IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日本ピストンリング株式会社の特許一覧

<>
  • 特許-内燃機関の摺動構造 図1
  • 特許-内燃機関の摺動構造 図2
  • 特許-内燃機関の摺動構造 図3
  • 特許-内燃機関の摺動構造 図4
  • 特許-内燃機関の摺動構造 図5
  • 特許-内燃機関の摺動構造 図6
  • 特許-内燃機関の摺動構造 図7
  • 特許-内燃機関の摺動構造 図8
  • 特許-内燃機関の摺動構造 図9
  • 特許-内燃機関の摺動構造 図10
  • 特許-内燃機関の摺動構造 図11
  • 特許-内燃機関の摺動構造 図12
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-11-25
(45)【発行日】2024-12-03
(54)【発明の名称】内燃機関の摺動構造
(51)【国際特許分類】
   F16J 10/04 20060101AFI20241126BHJP
   F02F 1/00 20060101ALI20241126BHJP
   F02F 1/10 20060101ALI20241126BHJP
【FI】
F16J10/04
F02F1/00 F
F02F1/10 A
【請求項の数】 15
(21)【出願番号】P 2021551418
(86)(22)【出願日】2020-09-30
(86)【国際出願番号】 JP2020037294
(87)【国際公開番号】W WO2021066067
(87)【国際公開日】2021-04-08
【審査請求日】2022-11-07
(31)【優先権主張番号】P 2019179141
(32)【優先日】2019-09-30
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】390022806
【氏名又は名称】日本ピストンリング株式会社
(74)【代理人】
【識別番号】100112689
【弁理士】
【氏名又は名称】佐原 雅史
(74)【代理人】
【識別番号】100128934
【弁理士】
【氏名又は名称】横田 一樹
(72)【発明者】
【氏名】田森 博幸
(72)【発明者】
【氏名】安藤 肇
(72)【発明者】
【氏名】諸井 一巳
【審査官】後藤 健志
(56)【参考文献】
【文献】特開2008-023596(JP,A)
【文献】特開2010-255846(JP,A)
【文献】国際公開第2015/125832(WO,A1)
【文献】特許第5833276(JP,B1)
【文献】国際公開第2017/209135(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
F16J 10/04
F02F 1/00
(57)【特許請求の範囲】
【請求項1】
シリンダとピストンを有する内燃機関の摺動構造であって、
前記シリンダは、
内壁面のうち、前記ピストンの上死点における最下位のピストンリングのリング溝の下面位置から、前記ピストンの下死点における最上位のピストンリングのリング溝の上面位置までの間の全部又は一部となる行程中央部領域に複数の凹部が形成されており、
前記行程中央部領域では、どの場所の軸直角方向の断面をとっても、少なくとも一つの前記凹部が存在するように配置され、
前記行程中央部領域における前記ピストンリングと接触する面の少なくとも一部には、触針式表面粗さ測定機によって測定される輪郭曲線の算術平均粗さRaが0.140μm以下となる中央低粗さ領域が形成され、
前記中央低粗さ領域における粘度をμ、前記ピストンとの相対速度をU、前記ピストンに対する接触荷重をW、前記ピストンとの間の摩擦係数をfとし、
ストライベック線図の評価パラメータをA=μ×U/Wと定義する際に、
前記中央低粗さ領域における前記摩擦係数fの極小値fminは、前記評価パラメータAが0.0003以下の範囲内で達成されることを特徴とする、
内燃機関の摺動構造。
【請求項2】
シリンダとピストンを有する内燃機関の摺動構造であって、
前記シリンダは、
内壁面のうち、前記ピストンの上死点における最下位のピストンリングのリング溝の下面位置から、前記ピストンの下死点における最上位のピストンリングのリング溝の上面位置までの間の全部又は一部となる行程中央部領域に複数の凹部が形成されており、
前記行程中央部領域では、どの場所の軸直角方向の断面をとっても、少なくとも一つの前記凹部が存在するように配置され、
前記行程中央部領域における前記ピストンリングと接触する面の少なくとも一部には、触針式表面粗さ測定機によって測定される輪郭曲線の算術平均粗さRaが0.140μm以下となる中央低粗さ領域が形成され、
前記ピストンリングに相当するトップリング、セカンドリングおよびオイルリングを用いた非燃焼状態の摩擦試験において、前記内燃機関の回転数をN(r/min)とし、前記中央低粗さ領域における前記ピストンリングとの間の摩擦損失平均有効圧力(FMEP)をT(kPa)とする際に、
前記中央低粗さ領域における前記摩擦損失平均有効圧Tの極小値Tminは、前記回転数Nが700以下の範囲内で達成されることを特徴とする、
内燃機関の摺動構造。
【請求項3】
非接触式表面粗さ測定機によって測定される前記中央低粗さ領域の輪郭曲面の算術平均高さSaが0.20μm以下となることを特徴とする、
請求項1又は2に記載の内燃機関の摺動構造。
【請求項4】
非接触式表面粗さ測定機によって測定される前記中央低粗さ領域の突出谷部深さSvkが0.41μm以下となることを特徴とする、
請求項1~3のいずれか一項に記載の内燃機関の摺動構造。
【請求項5】
非接触式表面粗さ測定機によって測定される前記中央低粗さ領域の突出山部高さSpkが0.16μm以下となることを特徴とする、
請求項1~4のいずれか一項に記載の内燃機関の摺動構造。
【請求項6】
非接触式表面粗さ測定機によって測定される前記中央低粗さ領域のコア部のレベル差Skが0.53μm以下となることを特徴とする、
請求項1~5のいずれか一項に記載の内燃機関の摺動構造。
【請求項7】
前記中央低粗さ領域における非接触式表面粗さ測定機によって測定される突出山部高さをE(Spk)、突出谷部深さをI(Svk)とした場合に、I/Eが2.6以下となることを特徴とする、
請求項1~6のいずれか一項に記載の内燃機関の摺動構造。
【請求項8】
触針式表面粗さ測定機によって測定される前記中央低粗さ領域の輪郭曲線の算術平均粗さRaが0.120μm以下となることを特徴とする、
請求項1~7のいずれか一項に記載の内燃機関の摺動構造。
【請求項9】
前記中央低粗さ領域は、前記行程中央部領域における上端縁近傍及び下端縁近傍を含むことを特徴とする、
請求項1~8のいずれか一項に記載の内燃機関の摺動構造。
【請求項10】
前記行程中央部領域の全体が、前記中央低粗さ領域となることを特徴とする、
請求項1~のいずれか一項に記載の内燃機関の摺動構造。
【請求項11】
前記極小値fminは、前記評価パラメータAが0.0001以上の範囲内で達成されることを特徴とする、
請求項1に記載の内燃機関の摺動構造。
【請求項12】
前記評価パラメータAが0.0003以下となる範囲内のいずれかで、前記中央低粗さ領域における前記摩擦係数fが0.07以下となることを特徴とする、
請求項1に記載の内燃機関の摺動構造。
【請求項13】
前記評価パラメータAが0.0003以下となる範囲内のいずれかで、前記中央低粗さ領域における前記ピストンと前記シリンダが流体潤滑状態となることを特徴とする、
請求項1に記載の内燃機関の摺動構造。
【請求項14】
前記回転数Nが700以下となる範囲内のいずれかで、前記中央低粗さ領域における前記摩擦損失平均有効圧力Tが14kPa以下となることを特徴とする、
請求項2に記載の内燃機関の摺動構造。
【請求項15】
前記回転数Nが700以下となる範囲内のいずれかで、前記中央低粗さ領域における前記ピストンと前記シリンダが流体潤滑状態となることを特徴とする、
請求項2に記載の内燃機関の摺動構造。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、シリンダとピストンを有する内燃機関の摺動構造等に関する。
【背景技術】
【0002】
従来、シリンダとピストンを有する内燃機関では、燃費向上やオイル消費量削減の為、シリンダとピストンの摺動抵抗(摩擦力)を小さくする努力がなされている。本出願人は、ピストンリングとシリンダの摩擦力を低減する手法として、いわゆるディンプルライナを開発しており(例えば、特許5155924号公報参照)、シリンダの内壁面の行程中央部領域に複数の凹部を形成すること等によって、運転時の摺動抵抗を小さくしている。
【発明の概要】
【発明が解決しようとする課題】
【0003】
本出願時点で未公知ではあるが、本発明者らの更なる研究により、このディンプルライナ技術について、更に燃費向上等を実現できる余地が残っていることが明らかとなった。
【0004】
本発明は、斯かる実情に鑑み、ディンプルライナに関して更なる燃費向上やオイル消費量削減を実現しようとするものである。
【課題を解決するための手段】
【0005】
上記目的を達成する本発明は、シリンダとピストンを有する内燃機関の摺動構造であって、前記シリンダは、内壁面のうち、前記ピストンの上死点における最下位のピストンリングのリング溝の下面位置から、前記ピストンの下死点における最上位のピストンリングのリング溝の上面位置までの間の全部又は一部となる行程中央部領域に複数の凹部が形成されており、前記行程中央部領域における前記ピストンリングと接触する面の少なくとも一部には、触針式表面粗さ測定機によって測定される輪郭曲線の算術平均粗さRaが0.140以下となる中央低粗さ領域が形成されることを特徴とする、内燃機関の摺動構造である。
【0006】
上記内燃機関の摺動構造に関連して、非接触式表面粗さ測定機によって測定される前記中央低粗さ領域の輪郭曲面の算術平均高さSaが0.20μm以下となることを特徴とする。
【0007】
上記内燃機関の摺動構造に関連して、非接触式表面粗さ測定機によって測定される前記中央低粗さ領域の突出谷部深さSvkが0.41μm以下となることを特徴とする。
【0008】
上記内燃機関の摺動構造に関連して、非接触式表面粗さ測定機によって測定される前記中央低粗さ領域の突出山部高さSpkが0.16μm以下となることを特徴とする。
【0009】
上記内燃機関の摺動構造に関連して、非接触式表面粗さ測定機によって測定される前記中央低粗さ領域のコア部のレベル差Skが0.53μm以下となることを特徴とする。
【0010】
上記内燃機関の摺動構造に関連して、前記中央低粗さ領域における前記非接触式表面粗さ測定機によって測定される突出山部高さをE(Spk)、突出谷部深さをI(Svk)とした場合に、I/Eが2.6以下となることを特徴とする。
【0011】
上記内燃機関の摺動構造に関連して、触針式表面粗さ測定機によって測定される前記中央低粗さ領域の輪郭曲線の算術平均粗さRaが0.120μm以下となることを特徴とする。
【0012】
上記内燃機関の摺動構造に関連して、前記中央低粗さ領域は、前記行程中央部領域における上端縁近傍及び下端縁近傍を含むことを特徴とする。
【0013】
上記内燃機関の摺動構造に関連して、前記行程中央部領域の全体が、前記中央低粗さ領域となることを特徴とする。
【0014】
上記内燃機関の摺動構造に関連して、前記中央低粗さ領域の触針式表面粗さ測定機によって測定される輪郭曲線の算術平均粗さRaが、0.090μm以下としても良い。
【0015】
上記内燃機関の摺動構造に関連して、前記中央低粗さ領域における粘度をμ、前記ピストンとの相対速度をU、前記ピストンに対する接触荷重をW、前記ピストンとの間の摩擦係数をfとし、ストライベック線図の評価パラメータをA=μ×U/Wと定義する際に、前記中央低粗さ領域における前記摩擦係数fの極小値fminは、前記評価パラメータAが0.0003以下の範囲内で達成されることを特徴とする。
【0016】
上記内燃機関の摺動構造に関連して、前記極小値fminは、前記評価パラメータAが0.0001以上の範囲内で達成されることを特徴とする。
【0017】
上記内燃機関の摺動構造に関連して、前記中央低粗さ領域における粘度をμ、前記ピストンとの相対速度をU、前記ピストンに対する接触荷重をW、前記ピストンとの間の摩擦係数をfとし、ストライベック線図の評価パラメータをA=μ×U/Wと定義する際に、前記評価パラメータAが0.0003以下となる範囲内のいずれかで、前記中央低粗さ領域における前記摩擦係数fが0.07以下となることを特徴とする。
【0018】
上記内燃機関の摺動構造に関連して、前記中央低粗さ領域における粘度をμ、前記ピストンとの相対速度をU、前記ピストンに対する接触荷重をW、前記ピストンとの間の摩擦係数をfとし、ストライベック線図の評価パラメータをA=μ×U/Wと定義する際に、前記評価パラメータAが0.0003以下となる範囲内のいずれかで、前記中央低粗さ領域における前記ピストンと前記シリンダが流体潤滑状態となることを特徴とする。
【0019】
上記内燃機関の摺動構造に関連して、前記ピストンリングに相当するトップリング、セカンドリングおよびオイルリングを用いた非燃焼状態の摩擦試験において、前記内燃機関の回転数をN(r/min)とし、前記中央低粗さ領域における前記ピストンリングとの間の摩擦損失平均有効圧力(FMEP)をT(kPa)とする際に、前記中央低粗さ領域における前記摩擦損失平均有効圧Tの極小値Tminは、前記回転数Nが700以下の範囲内で達成されることを特徴とする。
【0020】
上記内燃機関の摺動構造に関連して、前記極小値Tminは、前記回転数Nが600以下の範囲内で達成されることを特徴としても良い。
【0021】
上記内燃機関の摺動構造に関連して、前記ピストンリングに相当するトップリング、セカンドリングおよびオイルリングを用いた非燃焼状態の摩擦試験において、前記内燃機関の回転数をN(r/min)とし、前記中央低粗さ領域における前記ピストンリングとの間の摩擦損失平均有効圧力(FMEP)をT(kPa)とする際に、前記回転数Nが700以下となる範囲内のいずれかで、前記中央低粗さ領域における前記摩擦損失平均有効圧力Tが14kPa以下となることを特徴とする。
【0022】
上記内燃機関の摺動構造に関連して、前記ピストンリングに相当するトップリング、セカンドリングおよびオイルリングを用いた非燃焼状態の摩擦試験において、前記内燃機関の回転数をN(r/min)とし、前記中央低粗さ領域における前記ピストンリングとの間の摩擦損失平均有効圧力(FMEP)をT(kPa)とする際に、前記回転数Nが700以下となる範囲内のいずれかで、前記中央低粗さ領域における前記ピストンと前記シリンダが流体潤滑状態となることを特徴とする。
【0023】
上記内燃機関の摺動構造に関連して、前記内壁面のうち、前記行程中央部領域の上側端縁よりも上方側に、触針式表面粗さ測定機によって測定される輪郭曲線の算術平均粗さRaが0.140μm以下となる上側低粗さ領域が形成され、前記上側低粗さ領域と前記中央低粗さ領域が連続する事を特徴としても良い。
【0024】
上記内燃機関の摺動構造に関連して、前記内壁面のうち、前記行程中央部領域の下側端縁よりも下方側に、触針式表面粗さ測定機によって測定される輪郭曲線の算術平均粗さRaが0.140μm以下となる下側低粗さ領域が形成され、前記下側低粗さ領域と前記中央低粗さ領域が連続する事を特徴としても良い。
【0025】
上記内燃機関の摺動構造に関連して、前記中央低粗さ領域の表面が未皮膜状態であることを特徴としても良い。
【発明の効果】
【0026】
本発明によれば、燃費を向上させ、または、オイル消費量を削減させるという優れた効果を奏し得る。
【図面の簡単な説明】
【0027】
図1】本発明の第一実施形態に係る内燃機関の摺動構造に適用されるシリンダライナの軸方向に沿う断面図である。
図2】(A)及び(B)は同シリンダライナの内周壁を周方向に展開した状態を示す展開図である。
図3】同シリンダライナの内周壁の軸直角方向の断面図である。
図4】(A)は同内燃機関の摺動構造に適用されるピストン及びピストンリングを示す側面図であり、(B)は同ピストン及びピストンリングを示す部分拡大断面図であり、(C)はトップリングの部分拡大断面図であり、(D)はセカンドリングの部分拡大断面図である。
図5】(A)は2ピースタイプのオイルリングの断面図であり、(B)は3ピースタイプのオイルリングの断面図である。
図6】一般的な内燃機関の摺動に関する(A)ストライベック線図、(B)FMEP線図である。
図7】一般的な内燃機関の摺動状態を測定する摩擦単体測定装置を示す断面図である。
図8】(A)は第一実施形態の内燃機関の摺動構造を説明するためのストライベック線図であり、(B)は同摺動構造のFMEP線図である。
図9】同内燃機関のシリンダライナとピストンリングの摺動行程を示す側面図である。
図10】(A)及び(B)は、同内燃機関の1ストローク中におけるシリンダライナとピストンリング摩擦力の変動を示すグラフ図である。
図11】(A)は、本発明の第二実施形態に係る内燃機関の摺動構造に適用されるシリンダライナの軸方向に沿う断面図であり、(B)は同シリンダライナとピストンリングの摺動行程を示す側面図である。
図12】マイクロテクスチャ技術が適用されるシリンダライナの例を示すシリンダライナの軸方向に沿う断面図である。
【発明を実施するための形態】
【0028】
以下、本発明の実施の形態に関して添付図面を参照して説明する。まず、本発明の第一実施形態に係る内燃機関の摺動構造について詳細に説明する。なお、本第一実施形態では、内燃機関がディーゼルエンジンとなる場合を例示するが、本発明はこれに限定されず、ガソリンエンジン等の他の種類の内燃機関に適用可能である。
【0029】
<シリンダライナ>
【0030】
図1に示すように、第一実施形態の内燃機関に係るシリンダライナ10の内壁面12には、複数の凹部14が形成される。凹部14は、内壁面12における行程中央部領域20に形成される。この行程中央部領域20とは、ピストン30の上死点Tにおける最下位のピストンリングのリング溝の下面位置から、ピストン30の下死点Uおける最上位のピストンリングのリング溝の上面位置までの範囲を最大とし、その内の全部または一部領域となる(ここでは全部の範囲が行程中央部領域20となり、その全体に凹部14が形成される場合を例示する)。行程中央部領域20の外側の領域を外部領域25と定義すると、この外部領域25は、行程中央部領域20の上死点側に隣接する上側外部領域25Aと、行程中央部領域20の下死点側に隣接する下側外部領域25Bから構成される。ピストン30がシリンダライナ10内を往復運動する際、上側外部領域25A、行程中央部領域20、下側外部領域25B、行程中央部領域20、上側外部領域25Aをこの順に繰り返し通過する。なお、上側外部領域25Aと行程中央部領域20の境界を上側境界27A、下側外部領域25Bと行程中央部領域20の境界を下側境界27Bと定義する。
【0031】
勿論、行程中央部領域20を超えて、複数の凹部14を形成することも可能であるが、オイル消費量(LOC)の観点では、行程中央部領域20の内部に限定的に凹部14を形成することが好ましい。
【0032】
<シリンダライナに形成されるディンプル>
【0033】
凹部14は、行程中央部領域20の内壁面12において、どの場所の軸直角方向の断面をとっても、少なくとも一つの凹部14がその断面に存在するように配置される。即ち、凹部14は、軸方向に重なり合うように配置される。この結果、行程中央部領域20を通過するピストンリングの外周面は、常に、少なくとも1つの凹部14と対向している。一方、上側外部領域25Aと下側外部領域25Bには凹部14が形成されない。
【0034】
凹部14の形状は、軸方向に対して斜めに配置される方形(正方形又は長方形)となっており、結果として、複数の凹部14全体が斜め格子状に配置される。このようにすると、図2(A)の展開図に示すように、ある特定の凹部14に着目する場合、その凹部14の軸方向の最下点14bが、他の凹部14の軸方向の最上点14aよりも軸方向下側に位置する。このように、複数の凹部14が軸方向に重なり合うので、行程中央部領域20におけるあらゆる場所(例えば、矢視A、矢視B、矢視C)の軸直角方向断面において、凹部14が常に存在できる。ここでは、行程中央部領域20において、同じ面積となる複数の凹部14が、面方向(軸方向及び周方向)に均一に配置されている。
【0035】
なお、図2(B)の展開図に示すように、同一面積となる複数の凹部14が、面方向に不均一に配置されていても良い。ここでは行程中央部領域20の軸方向端部における周方向の帯状領域20Pは、複数の凹部14が占める面積が小さくなっており、行程中央部領域20の軸方向中央部における周方向の帯状領域20Qは、複数の凹部14が占める面積が大きくなっている。
【0036】
凹部14の寸法や形状は特に限定されないが、シリンダやピストンリングの寸法や目的に応じて適宜選択される。例えば、凹部14は、行程中央部領域20のシリンダ軸方向に貫く(又は延びる)ようにスリット状又は帯状に形成されることができる。一方、シリンダの気密性の観点に鑑みると、凹部14のシリンダ軸方向の最大平均長さJ(図2(A)参照)を、ピストンの最も上位に位置するピストンリング(トップリング)のシリンダ軸方向長さ(幅)以下、具体的にはその5~100%程度とすることが好ましい。凹部14の平均長さJとは、複数の凹部14の軸方向の最大寸法にバラつきがある場合はその平均値を意味する。
【0037】
凹部14のシリンダ周方向の最大平均長さSは、0.1mm~15mmの範囲内が好ましく、0.3mm~5mmの範囲内が望ましい。これらの範囲より小さくなると、凹部14自体による摺動面積低減効果が十分に得られない場合がある。一方、これらの範囲より大きくなると、ピストンリングの一部が凹部内に入り込みやすくなり、ピストンリングが変形する等の不具合が発生する場合がある。
【0038】
図3に示すように、凹部14のシリンダ径方向の最大平均長さR(最大平均深さR)は、0.1μm~1000μmの範囲内が好ましく、0.1μm~500μmの範囲内が望ましい。より望ましくは0.1μm~50μmに設定する。凹部14のシリンダ径方向の最大平均長さRが、これらの範囲より小さくなると、凹部14自体の摺動面積低減効果が十分に得られない場合がある。一方、これらの範囲より大きくしようとすると、加工が困難となり、また、シリンダの肉厚を厚くする必要がある等の不具合が生じ得る。
【0039】
図2に戻って、軸方向に同位置で周方向に隣り合う凹部14間のシリンダ周方向の最小の間隔Hの平均値は、0.05mm~15mmの範囲内が好ましく、0.1mm~5.0mmの範囲内が特に好ましい。これらの範囲より小さくなると、ピストンリングとシリンダライナの接触面積(摺動面積)が小さすぎて、安定して摺動できない可能性が有る。一方、これらの範囲より大きいと、凹部14自体の摺動面積低減効果が十分に得られない場合がある。
【0040】
ちなみに、複数の凹部が軸方向に重なるように配置するディンプルライナと異なるが、同種の凹部を形成するものとしてマイクロテクスチャ技術が存在するので、これについて簡単に説明する。マイクロテクスチャとは、図12に示すように、シリンダライナの内壁面のシリンダ軸方向に沿って、凹部が形成される領域Vと、凹部が全く存在しない領域Zとが、軸方向に重ならない状態で交互に繰り返されるようにし、ピストンリングがこの内壁面を移動する度に、凹部に対してエンジンオイルの流入・流出を生じさせ、その動圧によって油膜を厚くして摩擦力を下げる理論である
【0041】
<シリンダライナに形成される中央低粗さ領域>
【0042】
シリンダライナ10の内壁面12には、行程中央部領域20の少なくとも一部において、触針式表面粗さ測定機(JIS B 0651:2001)によって測定される表面粗さ(輪郭曲線の算術平均粗さRa(JIS B 0601:2013))が0.140(μm)以下となり、好ましくは、表面粗さRaが0.120(μm)以下となる中央低粗さ領域22が形成される。具体的には、内周面12におけるピストンリング40と接触し得る面、即ち、内周面12における凹部14を除いた面の少なくとも一部の範囲の表面粗さRaを0.140(μm)以下に加工し、より好ましくは0.120(μm)以下に加工することで、中央低粗さ領域22を形成する。なお、本実施形態では、触針式表面粗さ測定機で測定される表面粗さ(輪郭曲線の算術平均粗さ)をRaと表示し、後述する非接触式表面粗さ測定機で測定される三次元表面粗さ(輪郭曲面の算術平均高さ(JIS B 0681-2:2018、ISO 25178-2:2012))をSaと表示する。
【0043】
中央低粗さ領域22は、より望ましくは、表面粗さRaが0.090(μm)以下に設定され、具体的に0.083(μm)に設定される。
【0044】
この中央低粗さ領域22について、JIS B 0681-6:2014(ISO 25178-6:2010)に準じたレーザー顕微鏡を利用した非接触式表面粗さ測定機(測定倍率1080倍、視野サイズ259.4μm×259.4μm、カットオフ無し、高さ方向(Z方向)測定ピッチ0.06μm)で測定した場合の三次元表面粗さ値(JIS B 0681-2:2018、ISO 25178-2:2012)を以下に示す。
算術平均高さSa(μm):0.192以下、好ましくは0.163以下、更に望ましくは0.120以下(具体的には0.110に設定される)。
突出山部高さSpk(μm):0.159以下、好ましくは0.144以下、更に望ましくは0.121以下(具体的には0.116に設定される)。
コア部レベル差Sk(μm):0.521以下、好ましくは0.449以下、更に望ましくは0.340以下(具体的には0.315に設定される)。
突出谷部深さSvk(μm):0.409以下、好ましくは0.342以下、更に望ましくは0.241以下(具体的には0.218に設定される)。
【0045】
とりわけ、本実施形態では、突出山部高さを小さくするだけでなく、突出谷部深さも積極的に小さくすることで、摺動中の摩擦力の低減を実現する。ちなみに、従来のシリンダライナでは、潤滑油の保持力を確保するために、突出谷部深さをある程度大きくする必要があり、それ伴って、突出山部高さを小さくすることが難しく、摺動中の摩擦力の低減に限界がある。一方、本実施形態では、隣接する凹部14に潤滑油が十分に保持されることから、ピストンリング40との接触表面自体は、潤滑油の保持力が小さくても、十分に油膜を形成できる。この趣旨の下、上記突出山部高さをE、上記突出谷部深さをIとした場合に、本実施形態の中央低粗さ領域22では、I/Eの値を2.6以下に設定することが好ましく、より好ましくは、2.4以下、更に望ましくは2.0以下とする。
【0046】
また、本実施形態では、行程中央部領域20におけるピストンリング40と接触し得る面の全部の範囲を中央低粗さ領域22としている。結果として、中央低粗さ領域22は、凹部14が形成される行程中央部領域20の上端縁近傍及び下端縁近傍を含む。更に、行程中央部領域20の上死点側に隣接する上側外部領域25Aには、表面粗さRaが0.120(μm)以下となる上側低粗さ領域23Aが形成され、行程中央部領域20の下死点側に隣接する下側外部領域25Bについは、下側低粗さ領域23Bが形成される。上側低粗さ領域23Aと、中央低粗さ領域22と、下側低粗さ領域23Bは、均一な表面粗さ状態で完全に連なっており、全体として一体的な連続表面となっている。
【0047】
行程中央部領域20の上端縁近傍及び下端縁近傍は、シリンダライナ10とピストン30の相対速度Uが低下することから、流体潤滑領域から境界潤滑領域に移行しやすい。しかし、この中央低粗さ領域22の存在によって、流体潤滑領域を優位に発現させることができる。いわゆるディンプルライナ技術は、流体潤滑領域でその効果を発揮し得ることから、行程中央部領域20の上端縁近傍及び下端縁近傍においても、ディンプルライナ技術の利点が得られる。なお、中央低粗さ領域22を、行程中央部領域20の上端縁近傍及び/又は下端縁近傍に限定して、形成することも可能であるが、本実施形態のように、行程中央部領域20の全体に中央低粗さ領域22を形成することが好ましい。シリンダライナ10とピストン30の相対速度Uがより低速度となった場合、行程中央部領域20の中央側にも境界潤滑領域が迫ってくることになるが、その場合であっても、流体潤滑領域の範囲を広げることが可能となる。
【0048】
シリンダライナ10の内壁面12の中央部低粗さ領域22は、ホーニング盤を用いてホーニング加工を行うことで形成される。この際のホーニング砥石の粒度は、例えばF500又は#800よりも細かい砥粒(JIS R 6001-2:2017,ISO8486-2:2007)を使用することが好ましい。
【0049】
更に、このホーニング加工によって中央部低粗さ領域22を形成した後は、その表面に皮膜処理を行わないことが好ましい。例えば、シリンダライナ10の製造工程で一般的に用いられるリン酸塩皮膜等を行うと、中央低粗さ領域22の表面性状が、皮膜によって変動するからである。
【0050】
<ピストン及びピストンリング>
【0051】
図4(A)及び図4(B)にピストン30及びこのピストン30のリング溝に設置されるピストンリング40(トップリング50、セカンドリング60、オイルリング70)を示す。ピストンリング40は、シリンダライナ10の内壁面12に対して、外周面42が対向する状態でシリンダ軸方向に往復運動する。トップリング50は、ピストン30とシリンダライナ10との間のすき間を無くし、燃焼室からクランクケース側へと圧縮ガスが抜ける現象(ブローバイ)を防ぐ。セカンドリング60は、トップリング50と同様に、ピストン30とシリンダライナ10との間のすき間を無くす役割と、シリンダライナ10の内壁面12に付着する余分なエンジンオイルをかき落とす役割を兼ねる。オイルリング70は、シリンダライナ10の内壁面12についている余分なエンジンオイルをかき落として、適度な油膜を形成することで、ピストン30の焼きつきを防止する。
【0052】
図4(C)に拡大して示すように、トップリング50は、単一の環状部材であり、外周面52を断面視すると、径方向外側に凸となるいわゆるバレル形状となっている。具体的には、外周面52のシリンダ軸方向両外側縁は、シリンダ軸方向の外側に向かって内壁面12から離れる方向に傾斜している。なお、外周面52におけるシリンダライナ10の内壁面12に対する当あたり幅fは、例えば0.3mm以下に形成すると好適である。また、外周面52の触針式表面粗さ測定機(JIS B 0651:2001)によって測定される表面粗さ(輪郭曲線の算術平均粗さRa(JIS B 0601:2013))は、0.250(μm)以下が好ましい。
【0053】
図4(D)に拡大して示すように、セカンドリング60は、単一の環状部材であり、その外周近傍は、シリンダ軸方向上端からシリンダ軸方向下側に向かうにつれて拡径するテーパ形状となっている。このテーパ形状の最外端に位置してシリンダライナ10の内壁面12と接触する外周面62は、断面視で平面形状となっている。なお、外周面62におけるシリンダライナ10の内壁面12に対する当たり幅fは、例えば0.3mm以下に形成すると好適である。また、外周面62の触針式表面粗さ測定機(JIS B 0651:2001)によって測定される表面粗さ(輪郭曲線の算術平均粗さRa(JIS B 0601:2013))は、0.250(μm)以下が好ましい。
【0054】
なお、トップリング50やセカンドリング60の張力は、比較的低い値に設定されており、外周面52,62の当たり面に作用する面圧が、例えば0.5MPa以下となり、好ましくは0.3MPa以下となる。結果、トップリング50やセカンドリング60は、上死点近傍や下死点近傍を除けば、流体潤滑領域で摺動することが多い。
【0055】
図5(A)に拡大して示すオイルリング70は、2ピースタイプであり、リング本体72と、コイルばね状のコイルエキスパンダ76を有する。リング本体72は、軸方向両端に配置される一対の環状のレール73,73と、この一対のレール73,73の間に配置されてこれらを連結する環状の柱部75を有する。一対のレール73,73及び柱部75を合わせた断面形状は略I形状又はH形状となっており、この形状を利用して、内周面側には、コイルエキスパンダ76を収容するための断面半円弧形状の内周溝79が形成される。また、一対のレール73,73には、それぞれ、柱部75を基準として径方向外側に突出する環状突起74,74が形成される。この環状突起74,74の突端に形成される外周面82,82が、シリンダライナ10の内壁面12と当接する。コイルエキスパンダ76は、内周溝79に収容されることで、リング本体72を径方向外側に押圧付勢する。なお、リング本体72の柱部75には、油戻し孔77が、周方向に複数形成される。
【0056】
図5(A)の一対の外周面82,82の各々の当たり幅は、0.02mm~0.30mmに形成されることが好ましく、例えば0.15mmに設定される。なお、オイルリング70の外周面82の当たり面に作用する面圧は、例えば1.0MPa~2.0MPaとなり、例えば1.75MPa程度となる。従って、オイルリング70は、エンジンの回転数が高い場合は、流体潤滑領域で摺動することが多いが、エンジンの回転数が下がると、境界潤滑領域で摺動することが多くなる。なお、外周面82,82の径方向断面の形状は、図5(A)では、シンプルな台形となる場合を例示するが、本発明はこれに限定されず、上側レール73の外周面82と下側レール73の外周面82において、互いに向かい合う側(コイルエキスパンダ76側)の隅部をステップ状に切り欠いた形状(いわゆるステップランド形状)としてもよい。また、外周面82の触針式表面粗さ測定機(JIS B 0651:2001)によって測定される表面粗さ(輪郭曲線の算術平均粗さRa(JIS B 0601:2013))は、0.450(μm)以下が好ましい。
【0057】
なお、オイルリング70は2ピースタイプに限られず、例えば図5(B)に示す3ピースタイプのオイルリング70であっても良い。このオイルリング70は、上下に分離している環状のサイドレール73a,73bと、このサイドレール73a,73bの間に配置されるスペーサエキスパンダ76sを有する。
【0058】
スペーサエキスパンダ76sは、鋼材をシリンダ軸方向に凹凸を繰り返す波形形状に塑性加工して形成される。この波型形状を利用して、上方側支持面78aと下方側支持面78bが形成され、一対のサイドレール73a,73bがそれぞれ軸方向に支持される。スペーサエキスパンダ76sの内周側端部には、軸方向外側に向かってアーチ状に立設される耳部74mを有する。この耳部74mは、サイドレール73a,73bの内周面に当接する。なお、スペーサエキスパンダ76sは、合口が付き合わされて、周方向に収縮状態でピストン30のリング溝に組み込まれる。結果、スペーサエキスパンダ76sの復元力によって、耳部74mがサイドレール73a,73bを径方向外側に押圧付勢する。
【0059】
なお、図5(B)のサイドレール73a,73bの外周面82,82の各々の当たり幅fは、0.02mm~0.40mmに形成されることが好ましい。
【0060】
<シリンダライナとピストンリングの摩擦態様>
【0061】
次に、シリンダライナとピストンリングの摩擦態様について説明する。一般的な摺動時の摩擦係数の変化は、図6(A)に示すストライベック線図として表現される。このストライベック線図では、直接接触して摺動する固体接触領域110の摩擦態様、油性被膜を介して摺動する境界潤滑領域112の摩擦態様、粘性潤滑油膜を介して摺動する流体潤滑領域114における摩擦態様に分別される。また、境界潤滑領域112と流体潤滑領域114の間には、双方の状態が混在する混在潤滑領域113の摩擦態様が存在する。なお、このストライベック線図は、横軸が、「粘度μ」×「速度U」/「接触荷重W」を対数表示したものであり、縦軸が、摩擦係数(f)となる。従って、摩擦力が最も小さくなり得るのは流体潤滑領域114または混在潤滑領域113であり、この領域114、113を有効利用することが、低摩擦化、即ち、低燃費に有効となる。一方、速度Uが上昇しても、境界潤滑領域112の途中から流体潤滑領域114に移行できない場合は、点線に示すように、境界潤滑領域112がそのまま高速領域まで継続する状態になる。
【0062】
ちなみに、流体潤滑領域114の摩擦力の大部分は、オイルのせん断抵抗であり、このせん断抵抗は、(粘度)×(速度)×(面積)/(油膜厚さ)で定義される。結果、せん断面積を低減することが、摩擦力の低減に直結する。
【0063】
そこで、本実施形態では、ピストンリング40の外周面42のあたり面にオイルを積極的に流入させることで、素早く流体潤滑領域114に移行して低摩擦化を実現する。同時に、シリンダライナ10に対していわゆるディンプルライナ技術を適用することで、シリンダライナ10の行程中央部領域20に凹部14を形成して、オイルのせん断抵抗が生じる実質面積を減少させることで、より効率的に摩擦力の低下を達成する。
【0064】
また、図6(A)のストライベック線図は、ピストン40の1ストローク中の摩擦係数(f)の動的変化を示すものであるが、摩擦態様を評価する他の指標として、摩擦損失平均有効圧力(FMEP:Friction Mean Effective Pressure)がある。この摩擦損失平均有効圧力は、1サイクルあたりの摩擦仕事を行程容積で割った値を示す。この摩擦損失平均有効圧力の線図(FMEP線図)を図6(B)に示す。FMEP線図では、横軸が、回転数(N)となり、縦軸が摩擦損失平均有効圧力(kPa)となる。回転数(N)が高いほど、1ストローク中の流体潤滑領域114が占める割合が増える。一方、回転数(N)が低くなると、1ストローク中の流体潤滑領域114が占める割合が減って、混在潤滑領域113(または境界潤滑領域112)が占める割合が増える。従って、図6(B)のFMEP線図の形状は、図6(A)のストライベック線図の流体潤滑領域114及び混在潤滑領域113の形状と比較的近似する。
【0065】
次に、本第一実施形態のシリンダライナ10とピストンリング40の実際の摩擦態様等について説明する。なお、ピストン30に対して、これに設置されるトップリング50、セカンドリング60、オイルリング70の固定位置が、シリンダ軸方向に相対的に異なることから、シリンダライナ10と摩擦状態も厳密にはそれぞれのピストンリングで微差が生じるが、ここではセカンドリング60の位置を、ピストンリング40の基準位置として説明を行う。なお、最速通過点Cに限っては、トップリング50を基準としている。
【0066】
<摩擦態様の測定方法(非燃焼時摩擦試験)>
【0067】
図7に、第一実施形態で採用したシリンダライナ10とピストンリング50の摩擦態様を測定する摩擦単体測定装置500を示す。摩擦単体測定装置500は、ピストンリング40側を固定し、シリンダライナ10側を上下に往復移動させることで、両者間の摩擦状態を測定する。即ち、この摩擦状態の測定は、内燃機関としての燃焼を生じさせない状態の摩擦試験(非燃焼時摩擦試験)となる。摩擦単体測定装置500は、ピストンリング40(トップリング、セカンドリング、オイルリングの3本)がセットされる仮想ピストン510を、ロードセル512を介して固定軸514によって保持する。このロードセル512によって、ピストンリング40に作用する上下方向の外力(摩擦力)を測定する。
【0068】
シリンダライナ10は、その外壁側において移動スリーブ530で保持される。移動スリーブ530の下端は駆動用ピストン540に保持される。この駆動用ピストン540は、特に図示しないクランクシャフトによって上下動するコンロッド550に保持される。結果、シリンダライナ10が上下方向に往復移動する。移動スリーブ530の外周には固定スリーブ560が配置される。固定スリーブ560は基台570に固定される。なお、固定軸514は、固定スリーブ560の上端の蓋部材562に固定されている。移動スリーブ530の外周面と固定スリーブ560の内周面は摺動自在となる。固定スリーブ560の内部には、温度調整ジャケット565が設けられており、この温度調整ジャケット565内に温水または冷水を循環させることで、固定スリーブ560の温度を制御可能となっている。
【0069】
本実施形態では、摩擦単体測定装置500による摩擦態様の測定条件として、潤滑油の規格を10W-30とし、油温を60度に設定し、クランクシャフトの回転数を215rpm~2154rpmに変化させた。
【0070】
なお、トップリング50は、高さ(幅)2.5mmを採用し、外周面52の表面粗さRaを0.180(μm)、張力を16.7Nに設定した。セカンドリング60は、高さ(幅)2.0mmを採用し、外周面62の表面粗さRaを0.180(μm)、張力を12.3Nに設定した。オイルリング70は、高さ(幅)3.0mmを採用し、外周面82の表面粗さRaを0.330(μm)、張力を22.6Nに設定した。
【0071】
<シリンダライナとピストンリングの摩擦態様(ストライベック線図)>
【0072】
本第一実施形態の摩擦態様を分析するために、中央低粗さ領域22の表面粗さRaを0.120(μm)にしたシリンダライナ10-Aと、表面粗さRaを0.083(μm)としたシリンダライナ10-Bを用意し、摩擦単体測定装置500を用いて摩擦態様を測定した。参考となる比較例として、シリンダライナ10と同一形状で表面粗さRaを0.160(μm)にしたシリンダライナXと、凹部14を形成せずに、その表面粗さRaを0.160(μm)にしたシリンダライナYを用意し、その他を同一条件に設定して、摩擦単体測定装置500を用いて摩擦態様を測定した。そのストライベック線図の測定結果を図8(A)、FMEP線図の測定結果を図8(B)に示す。なお、図8(A)(B)には、本第一実施形態に相当する仮想的なシリンダライナK(表面粗さRa0.140(μm))についての推測値も示す。
【0073】
まず、シリンダライナ10-A、10-B、Kの表面粗さ一覧を以下の表1に示す。なお、算術平均粗さRaは、触針式表面粗さ測定機(JIS B 0651:2001)によって測定される値であり、算術平均高さSa(μm)、突出山部高さSpk(μm)、突出谷部深さSvk(μm)、コア部レベル差:Sk(μm)は、すでに説明したレーザー顕微鏡を利用した非接触式表面粗さ測定機を用いて測定した値である。
【表1】
【0074】
本実施形態のシリンダライナ10-A,10-Bと、比較例となるシリンダライナXは、行程中央部領域20の全体に凹部14が形成される。図9に示すように、ピストン30が、シリンダライナの上死点Tから下死点Uまで摺動する際の、シリンダライナとピストンリング40の摩擦係数の変動は、両者の相対速度に依存する。この相対速度は、エンジンの回転数(rpm)に対して一義的に決定する。ピストン30は、シリンダライナ10の上死点Tの速度が零の状態から下降して行程Aを経由し、途中で最高速度Cに達する。その後、行程Bを経由して下死点Uに到達すると速度が零となる。この間に、図8(A)のストライベック線図に沿って摩擦係数が常に変化する。
【0075】
図8(A)のストライベック線図において、中央低粗さ領域22における粘度をμ、ピストン30(ピストンリング40)との相対速度をU、ピストン30に対する接触荷重をW、ピストン30との間の摩擦係数をf(グラフ縦軸)と定義し、評価パラメータをA=μ×U/W(グラフ横軸(対数表記))と定義する。
【0076】
本実施形態のシリンダライナ10-A、10-Bでは、評価パラメータAが0.0003以下の範囲内に、中央低粗さ領域20における摩擦係数fの極小値fminが位置する。より望ましくは、評価パラメータAが0.0002以下の範囲内に摩擦係数fの極小値fminが位置する。一方、評価パラメータAが0.0001以上の範囲内に中央低粗さ領域20における摩擦係数fの極小値fminが位置する。
【0077】
更に、本実施形態のシリンダライナ10-A、10-Bでは、評価パラメータAが0.0003以下となる範囲内のいずれかで、中央低粗さ領域20における摩擦係数fが0.07以下となる。望ましくは摩擦係数fが0.06以下となる。
【0078】
シリンダライナX(表面粗さRa0.160(μm)/凹部あり)と比べると分かるように、本実施形態のシリンダライナ10-A、10-Bでは、摩擦係数が0.07以下となる範囲が、評価パラメータAが0.0003以下となるグラフの左側に広がる。これは、低速度の摺動においても、流体潤滑領域114及び混在潤滑領域113となる範囲が広がることを意味し、極めて摩擦係数fの低い摺動態様となる。
【0079】
参考として、シリンダライナX(表面粗さRa0.160(μm)/凹部あり)の場合、評価パラメータAが0.0003を超える範囲になると、凹部14の効果が表れて摩擦係数fの上昇率が低下し、シリンダライナY(表面粗さRa0.160(μm)/凹部なし)よりも摩擦率fが小さくなる。一方、評価パラメータAが0.0003~0.0005の範囲内で、シリンダライナX(表面粗さRa0.160(μm)/凹部あり)のグラフとシリンダライナY(表面粗さRa0.160(μm)/凹部なし)のグラフが交差し、評価パラメータAが0.0003以下になると、シリンダライナX(表面粗さRa0.160(μm)/凹部あり)の摩擦係数fが0.07を超える範囲で上昇して、シリンダライナY(表面粗さRa0.160(μm)/凹部なし)の摩擦係数fを上回る。すなわち、従来のシリンダライナX(表面粗さRa0.160(μm)/凹部あり)の場合、評価パラメータAが0.0003を超える範囲では、凹部14が摩擦係数fを小さくするように作用するが、評価パラメータAが0.0003以下の範囲になると、凹部14が摩擦係数fを増大させる。本発明者らの未公知の考察によると、従来のシリンダライナX(表面粗さRa0.160(μm)/凹部あり)の場合、凹部14の存在によってシリンダライナとピストンリング40との実接触面積が小さくなるので、低速度領域において潤滑油による潤滑不足が生じやすく、境界潤滑領域に陥りやすいと推察された。
【0080】
本実施形態のシリンダライナ10-A、10-Bでは、中央低粗さ領域20の表面粗さRaが0.120(μm)以下に設定されるので、評価パラメータAが0.0003以下の低速度領域であって、かつ、凹部14によってピストンリング40との実接触面積が小さくても、流体潤滑領域114または混在潤滑領域113を維持しやすくなる。また、仮に境界潤滑状態となった場合であっても、表面粗さが小さいので摩擦係数が小さく維持される。一般的に、シリンダライナの内周面の表面粗さRaを0.120(μm)以下にすると、接触面の潤滑油の保持力が低下して潤滑油不足に陥りやすいが、本実施形態では、中央低粗さ領域22に重畳形成される凹部14が、中央低粗さ領域20に対する潤滑油の貯留部として機能するので、中央低粗さ領域20において潤滑油不足が生じにくいという相乗効果も得られる。
【0081】
更に、シリンダライナ10-A、10-Bにおいて、評価パラメータAが0.0003を超える範囲(高速領域)の摩擦係数fは、シリンダライナX(表面粗さRa0.160(μm)/凹部あり)の摩擦係数fと近似するか、あるいは、それよりも小さくなる。つまり、シリンダライナ10-A、10-Bは、高速度領域においても、中央低粗さ領域20が摩擦係数fの低減に貢献している。
【0082】
なお、図8(A)のストライベック線図には、実測値ではないが、シリンダライナ10-Aと同じ構成で、中央低粗さ領域20の表面粗さRaが0.140(μm)に設定されるシリンダライナKの摩擦係数を推定表示する。シリンダライナKの摩擦係数は、表面粗さRaが0.160(μm)となる従来のシリンダライナX、Yの状態と、表面粗さRaが0.120(μm)となるシリンダライナ10-Aの中間値に近似すると推測できる。このシリンダライナKであっても、評価パラメータAが0.0003以下となる範囲内のいずれかで、中央低粗さ領域20における摩擦係数fが0.07以下となり、望ましくは摩擦係数fが0.06以下となる。更に、シリンダライナKにおいて、評価パラメータAが0.0003を超える範囲(高速領域)の摩擦係数fは、シリンダライナX(表面粗さRa0.160(μm)/凹部あり)の摩擦係数fと近似するか、あるいは、それよりも小さくなる。
【0083】
<シリンダライナとピストンリングの摩擦態様(FMEP線図)>
【0084】
図8(B)のFMEP線図において、中央低粗さ領域22とピストンリング40の間の摩擦損失平均有効圧力(FMEP)をT(kPa)(縦軸)と定義し、内燃機関の回転数をN(r/min)(横軸)と定義する。
【0085】
本実施形態のシリンダライナ10-A、10-Bでは、回転数Nが700以下の範囲内に、中央低粗さ領域20における摩擦損失平均有効圧Tの極小値Tminが位置する。より望ましくは、回転数Nが600以下の範囲内に摩擦損失平均有効圧Tの極小値Tminが位置する。
【0086】
更に、本実施形態のシリンダライナ10-A、10-Bでは、回転数Nが700以下の範囲内のいずれかで、中央低粗さ領域20における摩擦損失平均有効圧力Tが14kPa以下となるように設定する。
【0087】
シリンダライナX(表面粗さRa0.160(μm)/凹部あり)と比べると分かるように、本実施形態のシリンダライナ10-A、10-Bでは、摩擦損失平均有効圧力Tが14kPa以下に小さくなる範囲が、回転数Nが700以下(グラフの左側)に広がる。結果、低回転時においても、極めて摩擦損失の少ない摺動態様となる。
【0088】
参考として、シリンダライナX(表面粗さRa0.160(μm)/凹部あり)の場合、回転数Nが700を超える高回転領域になると、凹部14の効果が表れて摩擦損失の上昇率が低下し、特に回転数Nが1000を超えるとシリンダライナY(表面粗さRa0.160(μm)/凹部なし)よりも摩擦損失が小さくなる。一方、回転数Nが1000~1300の範囲内で、シリンダライナX(表面粗さRa0.160(μm)/凹部あり)のグラフとシリンダライナY(表面粗さRa0.160(μm)/凹部なし)のグラフが交差する。回転数Nが1000以下になると、シリンダライナY(表面粗さRa0.160(μm)/凹部なし)の摩擦損失を上回り、700以下になると摩擦損失が14kPaを超える範囲で上昇する。すなわち、従来のシリンダライナX(表面粗さRa0.160(μm)/凹部あり)の場合、回転数Nが1000を超える範囲では、凹部14が摩擦損失を小さくするように作用するが、回転数Nが1000以下の範囲になると、凹部14が摩擦損失を増大させるように作用する。本発明者らの未公知の考察によると、従来のシリンダライナX(表面粗さRa0.160(μm)/凹部あり)の場合、凹部14の存在によってシリンダライナとピストンリング40との実接触面積が小さくなるので、低回転領域において潤滑油による潤滑不足が生じやすく、境界潤滑領域が占有する比率が増大しやすいと推察された。
【0089】
本実施形態のシリンダライナ10-A、10-Bでは、中央低粗さ領域20の表面粗さRaが0.120(μm)以下に設定されるので、回転数Nが700以下の低回転領域であっても、流体潤滑領域114または混在潤滑領域113を維持することで摩擦損失が抑制される。また、仮に境界潤滑状態となった場合であっても、表面粗さが小さいので摩擦損失が抑制される。具体的に、回転数Nが700以下になると、シリンダライナX(表面粗さRa0.160(μm)/凹部あり)を基準として、シリンダライナ10-Aの場合は2.0kPa程度、シリンダライナ10-Bの場合は4.0kPa程度の低減効果が得られる。一般的に、シリンダライナの内周面の表面粗さRaを0.120(μm)以下にすると、潤滑油の保持力が低下して潤滑油不足に陥りやすいが、本実施形態では、中央低粗さ領域22に重畳形成される凹部14が、中央低粗さ領域20に対する潤滑油の貯留部として機能するので、中央低粗さ領域20において潤滑油不足が生じにくいという相乗効果も得られる。
【0090】
更に、シリンダライナ10-A、10-Bにおいて、回転数Nが700を超える高回転領域の摩擦損失は、シリンダライナX(表面粗さRa0.160(μm)/凹部あり)の摩擦損失と近似するか、あるいは、それよりも小さくなる。つまり、シリンダライナ10-A、10-Bでは、高回転領域においても、中央低粗さ領域20が摩擦損失に悪影響を及ぼすことがない。
【0091】
ちなみに、このFMEP線図は、非燃焼状態の摩擦試験に基づく。従って、実燃焼が生じる実際の内燃機関のFMEPは、燃焼圧力が作用することから、FMEP値はこれよりも上昇する。
【0092】
なお、図8(B)のFMEP線図には、実測値ではないが、シリンダライナ10-Aと同じ構成で、中央低粗さ領域20の表面粗さRaが0.140(μm)に設定されるシリンダライナKのFMEPを推定表示する。シリンダライナKのFMEP線図は、表面粗さRa0.160(μm)となる従来のシリンダライナX、YのFMEP線図と、表面粗さRa0.120(μm)となるシリンダライナ10-AのFMEP線図の中間値に近似すると推測できる。このシリンダライナKも、摩擦損失平均有効圧力Tが14kPa以下に小さくなる範囲が、回転数Nが700以下(グラフの左側)に広がる。結果、低回転時においても、極めて摩擦損失の少ない摺動態様となる。
【0093】
すなわち、シリンダライナKでは、回転数Nが700以下の低回転領域であっても、流体潤滑領域114または混在潤滑領域113を維持することで摩擦損失が抑制される。また、仮に境界潤滑状態となった場合であっても、表面粗さが小さいので摩擦損失が抑制される。一般的に、シリンダライナの内周面の表面粗さRaを0.140(μm)以下にすると、潤滑油の保持力が低下して潤滑油不足に陥りやすいが、本実施形態では、中央低粗さ領域22に重畳形成される凹部14が、中央低粗さ領域20に対する潤滑油の貯留部として機能するので、中央低粗さ領域20において潤滑油不足が生じにくいという相乗効果も得られる。
【0094】
<1ストローク中の摩擦力の変化>
【0095】
図10(A)には、回転数Nが646(低回転)となる場合のシリンダライナXとシリンダライナ10-Bのストローク中の摩擦力の変動を示す。図10(B)には、回転数Nが2154(高回転)となる場合のシリンダライナXとシリンダライナ10-Bのストローク中の摩擦力の変動を示す。なお、これらのグラフの横軸は、コンロッドの位相(角度)となる。図10(A)の低回転運転時は、シリンダライナ10-BとシリンダライナXの摩擦力に大きな差が生じていることがわかる。特に、上死点側に移動する行程では位相が45度~135度の範囲、下死点側に移動する行程では位相が225度から315度の範囲において、摩擦力の差が大きいことがわかる。特に、下死点側に移動する行程の180度~360度の範囲は、全般に亘って摩擦力が大幅に小さくなる。低回転時において、シリンダライナXは境界潤滑領域に近い摺動態様であるが、シリンダライナ10-Bは流体潤滑領域(又は混在潤滑領域)に近い摺動態様になると推察される。
【0096】
図10(B)の高回転運転時は、シリンダライナ10-Bの摩擦力が、シリンダライナXの摩擦力に対して、全般的に小さくなる。高回転運転時は、シリンダライナ10-BとシリンダライナXの双方が流体潤滑領域となるが、この流体潤滑領域においても、シリンダライナ10-Bの摩擦力の方が常に小さくなることが分かる。同時に、境界潤滑領域になりやすい下死点となる位相0度近傍及び360度近傍や、上死点となる位相180度近傍の摩擦力が、大幅に小さくなることが分かる。
【0097】
<オイル消費量>
【0098】
本実施形態のシリンダライナ10とピストン30の摺動構造の場合、オイル消費量も抑制される。これは、中央低粗さ領域22に形成される潤滑油膜の絶対量が少なくなることに起因する。油膜の絶対量が減少しても、重畳的に凹部14が形成されているので、潤滑不足に陥ることはない。すなわち、本実施形態では、オイル消費量の低減と、十分な潤滑効果の双方を、合理的に解決することが可能となっている。本発明者らのシミュレーションによると、ディーゼルエンジンの場合、シリンダライナXと比較してシリンダライナ10-Bの方がLOC比率で約10%低減することが推察された。
【0099】
<第二実施形態のシリンダライナ>
【0100】
次に、本発明の第二の実施の形態に係る内燃機関の摺動構造に関して添付図面を参照して説明する。
【0101】
図11(A)に示すように、第二実施形態の内燃機関に係るシリンダライナ10の内壁面12には、複数の凹部14が形成される。凹部14は、内壁面12における行程中央部領域20のみに形成される。この行程中央部領域20は、ピストン30の上死点Tにおける最下位のピストンリングのリング溝の下面位置19A(以下、上死点側端縁とも呼ぶ)から、ピストン30の下死点Uおける最上位のピストンリングのリング溝の上面位置19B(以下、下死点側端縁とも呼ぶ)までの全範囲(以下、基準行程領域19と呼ぶ)の一部となっている。
【0102】
本実施形態の行程中央部領域20は、基準行程領域19の上死点側端縁19Aよりも下側にずれた位置となる。その結果、基準行程領域19の上死点側端縁19Aから、行程中央部領域20の上死点側の端縁27Aまでの間の全部には、凹部を有しない平滑な上側平滑領域130Aが形成される。上側平滑領域130Aはピストンリング40が通過する領域となる。
【0103】
また、本実施形態の行程中央部領域20は、基準行程領域19の下死点側端縁19Bよりも上側にずれた位置となる。その結果、基準行程領域19の下死点側端縁19Bから、行程中央部領域20の下死点側の端縁27Bまでの間の全部には、凹部を有しない平滑な下側平滑領域130Bが形成される。下側平滑領域130Bはピストンリング40が通過する領域となる。
【0104】
本実施形態では、行程中央部領域20の上死点側の端縁27Aを、凹部14が形成される場所と凹部14が形成されない場所の境界線を意味する「上側境界」と呼ぶことがあり、また、行程中央部領域20の下死点側の端縁27Bを、凹部14が形成される場所と凹部14が形成されない場所の境界線を意味する「下側境界」と呼ぶこともある。なお、行程中央部領域20の下死点側の端縁(下側境界)27Bを、基準行程領域19の下死点側端縁19Bと一致させたり、それよりも下側まで広げたりしても良い。
【0105】
また、行程中央部領域20の外側の領域を外部領域25と定義すると、この外部領域25は、行程中央部領域20の上死点側に隣接する上側外部領域25Aと、行程中央部領域20の下死点側に隣接する下側外部領域25Bから構成される。なお、上側外部領域25Aの一部には、上側平滑領域130Aが含まれることになり、下側外部領域23Bの一部には、下側平滑領域130Bが含まれることになる。
【0106】
本実施形態では、この行程中央部領域20の少なくとも一部において、触針式表面粗さ測定機によって測定される表面粗さ(算術平均粗さ)Raが0.140(μm)以下となり、好ましくは表面粗さRaが0.120(μm)以下となる、中央低粗さ領域22が形成される。ここでは、行程中央部領域20の全部を中央低粗さ領域22としている。結果として、中央低粗さ領域22は、凹部14が形成される行程中央部領域20の上端縁近傍及び下端縁近傍を含む。
【0107】
この中央低粗さ領域22を、レーザー顕微鏡を利用した非接触式表面粗さ測定機で測定した場合の表面粗さ値を以下に示す。
算術平均高さSa(μm):0.192以下、好ましくは0.163以下、更に望ましくは0.120以下(具体的には0.110に設定される)。
突出山部高さSpk(μm):0.159以下、好ましくは0.144以下、更に望ましくは0.121以下(具体的には0.116に設定される)。
コア部レベル差Sk(μm):0.521以下、好ましくは0.449以下、更に望ましくは0.340以下(具体的には0.315に設定される)。
突出谷部深さSvk(μm):0.409以下、好ましくは0.342以下、更に望ましくは0.241以下(具体的には0.218に設定される)。
【0108】
更に、行程中央部領域20の上側に隣接する上側平滑領域130Aには、触針式表面粗さ測定機によって表面粗さ(算術平均粗さ)Raが0.140(μm)以下となり、好ましくは、表面粗さRaが0.120(μm)以下となる上側低粗さ領域23Aが形成される。本実施形態の上側低粗さ領域23Aは、上側平滑領域130Aに重畳しつつ、更に上方側に越えた範囲まで形成される。また、行程中央部領域20の下側に隣接する下側平滑領域130には、表面粗さ(算術平均粗さ)Raが0.140(μm)以下となり、好ましくは、表面粗さRaが0.120(μm)以下となる下側低粗さ領域23Bが形成される。本実施形態の下側低粗さ領域23Bは、下側平滑領域130Bに重畳しつつ、更に下方側に越えた範囲まで形成される。上側低粗さ領域23Aと、中央低粗さ領域22と、下側低粗さ領域23Bは、均一な表面粗さ状態で完全に連なっており、全体として一体的な連続平面となっている。
【0109】
この上側低粗さ領域23A及び/または下側低粗さ領域23Bを、レーザー顕微鏡を利用した非接触式表面粗さ測定機で測定した場合の表面粗さ値を以下に示す。
算術平均高さSa(μm):0.192以下、好ましくは0.163以下、更に望ましくは0.120以下(具体的には0.110に設定される)。
突出山部高さSpk(μm):0.159以下、好ましくは0.144以下、更に望ましくは0.121以下(具体的には0.116に設定される)。
コア部レベル差Sk(μm):0.521以下、好ましくは0.449以下、更に望ましくは0.340以下(具体的には0.315に設定される)。
突出谷部深さSvk(μm):0.409以下、好ましくは0.342以下、更に望ましくは0.241以下(具体的には0.218に設定される)。
【0110】
ピストン30がシリンダライナ10内を往復運動する際、上側外部領域25A(上側低粗さ領域23A)、行程中央部領域20(中央低粗さ領域22)、下側外部領域25B(下側低粗さ領域23B)、行程中央部領域20(中央低粗さ領域22)、上側外部領域25A(上側低粗さ領域23A)をこの順に繰り返し通過する。
【0111】
上側平滑領域130の行程方向距離は、望ましくは、基準行程領域19の行程方向全距離の30%以上に設定される。また、行程中央部領域20における行程方向の中央点20Mは、基準行程領域における行程方向の中央点19Mと比較して、ピストンの下死点U側に位置する。
【0112】
最上位のピストンリング(後述するトップリング50)が内壁面12を最高速度で通過する位置を最速通過点Cと定義した場合、行程中央部領域20の上死点側の端縁(上側境界)27Aは、最速通過点C以下に設定される。本実施形態では、上死点側の端縁27Aと最速通過点Cが一致するように設定されている。
【0113】
なお、シリンダライナ10の中央部低粗さ領域22、上側低粗さ領域23A及び下側低粗さ領域23Bは、ホーニング盤を用いてホーニング加工を行うことで形成される。この際のホーニング砥石の粒度は、例えばF500又は#800よりも細かい砥粒(JIS R 6001-2:2017,ISO8486-2:2007)を使用することが好ましい。このホーニング加工によって中央部低粗さ領域22、上側低粗さ領域23A及び下側低粗さ領域23Bを形成した後は、その表面に皮膜処理を行わないことが好ましい。例えば、シリンダライナ10の製造工程で一般的に用いられるリン酸塩皮膜等を行うと、中央低粗さ領域22、上側低粗さ領域23A及び下側低粗さ領域23Bの表面性状が、皮膜によって変動するからである。
【0114】
<上側低粗さ領域23Aの存在意義>
【0115】
既に述べたように、本実施形態では、凹部が重畳形成される中央低粗さ領域22よりも上死点側に、凹部が形成されない上側低粗さ領域23Aを備える。この上側低粗さ領域23Aの意義は次の通りである。ピストン30の上死点側は、燃焼室が存在することから高温環境となる。従って、シリンダライナ10の上死点側に凹部を形成して、凹部内にエンジンオイルを滞留させてしまうと、そのエンジンオイルが高温となり、気化することでオイル消費量が増大する。そこで、上側低粗さ領域23Aについては、凹部を形成しないことで、オイルの消費量を抑制する。一方、上側低粗さ領域23Aを本実施形態のように低粗さ化すると、潤滑不足が生じる可能性があるか、下側に隣接する中央低粗さ領域22に重畳形成される凹部14が潤滑油の貯留部として機能しており、この凹部14を介して、上側低粗さ領域23Aに潤滑油が積極的に供給されるので、潤滑不足が生じにくいという相乗効果も得られる。
【0116】
また、ピストン30の上死点T側は、高温環境によってエンジンオイルの粘性も低下するので、油膜が形成されにくいが、上側低粗さ領域23Aによって表面粗さRaを0.120(μm)以下、好ましくは0.100(μm)以下とすることで、少ない油膜であっても積極的に流体潤滑領域または混在潤滑領域とする。仮に境界潤滑領域になったとしても、低粗さとなるので、摩擦係数が小さくて済む。更に、中央低粗さ領域22に重畳形成される凹部14に溜まる潤滑油によって、上側低粗さ領域23Aに対して潤滑油の供給できるので、上側低粗さ領域23Aにおける潤滑油不足も生じにくいという利点がある。
【0117】
<第二実施形態のシリンダライナとピストンリングの摺動構造>
【0118】
図11(B)には、シリンダライナ10をピストンリング40が上死点Tから下死点Uに向かって相対移動する行程を示す。ピストンリング40が、上側低粗さ領域23Aを相対移動する際中は、行程線A、Lとなる。そして、ピストンリング40が、中央低粗さ領域22を通過する際は行程線Mとなる。その後、シリンダライナ10の下側低粗さ領域23Bを、ピストンリング40が下死点側に向かって相対移動している最中は、行程線N、Bとなる。
【0119】
本第二実施形態の内燃機関に係る摺動構造によれば、第一実施形態と同様に、中央低粗さ領域22によって、低速移動時の摩擦係数を小さくすることができる。また、低回転時の摩擦損失を低減することが可能となる。更に、ピストンリング40が通過する上側低粗さ領域23Aによって、オイル消費量を抑制することができる。
【0120】
尚、本発明は、上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
【符号の説明】
【0121】
10 シリンダライナ
12 内壁面
14 凹部
20 行程中央部領域
22 中央低粗さ領域
23A 上側低粗さ領域
23B 下側低粗さ領域
25 外部領域
25A 上側外部領域
25B 下側外部領域
30 ピストン
40 ピストンリング
110 固体接触領域
112 境界潤滑領域
113 混在潤滑領域
114 流体潤滑領域
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12