下であることがより一層好ましく、5%以下であることが特に好ましい。分散液のヘーズが上記範囲であることは、繊維状セルロース分散液の透明度が高く、微細繊維状セルロースの分散性が良好であることを意味する。ここで、微細繊維状セルロース分散液(微細繊維状セルロース濃度0.2質量%)のヘーズは、光路長1cmの液体用ガラスセル(藤原製作所製、MG-40、逆光路)に繊維状セルロース分散液を入れ、JIS K 7136:2000に準拠し、ヘーズメーター(村上色彩技術研究所社製、HM-150)を用いて測定される値である。なお、測定対象の分散液は測定前に、23℃、相対湿度50%の環境下に24時間静置する。また、ヘーズ測定の際のゼロ点測定は、同ガラスセルに入れたイオン交換水で行う。
【0109】
繊維状セルロース分散液は、水を含む溶媒と、微細繊維状セルロースに加えて他の添加剤を含有していてもよい。他の添加剤としては、例えば、消泡剤、潤滑剤、紫外線吸収剤、染料、顔料、安定剤、界面活性剤、防腐剤(例えば、フェノキシエタノール)等を挙げることができる。また、繊維状セルロース分散液は、任意成分としては、親水性高分子、親水性低分子、有機イオン等を含有していてもよい。
【0110】
親水性高分子は、親水性の含酸素有機化合物(但し、上記セルロース繊維は除く)であることが好ましく、含酸素有機化合物としては、例えば、ポリエチレングリコール、ポリエチレンオキサイド、カゼイン、デキストリン、澱粉、変性澱粉、ポリビニルアルコール、変性ポリビニルアルコール(アセトアセチル化ポリビニルアルコール等)、ポリエチレンオキサイド、ポリビニルピロリドン、ポリビニルメチルエーテル、ポリアクリル酸塩類、アクリル酸アルキルエステル共重合体、ウレタン系共重合体、セルロース誘導体(ヒドロキシエチルセルロース、カルボキシエチルセルロース、カルボキシメチルセルロース等)等が挙げられる。
【0111】
親水性低分子は、親水性の含酸素有機化合物であることが好ましく、多価アルコールであることがさらに好ましい。多価アルコールとしては、例えば、グリセリン、ソルビトール、エチレングリコール等が挙げられる。
【0112】
有機イオンとしては、テトラアルキルアンモニウムイオンやテトラアルキルホスホニウムイオンを挙げることができる。テトラアルキルアンモニウムイオンとしては、例えば、テトラメチルアンモニウムイオン、テトラエチルアンモニウムイオン、テトラプロピルアンモニウムイオン、テトラブチルアンモニウムイオン、テトラペンチルアンモニウムイオン、テトラヘキシルアンモニウムイオン、テトラヘプチルアンモニウムイオン、トリブチルメチルアンモニウムイオン、ラウリルトリメチルアンモニウムイオン、セチルトリメチルアンモニウムイオン、ステアリルトリメチルアンモニウムイオン、オクチルジメチルエチルアンモニウムイオン、ラウリルジメチルエチルアンモニウムイオン、ジデシルジメチルアンモニウムイオン、ラウリルジメチルベンジルアンモニウムイオン、トリブチルベンジルアンモニウムイオンが挙げられる。テトラアルキルホスホニウムイオンとしては、例えばテトラメチルホスホニウムイオン、テトラエチルホスホニウムイオン、テトラプロピルホスホニウムイオン、テトラブチルホスホニウムイオン、およびラウリルトリメチルホスホニウムイオンが挙げられる。また、テトラプロピルオニウムイオン、テトラブチルオニウムイオンとして、それぞれテトラn-プロピルオニウムイオン、テトラn-ブチルオニウムイオンなども挙げることができる。
【0113】
(用途)
本実施形態の微細繊維状セルロースは、高濃度の分散液になり得る。このため、微細繊維状セルロースを高濃度で添加したい用途に特に好ましく用いられる。例えば、本実施形態の微細繊維状セルロースは、食品、化粧品、セメント、塗料(自動車、船舶、航空機等の乗り物塗装用、建材用、日用品用など)、インク、医薬品などへの添加物として用いることができる。また、本実施形態の微細繊維状セルロースは、樹脂系材料やゴム系材料に添加したりすることで、日用品への応用も可能である。
【0114】
また、本実施形態の微細繊維状セルロースを高濃度で含む分散液からシートや塗膜を形成した場合には、シートや塗膜中における微細繊維状セルロースの含有量を高めることができる。これにより、得られるシートや塗膜の機械的強度を高めることができる。例えば、シートや塗膜の引張強度や引張弾性率をより効果的に高めることができる。このように本実施形態の微細繊維状セルロース分散液はシート形成用分散液であることが好ましく、本実施形態は、上述した微細繊維状セルロースを含むシートに関するものであってもよい。
【0115】
本実施形態の微細繊維状セルロースを高濃度で含む分散液からシートや塗膜を形成する際には、微細繊維状セルロース分散液を基材上に塗工する塗工工程、または該シート形成用組成物を抄紙する抄紙工程を含むことが好ましい。このようにして得られたシートには、さらに、樹脂層や無機層が積層されてもよい。
【0116】
また、本実施形態は、以下の構成を有するものであってもよい。
<101> 繊維幅が1000nm以下であり、イオン性置換基を有する微細繊維状セルロース含有分散液であって、
微細繊維状セルロースの含有量が、分散液の全質量に対して5.0質量%以上14.0質量%以下であり、
微細繊維状セルロースの重合度が、235以上290以下である、
微細繊維状セルロース含有分散液。
<102> B型粘度計を用いて測定された粘度が、4800×103mPa・s以上30000×103mPa・s以下である、<101>に記載の微細繊維状セルロース含有分散液。
<103> イオン性置換基が、リンオキソ酸基又はリンオキソ酸基に由来する置換基である、<101>又は<102>に記載の微細繊維状セルロース含有分散液。
<104> 微細繊維状セルロースに対するイオン性置換基の導入量が、1.00mmol/g以上2.00mmol/g以下である、<101>~<103>のいずれかに記載の微細繊維状セルロース含有分散液。
【0117】
<111> イオン性置換基を1.00mmol/g以上有するセルロース繊維に解繊処理を施して繊維幅が1000nm以下の繊維状セルロースを得る工程と、
繊維状セルロースに低分子化処理を施す工程とを含む、繊維状セルロースの製造方法であって、
繊維状セルロースを0.5質量%濃度の水分散液とした場合、23℃における水分散液の粘度が108mPa・s以上1000mPa・s以下である、繊維状セルロースの製造方法。
<112> 解繊処理を施して繊維幅が1000nm以下の繊維状セルロースを得る工程におけるセルロース繊維の濃度は、3.0質量%以上である、<111>に記載の繊維状セルロースの製造方法。
<113> 低分子化処理を施す工程は、繊維状セルロースの重合度を450以下にする工程である、<111>又は<112>に記載の繊維状セルロースの製造方法。
<114> 低分子化処理を施す工程は、オゾン処理工程、酵素処理工程、酸処理工程及び亜臨界水処理工程から選択される少なくとも1種である、<111>~<113>のいずれかに記載の繊維状セルロースの製造方法。
<115> 低分子化処理を施す工程の後に、さらに解繊処理を施す工程を含む、<111>~<114>のいずれかに記載の繊維状セルロースの製造方法。
<116> <111>~<115>のいずれかに記載の繊維状セルロースの製造方法で製造される繊維状セルロース。
【実施例】
【0118】
以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
【0119】
<製造例1>
〔リン酸化パルプの製造〕
原料パルプとして、王子製紙製の針葉樹クラフトパルプ(固形分93質量%、坪量245g/m2シート状、離解してJIS P 8121-2:2012に準じて測定されるカナダ標準濾水度(CSF)が700ml)を使用した。この原料パルプに対してリンオキソ酸化処理を次のようにして行った。まず、上記原料パルプ100質量部(絶乾質量)に、リン酸二水素アンモニウムと尿素の混合水溶液を添加して、リン酸二水素アンモニウム45質量部、尿素120質量部、水150質量部となるように調整し、薬液含浸パルプを得た。次いで、得られた薬液含浸パルプを165℃の熱風乾燥機で250秒加熱し、パルプ中のセルロースにリン酸基を導入し、リン酸化パルプを得た。
【0120】
次いで、得られたリン酸化パルプに対して洗浄処理を行った。洗浄処理は、リン酸化パルプ100g(絶乾質量)に対して10Lのイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌した後、濾過脱水する操作を繰り返すことにより行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。
【0121】
次いで、洗浄後のリン酸化パルプに対して中和処理を次のようにして行った。まず、洗浄後のリン酸化パルプを10Lのイオン交換水で希釈した後、撹拌しながら1Nの水酸化ナトリウム水溶液を少しずつ添加することにより、pHが12以上13以下のリン酸化パルプスラリーを得た。次いで、当該リン酸化パルプスラリーを脱水して、中和処理が施されたリン酸化パルプを得た。次いで、中和処理後のリン酸化パルプに対して、上記洗浄処理を行いリン酸化パルプAを得た。
【0122】
これにより得られたリン酸化パルプAに対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1230cm-1付近にリン酸基に基づく吸収が観察され、パルプにリン酸基が付加されていることが確認された。
【0123】
また、得られたリン酸化パルプAを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。
【0124】
<製造例2>
製造例1で得られた洗浄後のリン酸化パルプに対して、更に製造例1のリン酸化処理及び洗浄処理を1回ずつ行うことでリン酸化パルプBを得た。
【0125】
<製造例3>
製造例1で用いた原料パルプを王子製紙社製広葉樹溶解パルプ(ドライシート)とした以外は製造例1と同様の処理を行い、リン酸化パルプCを得た。
【0126】
<製造例4>
製造例1で用いた原料パルプをセニブラ社製広葉樹クラフトパルプ(ドライシート)とした以外は製造例1と同様の処理を行い、リン酸化パルプDを得た。
【0127】
<製造例5>
[前加水分解]
針葉樹材チップを絶乾質量で300g採取し、水道水10リットルに一晩浸漬した。その後、チップを取り出して400メッシュの篩に空け、濾別した。この脱水後のチップを2.5リットル容量のオートクレーブに入れ、液質量比(絶乾後のチップの質量を1とした場合)が3になるように水道水を加えた後、165℃で30分間加熱し、前加水分解を行った。この時のPファクターは380であった。
[蒸解]
前加水分解後、オートクレーブの脱気コックから廃ガスを抜き出し、オートクレーブ内の圧力が0になったことを確認した後、処理後のチップを400メッシュの篩に空け、濾別した。濾別後のチップを再度2.5リットル容量のオートクレーブに入れ、液比が5となるように蒸解液を加え、蒸解温度165℃、蒸解時間120分の条件下でクラフト蒸解を行った。蒸解液は、チップの絶乾質量に対して活性アルカリを21質量%含み、硫化度は28%であった。蒸解後、黒液とパルプを分離し、パルプを8カットのスクリーンプレートを備えたフラットスクリーンで精選して、蒸解後パルプを得た。
[漂白]
蒸解後パルプを絶乾質量で70g採取し、絶乾パルプの全質量に対して苛性ソーダを2.0質量%添加し、次いでイオン交換水で希釈してパルプ濃度を10質量%に調整した。このスラリーを間接加熱式オートクレーブに入れ、99.9%の圧縮酸素ガスを注入してゲージ圧力を0.5MPaとし、100℃で60分間、酸素晒を行った。酸素晒終了後、ゲージ圧力が0.05MPa以下になるまで減圧し、パルプをオートクレーブから取り出し、イオン交換水7リットルを用いて洗浄した後、脱水した。このようにして、酸素晒後パルプを得た。
酸素晒後パルプを絶乾質量で60g採取し、プラスチック袋に入れ、イオン交換水を添加してパルプ濃度を10質量%に調整した。その後、絶乾パルプの全質量に対して1.8質量%の二酸化塩素を添加し、温度が70℃の恒温水槽に70分間浸漬した(D0段処理)。D0段処理後に得られたパルプをイオン交換水で3質量%に希釈した後、ブフナーロートで脱水、洗浄した。D0段処理後のパルプをプラスチック袋に入れ、イオン交換水を加えてパルプ濃度を10質量%に調整した後、絶乾パルプの全質量に対して苛性ソーダを1.0質量%、過酸化水素を0.3質量%となるように添加してよく混合した。その後、温度が70℃の恒温水槽に100分間浸漬してE/P段処理を行った。得られたパルプをイオン交換水で3質量%に希釈した後、ブフナーロートで脱水、洗浄した。E/P段処理後のパルプをプラスチック袋に入れ、イオン交換水を用いてパルプ濃度10質量%に調整した後、絶乾パルプの全質量に対して二酸化塩素を0.3質量%添加し、温度が70℃の恒温水槽に80分間浸漬し、D1段漂白処理を行った。得られたパルプをイオン交換水で3質量%に希釈した後、ブフナーロートで脱水、洗浄し、漂白パルプを得た。
[リン酸化]
この漂白パルプにリン酸二水素アンモニウム45質量部、尿素120質量部、水150質量部となるように調整し、薬液含浸パルプを得た。次いで、得られた薬液含浸パルプを165℃の熱風乾燥機で250秒加熱し、パルプ中のセルロースにリン酸基を導入し、リン酸化パルプEを得た。
【0128】
<製造例6>
[TEMPO酸化パルプの製造]
原料パルプとして、王子製紙製の針葉樹クラフトパルプ(未乾燥)を使用した。この原料パルプに対してアルカリTEMPO酸化処理を次のようにして行った。まず、乾燥質量100質量部相当の上記原料パルプと、TEMPO(2,2,6,6-テトラメチルピペリジン-1-オキシル)1.6質量部と、臭化ナトリウム10質量部を、水10000質量部に分散させた。次いで、13質量%の次亜塩素酸ナトリウム溶液を、1.0gのパルプに対して3.8mmolになるように加えて反応を開始した。反応中は0.5Mの水酸化ナトリウム水溶液を滴下してpHを10以上10.5以下に保ち、pHに変化が見られなくなった時点で反応終了と見なした。
【0129】
次いで、得られたTEMPO酸化パルプに対して洗浄処理を行った。洗浄処理は、TEMPO酸化後のパルプスラリーを脱水し、脱水シートを得た後、5000質量部のイオン交換水を注ぎ、撹拌して均一に分散させた後、濾過脱水する操作を繰り返すことにより行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。
【0130】
この脱水シートに対して、残存するアルデヒド基の追酸化処理を次のようにして行った。乾燥質量100質量部相当の上記脱水シートを、0.1mol/L酢酸緩衝液(pH4.8)10000質量部に分散させた。次いで80質量%の亜塩素酸ナトリウム113質量部を加え、直ちに密閉した後、マグネチックスターラーを用いて500rpmで撹拌しながら室温で48時間反応させ、パルプスラリーを得た。
【0131】
次いで、得られた追酸化済みTEMPO酸化パルプに対して洗浄処理を行った。洗浄処理は、追酸化後のパルプスラリーを脱水し、脱水シートを得た後、5000質量部のイオン交換水を注ぎ、撹拌して均一に分散させた後、濾過脱水する操作を繰り返すことにより行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とし、TEMPO酸化パルプAを得た。
【0132】
また、得られたTEMPO酸化パルプAを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。
【0133】
<製造例7>
製造例6で用いた原料パルプを王子製紙社製広葉樹溶解パルプ(未乾燥)とした以外は製造例6と同様の処理を行い、TEMPO酸化パルプBを得た。
【0134】
<製造例8>
製造例6で用いた原料パルプを王子製紙社製広葉樹クラフトパルプ(未乾燥)とした以外は製造例6と同様の処理を行い、TEMPO酸化パルプCを得た。
【0135】
<製造例9>
〔亜リン酸化パルプの製造〕
原料パルプとして、王子製紙製の針葉樹クラフトパルプ(固形分93質量%、坪量245g/m2シート状、離解してJIS P 8121-2:2012に準じて測定されるカナダ標準濾水度(CSF)が700ml)を使用した。この原料パルプに対してリンオキソ酸化処理を次のようにして行った。まず、上記原料パルプ100質量部(絶乾質量)に、亜リン酸(ホスホン酸)と尿素の混合水溶液を添加して、亜リン酸(ホスホン酸)33質量部、尿素120質量部、水150質量部となるように調製し、薬液含浸パルプを得た。次いで、得られた薬液含浸パルプを165℃の熱風乾燥機で250秒加熱し、パルプ中のセルロースに亜リン酸基を導入し、亜リン酸化パルプを得た。
【0136】
次いで、得られた亜リン酸化パルプに対して洗浄処理を行った。洗浄処理は、亜リン酸化パルプ100g(絶乾質量)に対して10Lのイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌した後、濾過脱水する操作を繰り返すことにより行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。
【0137】
次いで、洗浄後の亜リン酸化パルプに対して中和処理を次のようにして行った。まず、洗浄後の亜リン酸化パルプを10Lのイオン交換水で希釈した後、撹拌しながら1Nの水酸化ナトリウム水溶液を少しずつ添加することにより、pHが12以上13以下の亜リン酸化パルプスラリーを得た。次いで、当該亜リン酸化パルプスラリーを脱水して、中和処理が施された亜リン酸化パルプを得た。次いで、中和処理後の亜リン酸化パルプに対して、上記洗浄処理を行い亜リン酸化パルプAを得た。
【0138】
これにより得られた亜リン酸化パルプAに対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1210cm-1付近に亜リン酸基の互変異性体であるホスホン酸基のP=Oに基づく吸収が観察され、パルプに(亜)リン酸基(ホスホン酸基)が付加されていることが確認された。また、得られた亜リン酸化パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。
【0139】
<製造例10>
製造例9で用いた原料パルプを王子製紙社製広葉樹溶解パルプ(ドライシート)とした以外は製造例9と同様の処理を行い、亜リン酸化パルプBを得た。
【0140】
<製造例11>
製造例9で用いた原料パルプをセニブラ社製広葉樹クラフトパルプ(ドライシート)とした以外は製造例9と同様の処理を行い、亜リン酸化パルプCを得た。
【0141】
<製造例12>
〔硫黄オキソ酸化パルプの製造〕
リン酸化パルプの製造においてリン酸二水素アンモニウムの代わりにアミド硫酸(スルファミン酸)38質量部を用いて、加熱時間を20分間に延長した以外は、製造例1と同様に操作を行い、硫酸化パルプを得た。
【0142】
これにより得られた硫酸化パルプに対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1220-1260cm-1付近に硫酸基(スルホン基に基づく吸収が観察され、パルプに硫酸基(スルホン基)が付加されていることが確認された。また、X線回折により、得られた硫酸化パルプがセルロースI型結晶を維持していることが確認された。
【0143】
<実施例1>
製造例1で得られたリン酸化パルプAにイオン交換水を添加し、固形分濃度が6.0質量%のスラリーを調製した。このスラリーを、高圧ホモジナイザーで200MPaの圧力にて1回処理し、微細繊維状セルロースを含む繊維状セルロース分散液を得た。この分散液1000g(固形分濃度6.0質量%、固形分60g)に対して、21000nkatの活性を有する酵素含有液を添加し温度50℃で酵素処理した。この時の酵素添加量は微細繊維状セルロース1gに対して350nkatとなるようにした。その後、高圧ホモジナイザーで200MPaの圧力にて3回処理し微細繊維状セルロース分散液を得た。得られた分散液の温度を100℃とし、酵素を熱失活させた。後述する〔リンオキソ酸基量の測定〕に記載の測定方法で測定されるリン酸基量(第1解離酸量)は、1.45mmol/gだった。なお、総解離酸量は、2.45mmol/gであった。
【0144】
<実施例2>
製造例1で得られたリン酸化パルプAにイオン交換水を添加し、固形分濃度が7.0質量%のスラリーを調製した。このスラリーを、高圧ホモジナイザーで200MPaの圧力にて1回処理し、1000g(固形分濃度7.0質量%、固形分70g)に対して、次亜塩素酸ナトリウム溶液(有効塩素濃度12質量%)を170g添加し、室温でよく混ぜた。その後、高圧ホモジナイザーで200MPaの圧力にて3回処理し微細繊維状セルロース分散液を得た。
【0145】
<実施例3>
実施例1の繊維状セルロース分散液1000g(固形分濃度6.0質量%、固形分60g)に対して、微細繊維状セルロース1質量部に対して0.1質量部の割合となるようにオゾンを添加し、密閉容器内において25℃で撹拌したのち、30分間静置した。次いで、容器を開放して5時間撹拌し、分散液中に残存するオゾンを揮散させた。その後、高圧ホモジナイザーで200MPaの圧力にて3回処理し微細繊維状セルロース分散液を得た。
【0146】
<実施例4>
製造例6で得られたTEMPO酸化パルプAを使用した以外は、実施例1と同様の方法で微細繊維状セルロース分散液を得た。後述する測定方法で測定されるカルボキシ基量は、1.30mmolgだった。
【0147】
<実施例5>
製造例6で得られたTEMPO酸化パルプAを使用した以外は、実施例2と同様の方法で微細繊維状セルロース分散液を得た。
【0148】
<実施例6>
製造例6で得られたTEMPO酸化パルプAを使用した以外は、実施例3と同様の方法で微細繊維状セルロース分散液を得た。
【0149】
<実施例7>
製造例9得られた亜リン酸化パルプAを使用した以外は、実施例1と同様の方法で微細繊維状セルロース分散液を得た。後述する〔リンオキソ酸基量の測定〕に記載の測定方法で測定される亜リン酸基量(第1解離酸量)は、1.51mmol/gだった。なお、総解離酸量は、1.54mmol/gであった。
【0150】
<実施例8>
製造例9で得られた亜リン酸化Aパルプを使用した以外は、実施例2と同様の方法で微細繊維状セルロース分散液を得た。
【0151】
<実施例9>
製造例9で得られた亜リン酸化パルプAを使用した以外は、実施例3と同様の方法で微細繊維状セルロース分散液を得た。
【0152】
<実施例10>
製造例1で得られたリン酸化パルプAをシングルディスクリファイナーで1回処理し、微細繊維状セルロースを含む繊維状セルロース分散液を得た。その他の処理は、実施例1と同様にして微細繊維状セルロース分散液を得た。
【0153】
<実施例11>
製造例6で得られたTEMPO酸化パルプAをシングルディスクリファイナーで1回処理し、微細繊維状セルロースを含む繊維状セルロース分散液を得た。その他の処理は、実施例3と同様にして微細繊維状セルロース分散液を得た。
【0154】
<実施例12>
製造例9で得られた亜リン酸化パルプAをシングルディスクリファイナーで1回処理し、微細繊維状セルロースを含む繊維状セルロース分散液を得た。その他の処理は、実施例3と同様にして微細繊維状セルロース分散液を得た。
【0155】
<実施例13>
製造例1で得られたリン酸化パルプAにイオン交換水を添加し、固形分濃度が6.0質量%のスラリーを調製した。このスラリー1000g(固形分濃度6.0質量%、固形分60g)に対して、21000nkatの活性を有する酵素含有液を添加し温度50℃で酵素処理した。この時の酵素添加量は微細繊維状セルロース1gに対して350nkatとなるようにした。その後、高圧ホモジナイザーで200MPaの圧力にて4回処理し微細繊維状セルロース分散液を得た。得られた分散液の温度を100℃とし、酵素を熱失活させた。
【0156】
<実施例14>
製造例1で得られたリン酸化パルプAにイオン交換水を添加し、固形分濃度が6.0質量%のスラリーを調製した。このスラリー1000g(固形分濃度6.0質量%、固形分60g)に対して、微細繊維状セルロース1質量部に対して0.1質量部の割合となるようにオゾンを添加し、密閉容器内において25℃で撹拌したのち、30分間静置した。次いで、容器を開放して5時間撹拌し、分散液中に残存するオゾンを揮散させた。その後、高圧ホモジナイザーで200MPaの圧力にて4回処理し微細繊維状セルロース分散液を得た。
【0157】
<実施例15>
製造例6で得られたTEMPO酸化パルプAを使用した以外は、実施例14と同様の方法で微細繊維状セルロース分散液を得た。
【0158】
<実施例16>
製造例9で得られた亜リン酸化パルプAを使用した以外は、実施例13と同様の方法で微細繊維状セルロース分散液を得た。
【0159】
<実施例17>
製造例3で得られたリン酸化パルプCを使用した以外は、実施例1と同様の方法で微細繊維状セルロース分散液を得た。
【0160】
<実施例18>
製造例5で得られたリン酸化パルプEを使用した以外は、実施例1と同様の方法で微細繊維状セルロース分散液を得た。
【0161】
<実施例19>
製造例4で得られたリン酸化パルプDを使用した以外は、実施例3と同様の方法で微細繊維状セルロース分散液を得た。
【0162】
<実施例20>
製造例7で得られたTEMPO酸化パルプBを使用した以外は、実施例3と同様の方法で微細繊維状セルロース分散液を得た。
【0163】
<実施例21>
製造例10で得られた亜リン酸化パルプBを使用した以外は、実施例3と同様の方法で微細繊維状セルロース分散液を得た。
【0164】
<実施例22>
製造例11で得られた亜リン酸化パルプCにイオン交換水を添加し、固形分濃度が6.0質量%のスラリーを調製した。このスラリーを、高圧ホモジナイザーで200MPaの圧力にて1回処理し、微細繊維状セルロースを含む繊維状セルロース分散液を得た。この分散液1000g(固形分濃度6.0質量%、固形分60g)に対して、33000nkatの活性を有する酵素含有液を添加し温度50℃で酵素処理した。この時の酵素添加量は微細繊維状セルロース1gに対して550nkatとなるようにした。その後、高圧ホモジナイザーで200MPaの圧力にて3回処理し微細繊維状セルロース分散液を得た。得られた分散液の温度を100℃とし、酵素を熱失活させた。
【0165】
<実施例23>
製造例1で得られたリン酸化パルプAにイオン交換水を添加し、固形分濃度が13.0質量%のスラリーを調製した。このスラリーを、高圧ホモジナイザーで200MPaの圧力にて1回処理し、微細繊維状セルロースを含む繊維状セルロース分散液を得た。この分散液1000g(固形分濃度13.0質量%、固形分130g)に対して、45500nkatの活性を有する酵素含有液を添加し温度50℃で酵素処理した。この時の酵素添加量は微細繊維状セルロース1gに対して350nkatとなるようにした。その後、高圧ホモジナイザーで200MPaの圧力にて4回処理し微細繊維状セルロース分散液を得た。得られた分散液の温度を100℃とし、酵素を熱失活させた。後述する〔リンオキソ酸基量の測定〕に記載の測定方法で測定されるリン酸基量(第1解離酸量)は、1.45mmol/gだった。なお、総解離酸量は、2.45mmol/gであった。
【0166】
<実施例24>
実施例23で得られた繊維状セルロース分散液に、パルプ1質量部に対して0.1質量部の割合となるようにオゾンを添加し、密閉容器内において25℃で撹拌したのち、30分間静置した。次いで、容器を開放して5時間撹拌し、分散液中に残存するオゾンを揮散させた。その後、高圧ホモジナイザーで200MPaの圧力にて4回処理し微細繊維状セルロース分散液を得た。
【0167】
<実施例25>
製造例6で得られたTEMPO酸化パルプAを使用した以外は、実施例23と同様の方法で微細繊維状セルロース分散液を得た。
【0168】
<実施例26>
製造例6で得られたTEMPO酸化パルプAを使用した以外は、実施例24と同様の方法で微細繊維状セルロース分散液を得た。
【0169】
<実施例27>
製造例9で得られた亜リン酸化パルプAを使用した以外は、実施例23と同様の方法で微細繊維状セルロース分散液を得た。
【0170】
<実施例28>
製造例9で得られた亜リン酸化パルプAを使用した以外は、実施例24と同様の方法で微細繊維状セルロース分散液を得た。
【0171】
<実施例29>
製造例1で得られたリン酸化パルプAにイオン交換水を添加し、固形分濃度が13.0質量%のパルプスラリーを調製した。このパルプスラリー1000g(固形分濃度13.0質量%、固形分130g)に対して、45500nkatの活性を有する酵素含有液を添加し温度50℃で酵素処理した。この時の酵素添加量は微細繊維状セルロース1gに対して350nkatとなるようにした。その後、高圧ホモジナイザーで200MPaの圧力にて5回処理し微細繊維状セルロース分散液を得た。得られた分散液の温度を100℃とし、酵素を熱失活させた。後述する〔リンオキソ酸基量の測定〕に記載の測定方法で測定されるリン酸基量(第1解離酸量)は、1.45mmol/gだった。なお、総解離酸量は、2.45mmol/gであった。
【0172】
<実施例30>
製造例6で得られたTEMPO酸化パルプAにイオン交換水を添加し、固形分濃度が13.0質量%のパルプスラリーを調製した。パルプ1質量部に対して0.1質量部の割合となるようにオゾンを添加し、密閉容器内において25℃で撹拌したのち、30分間静置した。次いで、容器を開放して5時間撹拌し、分散液中に残存するオゾンを揮散させた。その後、高圧ホモジナイザーで200MPaの圧力にて5回処理し微細繊維状セルロース分散液を得た。
【0173】
<実施例31>
製造例9で得られた亜リン酸化パルプAを使用した以外は、実施例30と同様の方法で微細繊維状セルロース分散液を得た。
【0174】
<実施例32>
製造例3で得られたリン酸化パルプCを使用した以外は、実施例23と同様の方法で微細繊維状セルロース分散液を得た。
【0175】
<実施例33>
製造例5で得られたリン酸化パルプEを使用した以外は、実施例23と同様の方法で微細繊維状セルロース分散液を得た。
【0176】
<実施例34>
製造例4で得られたリン酸化パルプDを使用した以外は、実施例24と同様の方法で微細繊維状セルロース分散液を得た。
【0177】
<実施例35>
製造例8で得られたTEMPO酸化パルプCにイオン交換水を添加し、固形分濃度が13.0質量%のスラリーを調製した。このスラリーを、高圧ホモジナイザーで200MPaの圧力にて1回処理し、微細繊維状セルロースを含む繊維状セルロース分散液を得た。この分散液1000g(固形分濃度13.0質量%、固形分130g)に対して、71500nkatの活性を有する酵素含有液を添加し温度50℃で酵素処理した。この時の酵素添加量は微細繊維状セルロース1gに対して550nkatとなるようにした。その後、高圧ホモジナイザーで200MPaの圧力にて4回処理し微細繊維状セルロース分散液を得た。得られた分散液の温度を100℃とし、酵素を熱失活させた。
【0178】
<実施例36>
製造例7で得られたTEMPO酸化パルプBを使用した以外は、実施例24と同様の方法で微細繊維状セルロース分散液を得た。
【0179】
<実施例37>
製造例11で得られた亜リン酸化パルプCを使用した以外は、実施例35と同様の方法で微細繊維状セルロース分散液を得た。
【0180】
<実施例38>
製造例10で得られた亜リン酸化パルプBを使用した以外は、実施例24と同様の方法で微細繊維状セルロース分散液を得た。
【0181】
<実施例39>
製造例2で得られたリン酸化パルプBにイオン交換水を添加し、固形分濃度が6.0質量%のパルプスラリーを調製した。パルプ1質量部に対して0.1質量部の割合となるようにオゾンを添加し、密閉容器内において25℃で撹拌したのち、30分間静置した。次いで、容器を開放して5時間撹拌し、分散液中に残存するオゾンを揮散させた。その後、高圧ホモジナイザーで200MPaの圧力にて3回処理し微細繊維状セルロース分散液を得た。後述する〔リンオキソ酸基量の測定〕に記載の測定方法で測定されるリン酸基量(第1解離酸量)は、2.0mmol/gだった。なお、総解離酸量は、3.35mmol/gであった。
【0182】
<実施例40>
製造例1で得られたリン酸化パルプAにイオン交換水を添加し、固形分濃度が6.0質量%のパルプスラリーを調製した。パルプ1質量部に対して0.05質量部の割合となるようにオゾンを添加し、密閉容器内において25℃で撹拌したのち、30分間静置した。次いで、容器を開放して5時間撹拌し、分散液中に残存するオゾンを揮散させた。その後、高圧ホモジナイザーで200MPaの圧力にて3回処理し微細繊維状セルロース分散液を得た。
【0183】
<実施例41>
製造例12で得られた硫酸化パルプにイオン交換水を添加し、固形分濃度が6.0質量%のスラリーを調製した。このスラリーを、高圧ホモジナイザーで200MPaの圧力にて1回処理し、微細繊維状セルロースを含む繊維状セルロース分散液を得た。この分散液1000g(固形分濃度6.0質量%、固形分60g)に対して、21000nkatの活性を有する酵素含有液を添加し温度50℃で酵素処理した。この時の酵素添加量は微細繊維状セルロース1gに対して350nkatとなるようにした。その後、高圧ホモジナイザーで200MPaの圧力にて3回処理し微細繊維状セルロース分散液を得た。得られた分散液の温度を100℃とし、酵素を熱失活させた。この微細繊維状セルロース分散液中における微細繊維状セルロースの濃度は6質量%であった。また、後述する〔硫黄オキソ酸基量の測定〕に記載の測定方法で測定される硫酸基量は1.47mmol/gであった。
【0184】
実施例1~41の微細繊維状セルロースについて、X線回折により、これらの微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。また、これらの微細繊維状セルロースの繊維幅を透過型電子顕微鏡を用いて測定したところ、いずれも3~5nmであった。
【0185】
実施例1~41の微細繊維状セルロース分散液を用いて、以下の手順でシートを作製した。イオン交換水に、ポリエチレンオキサイド(住友精化社製、PEO-3P)を5質量%になるように加え、撹拌して溶解させポリエチレンオキサイド水溶液を得た。次いで、得られた微細繊維状セルロース分散液と上記ポリエチレンオキサイド水溶液を微細繊維状セルロース(固形分):ポリエチレンオキサイド(固形分)=100質量部:20質量部の比率となるように混合し塗工液とした。その際、実施例1~22、39、40及び41では固形分濃度が5質量%、実施例23~38では固形分濃度が10質量%となるよう適宜イオン交換水で希釈し塗工液とした。次いで、得られるシート(上記塗工液の固形分から構成される層)の仕上がり厚みが40μmになるように塗工液を計量して、市販のポリカーボネート板に塗工し、100℃の乾燥機にて30分乾燥した。なお、所定の坪量となるようポリカーボネート板上には堰止用の金枠(内寸が180mm×180mm、高さ5cmの金枠)を配置した。次いで、上記ポリカーボネート板から乾燥後のシートを剥離し、微細繊維状セルロース含有シートを得た。
【0186】
<比較例1>
製造例1で得られたリン酸化パルプAにイオン交換水を添加し、固形分濃度が2質量%のパルプスラリーを調製した。調製したパルプスラリーを高圧ホモジナイザーで6回処理し、微細繊維状セルロース分散液を得た。得られた微細繊維状セルロース分散液を100℃の送風乾燥機にて固形分濃度が6.0質量%となるまで濃縮して微細繊維状セルロース分散液を得た。
【0187】
<比較例2>
製造例6で得られたTEMPO酸化パルプAを使用した以外、比較例1と同様の方法で濃縮して微細繊維状セルロース分散液を得た。
【0188】
<比較例3>
製造例9で得られた亜リン酸化パルプAを使用した以外、比較例1と同様の方法で濃縮して微細繊維状セルロース分散液を得た。
【0189】
<比較例4>
製造例1で得られたリン酸化パルプAにイオン交換水を添加し、固形分濃度が6.0質量%のスラリーを調製した。このスラリーを、高圧ホモジナイザーで200MPaの圧力にて1回処理し、微細繊維状セルロースを含む繊維状セルロース分散液を得た。この分散液1000g(固形分濃度6.0質量%、固形分60g)に対して、33000nkatの活性を有する酵素含有液を添加し温度50℃で酵素処理した。この時の酵素添加量は微細繊維状セルロース1gに対して550nkatとなるようにした。その後、高圧ホモジナイザーで200MPaの圧力にて3回処理し微細繊維状セルロース分散液を得た。得られた分散液の温度を100℃とし、酵素を熱失活させた。後述する〔リンオキソ酸基量の測定〕に記載の測定方法で測定されるリン酸基量(第1解離酸量)は、1.45mmol/gだった。なお、総解離酸量は、2.45mmol/gであった。
【0190】
<比較例5>
王子製紙社製針葉樹クラフトパルプ(未乾燥)にイオン交換水を添加し、固形分濃度が6.0質量%のスラリーを調製した。このスラリーを、高圧ホモジナイザーで200MPaの圧力にて6回処理し、繊維状セルロース分散液を得た。
【0191】
<測定>
〔リンオキソ酸基量の測定〕
微細繊維状セルロースのリンオキソ酸基量は、対象となる微細繊維状セルロースを含む微細繊維状セルロース分散液をイオン交換水で含有量が0.2質量%となるように希釈して作製した繊維状セルロース含有スラリーに対し、イオン交換樹脂による処理を行った後、アルカリを用いた滴定を行うことにより測定した。
イオン交換樹脂による処理は、上記繊維状セルロース含有スラリーに体積で1/10の強酸性イオン交換樹脂(アンバージェット1024;オルガノ株式会社、コンディショング済)を加え、1時間振とう処理を行った後、目開き90μmのメッシュ上に注いで樹脂とスラリーを分離することにより行った。
また、アルカリを用いた滴定は、イオン交換樹脂による処理後の繊維状セルロース含有スラリーに、0.1Nの水酸化ナトリウム水溶液を5秒に10μLずつ加えながら、スラリーが示すpHの値の変化を計測することにより行った。なお、滴定開始の15分前から窒素ガスをスラリーに吹き込みながら滴定を行った。この中和滴定では、アルカリを加えた量に対して測定したpHをプロットした曲線において、増分(pHのアルカリ滴下量に対する微分値)が極大となる点が二つ観測される。これらのうち、アルカリを加えはじめて先に得られる増分の極大点を第1終点と呼び、次に得られる増分の極大点を第2終点と呼ぶ(
図1)。滴定開始から第1終点までに必要としたアルカリ量が、滴定に使用したスラリー中の第1解離酸量と等しくなる。また、滴定開始から第2終点までに必要としたアルカリ量が滴定に使用したスラリー中の総解離酸量と等しくなる。なお、滴定開始から第1終点までに必要としたアルカリ量(mmol)を、滴定対象スラリー中の固形分(g)で除した値をリンオキソ酸基量(mmol/g)とした。
【0192】
〔カルボキシ基量の測定〕
微細繊維状セルロースのカルボキシ基量は、対象となる微細繊維状セルロースを含む微細繊維状セルロース分散液をイオン交換水で含有量が0.2質量%となるように希釈して作製した繊維状セルロース含有スラリーに対し、イオン交換樹脂による処理を行った後、アルカリを用いた滴定を行うことにより測定した。
イオン交換樹脂による処理は、上記繊維状セルロース含有スラリーに体積で1/10の強酸性イオン交換樹脂(アンバージェット1024;オルガノ株式会社、コンディショング済)を加え、1時間振とう処理を行った後、目開き90μmのメッシュ上に注いで樹脂とスラリーを分離することにより行った。
また、アルカリを用いた滴定は、イオン交換樹脂による処理後の繊維状セルロース含有スラリーに、0.1Nの水酸化ナトリウム水溶液を30秒に1回、50μLずつ加えながら、スラリーが示す電気伝導度の値の変化を計測することにより行った。カルボキシ基量(mmol/g)は、計測結果のうち
図2に示す第1領域に相当する領域において必要としたアルカリ量(mmol)を、滴定対象スラリー中の固形分(g)で除して算出した。
【0193】
〔硫黄オキソ酸基量の測定〕
得られた繊維状セルロースを過塩素酸と濃硝酸を用いて湿式灰化した後に、適当な倍率で希釈してICP発光分析により硫黄量を測定した。この硫黄量を、供試した繊維状セルロースの絶乾質量で除した値を硫黄オキソ酸基量(単位:mmol/g)とした。
【0194】
〔0.5質量%微細繊維状セルロース分散液の粘度の測定〕
実施例1~41及び比較例1~5で得た微細繊維状セルロース分散液の粘度は、次のように測定した。まず、微細繊維状セルロース分散液を固形分濃度が0.5質量%となるようにイオン交換水により希釈した後に、ディスパーザーにて4000rpmで3分間撹拌した。得られた分散液を、自転公転型スーパーミキサー(シンキー社製、ARE-250)にて脱泡処理を行った。次いで、これにより得られた分散液の粘度をB型粘度計(BLOOKFIELD社製、アナログ粘度計T-LVT)を用いて測定した。測定条件は、回転速度3rpmとし、測定開始から3分後の粘度値を当該分散液の粘度とした。
【0195】
〔6.0質量%濃度もしくは13.0質量%の微細繊維状セルロース分散液の粘度の測定〕
各濃度の微細繊維状セルロース分散液の粘度は、次のように測定した。まず、自転公転型スーパーミキサー(シンキー社製、ARE-250)にて微細繊維状セルロース分散液の脱泡処理を行った。次いで、得られた分散液の粘度をB型粘度計(BLOOKFIELD社製、デジタル粘度計DV2T)を用いて測定した。測定条件23℃で、回転速度0.3rpmとし、測定開始から3分後の粘度値を当該分散液の粘度とした。
【0196】
〔微細繊維状セルロースの比粘度および重合度の測定〕
微細繊維状セルロースの比粘度および重合度は、Tappi T230に従い測定した。すなわち、測定対象の微細繊維状セルロースを分散媒に分散させて測定した粘度(η1とする)、および分散媒体のみで測定したブランク粘度(η0とする)を測定したのち、比粘度(ηsp)、固有粘度([η])を下記式に従って測定した。
ηsp=(η1/η0)-1
[η]=ηsp/(c(1+0.28×ηsp))
ここで、式中のcは、粘度測定時のセルロース繊維の濃度を示す。
さらに、下記式から微細繊維状セルロースの重合度(DP)を算出した。
DP=1.75×[η]
この重合度は粘度法によって測定された平均重合度であることから、「粘度平均重合度」と称されることもある。また、比較例1~3、5については、濃縮前に重合度の測定を行った。
【0197】
〔微細繊維状セルロース分散液のヘーズの測定〕
実施例1~41及び比較例1~5で得た微細繊維状セルロース分散液のヘーズの測定は微細繊維状セルロース分散液をイオン交換水で0.2質量%となるように希釈した後、自転公転型スーパーミキサー(シンキー社製、ARE-250)にて脱泡処理を行った。ヘーズメーター(村上色彩技術研究所社製、HM-150)で、光路長1cmの液体用ガラスセル(藤原製作所製、MG-40、逆光路)を用いて、JIS K 7136:2000に準拠して測定した。なお、ゼロ点測定は、同ガラスセルに入れたイオン交換水で行った。
【0198】
〔微細繊維状セルロース分散液の外観評価〕
実施例1~41及び比較例1~5で得た微細繊維状セルロース分散液について、自転公転型スーパーミキサー(シンキー社製、ARE-250)にて脱泡処理を行った。
その後、目視にて、下記の基準にしたがって外観を評価した。
A:目視で繊維がほぼ確認できず、分散液は透明である。
B:目視にて繊維が確認でき、分散液は半透明である。
C:繊維が均一に分散しておらず分散液は白濁している、もしくは粒状物(繊維の凝集物)が確認できる。
【0199】
〔微細繊維状セルロースの粒子分散性評価〕
実施例1~41及び比較例1~5で得た微細繊維状セルロース分散液の粘度を、次のように測定した。まず、微細繊維状セルロース分散液を固形分濃度が0.5質量%となるようにイオン交換水により希釈した後に、ディスパーザーにて4000rpmで3分間撹拌した。活性炭を添加して振り混ぜ、粒子の沈降を確認し、以下の評価基準で評価した。
A:活性炭粒子が10分以上均一に分散されている
B:活性炭粒子が1分以上10分未満、均一に分散されている
C:活性炭粒子が1分未満に沈降する
【0200】
【0201】
【0202】
【0203】
【0204】
【0205】
【0206】
【0207】
【0208】
実施例では、高濃度で均一な微細繊維状セルロース分散液が得られており、かつ粒子分散性が高かった。なお、比較例1~3においては、分散液中に粒状物(繊維の凝集物)があり6.0質量%濃度における粘度の測定ができなかった。