IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社トプコンの特許一覧

<>
  • 特許-眼科装置及びその制御方法 図1
  • 特許-眼科装置及びその制御方法 図2
  • 特許-眼科装置及びその制御方法 図3
  • 特許-眼科装置及びその制御方法 図4
  • 特許-眼科装置及びその制御方法 図5
  • 特許-眼科装置及びその制御方法 図6
  • 特許-眼科装置及びその制御方法 図7
  • 特許-眼科装置及びその制御方法 図8
  • 特許-眼科装置及びその制御方法 図9
  • 特許-眼科装置及びその制御方法 図10
  • 特許-眼科装置及びその制御方法 図11
  • 特許-眼科装置及びその制御方法 図12
  • 特許-眼科装置及びその制御方法 図13
  • 特許-眼科装置及びその制御方法 図14
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-11-25
(45)【発行日】2024-12-03
(54)【発明の名称】眼科装置及びその制御方法
(51)【国際特許分類】
   A61B 3/12 20060101AFI20241126BHJP
【FI】
A61B3/12
【請求項の数】 8
(21)【出願番号】P 2021061306
(22)【出願日】2021-03-31
(65)【公開番号】P2022157208
(43)【公開日】2022-10-14
【審査請求日】2024-02-02
(73)【特許権者】
【識別番号】000220343
【氏名又は名称】株式会社トプコン
(74)【代理人】
【識別番号】100140992
【弁理士】
【氏名又は名称】松浦 憲政
(74)【代理人】
【識別番号】100170069
【弁理士】
【氏名又は名称】大原 一樹
(74)【代理人】
【識別番号】100128635
【弁理士】
【氏名又は名称】松村 潔
(74)【代理人】
【識別番号】100083116
【弁理士】
【氏名又は名称】松浦 憲三
(72)【発明者】
【氏名】中島 将
(72)【発明者】
【氏名】藤野 誠
【審査官】廣崎 拓登
(56)【参考文献】
【文献】特開2016-105945(JP,A)
【文献】特表2009-538697(JP,A)
【文献】国際公開第2021/049428(WO,A1)
【文献】特開2016-202249(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 3/00-3/18
(57)【特許請求の範囲】
【請求項1】
被検眼の被観察部位の一部に照明光を照射する照明系と、
前記照明系に設けられ、前記被検眼の前眼部と光学的共役関係にある絞りであって且つ前記照明系の照明光軸に対して偏心した位置に複数の開口が設けられている絞りと、
前記照明系から前記被観察部位に照射される前記照明光を偏向して、前記被観察部位内で前記照明光の照明領域を移動させる光スキャナと、
前記光スキャナが前記照明光を偏向している間、前記照明光の偏向に応じて前記被観察部位内で移動する前記照明領域からの戻り光を検出する検出器を有する受光系と、
前記光スキャナを制御して前記被観察部位内で前記照明領域を固定した状態で、前記照明領域からの前記戻り光を前記検出器に検出させる合焦確認制御を実行する合焦確認制御部と、
を備える眼科装置。
【請求項2】
前記戻り光の光路に設けられたフォーカス光学系と、
前記合焦確認制御で前記検出器が検出した前記戻り光の検出信号に基づき、前記フォーカス光学系の合焦制御を行う合焦制御部と、
を備える請求項1に記載の眼科装置。
【請求項3】
前記検出信号に基づき、前記被観察部位に対する前記照明系及び前記受光系の合焦状態を示す合焦評価画像を生成する画像生成部を備え、
前記合焦制御部が、前記画像生成部が生成した前記合焦評価画像に基づき、前記合焦制御を行う請求項2に記載の眼科装置。
【請求項4】
前記フォーカス光学系がフォーカスレンズを有し、
前記フォーカスレンズの互いに異なる複数のレンズ位置ごとに、前記合焦確認制御部及び前記画像生成部を繰り返し作動させる繰り返し制御部を備え、
前記合焦制御部が、前記画像生成部が生成した前記レンズ位置ごとの前記合焦評価画像に基づき、前記合焦制御を行う請求項3に記載の眼科装置。
【請求項5】
前記検出器が、前記戻り光が入射する受光面を有し、前記照明領域の移動に応じて前記受光面内で移動する前記戻り光の入射領域に対して、前記受光面内で前記戻り光を検出する局所的な受光領域を追従させながら、前記受光領域での前記戻り光の検出を連続して行う第1動作モードと、前記受光面内で前記受光領域を予め定められた移動経路に沿って移動させる第2動作モードと、を有し、
前記合焦確認制御で前記光スキャナにより固定された前記照明領域からの前記戻り光が、前記受光領域の前記移動経路の途中に入射し、
前記合焦確認制御部が、前記検出器を前記第2動作モードで駆動する請求項1から4のいずれか1項に記載の眼科装置。
【請求項6】
前記検出器が、前記戻り光が入射する受光面を有し、前記照明領域の移動に応じて前記受光面内で移動する前記戻り光の入射領域に対して、前記受光面内で前記戻り光を検出する局所的な受光領域を追従させながら、前記受光領域での前記戻り光の検出を連続して行う第1動作モードと、前記光スキャナにより固定された前記照明領域からの前記戻り光を検出可能な前記受光面内の位置に前記受光領域を固定する第3動作モードと、を有し、
前記合焦確認制御部が、前記検出器を前記第3動作モードで駆動する請求項1から4のいずれか1項に記載の眼科装置。
【請求項7】
前記照明系の光軸に垂直で且つ互いに直交する方向を第1方向及び第2方向とした場合に、前記照明系が、前記照明光として前記第1方向に平行なスリット光を前記被観察部位に照射し、
前記光スキャナが、前記スリット光を前記第2方向に偏向する請求項1から6のいずれか1項に記載の眼科装置。
【請求項8】
被検眼の被観察部位の一部に照明光を照射する照明系と、
前記照明系に設けられ、前記被検眼の前眼部と光学的共役関係にある絞りであって且つ前記照明系の照明光軸に対して偏心した位置に複数の開口が設けられている絞りと、
前記照明系から前記被観察部位に照射される前記照明光を偏向して、前記被観察部位内で前記照明光の照明領域を移動させる光スキャナと、
前記光スキャナが前記照明光を偏向している間、前記照明光の偏向に応じて前記被観察部位内で移動する前記照明領域からの戻り光を検出する検出器を有する受光系と、
を備える眼科装置の制御方法において、
前記光スキャナを制御して前記被観察部位内で前記照明領域を固定した状態で、前記照明領域からの前記戻り光を前記検出器に検出させる合焦確認制御ステップを有する眼科装置の制御方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、被検眼の被観察部位の一部を照明する照明光を偏向可能な眼科装置及び制御方法に関する。
【背景技術】
【0002】
被検眼の眼底の撮影を行うスリットスキャン方式の眼底カメラ(眼科装置)が知られている(特許文献1参照)。特許文献1に記載の眼底カメラは、光スキャナを用いて眼底に照射するスリット光(照明光)を偏向させながら、眼底内で移動するスリット光の照明領域からの戻り光を、ローリングシャッタ機能を有するCMOS(Complementary Metal Oxide Semiconductor)型の撮像素子で撮像する。これにより、散乱光の影響を抑えた眼底像が得られる。
【0003】
このような眼底カメラでは、眼底の撮影を開始する前にこの眼底に対する眼底カメラの合焦状態(合焦状況ともいう)を評価し、この評価結果に基づき眼底カメラを眼底に合焦させるべく合焦制御(フォーカス調整)を行う必要がある。
【0004】
例えば特許文献2に記載の眼底カメラでは、眼底に対してスプリット指標光を照射し、眼底からのスプリット指標光の戻り光を検出器で検出した検出結果に基づき、眼底カメラの合焦状態の評価と合焦制御とを行う。
【0005】
特許文献3に記載の眼科装置(オートレフケラトメータ)では、眼底に対してリング照明光を照射し、眼底からのリング照明光の戻り光を検出器で検出した検出結果に基づき、眼科装置の合焦状態の評価と合焦制御とを行う。さらに特許文献4に記載の眼科装置(オートレフケラトメータ)では、眼底像のコントラストを指標にして、眼底に対する眼科装置の合焦状態の評価と合焦制御とを行う。
【先行技術文献】
【特許文献】
【0006】
【文献】特許第5735211号公報
【文献】特許第6518054号公報
【文献】特開2014-108310号公報
【文献】特開2016-159071号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
ところで、眼底カメラの合焦状態の評価するために、スリットスキャン方式の眼底カメラに対して上記特許文献2又は特許文献3に記載の方法を適用する場合には、眼底カメラにスプリット指標光又はリング照明光を出射する照明系を別途設ける必要があり、コストが増加する。
【0008】
また、スリットスキャン方式の眼底カメラに対して上記特許文献4に記載の方法を適用する場合には照明系を別途設ける必要はない。しかしながら、眼底カメラでは、合焦状態評価用の照明光として眼の感度が小さい赤外光(近赤外光)が一般的に用いられるので、合焦状態評価用の眼底像のコントラストが低くなってしまう。その結果、眼底像のコントラストを指標とした合焦状態の評価を行った場合に、その精度が低下或いは評価に失敗するおそれがある。
【0009】
本発明はこのような事情に鑑みてなされたものであり、低コストで且つ精度よく被観察部位に対する眼科装置の合焦状態を評価可能な眼科装置及びその制御方法を提供することを目的とする。
【課題を解決するための手段】
【0010】
本発明の目的を達成するための眼科装置は、被検眼の被観察部位の一部に照明光を照射する照明系と、照明系から被観察部位に照射される照明光を偏向して、被観察部位内で照明光の照明領域を移動させる光スキャナと、光スキャナが照明光を偏向している間、照明光の偏向に応じて被観察部位内で移動する照明領域からの戻り光を検出する検出器を有する受光系と、光スキャナを制御して被観察部位内で照明領域を固定した状態で、照明領域からの戻り光を検出器に検出させる合焦確認制御を実行する合焦確認制御部と、を備える。なお、ここでいう戻り光は、被観察部位の照明領域或いはその付近の領域から戻ってくる光であり、照明光の反射光、照明光の散乱光、照明光が励起する蛍光及びその散乱光などが含まれる。
【0011】
本発明の他の態様に係る眼科装置において、戻り光の光路に設けられたフォーカス光学系と、合焦確認制御で検出器が検出した戻り光の検出信号に基づき、フォーカス光学系の合焦制御を行う合焦制御部と、を備える。
【0012】
本発明の他の態様に係る眼科装置において、検出信号に基づき、被観察部位に対する照明系及び受光系の合焦状態を示す合焦評価画像を生成する画像生成部を備え、合焦制御部が、画像生成部が生成した合焦評価画像に基づき、合焦制御を行う。
【0013】
本発明の他の態様に係る眼科装置において、フォーカス光学系がフォーカスレンズを有し、フォーカスレンズの互いに異なる複数のレンズ位置ごとに、合焦確認制御部及び画像生成部を繰り返し作動させる繰り返し制御部を備え、合焦制御部が、画像生成部が生成したレンズ位置ごとの合焦評価画像に基づき、合焦制御を行う。
【0014】
本発明の他の態様に係る眼科装置において、検出器が、戻り光が入射する受光面を有し、照明領域の移動に応じて受光面内で移動する戻り光の入射領域に対して、受光面内で戻り光を検出する局所的な受光領域を追従させながら、受光領域での戻り光の検出を連続して行う第1動作モードと、受光面内で受光領域を予め定められた移動経路に沿って移動させる第2動作モードと、を有し、合焦確認制御で光スキャナにより固定された照明領域からの戻り光が、受光領域の移動経路の途中に入射し、合焦確認制御部が、検出器を第2動作モードで駆動する。
【0015】
本発明の他の態様に係る眼科装置において、検出器が、戻り光が入射する受光面を有し、照明領域の移動に応じて受光面内で移動する戻り光の入射領域に対して、受光面内で戻り光を検出する局所的な受光領域を追従させながら、受光領域での戻り光の検出を連続して行う第1動作モードと、光スキャナにより固定された照明領域からの戻り光を検出可能な受光面内の位置に受光領域を固定する第3動作モードと、を有し、合焦確認制御部が、検出器を第3動作モードで駆動する。
【0016】
本発明の他の態様に係る眼科装置において、照明系の光軸に垂直で且つ互いに直交する方向を第1方向及び第2方向とした場合に、照明系が、照明光として第1方向に平行なスリット光を被観察部位に照射し、光スキャナが、スリット光を第2方向に偏向する。
【0017】
本発明の他の態様に係る眼科装置において、照明系に設けられ、被検眼の前眼部と光学的共役関係にある絞りであって且つ照明系の照明光軸に対して偏心した位置に複数の開口が設けられている絞りを備える。
【0018】
本発明の目的を達成するための眼科装置の制御方法は、被検眼の被観察部位の一部に照明光を照射する照明系と、照明系から被観察部位に照射される照明光を偏向して、被観察部位内で照明光の照明領域を移動させる光スキャナと、光スキャナが照明光を偏向している間、照明光の偏向に応じて被観察部位内で移動する照明領域からの戻り光を検出する検出器を有する受光系と、を備える眼科装置の制御方法において、光スキャナを制御して被観察部位内で照明領域を固定した状態で、照明領域からの戻り光を検出器に検出させる合焦確認制御ステップを有する。
【発明の効果】
【0019】
本発明は、低コストで且つ精度よく被観察部位に対する眼科装置の合焦状態を評価することができる。
【図面の簡単な説明】
【0020】
図1】眼底カメラの概略図である。
図2】制御装置の機能ブロック図である。
図3】スリットスキャン撮影時の眼底(符号3A参照)と撮像素子の受光面(符号3B参照)とを対比した説明図である。
図4】画像生成部により生成される眼底像の一例を示した説明図である。
図5】合焦時に被検眼に入射する光束の光線図(符号5A参照)、及び前眼部に入射する光束の正面図(符号5B参照)を示した説明図である。
図6】符号6A,6Bは、非合焦時に被検眼に入射する光束の光線図を示した説明図である。
図7】合焦時に合焦確認制御が実行された際の眼底(符号7A参照)と撮像素子の受光面(符号7B参照)とを対比した説明図である。
図8】非合焦時に合焦確認制御が実行された際の眼底(符号8A参照)と撮像素子の受光面(符号8B参照)とを対比した説明図である。
図9】合焦時に画像生成部により生成される合焦評価画像の一例を示した説明図である。
図10】非合焦時に画像生成部により生成される合焦評価画像の一例を示した説明図である。
図11】眼底カメラによるスリットスキャン方式の眼底撮影処理、特に合焦確認制御の流れを示すフローチャートである。
図12】合焦確認制御時の合焦確認制御部による撮像素子の駆動の変形例を説明するための説明図である。
図13】合焦確認制御時の眼底に対する照明光の照射位置の変形例(符号XIIIA参照)と、合焦評価画像(符号XIIIB参照)との対応関係を示した説明図である。
図14】照明系から被検眼の前眼部に対して2経路から入射する光束の他の例の正面図である。
【発明を実施するための形態】
【0021】
[眼底カメラの全体構成]
図1は、本発明の眼科装置に相当する眼底カメラ10の概略図である。なお、図中の互いに直交するXYZ方向のうちで、X方向は被検者を基準とした左右方向(被検眼Eの眼幅方向)であり、Y方向は上下方向であり、Z方向は被検者に近づく前方向と被検者から遠ざかる後方向とに平行な前後方向(作動距離方向ともいう)である。
【0022】
図1に示すように、眼底カメラ10は、本発明の眼科装置に相当するものであり、スリットスキャン方式で被検眼Eの眼底Efの撮影(以下、スリットスキャン撮影と略す)を行う。この眼底カメラ10は、大別してカメラヘッド12(装置本体ともいう)と操作部14と表示部16と制御装置18とを備える。
【0023】
カメラヘッド12には、詳しくは後述するが、スリットスキャン撮影に必要な各種光学系等が設けられている。また、図示は省略するがカメラヘッド12は、不図示の駆動機構によりXYZ方向に相対移動可能に保持されている。これにより、被検眼Eに対してカメラヘッド12がXYZ方向に相対移動可能になるので、被検眼Eに対するカメラヘッド12のアライメントが可能になる。
【0024】
操作部14は、スリットスキャン撮影の撮影開始操作、カメラヘッド12のXYZ方向の移動操作、眼底カメラ10の設定操作などの眼底カメラ10の各種操作の入力を受け付ける。
【0025】
表示部16は、例えばLCD(Liquid Crystal Display)等の公知の各種ディスプレイが用いられる。この表示部16は、後述の制御装置18が生成した眼底Efの観察像(正面画像)である眼底像D、及び各種の設定画面等を表示する。
【0026】
制御装置18は、各種の演算処理及び制御処理等を実行するコンピュータ等の演算処理装置である。この制御装置18には、カメラヘッド12、操作部14、及び表示部16が接続されている。制御装置18は、操作部14に入力された操作指示に基づき、カメラヘッド12及び表示部16の各部の動作を統括制御する。制御装置18は、カメラヘッド12のアライメントと、眼底Efに対する照明系20及び受光系40の合焦状態を示す合焦評価画像DS(図9参照)の撮影を行う合焦確認制御と、フォーカス光学系36の合焦制御と、カメラヘッド12による眼底Efのスリットスキャン撮影と、眼底像Dの生成及び表示と、を含む各種制御及び処理を実行する。
【0027】
[カメラヘッドの構成]
カメラヘッド12は、照明系20と、光スキャナ30と、受光系40と、を備える。
【0028】
照明系20は、後述の光スキャナ30を介して、眼底Efの一部に照明光LS(スリット光)を照射する。この照明系20は、光源22と絞り24とスリット開口絞り26と照明系レンズ28とレンズ31と光路分割材34と対物レンズ38とを備える。なお、絞り24、光スキャナ30、光路分割材34、及び被検眼Eの前眼部Eaが光学的共役関係にある。
【0029】
光源22は、照明光Lを出射する。この照明光Lとしては、眼底Efのスリットスキャン撮影時には可視光が用いられ、後述の合焦確認制御時には被検眼Eの感度が小さい赤外領域(近赤外領域を含む)の光である赤外光が用いられる。なお、合焦確認制御時にも可視光を用いてもよい。この光源22には、レーザ光源、LED(Light Emitting Diode)光源、白色LED光源、レーザ励起白色光源などが用いられるが、この限りではない。
【0030】
絞り24は、被検眼Eの前眼部Ea(角膜や虹彩)と光学的共役関係にある、或いはほぼ光学的共役的関係にある、絞り(例えば虹彩絞りや水晶体前面絞り等)を含むがこの限りではない。この絞り24は、光源22の中心軸を中心として対称な一対の開口24aを有する遮光部材である。なお、開口24aは、光源22の中心軸に対して偏心した位置に複数設けられていればその数及び配置は特に限定されない。絞り24を通過した照明光Lは、スリット開口絞り26に入射する。
【0031】
スリット開口絞り26は、絞り24から入射した照明光LからX方向(本発明の第1方向に相当)に平行な照明光LSを生成し、この照明光LSを照明系レンズ28に向けて出射する。照明光LSは、合焦時に眼底位置及び眼底共役位置でX方向に平行なスリット状(スリット光)になる。なお、照明光LS(スリット光)は、対物レンズ38(照明系20)の光軸に垂直であれば特に限定はされない。また、スリット開口絞り26は、不図示のアクチュエータにより照明光LSの光路に沿って移動自在に設けられている。このスリット開口絞り26を移動させることで、照明系20を眼底Efに対して合焦させることができる。
【0032】
照明系レンズ28は、1又は複数のレンズにより構成されており、スリット開口絞り26から入射した照明光LSを光スキャナ30に向けて出射する。レンズ31は、光スキャナ30により反射された照明光LSを光路分割材34に向けて出射する。レンズ31は、光スキャナ30と光路分割材34とを光学的共役関係にする。なお、光路分割材34及び対物レンズ38については後述する。
【0033】
なお、照明系20として、照明光LSを出射可能なプロジェクタを用いてもよい。このプロジェクタとしては、LCD方式のプロジェクタ、反射型液晶パネルを用いたLCOS(Liquid crystal on silicon)方式のプロジェクタ、及びDMD(Digital Mirror Device)を用いたプロジェクタなどが例として挙げられる。この場合、光スキャナ30は、固定ミラーに替え、プロジェクタのパターンの変化で光スキャナ30が行う光走査を模してもよい。
【0034】
光スキャナ30は、例えばガルバノミラー、レゾナントミラー、ポリゴンミラー、及びMEMS(Micro Electro Mechanical Systems)等の照明光LSを1次元偏向(走査)可能な偏向機構であり、照明系レンズ28の光軸とレンズ31の光軸との交点に配置されている。この光スキャナ30は、照明系レンズ28から入射した照明光LSをレンズ31に向けて反射すると共に、この照明光LSを偏向可能である。
【0035】
光スキャナ30による照明光LSの偏光方向及び偏向角度は、制御装置18によって制御される。そして、光スキャナ30は、スリットスキャン撮影時には照明光LSを対物レンズ38の光軸及びスリット光の双方に垂直な方向、ここではY方向(本発明の第2方向に相当)に偏向する。
【0036】
光路分割材34は、レンズ31から入射した照明光LSを反射して対物レンズ38に向けて出射させると共に、対物レンズ38から入射した後述の戻り光LBを通過させてフォーカス光学系36に向けて出射する。なお、光路分割材34は、照明光LS及び戻り光LBを分割して、照明光LSを対物レンズ38に向けて反射し且つ戻り光LBをフォーカス光学系36に向けて出射可能であれば、各種スプリッタを用いることができる。
【0037】
対物レンズ38は、光路分割材34により反射された照明光LSを、被検眼Eの前眼部Ea(瞳孔)を通して眼底Efの一部に照射する。この際に既述の光スキャナ30により照明光LSがY方向に偏向されることで、X方向に平行な照明光LS(スリット光)により眼底Ef内がY方向に走査される。そして、照明光LSのY方向の偏向が行われている間、照明光LSが照射された被検眼Eの眼底Efからの戻り光LBが、対物レンズ38及び光路分割材34を通してフォーカス光学系36に入射する。
【0038】
受光系40は、対物レンズ38と、光路分割材34と、フォーカス光学系36と、受光系レンズ42と、本発明の検出器に相当するCMOS型の撮像素子44と、を備える。
【0039】
フォーカス光学系36は、戻り光LBの光路に沿って移動可能な1又は複数のレンズ(フォーカスレンズ)を備え、制御装置18の制御の下で眼底カメラ10(受光系40)のフォーカス調整を行う。フォーカス光学系36による受光系40の合焦と、スリット開口絞り26による照明系20の合焦とは、被検眼Eのディオプタ(視度)に応じて連動して動く。光路分割材34からフォーカス光学系36に入射した戻り光LBは、受光系レンズ42に入射する。なお、フォーカス光学系36に、1又は複数のフォーカスレンズを移動自在に設ける代わりに1又は複数の可変焦点レンズを設けてもよく、フォーカス調整の方法は特に限定されない。
【0040】
受光系レンズ42は、1又は複数のレンズにより構成されており、フォーカス光学系36からから入射した戻り光LBを撮像素子44に集光させる。
【0041】
撮像素子44は、受光系レンズ42からの戻り光LBが入射する受光面44aを有し、この受光面44a内で領域ごと(画素ごと、ラインごとを含む)の露光の開始及び終了のタイミングをずらしながら戻り光LBの撮像(受光、検出)を行うローリングシャッタ機能を有する。この撮像素子44は、スリットスキャン撮影時には、制御装置18によりローリングシャッタ駆動されることで、光スキャナ30による照明光LSの偏向に応じて眼底Ef内で移動する照明光LSの戻り光LBを撮像し、戻り光LBの撮像信号を制御装置18に出力する。
【0042】
[制御装置の機能]
図2は、制御装置18の機能ブロック図である。図2に示すように、制御装置18の機能は、各種のプロセッサ(Processor)を用いて実現される。各種のプロセッサには、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、ASIC(Application Specific Integrated Circuit)、及びプログラマブル論理デバイス[例えばSPLD(Simple Programmable Logic Devices)、CPLD(Complex Programmable Logic Device)、及びFPGA(Field Programmable Gate Arrays)]等が含まれる。なお、制御装置18の各種機能は、1つのプロセッサにより実現されてもよいし、同種または異種の複数のプロセッサで実現されてもよい。
【0043】
制御装置18は、不図示の制御プログラムを実行することで、照明制御部50、偏向制御部52、撮像制御部54、信号取得部56、画像生成部58、合焦確認制御部59、繰り返し制御部61、合焦制御部62、及び表示制御部64として機能する。なお、制御装置18の「~部」として説明するものは「~回路」、「~装置」、又は「~機器」であってもよい。すなわち、「~部」として説明するものは、ファームウェア、ソフトウェア、及びハードウェアまたはこれらの組み合わせのいずれで構成されていてもよい。
【0044】
(スリットスキャン撮影)
最初に制御装置18のスリットスキャン撮影に係る機能について説明を行う。スリットスキャン撮影時には、制御装置18の照明制御部50、偏向制御部52、撮像制御部54、信号取得部56、画像生成部58、及び表示制御部64が機能する。
【0045】
照明制御部50は、光源22からの照明光Lの出射、すなわち照明系20からの照明光LSの出射を制御する。この照明制御部50は、スリットスキャン撮影時においては光源22から照明光L(可視光)を出射させる。
【0046】
図3は、スリットスキャン撮影時の眼底Ef(符号3A参照)と撮像素子44の受光面44a(符号3B参照)とを対比した説明図である。図3中の符号R1Aは眼底Ef内での照明光LSの照明領域R1Aを示し、符号R1Bは受光面44a内に入射する戻り光LBの入射領域R1Bを示す。また、図3中の符号R2Bは受光面44a内の受光領域R2B(アクティブな露光領域)を示し、符号R2Aは眼底Ef内において受光領域R2Bにより撮像される撮像範囲R2Aを示す。
【0047】
なお、図中では撮像範囲R2Aの幅が照明領域R1Aの幅よりも大きく、受光領域R2Bの幅が入射領域R1Bの幅よりも大きくなっているが、この限りではない。すなわち、眼底Ef内での照明領域R1A及び撮像範囲R2Aの個々の位置形状と、受光面44a内での入射領域R1B及び受光領域R2Bの個々の位置形状とは、図3に示した例に限定されるものではなく適宜変更してもよい(他の図も同様)。
【0048】
図3及び既述の図2に示すように、偏向制御部52は、光スキャナ30による照明光LSの偏向角度を制御する。この偏向制御部52は、スリットスキャン撮影時には光スキャナ30を制御して照明光LSをY方向に偏向させることで、照明光LS(スリット光)により眼底Ef内をY方向に走査する。
【0049】
照明光LSのY方向の偏向に応じて眼底Ef内での照明光LSの照明領域R1AがY方向に移動する(図3の符号3A参照)。また、この照明領域R1Aの移動に応じて、受光面44a内で戻り光LBの入射領域R1BがY方向に移動する(図3の符号3B参照)。なお、偏向制御部52による合焦確認制御時の光スキャナ30の制御については後述する。
【0050】
撮像制御部54は、撮像素子44の駆動を制御する。この撮像制御部54は、スリットスキャン撮影時において、光スキャナ30による照明光LSのY方向の偏向が行われている間、すなわち眼底Ef内で照明領域R1AがY方向に移動している間、撮像素子44のローリングシャッタ駆動(本発明の第1動作モードでの駆動)を行う。
【0051】
具体的には撮像制御部54は、受光面44a内での入射領域R1BのY方向の移動に応じて(同期して)、受光面44a内の入射領域R1Bに対応する位置で局所的な受光領域R2Bによる戻り光LBの撮像を連続的に実行させる。これにより、撮像制御部54は、受光面44a内でY方向に移動する入射領域R1Bに対して受光領域R2Bを追従させながら、受光領域R2Bによる戻り光LBの撮像を連続して実行させる(符号3B参照)。
【0052】
換言すると眼底Ef内では、Y方向に移動する照明領域R1Aに対して局所的な撮像範囲R2Aを追従させながら、撮像範囲R2Aの撮像が撮像素子44により連続して行われる(符号3A参照)。このようなローリングシャッタ駆動は公知技術であるので、具体的な説明は省略する(上記特許文献1参照)。
【0053】
信号取得部56は、不図示の通信インタフェースを介して、撮像素子44に対して有線接続或いは無線接続されている。信号取得部56は、スリットスキャン撮影時において、光スキャナ30による照明光LSの偏向が行われている間、撮像素子44の受光領域R2Bからの撮像信号(検出信号又は受光信号ともいう)を逐次取得する。
【0054】
図4は、画像生成部58により生成される眼底像Dの一例を示した説明図である。図4及び既述の図2に示すように、画像生成部58は、スリットスキャン撮影時において、光スキャナ30による照明光LSの偏向が行われている間に信号取得部56が取得した撮像信号に基づき、眼底像Dの生成を行う。
【0055】
表示制御部64は、表示部16による表示を制御する。表示制御部64は、スリットスキャン撮影時には画像生成部58が生成した眼底像Dを表示部16に表示させる。
【0056】
(合焦確認制御及び合焦制御)
次に、制御装置18の合焦確認制御及び合焦制御に係る機能について説明する。本実施形態では、眼底カメラ10による眼底Efのスリットスキャン撮影前に、この眼底カメラ10の既存の構成を利用して、眼底Efに対する照明系20及び受光系40の合焦状態(以下、単に「合焦状態」と略す)を評価する。この際に本実施形態では、眼底Efに対して照明系20及び受光系40が合焦している状態(以下、合焦時という)と、眼底Efに対して照明系20及び受光系40が合焦していない状態(以下、非合焦時という)とにおいて、眼底Efに対する照明光LSの入射状態が変化することに着目する。
【0057】
図5は、合焦時に被検眼Eに入射する光束の光線図(符号5A参照)、及び前眼部Eaに入射する光束の正面図(符号5B参照)を示した説明図である。図6の符号6A,6Bは、非合焦時に被検眼Eに入射する光束の光線図を示した説明図である。
【0058】
図5及び図6に示すように、本実施形態では絞り24(図1参照)が前眼部Eaと光学的共役関係にあるので、この絞り24の一対の開口24aに対応して、照明系20から前眼部Eaに対して光束が異なる2経路から入射する(図5の符号5B参照)。
【0059】
図5の符号5Aに示すように合焦時には、各光束の集光位置が眼底Efに一致(略一致を含む)するので、各光束が眼底Ef上の1つの領域に入射する。逆に図6の符号6A、6Bに示すように、非合焦時には各光束の集光位置が眼底Efに対して前後にずれるため、各光束が眼底Ef上の2つの領域に分かれて入射する。このため、眼底Efに対する照明光LSの入射状態に基づき合焦状態を評価可能である。
【0060】
そこで制御装置18は、光スキャナ30による照明光LSの偏向角度を固定した状態で、この照明光LSが照射されている眼底Efからの戻り光LBを撮像素子44で撮像する合焦確認制御を実行して、合焦状態を示す合焦評価画像DS(図9参照)を取得する。そして、制御装置18は、合焦確認制御で取得した合焦評価画像DSに基づき、フォーカス光学系36の合焦制御を実行する。
【0061】
図2に戻って、合焦確認制御時及び合焦制御時には、制御装置18の照明制御部50、偏向制御部52、撮像制御部54、信号取得部56、画像生成部58、合焦確認制御部59、繰り返し制御部61、及び合焦制御部62が機能する。
【0062】
照明制御部50は、合焦確認制御時において照明系20から照明光L(赤外光)を出射させる。
【0063】
合焦確認制御部59は、照明制御部50を介して光スキャナ30を制御すると共に、撮像制御部54を介して撮像素子44を制御して、合焦確認制御、すなわち合焦評価画像DS(図9参照)の撮影を実行する。
【0064】
図7は、合焦時に合焦確認制御が実行された際の眼底Ef(符号7A参照)と撮像素子44の受光面44a(符号7B参照)とを対比した説明図である。図8は、非合焦時に合焦確認制御が実行された際の眼底Ef(符号8A参照)と撮像素子44の受光面44a(符号8B参照)とを対比した説明図である。
【0065】
図7及び図8に示すように、合焦確認制御部59は、偏向制御部52を介して光スキャナ30を制御して、光スキャナ30による照明光LSの偏向角度を固定することで、照明光LSを走査させることなく眼底Efに照射する。この際の照明光LSの偏向角度は、受光面44a内での受光領域R2Bの移動経路の途中に戻り光LBを入射可能な角度に設定される。例えば合焦確認制御部59は、眼底Ef内での照明光LSの走査方向がY方向である場合には、眼底EfのY方向の中心領域(略中心領域を含む)に照明光LSが入射するように照明光LSの偏向角度を制御する。
【0066】
このように照明光LSの偏向角度を固定することで、図7の符号7A及び図8の符号8Aに示したように、眼底Ef内での照明領域R1Aの位置が固定される。また、照明領域R1Aの位置固定に応じて、図7の符号7B及び図8の符号8Bに示すように受光面44a内での入射領域R1Bの位置、すなわち受光面44a上での戻り光LBのパターン像Piの位置も固定される。
【0067】
この際に、既述の図5に示したように合焦時には照明光LSの各光束が眼底Ef上の1つの領域に入射するため、受光面44a上での入射領域R1B及びパターン像Piの数は1つになる(符号7B参照)。一方、既述の図6に示したように非合焦時には照明光LSの各光束が眼底Ef上の2つの領域に分かれて入射するため、受光面44a上での入射領域R1B及びパターン像Piは広がり、非合焦の程度が大きい場合は2つに分かれる(符号8B参照)。
【0068】
また、合焦確認制御部59は、撮像制御部54を介して撮像素子44をローリングシャッタ駆動(第2動作モードでの駆動)して、受光面44a内で受光領域R2Bを予め定められた移動経路(移動パターン)で移動させる(符号7B、8B参照)。
【0069】
なお、本実施形態では第2動作モードがスリットスキャン撮影時の第1動作モードと同一に設定されているので、合焦確認制御時の受光領域R2Bの移動経路がスリットスキャン撮影時の移動経路と同じ経路に設定されるが、その途中に入射領域R1Bを含めば特に限定はされない。例えば、合焦確認制御時の受光領域R2Bの移動経路を、スリットスキャン撮影時の移動経路よりも狭く設定したり、或いはスリットスキャン撮影時の移動経路とは異なる経路に設定したりするなど、第2動作モードを第1動作モードと異ならせてもよい。これにより、受光面44aに入射した戻り光LBを受光領域R2Bで確実に撮像することができる。
【0070】
信号取得部56は、合焦確認制御時において、撮像素子44のローリングシャッタ駆動が行われている間、撮像素子44の受光領域R2Bから出力される撮像信号(本発明の検出信号に相当)を逐次取得する。
【0071】
図9は、合焦時に画像生成部58により生成される合焦評価画像DSの一例を示した説明図である。図10は、非合焦時に画像生成部58により生成される合焦評価画像DSの一例を示した説明図である。図9及び図10と、既述の図2とに示すように、画像生成部58は、合焦確認制御時において撮像素子44のローリングシャッタ駆動が行われている間に信号取得部56が取得した撮像信号に基づき、合焦状態を示す合焦評価画像DSを生成する。
【0072】
図9及び図10に示すように、合焦評価画像DSには、画像内で輝度値が相対的に高くなる戻り光LBのパターン像Piが含まれる。そして、合焦時に生成された合焦評価画像DS(図9参照)には1つのパターン像Piが含まれ、非合焦時に生成された合焦評価画像DS(図10参照)には、広がったパターン像Pi或いは非合焦の程度が大きい場合には2つのパターン像Piが含まれる。
【0073】
図2に戻って、繰り返し制御部61は、フォーカス光学系36のフォーカスレンズのレンズ位置を変更しながら、互い異なる複数のレンズ位置ごとに、合焦確認制御部59、信号取得部56、及び画像生成部58を繰り返し作動させる繰り返し制御を実行する。これにより、複数のレンズ位置ごとの合焦評価画像DSが生成される。なお、フォーカス光学系36がフォーカスレンズの代わりに可変焦点レンズを備える場合には、繰り返し制御部61は、可変焦点レンズの互いに異なる複数の焦点位置ごとに繰り返し制御を実行する。
【0074】
合焦制御部62は、フォーカス光学系36の合焦制御を行って、眼底Efに対して照明系20及び受光系40を合焦させる。なお、既述の通り、フォーカス光学系36による受光系40の合焦と、スリット開口絞り26による照明系20の合焦とは、被検眼Eのディオプタ(視度)に応じて連動して動く。最初に合焦制御部62は、繰り返し制御で生成されたフォーカスレンズのレンズ位置ごと(可変焦点レンズ焦点位置ごとを含む、以下同じ)の合焦評価画像DSの中から、眼底Efに対して照明系20及び受光系40が最も合焦した状態で撮影された合焦評価画像DSを判別する。例えば合焦制御部62は、レンズ位置ごとの合焦評価画像DSに含まれるパターン像Piの数、輝度値、及び輝度分布等を比較することで、上述の判別を行う。次いで、合焦制御部62は、フォーカス光学系36を制御して、判別した合焦評価画像DSに対応するレンズ位置にフォーカスレンズを移動させる。
【0075】
なお、複数のレンズ位置ごとの合焦評価画像DSに基づいて合焦制御部62による合焦制御を行う代わりに、1回の合焦確認制御で生成された合焦評価画像DS或いはその基になる撮像信号に基づいて、合焦制御部62による合焦制御を行ってもよい。この場合には合焦制御部62は、パターン像Piの数、輝度値、及び輝度分布(ピーク、広がり)等に基づき、眼底Efに対して照明系20及び受光系40が合焦するようにフォーカス光学系36を駆動する。
【0076】
[本実施形態の作用]
図11は、上記構成の眼底カメラ10によるスリットスキャン方式の眼底撮影処理、特に本発明の眼科装置の制御方法に相当する合焦確認制御の流れを示すフローチャートである。
【0077】
図11に示すように、被検者の顔が不図示の顔支持部に支持された後、検者が操作部14に対して撮影開始操作を行うと、被検眼Eに対するカメラヘッド12のアライメントが公知の方法で実行される(ステップS1)。また、照明制御部50が光源22からの照明光L(赤外光)の出射を開始させることで、照明系20から眼底Efに照明光LSが照射される。そして、合焦確認制御部59が合焦確認制御を開始する(ステップS2)。
【0078】
既述の図7及び図8に示したように合焦確認制御部59は、偏向制御部52を介して光スキャナ30を制御して、光スキャナ30による照明光LSの偏向角度を固定することで、眼底Ef内での照明領域R1Aの位置を固定する(ステップS3)。また、合焦確認制御部59は、撮像制御部54を介して撮像素子44をローリングシャッタ駆動(第2動作モードで駆動)して、受光面44a内で受光領域R2Bを予め定められた移動経路で移動させる(ステップS4)。なお、ステップS3及びステップS4は、本発明の合焦確認制御ステップに相当する。
【0079】
また、撮像素子44のローリングシャッタ駆動開始と同時に、信号取得部56が撮像素子44から撮像信号の取得を開始する(ステップS5)。
【0080】
以下、撮像素子44のローリングシャッタ駆動が停止されるまで、すなわち上述の受光面44a内での移動経路に沿った受光領域R2Bの移動が終了するまで、ステップS4及びステップS5の処理が繰り返し実行される(ステップS6でNO)。これにより、受光面44a内で受光領域R2Bが移動する途中で入射領域R1B(パターン像Pi)と重なり、受光領域R2Bによる戻り光LBの撮像が実行され、信号取得部56が撮像素子44から戻り光LBの撮像信号を取得する。
【0081】
撮像素子44のローリングシャッタ駆動、すなわち受光面44a内での受光領域R2Bの移動が終了すると(ステップS6でYES)、画像生成部58が、撮像素子44のローリングシャッタ駆動中に信号取得部56が取得した撮像信号に基づき、既述の図9及び図10に示したような合焦評価画像DSを生成する(ステップS7)。
【0082】
画像生成部58により合焦評価画像DSが生成されると、繰り返し制御部61が、フォーカス光学系36のフォーカスレンズのレンズ位置を移動させた後、ステップS4からステップS7までの処理を繰り返し実行させる(ステップS8でYES)。これにより、異なるフォーカスレンズのレンズ位置に対応した合焦評価画像DSが生成される。
【0083】
以下同様に繰り返し制御部61は、フォーカス光学系36のフォーカスレンズのレンズ位置を移動させながら、レンズ位置ごとに上述のステップS4からステップS7の処理を繰り返し実行させる繰り返し制御を行う。これにより、レンズ位置ごとの合焦評価画像DSが生成される。
【0084】
全てのレンズ位置での合焦評価画像DSの生成が完了すると(ステップS8でNO)、合焦制御部62が、レンズ位置ごとの合焦評価画像DSに基づき、眼底Efに対して照明系20及び受光系40が最も合焦した状態で撮影された合焦評価画像DSを判別する。そして、合焦制御部62は、判別した合焦評価画像DSに対応するレンズ位置にフォーカス光学系36のフォーカスレンズを移動させる合焦制御を行う(ステップS9)。なお、既述の通り、合焦制御部62が1回の合焦確認制御で生成された合焦評価画像DSに基づき合焦制御を行ってもよく、この場合にはステップS8が省略される。
【0085】
合焦制御部62による合焦制御が完了すると、制御装置18の照明制御部50、偏向制御部52、撮像制御部54、信号取得部56、画像生成部58、及び表示制御部64が作動して、既述の図3に示した眼底Efのスリットスキャン撮影が実行される(ステップS10)。このスリットスキャン撮影で撮影された眼底像Dは表示制御部64によって表示部16に表示される。
【0086】
[本実施形態の効果]
以上のように本実施形態の眼底カメラ10では、照明光LSの偏向角度を固定した状態で眼底Efの撮影を行う合焦確認制御を行うことで、合焦状態を示す合焦評価画像DS或いはその基となる撮像信号が得られ、合焦状態を精度良く評価することができる。また、この合焦確認制御は、眼底カメラ10の既存のスリットスキャン撮影機能を利用して実行可能であり、眼底カメラ10の制御プログラムを変更するだけでよく追加の構成が必要ない。その結果、合焦状態の評価を低コストで且つ精度よく実行することができる。
【0087】
[合焦確認制御時の撮像素子の駆動の変形例]
図12は、合焦確認制御時の合焦確認制御部59による撮像素子44の駆動の変形例を説明するための説明図である。なお、図12中の符号XIIAは眼底Efを示し、符号XIIBは撮像素子44の受光面44aを示す。
【0088】
上記実施形態では、合焦確認制御時に受光面44a内で受光領域R2Bを予め定められた移動経路で移動させているが、受光領域R2Bを移動させなくてもよい。例えば図12に示すように、合焦確認制御部59が、撮像制御部54を介して撮像素子44を上記実施形態とは異なる動作モード(本発明の第3動作モード)で駆動して、受光面44a内での受光領域R2Bの位置を固定してもよい。この場合の受光領域R2Bの固定位置は、光スキャナ30により眼底Ef内で固定された照明領域R1Aからの戻り光LB(パターン像Pi)を検出可能な位置である。
【0089】
なお、受光面44a内で受光領域R2Bの位置を固定する場合には、非合焦時に受光面44a内での入射領域R1B(パターン像Pi)が広がる、或いは非合焦の程度が大きい場合には2つに分かれることを考慮して(図8参照)、受光領域R2BのY方向の幅を上記実施形態よりも広げてもよい。
【0090】
このように合焦確認制御時に受光面44a内の受光領域R2Bの位置を固定した場合であっても、図9及び図10に示したような合焦評価画像DS或いはその基となる撮像信号が得られるので、上記実施形態と同様の効果が得られる。
【0091】
[合焦確認制御時の照明光の照射位置の変形例]
図13は、合焦確認制御時の眼底Efに対する照明光LSの照射位置の変形例(符号XIIIA参照)と、合焦評価画像DS(符号XIIIB参照)との対応関係を示した説明図である。上記実施形態では、合焦確認制御時に眼底Efの中心領域に対して照明光LSを照射しているが、図13の符号XIIIAに示すように眼底Efに対する照明光LSの照射位置を眼底Efの中心領域以外に設定してもよい。この場合においても、図13の符号XIIIBに示すように、パターン像Piを含む合焦評価画像DSが得られるため、上記実施形態と同様の効果が得られる。
【0092】
[その他]
図14は、照明系20から被検眼Eの前眼部Eaに対して2経路から入射する光束の他の例の正面図である。上記実施形態では前眼部Eaに2経路から入射する光束の例を図5の符号5Aに示したが、これら光束の形状は特に限定されず、例えば図14に示した形状に変更してもよく、さらに別の形状に変更してもよい。
【0093】
上記実施形態では、照明系20から前眼部Eaに対して光束が2経路から入射しているが、絞り24に形成する開口24aの数及び位置(リング状の開口24aを含む)に応じて、前眼部Eaに入射する光束の数及び入射経路を適宜変更してもよい。
【0094】
上記各実施形態では、本発明の検出器としてローリングシャッタ機能を有するCMOS型の撮像素子44を例に挙げて説明したが、他の公知の各種検出器を用いてもよい。
【0095】
上記各実施形態では、眼底Efに対して照明光LSを照射しているが、ライン光、スポット光、或いはドット光等の任意形状の光を照射してもよい。なお、眼底カメラ10から眼底Efに対してスポット光又はドット光に照射する場合には、光スキャナ30としてスポット光等を2次元偏向可能なものを用いて、スポット光等により眼底Efを2次元走査してもよい。
【0096】
上記実施形態では、眼底カメラ10の照明系20、光スキャナ30、受光系40の配置の一例を図1に示したが、これら各部の配置は適宜変更可能である。
【0097】
上記各実施形態では、被検眼Eの眼底Efを撮影する眼底カメラ10を例に挙げて説明したが、被検眼Eの他の被観察部位(例えば前眼部Ea)を観察する眼科装置であって且つ被観察部位の一部に照射する照明光(励起光を含む)を偏向可能な各種眼科装置に本発明を適用可能である。
【符号の説明】
【0098】
10 眼底カメラ
12 カメラヘッド
14 操作部
16 表示部
18 制御装置
20 照明系
22 光源
24 絞り
24a 開口
26 スリット開口絞り
28 照明系レンズ
30 光スキャナ
31 レンズ
34 光路分割材
36 フォーカス光学系
38 対物レンズ
40 受光系
42 受光系レンズ
44 撮像素子
44a 受光面
50 照明制御部
52 偏向制御部
54 撮像制御部
56 信号取得部
58 画像生成部
59 合焦確認制御部
61 繰り返し制御部
62 合焦制御部
64 表示制御部
D 眼底像
DS 合焦評価画像
E 被検眼
Ea 前眼部
Ef 眼底
L 照明光
LB 戻り光
LS 照明光
Pi パターン像
R1A 照明領域
R1B 入射領域
R2A 撮像範囲
R2B 受光領域
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14