(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-11-26
(45)【発行日】2024-12-04
(54)【発明の名称】梁接合構造
(51)【国際特許分類】
E04B 1/58 20060101AFI20241127BHJP
E04B 1/24 20060101ALI20241127BHJP
E04B 5/10 20060101ALI20241127BHJP
E04C 5/06 20060101ALI20241127BHJP
【FI】
E04B1/58 506F
E04B1/24 Q
E04B5/10
E04C5/06
(21)【出願番号】P 2020177912
(22)【出願日】2020-10-23
【審査請求日】2023-06-16
(73)【特許権者】
【識別番号】000006655
【氏名又は名称】日本製鉄株式会社
(74)【代理人】
【識別番号】110000637
【氏名又は名称】弁理士法人樹之下知的財産事務所
(72)【発明者】
【氏名】桑田 涼平
(72)【発明者】
【氏名】有田 政樹
(72)【発明者】
【氏名】北岡 聡
(72)【発明者】
【氏名】鈴木 悠介
【審査官】伊藤 昭治
(56)【参考文献】
【文献】特開2017-053102(JP,A)
【文献】特開2015-068005(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
E04B 1/00 - 1/61
E04B 5/10
E04C 5/06
(57)【特許請求の範囲】
【請求項1】
第1の上フランジ、第1の下フランジおよび第1のウェブを含むH形断面梁と、
前記第1のウェブにボルト接合される第1の板状部分、および前記第1の下フランジに平行な面を含む第2の板状部分を含む支持部材と、
コンクリート、および前記コンクリートに埋設され少なくとも前記H形断面梁の材軸方向に延びる引張力伝達部材を含み、前記H形断面梁および前記支持部材の上方に配置されるRC床スラブと、
前記第1の上フランジおよび前記支持部材にそれぞれ接合されるとともに、前記RC床スラブを構成するコンクリートに定着させられる係止部材と、
前記第1の下フランジと前記第2の板状部分との間に形成される溶接部分と
を備え、
前記支持部材は、第2の上フランジ、第2の下フランジおよび第2のウェブを含む支持側H形断面梁と、前記第2の上フランジ、前記第2の下フランジまたは前記第2のウェブの少なくともいずれかに接合されるフィンプレートとを含み、
前記第1の板状部分は、前記フィンプレートであり、
前記第2の板状部分は、前記第2の下フランジであり、
前記係止部材は、前記第2の上フランジに接合される、梁接合構造。
【請求項2】
第1の上フランジ、第1の下フランジおよび第1のウェブを含むH形断面梁と、
前記第1のウェブにボルト接合される第1の板状部分、および前記第1の下フランジに平行な面を含む第2の板状部分を含む支持部材と、
コンクリート、および前記コンクリートに埋設され少なくとも前記H形断面梁の材軸方向に延びる引張力伝達部材を含み、前記H形断面梁および前記支持部材の上方に配置されるRC床スラブと、
前記第1の上フランジおよび前記支持部材にそれぞれ接合されるとともに、前記RC床スラブを構成するコンクリートに定着させられる係止部材と、
前記第1の下フランジと前記第2の板状部分との間に形成される溶接部分と
を備え、
前記第2の板状部分は、前記第1の下フランジよりも板厚が大きく、
前記溶接部分は、前記第1の下フランジの端面に突き合わされた前記第2の板状部分の端面が前記第1の下フランジの上面よりも上側にはみ出した部分と前記第1の下フランジの上面との間に形成される隅肉溶接部分である、梁接合構造。
【請求項3】
第1の上フランジ、第1の下フランジおよび第1のウェブを含むH形断面梁と、
前記第1のウェブにボルト接合される第1の板状部分、および前記第1の下フランジに平行な面を含む第2の板状部分を含む支持部材と、
コンクリート、および前記コンクリートに埋設され少なくとも前記H形断面梁の材軸方向に延びる引張力伝達部材を含み、前記H形断面梁および前記支持部材の上方に配置されるRC床スラブと、
前記第1の上フランジおよび前記支持部材にそれぞれ接合されるとともに、前記RC床スラブを構成するコンクリートに定着させられる係止部材と、
前記第1の下フランジと前記第2の板状部分との間に形成される溶接部分と
を備え、
前記溶接部分は、前記第1の下フランジの上面に載せかけられた前記第2の板状部分の端面と前記第1の下フランジの上面との間に形成される隅肉溶接部分である、梁接合構造。
【請求項4】
第1の上フランジ、第1の下フランジおよび第1のウェブを含むH形断面梁と、
前記第1のウェブにボルト接合される第1の板状部分、および前記第1の下フランジに平行な面を含む第2の板状部分を含む支持部材と、
コンクリート、および前記コンクリートに埋設され少なくとも前記H形断面梁の材軸方向に延びる引張力伝達部材を含み、前記H形断面梁および前記支持部材の上方に配置されるRC床スラブと、
前記第1の上フランジおよび前記支持部材にそれぞれ接合されるとともに、前記RC床スラブを構成するコンクリートに定着させられる係止部材と、
前記第1の下フランジと前記第2の板状部分との間に形成される溶接部分と
を備え、
前記溶接部分は、前記第1の下フランジの端面と前記第2の板状部分の端面との間に形成される突き合わせ溶接部分である、梁接合構造。
【請求項5】
前記第1の下フランジまたは前記第2の板状部分の少なくともいずれかの端面が開先加工される、請求項4に記載の梁接合構造。
【請求項6】
前記支持部材は、第2の上フランジ、第2の下フランジおよび第2のウェブを含む支持側H形断面梁と、前記第2の上フランジ、前記第2の下フランジまたは前記第2のウェブの少なくともいずれかに接合されるフィンプレートと、前記第2のウェブおよび前記フィンプレートに接合されるリブとを含み、
前記第1の板状部分は、前記フィンプレートであり、
前記第2の板状部分は、前記リブであり、
前記係止部材は、前記第2の上フランジに接合される、請求項2から請求項5のいずれか一項に記載の梁接合構造。
【請求項7】
前記支持部材は、第2の上フランジ、第2の下フランジおよび第2のウェブを含む支持側H形断面梁と、前記第2の上フランジ、前記第2の下フランジまたは前記第2のウェブの少なくともいずれかに接合されるフィンプレートとを含み、
前記第1の板状部分は、前記フィンプレートであり、
前記第2の板状部分は、前記第2の下フランジであり、
前記係止部材は、前記第2の上フランジに接合される、請求項2から請求項5のいずれか一項に記載の梁接合構造。
【請求項8】
前記溶接部分は、前記第2の板状部分の上面に載せかけられた前記第1の下フランジの端面と前記第2の板状部分の上面との間に形成される隅肉溶接部分である、請求項1に記載の梁接合構造。
【請求項9】
前記溶接部分の圧縮耐力は、前記梁接合構造における前記RC床スラブの有効幅領域内に配置された前記引張力伝達部材の引張耐力、および前記H形断面梁の負曲げ領域内に配置された前記係止部材のせん断耐力のうち小さい方の耐力以上である、請求項1から請求項8のいずれか1項に記載の梁接合構造。
【請求項10】
第1の上フランジ、第1の下フランジおよび第1のウェブを含むH形断面梁と、
前記第1のウェブにボルト接合される第1の板状部分、および前記第1の下フランジに平行な面を含む第2の板状部分を含む支持部材と、
コンクリート、および前記コンクリートに埋設され少なくとも前記H形断面梁の材軸方向に延びる引張力伝達部材を含み、前記H形断面梁および前記支持部材の上方に配置されるRC床スラブと、
前記第1の上フランジおよび前記支持部材にそれぞれ接合されるとともに、前記RC床スラブを構成するコンクリートに定着させられる係止部材と、
前記第1の下フランジと前記第2の板状部分との間に形成される溶接部分と
を備え、
前記溶接部分の圧縮耐力は
、前記RC床スラブの有効幅領域内に配置された前記引張力伝達部材の引張耐力、および前記H形断面梁の負曲げ領域内に配置された前記係止部材のせん断耐力のうち小さい方の耐力以上である、梁接合構造。
【請求項11】
前記支持部材は、第2の上フランジ、第2の下フランジおよび第2のウェブを含む支持側H形断面梁と、前記第2の上フランジ、前記第2の下フランジまたは前記第2のウェブの少なくともいずれかに接合されるフィンプレートと、前記第2のウェブおよび前記フィンプレートに接合されるリブとを含み、
前記第1の板状部分は、前記フィンプレートであり、
前記第2の板状部分は、前記リブであり、
前記係止部材は、前記第2の上フランジに接合される、請求項10に記載の梁接合構造。
【請求項12】
前記溶接部分は、前記第2の板状部分の上面に載せかけられた前記第1の下フランジの端面と前記第2の板状部分の上面との間に形成される隅肉溶接部分である、請求項10または請求項11に記載の梁接合構造。
【請求項13】
前記溶接部分は、前記第1のウェブと前記第1の下フランジとの交差部分を除く部分にのみ形成される、請求項1から請求項12のいずれか1項に記載の梁接合構造。
【請求項14】
前記引張力伝達部材は、異形鉄筋またはメッシュ筋である、請求項1から請求項13のいずれか1項に記載の梁接合構造。
【請求項15】
前記係止部材は、スタッドボルトである、請求項1から請求項14のいずれか1項に記載の梁接合構造。
【請求項16】
前記第1の板状部分は、前記第1のウェブに高力ボルト摩擦接合される、請求項1から請求項15のいずれか1項に記載の梁接合構造。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、梁接合構造に関する。
【背景技術】
【0002】
大梁(支持部材)と小梁(被接合材)との梁端接合部は一般に、剛接合又はピン接合として設計される。剛接合の場合、小梁のフランジは大梁に溶接またはボルト接合され、ウェブは大梁にボルト接合される。一方、ピン接合の場合、小梁のウェブは大梁に取り付けたフィンプレートにボルト接合され、フランジは大梁に接合されない。これに対して、特許文献1および特許文献2では、剛接合およびピン接合の中間の剛性を有する接合構造が提案されている。具体的には、大梁および小梁のそれぞれの上フランジは床スラブを介して接合され、小梁の下フランジはボルト接合またはメタルタッチによって大梁に接合される。
【0003】
一方、特許文献3では、隅肉溶接を用いて小梁を大梁に剛接合する接合方法が提案されている。具体的には、大梁の上フランジに小梁の上フランジを載せかけて隅肉溶接によって接合し、大梁のウェブに取り付けられた受けプレートに小梁の下フランジを載せかけて隅肉溶接し、小梁のウェブを大梁にウェブに接合されたガセットプレートにボルト接合する。隅肉溶接では、完全溶け込み溶接とは異なり外観検査による品質管理となるため、施工が容易になる。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2015-68001号公報
【文献】特開2017-53102号公報
【文献】特開2009-52302号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、上記の特許文献1および特許文献2に記載されたような接合構造は、下フランジと大梁側の部材との接合に多数の高力ボルトやスプライスプレートが必要になったり、施工誤差のために小梁の下フランジと大梁側の部材とが精度よくメタルタッチしない場合に対応するための別途の技術が必要とされたりするため、例えば施工性の面で必ずしも有利とはいえない。
【0006】
また、特許文献3に記載されたような接合構造は、一般的には超音波探傷装置による検査が要求されない隅肉溶接を用いているが、引張力が生じる上フランジ側では溶接不良があった場合に破断のリスクが高まるため、検査が要求されないことが必ずしも好ましいとは限らない。また、大梁の上フランジに小梁の上フランジを載せかけることによって接合構造の上面に段差が生じるため、例えばデッキプレートなどの割り付け時に余分な加工手間が生じる。また、大梁の上フランジに小梁の上フランジを載せかけるために、小梁のウェブを切り欠くなどの加工手間が余分に生じる。
【0007】
また、特許文献3に記載された接合構造を基に、特許文献1や特許文献2の接合構造で用いられているように小梁の上フランジを大梁に直接接合せずに床スラブを介して接合する構造を単純に組み合わせた場合、すなわち、小梁の下フランジを大梁に溶接接合し、小梁の上フランジを大梁に直接接合せずに床スラブを介して接合した場合、次の問題が生じる。床スラブのコンクリートが硬化する前に作用する荷重(鉄骨や床スラブの自重等)に対しては、小梁上フランジの引張力を、大梁や大梁を介して連続する別の小梁に伝達することができない。従って、特許文献3のように、小梁上下フランジが溶接された接合構造と比較すると、床スラブのコンクリートが硬化する前の接合部の剛性や耐力が小さく、たわみや梁中央のモーメントが増大してしまう。
【0008】
そこで、本発明は、確実な応力伝達が可能であり、かつ施工性を向上させた梁接合構造を提供することを目的とする。
【課題を解決するための手段】
【0009】
[1]第1の上フランジ、第1の下フランジおよび第1のウェブを含むH形断面梁と、第1のウェブにボルト接合される第1の板状部分、および第1の下フランジに平行な面を含む第2の板状部分を含む支持部材と、コンクリート、およびコンクリートに埋設され少なくともH形断面梁の材軸方向に延びる引張力伝達部材を含み、H形断面梁および支持部材の上方に配置されるRC床スラブと、第1の上フランジおよび支持部材にそれぞれ接合されるとともに、RC床スラブを構成するコンクリートに定着させられる係止部材と、第1の下フランジと第2の板状部分との間に形成される溶接部分とを備える梁接合構造。
[2]支持部材は、第2の上フランジ、第2の下フランジおよび第2のウェブを含む支持側H形断面梁と、第2の上フランジ、第2の下フランジまたは第2のウェブの少なくともいずれかに接合されるフィンプレートと、第2のウェブおよびフィンプレートに接合されるリブとを含み、第1の板状部分は、フィンプレートであり、第2の板状部分は、リブであり、係止部材は、第2の上フランジに接合される、[1]に記載の梁接合構造。
[3]支持部材は、第2の上フランジ、第2の下フランジおよび第2のウェブを含む支持側H形断面梁と、第2の上フランジ、第2の下フランジまたは第2のウェブの少なくともいずれかに接合されるフィンプレートとを含み、第1の板状部分は、フィンプレートであり、第2の板状部分は、第2の下フランジであり、係止部材は、第2の上フランジに接合される、[1]に記載の梁接合構造。
[4]第2の板状部分は、第1の下フランジよりも板厚が大きく、溶接部分は、第1の下フランジの端面に突き合わされた第2の板状部分の端面が第1の下フランジの上面よりも上側にはみ出した部分と第1の下フランジの上面との間に形成される隅肉溶接部分である、[1]から[3]のいずれか1項に記載の梁接合構造。
[5]溶接部分は、第1の下フランジの上面に載せかけられた第2の板状部分の端面と第1の下フランジの上面との間に形成される隅肉溶接部分である、[1]から[3]のいずれか1項に記載の梁接合構造。
[6]溶接部分は、第2の板状部分の上面に載せかけられた第1の下フランジの端面と第2の板状部分の上面との間に形成される隅肉溶接部分である、[1]から[3]のいずれか1項に記載の梁接合構造。
[7]溶接部分は、第1の下フランジの端面と第2の板状部分の端面との間に形成される突き合わせ溶接部分である、[1]から[3]のいずれか1項に記載の梁接合構造。
[8]第1の下フランジまたは第2の板状部分の少なくともいずれかの端面が開先加工される、[7]に記載の梁接合構造。
[9]溶接部分は、第1のウェブと第1の下フランジとの交差部分を除く部分にのみ形成される、[1]から[8]のいずれか1項に記載の梁接合構造。
[10]溶接部分の圧縮耐力は、梁接合構造におけるRC床スラブの有効幅領域内に配置された引張力伝達部材の引張耐力、およびH形断面梁の負曲げ領域内に配置された係止部材のせん断耐力のうち小さい方の耐力以上である、[1]から[9]のいずれか1項に記載の梁接合構造。
[11]引張力伝達部材は、異形鉄筋またはメッシュ筋である、[1]から[10]のいずれか1項に記載の梁接合構造。
[12]係止部材は、スタッドボルトである、[1]から[11]のいずれか1項に記載の梁接合構造。
[13]第1の板状部分は、第1のウェブに高力ボルト摩擦接合される、[1]から[12]のいずれか1項に記載の梁接合構造。
[14]上フランジ、下フランジおよびウェブを含むH形断面梁、ならびにウェブに平行な面を含む第1の板状部分、および下フランジに平行な面を含む第2の板状部分を含む支持部材を配置し、ウェブを第1の板状部分にボルト接合する工程と、下フランジと第2の板状部分との間に溶接部分を形成する工程と、コンクリート、およびコンクリートに埋設され少なくともH形断面梁の材軸方向に延びる引張力伝達部材を含むRC床スラブをH形断面梁および支持部材の上方に構築し、上フランジおよび支持部材に接合された係止部材をコンクリートに定着させる工程とを含む梁の接合方法。
【発明の効果】
【0010】
上記の構成によれば、引張力が生じる上フランジ側はRC床スラブを介してH形断面梁を支持部材に接合することによって、確実な応力伝達が可能になる。圧縮力が生じる下フランジ側は、溶接不良があっても影響が小さいため、検査不要な溶接によって接合することが可能である。また、多数の高力ボルトやスプライスプレートは必要とされず、溶接部分で施工誤差を吸収でき、また梁接合構造の上面に段差が生じないため、施工性が向上する。
【図面の簡単な説明】
【0011】
【
図1】本発明の第1の実施形態に係る梁接合構造を示す図である。
【
図3】本発明の第1の実施形態の変形例に係る梁接合構造を示す図である。
【
図4】本発明の第2の実施形態に係る梁接合構造を示す拡大図である。
【
図5】本発明の第3の実施形態に係る梁接合構造を示す拡大図である。
【
図6】本発明の第4の実施形態に係る梁接合構造を示す拡大図である。
【
図7】本発明の第5の実施形態に係る梁接合構造を示す図である。
【
図9】本発明の第5の実施形態の変形例に係る梁接合構造を示す拡大図である。
【
図11】解析で算出された接合部曲げモーメントと接合部回転角との関係を示すグラフである。
【
図12】剛性および耐力の算出方法について説明するための図である。
【
図13】解析による相当塑性ひずみの最大値の履歴を示すグラフである。
【
図14】解析による小梁下フランジの変位量の履歴を示すグラフである。
【
図15】解析による小梁の中立軸位置の履歴を示すグラフである。
【
図16】高力ボルト摩擦接合を用いた実施形態における施工時荷重およびモーメントの分布を概念的に説明するための図である。
【
図17】高力ボルト摩擦接合を用いた実施形態に関する解析で算出された接合部曲げモーメントと接合部回転角との関係を示すグラフである。
【
図18】高力ボルト摩擦接合を用いた実施形態に関する解析で算出された小梁の最大たわみを示すグラフである。
【発明を実施するための形態】
【0012】
以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
【0013】
(第1の実施形態)
図1は、本発明の第1の実施形態に係る梁接合構造を示す図である。本実施形態に係る梁接合構造は、小梁1と、大梁2と、フィンプレート31と、リブ32とRC床スラブ5と、頭付きのスタッドボルト6とを含む。より詳細には、小梁1は、上フランジ11と、下フランジ12と、ウェブ13とを含むH形断面梁である。大梁2は、小梁1の材軸方向に直交する方向に延び、上フランジ21と、下フランジ22と、ウェブ23とを含む支持側H形断面梁である。RC床スラブ5は、コンクリート51と、コンクリート51に埋設され少なくとも小梁1の材軸方向に延びる鉄筋52と、メッシュ筋53とを含む。メッシュ筋53は、コンクリート51に埋設され、小梁1の材軸方向に延びる鉄筋と、材軸方向に直交する方向に延びる鉄筋とをそれぞれ所定の間隔で配置して互いに接合することによって形成される。スタッドボルト6は、小梁1の上フランジ11および大梁2の上フランジ21にそれぞれ接合され、コンクリート51に定着させられる。
【0014】
上記の梁接合構造において、大梁2、フィンプレート31およびリブ32は、小梁1を支持する支持部材を構成する。フィンプレート31は、小梁1のウェブ13に平行な面を含む第1の板状部分である。フィンプレート31は、大梁2の上フランジ21およびウェブ23に溶接され、ボルト33を用いて小梁1のウェブ13に接合される。なお、フィンプレート31は大梁2の上フランジ21、下フランジ22またはウェブ23の少なくともいずれかに溶接されていればよい。リブ32は、小梁1の下フランジ12に平行な面を含む第2の板状部分である。リブ32は、大梁2のウェブ23およびフィンプレート31に溶接され、以下で説明するような溶接部分4Aによって小梁1の下フランジ12に接合される。
【0015】
図2は、
図1に示す梁接合構造の拡大図である。本実施形態において、溶接部分4Aは、リブ32の端面32Eと、小梁1の下フランジ12の上面12Uとの間に形成される隅肉溶接部分である。リブ32は下フランジ12よりも板厚が大きく、従って図示された例ではリブ32の端面32Eと下フランジ12の端面12Eとを突き合わせたときにリブ32の端面32Eが下フランジ12の上面12Uよりも上側にはみ出している。このはみ出した部分の端面32Eと、下フランジの上面12Uとの間を隅肉溶接することによって溶接部分4Aが形成される。ここで、溶接部分4Aは、小梁1のウェブ13と下フランジ12との交差部分を除く部分にのみ形成されてもよい。
【0016】
溶接部分4Aの圧縮耐力は、梁接合構造におけるRC床スラブ5の有効幅領域内に配置されたメッシュ筋53の引張耐力、および小梁1の負曲げ領域内に配置されたスタッドボルト6のせん断耐力のうち小さい方の耐力以上にすることが好ましい。なお、RC床スラブ5の有効幅領域については、日本建築学会発行の「各種合成構造設計指針・同解説」、またはEUROPEAN COMMITTEE FOR STANDARDIZATION、「Eurocode 4: Design of Composite Steel and Concrete Structures Part 1-8: Design of joints」に規定された合成梁のスラブ有効幅の算出方法によって決定することができる。また、小梁1の負曲げ領域は、大梁2との接合部から小梁1の材軸方向中央に向かって曲げモーメントの反曲点位置までの領域、すなわち小梁1に作用する曲げモーメントが上フランジ11側で引張、下フランジ12側が圧縮になる領域である。上記のような耐力の大小関係は、後述する他の形態の溶接部分についても同様である。
【0017】
上記のような本発明の第1の実施形態に係る梁接合構造では、小梁1および大梁2にそれぞれ接合されRC床スラブ5のコンクリート51に定着させられるスタッドボルト6が係止部材として機能し、コンクリート51に埋設されるメッシュ筋53が引張力伝達部材として機能する。これによって、小梁1の上フランジ11側で材軸方向の引張力が大梁2に伝達される。一方、小梁1の下フランジ12側では、下フランジ12が溶接部分4Aによってリブ32に接合されていることによって材軸方向の圧縮力がリブ32を介して大梁2に伝達される。従って、本実施形態では、小梁1と支持部材の大梁2との間で確実な応力伝達が可能である。
【0018】
また、本実施形態では、下フランジ12とリブ32とを接合するために多数の高力ボルトやスプライスプレートは必要とされない。また、孔の位置を合わせる必要があるボルト接合の場合と異なり、溶接部分4Aはリブ32と下フランジ12との位置に多少の施工誤差があっても施工可能である。上述のように下フランジ12とリブ32との間では主に圧縮力が伝達されるため、隅肉溶接部分である溶接部分4Aでは外観検査による品質管理となるため施工が容易であり、また小梁1のウェブ13と下フランジ12との交差部分には溶接部分4Aを形成しなくてもよい。加えて、梁接合構造の上面、すなわち小梁1の上フランジ11の上面と大梁2の上フランジ21の上面との間に段差が生じないため、図示しないデッキプレートの割り付け時に余分な加工手間は生じない。また、小梁1の端部では上フランジ11、下フランジ12およびウェブ13の材軸方向の位置が揃っているため、例えばウェブ13を切り欠いたりする加工手間は不要であり、ボルト33のための孔開け加工程度でよい。従って、本実施形態では、施工性も向上する。
【0019】
図3は、本発明の第1の実施形態の変形例に係る梁接合構造を示す図である。図示された例では、RC床スラブ5が、コンクリート51と、鉄筋52と、コンクリート51に埋設され小梁1の材軸方向に延びる異形鉄筋54とを含む。この場合、異形鉄筋54が、小梁1の上フランジ11側で材軸方向の引張力を大梁2に伝達するための引張力伝達部材として機能する。それ以外の構成について、
図3の例は
図1の例と同様である。
【0020】
(第2の実施形態)
図4は、本発明の第2の実施形態に係る梁接合構造を示す拡大図である。本実施形態では、リブ32が下フランジ12の上面12Uに載せかけられるように配置されており、載せかけられたリブ32の端面32Eと下フランジ12の上面12Uとの間に隅肉溶接部分である溶接部分4Bが形成される。リブ32には、小梁1のウェブ13との干渉を避けるための切り欠きが形成される。それ以外の点について、本実施形態の構成は上記の第1の実施形態と同様であるため、重複した説明は省略する。変形例、および効果についても第1の実施形態と同様であるが、本実施形態ではリブ32が下フランジ12の上面12Uに載せかけられるため、小梁1の材軸方向での施工誤差が吸収しやすい。
【0021】
(第3の実施形態)
図5は、本発明の第3の実施形態に係る梁接合構造を示す拡大図である。本実施形態では、下フランジ12がリブ32の上面32Uに載せかけられるように配置されており、載せかけられた下フランジ12の端面12Eとリブ32の上面32Uとの間に隅肉溶接部分である溶接部分4Cが形成される。それ以外の点について、本実施形態の構成は上記の第1の実施形態と同様であるため、重複した説明は省略する。変形例、および効果についても第1の実施形態と同様であるが、本実施形態では下フランジ12がリブ32の上面32Uに載せかけられるため、小梁1の材軸方向での施工誤差が吸収しやすい。第2の実施形態と比較すると、隅肉溶接部分を形成する角が小梁1側に向けて開いている第2の実施形態の方が溶接の施工性は高いのに対して、本実施形態ではリブ32と小梁1のウェブ13とが干渉しないため切り欠きの加工は不要である。
【0022】
(第4の実施形態)
図6は、本発明の第4の実施形態に係る梁接合構造を示す拡大図である。本実施形態では、下フランジ12の端面12Eとリブ32の端面32Eとの間に裏当金7を用いて突き合わせ溶接部分である溶接部分4Dが形成される。下フランジ12とリブ32との間では主に圧縮力が伝達されるため、突合せ溶接部分である溶接部分4Dでも超音波探傷装置による検査を省略することができる。それ以外の点について、本実施形態の構成は上記の第1の実施形態と同様であるため、重複した説明は省略する。変形例、および効果についても第1の実施形態と同様であるが、本実施形態では溶接部分4Dが開先をとった突合せ溶接であるため、小梁1の材軸方向での施工誤差が吸収しやすい。下フランジ12の端面12Eとリブ32の端面32Eとの間の隙間の大きさに応じて、本実施形態のような突合せ溶接と第1の実施形態のような隅肉溶接とを使い分けてもよい。
【0023】
(第5の実施形態)
図7は、本発明の第5の実施形態に係る梁接合構造を示す図である。本実施形態では、小梁1と大梁2との断面高さが一致する。つまり、本実施形態において、小梁1の上フランジ11の上面と大梁2の上フランジ21の上面とは設計上同じ高さにあり、かつ小梁1の下フランジ12の下面と大梁2の下フランジ22の下面とは設計上同じ高さにある。なお、小梁1の上フランジ11および下フランジ12と、大梁2の上フランジ21および下フランジ22との間では厚みが異なっていてもよく、図示された例では大梁2の上フランジ21および下フランジ22の方が厚い。本実施形態ではリブは配置されず、大梁2およびフィンプレート31が小梁1を支持する支持部材を構成する。
図7の例において、フィンプレート31は大梁2の上フランジ21、下フランジ22およびウェブ23に溶接される。フィンプレート31が第1の板状部分であり、ボルト33を用いて小梁1のウェブ13に接合される点は第1の実施形態と同様である。一方、本実施形態では大梁2の下フランジ22が、小梁1の下フランジ12に平行な面を含む第2の板状部分である。図示された例ではRC床スラブ5の引張力伝達部材として異形鉄筋54が用いられているが、
図1の例と同様にメッシュ筋53を用いてもよい。なお、上記の構成、および以下で説明する溶接部分4E以外の構成については、上記の第1の実施形態と同様であるため、重複した説明は省略する。後述する以外の変形例、および効果についても第1の実施形態と同様である。
【0024】
図8は、
図7に示す梁接合構造の拡大図である。本実施形態において、溶接部分4Eは、大梁2の下フランジ22の側端面22Sと、小梁1の下フランジ12の端面12Eとの間に裏当金7を用いて形成される突き合わせ溶接部分である。小梁1の下フランジ12と大梁2の下フランジ22との間では主に圧縮力が伝達されるため、突合せ溶接部分である溶接部分4Eでも超音波探傷装置による検査を省略することができる。なお、上述のように小梁1の下フランジ12よりも大梁2の下フランジ22の方が厚いため、第1の実施形態と同様に、小梁1の下フランジ12の端面12Eに突き合わされた大梁2の下フランジ22の側端面22Sが小梁1の下フランジ12の上面よりも上側にはみ出した部分と下フランジ12の上面との間に隅肉溶接部分を形成することも可能である。
【0025】
図9は、本発明の第5の実施形態の変形例に係る梁接合構造を示す拡大図である。図示された例における溶接部分4Fは、
図8の例と同様に大梁2の下フランジ22の側端面22Sと小梁1の下フランジ12の端面12E1との間に裏当金7を用いて形成される突き合わせ溶接部分であるが、端面12E1が開先加工され、小梁1のウェブ13にスカラップ14が形成されている点が
図8の例とは異なる。このように、開先加工やスカラップのような溶接部分に関する公知の細部構成については、例えば上記の第1から第4の実施形態でも同様に適用可能である。具体的には、例えば、下フランジ12の端面12E1または第2の板状部分の端面(リブ32の端面32Eもしくは大梁2の下フランジ22の側端面22S)のいずれか一方が開先加工されてもよいし、両方が開先加工されてもよい。
【0026】
また、上記の第5の実施形態では、第2および第3の実施形態として説明されたような溶接部分の構成も変形例として適用可能である。例えば、小梁1の断面高さを下フランジ12の板厚の分だけ大梁2の断面高さよりも大きくすれば、小梁1の下フランジ12の上面に大梁2の下フランジ22を載せかけ、下フランジ22の側端面22Sと小梁1の下フランジ12の上面との間に隅肉溶接部分を形成することが可能である。これとは逆に、大梁2の断面高さを下フランジ22の板厚の分だけ小梁1の断面高さよりも大きくすれば、大梁2の下フランジ22の上面に小梁1の下フランジ12を載せかけ、下フランジ12の端面12Eと大梁2の下フランジ22の上面との間に隅肉溶接部分を形成することが可能である。
【0027】
(梁の接合方法)
上記のような本発明の実施形態に係る梁の接合方法の例について説明する。まず、小梁1、および大梁2を含む支持部材を配置し、小梁1のウェブ13を大梁2に接合されたフィンプレート31にボルト33を用いて接合する。次に、小梁1の下フランジ12と、支持部材の第2の板状部分、つまりリブ32または大梁2の下フランジ22との間に溶接部分4A~4Fのいずれかを形成する。さらに、RC床スラブ5を小梁1および大梁2の上方に構築し、小梁1の上フランジ11および大梁2の上フランジ21に接合されたスタッドボルトをRC床スラブ5のコンクリート51に定着させる。以上のような工程によって、上記で説明した実施形態に係る梁接合構造を構築することができる。
【0028】
(上フランジを溶接しないことによる効果)
次に、本発明の実施形態において、H形断面梁である小梁の上フランジを支持部材に溶接しないことによる効果について説明する。上記の実施形態では、小梁下フランジが支持部材に溶接される一方で、小梁上フランジは支持部材に溶接されない。このような構造によって、以下の解析結果に示されるように、梁接合構造における応力状態を有意に改善することができる。
【0029】
図10は、解析モデルを概略的に示す図である。解析では、HY700×200×9×16のH形鋼を用いた小梁と、HY800×300×12×25のH形鋼を用いた大梁との間に形成される梁接合構造のモデルをメッシュ分割してFEA(Finite Element Analysis)を実施した。ケース1(実施例)およびケース2(比較例)のそれぞれで、小梁下フランジの端面は大梁に設けた水平リブにボンド条件で接合し、小梁ウェブは大梁に設けた板厚9mmのフィンプレートにM20の高力ボルト6本で摩擦接合した。摩擦係数は、フィンプレートとウェブの板面同士の間では0.45、ボルトの軸部およびワッシャ部とフィンプレートおよび小梁ウェブとの間では0.3とした。ボルトに133kNの初期軸力に相当する軸縮を導入した後、軸縮を一定に保ったまま大梁の幅方向中心から2.5mの位置にある小梁端部(自由端)に荷重を加え、鉛直下方(図中のy軸負方向)に50mmまで変位させた。なお、大梁幅方向中心は固定端とした。ケース2(比較例)では、さらに小梁上フランジの端面を大梁上フランジにボンド条件で接合した。
【0030】
図11は、解析で算出された接合部曲げモーメントM
jと接合部回転角φ
jとの関係を示すグラフである。接合部曲げモーメントM
jは、小梁ウェブのボルト接合部から載荷点までの距離L(=2.3m)および載荷点の反力Pから、以下の式(1)を用いて算出した。接合部回転角φ
jは、小梁上下フランジの接合部側の端面における幅方向中央かつ板厚中央の点の水平方向(
図10に示すx軸方向)の変位量δ
topおよびδ
botを用いて、以下の式(2)を用いて算出した。ここで、Hは小梁の梁せい、t
fは小梁のフランジ板厚である。なお、
図11のグラフでは、接合部曲げモーメントM
jおよび接合部回転角φ
jがそれぞれ降伏耐力M
j,yおよび降伏耐力時の接合部回転角φ
j,yとの比で無次元化して示されている。これらの耐力および回転角の算出方法は、
図12に示されている。
【0031】
【0032】
図13は、解析による相当塑性ひずみε
plの最大値の履歴を示すグラフである。
図13のグラフでも、接合部回転角φ
jは降伏耐力時の接合部回転角φ
j,yとの比で無次元化して示されている。相当塑性ひずみε
plの最大値は、小梁上フランジを支持部材に接合しないケース1で、全体として小梁上フランジを支持部材に接合したケース2よりも小さく推移する。特に、降伏耐力M
j,yが発生した時の相当塑性ひずみε
plは、ケース1における低減が顕著である。なお、相当塑性ひずみε
plの最大値は、ケース1では小梁ウェブ(ボルト接合部の上部付近)で発生するのに対し、ケース2では下フランジで発生する。これらの解析結果は、小梁上フランジを支持部材に接合しないケース1では、梁接合構造における応力状態、具体的には降伏耐力時において下フランジに発生する塑性ひずみが、小梁上フランジを支持部材に接合したケース2に比べて有意に改善されることを示している。
【0033】
図14は解析による小梁下フランジの変位量δ
botの履歴を示すグラフであり、
図15は解析による小梁の中立軸位置y
nの履歴を示すグラフである。ここで、中立軸位置y
nは、小梁上フランジの上面を基準とし、鉛直下向き(
図10に示すy軸負方向)を正として、以下の式(3)を用いて算出した。
図14および
図15に示された解析結果から、小梁上フランジを支持部材に接合しないケース1では、上フランジを接合したケース2に比べて下フランジの変位が抑制され、中立軸も下フランジに近接していることがわかる。この結果も、ケース1ではケース2に比べて下フランジの塑性ひずみが有意に改善されることを示している。なお、
図14および
図15のグラフでも、接合部回転角φ
jは降伏耐力時の接合部回転角φ
j,yとの比で無次元化して示されている。
【0034】
【0035】
以上のような解析の結果、小梁下フランジを支持部材に溶接し、小梁上フランジを支持部材に溶接しない構造を採用することによって、梁接合構造における応力状態が有意に改善されることがわかった。これによって、例えば小梁下フランジと支持部材との間の溶接方法や溶接部の検査方法などを、通常の溶接剛接合に比べて簡略化できる可能性がある。
【0036】
(高力ボルト摩擦接合を用いた実施形態)
次に、高力ボルト摩擦接合を用いた本発明の実施形態について説明する。例えば上記で
図1から
図9を参照して説明したような本発明の実施形態において、ボルト33として高力ボルトを使用し、小梁1のウェブ13とフィンプレート31とが互いに接触する面を摩擦面処理した梁接合構造が提供される。この場合、フィンプレート31は、ウェブ13に高力ボルト摩擦接合される。これによって、小梁上フランジを直接接合しない場合であっても、施工時(RC床スラブのコンクリート硬化前)に作用する荷重に対する接合部の剛性および耐力を高め、梁のたわみや中央の曲げモーメントを抑制することができる。
【0037】
より具体的には、摩擦面処理として、例えばウェブ13およびフィンプレート31のそれぞれの接触面を予めブラスト処理し、圧延肌(黒皮)を除去して発錆させてもよい。RC床スラブ5のコンクリート51の打設に先立って、ウェブ13とフィンプレート31とを互いに高力ボルトであるボルト33で接合し、トルクレンチなどを用いてボルト33を所定のトルクで締め付けることで張力が導入される。その後、小梁1の下フランジ12とリブ32との間の溶接部分4A,4B,4C,4Dまたは下フランジ12と大梁2の下フランジ22との間の溶接部分4E、4Fが形成される。なお、施工の順序は上記の例に限定されず、溶接部分の形成後にボルト33の締め付けが行われてもよい。
【0038】
図16は、高力ボルト摩擦接合を用いた実施形態における施工時荷重およびモーメントの分布を概念的に説明するための図である。RC床スラブ5のコンクリート51が打設された後、硬化するまでの間、小梁1にはコンクリート51の自重や施工中の積載物の荷重などの施工時荷重wが作用する。高力ボルト摩擦接合を用いた実施形態では、高力ボルトであるボルト33による摩擦抵抗と、下フランジ12の溶接部分4A,4B,4C,4D,4E,4Fの抵抗によって発生する回転剛性S
jによって、小梁端の接合部曲げモーメントM
jを支持することができる。
【0039】
ここで、
図16に示された例における施工時荷重wに対する接合部曲げモーメントM
jは、以下のような手順で算出することができる。まず、小梁の曲げ剛性をEI、長さをLとし、施工時荷重wが等分布荷重であることを仮定すると、小梁両端の接合部回転角φ
jは、接合部における回転剛性S
jを用いて以下の式(4)で表される。
【0040】
【0041】
式(4)両辺にSjを乗じ、小梁の単位長さ当たり曲げ剛性EI/L、接合部における回転剛性Sj、およびピン接合の場合の最大曲げモーメントM0で無次元化して表すと、以下の式(5)が得られる。なお、βMjおよびαjは、それぞれ式(6)および式(7)で定義される。
【0042】
【0043】
一方、小梁のたわみ分布δ(x)は、以下の式(8)で表される。なお、x軸は、
図16に示すように、一方の接合部を原点として小梁の長さ方向に定義される。式(8)をピン接合時の梁中央のたわみδ
0で基準化すると、式(9)が得られる。なお、δ
0は式(10)で表される。
【0044】
【0045】
一方、小梁の最大たわみδmaxは、式(9)にx=L/2を代入して得られる以下の式(11)で算出される。
【0046】
【0047】
次に、高力ボルト摩擦接合を用いた実施形態の解析結果について説明する。上記で
図10に示した例と同様に、HY700×200×9×16のH形鋼を用いた小梁と、HY800×300×12×25のH形鋼を用いた大梁との間に形成される梁接合構造のモデルをメッシュ分割してFEAを実施した。ケース3およびケース4のそれぞれで、小梁下フランジの端面は大梁に設けた水平リブにボンド条件で接合し、小梁ウェブは大梁に設けた板厚9mmのフィンプレートにボルト6本で摩擦接合した。ケース3ではM-20 F10Tの高力ボルト6本を使用して135kNの初期軸力に相当する軸縮を導入し、小梁ウェブとフィンプレートとの間の摩擦係数を0.45とした。一方、ケース4ではM-20 10.9Tのボルト6本を使用し、トルクレンチ等を用いない支圧接合の張力に相当する64kNの初期軸力に相当する軸縮を導入し、小梁ウェブとフィンプレートとの間の摩擦係数を0.2(圧延肌(黒皮)面同士の摩擦係数に相当する)とした。ケース3およびケース4のそれぞれで、RC床スラブのコンクリートが硬化する前の状態を想定して解析モデルは鉄骨部分のみとした。ケース3およびケース4のそれぞれにおいて、大梁幅方向中心は固定端とし、小梁上フランジの端面は大梁上フランジに接合していない。
【0048】
図17は、高力ボルト摩擦接合を用いた実施形態に関する解析で算出された接合部曲げモーメントM
jと接合部回転角φ
jとの関係を示すグラフである。接合部曲げモーメントM
jは、上記の式(5)を用いて算出した。接合部回転角φ
jは、上記の式(2)を用いて算出した。高力ボルト摩擦接合を用いた例であるケース3では、ケース4に対して、同じ接合部回転角φ
jに対して接合部曲げモーメントM
jが大きく推移し、非線形化するときの接合部曲げモーメントM
jも大きくなっていることがわかる。
【0049】
図18は、高力ボルト摩擦接合を用いた実施形態に関する解析で算出された小梁の最大たわみを示すグラフである。
図18の横軸は等分布荷重として定義される施工時荷重w、縦軸は上記の式(11)を用いて算出される小梁の最大たわみδ
maxである。小梁の長さLは15m、施工時荷重wは0から14kN/m(スラブ厚180mm、小梁1本あたりのスラブ支持幅3mの場合に相当)までの範囲とし、小梁両端の支持条件が上記のケース3およびケース4のそれぞれ条件である場合を比較した。高力ボルト摩擦接合を用いた例であるケース3では、ケース4に対して、小梁の最大たわみδ
maxが2/3程に抑制され、また非線形化も顕著でないことがわかる。
【0050】
以上のような解析の結果、フィンプレートを小梁ウェブに高力ボルト摩擦接合することで、施工時荷重に対する小梁のたわみが低減されることがわかった。
【0051】
以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
【符号の説明】
【0052】
1…小梁、11…上フランジ、12…下フランジ、12E…端面、12E1…端面、12U…上面、13…ウェブ、14…スカラップ、2…大梁、21…上フランジ、22…下フランジ、22S…側端面、23…ウェブ、31…フィンプレート、32…リブ、32E…端面、32U…上面、33…ボルト、4A,4B,4C,4D,4E,4F…溶接部分、5…RC床スラブ、51…コンクリート、52…鉄筋、53…メッシュ筋、54…異形鉄筋、6…スタッドボルト、7…裏当金。